diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 8 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 2 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 2 | ||||
-rw-r--r-- | src/algebra/color.spad.pamphlet | 57 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 2 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2734 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5828 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1964 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9804 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32850 |
10 files changed, 25665 insertions, 27586 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 6681df69..d0cfc83e 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,13 @@ 2008-10-07 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/Makefile.pamphlet (axiom_algebra_layer_user): Include + RGBCMDL, RGBCSPC. + * algebra/color.spad.pamphlet (RGBColorModel): New. + (RGBColorSpace): Likewise. + * algebra/exposed.lsp.pamphlet: Expose them + +2008-10-07 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/define.boot (compCategoryItem): Don't check signatures yet. * interp/c-util.boot (isKnownCategory): New. (diagnoseUknownType): Use it. Expand. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 9138480b..28d59a89 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -826,7 +826,7 @@ axiom_algebra_layer_user = \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ QQUTAST DEFAST MACROAST SPADXPT SPADAST \ - INBFILE OUTBFILE + INBFILE OUTBFILE RGBCMDL RGBCSPC axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 836f0f2b..53ce4b35 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -1253,7 +1253,7 @@ axiom_algebra_layer_user = \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ QQUTAST DEFAST MACROAST SPADXPT SPADAST \ - INBFILE OUTBFILE + INBFILE OUTBFILE RGBCMDL RGBCSPC axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) diff --git a/src/algebra/color.spad.pamphlet b/src/algebra/color.spad.pamphlet index 4a6b7387..5db08528 100644 --- a/src/algebra/color.spad.pamphlet +++ b/src/algebra/color.spad.pamphlet @@ -1,15 +1,56 @@ \documentclass{article} \usepackage{axiom} + +\title{src/algebra color.spad} + \begin{document} -\title{\$SPAD/src/algebra color.spad} -\author{Jim Wen} +\author{Gabriel Dos~Reis \and Jim Wen} + \maketitle \begin{abstract} \end{abstract} -\eject \tableofcontents \eject + +\section{The category of RGB Color Model} + +<<category RGBCMDL RGBColorModel>>= +)abbrev category RGBCMDL RGBColorModel +++ Author: Gabriel Dos Reis +++ Date Created: October 06, 2008 +++ Related Constructor: +++ Description: +++ This category defines the common interface for RGB color models. +RGBColorModel(T: AbelianMonoid): Category == AbelianMonoid with + red: % -> T + ++ red(c) returns the `red' component of `c'. + green: % -> T + ++ green(c) returns the `green' component of `c'. + blue: % -> T + ++ blue(c) returns the `blue' component of `c'. + componentUpperBound: T + ++ componentUpperBound is an upper bound for all component values. +@ + + +\section{The category of RGB Color Space} + +<<category RGBCSPC RGBColorSpace>>= +)abbrev category RGBCSPC RGBColorSpace +++ Author: Gabriel Dos Reis +++ Date Created: October 06, 2008 +++ Related Constructor: +++ Description: +++ This category defines the common interface for RGB color spaces. +RGBColorSpace(T: AbelianMonoid): Category == RGBColorModel T with + whitePoint: % + ++ whitepoint is the contant indicating the white point + ++ of this color space. +@ + + \section{domain COLOR Color} + <<domain COLOR Color>>= )abbrev domain COLOR Color ++ Author: Jim Wen @@ -160,7 +201,10 @@ Palette(): Exports == Implementation where @ \section{License} <<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd. +--All rights reserved. +-- +--Copyright (C) 2007-2008, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without @@ -175,7 +219,7 @@ Palette(): Exports == Implementation where -- the documentation and/or other materials provided with the -- distribution. -- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- - Neither the name of The Numerical Algorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- @@ -193,6 +237,9 @@ Palette(): Exports == Implementation where @ <<*>>= <<license>> + +<<category RGBCMDL RGBColorModel>> +<<category RGBCSPC RGBColorSpace>> <<domain COLOR Color>> <<domain PALETTE Palette>> diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index e19ec96c..18e6384f 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -740,6 +740,8 @@ (|RegularChain| . RGCHAIN) (|RegularTriangularSetCategory| . RSETCAT) (|RetractableTo| . RETRACT) + (|RGBColorModel| . RGBCMDL) + (|RGBColorSpace| . RGBCSPC) (|RightModule| . RMODULE) (|Ring| . RING) (|Rng| . RNG) diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index c292e4ed..c89ca2c0 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2267755 . 3431897906) +(2266992 . 3432414584) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4341 . T) (-4339 . T) (-4338 . T) ((-4346 "*") . T) (-4337 . T) (-4342 . T) (-4336 . T) (-2836 . T)) +((-4345 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4341 . T) (-4346 . T) (-4340 . T) (-2363 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3327) +(-32 R -3423) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) +((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4344))) +((|HasAttribute| |#1| (QUOTE -4348))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2836 . T)) +((-2363 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3327 UP UPUP -2351) +(-40 -3423 UP UPUP -2938) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4337 |has| (-400 |#2|) (-356)) (-4342 |has| (-400 |#2|) (-356)) (-4336 |has| (-400 |#2|) (-356)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1489 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1489 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1489 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1489 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) -(-41 R -3327) +((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3886 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) +(-41 R -3423) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,45 +106,45 @@ NIL ((|HasCategory| |#1| (QUOTE (-300)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4341 |has| |#1| (-542)) (-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) +((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4344 . T) (-4345 . T)) -((-1489 (-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|))))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-3886 (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825)))) (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| $ (QUOTE (-1021))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-550))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4341 . T)) +((-4345 . T)) NIL -(-51 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-51) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL -(-52) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-52 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL (-53 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3327) +(-54 |Base| R -3423) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,133 +154,133 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL -(-57 A B) +(-57 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-58 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-60 -1856) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-60 -3900) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-61 -3900) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -1856) +(-62 -3900) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -1856) +(-63 -3900) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -1856) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-64 -1856) +(-64 -3900) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -1856) +(-65 -3900) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -1856) +(-66 -3900) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -1856) +(-67 -3900) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1856) +(-68 -3900) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -1856) +(-69 -3900) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -1856) +(-70 -3900) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -1856) +(-71 -3900) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -1856) +(-72 -3900) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -1856) +(-73 -3900) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-74 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-74 -3900) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-75 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -1856) -((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-76 |nameOne| |nameTwo| |nameThree|) +((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1856) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-77 -3900) +((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -1856) +(-78 -3900) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -1856) +(-79 -3900) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1856) +(-80 -3900) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1856) +(-81 -3900) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +NIL +NIL +(-82 -3900) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -1856) +(-83 -3900) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1856) +(-84 -3900) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1856) +(-85 -3900) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1856) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-86 -3900) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-86 -1856) +(-87 -3900) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1856) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) -NIL -NIL -(-88 -1856) +(-88 -3900) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -290,8 +290,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-356)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4344 . T)) +((-4348 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4344 . T) ((-4346 "*") . T) (-4345 . T) (-4341 . T) (-4339 . T) (-4338 . T) (-4337 . T) (-4342 . T) (-4336 . T) (-4335 . T) (-4334 . T) (-4333 . T) (-4332 . T) (-4340 . T) (-4343 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4331 . T)) +((-4348 . T) ((-4350 "*") . T) (-4349 . T) (-4345 . T) (-4343 . T) (-4342 . T) (-4341 . T) (-4346 . T) (-4340 . T) (-4339 . T) (-4338 . T) (-4337 . T) (-4336 . T) (-4344 . T) (-4347 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4335 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4341 . T)) +((-4345 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4346 "*")))) +((|HasAttribute| |#1| (QUOTE (-4350 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4344 . T)) +((-4348 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,12 +354,12 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-550) (QUOTE (-883))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-996))) (|HasCategory| (-550) (QUOTE (-798))) (-1489 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1120))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (|HasCategory| (-550) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -370,43 +370,43 @@ NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1069))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1069))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-838))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-113 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) -NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-114) +(-113) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -3327 UP) +(-114 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) +NIL +((|HasCategory| |#1| (QUOTE (-825)))) +(-115 -3423 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-883))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-116 |#1|) (QUOTE (-996))) (|HasCategory| (-116 |#1|) (QUOTE (-798))) (-1489 (|HasCategory| (-116 |#1|) (QUOTE (-798))) (|HasCategory| (-116 |#1|) (QUOTE (-825)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-1120))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-535))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-883)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-884))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-116 |#1|) (QUOTE (-994))) (|HasCategory| (-116 |#1|) (QUOTE (-798))) (-3886 (|HasCategory| (-116 |#1|) (QUOTE (-798))) (|HasCategory| (-116 |#1|) (QUOTE (-825)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1122))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-535))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-884)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4345))) +((|HasAttribute| |#1| (QUOTE -4349))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2836 . T)) +((-2363 . T)) NIL (-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-128) -((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1069))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129)))))) (-1489 (-12 (|HasCategory| (-129) (QUOTE (-1069))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-129) (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-129) (QUOTE (-1069)))) (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-129) (QUOTE (-1069))) (-12 (|HasCategory| (-129) (QUOTE (-1069))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -595) (QUOTE (-837))))) -(-129) -((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) +((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} views \\spad{`c'} a a byte. In particular \\spad{`c'} is supposed to have a numerical value less than 256.") (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL +(-129) +((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128)))))) (-3886 (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-128) (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-128) (QUOTE (-1072)))) (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-128) (QUOTE (-1072))) (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -595) (QUOTE (-838))))) (-130) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -462,14 +462,14 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4346 "*") . T)) +(((-4350 "*") . T)) NIL -(-134 |minix| -2281 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-134 |minix| -2945 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-135 |minix| -2281 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-135 |minix| -2945 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL (-136) @@ -486,8 +486,8 @@ NIL NIL (-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4344 . T) (-4334 . T) (-4345 . T)) -((-1489 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1069))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4338 . T) (-4349 . T)) +((-3886 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) (-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -502,7 +502,7 @@ NIL NIL (-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4341 . T)) +((-4345 . T)) NIL (-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -510,9 +510,9 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4341 . T)) +((-4345 . T)) NIL -(-146 -3327 UP UPUP) +(-146 -3423 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -523,14 +523,14 @@ NIL (-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasAttribute| |#1| (QUOTE -4344))) +((|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasAttribute| |#1| (QUOTE -4348))) (-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2836 . T)) +((-2363 . T)) NIL (-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4339 . T) (-4338 . T) (-4341 . T)) +((-4343 . T) (-4342 . T) (-4345 . T)) NIL (-151) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -552,7 +552,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-156 R -3327) +(-156 R -3423) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -565,11 +565,11 @@ NIL NIL NIL (-159) -((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL (-160) -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) +((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL (-161) @@ -583,23 +583,23 @@ NIL (-163 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-883))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasAttribute| |#2| (QUOTE -4343)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-825)))) +((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4344)) (|HasAttribute| |#2| (QUOTE -4347)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-825)))) (-164 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4337 -1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4343 |has| |#1| (-6 -4343)) (-2167 . T) (-2836 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 -3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4344 |has| |#1| (-6 -4344)) (-4347 |has| |#1| (-6 -4347)) (-1421 . T) (-2363 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-165 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-166 R S) +(-166 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4341 -3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4344 |has| |#1| (-6 -4344)) (-4347 |has| |#1| (-6 -4347)) (-1421 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-799)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-994))))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-884))))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#1| (QUOTE (-1032))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasAttribute| |#1| (QUOTE -4344)) (|HasAttribute| |#1| (QUOTE -4347)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-343))))) +(-167 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-167 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4337 -1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4343 |has| |#1| (-6 -4343)) (-2167 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-883))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-883)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-883))))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1167)))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-1167)))) (|HasCategory| |#1| (QUOTE (-535))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#1| (QUOTE -4343)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145))))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-342))))) (-168 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -610,7 +610,7 @@ NIL NIL (-170) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-171) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -618,7 +618,7 @@ NIL NIL (-172 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4346 "*") . T) (-4337 . T) (-4342 . T) (-4336 . T) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") . T) (-4341 . T) (-4346 . T) (-4340 . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-173) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -635,7 +635,7 @@ NIL (-176 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-926 |#2|) (LIST (QUOTE -860) (|devaluate| |#1|)))) +((|HasCategory| (-920 |#2|) (LIST (QUOTE -860) (|devaluate| |#1|)))) (-177 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -656,7 +656,7 @@ NIL ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-182 R -3327) +(-182 R -3423) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -764,28 +764,28 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-209 -3327 UP UPUP R) +(-209 -3423 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-210 -3327 FP) +(-210 -3423 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-211) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-550) (QUOTE (-883))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-996))) (|HasCategory| (-550) (QUOTE (-798))) (-1489 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1120))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (|HasCategory| (-550) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) (-212) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-213 R -3327) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-213 R -3423) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-214 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-215 R1 R2) @@ -794,19 +794,19 @@ NIL NIL (-216 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-217 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4341 . T)) +((-4345 . T)) NIL -(-218 R -3327) +(-218 R -3423) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-219) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2154 . T) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-220) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -814,23 +814,23 @@ NIL NIL (-221 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4346 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-222 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-223 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL (-224 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227)))) +((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227)))) (-225 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4341 . T)) +((-4345 . T)) NIL (-226 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -838,36 +838,36 @@ NIL NIL (-227) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4341 . T)) +((-4345 . T)) NIL (-228 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4344))) +((|HasAttribute| |#1| (QUOTE -4348))) (-229 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL (-230) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-231 S -2281 R) +(-231 S -2945 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasAttribute| |#3| (QUOTE -4341)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (QUOTE (-1069)))) -(-232 -2281 R) +((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasAttribute| |#3| (QUOTE -4345)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-1072)))) +(-232 -2945 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4338 |has| |#2| (-1021)) (-4339 |has| |#2| (-1021)) (-4341 |has| |#2| (-6 -4341)) ((-4346 "*") |has| |#2| (-170)) (-4344 . T) (-2836 . T)) +((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T) (-2363 . T)) NIL -(-233 -2281 A B) +(-233 -2945 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) +(-234 -2945 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-234 -2281 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4338 |has| |#2| (-1021)) (-4339 |has| |#2| (-1021)) (-4341 |has| |#2| (-6 -4341)) ((-4346 "*") |has| |#2| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-771))) (-1489 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (|HasCategory| |#2| (QUOTE (-1021))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasAttribute| |#2| (QUOTE -4341)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (-235) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -878,88 +878,88 @@ NIL NIL (-237) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4337 . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-238 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2836 . T)) +((-2363 . T)) NIL (-239 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-240 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-241 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4346 "*") |has| |#2| (-170)) (-4337 |has| |#2| (-542)) (-4342 |has| |#2| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) (-242) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-243 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4341 -1489 (-1304 (|has| |#4| (-1021)) (|has| |#4| (-227))) (-1304 (|has| |#4| (-1021)) (|has| |#4| (-874 (-1145)))) (|has| |#4| (-6 -4341)) (-1304 (|has| |#4| (-1021)) (|has| |#4| (-619 (-550))))) (-4338 |has| |#4| (-1021)) (-4339 |has| |#4| (-1021)) ((-4346 "*") |has| |#4| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#4| (QUOTE (-356))) (-1489 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1021)))) (-1489 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (QUOTE (-771))) (-1489 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (QUOTE (-823)))) (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (QUOTE (-170))) (-1489 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1021)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1021)))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-227)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-356)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-361)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-705)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-771)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-823)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1021)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1021)))) (-1489 (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1021)))) (|HasCategory| |#4| (QUOTE (-705))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (|HasCategory| |#4| (QUOTE (-1021))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1069)))) (-1489 (|HasAttribute| |#4| (QUOTE -4341)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1021)))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1021))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4345 -3886 (-3186 (|has| |#4| (-1023)) (|has| |#4| (-227))) (-3186 (|has| |#4| (-1023)) (|has| |#4| (-874 (-1147)))) (|has| |#4| (-6 -4345)) (-3186 (|has| |#4| (-1023)) (|has| |#4| (-619 (-536))))) (-4342 |has| |#4| (-1023)) (-4343 |has| |#4| (-1023)) ((-4350 "*") |has| |#4| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-356))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1023)))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (QUOTE (-771))) (-3886 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (QUOTE (-823)))) (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (QUOTE (-170))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1023)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023)))) (|HasCategory| |#4| (QUOTE (-705)))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#4| (QUOTE (-1023)))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasAttribute| |#4| (QUOTE -4345)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) (-244 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4341 -1489 (-1304 (|has| |#3| (-1021)) (|has| |#3| (-227))) (-1304 (|has| |#3| (-1021)) (|has| |#3| (-874 (-1145)))) (|has| |#3| (-6 -4341)) (-1304 (|has| |#3| (-1021)) (|has| |#3| (-619 (-550))))) (-4338 |has| |#3| (-1021)) (-4339 |has| |#3| (-1021)) ((-4346 "*") |has| |#3| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#3| (QUOTE (-356))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (QUOTE (-771))) (-1489 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1021)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-705)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-771)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-823)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1021)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (|HasCategory| |#3| (QUOTE (-705))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (|HasCategory| |#3| (QUOTE (-1021))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-1489 (|HasAttribute| |#3| (QUOTE -4341)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4345 -3886 (-3186 (|has| |#3| (-1023)) (|has| |#3| (-227))) (-3186 (|has| |#3| (-1023)) (|has| |#3| (-874 (-1147)))) (|has| |#3| (-6 -4345)) (-3186 (|has| |#3| (-1023)) (|has| |#3| (-619 (-536))))) (-4342 |has| |#3| (-1023)) (-4343 |has| |#3| (-1023)) ((-4350 "*") |has| |#3| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-356))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-771))) (-3886 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-705)))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasAttribute| |#3| (QUOTE -4345)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) (-245 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-227)))) (-246 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL (-247 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) +NIL +(-248 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL -(-248) +NIL +(-249) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-249 R |Ex|) +(-250 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-250) +(-251) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-251 R) +(-252 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-252 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) -NIL -NIL (-253) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL (-254) -((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-255 S) -((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) +(-255) +((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-256) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +(-256 S) +((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL (-257 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) (-258 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1004,11 +1004,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-269 R -3327) +(-269 R -3423) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-270 R -3327) +(-270 R -3423) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1027,10 +1027,10 @@ NIL (-274 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069)))) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072)))) (-275 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL (-276 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1051,18 +1051,18 @@ NIL (-280 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4345))) +((|HasAttribute| |#1| (QUOTE -4349))) (-281 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-282 S R |Mod| -1591 -2441 |exactQuo|) +(-282 S R |Mod| -2147 -3867 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-283) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4337 . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-284) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1072,65 +1072,65 @@ NIL ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-286 S R) +(-286 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4345 -3886 (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4342 |has| |#1| (-1023)) (-4343 |has| |#1| (-1023))) +((|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705)))) (|HasCategory| |#1| (QUOTE (-465))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-291))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-287 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-287 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4341 -1489 (|has| |#1| (-1021)) (|has| |#1| (-465))) (-4338 |has| |#1| (-1021)) (-4339 |has| |#1| (-1021))) -((|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705)))) (|HasCategory| |#1| (QUOTE (-465))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1069)))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-295))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-1489 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705)))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1021)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-288 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) (-289) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-290 -3327 S) -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) +(-290 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1023)))) +(-291) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -(-291 E -3327) -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL +(-292 -3423 S) +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL -(-292 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +NIL +(-293 E -3423) +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-293) +(-294) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-294 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +(-295 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1021)))) -(-295) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +NIL +(-296) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-296 R1) +(-297 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-297 R1 R2) +(-298 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-298) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) -NIL -NIL (-299 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL (-300) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-301 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1140,35 +1140,35 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-303 -3327) +(-303 -3423) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL (-304) -((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL (-305) -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) +((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL (-306 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-883))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-996))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (-1489 (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-1120))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-535))) (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-12 (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-883))) (|HasCategory| $ (QUOTE (-143)))) (-1489 (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1214 |#1| |#2| |#3| |#4|) (QUOTE (-883))) (|HasCategory| $ (QUOTE (-143)))))) -(-307 R S) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-994))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (-3886 (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-1122))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-535))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-143))))) +(-307 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4345 -3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-12 (|has| |#1| (-543)) (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (|has| |#1| (-1023)) (|has| |#1| (-465)))) (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-543)) (-4340 |has| |#1| (-543))) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1083)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1083)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) +(-308 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-308 R FE) +(-309 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-309 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4341 -1489 (-1304 (|has| |#1| (-1021)) (|has| |#1| (-619 (-550)))) (-12 (|has| |#1| (-542)) (-1489 (-1304 (|has| |#1| (-1021)) (|has| |#1| (-619 (-550)))) (|has| |#1| (-1021)) (|has| |#1| (-465)))) (|has| |#1| (-1021)) (|has| |#1| (-465))) (-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) ((-4346 "*") |has| |#1| (-542)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-542)) (-4336 |has| |#1| (-542))) -((-1489 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1021)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (-1489 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1081)))) (-1489 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))))) (-1489 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1081)))) (-1489 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))))) (-1489 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1021)))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| $ (QUOTE (-1021))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-550))))) -(-310 R -3327) +(-310 R -3423) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1178,8 +1178,8 @@ NIL NIL (-312 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) (-313 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1190,8 +1190,8 @@ NIL NIL (-315 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-770)))) +((-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-770)))) (-316 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1203,22 +1203,22 @@ NIL (-318 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170)))) +((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170)))) (-319 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-320 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-321 S -3327) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-321 S -3423) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-361)))) -(-322 -3327) +(-322 -3423) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-323) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) @@ -1232,121 +1232,121 @@ NIL ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-326 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-326 -3423 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL +(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-327 S -3327 UP UPUP R) +(-328 S -3423 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-328 -3327 UP UPUP R) +(-329 -3423 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-329 -3327 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL (-330 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-331 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-332 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-372)))) (|HasCategory| $ (QUOTE (-1021))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-550))))) -(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) -NIL -NIL -(-334 S -3327 UP UPUP) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) +(-333 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) +(-334 S -3423 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-356)))) -(-335 -3327 UP UPUP) +(-335 -3423 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4337 |has| (-400 |#2|) (-356)) (-4342 |has| (-400 |#2|) (-356)) (-4336 |has| (-400 |#2|) (-356)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +NIL +(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL -(-336 |p| |extdeg|) +NIL +(-337 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| (-884 |#1|) (QUOTE (-143))) (|HasCategory| (-884 |#1|) (QUOTE (-361)))) (|HasCategory| (-884 |#1|) (QUOTE (-145))) (|HasCategory| (-884 |#1|) (QUOTE (-361))) (|HasCategory| (-884 |#1|) (QUOTE (-143)))) -(-337 GF |defpol|) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) +(-338 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-338 GF |extdeg|) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-339 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-339 GF) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-340 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-340 F1 GF F2) +(-341 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-341 S) +(-342 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-342) +(-343) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-343 R UP -3327) +(-344 R UP -3423) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-344 |p| |extdeg|) +(-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| (-884 |#1|) (QUOTE (-143))) (|HasCategory| (-884 |#1|) (QUOTE (-361)))) (|HasCategory| (-884 |#1|) (QUOTE (-145))) (|HasCategory| (-884 |#1|) (QUOTE (-361))) (|HasCategory| (-884 |#1|) (QUOTE (-143)))) -(-345 GF |uni|) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) +(-346 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-346 GF |extdeg|) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-347 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| (-884 |#1|) (QUOTE (-143))) (|HasCategory| (-884 |#1|) (QUOTE (-361)))) (|HasCategory| (-884 |#1|) (QUOTE (-145))) (|HasCategory| (-884 |#1|) (QUOTE (-361))) (|HasCategory| (-884 |#1|) (QUOTE (-143)))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) (-348 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-349 -3327 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-349 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-350 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +(-350 -3423 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-351 -3327 FP FPP) +(-351 -3423 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-352 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) (-353 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-354 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4341 . T)) +((-4345 . T)) NIL (-355 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1354,23 +1354,23 @@ NIL NIL (-356) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-357 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-357 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-358 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-358 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL (-359 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-542)))) +((|HasCategory| |#2| (QUOTE (-543)))) (-360 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4341 |has| |#1| (-542)) (-4339 . T) (-4338 . T)) +((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) NIL (-361) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1382,23 +1382,23 @@ NIL ((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-356)))) (-363 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-364 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) -NIL -NIL -(-365 A S) +(-364 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069)))) -(-366 S) +((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072)))) +(-365 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4344 . T) (-2836 . T)) +((-4348 . T) (-2363 . T)) +NIL +(-366 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +NIL NIL (-367 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4339 . T) (-4338 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) NIL (-368 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1407,50 +1407,50 @@ NIL (-369 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) +((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-370 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4341 . T)) +((-4345 . T)) NIL -(-371 |Par|) -((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) +(-371) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4331 . T) (-4339 . T) (-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL +(-372 |Par|) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL -(-372) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4327 . T) (-4335 . T) (-2154 . T) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) NIL (-373 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL (-374 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (QUOTE (-170)))) +(-375 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) ((|HasCategory| |#1| (QUOTE (-170)))) -(-375 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4339 . T) (-4338 . T)) -NIL (-376) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2836 . T)) +((-2363 . T)) +NIL +(-377 R |Basis|) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((-4343 . T) (-4342 . T)) NIL -(-377) +(-378) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2836 . T)) +((-2363 . T)) NIL -(-378 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) (-379 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL ((|HasCategory| |#1| (QUOTE (-825)))) (-380) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-381) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1462,47 +1462,47 @@ NIL NIL (-383 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL (-384) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-385 -3327 UP UPUP R) +(-385 -3423 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-386 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +(-386) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-387) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) +(-387 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL (-388) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2836 . T)) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +NIL NIL (-389) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2836 . T)) +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((-2363 . T)) NIL (-390) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) -NIL +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-2363 . T)) NIL -(-391 -1856 |returnType| -2642 |symbols|) +(-391 -3900 |returnType| -1464 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-392 -3327 UP) +(-392 -3423 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-393 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2836 . T)) +((-2363 . T)) NIL (-394 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1510,129 +1510,129 @@ NIL NIL (-395) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-396 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4327)) (|HasAttribute| |#1| (QUOTE -4335))) +((|HasAttribute| |#1| (QUOTE -4331)) (|HasAttribute| |#1| (QUOTE -4339))) (-397) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2154 . T) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-398 R S) +(-398 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1188))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-444)))) +(-399 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-399 A B) +(-400 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4335 -12 (|has| |#1| (-6 -4346)) (|has| |#1| (-444)) (|has| |#1| (-6 -4335))) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-798))) (-3886 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-825)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1122))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-535))) (-12 (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-401 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-400 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4331 -12 (|has| |#1| (-6 -4342)) (|has| |#1| (-444)) (|has| |#1| (-6 -4331))) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-798))) (-1489 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-825)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1120))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806))))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-535))) (-12 (|HasAttribute| |#1| (QUOTE -4342)) (|HasAttribute| |#1| (QUOTE -4331)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-401 S R UP) +(-402 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-402 R UP) +(-403 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-403 A S) +(-404 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) -(-404 S) +((|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) +(-405 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-405 R1 F1 U1 A1 R2 F2 U2 A2) +(-406 R -3423 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4345 . T)) +NIL +(-407 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-406 R -3327 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4341 . T)) -NIL -(-407 R -3327 UP A |ibasis|) +(-408 R -3423 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1012) (|devaluate| |#2|)))) -(-408 AR R AS S) +(-409 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-409 S R) +(-410 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-410 R) +(-411 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4341 |has| |#1| (-542)) (-4339 . T) (-4338 . T)) +((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) NIL -(-411 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1186))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-444)))) (-412 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-413 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-413 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL +((|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1083))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) +(-414 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4345 -3886 (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-543)) (-4340 |has| |#1| (-543)) (-2363 . T)) NIL -(-414 R A S B) +(-415 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-415 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) +(-416 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-416 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +(-417 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-417 A S) +(-418 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL ((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) -(-418 S) +(-419 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4344 . T) (-4334 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4338 . T) (-4349 . T) (-2363 . T)) +NIL +(-420 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL -(-419 R -3327) +NIL +(-421 R -3423) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-420 R E) +(-422 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4331 -12 (|has| |#1| (-6 -4331)) (|has| |#2| (-6 -4331))) (-4338 . T) (-4339 . T) (-4341 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4331)) (|HasAttribute| |#2| (QUOTE -4331)))) -(-421 R -3327) +((-4335 -12 (|has| |#1| (-6 -4335)) (|has| |#2| (-6 -4335))) (-4342 . T) (-4343 . T) (-4345 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#2| (QUOTE -4335)))) +(-423 R -3423) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-422 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -NIL -((|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) -(-423 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4341 -1489 (|has| |#1| (-1021)) (|has| |#1| (-465))) (-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) ((-4346 "*") |has| |#1| (-542)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-542)) (-4336 |has| |#1| (-542)) (-2836 . T)) -NIL -(-424 R -3327) +(-424 R -3423) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-425 R -3327) +(-425 R -3423) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-426 R -3327) +(-426 R -3423) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1640,16 +1640,16 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-428 R -3327 UP) +(-428 R -3423 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-48))))) (-429) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL (-430) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL (-431 |f|) @@ -1658,17 +1658,17 @@ NIL NIL (-432) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2836 . T)) +((-2363 . T)) NIL (-433) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2836 . T)) +((-2363 . T)) NIL (-434 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-435 R UP -3327) +(-435 R UP -3423) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1685,37 +1685,37 @@ NIL NIL NIL (-439 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) -NIL +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL +((|HasCategory| |#1| (QUOTE (-356)))) (-440 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) +((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL (-441 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) +((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL (-442 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) +NIL NIL -((|HasCategory| |#1| (QUOTE (-356)))) (-443 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL (-444) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-445 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4341 |has| (-400 (-926 |#1|)) (-542)) (-4339 . T) (-4338 . T)) -((|HasCategory| (-400 (-926 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-400 (-926 |#1|)) (QUOTE (-542)))) +((-4345 |has| (-400 (-920 |#1|)) (-543)) (-4343 . T) (-4342 . T)) +((|HasCategory| (-400 (-920 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| (-400 (-920 |#1|)) (QUOTE (-543)))) (-446 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4346 "*") |has| |#2| (-170)) (-4337 |has| |#2| (-542)) (-4342 |has| |#2| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) (-447 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1742,7 +1742,7 @@ NIL NIL (-453 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL (-454 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1750,8 +1750,8 @@ NIL NIL (-455 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) (-456 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1780,7 +1780,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-463 |lv| -3327 R) +(-463 |lv| -3423 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1790,23 +1790,23 @@ NIL NIL (-465) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4341 . T)) +((-4345 . T)) NIL (-466 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) (-467 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) (-468 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) (-469) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-470) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1814,29 +1814,29 @@ NIL NIL (-471 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) (-472) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-473 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4346 "*") |has| |#2| (-170)) (-4337 |has| |#2| (-542)) (-4342 |has| |#2| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-474 -2281 S) +(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-474 -2945 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4338 |has| |#2| (-1021)) (-4339 |has| |#2| (-1021)) (-4341 |has| |#2| (-6 -4341)) ((-4346 "*") |has| |#2| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-771))) (-1489 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (|HasCategory| |#2| (QUOTE (-1021))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasAttribute| |#2| (QUOTE -4341)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (-475) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL (-476 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-477 -3327 UP UPUP R) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-477 -3423 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1846,15 +1846,15 @@ NIL NIL (-479) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-550) (QUOTE (-883))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-996))) (|HasCategory| (-550) (QUOTE (-798))) (-1489 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1120))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (|HasCategory| (-550) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) (-480 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4344)) (|HasAttribute| |#1| (QUOTE -4345)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) +((|HasAttribute| |#1| (QUOTE -4348)) (|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (-481 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2836 . T)) +((-2363 . T)) NIL (-482) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) @@ -1868,34 +1868,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-485 -3327 UP |AlExt| |AlPol|) +(-485 -3423 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-486) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| $ (QUOTE (-1021))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-550))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) (-487 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-488 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-489 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-490 R UP -3327) +(-490 R UP -3423) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-491 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1069))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1069))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-838))))) (-492 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1908,10 +1908,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-495 -3327 |Expon| |VarSet| |DPoly|) +(-495 -3423 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-1145))))) +((|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-1147))))) (-496 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1933,15 +1933,15 @@ NIL NIL NIL (-501 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL (-502 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL (-503 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL (-504 S A B) @@ -1958,36 +1958,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-770)))) (-507 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-508) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-509 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| (-565 |#1|) (QUOTE (-143))) (|HasCategory| (-565 |#1|) (QUOTE (-361)))) (|HasCategory| (-565 |#1|) (QUOTE (-145))) (|HasCategory| (-565 |#1|) (QUOTE (-361))) (|HasCategory| (-565 |#1|) (QUOTE (-143)))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (|HasCategory| (-565 |#1|) (QUOTE (-143))) (|HasCategory| (-565 |#1|) (QUOTE (-361)))) (|HasCategory| (-565 |#1|) (QUOTE (-145))) (|HasCategory| (-565 |#1|) (QUOTE (-361))) (|HasCategory| (-565 |#1|) (QUOTE (-143)))) (-510 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-511 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-512 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4345))) +((|HasAttribute| |#3| (QUOTE -4349))) (-513 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4345))) +((|HasAttribute| |#7| (QUOTE -4349))) (-514 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4346 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-515) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2020,7 +2020,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-523 K -3327 |Par|) +(-523 K -3423 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2028,19 +2028,19 @@ NIL ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-525 R) -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) +(-525) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-526) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +(-526 R) +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL (-527 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-528 K -3327 |Par|) +(-528 K -3423 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2061,7 +2061,7 @@ NIL NIL NIL (-533 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL (-534 S) @@ -2070,81 +2070,81 @@ NIL NIL (-535) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4342 . T) (-4343 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +NIL +(-536) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4330 . T) (-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-536 |Key| |Entry| |addDom|) +(-537 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) -(-537 R -3327) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) +(-538 R -3423) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-538 R0 -3327 UP UPUP R) +(-539 R0 -3423 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-539) +(-540) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-540 R) +(-541 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2154 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4124 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-541 S) +(-542 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-542) +(-543) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-543 R -3327) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-544 R -3423) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-544 I) +(-545 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-545) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +(-546) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-546 R -3327 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-547 R -3423 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|)))) -(-547) +((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) +(-548) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-548 -3327 UP UPUP R) +(-549 -3423 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-549 -3327 UP) +(-550 -3423 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-550) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4326 . T) (-4332 . T) (-4336 . T) (-4331 . T) (-4342 . T) (-4343 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -NIL (-551) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-552 R -3327 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-552 R -3423 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|)))) -(-553 R -3327) +((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) +(-553 R -3423) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-609))))) -(-554 -3327 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1110)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-610))))) +(-554 -3423 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2152,27 +2152,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-556 -3327) +(-556 -3423) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-557 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2154 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4124 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-558) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-559 R -3327) +(-559 R -3423) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-609))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-542)))) -(-560 -3327 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-610))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-543)))) +(-560 -3423 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-561 R -3327) +(-561 R -3423) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2186,28 +2186,28 @@ NIL NIL (-564 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-565 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) ((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) (-566) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-567 R -3327) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-567 -3423) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1147))))) +(-568 E -3423) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-568 E -3327) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-569 R -3423) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-569 -3327) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1145))))) (-570 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2234,20 +2234,20 @@ NIL NIL (-576 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-1489 (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-837)))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1069)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1069))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-3886 (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) (-577 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-578 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))) (|HasCategory| (-550) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550)))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))) (|HasCategory| (-536) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536)))))) (-579 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4339 |has| |#1| (-542)) (-4338 |has| |#1| (-542)) ((-4346 "*") |has| |#1| (-542)) (-4337 |has| |#1| (-542)) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-542)))) +((-4343 |has| |#1| (-543)) (-4342 |has| |#1| (-543)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-543)))) (-580 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL @@ -2256,7 +2256,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-582 R -3327 FG) +(-582 R -3423 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2266,15 +2266,15 @@ NIL NIL (-584 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1021))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-585 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-825))) (|HasAttribute| |#1| (QUOTE -4344)) (|HasCategory| |#3| (QUOTE (-1069)))) +((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-825))) (|HasAttribute| |#1| (QUOTE -4348)) (|HasCategory| |#3| (QUOTE (-1072)))) (-586 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2836 . T)) +((-2363 . T)) NIL (-587) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) @@ -2286,28 +2286,28 @@ NIL NIL (-589 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4341 -1489 (-1304 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))) (-4339 . T) (-4338 . T)) -((-1489 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) +((-4345 -3886 (-3186 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))) (-4343 . T) (-4342 . T)) +((-3886 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-590 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (QUOTE (-1127))) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| (-1127) (QUOTE (-825))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| (-1129) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838))))) (-591 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-592 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL -(-593 R S) -((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) +(-593 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) +(-594 R S) +((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL -(-594 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-595 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2316,7 +2316,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-597 -3327 UP) +(-597 -3423 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2324,26 +2324,26 @@ NIL ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-599 S R) +(-599 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-823)))) +(-600 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-600 R) +(-601 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4341 . T)) +((-4345 . T)) NIL -(-601 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-823)))) -(-602 R -3327) +(-602 R -3423) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL (-603 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4339 . T) (-4338 . T) ((-4346 "*") . T) (-4337 . T) (-4341 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) +((-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4341 . T) (-4345 . T)) +((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-604 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2358,80 +2358,80 @@ NIL NIL (-607 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4341 . T)) +((-4345 . T)) NIL (-608 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-609) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-609 R -3423) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-610 R -3327) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-610) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-611 |lv| -3327) +(-611 |lv| -3423) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-612) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (QUOTE (-1127))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-52) (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-1127) (QUOTE (-825))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837))))) -(-613 S R) +((-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-1129) (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) +(-613 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4345 -3886 (-3186 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))) (-4343 . T) (-4342 . T)) +((-3886 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) +(-614 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-614 R) +(-615 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4339 . T) (-4338 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) NIL -(-615 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4341 -1489 (-1304 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))) (-4339 . T) (-4338 . T)) -((-1489 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-616 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL (-617 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL (-618 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3548 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356)))) +((-3671 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356)))) (-619 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4341 . T)) -NIL -(-620 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) -NIL +((-4345 . T)) NIL +(-620 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-621 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-622 A B C) +(-622 A B) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +NIL +NIL +(-623 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-623 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (-624 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL (-625 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-626 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2443,62 +2443,62 @@ NIL (-628 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4345))) +((|HasAttribute| |#1| (QUOTE -4349))) (-629 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2836 . T)) +((-2363 . T)) NIL -(-630 R -3327 L) +(-630 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (QUOTE (-769)))) +(-631 R -3423 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-631 A) +(-632 A -2743) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-633 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-632 A M) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-634 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-633 S A) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-635 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-634 A) +(-636 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-635 -3327 UP) +(-637 -3423 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-636 A -2548) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-637 A L) +(-638 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-638 S) +(-639 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-639) +(-640) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-640 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (QUOTE (-769)))) (-641 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL (-642 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4339 . T) (-4338 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) ((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-170)))) (-643 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2506,14 +2506,14 @@ NIL NIL (-644 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-645 -3327) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-645 -3423 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-646 -3327 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-646 -3423) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL (-647 R E OV P) @@ -2522,8 +2522,8 @@ NIL NIL (-648 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4341 . T) (-4344 . T) (-4338 . T) (-4339 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4346 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (-1489 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542))) (-1489 (|HasAttribute| |#2| (QUOTE (-4346 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-170)))) +((-4345 . T) (-4348 . T) (-4342 . T) (-4343 . T)) +((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4350 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-543))) (-3886 (|HasAttribute| |#2| (QUOTE (-4350 #1#))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-170)))) (-649) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2538,12 +2538,12 @@ NIL NIL (-652 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2836 . T)) +((-2363 . T)) NIL (-653 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (QUOTE (-1021))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-654) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2580,26 +2580,26 @@ NIL ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-663 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) -NIL -NIL -(-664 S R |Row| |Col|) +(-663 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4346 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542)))) -(-665 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-543)))) +(-664 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) +NIL +(-665 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +NIL NIL (-666 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542)))) +((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543)))) (-667 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4344 . T) (-4345 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4346 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-668 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2608,7 +2608,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-670 S -3327 FLAF FLAS) +(-670 S -3423 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2618,27 +2618,27 @@ NIL NIL (-672) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4337 . T) (-4342 |has| (-677) (-356)) (-4336 |has| (-677) (-356)) (-2167 . T) (-4343 |has| (-677) (-6 -4343)) (-4340 |has| (-677) (-6 -4340)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-677) (QUOTE (-145))) (|HasCategory| (-677) (QUOTE (-143))) (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-677) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-677) (QUOTE (-361))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-677) (QUOTE (-227))) (-1489 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-342)))) (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (LIST (QUOTE -279) (QUOTE (-677)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -302) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (-1489 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-342)))) (|HasCategory| (-677) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-677) (QUOTE (-996))) (|HasCategory| (-677) (QUOTE (-1167))) (-12 (|HasCategory| (-677) (QUOTE (-976))) (|HasCategory| (-677) (QUOTE (-1167)))) (-1489 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (|HasCategory| (-677) (QUOTE (-356))) (-12 (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (QUOTE (-883))))) (-1489 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-883)))) (-12 (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (QUOTE (-883))))) (|HasCategory| (-677) (QUOTE (-535))) (-12 (|HasCategory| (-677) (QUOTE (-1030))) (|HasCategory| (-677) (QUOTE (-1167)))) (|HasCategory| (-677) (QUOTE (-1030))) (-1489 (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883))) (-1489 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (|HasCategory| (-677) (QUOTE (-356)))) (-1489 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (|HasCategory| (-677) (QUOTE (-542)))) (-12 (|HasCategory| (-677) (QUOTE (-227))) (|HasCategory| (-677) (QUOTE (-356)))) (-12 (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-677) (QUOTE (-825))) (|HasCategory| (-677) (QUOTE (-542))) (|HasAttribute| (-677) (QUOTE -4343)) (|HasAttribute| (-677) (QUOTE -4340)) (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (|HasCategory| (-677) (QUOTE (-143)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-883)))) (|HasCategory| (-677) (QUOTE (-342))))) +((-4341 . T) (-4346 |has| (-677) (-356)) (-4340 |has| (-677) (-356)) (-1421 . T) (-4347 |has| (-677) (-6 -4347)) (-4344 |has| (-677) (-6 -4344)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-677) (QUOTE (-145))) (|HasCategory| (-677) (QUOTE (-143))) (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-677) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-677) (QUOTE (-361))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-677) (QUOTE (-227))) (-3886 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-343)))) (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (LIST (QUOTE -279) (QUOTE (-677)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -302) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (-3886 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-343)))) (|HasCategory| (-677) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-677) (QUOTE (-994))) (|HasCategory| (-677) (QUOTE (-1169))) (-12 (|HasCategory| (-677) (QUOTE (-976))) (|HasCategory| (-677) (QUOTE (-1169)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-356)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (QUOTE (-884))))) (|HasCategory| (-677) (QUOTE (-535))) (-12 (|HasCategory| (-677) (QUOTE (-1032))) (|HasCategory| (-677) (QUOTE (-1169)))) (|HasCategory| (-677) (QUOTE (-1032))) (-3886 (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-356)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-543)))) (-12 (|HasCategory| (-677) (QUOTE (-227))) (|HasCategory| (-677) (QUOTE (-356)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| (-677) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-677) (QUOTE (-825))) (|HasCategory| (-677) (QUOTE (-543))) (|HasAttribute| (-677) (QUOTE -4347)) (|HasAttribute| (-677) (QUOTE -4344)) (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-143)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-343))))) (-673 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL (-674 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL (-675) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-676 OV E -3327 PG) +(-676 OV E -3423 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-677) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2154 . T) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-678 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2646,7 +2646,7 @@ NIL NIL (-679) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4343 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4347 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-680 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2668,7 +2668,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-685 S -1901 I) +(-685 S -2997 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2678,7 +2678,7 @@ NIL NIL (-687 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL (-688 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2688,25 +2688,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-690 R |Mod| -1591 -2441 |exactQuo|) +(-690 R |Mod| -2147 -3867 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-691 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-342))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) (-692 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-693 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) (-4341 . T)) +((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-694 R |Mod| -1591 -2441 |exactQuo|) +(-694 R |Mod| -2147 -3867 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4341 . T)) +((-4345 . T)) NIL (-695 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2714,11 +2714,11 @@ NIL NIL (-696 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL -(-697 -3327) +(-697 -3423) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4341 . T)) +((-4345 . T)) NIL (-698 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2739,10 +2739,10 @@ NIL (-702 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361)))) +((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361)))) (-703 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4337 |has| |#1| (-356)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 |has| |#1| (-356)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-704 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2752,7 +2752,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-706 -3327 UP) +(-706 -3423 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2770,8 +2770,8 @@ NIL NIL (-710 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4346 "*") |has| |#2| (-170)) (-4337 |has| |#2| (-542)) (-4342 |has| |#2| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) (-711 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2786,16 +2786,16 @@ NIL NIL (-714 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) (-4341 . T)) +((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-825)))) (-715 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4348 . T) (-4338 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-716 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4334 . T) (-4345 . T) (-2836 . T)) +((-4338 . T) (-4349 . T) (-2363 . T)) NIL -(-716 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4344 . T) (-4334 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (-717) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL @@ -2806,7 +2806,7 @@ NIL NIL (-719 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4339 . T) (-4338 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL (-720 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2822,7 +2822,7 @@ NIL NIL (-723 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL (-724) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -2904,15 +2904,15 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-744 -3327) +(-744 -3423) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-745 P -3327) +(-745 P -3423) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-746 UP -3327) +(-746 UP -3423) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -2926,18 +2926,18 @@ NIL NIL (-749) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4346 "*") . T)) +(((-4350 "*") . T)) NIL -(-750 R -3327) +(-750 R -3423) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-751 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +(-751) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-752) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +(-752 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL (-753 R |PolR| E |PolE|) @@ -2948,7 +2948,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-755 -3327 |ExtF| |SUEx| |ExtP| |n|) +(-755 -3423 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -2962,28 +2962,28 @@ NIL NIL (-758 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))) (-3548 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))) (-3548 (|HasCategory| |#1| (QUOTE (-535)))) (-3548 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))) (-3548 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550))))) (-3548 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1145)))) (-3548 (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-550))))))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-759 R S) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147))))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (QUOTE (-535)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536))))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -965) (QUOTE (-536))))))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-759 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-760 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-760 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) (-761 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-762 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL (-763 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-170)))) +((-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-170)))) (-764) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL @@ -3020,43 +3020,43 @@ NIL ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-773) -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) -NIL -NIL -(-774 S R) +(-773 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) -(-775 R) +((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) +(-774 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-776 -1489 R OS S) -((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +(-775) +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-777 R) +(-776 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-1489 (|HasCategory| (-973 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (|HasCategory| (-973 |#1|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-973 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-973 |#1|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-3886 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) +(-777 -3886 R OS S) +((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +NIL +NIL (-778) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-779 R -3327 L) +(-779 R -3423 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-780 R -3327) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-780 R -3423) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL (-781) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-782 R -3327) +(-782 R -3423) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3064,11 +3064,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-784 -3327 UP UPUP R) +(-784 -3423 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-785 -3327 UP L LQ) +(-785 -3423 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3076,41 +3076,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-787 -3327 UP L LQ) +(-787 -3423 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-788 -3327 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-788 -3423 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-789 -3327 L UP A LO) +(-789 -3423 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-790 -3327 UP) +(-790 -3423 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-791 -3327 LO) +(-791 -3423 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-792 -3327 LODO) +(-792 -3423 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-793 -2281 S |f|) +(-793 -2945 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4338 |has| |#2| (-1021)) (-4339 |has| |#2| (-1021)) (-4341 |has| |#2| (-6 -4341)) ((-4346 "*") |has| |#2| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-771))) (-1489 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1021)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (|HasCategory| |#2| (QUOTE (-1021))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasAttribute| |#2| (QUOTE -4341)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (-794 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-796 (-1145)) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-796 (-1145)) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-796 (-1145)) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-796 (-1145)) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-796 (-1145)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) (-795 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4346 "*") |has| |#2| (-356)) (-4337 |has| |#2| (-356)) (-4342 |has| |#2| (-356)) (-4336 |has| |#2| (-356)) (-4341 . T) (-4339 . T) (-4338 . T)) +(((-4350 "*") |has| |#2| (-356)) (-4341 |has| |#2| (-356)) (-4346 |has| |#2| (-356)) (-4340 |has| |#2| (-356)) (-4345 . T) (-4343 . T) (-4342 . T)) ((|HasCategory| |#2| (QUOTE (-356)))) (-796 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3122,63 +3122,63 @@ NIL NIL (-798) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-799) -((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL (-800) -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) +((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL (-801) -((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL (-802) -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL (-803) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-804 R) +(-804) +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +NIL +NIL +(-805 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-805 P R) +(-806 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) ((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-227)))) -(-806) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL -NIL (-807) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL (-808 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4344 . T) (-4334 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4338 . T) (-4349 . T) (-2363 . T)) NIL (-809) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-810 R S) +(-810 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4345 |has| |#1| (-823))) +((|HasCategory| |#1| (QUOTE (-823))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-811 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-811 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4341 |has| |#1| (-823))) -((|HasCategory| |#1| (QUOTE (-823))) (-1489 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-535))) (-1489 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-21)))) (-812 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) (-4341 . T)) +((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) (-813) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3196,19 +3196,19 @@ NIL ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-817 R S) +(-817 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4345 |has| |#1| (-823))) +((|HasCategory| |#1| (QUOTE (-823))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-818 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-818 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4341 |has| |#1| (-823))) -((|HasCategory| |#1| (QUOTE (-823))) (-1489 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-535))) (-1489 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-21)))) (-819) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-820 -2281 S) +(-820 -2945 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3222,7 +3222,7 @@ NIL NIL (-823) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4341 . T)) +((-4345 . T)) NIL (-824 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3235,27 +3235,27 @@ NIL (-826 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170)))) +((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170)))) (-827 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL (-828 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) -(-829 R |sigma| -1940) +((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) +(-829 R |sigma| -3590) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-830 |x| R |sigma| -1940) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-830 |x| R |sigma| -3590) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356)))) +((-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356)))) (-831 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-832) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL @@ -3264,24 +3264,24 @@ NIL ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-834 S) -((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) +(-834) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-835) +(-835 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL (-836) -((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL (-837) -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL (-838) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL (-839 |VariableList|) @@ -3290,7 +3290,7 @@ NIL NIL (-840 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) (-4341 . T)) +((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (-841 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3301,25 +3301,25 @@ NIL NIL NIL (-843 |p|) -((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-844 |p|) -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-845 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-844 |#1|) (QUOTE (-883))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-844 |#1|) (QUOTE (-143))) (|HasCategory| (-844 |#1|) (QUOTE (-145))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-844 |#1|) (QUOTE (-996))) (|HasCategory| (-844 |#1|) (QUOTE (-798))) (-1489 (|HasCategory| (-844 |#1|) (QUOTE (-798))) (|HasCategory| (-844 |#1|) (QUOTE (-825)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-844 |#1|) (QUOTE (-1120))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-844 |#1|) (QUOTE (-227))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -844) (|devaluate| |#1|)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -844) (|devaluate| |#1|)))) (|HasCategory| (-844 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -844) (|devaluate| |#1|)) (LIST (QUOTE -844) (|devaluate| |#1|)))) (|HasCategory| (-844 |#1|) (QUOTE (-300))) (|HasCategory| (-844 |#1|) (QUOTE (-535))) (|HasCategory| (-844 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-844 |#1|) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-844 |#1|) (QUOTE (-883)))) (|HasCategory| (-844 |#1|) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-843 |#1|) (QUOTE (-884))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-145))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-843 |#1|) (QUOTE (-994))) (|HasCategory| (-843 |#1|) (QUOTE (-798))) (-3886 (|HasCategory| (-843 |#1|) (QUOTE (-798))) (|HasCategory| (-843 |#1|) (QUOTE (-825)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (QUOTE (-1122))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (QUOTE (-227))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -843) (|devaluate| |#1|)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (QUOTE (-300))) (|HasCategory| (-843 |#1|) (QUOTE (-535))) (|HasCategory| (-843 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-884)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))))) (-846 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-798))) (-1489 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-798))) (-3886 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) (-847 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1072)))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1072))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))))) (-848) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3375,27 +3375,27 @@ NIL (-861 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3548 (|HasCategory| |#2| (QUOTE (-1021)))) (-3548 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145)))))) (-12 (|HasCategory| |#2| (QUOTE (-1021))) (-3548 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145)))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145))))) -(-862 R A B) +((-12 (-3671 (|HasCategory| |#2| (QUOTE (-1023)))) (-3671 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (-3671 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) +(-862 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +NIL +NIL +(-863 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-863 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +(-864 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-864 R -1901) +(-865 R -2997) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-865 R S) +(-866 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-866 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) -NIL -NIL (-867 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL @@ -3408,7 +3408,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-870 UP -3327) +(-870 UP -3423) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3426,49 +3426,49 @@ NIL NIL (-874 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4341 . T)) +((-4345 . T)) NIL (-875 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-876 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-876 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4345 . T)) +((-3886 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) +(-877 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-877 S) +(-878 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4341 . T)) +((-4345 . T)) NIL -(-878 S) +(-879 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-879 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4341 . T)) -((-1489 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) -(-880 R E |VarSet| S) +(-880 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) +(-881 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-881 R S) +(-882 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-882 S) +(-883 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-143)))) -(-883) +(-884) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-884 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) -(-885 R0 -3327 UP UPUP R) +(-885 R0 -3423 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3482,7 +3482,7 @@ NIL NIL (-888 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-889 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3496,63 +3496,63 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-892 -3327) +(-892 -3423) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-893 R) -((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) +(-893) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4350 "*") . T)) NIL +(-894 R) +((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL -(-894) -((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) NIL (-895) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4346 "*") . T)) +((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-896 -3327 P) -((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) +(-896 |xx| -3423) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-897 |xx| -3327) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +(-897 -3423 P) +((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL (-898 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-899 S) -((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) +(-899) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-900) -((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) +(-900 S) +((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL (-901) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL (-902) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-903 R -3327) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) +(-903) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-904) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-904 R -3423) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL (-905 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-906 S R -3327) +(-906 S R -3423) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3572,12 +3572,12 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -860) (|devaluate| |#1|)))) -(-911 R -3327 -1901) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-911 -2997) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-912 -1901) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +(-912 R -3423 -2997) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL (-913 S R Q) @@ -3598,8 +3598,8 @@ NIL NIL (-917 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1021))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-918 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3608,35 +3608,35 @@ NIL ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL ((|HasCategory| |#1| (QUOTE (-823)))) -(-920 R S) +(-920 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1147) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1147) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1147) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1147) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1147) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-921 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-921 |x| R) +(-922 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-922 S R E |VarSet|) +(-923 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-883))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-825)))) -(-923 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-884))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-825)))) +(-924 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL -(-924 E V R P -3327) +(-925 E V R P -3423) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-925 E |Vars| R P S) +(-926 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-926 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1145) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1145) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1145) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1145) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1145) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-927 E V R P -3327) +(-927 E V R P -3423) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-444)))) @@ -3648,42 +3648,42 @@ NIL ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-930 R L) +(-930 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-130)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346))) +(-931 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-931 A B) +(-932 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-933 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-932 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-933) +(-934) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-934 -3327) +(-935 -3423) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-935 I) +(-936 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-936) +(-937) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-937 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-130)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342))) (-938 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4341 -12 (|has| |#2| (-465)) (|has| |#1| (-465)))) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) +((-4345 -12 (|has| |#2| (-465)) (|has| |#1| (-465)))) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) (-939) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3698,7 +3698,7 @@ NIL NIL (-942 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL (-943 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3718,7 +3718,7 @@ NIL NIL (-947 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-948) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3727,10 +3727,10 @@ NIL (-949 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-542)))) +((|HasCategory| |#2| (QUOTE (-543)))) (-950 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4344 . T) (-2836 . T)) +((-4348 . T) (-2363 . T)) NIL (-951 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3746,7 +3746,7 @@ NIL NIL (-954 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL (-955 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) @@ -3764,18 +3764,18 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-959 K R UP -3327) +(-959 K R UP -3423) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-960 |vl| |nv|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) +(-960 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300))))) +(-961 |vl| |nv|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL -(-961 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300))))) (-962 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL @@ -3784,17 +3784,17 @@ NIL ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-964 A B R S) -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) -NIL -NIL -(-965 A S) +(-964 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-883))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1120)))) -(-966 S) +((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1122)))) +(-965 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2836 . T) (-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-2363 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +NIL +(-966 A B R S) +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +NIL NIL (-967 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3806,28 +3806,28 @@ NIL NIL (-969 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL -(-970 S R) +(-970 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4341 |has| |#1| (-283)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) +(-971 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-283)))) -(-971 R) +((|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-283)))) +(-972 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4337 |has| |#1| (-283)) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 |has| |#1| (-283)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-972 QR R QS S) +(-973 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-973 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4337 |has| |#1| (-283)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-535))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))))) (-974 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (-975 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -3836,14 +3836,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-977 -3327 UP UPUP |radicnd| |n|) +(-977 -3423 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4337 |has| (-400 |#2|) (-356)) (-4342 |has| (-400 |#2|) (-356)) (-4336 |has| (-400 |#2|) (-356)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1489 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1489 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1489 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1489 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) +((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3886 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) (-978 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-550) (QUOTE (-883))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-996))) (|HasCategory| (-550) (QUOTE (-798))) (-1489 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1120))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1145)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-883)))) (|HasCategory| (-550) (QUOTE (-143))))) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) (-979) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -3863,10 +3863,10 @@ NIL (-983 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-1069)))) +((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-1072)))) (-984 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2836 . T)) +((-2363 . T)) NIL (-985 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) @@ -3874,21 +3874,21 @@ NIL NIL (-986) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4337 . T) (-4342 . T) (-4336 . T) (-4339 . T) (-4338 . T) ((-4346 "*") . T) (-4341 . T)) +((-4341 . T) (-4346 . T) (-4340 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4345 . T)) NIL -(-987 R -3327) +(-987 R -3423) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-988 R -3327) +(-988 R -3423) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-989 -3327 UP) +(-989 -3423 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-990 -3327 UP) +(-990 -3423 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -3904,16 +3904,16 @@ NIL ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-994 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +(-994) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL (-995 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-996) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +(-996 |Pol|) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL (-997) @@ -3922,36 +3922,36 @@ NIL NIL (-998 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4337 . T) (-4342 . T) (-4336 . T) (-4339 . T) (-4338 . T) ((-4346 "*") . T) (-4341 . T)) -((-1489 (|HasCategory| (-400 (-550)) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-400 (-550)) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 (-550)) (LIST (QUOTE -1012) (QUOTE (-550))))) -(-999 -3327 L) +((-4341 . T) (-4346 . T) (-4340 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4345 . T)) +((-3886 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (QUOTE (-536))))) +(-999 -3423 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL (-1000 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1069)))) +((|HasCategory| |#1| (QUOTE (-1072)))) (-1001 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1002 R) -((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1002) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL NIL -((|HasAttribute| |#1| (QUOTE (-4346 "*")))) (-1003 R) +((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) +NIL +((|HasAttribute| |#1| (QUOTE (-4350 "*")))) +(-1004 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300)))) -(-1004 S) +(-1005 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1005) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL (-1006 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL @@ -3960,14 +3960,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1008 -3327 |Expon| |VarSet| |FPol| |LFPol|) +(-1008 -3423 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL (-1009) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-52) (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-1145) (QUOTE (-825))) (|HasCategory| (-52) (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837))))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1147))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-1147) (QUOTE (-825))) (|HasCategory| (-51) (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) (-1010) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -3984,977 +3984,985 @@ NIL ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1014) +(-1014 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-1015) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1015 UP) +(-1016 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1016 R) +(-1017 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1017 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +(-1018 T$) +((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) +NIL NIL +(-1019 T$) +((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitepoint is the contant indicating the white point of this color space."))) NIL -(-1018 R |ls|) +NIL +(-1020 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1069))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -758) (|devaluate| |#1|) (LIST (QUOTE -839) (|devaluate| |#2|)))))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-839 |#2|) (QUOTE (-361))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1019) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1072))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -758) (|devaluate| |#1|) (LIST (QUOTE -839) (|devaluate| |#2|)))))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| (-839 |#2|) (QUOTE (-361))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1021) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1020 S) +(-1022 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1021) +(-1023) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4341 . T)) +((-4345 . T)) NIL -(-1022 |xx| -3327) +(-1024 |xx| -3423) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1023 S |m| |n| R |Row| |Col|) +(-1025 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-542))) (|HasCategory| |#4| (QUOTE (-170)))) -(-1024 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-543))) (|HasCategory| |#4| (QUOTE (-170)))) +(-1026 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4344 . T) (-2836 . T) (-4339 . T) (-4338 . T)) +((-4348 . T) (-2363 . T) (-4343 . T) (-4342 . T)) NIL -(-1025 |m| |n| R) +(-1027 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4344 . T) (-4339 . T) (-4338 . T)) -((-1489 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-837)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) -(-1026 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4348 . T) (-4343 . T) (-4342 . T)) +((-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) +(-1028 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1027 R) +(-1029 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1028) +(-1030) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1029 S) +(-1031 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1030) +(-1032) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1031 |TheField| |ThePolDom|) +(-1033 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1032) +(-1034) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4332 . T) (-4336 . T) (-4331 . T) (-4342 . T) (-4343 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1033) +(-1035) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-52) (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1069))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (QUOTE (-1069))) (|HasCategory| (-1145) (QUOTE (-825))) (|HasCategory| (-52) (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1034 S R E V) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1147))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-1147) (QUOTE (-825))) (|HasCategory| (-51) (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1036 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-1145))))) -(-1035 R E V) +((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -965) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-1147))))) +(-1037 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL -(-1036) +(-1038) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1037 S |TheField| |ThePols|) +(-1039 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1038 |TheField| |ThePols|) +(-1040 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1039 R E V P TS) +(-1041 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1040 S R E V P) +(-1042 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1041 R E V P) +(-1043 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1042 R E V P TS) +(-1044 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1043) +(-1045) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1044 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1046 |Base| R -3423) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1045 |Base| R -3327) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1047 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1046 |Base| R -3327) +(-1048 |Base| R -3423) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1047 R |ls|) +(-1049 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1048 UP SAE UPA) +(-1050 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4341 |has| |#1| (-356)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-343)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))))) +(-1051 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1049 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4337 |has| |#1| (-356)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-342)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145))))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))))) -(-1050 UP SAE UPA) +(-1052 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1051) +(-1053) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1052) +(-1054) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1053 S) +(-1055 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1054) +(-1056) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1055 R) +(-1057 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1056 R) +(-1058 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1057 (-1145)) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1057 (-1145)) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1057 (-1145)) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1057 (-1145)) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1057 (-1145)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1057 S) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1059 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1058 R S) +(-1060 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) +NIL +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1072)))) +(-1061 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL ((|HasCategory| |#1| (QUOTE (-823)))) -(-1059) +(-1062) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1060 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) +(-1063 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL +((|HasCategory| |#1| (QUOTE (-1072)))) +(-1064 R S) +((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL -(-1061 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1069)))) -(-1062 S) +(-1065 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1063 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1069)))) -(-1064 S L) +(-1066 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1065) +(-1067) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1066 A S) +(-1068 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4348 . T) (-4338 . T) (-4349 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1069 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1067 S) +(-1070 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4334 . T) (-2836 . T)) +((-4338 . T) (-2363 . T)) NIL -(-1068 S) +(-1071 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1069) +(-1072) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1070 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1073 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1071 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4344 . T) (-4334 . T) (-4345 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-825))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1072 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1074) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1073) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1075 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1074 |Str| |Sym| |Int| |Flt| |Expr|) +(-1076 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1075 R FS) +(-1077 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1076 R E V P TS) +(-1078 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1077 R E V P TS) +(-1079 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1078 R E V P) +(-1080 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1079) +(-1081) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1080 S) +(-1082 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1081) +(-1083) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1082 |dimtot| |dim1| S) +(-1084 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4338 |has| |#3| (-1021)) (-4339 |has| |#3| (-1021)) (-4341 |has| |#3| (-6 -4341)) ((-4346 "*") |has| |#3| (-170)) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#3| (QUOTE (-356))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (QUOTE (-771))) (-1489 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-1489 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1021)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (QUOTE (-1069)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1021)))) (-1489 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-705)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-771)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-823)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1021)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1069))))) (-1489 (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1021)))) (-12 (|HasCategory| |#3| (QUOTE (-1021))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1145))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550))))) (-1489 (|HasCategory| |#3| (QUOTE (-1021))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1069)))) (|HasAttribute| |#3| (QUOTE -4341)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1083 R |x|) +((-4342 |has| |#3| (-1023)) (-4343 |has| |#3| (-1023)) (-4345 |has| |#3| (-6 -4345)) ((-4350 "*") |has| |#3| (-170)) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#3| (QUOTE (-356))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-771))) (-3886 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#3| (QUOTE -4345)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1085 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-444)))) -(-1084) -((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) +(-1086) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1085 R -3327) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1087) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1086 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1088 R -3423) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1087) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +(-1089 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1088) +(-1090) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1089) +(-1091) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4332 . T) (-4336 . T) (-4331 . T) (-4342 . T) (-4343 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1090 S) +(-1092 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4344 . T) (-4345 . T) (-2836 . T)) +((-4348 . T) (-4349 . T) (-2363 . T)) NIL -(-1091 S |ndim| R |Row| |Col|) +(-1093 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4346 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) -(-1092 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4350 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) +(-1094 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2836 . T) (-4344 . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-2363 . T) (-4348 . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1093 R |Row| |Col| M) +(-1095 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1094 R |VarSet|) +(-1096 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1095 |Coef| |Var| SMP) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1097 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1096 R E V P) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-356)))) +(-1098 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1097 UP -3327) +(-1099 UP -3423) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1098 R) +(-1100 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1099 R) +(-1101 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1100 R) +(-1102 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1101 S A) +(-1103 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL ((|HasCategory| |#1| (QUOTE (-825)))) -(-1102 R) +(-1104 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1103 R) +(-1105 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1104) +(-1106) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1105) +(-1107) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1106) +(-1108) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1107) +(-1109) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1108) +(-1110) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1109 V C) +(-1111 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1110 V C) +(-1112 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-1109 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1109) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1109 |#1| |#2|) (QUOTE (-1069)))) (|HasCategory| (-1109 |#1| |#2|) (QUOTE (-1069))) (-1489 (|HasCategory| (-1109 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-837)))) (-12 (|HasCategory| (-1109 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1109) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1109 |#1| |#2|) (QUOTE (-1069))))) (|HasCategory| (-1109 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1111 |ndim| R) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1111) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072))) (-3886 (-12 (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1111) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072)))) (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1113 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4341 . T) (-4333 |has| |#2| (-6 (-4346 "*"))) (-4344 . T) (-4338 . T) (-4339 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4346 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (-1489 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-356))) (-1489 (|HasAttribute| |#2| (QUOTE (-4346 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-1112 S) +((-4345 . T) (-4337 |has| |#2| (-6 (-4350 "*"))) (-4348 . T) (-4342 . T) (-4343 . T)) +((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-1114 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1113) +(-1115) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1114 R E V P TS) +(-1116 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1115 R E V P) +(-1117 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1116 S) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1118 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1117 A S) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1119 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1118 S) +(-1120 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1119 |Key| |Ent| |dent|) +(-1121 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1120) +((-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1122) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1121 |Coef|) +(-1123 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1122 S) +(-1124 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4349 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1125 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1123 A B) +(-1126 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1124 A B C) +(-1127 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1125 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1126) +(-1128) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1127) +(-1129) NIL -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1069))) (-12 (|HasCategory| (-142) (QUOTE (-1069))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1128 |Entry|) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1130 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (QUOTE (-1127))) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (QUOTE (-1069))) (|HasCategory| (-1127) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1129 A) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072))) (|HasCategory| (-1129) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1131 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) -(-1130 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) +(-1132 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1131 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1133 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1132 R UP) +(-1134 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-300)))) -(-1133 |n| R) +(-1135 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1134 S1 S2) +(-1136 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1135) +(-1137) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1136 |Coef| |var| |cen|) +(-1138 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4346 "*") -1489 (-1304 (|has| |#1| (-356)) (|has| (-1143 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-1304 (|has| |#1| (-356)) (|has| (-1143 |#1| |#2| |#3|) (-883)))) (-4337 -1489 (-1304 (|has| |#1| (-356)) (|has| (-1143 |#1| |#2| |#3|) (-798))) (|has| |#1| (-542)) (-1304 (|has| |#1| (-356)) (|has| (-1143 |#1| |#2| |#3|) (-883)))) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1081))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1137 R -3327) +(((-4350 "*") -3886 (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-884)))) (-4341 -3886 (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-798))) (|has| |#1| (-543)) (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1139 R -3423) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1138 R) +(-1140 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1139 R S) +(-1141 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1142 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1140 E OV R P) +(-1143 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1141 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1142 |Coef| |var| |cen|) +(-1144 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) -(-1143 |Coef| |var| |cen|) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) +(-1145 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1081))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) -(-1144) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1083))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) +(-1146) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1145) +(-1147) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1146 R) +(-1148 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1147 R) +(-1149 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-6 -4342)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| (-945) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4342))) -(-1148) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| (-945) (QUOTE (-130)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346))) +(-1150) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1149) +(-1151) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1150) +(-1152) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1151 R) +(-1153 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1152) +(-1154) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1153 S) +(-1155 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1154 S) +(-1156 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4348 . T) (-4349 . T)) +((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) +(-1157 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1155 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4344 . T) (-4345 . T)) -((-12 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3549) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1069)))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1069))) (-1489 (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-837)))) (|HasCategory| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -595) (QUOTE (-837))))) -(-1156 R) +(-1158 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1157 S |Key| |Entry|) +(-1159 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1158 |Key| |Entry|) +(-1160 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4345 . T) (-2836 . T)) +((-4349 . T) (-2363 . T)) NIL -(-1159 |Key| |Entry|) +(-1161 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1160) +(-1162) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1161 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1163) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1162) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) +(-1164 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1163) +(-1165) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1164 R) +(-1166 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1165) +(-1167) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1166 S) +(-1168 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1167) +(-1169) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1168 S) +(-1170 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1069))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1169 S) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1171 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1170) +(-1172) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1171 R -3327) +(-1173 R -3423) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1172 R |Row| |Col| M) +(-1174 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1173 R -3327) +(-1175 R -3423) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -860) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -860) (|devaluate| |#1|))))) -(-1174 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -860) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -860) (|devaluate| |#1|))))) +(-1176 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-356)))) +(-1177 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-361)))) -(-1175 R E V P) +(-1178 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1176 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1177 |Curve|) +(-1179 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1178) +(-1180) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1179 S) +(-1181 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1180 -3327) +((|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1182 -3423) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1181) -((|constructor| (NIL "This domain represents a type AST."))) +(-1183) +((|constructor| (NIL "The fundamental Type."))) +((-2363 . T)) NIL +(-1184) +((|constructor| (NIL "This domain represents a type AST."))) NIL -(-1182) -((|constructor| (NIL "The fundamental Type."))) -((-2836 . T)) NIL -(-1183 S) +(-1185 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-825)))) -(-1184) +(-1186) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1185 S) +(-1187 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1186) +(-1188) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1187 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1189 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4350 "*") -3886 (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-884)))) (-4341 -3886 (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-543)) (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1190 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1188 |Coef|) +(-1191 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1189 S |Coef| UTS) +(-1192 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-1190 |Coef| UTS) +(-1193 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-2836 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-2363 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1191 |Coef| UTS) +(-1194 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-883)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1120)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-1489 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1081))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-883)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1145))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-996)))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1120)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1145)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-883))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143)))))) -(-1192 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4346 "*") -1489 (-1304 (|has| |#1| (-356)) (|has| (-1220 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-1304 (|has| |#1| (-356)) (|has| (-1220 |#1| |#2| |#3|) (-883)))) (-4337 -1489 (-1304 (|has| |#1| (-356)) (|has| (-1220 |#1| |#2| |#3|) (-798))) (|has| |#1| (-542)) (-1304 (|has| |#1| (-356)) (|has| (-1220 |#1| |#2| |#3|) (-883)))) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1081))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1145)) (LIST (QUOTE -1220) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-883))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1220 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1193 ZP) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-3886 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-884))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143)))))) +(-1195 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1194 R S) +(-1196 S) +((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) +NIL +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1072)))) +(-1197 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-823)))) -(-1195 S) -((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) -NIL -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1069)))) -(-1196 |x| R |y| S) +(-1198 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) +(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4344 |has| |#2| (-356)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-1199 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1197 R Q UP) +(-1200 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1198 R UP) +(-1201 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1199 R UP) +(-1202 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1200 R U) +(-1203 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1201 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4346 "*") |has| |#2| (-170)) (-4337 |has| |#2| (-542)) (-4340 |has| |#2| (-356)) (-4342 |has| |#2| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-883))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-372))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -860) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-550))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-372)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -866) (QUOTE (-550)))))) (-12 (|HasCategory| (-1051) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (-1489 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (-1489 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4342)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (-1489 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-883)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-1202 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) -NIL -NIL -(-1203 S R) +(-1204 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1120)))) -(-1204 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1122)))) +(-1205 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4342 |has| |#1| (-6 -4342)) (-4339 . T) (-4338 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL -(-1205 S |Coef| |Expon|) +(-1206 R PR S PS) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) +NIL +NIL +(-1207 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2233) (LIST (|devaluate| |#2|) (QUOTE (-1145)))))) -(-1206 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1083))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4312) (LIST (|devaluate| |#2|) (QUOTE (-1147)))))) +(-1208 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1207 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1209 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1208 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1210 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) +(-1211 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1209 |Coef|) +(-1212 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1210 S |Coef| ULS) +(-1213 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1211 |Coef| ULS) +(-1214 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1212 |Coef| ULS) +(-1215 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) -(-1213 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4342 |has| |#1| (-356)) (-4336 |has| |#1| (-356)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1489 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) -(-1214 R FE |var| |cen|) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) +(-1216 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4346 "*") |has| (-1213 |#2| |#3| |#4|) (-170)) (-4337 |has| (-1213 |#2| |#3| |#4|) (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| (-1213 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1213 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1213 |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-550)))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-444))) (-1489 (|HasCategory| (-1213 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1213 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| (-1213 |#2| |#3| |#4|) (QUOTE (-542)))) -(-1215 A S) +(((-4350 "*") |has| (-1210 |#2| |#3| |#4|) (-170)) (-4341 |has| (-1210 |#2| |#3| |#4|) (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-444))) (-3886 (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-543)))) +(-1217 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4345))) -(-1216 S) +((|HasAttribute| |#1| (QUOTE -4349))) +(-1218 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1217 |Coef1| |Coef2| UTS1 UTS2) +(-1219 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1083))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) +(-1220 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1218 S |Coef|) +(-1221 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasSignature| |#2| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2149) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1145))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) -(-1219 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasSignature| |#2| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4167) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1147))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356)))) +(-1222 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1220 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4346 "*") |has| |#1| (-170)) (-4337 |has| |#1| (-542)) (-4338 . T) (-4339 . T) (-4341 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1489 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1145)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1081))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -2233) (LIST (|devaluate| |#1|) (QUOTE (-1145)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-1489 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -2149) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1145))))) (|HasSignature| |#1| (LIST (QUOTE -1516) (LIST (LIST (QUOTE -623) (QUOTE (-1145))) (|devaluate| |#1|))))))) -(-1221 |Coef| UTS) +(-1223 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1222 -3327 UP L UTS) +(-1224 -3423 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-542)))) -(-1223) +((|HasCategory| |#1| (QUOTE (-543)))) +(-1225) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2836 . T)) +((-2363 . T)) NIL -(-1224 |sym|) +(-1226 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1225 S R) +(-1227 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1226 R) +((|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1228 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4345 . T) (-4344 . T) (-2836 . T)) +((-4349 . T) (-4348 . T) (-2363 . T)) NIL -(-1227 A B) +(-1229 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4349 . T) (-4348 . T)) +((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1230 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1228 R) -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4345 . T) (-4344 . T)) -((-1489 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1489 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1489 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1021))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1229) +(-1231) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1232) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1230) +(-1233) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1231) +(-1234) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1232) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) -NIL -NIL -(-1233) +(-1235) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1234 A S) +(-1236 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1235 S) +(-1237 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4339 . T) (-4338 . T)) +((-4343 . T) (-4342 . T)) NIL -(-1236 R) +(-1238 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1237 K R UP -3327) +(-1239 K R UP -3423) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1238) +(-1240) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1239) +(-1241) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1240 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1242 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4339 |has| |#1| (-170)) (-4338 |has| |#1| (-170)) (-4341 . T)) +((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1241 R E V P) +(-1243 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4345 . T) (-4344 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-837))))) -(-1242 R) +((-4349 . T) (-4348 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) +(-1244 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4338 . T) (-4339 . T) (-4341 . T)) +((-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1243 |vl| R) +(-1245 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4341 . T) (-4337 |has| |#2| (-6 -4337)) (-4339 . T) (-4338 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4337))) -(-1244 R |VarSet| XPOLY) +((-4345 . T) (-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4341))) +(-1246 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1245 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4337 |has| |#2| (-6 -4337)) (-4339 . T) (-4338 . T) (-4341 . T)) -NIL -(-1246 S -3327) +(-1247 S -3423) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) -(-1247 -3327) +(-1248 -3423) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4336 . T) (-4342 . T) (-4337 . T) ((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL -(-1248 |VarSet| R) -((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4337 |has| |#2| (-6 -4337)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -696) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasAttribute| |#2| (QUOTE -4337))) (-1249 |vl| R) -((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4337 |has| |#2| (-6 -4337)) (-4339 . T) (-4338 . T) (-4341 . T)) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) NIL -(-1250 R) +(-1250 |VarSet| R) +((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) +((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -696) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasAttribute| |#2| (QUOTE -4341))) +(-1251 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4337 |has| |#1| (-6 -4337)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4337))) -(-1251 R E) +((-4341 |has| |#1| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4341))) +(-1252 |vl| R) +((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) +((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +NIL +(-1253 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4341 . T) (-4342 |has| |#1| (-6 -4342)) (-4337 |has| |#1| (-6 -4337)) (-4339 . T) (-4338 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4341)) (|HasAttribute| |#1| (QUOTE -4342)) (|HasAttribute| |#1| (QUOTE -4337))) -(-1252 |VarSet| R) +((-4345 . T) (-4346 |has| |#1| (-6 -4346)) (-4341 |has| |#1| (-6 -4341)) (-4343 . T) (-4342 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4345)) (|HasAttribute| |#1| (QUOTE -4346)) (|HasAttribute| |#1| (QUOTE -4341))) +(-1254 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4337 |has| |#2| (-6 -4337)) (-4339 . T) (-4338 . T) (-4341 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4337))) -(-1253 A) +((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4341))) +(-1255 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1254 R |ls| |ls2|) +(-1256 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1255 R) +(-1257 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1256 |p|) +(-1258 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4346 "*") . T) (-4338 . T) (-4339 . T) (-4341 . T)) +(((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) NIL NIL NIL @@ -4972,4 +4980,4 @@ NIL NIL NIL NIL -((-3 NIL 2267735 2267740 2267745 2267750) (-2 NIL 2267715 2267720 2267725 2267730) (-1 NIL 2267695 2267700 2267705 2267710) (0 NIL 2267675 2267680 2267685 2267690) (-1256 "ZMOD.spad" 2267484 2267497 2267613 2267670) (-1255 "ZLINDEP.spad" 2266528 2266539 2267474 2267479) (-1254 "ZDSOLVE.spad" 2256377 2256399 2266518 2266523) (-1253 "YSTREAM.spad" 2255870 2255881 2256367 2256372) (-1252 "XRPOLY.spad" 2255090 2255110 2255726 2255795) (-1251 "XPR.spad" 2252819 2252832 2254808 2254907) (-1250 "XPOLY.spad" 2252374 2252385 2252675 2252744) (-1249 "XPOLYC.spad" 2251691 2251707 2252300 2252369) (-1248 "XPBWPOLY.spad" 2250128 2250148 2251471 2251540) (-1247 "XF.spad" 2248589 2248604 2250030 2250123) (-1246 "XF.spad" 2247030 2247047 2248473 2248478) (-1245 "XFALG.spad" 2244054 2244070 2246956 2247025) (-1244 "XEXPPKG.spad" 2243305 2243331 2244044 2244049) (-1243 "XDPOLY.spad" 2242919 2242935 2243161 2243230) (-1242 "XALG.spad" 2242517 2242528 2242875 2242914) (-1241 "WUTSET.spad" 2238356 2238373 2242163 2242190) (-1240 "WP.spad" 2237370 2237414 2238214 2238281) (-1239 "WHILEAST.spad" 2237168 2237177 2237360 2237365) (-1238 "WHEREAST.spad" 2236839 2236848 2237158 2237163) (-1237 "WFFINTBS.spad" 2234402 2234424 2236829 2236834) (-1236 "WEIER.spad" 2232616 2232627 2234392 2234397) (-1235 "VSPACE.spad" 2232289 2232300 2232584 2232611) (-1234 "VSPACE.spad" 2231982 2231995 2232279 2232284) (-1233 "VOID.spad" 2231572 2231581 2231972 2231977) (-1232 "VIEW.spad" 2229194 2229203 2231562 2231567) (-1231 "VIEWDEF.spad" 2224391 2224400 2229184 2229189) (-1230 "VIEW3D.spad" 2208226 2208235 2224381 2224386) (-1229 "VIEW2D.spad" 2195963 2195972 2208216 2208221) (-1228 "VECTOR.spad" 2194638 2194649 2194889 2194916) (-1227 "VECTOR2.spad" 2193265 2193278 2194628 2194633) (-1226 "VECTCAT.spad" 2191153 2191164 2193221 2193260) (-1225 "VECTCAT.spad" 2188861 2188874 2190931 2190936) (-1224 "VARIABLE.spad" 2188641 2188656 2188851 2188856) (-1223 "UTYPE.spad" 2188275 2188284 2188621 2188636) (-1222 "UTSODETL.spad" 2187568 2187592 2188231 2188236) (-1221 "UTSODE.spad" 2185756 2185776 2187558 2187563) (-1220 "UTS.spad" 2180545 2180573 2184223 2184320) (-1219 "UTSCAT.spad" 2177996 2178012 2180443 2180540) (-1218 "UTSCAT.spad" 2175091 2175109 2177540 2177545) (-1217 "UTS2.spad" 2174684 2174719 2175081 2175086) (-1216 "URAGG.spad" 2169306 2169317 2174664 2174679) (-1215 "URAGG.spad" 2163902 2163915 2169262 2169267) (-1214 "UPXSSING.spad" 2161545 2161571 2162983 2163116) (-1213 "UPXS.spad" 2158572 2158600 2159677 2159826) (-1212 "UPXSCONS.spad" 2156329 2156349 2156704 2156853) (-1211 "UPXSCCA.spad" 2154787 2154807 2156175 2156324) (-1210 "UPXSCCA.spad" 2153387 2153409 2154777 2154782) (-1209 "UPXSCAT.spad" 2151968 2151984 2153233 2153382) (-1208 "UPXS2.spad" 2151509 2151562 2151958 2151963) (-1207 "UPSQFREE.spad" 2149921 2149935 2151499 2151504) (-1206 "UPSCAT.spad" 2147514 2147538 2149819 2149916) (-1205 "UPSCAT.spad" 2144813 2144839 2147120 2147125) (-1204 "UPOLYC.spad" 2139791 2139802 2144655 2144808) (-1203 "UPOLYC.spad" 2134661 2134674 2139527 2139532) (-1202 "UPOLYC2.spad" 2134130 2134149 2134651 2134656) (-1201 "UP.spad" 2131172 2131187 2131680 2131833) (-1200 "UPMP.spad" 2130062 2130075 2131162 2131167) (-1199 "UPDIVP.spad" 2129625 2129639 2130052 2130057) (-1198 "UPDECOMP.spad" 2127862 2127876 2129615 2129620) (-1197 "UPCDEN.spad" 2127069 2127085 2127852 2127857) (-1196 "UP2.spad" 2126431 2126452 2127059 2127064) (-1195 "UNISEG.spad" 2125784 2125795 2126350 2126355) (-1194 "UNISEG2.spad" 2125277 2125290 2125740 2125745) (-1193 "UNIFACT.spad" 2124378 2124390 2125267 2125272) (-1192 "ULS.spad" 2114932 2114960 2116025 2116454) (-1191 "ULSCONS.spad" 2108971 2108991 2109343 2109492) (-1190 "ULSCCAT.spad" 2106568 2106588 2108791 2108966) (-1189 "ULSCCAT.spad" 2104299 2104321 2106524 2106529) (-1188 "ULSCAT.spad" 2102515 2102531 2104145 2104294) (-1187 "ULS2.spad" 2102027 2102080 2102505 2102510) (-1186 "UFD.spad" 2101092 2101101 2101953 2102022) (-1185 "UFD.spad" 2100219 2100230 2101082 2101087) (-1184 "UDVO.spad" 2099066 2099075 2100209 2100214) (-1183 "UDPO.spad" 2096493 2096504 2099022 2099027) (-1182 "TYPE.spad" 2096415 2096424 2096473 2096488) (-1181 "TYPEAST.spad" 2096334 2096343 2096405 2096410) (-1180 "TWOFACT.spad" 2094984 2094999 2096324 2096329) (-1179 "TUPLE.spad" 2094370 2094381 2094883 2094888) (-1178 "TUBETOOL.spad" 2091207 2091216 2094360 2094365) (-1177 "TUBE.spad" 2089848 2089865 2091197 2091202) (-1176 "TS.spad" 2088437 2088453 2089413 2089510) (-1175 "TSETCAT.spad" 2075552 2075569 2088393 2088432) (-1174 "TSETCAT.spad" 2062665 2062684 2075508 2075513) (-1173 "TRMANIP.spad" 2057031 2057048 2062371 2062376) (-1172 "TRIMAT.spad" 2055990 2056015 2057021 2057026) (-1171 "TRIGMNIP.spad" 2054507 2054524 2055980 2055985) (-1170 "TRIGCAT.spad" 2054019 2054028 2054497 2054502) (-1169 "TRIGCAT.spad" 2053529 2053540 2054009 2054014) (-1168 "TREE.spad" 2052100 2052111 2053136 2053163) (-1167 "TRANFUN.spad" 2051931 2051940 2052090 2052095) (-1166 "TRANFUN.spad" 2051760 2051771 2051921 2051926) (-1165 "TOPSP.spad" 2051434 2051443 2051750 2051755) (-1164 "TOOLSIGN.spad" 2051097 2051108 2051424 2051429) (-1163 "TEXTFILE.spad" 2049654 2049663 2051087 2051092) (-1162 "TEX.spad" 2046671 2046680 2049644 2049649) (-1161 "TEX1.spad" 2046227 2046238 2046661 2046666) (-1160 "TEMUTL.spad" 2045782 2045791 2046217 2046222) (-1159 "TBCMPPK.spad" 2043875 2043898 2045772 2045777) (-1158 "TBAGG.spad" 2042899 2042922 2043843 2043870) (-1157 "TBAGG.spad" 2041943 2041968 2042889 2042894) (-1156 "TANEXP.spad" 2041319 2041330 2041933 2041938) (-1155 "TABLE.spad" 2039730 2039753 2040000 2040027) (-1154 "TABLEAU.spad" 2039211 2039222 2039720 2039725) (-1153 "TABLBUMP.spad" 2035994 2036005 2039201 2039206) (-1152 "SYSTEM.spad" 2035268 2035277 2035984 2035989) (-1151 "SYSSOLP.spad" 2032741 2032752 2035258 2035263) (-1150 "SYNTAX.spad" 2028933 2028942 2032731 2032736) (-1149 "SYMTAB.spad" 2026989 2026998 2028923 2028928) (-1148 "SYMS.spad" 2022974 2022983 2026979 2026984) (-1147 "SYMPOLY.spad" 2021981 2021992 2022063 2022190) (-1146 "SYMFUNC.spad" 2021456 2021467 2021971 2021976) (-1145 "SYMBOL.spad" 2018792 2018801 2021446 2021451) (-1144 "SWITCH.spad" 2015549 2015558 2018782 2018787) (-1143 "SUTS.spad" 2012448 2012476 2014016 2014113) (-1142 "SUPXS.spad" 2009462 2009490 2010580 2010729) (-1141 "SUP.spad" 2006231 2006242 2007012 2007165) (-1140 "SUPFRACF.spad" 2005336 2005354 2006221 2006226) (-1139 "SUP2.spad" 2004726 2004739 2005326 2005331) (-1138 "SUMRF.spad" 2003692 2003703 2004716 2004721) (-1137 "SUMFS.spad" 2003325 2003342 2003682 2003687) (-1136 "SULS.spad" 1993866 1993894 1994972 1995401) (-1135 "SUCHTAST.spad" 1993635 1993644 1993856 1993861) (-1134 "SUCH.spad" 1993315 1993330 1993625 1993630) (-1133 "SUBSPACE.spad" 1985322 1985337 1993305 1993310) (-1132 "SUBRESP.spad" 1984482 1984496 1985278 1985283) (-1131 "STTF.spad" 1980581 1980597 1984472 1984477) (-1130 "STTFNC.spad" 1977049 1977065 1980571 1980576) (-1129 "STTAYLOR.spad" 1969447 1969458 1976930 1976935) (-1128 "STRTBL.spad" 1967952 1967969 1968101 1968128) (-1127 "STRING.spad" 1967361 1967370 1967375 1967402) (-1126 "STRICAT.spad" 1967137 1967146 1967317 1967356) (-1125 "STREAM.spad" 1963905 1963916 1966662 1966677) (-1124 "STREAM3.spad" 1963450 1963465 1963895 1963900) (-1123 "STREAM2.spad" 1962518 1962531 1963440 1963445) (-1122 "STREAM1.spad" 1962222 1962233 1962508 1962513) (-1121 "STINPROD.spad" 1961128 1961144 1962212 1962217) (-1120 "STEP.spad" 1960329 1960338 1961118 1961123) (-1119 "STBL.spad" 1958855 1958883 1959022 1959037) (-1118 "STAGG.spad" 1957920 1957931 1958835 1958850) (-1117 "STAGG.spad" 1956993 1957006 1957910 1957915) (-1116 "STACK.spad" 1956344 1956355 1956600 1956627) (-1115 "SREGSET.spad" 1954048 1954065 1955990 1956017) (-1114 "SRDCMPK.spad" 1952593 1952613 1954038 1954043) (-1113 "SRAGG.spad" 1947678 1947687 1952549 1952588) (-1112 "SRAGG.spad" 1942795 1942806 1947668 1947673) (-1111 "SQMATRIX.spad" 1940411 1940429 1941327 1941414) (-1110 "SPLTREE.spad" 1934963 1934976 1939847 1939874) (-1109 "SPLNODE.spad" 1931551 1931564 1934953 1934958) (-1108 "SPFCAT.spad" 1930328 1930337 1931541 1931546) (-1107 "SPECOUT.spad" 1928878 1928887 1930318 1930323) (-1106 "SPADXPT.spad" 1921007 1921016 1928858 1928873) (-1105 "spad-parser.spad" 1920472 1920481 1920997 1921002) (-1104 "SPADAST.spad" 1920173 1920182 1920462 1920467) (-1103 "SPACEC.spad" 1904186 1904197 1920163 1920168) (-1102 "SPACE3.spad" 1903962 1903973 1904176 1904181) (-1101 "SORTPAK.spad" 1903507 1903520 1903918 1903923) (-1100 "SOLVETRA.spad" 1901264 1901275 1903497 1903502) (-1099 "SOLVESER.spad" 1899784 1899795 1901254 1901259) (-1098 "SOLVERAD.spad" 1895794 1895805 1899774 1899779) (-1097 "SOLVEFOR.spad" 1894214 1894232 1895784 1895789) (-1096 "SNTSCAT.spad" 1893802 1893819 1894170 1894209) (-1095 "SMTS.spad" 1892062 1892088 1893367 1893464) (-1094 "SMP.spad" 1889501 1889521 1889891 1890018) (-1093 "SMITH.spad" 1888344 1888369 1889491 1889496) (-1092 "SMATCAT.spad" 1886442 1886472 1888276 1888339) (-1091 "SMATCAT.spad" 1884484 1884516 1886320 1886325) (-1090 "SKAGG.spad" 1883433 1883444 1884440 1884479) (-1089 "SINT.spad" 1881741 1881750 1883299 1883428) (-1088 "SIMPAN.spad" 1881469 1881478 1881731 1881736) (-1087 "SIG.spad" 1880797 1880806 1881459 1881464) (-1086 "SIGNRF.spad" 1879905 1879916 1880787 1880792) (-1085 "SIGNEF.spad" 1879174 1879191 1879895 1879900) (-1084 "SIGAST.spad" 1878555 1878564 1879164 1879169) (-1083 "SHP.spad" 1876473 1876488 1878511 1878516) (-1082 "SHDP.spad" 1867458 1867485 1867967 1868098) (-1081 "SGROUP.spad" 1867066 1867075 1867448 1867453) (-1080 "SGROUP.spad" 1866672 1866683 1867056 1867061) (-1079 "SGCF.spad" 1859553 1859562 1866662 1866667) (-1078 "SFRTCAT.spad" 1858469 1858486 1859509 1859548) (-1077 "SFRGCD.spad" 1857532 1857552 1858459 1858464) (-1076 "SFQCMPK.spad" 1852169 1852189 1857522 1857527) (-1075 "SFORT.spad" 1851604 1851618 1852159 1852164) (-1074 "SEXOF.spad" 1851447 1851487 1851594 1851599) (-1073 "SEX.spad" 1851339 1851348 1851437 1851442) (-1072 "SEXCAT.spad" 1848443 1848483 1851329 1851334) (-1071 "SET.spad" 1846743 1846754 1847864 1847903) (-1070 "SETMN.spad" 1845177 1845194 1846733 1846738) (-1069 "SETCAT.spad" 1844662 1844671 1845167 1845172) (-1068 "SETCAT.spad" 1844145 1844156 1844652 1844657) (-1067 "SETAGG.spad" 1840654 1840665 1844113 1844140) (-1066 "SETAGG.spad" 1837183 1837196 1840644 1840649) (-1065 "SEQAST.spad" 1836886 1836895 1837173 1837178) (-1064 "SEGXCAT.spad" 1835998 1836011 1836866 1836881) (-1063 "SEG.spad" 1835811 1835822 1835917 1835922) (-1062 "SEGCAT.spad" 1834630 1834641 1835791 1835806) (-1061 "SEGBIND.spad" 1833702 1833713 1834585 1834590) (-1060 "SEGBIND2.spad" 1833398 1833411 1833692 1833697) (-1059 "SEGAST.spad" 1833112 1833121 1833388 1833393) (-1058 "SEG2.spad" 1832537 1832550 1833068 1833073) (-1057 "SDVAR.spad" 1831813 1831824 1832527 1832532) (-1056 "SDPOL.spad" 1829203 1829214 1829494 1829621) (-1055 "SCPKG.spad" 1827282 1827293 1829193 1829198) (-1054 "SCOPE.spad" 1826427 1826436 1827272 1827277) (-1053 "SCACHE.spad" 1825109 1825120 1826417 1826422) (-1052 "SASTCAT.spad" 1825018 1825027 1825099 1825104) (-1051 "SAOS.spad" 1824890 1824899 1825008 1825013) (-1050 "SAERFFC.spad" 1824603 1824623 1824880 1824885) (-1049 "SAE.spad" 1822778 1822794 1823389 1823524) (-1048 "SAEFACT.spad" 1822479 1822499 1822768 1822773) (-1047 "RURPK.spad" 1820120 1820136 1822469 1822474) (-1046 "RULESET.spad" 1819561 1819585 1820110 1820115) (-1045 "RULE.spad" 1817765 1817789 1819551 1819556) (-1044 "RULECOLD.spad" 1817617 1817630 1817755 1817760) (-1043 "RSTRCAST.spad" 1817334 1817343 1817607 1817612) (-1042 "RSETGCD.spad" 1813712 1813732 1817324 1817329) (-1041 "RSETCAT.spad" 1803484 1803501 1813668 1813707) (-1040 "RSETCAT.spad" 1793288 1793307 1803474 1803479) (-1039 "RSDCMPK.spad" 1791740 1791760 1793278 1793283) (-1038 "RRCC.spad" 1790124 1790154 1791730 1791735) (-1037 "RRCC.spad" 1788506 1788538 1790114 1790119) (-1036 "RPTAST.spad" 1788208 1788217 1788496 1788501) (-1035 "RPOLCAT.spad" 1767568 1767583 1788076 1788203) (-1034 "RPOLCAT.spad" 1746642 1746659 1767152 1767157) (-1033 "ROUTINE.spad" 1742505 1742514 1745289 1745316) (-1032 "ROMAN.spad" 1741737 1741746 1742371 1742500) (-1031 "ROIRC.spad" 1740817 1740849 1741727 1741732) (-1030 "RNS.spad" 1739720 1739729 1740719 1740812) (-1029 "RNS.spad" 1738709 1738720 1739710 1739715) (-1028 "RNG.spad" 1738444 1738453 1738699 1738704) (-1027 "RMODULE.spad" 1738082 1738093 1738434 1738439) (-1026 "RMCAT2.spad" 1737490 1737547 1738072 1738077) (-1025 "RMATRIX.spad" 1736169 1736188 1736657 1736696) (-1024 "RMATCAT.spad" 1731690 1731721 1736113 1736164) (-1023 "RMATCAT.spad" 1727113 1727146 1731538 1731543) (-1022 "RINTERP.spad" 1727001 1727021 1727103 1727108) (-1021 "RING.spad" 1726358 1726367 1726981 1726996) (-1020 "RING.spad" 1725723 1725734 1726348 1726353) (-1019 "RIDIST.spad" 1725107 1725116 1725713 1725718) (-1018 "RGCHAIN.spad" 1723686 1723702 1724592 1724619) (-1017 "RF.spad" 1721300 1721311 1723676 1723681) (-1016 "RFFACTOR.spad" 1720762 1720773 1721290 1721295) (-1015 "RFFACT.spad" 1720497 1720509 1720752 1720757) (-1014 "RFDIST.spad" 1719485 1719494 1720487 1720492) (-1013 "RETSOL.spad" 1718902 1718915 1719475 1719480) (-1012 "RETRACT.spad" 1718251 1718262 1718892 1718897) (-1011 "RETRACT.spad" 1717598 1717611 1718241 1718246) (-1010 "RETAST.spad" 1717410 1717419 1717588 1717593) (-1009 "RESULT.spad" 1715470 1715479 1716057 1716084) (-1008 "RESRING.spad" 1714817 1714864 1715408 1715465) (-1007 "RESLATC.spad" 1714141 1714152 1714807 1714812) (-1006 "REPSQ.spad" 1713870 1713881 1714131 1714136) (-1005 "REP.spad" 1711422 1711431 1713860 1713865) (-1004 "REPDB.spad" 1711127 1711138 1711412 1711417) (-1003 "REP2.spad" 1700699 1700710 1710969 1710974) (-1002 "REP1.spad" 1694689 1694700 1700649 1700654) (-1001 "REGSET.spad" 1692486 1692503 1694335 1694362) (-1000 "REF.spad" 1691815 1691826 1692441 1692446) (-999 "REDORDER.spad" 1690992 1691008 1691805 1691810) (-998 "RECLOS.spad" 1689776 1689795 1690479 1690572) (-997 "REALSOLV.spad" 1688909 1688917 1689766 1689771) (-996 "REAL.spad" 1688782 1688790 1688899 1688904) (-995 "REAL0Q.spad" 1686065 1686079 1688772 1688777) (-994 "REAL0.spad" 1682894 1682908 1686055 1686060) (-993 "RDUCEAST.spad" 1682616 1682624 1682884 1682889) (-992 "RDIV.spad" 1682268 1682292 1682606 1682611) (-991 "RDIST.spad" 1681832 1681842 1682258 1682263) (-990 "RDETRS.spad" 1680629 1680646 1681822 1681827) (-989 "RDETR.spad" 1678737 1678754 1680619 1680624) (-988 "RDEEFS.spad" 1677811 1677827 1678727 1678732) (-987 "RDEEF.spad" 1676808 1676824 1677801 1677806) (-986 "RCFIELD.spad" 1673995 1674003 1676710 1676803) (-985 "RCFIELD.spad" 1671268 1671278 1673985 1673990) (-984 "RCAGG.spad" 1669171 1669181 1671248 1671263) (-983 "RCAGG.spad" 1667011 1667023 1669090 1669095) (-982 "RATRET.spad" 1666372 1666382 1667001 1667006) (-981 "RATFACT.spad" 1666065 1666076 1666362 1666367) (-980 "RANDSRC.spad" 1665385 1665393 1666055 1666060) (-979 "RADUTIL.spad" 1665140 1665148 1665375 1665380) (-978 "RADIX.spad" 1661931 1661944 1663608 1663701) (-977 "RADFF.spad" 1660345 1660381 1660463 1660619) (-976 "RADCAT.spad" 1659939 1659947 1660335 1660340) (-975 "RADCAT.spad" 1659531 1659541 1659929 1659934) (-974 "QUEUE.spad" 1658874 1658884 1659138 1659165) (-973 "QUAT.spad" 1657456 1657466 1657798 1657863) (-972 "QUATCT2.spad" 1657075 1657093 1657446 1657451) (-971 "QUATCAT.spad" 1655240 1655250 1657005 1657070) (-970 "QUATCAT.spad" 1653156 1653168 1654923 1654928) (-969 "QUAGG.spad" 1651970 1651980 1653112 1653151) (-968 "QQUTAST.spad" 1651739 1651747 1651960 1651965) (-967 "QFORM.spad" 1651202 1651216 1651729 1651734) (-966 "QFCAT.spad" 1649893 1649903 1651092 1651197) (-965 "QFCAT.spad" 1648188 1648200 1649389 1649394) (-964 "QFCAT2.spad" 1647879 1647895 1648178 1648183) (-963 "QEQUAT.spad" 1647436 1647444 1647869 1647874) (-962 "QCMPACK.spad" 1642183 1642202 1647426 1647431) (-961 "QALGSET.spad" 1638258 1638290 1642097 1642102) (-960 "QALGSET2.spad" 1636254 1636272 1638248 1638253) (-959 "PWFFINTB.spad" 1633564 1633585 1636244 1636249) (-958 "PUSHVAR.spad" 1632893 1632912 1633554 1633559) (-957 "PTRANFN.spad" 1629019 1629029 1632883 1632888) (-956 "PTPACK.spad" 1626107 1626117 1629009 1629014) (-955 "PTFUNC2.spad" 1625928 1625942 1626097 1626102) (-954 "PTCAT.spad" 1625010 1625020 1625884 1625923) (-953 "PSQFR.spad" 1624317 1624341 1625000 1625005) (-952 "PSEUDLIN.spad" 1623175 1623185 1624307 1624312) (-951 "PSETPK.spad" 1608608 1608624 1623053 1623058) (-950 "PSETCAT.spad" 1602516 1602539 1608576 1608603) (-949 "PSETCAT.spad" 1596410 1596435 1602472 1602477) (-948 "PSCURVE.spad" 1595393 1595401 1596400 1596405) (-947 "PSCAT.spad" 1594160 1594189 1595291 1595388) (-946 "PSCAT.spad" 1593017 1593048 1594150 1594155) (-945 "PRTITION.spad" 1591860 1591868 1593007 1593012) (-944 "PRTDAST.spad" 1591579 1591587 1591850 1591855) (-943 "PRS.spad" 1581141 1581158 1591535 1591540) (-942 "PRQAGG.spad" 1580560 1580570 1581097 1581136) (-941 "PROPLOG.spad" 1579963 1579971 1580550 1580555) (-940 "PROPFRML.spad" 1577881 1577892 1579953 1579958) (-939 "PROPERTY.spad" 1577375 1577383 1577871 1577876) (-938 "PRODUCT.spad" 1575055 1575067 1575341 1575396) (-937 "PR.spad" 1573441 1573453 1574146 1574273) (-936 "PRINT.spad" 1573193 1573201 1573431 1573436) (-935 "PRIMES.spad" 1571444 1571454 1573183 1573188) (-934 "PRIMELT.spad" 1569425 1569439 1571434 1571439) (-933 "PRIMCAT.spad" 1569048 1569056 1569415 1569420) (-932 "PRIMARR.spad" 1568053 1568063 1568231 1568258) (-931 "PRIMARR2.spad" 1566776 1566788 1568043 1568048) (-930 "PREASSOC.spad" 1566148 1566160 1566766 1566771) (-929 "PPCURVE.spad" 1565285 1565293 1566138 1566143) (-928 "PORTNUM.spad" 1565060 1565068 1565275 1565280) (-927 "POLYROOT.spad" 1563832 1563854 1565016 1565021) (-926 "POLY.spad" 1561129 1561139 1561646 1561773) (-925 "POLYLIFT.spad" 1560390 1560413 1561119 1561124) (-924 "POLYCATQ.spad" 1558492 1558514 1560380 1560385) (-923 "POLYCAT.spad" 1551898 1551919 1558360 1558487) (-922 "POLYCAT.spad" 1544606 1544629 1551070 1551075) (-921 "POLY2UP.spad" 1544054 1544068 1544596 1544601) (-920 "POLY2.spad" 1543649 1543661 1544044 1544049) (-919 "POLUTIL.spad" 1542590 1542619 1543605 1543610) (-918 "POLTOPOL.spad" 1541338 1541353 1542580 1542585) (-917 "POINT.spad" 1540177 1540187 1540264 1540291) (-916 "PNTHEORY.spad" 1536843 1536851 1540167 1540172) (-915 "PMTOOLS.spad" 1535600 1535614 1536833 1536838) (-914 "PMSYM.spad" 1535145 1535155 1535590 1535595) (-913 "PMQFCAT.spad" 1534732 1534746 1535135 1535140) (-912 "PMPRED.spad" 1534201 1534215 1534722 1534727) (-911 "PMPREDFS.spad" 1533645 1533667 1534191 1534196) (-910 "PMPLCAT.spad" 1532715 1532733 1533577 1533582) (-909 "PMLSAGG.spad" 1532296 1532310 1532705 1532710) (-908 "PMKERNEL.spad" 1531863 1531875 1532286 1532291) (-907 "PMINS.spad" 1531439 1531449 1531853 1531858) (-906 "PMFS.spad" 1531012 1531030 1531429 1531434) (-905 "PMDOWN.spad" 1530298 1530312 1531002 1531007) (-904 "PMASS.spad" 1529310 1529318 1530288 1530293) (-903 "PMASSFS.spad" 1528279 1528295 1529300 1529305) (-902 "PLOTTOOL.spad" 1528059 1528067 1528269 1528274) (-901 "PLOT.spad" 1522890 1522898 1528049 1528054) (-900 "PLOT3D.spad" 1519310 1519318 1522880 1522885) (-899 "PLOT1.spad" 1518451 1518461 1519300 1519305) (-898 "PLEQN.spad" 1505667 1505694 1518441 1518446) (-897 "PINTERP.spad" 1505283 1505302 1505657 1505662) (-896 "PINTERPA.spad" 1505065 1505081 1505273 1505278) (-895 "PI.spad" 1504672 1504680 1505039 1505060) (-894 "PID.spad" 1503628 1503636 1504598 1504667) (-893 "PICOERCE.spad" 1503285 1503295 1503618 1503623) (-892 "PGROEB.spad" 1501882 1501896 1503275 1503280) (-891 "PGE.spad" 1493135 1493143 1501872 1501877) (-890 "PGCD.spad" 1492017 1492034 1493125 1493130) (-889 "PFRPAC.spad" 1491160 1491170 1492007 1492012) (-888 "PFR.spad" 1487817 1487827 1491062 1491155) (-887 "PFOTOOLS.spad" 1487075 1487091 1487807 1487812) (-886 "PFOQ.spad" 1486445 1486463 1487065 1487070) (-885 "PFO.spad" 1485864 1485891 1486435 1486440) (-884 "PF.spad" 1485438 1485450 1485669 1485762) (-883 "PFECAT.spad" 1483104 1483112 1485364 1485433) (-882 "PFECAT.spad" 1480798 1480808 1483060 1483065) (-881 "PFBRU.spad" 1478668 1478680 1480788 1480793) (-880 "PFBR.spad" 1476206 1476229 1478658 1478663) (-879 "PERM.spad" 1471887 1471897 1476036 1476051) (-878 "PERMGRP.spad" 1466623 1466633 1471877 1471882) (-877 "PERMCAT.spad" 1465175 1465185 1466603 1466618) (-876 "PERMAN.spad" 1463707 1463721 1465165 1465170) (-875 "PENDTREE.spad" 1462980 1462990 1463336 1463341) (-874 "PDRING.spad" 1461471 1461481 1462960 1462975) (-873 "PDRING.spad" 1459970 1459982 1461461 1461466) (-872 "PDEPROB.spad" 1458927 1458935 1459960 1459965) (-871 "PDEPACK.spad" 1452929 1452937 1458917 1458922) (-870 "PDECOMP.spad" 1452391 1452408 1452919 1452924) (-869 "PDECAT.spad" 1450745 1450753 1452381 1452386) (-868 "PCOMP.spad" 1450596 1450609 1450735 1450740) (-867 "PBWLB.spad" 1449178 1449195 1450586 1450591) (-866 "PATTERN.spad" 1443609 1443619 1449168 1449173) (-865 "PATTERN2.spad" 1443345 1443357 1443599 1443604) (-864 "PATTERN1.spad" 1441647 1441663 1443335 1443340) (-863 "PATRES.spad" 1439194 1439206 1441637 1441642) (-862 "PATRES2.spad" 1438856 1438870 1439184 1439189) (-861 "PATMATCH.spad" 1437013 1437044 1438564 1438569) (-860 "PATMAB.spad" 1436438 1436448 1437003 1437008) (-859 "PATLRES.spad" 1435522 1435536 1436428 1436433) (-858 "PATAB.spad" 1435286 1435296 1435512 1435517) (-857 "PARTPERM.spad" 1432648 1432656 1435276 1435281) (-856 "PARSURF.spad" 1432076 1432104 1432638 1432643) (-855 "PARSU2.spad" 1431871 1431887 1432066 1432071) (-854 "script-parser.spad" 1431391 1431399 1431861 1431866) (-853 "PARSCURV.spad" 1430819 1430847 1431381 1431386) (-852 "PARSC2.spad" 1430608 1430624 1430809 1430814) (-851 "PARPCURV.spad" 1430066 1430094 1430598 1430603) (-850 "PARPC2.spad" 1429855 1429871 1430056 1430061) (-849 "PAN2EXPR.spad" 1429267 1429275 1429845 1429850) (-848 "PALETTE.spad" 1428237 1428245 1429257 1429262) (-847 "PAIR.spad" 1427220 1427233 1427825 1427830) (-846 "PADICRC.spad" 1424551 1424569 1425726 1425819) (-845 "PADICRAT.spad" 1422567 1422579 1422788 1422881) (-844 "PADIC.spad" 1422262 1422274 1422493 1422562) (-843 "PADICCT.spad" 1420803 1420815 1422188 1422257) (-842 "PADEPAC.spad" 1419482 1419501 1420793 1420798) (-841 "PADE.spad" 1418222 1418238 1419472 1419477) (-840 "OWP.spad" 1417206 1417236 1418080 1418147) (-839 "OVAR.spad" 1416987 1417010 1417196 1417201) (-838 "OUT.spad" 1416071 1416079 1416977 1416982) (-837 "OUTFORM.spad" 1405367 1405375 1416061 1416066) (-836 "OUTBFILE.spad" 1404785 1404793 1405357 1405362) (-835 "OUTBCON.spad" 1404064 1404072 1404775 1404780) (-834 "OUTBCON.spad" 1403341 1403351 1404054 1404059) (-833 "OSI.spad" 1402816 1402824 1403331 1403336) (-832 "OSGROUP.spad" 1402734 1402742 1402806 1402811) (-831 "ORTHPOL.spad" 1401195 1401205 1402651 1402656) (-830 "OREUP.spad" 1400553 1400581 1400875 1400914) (-829 "ORESUP.spad" 1399852 1399876 1400233 1400272) (-828 "OREPCTO.spad" 1397671 1397683 1399772 1399777) (-827 "OREPCAT.spad" 1391728 1391738 1397627 1397666) (-826 "OREPCAT.spad" 1385675 1385687 1391576 1391581) (-825 "ORDSET.spad" 1384841 1384849 1385665 1385670) (-824 "ORDSET.spad" 1384005 1384015 1384831 1384836) (-823 "ORDRING.spad" 1383395 1383403 1383985 1384000) (-822 "ORDRING.spad" 1382793 1382803 1383385 1383390) (-821 "ORDMON.spad" 1382648 1382656 1382783 1382788) (-820 "ORDFUNS.spad" 1381774 1381790 1382638 1382643) (-819 "ORDFIN.spad" 1381708 1381716 1381764 1381769) (-818 "ORDCOMP.spad" 1380173 1380183 1381255 1381284) (-817 "ORDCOMP2.spad" 1379458 1379470 1380163 1380168) (-816 "OPTPROB.spad" 1378038 1378046 1379448 1379453) (-815 "OPTPACK.spad" 1370423 1370431 1378028 1378033) (-814 "OPTCAT.spad" 1368098 1368106 1370413 1370418) (-813 "OPQUERY.spad" 1367647 1367655 1368088 1368093) (-812 "OP.spad" 1367389 1367399 1367469 1367536) (-811 "ONECOMP.spad" 1366134 1366144 1366936 1366965) (-810 "ONECOMP2.spad" 1365552 1365564 1366124 1366129) (-809 "OMSERVER.spad" 1364554 1364562 1365542 1365547) (-808 "OMSAGG.spad" 1364330 1364340 1364498 1364549) (-807 "OMPKG.spad" 1362942 1362950 1364320 1364325) (-806 "OM.spad" 1361907 1361915 1362932 1362937) (-805 "OMLO.spad" 1361332 1361344 1361793 1361832) (-804 "OMEXPR.spad" 1361166 1361176 1361322 1361327) (-803 "OMERR.spad" 1360709 1360717 1361156 1361161) (-802 "OMERRK.spad" 1359743 1359751 1360699 1360704) (-801 "OMENC.spad" 1359087 1359095 1359733 1359738) (-800 "OMDEV.spad" 1353376 1353384 1359077 1359082) (-799 "OMCONN.spad" 1352785 1352793 1353366 1353371) (-798 "OINTDOM.spad" 1352548 1352556 1352711 1352780) (-797 "OFMONOID.spad" 1348735 1348745 1352538 1352543) (-796 "ODVAR.spad" 1347996 1348006 1348725 1348730) (-795 "ODR.spad" 1347444 1347470 1347808 1347957) (-794 "ODPOL.spad" 1344790 1344800 1345130 1345257) (-793 "ODP.spad" 1335911 1335931 1336284 1336415) (-792 "ODETOOLS.spad" 1334494 1334513 1335901 1335906) (-791 "ODESYS.spad" 1332144 1332161 1334484 1334489) (-790 "ODERTRIC.spad" 1328085 1328102 1332101 1332106) (-789 "ODERED.spad" 1327472 1327496 1328075 1328080) (-788 "ODERAT.spad" 1325023 1325040 1327462 1327467) (-787 "ODEPRRIC.spad" 1321914 1321936 1325013 1325018) (-786 "ODEPROB.spad" 1321113 1321121 1321904 1321909) (-785 "ODEPRIM.spad" 1318387 1318409 1321103 1321108) (-784 "ODEPAL.spad" 1317763 1317787 1318377 1318382) (-783 "ODEPACK.spad" 1304365 1304373 1317753 1317758) (-782 "ODEINT.spad" 1303796 1303812 1304355 1304360) (-781 "ODEIFTBL.spad" 1301191 1301199 1303786 1303791) (-780 "ODEEF.spad" 1296558 1296574 1301181 1301186) (-779 "ODECONST.spad" 1296077 1296095 1296548 1296553) (-778 "ODECAT.spad" 1294673 1294681 1296067 1296072) (-777 "OCT.spad" 1292811 1292821 1293527 1293566) (-776 "OCTCT2.spad" 1292455 1292476 1292801 1292806) (-775 "OC.spad" 1290229 1290239 1292411 1292450) (-774 "OC.spad" 1287728 1287740 1289912 1289917) (-773 "OCAMON.spad" 1287576 1287584 1287718 1287723) (-772 "OASGP.spad" 1287391 1287399 1287566 1287571) (-771 "OAMONS.spad" 1286911 1286919 1287381 1287386) (-770 "OAMON.spad" 1286772 1286780 1286901 1286906) (-769 "OAGROUP.spad" 1286634 1286642 1286762 1286767) (-768 "NUMTUBE.spad" 1286221 1286237 1286624 1286629) (-767 "NUMQUAD.spad" 1274083 1274091 1286211 1286216) (-766 "NUMODE.spad" 1265219 1265227 1274073 1274078) (-765 "NUMINT.spad" 1262777 1262785 1265209 1265214) (-764 "NUMFMT.spad" 1261617 1261625 1262767 1262772) (-763 "NUMERIC.spad" 1253689 1253699 1261422 1261427) (-762 "NTSCAT.spad" 1252179 1252195 1253645 1253684) (-761 "NTPOLFN.spad" 1251724 1251734 1252096 1252101) (-760 "NSUP.spad" 1244734 1244744 1249274 1249427) (-759 "NSUP2.spad" 1244126 1244138 1244724 1244729) (-758 "NSMP.spad" 1240321 1240340 1240629 1240756) (-757 "NREP.spad" 1238693 1238707 1240311 1240316) (-756 "NPCOEF.spad" 1237939 1237959 1238683 1238688) (-755 "NORMRETR.spad" 1237537 1237576 1237929 1237934) (-754 "NORMPK.spad" 1235439 1235458 1237527 1237532) (-753 "NORMMA.spad" 1235127 1235153 1235429 1235434) (-752 "NONE.spad" 1234868 1234876 1235117 1235122) (-751 "NONE1.spad" 1234544 1234554 1234858 1234863) (-750 "NODE1.spad" 1234013 1234029 1234534 1234539) (-749 "NNI.spad" 1232900 1232908 1233987 1234008) (-748 "NLINSOL.spad" 1231522 1231532 1232890 1232895) (-747 "NIPROB.spad" 1230005 1230013 1231512 1231517) (-746 "NFINTBAS.spad" 1227465 1227482 1229995 1230000) (-745 "NCODIV.spad" 1225663 1225679 1227455 1227460) (-744 "NCNTFRAC.spad" 1225305 1225319 1225653 1225658) (-743 "NCEP.spad" 1223465 1223479 1225295 1225300) (-742 "NASRING.spad" 1223061 1223069 1223455 1223460) (-741 "NASRING.spad" 1222655 1222665 1223051 1223056) (-740 "NARNG.spad" 1221999 1222007 1222645 1222650) (-739 "NARNG.spad" 1221341 1221351 1221989 1221994) (-738 "NAGSP.spad" 1220414 1220422 1221331 1221336) (-737 "NAGS.spad" 1209939 1209947 1220404 1220409) (-736 "NAGF07.spad" 1208332 1208340 1209929 1209934) (-735 "NAGF04.spad" 1202564 1202572 1208322 1208327) (-734 "NAGF02.spad" 1196373 1196381 1202554 1202559) (-733 "NAGF01.spad" 1191976 1191984 1196363 1196368) (-732 "NAGE04.spad" 1185436 1185444 1191966 1191971) (-731 "NAGE02.spad" 1175778 1175786 1185426 1185431) (-730 "NAGE01.spad" 1171662 1171670 1175768 1175773) (-729 "NAGD03.spad" 1169582 1169590 1171652 1171657) (-728 "NAGD02.spad" 1162113 1162121 1169572 1169577) (-727 "NAGD01.spad" 1156226 1156234 1162103 1162108) (-726 "NAGC06.spad" 1152013 1152021 1156216 1156221) (-725 "NAGC05.spad" 1150482 1150490 1152003 1152008) (-724 "NAGC02.spad" 1149737 1149745 1150472 1150477) (-723 "NAALG.spad" 1149272 1149282 1149705 1149732) (-722 "NAALG.spad" 1148827 1148839 1149262 1149267) (-721 "MULTSQFR.spad" 1145785 1145802 1148817 1148822) (-720 "MULTFACT.spad" 1145168 1145185 1145775 1145780) (-719 "MTSCAT.spad" 1143202 1143223 1145066 1145163) (-718 "MTHING.spad" 1142859 1142869 1143192 1143197) (-717 "MSYSCMD.spad" 1142293 1142301 1142849 1142854) (-716 "MSET.spad" 1140235 1140245 1141999 1142038) (-715 "MSETAGG.spad" 1140068 1140078 1140191 1140230) (-714 "MRING.spad" 1137039 1137051 1139776 1139843) (-713 "MRF2.spad" 1136607 1136621 1137029 1137034) (-712 "MRATFAC.spad" 1136153 1136170 1136597 1136602) (-711 "MPRFF.spad" 1134183 1134202 1136143 1136148) (-710 "MPOLY.spad" 1131618 1131633 1131977 1132104) (-709 "MPCPF.spad" 1130882 1130901 1131608 1131613) (-708 "MPC3.spad" 1130697 1130737 1130872 1130877) (-707 "MPC2.spad" 1130339 1130372 1130687 1130692) (-706 "MONOTOOL.spad" 1128674 1128691 1130329 1130334) (-705 "MONOID.spad" 1127993 1128001 1128664 1128669) (-704 "MONOID.spad" 1127310 1127320 1127983 1127988) (-703 "MONOGEN.spad" 1126056 1126069 1127170 1127305) (-702 "MONOGEN.spad" 1124824 1124839 1125940 1125945) (-701 "MONADWU.spad" 1122838 1122846 1124814 1124819) (-700 "MONADWU.spad" 1120850 1120860 1122828 1122833) (-699 "MONAD.spad" 1119994 1120002 1120840 1120845) (-698 "MONAD.spad" 1119136 1119146 1119984 1119989) (-697 "MOEBIUS.spad" 1117822 1117836 1119116 1119131) (-696 "MODULE.spad" 1117692 1117702 1117790 1117817) (-695 "MODULE.spad" 1117582 1117594 1117682 1117687) (-694 "MODRING.spad" 1116913 1116952 1117562 1117577) (-693 "MODOP.spad" 1115572 1115584 1116735 1116802) (-692 "MODMONOM.spad" 1115104 1115122 1115562 1115567) (-691 "MODMON.spad" 1111806 1111822 1112582 1112735) (-690 "MODFIELD.spad" 1111164 1111203 1111708 1111801) (-689 "MMLFORM.spad" 1110024 1110032 1111154 1111159) (-688 "MMAP.spad" 1109764 1109798 1110014 1110019) (-687 "MLO.spad" 1108191 1108201 1109720 1109759) (-686 "MLIFT.spad" 1106763 1106780 1108181 1108186) (-685 "MKUCFUNC.spad" 1106296 1106314 1106753 1106758) (-684 "MKRECORD.spad" 1105898 1105911 1106286 1106291) (-683 "MKFUNC.spad" 1105279 1105289 1105888 1105893) (-682 "MKFLCFN.spad" 1104235 1104245 1105269 1105274) (-681 "MKCHSET.spad" 1104011 1104021 1104225 1104230) (-680 "MKBCFUNC.spad" 1103496 1103514 1104001 1104006) (-679 "MINT.spad" 1102935 1102943 1103398 1103491) (-678 "MHROWRED.spad" 1101436 1101446 1102925 1102930) (-677 "MFLOAT.spad" 1099952 1099960 1101326 1101431) (-676 "MFINFACT.spad" 1099352 1099374 1099942 1099947) (-675 "MESH.spad" 1097084 1097092 1099342 1099347) (-674 "MDDFACT.spad" 1095277 1095287 1097074 1097079) (-673 "MDAGG.spad" 1094552 1094562 1095245 1095272) (-672 "MCMPLX.spad" 1090527 1090535 1091141 1091342) (-671 "MCDEN.spad" 1089735 1089747 1090517 1090522) (-670 "MCALCFN.spad" 1086837 1086863 1089725 1089730) (-669 "MAYBE.spad" 1086086 1086097 1086827 1086832) (-668 "MATSTOR.spad" 1083362 1083372 1086076 1086081) (-667 "MATRIX.spad" 1082066 1082076 1082550 1082577) (-666 "MATLIN.spad" 1079392 1079416 1081950 1081955) (-665 "MATCAT.spad" 1070965 1070987 1079348 1079387) (-664 "MATCAT.spad" 1062422 1062446 1070807 1070812) (-663 "MATCAT2.spad" 1061690 1061738 1062412 1062417) (-662 "MAPPKG3.spad" 1060589 1060603 1061680 1061685) (-661 "MAPPKG2.spad" 1059923 1059935 1060579 1060584) (-660 "MAPPKG1.spad" 1058741 1058751 1059913 1059918) (-659 "MAPPAST.spad" 1058054 1058062 1058731 1058736) (-658 "MAPHACK3.spad" 1057862 1057876 1058044 1058049) (-657 "MAPHACK2.spad" 1057627 1057639 1057852 1057857) (-656 "MAPHACK1.spad" 1057257 1057267 1057617 1057622) (-655 "MAGMA.spad" 1055047 1055064 1057247 1057252) (-654 "MACROAST.spad" 1054626 1054634 1055037 1055042) (-653 "M3D.spad" 1052322 1052332 1054004 1054009) (-652 "LZSTAGG.spad" 1049540 1049550 1052302 1052317) (-651 "LZSTAGG.spad" 1046766 1046778 1049530 1049535) (-650 "LWORD.spad" 1043471 1043488 1046756 1046761) (-649 "LSTAST.spad" 1043255 1043263 1043461 1043466) (-648 "LSQM.spad" 1041481 1041495 1041879 1041930) (-647 "LSPP.spad" 1041014 1041031 1041471 1041476) (-646 "LSMP.spad" 1039854 1039882 1041004 1041009) (-645 "LSMP1.spad" 1037658 1037672 1039844 1039849) (-644 "LSAGG.spad" 1037315 1037325 1037614 1037653) (-643 "LSAGG.spad" 1037004 1037016 1037305 1037310) (-642 "LPOLY.spad" 1035958 1035977 1036860 1036929) (-641 "LPEFRAC.spad" 1035215 1035225 1035948 1035953) (-640 "LO.spad" 1034616 1034630 1035149 1035176) (-639 "LOGIC.spad" 1034218 1034226 1034606 1034611) (-638 "LOGIC.spad" 1033818 1033828 1034208 1034213) (-637 "LODOOPS.spad" 1032736 1032748 1033808 1033813) (-636 "LODO.spad" 1032120 1032136 1032416 1032455) (-635 "LODOF.spad" 1031164 1031181 1032077 1032082) (-634 "LODOCAT.spad" 1029822 1029832 1031120 1031159) (-633 "LODOCAT.spad" 1028478 1028490 1029778 1029783) (-632 "LODO2.spad" 1027751 1027763 1028158 1028197) (-631 "LODO1.spad" 1027151 1027161 1027431 1027470) (-630 "LODEEF.spad" 1025923 1025941 1027141 1027146) (-629 "LNAGG.spad" 1021715 1021725 1025903 1025918) (-628 "LNAGG.spad" 1017481 1017493 1021671 1021676) (-627 "LMOPS.spad" 1014217 1014234 1017471 1017476) (-626 "LMODULE.spad" 1013859 1013869 1014207 1014212) (-625 "LMDICT.spad" 1013142 1013152 1013410 1013437) (-624 "LITERAL.spad" 1013048 1013059 1013132 1013137) (-623 "LIST.spad" 1010766 1010776 1012195 1012222) (-622 "LIST3.spad" 1010057 1010071 1010756 1010761) (-621 "LIST2.spad" 1008697 1008709 1010047 1010052) (-620 "LIST2MAP.spad" 1005574 1005586 1008687 1008692) (-619 "LINEXP.spad" 1005006 1005016 1005554 1005569) (-618 "LINDEP.spad" 1003783 1003795 1004918 1004923) (-617 "LIMITRF.spad" 1001697 1001707 1003773 1003778) (-616 "LIMITPS.spad" 1000580 1000593 1001687 1001692) (-615 "LIE.spad" 998594 998606 999870 1000015) (-614 "LIECAT.spad" 998070 998080 998520 998589) (-613 "LIECAT.spad" 997574 997586 998026 998031) (-612 "LIB.spad" 995622 995630 996233 996248) (-611 "LGROBP.spad" 992975 992994 995612 995617) (-610 "LF.spad" 991894 991910 992965 992970) (-609 "LFCAT.spad" 990913 990921 991884 991889) (-608 "LEXTRIPK.spad" 986416 986431 990903 990908) (-607 "LEXP.spad" 984419 984446 986396 986411) (-606 "LETAST.spad" 984118 984126 984409 984414) (-605 "LEADCDET.spad" 982502 982519 984108 984113) (-604 "LAZM3PK.spad" 981206 981228 982492 982497) (-603 "LAUPOL.spad" 979895 979908 980799 980868) (-602 "LAPLACE.spad" 979468 979484 979885 979890) (-601 "LA.spad" 978908 978922 979390 979429) (-600 "LALG.spad" 978684 978694 978888 978903) (-599 "LALG.spad" 978468 978480 978674 978679) (-598 "KTVLOGIC.spad" 977891 977899 978458 978463) (-597 "KOVACIC.spad" 976604 976621 977881 977886) (-596 "KONVERT.spad" 976326 976336 976594 976599) (-595 "KOERCE.spad" 976063 976073 976316 976321) (-594 "KERNEL.spad" 974598 974608 975847 975852) (-593 "KERNEL2.spad" 974301 974313 974588 974593) (-592 "KDAGG.spad" 973392 973414 974269 974296) (-591 "KDAGG.spad" 972503 972527 973382 973387) (-590 "KAFILE.spad" 971466 971482 971701 971728) (-589 "JORDAN.spad" 969293 969305 970756 970901) (-588 "JOINAST.spad" 968987 968995 969283 969288) (-587 "JAVACODE.spad" 968753 968761 968977 968982) (-586 "IXAGG.spad" 966866 966890 968733 968748) (-585 "IXAGG.spad" 964844 964870 966713 966718) (-584 "IVECTOR.spad" 963615 963630 963770 963797) (-583 "ITUPLE.spad" 962760 962770 963605 963610) (-582 "ITRIGMNP.spad" 961571 961590 962750 962755) (-581 "ITFUN3.spad" 961065 961079 961561 961566) (-580 "ITFUN2.spad" 960795 960807 961055 961060) (-579 "ITAYLOR.spad" 958587 958602 960631 960756) (-578 "ISUPS.spad" 950998 951013 957561 957658) (-577 "ISUMP.spad" 950495 950511 950988 950993) (-576 "ISTRING.spad" 949498 949511 949664 949691) (-575 "ISAST.spad" 949217 949225 949488 949493) (-574 "IRURPK.spad" 947930 947949 949207 949212) (-573 "IRSN.spad" 945890 945898 947920 947925) (-572 "IRRF2F.spad" 944365 944375 945846 945851) (-571 "IRREDFFX.spad" 943966 943977 944355 944360) (-570 "IROOT.spad" 942297 942307 943956 943961) (-569 "IR.spad" 940086 940100 942152 942179) (-568 "IR2.spad" 939106 939122 940076 940081) (-567 "IR2F.spad" 938306 938322 939096 939101) (-566 "IPRNTPK.spad" 938066 938074 938296 938301) (-565 "IPF.spad" 937631 937643 937871 937964) (-564 "IPADIC.spad" 937392 937418 937557 937626) (-563 "IOMODE.spad" 937013 937021 937382 937387) (-562 "IOBCON.spad" 936878 936886 937003 937008) (-561 "INVLAPLA.spad" 936523 936539 936868 936873) (-560 "INTTR.spad" 929769 929786 936513 936518) (-559 "INTTOOLS.spad" 927480 927496 929343 929348) (-558 "INTSLPE.spad" 926786 926794 927470 927475) (-557 "INTRVL.spad" 926352 926362 926700 926781) (-556 "INTRF.spad" 924716 924730 926342 926347) (-555 "INTRET.spad" 924148 924158 924706 924711) (-554 "INTRAT.spad" 922823 922840 924138 924143) (-553 "INTPM.spad" 921186 921202 922466 922471) (-552 "INTPAF.spad" 918954 918972 921118 921123) (-551 "INTPACK.spad" 909264 909272 918944 918949) (-550 "INT.spad" 908625 908633 909118 909259) (-549 "INTHERTR.spad" 907891 907908 908615 908620) (-548 "INTHERAL.spad" 907557 907581 907881 907886) (-547 "INTHEORY.spad" 903970 903978 907547 907552) (-546 "INTG0.spad" 897433 897451 903902 903907) (-545 "INTFTBL.spad" 891462 891470 897423 897428) (-544 "INTFACT.spad" 890521 890531 891452 891457) (-543 "INTEF.spad" 888836 888852 890511 890516) (-542 "INTDOM.spad" 887451 887459 888762 888831) (-541 "INTDOM.spad" 886128 886138 887441 887446) (-540 "INTCAT.spad" 884381 884391 886042 886123) (-539 "INTBIT.spad" 883884 883892 884371 884376) (-538 "INTALG.spad" 883066 883093 883874 883879) (-537 "INTAF.spad" 882558 882574 883056 883061) (-536 "INTABL.spad" 881076 881107 881239 881266) (-535 "INS.spad" 878543 878551 880978 881071) (-534 "INS.spad" 876096 876106 878533 878538) (-533 "INPSIGN.spad" 875530 875543 876086 876091) (-532 "INPRODPF.spad" 874596 874615 875520 875525) (-531 "INPRODFF.spad" 873654 873678 874586 874591) (-530 "INNMFACT.spad" 872625 872642 873644 873649) (-529 "INMODGCD.spad" 872109 872139 872615 872620) (-528 "INFSP.spad" 870394 870416 872099 872104) (-527 "INFPROD0.spad" 869444 869463 870384 870389) (-526 "INFORM.spad" 866605 866613 869434 869439) (-525 "INFORM1.spad" 866230 866240 866595 866600) (-524 "INFINITY.spad" 865782 865790 866220 866225) (-523 "INEP.spad" 864314 864336 865772 865777) (-522 "INDE.spad" 864043 864060 864304 864309) (-521 "INCRMAPS.spad" 863464 863474 864033 864038) (-520 "INBFILE.spad" 862793 862801 863454 863459) (-519 "INBFF.spad" 858563 858574 862783 862788) (-518 "INBCON.spad" 857863 857871 858553 858558) (-517 "INBCON.spad" 857161 857171 857853 857858) (-516 "INAST.spad" 856826 856834 857151 857156) (-515 "IMPTAST.spad" 856534 856542 856816 856821) (-514 "IMATRIX.spad" 855479 855505 855991 856018) (-513 "IMATQF.spad" 854573 854617 855435 855440) (-512 "IMATLIN.spad" 853178 853202 854529 854534) (-511 "ILIST.spad" 851834 851849 852361 852388) (-510 "IIARRAY2.spad" 851222 851260 851441 851468) (-509 "IFF.spad" 850632 850648 850903 850996) (-508 "IFAST.spad" 850246 850254 850622 850627) (-507 "IFARRAY.spad" 847733 847748 849429 849456) (-506 "IFAMON.spad" 847595 847612 847689 847694) (-505 "IEVALAB.spad" 846984 846996 847585 847590) (-504 "IEVALAB.spad" 846371 846385 846974 846979) (-503 "IDPO.spad" 846169 846181 846361 846366) (-502 "IDPOAMS.spad" 845925 845937 846159 846164) (-501 "IDPOAM.spad" 845645 845657 845915 845920) (-500 "IDPC.spad" 844579 844591 845635 845640) (-499 "IDPAM.spad" 844324 844336 844569 844574) (-498 "IDPAG.spad" 844071 844083 844314 844319) (-497 "IDENT.spad" 843988 843996 844061 844066) (-496 "IDECOMP.spad" 841225 841243 843978 843983) (-495 "IDEAL.spad" 836148 836187 841160 841165) (-494 "ICDEN.spad" 835299 835315 836138 836143) (-493 "ICARD.spad" 834488 834496 835289 835294) (-492 "IBPTOOLS.spad" 833081 833098 834478 834483) (-491 "IBITS.spad" 832280 832293 832717 832744) (-490 "IBATOOL.spad" 829155 829174 832270 832275) (-489 "IBACHIN.spad" 827642 827657 829145 829150) (-488 "IARRAY2.spad" 826630 826656 827249 827276) (-487 "IARRAY1.spad" 825675 825690 825813 825840) (-486 "IAN.spad" 823888 823896 825491 825584) (-485 "IALGFACT.spad" 823489 823522 823878 823883) (-484 "HYPCAT.spad" 822913 822921 823479 823484) (-483 "HYPCAT.spad" 822335 822345 822903 822908) (-482 "HOSTNAME.spad" 822143 822151 822325 822330) (-481 "HOAGG.spad" 819401 819411 822123 822138) (-480 "HOAGG.spad" 816444 816456 819168 819173) (-479 "HEXADEC.spad" 814314 814322 814912 815005) (-478 "HEUGCD.spad" 813329 813340 814304 814309) (-477 "HELLFDIV.spad" 812919 812943 813319 813324) (-476 "HEAP.spad" 812311 812321 812526 812553) (-475 "HEADAST.spad" 811842 811850 812301 812306) (-474 "HDP.spad" 802959 802975 803336 803467) (-473 "HDMP.spad" 800135 800150 800753 800880) (-472 "HB.spad" 798372 798380 800125 800130) (-471 "HASHTBL.spad" 796842 796873 797053 797080) (-470 "HASAST.spad" 796558 796566 796832 796837) (-469 "HACKPI.spad" 796041 796049 796460 796553) (-468 "GTSET.spad" 794980 794996 795687 795714) (-467 "GSTBL.spad" 793499 793534 793673 793688) (-466 "GSERIES.spad" 790666 790693 791631 791780) (-465 "GROUP.spad" 789935 789943 790646 790661) (-464 "GROUP.spad" 789212 789222 789925 789930) (-463 "GROEBSOL.spad" 787700 787721 789202 789207) (-462 "GRMOD.spad" 786271 786283 787690 787695) (-461 "GRMOD.spad" 784840 784854 786261 786266) (-460 "GRIMAGE.spad" 777445 777453 784830 784835) (-459 "GRDEF.spad" 775824 775832 777435 777440) (-458 "GRAY.spad" 774283 774291 775814 775819) (-457 "GRALG.spad" 773330 773342 774273 774278) (-456 "GRALG.spad" 772375 772389 773320 773325) (-455 "GPOLSET.spad" 771829 771852 772057 772084) (-454 "GOSPER.spad" 771094 771112 771819 771824) (-453 "GMODPOL.spad" 770232 770259 771062 771089) (-452 "GHENSEL.spad" 769301 769315 770222 770227) (-451 "GENUPS.spad" 765402 765415 769291 769296) (-450 "GENUFACT.spad" 764979 764989 765392 765397) (-449 "GENPGCD.spad" 764563 764580 764969 764974) (-448 "GENMFACT.spad" 764015 764034 764553 764558) (-447 "GENEEZ.spad" 761954 761967 764005 764010) (-446 "GDMP.spad" 758972 758989 759748 759875) (-445 "GCNAALG.spad" 752867 752894 758766 758833) (-444 "GCDDOM.spad" 752039 752047 752793 752862) (-443 "GCDDOM.spad" 751273 751283 752029 752034) (-442 "GB.spad" 748791 748829 751229 751234) (-441 "GBINTERN.spad" 744811 744849 748781 748786) (-440 "GBF.spad" 740568 740606 744801 744806) (-439 "GBEUCLID.spad" 738442 738480 740558 740563) (-438 "GAUSSFAC.spad" 737739 737747 738432 738437) (-437 "GALUTIL.spad" 736061 736071 737695 737700) (-436 "GALPOLYU.spad" 734507 734520 736051 736056) (-435 "GALFACTU.spad" 732672 732691 734497 734502) (-434 "GALFACT.spad" 722805 722816 732662 732667) (-433 "FVFUN.spad" 719818 719826 722785 722800) (-432 "FVC.spad" 718860 718868 719798 719813) (-431 "FUNCTION.spad" 718709 718721 718850 718855) (-430 "FT.spad" 716921 716929 718699 718704) (-429 "FTEM.spad" 716084 716092 716911 716916) (-428 "FSUPFACT.spad" 714984 715003 716020 716025) (-427 "FST.spad" 713070 713078 714974 714979) (-426 "FSRED.spad" 712548 712564 713060 713065) (-425 "FSPRMELT.spad" 711372 711388 712505 712510) (-424 "FSPECF.spad" 709449 709465 711362 711367) (-423 "FS.spad" 703499 703509 709212 709444) (-422 "FS.spad" 697339 697351 703054 703059) (-421 "FSINT.spad" 696997 697013 697329 697334) (-420 "FSERIES.spad" 696184 696196 696817 696916) (-419 "FSCINT.spad" 695497 695513 696174 696179) (-418 "FSAGG.spad" 694602 694612 695441 695492) (-417 "FSAGG.spad" 693681 693693 694522 694527) (-416 "FSAGG2.spad" 692380 692396 693671 693676) (-415 "FS2UPS.spad" 686769 686803 692370 692375) (-414 "FS2.spad" 686414 686430 686759 686764) (-413 "FS2EXPXP.spad" 685537 685560 686404 686409) (-412 "FRUTIL.spad" 684479 684489 685527 685532) (-411 "FR.spad" 678174 678184 683504 683573) (-410 "FRNAALG.spad" 673261 673271 678116 678169) (-409 "FRNAALG.spad" 668360 668372 673217 673222) (-408 "FRNAAF2.spad" 667814 667832 668350 668355) (-407 "FRMOD.spad" 667208 667238 667745 667750) (-406 "FRIDEAL.spad" 666403 666424 667188 667203) (-405 "FRIDEAL2.spad" 666005 666037 666393 666398) (-404 "FRETRCT.spad" 665516 665526 665995 666000) (-403 "FRETRCT.spad" 664893 664905 665374 665379) (-402 "FRAMALG.spad" 663221 663234 664849 664888) (-401 "FRAMALG.spad" 661581 661596 663211 663216) (-400 "FRAC.spad" 658681 658691 659084 659257) (-399 "FRAC2.spad" 658284 658296 658671 658676) (-398 "FR2.spad" 657618 657630 658274 658279) (-397 "FPS.spad" 654427 654435 657508 657613) (-396 "FPS.spad" 651264 651274 654347 654352) (-395 "FPC.spad" 650306 650314 651166 651259) (-394 "FPC.spad" 649434 649444 650296 650301) (-393 "FPATMAB.spad" 649186 649196 649414 649429) (-392 "FPARFRAC.spad" 647659 647676 649176 649181) (-391 "FORTRAN.spad" 646165 646208 647649 647654) (-390 "FORT.spad" 645094 645102 646155 646160) (-389 "FORTFN.spad" 642254 642262 645074 645089) (-388 "FORTCAT.spad" 641928 641936 642234 642249) (-387 "FORMULA.spad" 639266 639274 641918 641923) (-386 "FORMULA1.spad" 638745 638755 639256 639261) (-385 "FORDER.spad" 638436 638460 638735 638740) (-384 "FOP.spad" 637637 637645 638426 638431) (-383 "FNLA.spad" 637061 637083 637605 637632) (-382 "FNCAT.spad" 635389 635397 637051 637056) (-381 "FNAME.spad" 635281 635289 635379 635384) (-380 "FMTC.spad" 635079 635087 635207 635276) (-379 "FMONOID.spad" 632134 632144 635035 635040) (-378 "FM.spad" 631829 631841 632068 632095) (-377 "FMFUN.spad" 628849 628857 631809 631824) (-376 "FMC.spad" 627891 627899 628829 628844) (-375 "FMCAT.spad" 625545 625563 627859 627886) (-374 "FM1.spad" 624902 624914 625479 625506) (-373 "FLOATRP.spad" 622623 622637 624892 624897) (-372 "FLOAT.spad" 615787 615795 622489 622618) (-371 "FLOATCP.spad" 613204 613218 615777 615782) (-370 "FLINEXP.spad" 612916 612926 613184 613199) (-369 "FLINEXP.spad" 612582 612594 612852 612857) (-368 "FLASORT.spad" 611902 611914 612572 612577) (-367 "FLALG.spad" 609548 609567 611828 611897) (-366 "FLAGG.spad" 606554 606564 609516 609543) (-365 "FLAGG.spad" 603473 603485 606437 606442) (-364 "FLAGG2.spad" 602154 602170 603463 603468) (-363 "FINRALG.spad" 600183 600196 602110 602149) (-362 "FINRALG.spad" 598138 598153 600067 600072) (-361 "FINITE.spad" 597290 597298 598128 598133) (-360 "FINAALG.spad" 586271 586281 597232 597285) (-359 "FINAALG.spad" 575264 575276 586227 586232) (-358 "FILE.spad" 574847 574857 575254 575259) (-357 "FILECAT.spad" 573365 573382 574837 574842) (-356 "FIELD.spad" 572771 572779 573267 573360) (-355 "FIELD.spad" 572263 572273 572761 572766) (-354 "FGROUP.spad" 570872 570882 572243 572258) (-353 "FGLMICPK.spad" 569659 569674 570862 570867) (-352 "FFX.spad" 569034 569049 569375 569468) (-351 "FFSLPE.spad" 568523 568544 569024 569029) (-350 "FFPOLY.spad" 559775 559786 568513 568518) (-349 "FFPOLY2.spad" 558835 558852 559765 559770) (-348 "FFP.spad" 558232 558252 558551 558644) (-347 "FF.spad" 557680 557696 557913 558006) (-346 "FFNBX.spad" 556192 556212 557396 557489) (-345 "FFNBP.spad" 554705 554722 555908 556001) (-344 "FFNB.spad" 553170 553191 554386 554479) (-343 "FFINTBAS.spad" 550584 550603 553160 553165) (-342 "FFIELDC.spad" 548159 548167 550486 550579) (-341 "FFIELDC.spad" 545820 545830 548149 548154) (-340 "FFHOM.spad" 544568 544585 545810 545815) (-339 "FFF.spad" 542003 542014 544558 544563) (-338 "FFCGX.spad" 540850 540870 541719 541812) (-337 "FFCGP.spad" 539739 539759 540566 540659) (-336 "FFCG.spad" 538531 538552 539420 539513) (-335 "FFCAT.spad" 531558 531580 538370 538526) (-334 "FFCAT.spad" 524664 524688 531478 531483) (-333 "FFCAT2.spad" 524409 524449 524654 524659) (-332 "FEXPR.spad" 516118 516164 524165 524204) (-331 "FEVALAB.spad" 515824 515834 516108 516113) (-330 "FEVALAB.spad" 515315 515327 515601 515606) (-329 "FDIV.spad" 514757 514781 515305 515310) (-328 "FDIVCAT.spad" 512799 512823 514747 514752) (-327 "FDIVCAT.spad" 510839 510865 512789 512794) (-326 "FDIV2.spad" 510493 510533 510829 510834) (-325 "FCPAK1.spad" 509046 509054 510483 510488) (-324 "FCOMP.spad" 508425 508435 509036 509041) (-323 "FC.spad" 498250 498258 508415 508420) (-322 "FAXF.spad" 491185 491199 498152 498245) (-321 "FAXF.spad" 484172 484188 491141 491146) (-320 "FARRAY.spad" 482318 482328 483355 483382) (-319 "FAMR.spad" 480438 480450 482216 482313) (-318 "FAMR.spad" 478542 478556 480322 480327) (-317 "FAMONOID.spad" 478192 478202 478496 478501) (-316 "FAMONC.spad" 476414 476426 478182 478187) (-315 "FAGROUP.spad" 476020 476030 476310 476337) (-314 "FACUTIL.spad" 474216 474233 476010 476015) (-313 "FACTFUNC.spad" 473392 473402 474206 474211) (-312 "EXPUPXS.spad" 470225 470248 471524 471673) (-311 "EXPRTUBE.spad" 467453 467461 470215 470220) (-310 "EXPRODE.spad" 464325 464341 467443 467448) (-309 "EXPR.spad" 459600 459610 460314 460721) (-308 "EXPR2UPS.spad" 455692 455705 459590 459595) (-307 "EXPR2.spad" 455395 455407 455682 455687) (-306 "EXPEXPAN.spad" 452334 452359 452968 453061) (-305 "EXIT.spad" 452005 452013 452324 452329) (-304 "EXITAST.spad" 451741 451749 451995 452000) (-303 "EVALCYC.spad" 451199 451213 451731 451736) (-302 "EVALAB.spad" 450763 450773 451189 451194) (-301 "EVALAB.spad" 450325 450337 450753 450758) (-300 "EUCDOM.spad" 447867 447875 450251 450320) (-299 "EUCDOM.spad" 445471 445481 447857 447862) (-298 "ESTOOLS.spad" 437311 437319 445461 445466) (-297 "ESTOOLS2.spad" 436912 436926 437301 437306) (-296 "ESTOOLS1.spad" 436597 436608 436902 436907) (-295 "ES.spad" 429144 429152 436587 436592) (-294 "ES.spad" 421597 421607 429042 429047) (-293 "ESCONT.spad" 418370 418378 421587 421592) (-292 "ESCONT1.spad" 418119 418131 418360 418365) (-291 "ES2.spad" 417614 417630 418109 418114) (-290 "ES1.spad" 417180 417196 417604 417609) (-289 "ERROR.spad" 414501 414509 417170 417175) (-288 "EQTBL.spad" 412973 412995 413182 413209) (-287 "EQ.spad" 407847 407857 410646 410758) (-286 "EQ2.spad" 407563 407575 407837 407842) (-285 "EP.spad" 403877 403887 407553 407558) (-284 "ENV.spad" 402579 402587 403867 403872) (-283 "ENTIRER.spad" 402247 402255 402523 402574) (-282 "EMR.spad" 401448 401489 402173 402242) (-281 "ELTAGG.spad" 399688 399707 401438 401443) (-280 "ELTAGG.spad" 397892 397913 399644 399649) (-279 "ELTAB.spad" 397339 397357 397882 397887) (-278 "ELFUTS.spad" 396718 396737 397329 397334) (-277 "ELEMFUN.spad" 396407 396415 396708 396713) (-276 "ELEMFUN.spad" 396094 396104 396397 396402) (-275 "ELAGG.spad" 394025 394035 396062 396089) (-274 "ELAGG.spad" 391905 391917 393944 393949) (-273 "ELABEXPR.spad" 390836 390844 391895 391900) (-272 "EFUPXS.spad" 387612 387642 390792 390797) (-271 "EFULS.spad" 384448 384471 387568 387573) (-270 "EFSTRUC.spad" 382403 382419 384438 384443) (-269 "EF.spad" 377169 377185 382393 382398) (-268 "EAB.spad" 375445 375453 377159 377164) (-267 "E04UCFA.spad" 374981 374989 375435 375440) (-266 "E04NAFA.spad" 374558 374566 374971 374976) (-265 "E04MBFA.spad" 374138 374146 374548 374553) (-264 "E04JAFA.spad" 373674 373682 374128 374133) (-263 "E04GCFA.spad" 373210 373218 373664 373669) (-262 "E04FDFA.spad" 372746 372754 373200 373205) (-261 "E04DGFA.spad" 372282 372290 372736 372741) (-260 "E04AGNT.spad" 368124 368132 372272 372277) (-259 "DVARCAT.spad" 364809 364819 368114 368119) (-258 "DVARCAT.spad" 361492 361504 364799 364804) (-257 "DSMP.spad" 358923 358937 359228 359355) (-256 "DROPT.spad" 352868 352876 358913 358918) (-255 "DROPT1.spad" 352531 352541 352858 352863) (-254 "DROPT0.spad" 347358 347366 352521 352526) (-253 "DRAWPT.spad" 345513 345521 347348 347353) (-252 "DRAW.spad" 338113 338126 345503 345508) (-251 "DRAWHACK.spad" 337421 337431 338103 338108) (-250 "DRAWCX.spad" 334863 334871 337411 337416) (-249 "DRAWCURV.spad" 334400 334415 334853 334858) (-248 "DRAWCFUN.spad" 323572 323580 334390 334395) (-247 "DQAGG.spad" 321728 321738 323528 323567) (-246 "DPOLCAT.spad" 317069 317085 321596 321723) (-245 "DPOLCAT.spad" 312496 312514 317025 317030) (-244 "DPMO.spad" 305799 305815 305937 306238) (-243 "DPMM.spad" 299115 299133 299240 299541) (-242 "DOMAIN.spad" 298386 298394 299105 299110) (-241 "DMP.spad" 295608 295623 296180 296307) (-240 "DLP.spad" 294956 294966 295598 295603) (-239 "DLIST.spad" 293368 293378 294139 294166) (-238 "DLAGG.spad" 291769 291779 293348 293363) (-237 "DIVRING.spad" 291311 291319 291713 291764) (-236 "DIVRING.spad" 290897 290907 291301 291306) (-235 "DISPLAY.spad" 289077 289085 290887 290892) (-234 "DIRPROD.spad" 279931 279947 280571 280702) (-233 "DIRPROD2.spad" 278739 278757 279921 279926) (-232 "DIRPCAT.spad" 277669 277685 278591 278734) (-231 "DIRPCAT.spad" 276340 276358 277264 277269) (-230 "DIOSP.spad" 275165 275173 276330 276335) (-229 "DIOPS.spad" 274137 274147 275133 275160) (-228 "DIOPS.spad" 273095 273107 274093 274098) (-227 "DIFRING.spad" 272387 272395 273075 273090) (-226 "DIFRING.spad" 271687 271697 272377 272382) (-225 "DIFEXT.spad" 270846 270856 271667 271682) (-224 "DIFEXT.spad" 269922 269934 270745 270750) (-223 "DIAGG.spad" 269540 269550 269890 269917) (-222 "DIAGG.spad" 269178 269190 269530 269535) (-221 "DHMATRIX.spad" 267482 267492 268635 268662) (-220 "DFSFUN.spad" 260890 260898 267472 267477) (-219 "DFLOAT.spad" 257611 257619 260780 260885) (-218 "DFINTTLS.spad" 255820 255836 257601 257606) (-217 "DERHAM.spad" 253730 253762 255800 255815) (-216 "DEQUEUE.spad" 253048 253058 253337 253364) (-215 "DEGRED.spad" 252663 252677 253038 253043) (-214 "DEFINTRF.spad" 250188 250198 252653 252658) (-213 "DEFINTEF.spad" 248684 248700 250178 250183) (-212 "DEFAST.spad" 248052 248060 248674 248679) (-211 "DECIMAL.spad" 245934 245942 246520 246613) (-210 "DDFACT.spad" 243733 243750 245924 245929) (-209 "DBLRESP.spad" 243331 243355 243723 243728) (-208 "DBASE.spad" 241903 241913 243321 243326) (-207 "DATABUF.spad" 241391 241404 241893 241898) (-206 "D03FAFA.spad" 241219 241227 241381 241386) (-205 "D03EEFA.spad" 241039 241047 241209 241214) (-204 "D03AGNT.spad" 240119 240127 241029 241034) (-203 "D02EJFA.spad" 239581 239589 240109 240114) (-202 "D02CJFA.spad" 239059 239067 239571 239576) (-201 "D02BHFA.spad" 238549 238557 239049 239054) (-200 "D02BBFA.spad" 238039 238047 238539 238544) (-199 "D02AGNT.spad" 232843 232851 238029 238034) (-198 "D01WGTS.spad" 231162 231170 232833 232838) (-197 "D01TRNS.spad" 231139 231147 231152 231157) (-196 "D01GBFA.spad" 230661 230669 231129 231134) (-195 "D01FCFA.spad" 230183 230191 230651 230656) (-194 "D01ASFA.spad" 229651 229659 230173 230178) (-193 "D01AQFA.spad" 229097 229105 229641 229646) (-192 "D01APFA.spad" 228521 228529 229087 229092) (-191 "D01ANFA.spad" 228015 228023 228511 228516) (-190 "D01AMFA.spad" 227525 227533 228005 228010) (-189 "D01ALFA.spad" 227065 227073 227515 227520) (-188 "D01AKFA.spad" 226591 226599 227055 227060) (-187 "D01AJFA.spad" 226114 226122 226581 226586) (-186 "D01AGNT.spad" 222173 222181 226104 226109) (-185 "CYCLOTOM.spad" 221679 221687 222163 222168) (-184 "CYCLES.spad" 218511 218519 221669 221674) (-183 "CVMP.spad" 217928 217938 218501 218506) (-182 "CTRIGMNP.spad" 216418 216434 217918 217923) (-181 "CTORCALL.spad" 216006 216014 216408 216413) (-180 "CSTTOOLS.spad" 215249 215262 215996 216001) (-179 "CRFP.spad" 208953 208966 215239 215244) (-178 "CRCEAST.spad" 208673 208681 208943 208948) (-177 "CRAPACK.spad" 207716 207726 208663 208668) (-176 "CPMATCH.spad" 207216 207231 207641 207646) (-175 "CPIMA.spad" 206921 206940 207206 207211) (-174 "COORDSYS.spad" 201814 201824 206911 206916) (-173 "CONTOUR.spad" 201216 201224 201804 201809) (-172 "CONTFRAC.spad" 196828 196838 201118 201211) (-171 "CONDUIT.spad" 196586 196594 196818 196823) (-170 "COMRING.spad" 196260 196268 196524 196581) (-169 "COMPPROP.spad" 195774 195782 196250 196255) (-168 "COMPLPAT.spad" 195541 195556 195764 195769) (-167 "COMPLEX.spad" 189567 189577 189811 190072) (-166 "COMPLEX2.spad" 189280 189292 189557 189562) (-165 "COMPFACT.spad" 188882 188896 189270 189275) (-164 "COMPCAT.spad" 186938 186948 188604 188877) (-163 "COMPCAT.spad" 184700 184712 186368 186373) (-162 "COMMUPC.spad" 184446 184464 184690 184695) (-161 "COMMONOP.spad" 183979 183987 184436 184441) (-160 "COMM.spad" 183788 183796 183969 183974) (-159 "COMMAAST.spad" 183551 183559 183778 183783) (-158 "COMBOPC.spad" 182456 182464 183541 183546) (-157 "COMBINAT.spad" 181201 181211 182446 182451) (-156 "COMBF.spad" 178569 178585 181191 181196) (-155 "COLOR.spad" 177406 177414 178559 178564) (-154 "COLONAST.spad" 177072 177080 177396 177401) (-153 "CMPLXRT.spad" 176781 176798 177062 177067) (-152 "CLLCTAST.spad" 176443 176451 176771 176776) (-151 "CLIP.spad" 172535 172543 176433 176438) (-150 "CLIF.spad" 171174 171190 172491 172530) (-149 "CLAGG.spad" 167649 167659 171154 171169) (-148 "CLAGG.spad" 164005 164017 167512 167517) (-147 "CINTSLPE.spad" 163330 163343 163995 164000) (-146 "CHVAR.spad" 161408 161430 163320 163325) (-145 "CHARZ.spad" 161323 161331 161388 161403) (-144 "CHARPOL.spad" 160831 160841 161313 161318) (-143 "CHARNZ.spad" 160584 160592 160811 160826) (-142 "CHAR.spad" 158452 158460 160574 160579) (-141 "CFCAT.spad" 157768 157776 158442 158447) (-140 "CDEN.spad" 156926 156940 157758 157763) (-139 "CCLASS.spad" 155075 155083 156337 156376) (-138 "CATEGORY.spad" 154854 154862 155065 155070) (-137 "CATAST.spad" 154481 154489 154844 154849) (-136 "CASEAST.spad" 154195 154203 154471 154476) (-135 "CARTEN.spad" 149298 149322 154185 154190) (-134 "CARTEN2.spad" 148684 148711 149288 149293) (-133 "CARD.spad" 145973 145981 148658 148679) (-132 "CAPSLAST.spad" 145747 145755 145963 145968) (-131 "CACHSET.spad" 145369 145377 145737 145742) (-130 "CABMON.spad" 144922 144930 145359 145364) (-129 "BYTE.spad" 144316 144324 144912 144917) (-128 "BYTEARY.spad" 143391 143399 143485 143512) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP.spad" 125997 126005 130523 130528) (-113 "BOP1.spad" 123383 123393 125953 125958) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2266972 2266977 2266982 2266987) (-2 NIL 2266952 2266957 2266962 2266967) (-1 NIL 2266932 2266937 2266942 2266947) (0 NIL 2266912 2266917 2266922 2266927) (-1258 "ZMOD.spad" 2266721 2266734 2266850 2266907) (-1257 "ZLINDEP.spad" 2265765 2265776 2266711 2266716) (-1256 "ZDSOLVE.spad" 2255614 2255636 2265755 2265760) (-1255 "YSTREAM.spad" 2255107 2255118 2255604 2255609) (-1254 "XRPOLY.spad" 2254327 2254347 2254963 2255032) (-1253 "XPR.spad" 2252056 2252069 2254045 2254144) (-1252 "XPOLYC.spad" 2251373 2251389 2251982 2252051) (-1251 "XPOLY.spad" 2250928 2250939 2251229 2251298) (-1250 "XPBWPOLY.spad" 2249365 2249385 2250708 2250777) (-1249 "XFALG.spad" 2246389 2246405 2249291 2249360) (-1248 "XF.spad" 2244850 2244865 2246291 2246384) (-1247 "XF.spad" 2243291 2243308 2244734 2244739) (-1246 "XEXPPKG.spad" 2242542 2242568 2243281 2243286) (-1245 "XDPOLY.spad" 2242156 2242172 2242398 2242467) (-1244 "XALG.spad" 2241754 2241765 2242112 2242151) (-1243 "WUTSET.spad" 2237593 2237610 2241400 2241427) (-1242 "WP.spad" 2236607 2236651 2237451 2237518) (-1241 "WHILEAST.spad" 2236405 2236414 2236597 2236602) (-1240 "WHEREAST.spad" 2236076 2236085 2236395 2236400) (-1239 "WFFINTBS.spad" 2233639 2233661 2236066 2236071) (-1238 "WEIER.spad" 2231853 2231864 2233629 2233634) (-1237 "VSPACE.spad" 2231526 2231537 2231821 2231848) (-1236 "VSPACE.spad" 2231219 2231232 2231516 2231521) (-1235 "VOID.spad" 2230809 2230818 2231209 2231214) (-1234 "VIEWDEF.spad" 2226006 2226015 2230799 2230804) (-1233 "VIEW3D.spad" 2209841 2209850 2225996 2226001) (-1232 "VIEW2D.spad" 2197578 2197587 2209831 2209836) (-1231 "VIEW.spad" 2195200 2195209 2197568 2197573) (-1230 "VECTOR2.spad" 2193827 2193840 2195190 2195195) (-1229 "VECTOR.spad" 2192502 2192513 2192753 2192780) (-1228 "VECTCAT.spad" 2190390 2190401 2192458 2192497) (-1227 "VECTCAT.spad" 2188098 2188111 2190168 2190173) (-1226 "VARIABLE.spad" 2187878 2187893 2188088 2188093) (-1225 "UTYPE.spad" 2187512 2187521 2187858 2187873) (-1224 "UTSODETL.spad" 2186805 2186829 2187468 2187473) (-1223 "UTSODE.spad" 2184993 2185013 2186795 2186800) (-1222 "UTSCAT.spad" 2182444 2182460 2184891 2184988) (-1221 "UTSCAT.spad" 2179539 2179557 2181988 2181993) (-1220 "UTS2.spad" 2179132 2179167 2179529 2179534) (-1219 "UTS.spad" 2173921 2173949 2177599 2177696) (-1218 "URAGG.spad" 2168543 2168554 2173901 2173916) (-1217 "URAGG.spad" 2163139 2163152 2168499 2168504) (-1216 "UPXSSING.spad" 2160782 2160808 2162220 2162353) (-1215 "UPXSCONS.spad" 2158539 2158559 2158914 2159063) (-1214 "UPXSCCA.spad" 2156997 2157017 2158385 2158534) (-1213 "UPXSCCA.spad" 2155597 2155619 2156987 2156992) (-1212 "UPXSCAT.spad" 2154178 2154194 2155443 2155592) (-1211 "UPXS2.spad" 2153719 2153772 2154168 2154173) (-1210 "UPXS.spad" 2150746 2150774 2151851 2152000) (-1209 "UPSQFREE.spad" 2149159 2149173 2150736 2150741) (-1208 "UPSCAT.spad" 2146752 2146776 2149057 2149154) (-1207 "UPSCAT.spad" 2144051 2144077 2146358 2146363) (-1206 "UPOLYC2.spad" 2143520 2143539 2144041 2144046) (-1205 "UPOLYC.spad" 2138498 2138509 2143362 2143515) (-1204 "UPOLYC.spad" 2133368 2133381 2138234 2138239) (-1203 "UPMP.spad" 2132258 2132271 2133358 2133363) (-1202 "UPDIVP.spad" 2131821 2131835 2132248 2132253) (-1201 "UPDECOMP.spad" 2130058 2130072 2131811 2131816) (-1200 "UPCDEN.spad" 2129265 2129281 2130048 2130053) (-1199 "UP2.spad" 2128627 2128648 2129255 2129260) (-1198 "UP.spad" 2125669 2125684 2126177 2126330) (-1197 "UNISEG2.spad" 2125162 2125175 2125625 2125630) (-1196 "UNISEG.spad" 2124515 2124526 2125081 2125086) (-1195 "UNIFACT.spad" 2123616 2123628 2124505 2124510) (-1194 "ULSCONS.spad" 2117655 2117675 2118027 2118176) (-1193 "ULSCCAT.spad" 2115252 2115272 2117475 2117650) (-1192 "ULSCCAT.spad" 2112983 2113005 2115208 2115213) (-1191 "ULSCAT.spad" 2111199 2111215 2112829 2112978) (-1190 "ULS2.spad" 2110711 2110764 2111189 2111194) (-1189 "ULS.spad" 2101265 2101293 2102358 2102787) (-1188 "UFD.spad" 2100330 2100339 2101191 2101260) (-1187 "UFD.spad" 2099457 2099468 2100320 2100325) (-1186 "UDVO.spad" 2098304 2098313 2099447 2099452) (-1185 "UDPO.spad" 2095731 2095742 2098260 2098265) (-1184 "TYPEAST.spad" 2095650 2095659 2095721 2095726) (-1183 "TYPE.spad" 2095572 2095581 2095630 2095645) (-1182 "TWOFACT.spad" 2094222 2094237 2095562 2095567) (-1181 "TUPLE.spad" 2093608 2093619 2094121 2094126) (-1180 "TUBETOOL.spad" 2090445 2090454 2093598 2093603) (-1179 "TUBE.spad" 2089086 2089103 2090435 2090440) (-1178 "TSETCAT.spad" 2076201 2076218 2089042 2089081) (-1177 "TSETCAT.spad" 2063314 2063333 2076157 2076162) (-1176 "TS.spad" 2061903 2061919 2062879 2062976) (-1175 "TRMANIP.spad" 2056269 2056286 2061609 2061614) (-1174 "TRIMAT.spad" 2055228 2055253 2056259 2056264) (-1173 "TRIGMNIP.spad" 2053745 2053762 2055218 2055223) (-1172 "TRIGCAT.spad" 2053257 2053266 2053735 2053740) (-1171 "TRIGCAT.spad" 2052767 2052778 2053247 2053252) (-1170 "TREE.spad" 2051338 2051349 2052374 2052401) (-1169 "TRANFUN.spad" 2051169 2051178 2051328 2051333) (-1168 "TRANFUN.spad" 2050998 2051009 2051159 2051164) (-1167 "TOPSP.spad" 2050672 2050681 2050988 2050993) (-1166 "TOOLSIGN.spad" 2050335 2050346 2050662 2050667) (-1165 "TEXTFILE.spad" 2048892 2048901 2050325 2050330) (-1164 "TEX1.spad" 2048448 2048459 2048882 2048887) (-1163 "TEX.spad" 2045465 2045474 2048438 2048443) (-1162 "TEMUTL.spad" 2045020 2045029 2045455 2045460) (-1161 "TBCMPPK.spad" 2043113 2043136 2045010 2045015) (-1160 "TBAGG.spad" 2042137 2042160 2043081 2043108) (-1159 "TBAGG.spad" 2041181 2041206 2042127 2042132) (-1158 "TANEXP.spad" 2040557 2040568 2041171 2041176) (-1157 "TABLEAU.spad" 2040038 2040049 2040547 2040552) (-1156 "TABLE.spad" 2038449 2038472 2038719 2038746) (-1155 "TABLBUMP.spad" 2035232 2035243 2038439 2038444) (-1154 "SYSTEM.spad" 2034506 2034515 2035222 2035227) (-1153 "SYSSOLP.spad" 2031979 2031990 2034496 2034501) (-1152 "SYNTAX.spad" 2028171 2028180 2031969 2031974) (-1151 "SYMTAB.spad" 2026227 2026236 2028161 2028166) (-1150 "SYMS.spad" 2022218 2022227 2026217 2026222) (-1149 "SYMPOLY.spad" 2021225 2021236 2021307 2021434) (-1148 "SYMFUNC.spad" 2020700 2020711 2021215 2021220) (-1147 "SYMBOL.spad" 2018036 2018045 2020690 2020695) (-1146 "SWITCH.spad" 2014793 2014802 2018026 2018031) (-1145 "SUTS.spad" 2011692 2011720 2013260 2013357) (-1144 "SUPXS.spad" 2008706 2008734 2009824 2009973) (-1143 "SUPFRACF.spad" 2007811 2007829 2008696 2008701) (-1142 "SUP2.spad" 2007201 2007214 2007801 2007806) (-1141 "SUP.spad" 2003970 2003981 2004751 2004904) (-1140 "SUMRF.spad" 2002936 2002947 2003960 2003965) (-1139 "SUMFS.spad" 2002569 2002586 2002926 2002931) (-1138 "SULS.spad" 1993110 1993138 1994216 1994645) (-1137 "SUCHTAST.spad" 1992879 1992888 1993100 1993105) (-1136 "SUCH.spad" 1992559 1992574 1992869 1992874) (-1135 "SUBSPACE.spad" 1984566 1984581 1992549 1992554) (-1134 "SUBRESP.spad" 1983726 1983740 1984522 1984527) (-1133 "STTFNC.spad" 1980194 1980210 1983716 1983721) (-1132 "STTF.spad" 1976293 1976309 1980184 1980189) (-1131 "STTAYLOR.spad" 1968691 1968702 1976174 1976179) (-1130 "STRTBL.spad" 1967196 1967213 1967345 1967372) (-1129 "STRING.spad" 1966605 1966614 1966619 1966646) (-1128 "STRICAT.spad" 1966381 1966390 1966561 1966600) (-1127 "STREAM3.spad" 1965926 1965941 1966371 1966376) (-1126 "STREAM2.spad" 1964994 1965007 1965916 1965921) (-1125 "STREAM1.spad" 1964698 1964709 1964984 1964989) (-1124 "STREAM.spad" 1961466 1961477 1964223 1964238) (-1123 "STINPROD.spad" 1960372 1960388 1961456 1961461) (-1122 "STEP.spad" 1959573 1959582 1960362 1960367) (-1121 "STBL.spad" 1958099 1958127 1958266 1958281) (-1120 "STAGG.spad" 1957164 1957175 1958079 1958094) (-1119 "STAGG.spad" 1956237 1956250 1957154 1957159) (-1118 "STACK.spad" 1955588 1955599 1955844 1955871) (-1117 "SREGSET.spad" 1953292 1953309 1955234 1955261) (-1116 "SRDCMPK.spad" 1951837 1951857 1953282 1953287) (-1115 "SRAGG.spad" 1946922 1946931 1951793 1951832) (-1114 "SRAGG.spad" 1942039 1942050 1946912 1946917) (-1113 "SQMATRIX.spad" 1939655 1939673 1940571 1940658) (-1112 "SPLTREE.spad" 1934207 1934220 1939091 1939118) (-1111 "SPLNODE.spad" 1930795 1930808 1934197 1934202) (-1110 "SPFCAT.spad" 1929572 1929581 1930785 1930790) (-1109 "SPECOUT.spad" 1928122 1928131 1929562 1929567) (-1108 "SPADXPT.spad" 1920251 1920260 1928102 1928117) (-1107 "spad-parser.spad" 1919716 1919725 1920241 1920246) (-1106 "SPADAST.spad" 1919417 1919426 1919706 1919711) (-1105 "SPACEC.spad" 1903430 1903441 1919407 1919412) (-1104 "SPACE3.spad" 1903206 1903217 1903420 1903425) (-1103 "SORTPAK.spad" 1902751 1902764 1903162 1903167) (-1102 "SOLVETRA.spad" 1900508 1900519 1902741 1902746) (-1101 "SOLVESER.spad" 1899028 1899039 1900498 1900503) (-1100 "SOLVERAD.spad" 1895038 1895049 1899018 1899023) (-1099 "SOLVEFOR.spad" 1893458 1893476 1895028 1895033) (-1098 "SNTSCAT.spad" 1893046 1893063 1893414 1893453) (-1097 "SMTS.spad" 1891306 1891332 1892611 1892708) (-1096 "SMP.spad" 1888745 1888765 1889135 1889262) (-1095 "SMITH.spad" 1887588 1887613 1888735 1888740) (-1094 "SMATCAT.spad" 1885686 1885716 1887520 1887583) (-1093 "SMATCAT.spad" 1883728 1883760 1885564 1885569) (-1092 "SKAGG.spad" 1882677 1882688 1883684 1883723) (-1091 "SINT.spad" 1880985 1880994 1882543 1882672) (-1090 "SIMPAN.spad" 1880713 1880722 1880975 1880980) (-1089 "SIGNRF.spad" 1879828 1879839 1880703 1880708) (-1088 "SIGNEF.spad" 1879104 1879121 1879818 1879823) (-1087 "SIGAST.spad" 1878485 1878494 1879094 1879099) (-1086 "SIG.spad" 1877813 1877822 1878475 1878480) (-1085 "SHP.spad" 1875731 1875746 1877769 1877774) (-1084 "SHDP.spad" 1866716 1866743 1867225 1867356) (-1083 "SGROUP.spad" 1866324 1866333 1866706 1866711) (-1082 "SGROUP.spad" 1865930 1865941 1866314 1866319) (-1081 "SGCF.spad" 1858811 1858820 1865920 1865925) (-1080 "SFRTCAT.spad" 1857727 1857744 1858767 1858806) (-1079 "SFRGCD.spad" 1856790 1856810 1857717 1857722) (-1078 "SFQCMPK.spad" 1851427 1851447 1856780 1856785) (-1077 "SFORT.spad" 1850862 1850876 1851417 1851422) (-1076 "SEXOF.spad" 1850705 1850745 1850852 1850857) (-1075 "SEXCAT.spad" 1847809 1847849 1850695 1850700) (-1074 "SEX.spad" 1847701 1847710 1847799 1847804) (-1073 "SETMN.spad" 1846137 1846154 1847691 1847696) (-1072 "SETCAT.spad" 1845622 1845631 1846127 1846132) (-1071 "SETCAT.spad" 1845105 1845116 1845612 1845617) (-1070 "SETAGG.spad" 1841614 1841625 1845073 1845100) (-1069 "SETAGG.spad" 1838143 1838156 1841604 1841609) (-1068 "SET.spad" 1836443 1836454 1837564 1837603) (-1067 "SEQAST.spad" 1836146 1836155 1836433 1836438) (-1066 "SEGXCAT.spad" 1835258 1835271 1836126 1836141) (-1065 "SEGCAT.spad" 1834077 1834088 1835238 1835253) (-1064 "SEGBIND2.spad" 1833773 1833786 1834067 1834072) (-1063 "SEGBIND.spad" 1832845 1832856 1833728 1833733) (-1062 "SEGAST.spad" 1832559 1832568 1832835 1832840) (-1061 "SEG2.spad" 1831984 1831997 1832515 1832520) (-1060 "SEG.spad" 1831797 1831808 1831903 1831908) (-1059 "SDVAR.spad" 1831073 1831084 1831787 1831792) (-1058 "SDPOL.spad" 1828463 1828474 1828754 1828881) (-1057 "SCPKG.spad" 1826542 1826553 1828453 1828458) (-1056 "SCOPE.spad" 1825687 1825696 1826532 1826537) (-1055 "SCACHE.spad" 1824369 1824380 1825677 1825682) (-1054 "SASTCAT.spad" 1824278 1824287 1824359 1824364) (-1053 "SAOS.spad" 1824150 1824159 1824268 1824273) (-1052 "SAERFFC.spad" 1823863 1823883 1824140 1824145) (-1051 "SAEFACT.spad" 1823564 1823584 1823853 1823858) (-1050 "SAE.spad" 1821739 1821755 1822350 1822485) (-1049 "RURPK.spad" 1819380 1819396 1821729 1821734) (-1048 "RULESET.spad" 1818821 1818845 1819370 1819375) (-1047 "RULECOLD.spad" 1818673 1818686 1818811 1818816) (-1046 "RULE.spad" 1816877 1816901 1818663 1818668) (-1045 "RSTRCAST.spad" 1816594 1816603 1816867 1816872) (-1044 "RSETGCD.spad" 1812972 1812992 1816584 1816589) (-1043 "RSETCAT.spad" 1802744 1802761 1812928 1812967) (-1042 "RSETCAT.spad" 1792548 1792567 1802734 1802739) (-1041 "RSDCMPK.spad" 1791000 1791020 1792538 1792543) (-1040 "RRCC.spad" 1789384 1789414 1790990 1790995) (-1039 "RRCC.spad" 1787766 1787798 1789374 1789379) (-1038 "RPTAST.spad" 1787468 1787477 1787756 1787761) (-1037 "RPOLCAT.spad" 1766828 1766843 1787336 1787463) (-1036 "RPOLCAT.spad" 1745902 1745919 1766412 1766417) (-1035 "ROUTINE.spad" 1741765 1741774 1744549 1744576) (-1034 "ROMAN.spad" 1740997 1741006 1741631 1741760) (-1033 "ROIRC.spad" 1740077 1740109 1740987 1740992) (-1032 "RNS.spad" 1738980 1738989 1739979 1740072) (-1031 "RNS.spad" 1737969 1737980 1738970 1738975) (-1030 "RNG.spad" 1737704 1737713 1737959 1737964) (-1029 "RMODULE.spad" 1737342 1737353 1737694 1737699) (-1028 "RMCAT2.spad" 1736750 1736807 1737332 1737337) (-1027 "RMATRIX.spad" 1735429 1735448 1735917 1735956) (-1026 "RMATCAT.spad" 1730950 1730981 1735373 1735424) (-1025 "RMATCAT.spad" 1726373 1726406 1730798 1730803) (-1024 "RINTERP.spad" 1726261 1726281 1726363 1726368) (-1023 "RING.spad" 1725618 1725627 1726241 1726256) (-1022 "RING.spad" 1724983 1724994 1725608 1725613) (-1021 "RIDIST.spad" 1724367 1724376 1724973 1724978) (-1020 "RGCHAIN.spad" 1722946 1722962 1723852 1723879) (-1019 "RGBCSPC.spad" 1722727 1722739 1722936 1722941) (-1018 "RGBCMDL.spad" 1722257 1722269 1722717 1722722) (-1017 "RFFACTOR.spad" 1721719 1721730 1722247 1722252) (-1016 "RFFACT.spad" 1721454 1721466 1721709 1721714) (-1015 "RFDIST.spad" 1720442 1720451 1721444 1721449) (-1014 "RF.spad" 1718056 1718067 1720432 1720437) (-1013 "RETSOL.spad" 1717473 1717486 1718046 1718051) (-1012 "RETRACT.spad" 1716822 1716833 1717463 1717468) (-1011 "RETRACT.spad" 1716169 1716182 1716812 1716817) (-1010 "RETAST.spad" 1715981 1715990 1716159 1716164) (-1009 "RESULT.spad" 1714041 1714050 1714628 1714655) (-1008 "RESRING.spad" 1713388 1713435 1713979 1714036) (-1007 "RESLATC.spad" 1712712 1712723 1713378 1713383) (-1006 "REPSQ.spad" 1712441 1712452 1712702 1712707) (-1005 "REPDB.spad" 1712146 1712157 1712431 1712436) (-1004 "REP2.spad" 1701718 1701729 1711988 1711993) (-1003 "REP1.spad" 1695708 1695719 1701668 1701673) (-1002 "REP.spad" 1693260 1693269 1695698 1695703) (-1001 "REGSET.spad" 1691057 1691074 1692906 1692933) (-1000 "REF.spad" 1690386 1690397 1691012 1691017) (-999 "REDORDER.spad" 1689563 1689579 1690376 1690381) (-998 "RECLOS.spad" 1688347 1688366 1689050 1689143) (-997 "REALSOLV.spad" 1687480 1687488 1688337 1688342) (-996 "REAL0Q.spad" 1684763 1684777 1687470 1687475) (-995 "REAL0.spad" 1681592 1681606 1684753 1684758) (-994 "REAL.spad" 1681465 1681473 1681582 1681587) (-993 "RDUCEAST.spad" 1681187 1681195 1681455 1681460) (-992 "RDIV.spad" 1680839 1680863 1681177 1681182) (-991 "RDIST.spad" 1680403 1680413 1680829 1680834) (-990 "RDETRS.spad" 1679200 1679217 1680393 1680398) (-989 "RDETR.spad" 1677308 1677325 1679190 1679195) (-988 "RDEEFS.spad" 1676382 1676398 1677298 1677303) (-987 "RDEEF.spad" 1675379 1675395 1676372 1676377) (-986 "RCFIELD.spad" 1672566 1672574 1675281 1675374) (-985 "RCFIELD.spad" 1669839 1669849 1672556 1672561) (-984 "RCAGG.spad" 1667742 1667752 1669819 1669834) (-983 "RCAGG.spad" 1665582 1665594 1667661 1667666) (-982 "RATRET.spad" 1664943 1664953 1665572 1665577) (-981 "RATFACT.spad" 1664636 1664647 1664933 1664938) (-980 "RANDSRC.spad" 1663956 1663964 1664626 1664631) (-979 "RADUTIL.spad" 1663711 1663719 1663946 1663951) (-978 "RADIX.spad" 1660502 1660515 1662179 1662272) (-977 "RADFF.spad" 1658916 1658952 1659034 1659190) (-976 "RADCAT.spad" 1658510 1658518 1658906 1658911) (-975 "RADCAT.spad" 1658102 1658112 1658500 1658505) (-974 "QUEUE.spad" 1657445 1657455 1657709 1657736) (-973 "QUATCT2.spad" 1657064 1657082 1657435 1657440) (-972 "QUATCAT.spad" 1655229 1655239 1656994 1657059) (-971 "QUATCAT.spad" 1653145 1653157 1654912 1654917) (-970 "QUAT.spad" 1651727 1651737 1652069 1652134) (-969 "QUAGG.spad" 1650541 1650551 1651683 1651722) (-968 "QQUTAST.spad" 1650310 1650318 1650531 1650536) (-967 "QFORM.spad" 1649773 1649787 1650300 1650305) (-966 "QFCAT2.spad" 1649464 1649480 1649763 1649768) (-965 "QFCAT.spad" 1648155 1648165 1649354 1649459) (-964 "QFCAT.spad" 1646450 1646462 1647651 1647656) (-963 "QEQUAT.spad" 1646007 1646015 1646440 1646445) (-962 "QCMPACK.spad" 1640754 1640773 1645997 1646002) (-961 "QALGSET2.spad" 1638750 1638768 1640744 1640749) (-960 "QALGSET.spad" 1634827 1634859 1638664 1638669) (-959 "PWFFINTB.spad" 1632137 1632158 1634817 1634822) (-958 "PUSHVAR.spad" 1631466 1631485 1632127 1632132) (-957 "PTRANFN.spad" 1627592 1627602 1631456 1631461) (-956 "PTPACK.spad" 1624680 1624690 1627582 1627587) (-955 "PTFUNC2.spad" 1624501 1624515 1624670 1624675) (-954 "PTCAT.spad" 1623583 1623593 1624457 1624496) (-953 "PSQFR.spad" 1622890 1622914 1623573 1623578) (-952 "PSEUDLIN.spad" 1621748 1621758 1622880 1622885) (-951 "PSETPK.spad" 1607181 1607197 1621626 1621631) (-950 "PSETCAT.spad" 1601089 1601112 1607149 1607176) (-949 "PSETCAT.spad" 1594983 1595008 1601045 1601050) (-948 "PSCURVE.spad" 1593966 1593974 1594973 1594978) (-947 "PSCAT.spad" 1592733 1592762 1593864 1593961) (-946 "PSCAT.spad" 1591590 1591621 1592723 1592728) (-945 "PRTITION.spad" 1590433 1590441 1591580 1591585) (-944 "PRTDAST.spad" 1590152 1590160 1590423 1590428) (-943 "PRS.spad" 1579714 1579731 1590108 1590113) (-942 "PRQAGG.spad" 1579133 1579143 1579670 1579709) (-941 "PROPLOG.spad" 1578536 1578544 1579123 1579128) (-940 "PROPFRML.spad" 1576454 1576465 1578526 1578531) (-939 "PROPERTY.spad" 1575948 1575956 1576444 1576449) (-938 "PRODUCT.spad" 1573628 1573640 1573914 1573969) (-937 "PRINT.spad" 1573380 1573388 1573618 1573623) (-936 "PRIMES.spad" 1571631 1571641 1573370 1573375) (-935 "PRIMELT.spad" 1569612 1569626 1571621 1571626) (-934 "PRIMCAT.spad" 1569235 1569243 1569602 1569607) (-933 "PRIMARR2.spad" 1567958 1567970 1569225 1569230) (-932 "PRIMARR.spad" 1566963 1566973 1567141 1567168) (-931 "PREASSOC.spad" 1566335 1566347 1566953 1566958) (-930 "PR.spad" 1564721 1564733 1565426 1565553) (-929 "PPCURVE.spad" 1563858 1563866 1564711 1564716) (-928 "PORTNUM.spad" 1563633 1563641 1563848 1563853) (-927 "POLYROOT.spad" 1562405 1562427 1563589 1563594) (-926 "POLYLIFT.spad" 1561666 1561689 1562395 1562400) (-925 "POLYCATQ.spad" 1559768 1559790 1561656 1561661) (-924 "POLYCAT.spad" 1553174 1553195 1559636 1559763) (-923 "POLYCAT.spad" 1545882 1545905 1552346 1552351) (-922 "POLY2UP.spad" 1545330 1545344 1545872 1545877) (-921 "POLY2.spad" 1544925 1544937 1545320 1545325) (-920 "POLY.spad" 1542222 1542232 1542739 1542866) (-919 "POLUTIL.spad" 1541163 1541192 1542178 1542183) (-918 "POLTOPOL.spad" 1539911 1539926 1541153 1541158) (-917 "POINT.spad" 1538750 1538760 1538837 1538864) (-916 "PNTHEORY.spad" 1535416 1535424 1538740 1538745) (-915 "PMTOOLS.spad" 1534173 1534187 1535406 1535411) (-914 "PMSYM.spad" 1533718 1533728 1534163 1534168) (-913 "PMQFCAT.spad" 1533305 1533319 1533708 1533713) (-912 "PMPREDFS.spad" 1532749 1532771 1533295 1533300) (-911 "PMPRED.spad" 1532218 1532232 1532739 1532744) (-910 "PMPLCAT.spad" 1531288 1531306 1532150 1532155) (-909 "PMLSAGG.spad" 1530869 1530883 1531278 1531283) (-908 "PMKERNEL.spad" 1530436 1530448 1530859 1530864) (-907 "PMINS.spad" 1530012 1530022 1530426 1530431) (-906 "PMFS.spad" 1529585 1529603 1530002 1530007) (-905 "PMDOWN.spad" 1528871 1528885 1529575 1529580) (-904 "PMASSFS.spad" 1527840 1527856 1528861 1528866) (-903 "PMASS.spad" 1526852 1526860 1527830 1527835) (-902 "PLOTTOOL.spad" 1526632 1526640 1526842 1526847) (-901 "PLOT3D.spad" 1523052 1523060 1526622 1526627) (-900 "PLOT1.spad" 1522193 1522203 1523042 1523047) (-899 "PLOT.spad" 1517024 1517032 1522183 1522188) (-898 "PLEQN.spad" 1504240 1504267 1517014 1517019) (-897 "PINTERPA.spad" 1504022 1504038 1504230 1504235) (-896 "PINTERP.spad" 1503638 1503657 1504012 1504017) (-895 "PID.spad" 1502594 1502602 1503564 1503633) (-894 "PICOERCE.spad" 1502251 1502261 1502584 1502589) (-893 "PI.spad" 1501858 1501866 1502225 1502246) (-892 "PGROEB.spad" 1500455 1500469 1501848 1501853) (-891 "PGE.spad" 1491708 1491716 1500445 1500450) (-890 "PGCD.spad" 1490590 1490607 1491698 1491703) (-889 "PFRPAC.spad" 1489733 1489743 1490580 1490585) (-888 "PFR.spad" 1486390 1486400 1489635 1489728) (-887 "PFOTOOLS.spad" 1485648 1485664 1486380 1486385) (-886 "PFOQ.spad" 1485018 1485036 1485638 1485643) (-885 "PFO.spad" 1484437 1484464 1485008 1485013) (-884 "PFECAT.spad" 1482103 1482111 1484363 1484432) (-883 "PFECAT.spad" 1479797 1479807 1482059 1482064) (-882 "PFBRU.spad" 1477667 1477679 1479787 1479792) (-881 "PFBR.spad" 1475205 1475228 1477657 1477662) (-880 "PF.spad" 1474779 1474791 1475010 1475103) (-879 "PERMGRP.spad" 1469515 1469525 1474769 1474774) (-878 "PERMCAT.spad" 1468067 1468077 1469495 1469510) (-877 "PERMAN.spad" 1466599 1466613 1468057 1468062) (-876 "PERM.spad" 1462280 1462290 1466429 1466444) (-875 "PENDTREE.spad" 1461553 1461563 1461909 1461914) (-874 "PDRING.spad" 1460044 1460054 1461533 1461548) (-873 "PDRING.spad" 1458543 1458555 1460034 1460039) (-872 "PDEPROB.spad" 1457500 1457508 1458533 1458538) (-871 "PDEPACK.spad" 1451502 1451510 1457490 1457495) (-870 "PDECOMP.spad" 1450964 1450981 1451492 1451497) (-869 "PDECAT.spad" 1449318 1449326 1450954 1450959) (-868 "PCOMP.spad" 1449169 1449182 1449308 1449313) (-867 "PBWLB.spad" 1447751 1447768 1449159 1449164) (-866 "PATTERN2.spad" 1447487 1447499 1447741 1447746) (-865 "PATTERN1.spad" 1445789 1445805 1447477 1447482) (-864 "PATTERN.spad" 1440220 1440230 1445779 1445784) (-863 "PATRES2.spad" 1439882 1439896 1440210 1440215) (-862 "PATRES.spad" 1437429 1437441 1439872 1439877) (-861 "PATMATCH.spad" 1435586 1435617 1437137 1437142) (-860 "PATMAB.spad" 1435011 1435021 1435576 1435581) (-859 "PATLRES.spad" 1434095 1434109 1435001 1435006) (-858 "PATAB.spad" 1433859 1433869 1434085 1434090) (-857 "PARTPERM.spad" 1431221 1431229 1433849 1433854) (-856 "PARSURF.spad" 1430649 1430677 1431211 1431216) (-855 "PARSU2.spad" 1430444 1430460 1430639 1430644) (-854 "script-parser.spad" 1429964 1429972 1430434 1430439) (-853 "PARSCURV.spad" 1429392 1429420 1429954 1429959) (-852 "PARSC2.spad" 1429181 1429197 1429382 1429387) (-851 "PARPCURV.spad" 1428639 1428667 1429171 1429176) (-850 "PARPC2.spad" 1428428 1428444 1428629 1428634) (-849 "PAN2EXPR.spad" 1427840 1427848 1428418 1428423) (-848 "PALETTE.spad" 1426810 1426818 1427830 1427835) (-847 "PAIR.spad" 1425793 1425806 1426398 1426403) (-846 "PADICRC.spad" 1423124 1423142 1424299 1424392) (-845 "PADICRAT.spad" 1421140 1421152 1421361 1421454) (-844 "PADICCT.spad" 1419681 1419693 1421066 1421135) (-843 "PADIC.spad" 1419376 1419388 1419607 1419676) (-842 "PADEPAC.spad" 1418055 1418074 1419366 1419371) (-841 "PADE.spad" 1416795 1416811 1418045 1418050) (-840 "OWP.spad" 1415779 1415809 1416653 1416720) (-839 "OVAR.spad" 1415560 1415583 1415769 1415774) (-838 "OUTFORM.spad" 1404856 1404864 1415550 1415555) (-837 "OUTBFILE.spad" 1404274 1404282 1404846 1404851) (-836 "OUTBCON.spad" 1403553 1403561 1404264 1404269) (-835 "OUTBCON.spad" 1402830 1402840 1403543 1403548) (-834 "OUT.spad" 1401914 1401922 1402820 1402825) (-833 "OSI.spad" 1401389 1401397 1401904 1401909) (-832 "OSGROUP.spad" 1401307 1401315 1401379 1401384) (-831 "ORTHPOL.spad" 1399768 1399778 1401224 1401229) (-830 "OREUP.spad" 1399126 1399154 1399448 1399487) (-829 "ORESUP.spad" 1398425 1398449 1398806 1398845) (-828 "OREPCTO.spad" 1396244 1396256 1398345 1398350) (-827 "OREPCAT.spad" 1390301 1390311 1396200 1396239) (-826 "OREPCAT.spad" 1384248 1384260 1390149 1390154) (-825 "ORDSET.spad" 1383414 1383422 1384238 1384243) (-824 "ORDSET.spad" 1382578 1382588 1383404 1383409) (-823 "ORDRING.spad" 1381968 1381976 1382558 1382573) (-822 "ORDRING.spad" 1381366 1381376 1381958 1381963) (-821 "ORDMON.spad" 1381221 1381229 1381356 1381361) (-820 "ORDFUNS.spad" 1380347 1380363 1381211 1381216) (-819 "ORDFIN.spad" 1380281 1380289 1380337 1380342) (-818 "ORDCOMP2.spad" 1379566 1379578 1380271 1380276) (-817 "ORDCOMP.spad" 1378031 1378041 1379113 1379142) (-816 "OPTPROB.spad" 1376611 1376619 1378021 1378026) (-815 "OPTPACK.spad" 1368996 1369004 1376601 1376606) (-814 "OPTCAT.spad" 1366671 1366679 1368986 1368991) (-813 "OPQUERY.spad" 1366220 1366228 1366661 1366666) (-812 "OP.spad" 1365962 1365972 1366042 1366109) (-811 "ONECOMP2.spad" 1365380 1365392 1365952 1365957) (-810 "ONECOMP.spad" 1364125 1364135 1364927 1364956) (-809 "OMSERVER.spad" 1363127 1363135 1364115 1364120) (-808 "OMSAGG.spad" 1362903 1362913 1363071 1363122) (-807 "OMPKG.spad" 1361515 1361523 1362893 1362898) (-806 "OMLO.spad" 1360940 1360952 1361401 1361440) (-805 "OMEXPR.spad" 1360774 1360784 1360930 1360935) (-804 "OMERRK.spad" 1359808 1359816 1360764 1360769) (-803 "OMERR.spad" 1359351 1359359 1359798 1359803) (-802 "OMENC.spad" 1358695 1358703 1359341 1359346) (-801 "OMDEV.spad" 1352984 1352992 1358685 1358690) (-800 "OMCONN.spad" 1352393 1352401 1352974 1352979) (-799 "OM.spad" 1351358 1351366 1352383 1352388) (-798 "OINTDOM.spad" 1351121 1351129 1351284 1351353) (-797 "OFMONOID.spad" 1347308 1347318 1351111 1351116) (-796 "ODVAR.spad" 1346569 1346579 1347298 1347303) (-795 "ODR.spad" 1346017 1346043 1346381 1346530) (-794 "ODPOL.spad" 1343363 1343373 1343703 1343830) (-793 "ODP.spad" 1334484 1334504 1334857 1334988) (-792 "ODETOOLS.spad" 1333067 1333086 1334474 1334479) (-791 "ODESYS.spad" 1330717 1330734 1333057 1333062) (-790 "ODERTRIC.spad" 1326658 1326675 1330674 1330679) (-789 "ODERED.spad" 1326045 1326069 1326648 1326653) (-788 "ODERAT.spad" 1323598 1323615 1326035 1326040) (-787 "ODEPRRIC.spad" 1320489 1320511 1323588 1323593) (-786 "ODEPROB.spad" 1319688 1319696 1320479 1320484) (-785 "ODEPRIM.spad" 1316962 1316984 1319678 1319683) (-784 "ODEPAL.spad" 1316338 1316362 1316952 1316957) (-783 "ODEPACK.spad" 1302940 1302948 1316328 1316333) (-782 "ODEINT.spad" 1302371 1302387 1302930 1302935) (-781 "ODEIFTBL.spad" 1299766 1299774 1302361 1302366) (-780 "ODEEF.spad" 1295137 1295153 1299756 1299761) (-779 "ODECONST.spad" 1294656 1294674 1295127 1295132) (-778 "ODECAT.spad" 1293252 1293260 1294646 1294651) (-777 "OCTCT2.spad" 1292896 1292917 1293242 1293247) (-776 "OCT.spad" 1291034 1291044 1291750 1291789) (-775 "OCAMON.spad" 1290882 1290890 1291024 1291029) (-774 "OC.spad" 1288656 1288666 1290838 1290877) (-773 "OC.spad" 1286155 1286167 1288339 1288344) (-772 "OASGP.spad" 1285970 1285978 1286145 1286150) (-771 "OAMONS.spad" 1285490 1285498 1285960 1285965) (-770 "OAMON.spad" 1285351 1285359 1285480 1285485) (-769 "OAGROUP.spad" 1285213 1285221 1285341 1285346) (-768 "NUMTUBE.spad" 1284800 1284816 1285203 1285208) (-767 "NUMQUAD.spad" 1272662 1272670 1284790 1284795) (-766 "NUMODE.spad" 1263798 1263806 1272652 1272657) (-765 "NUMINT.spad" 1261356 1261364 1263788 1263793) (-764 "NUMFMT.spad" 1260196 1260204 1261346 1261351) (-763 "NUMERIC.spad" 1252268 1252278 1260001 1260006) (-762 "NTSCAT.spad" 1250758 1250774 1252224 1252263) (-761 "NTPOLFN.spad" 1250303 1250313 1250675 1250680) (-760 "NSUP2.spad" 1249695 1249707 1250293 1250298) (-759 "NSUP.spad" 1242705 1242715 1247245 1247398) (-758 "NSMP.spad" 1238900 1238919 1239208 1239335) (-757 "NREP.spad" 1237272 1237286 1238890 1238895) (-756 "NPCOEF.spad" 1236518 1236538 1237262 1237267) (-755 "NORMRETR.spad" 1236116 1236155 1236508 1236513) (-754 "NORMPK.spad" 1234018 1234037 1236106 1236111) (-753 "NORMMA.spad" 1233706 1233732 1234008 1234013) (-752 "NONE1.spad" 1233382 1233392 1233696 1233701) (-751 "NONE.spad" 1233123 1233131 1233372 1233377) (-750 "NODE1.spad" 1232592 1232608 1233113 1233118) (-749 "NNI.spad" 1231479 1231487 1232566 1232587) (-748 "NLINSOL.spad" 1230101 1230111 1231469 1231474) (-747 "NIPROB.spad" 1228584 1228592 1230091 1230096) (-746 "NFINTBAS.spad" 1226044 1226061 1228574 1228579) (-745 "NCODIV.spad" 1224242 1224258 1226034 1226039) (-744 "NCNTFRAC.spad" 1223884 1223898 1224232 1224237) (-743 "NCEP.spad" 1222044 1222058 1223874 1223879) (-742 "NASRING.spad" 1221640 1221648 1222034 1222039) (-741 "NASRING.spad" 1221234 1221244 1221630 1221635) (-740 "NARNG.spad" 1220578 1220586 1221224 1221229) (-739 "NARNG.spad" 1219920 1219930 1220568 1220573) (-738 "NAGSP.spad" 1218993 1219001 1219910 1219915) (-737 "NAGS.spad" 1208518 1208526 1218983 1218988) (-736 "NAGF07.spad" 1206911 1206919 1208508 1208513) (-735 "NAGF04.spad" 1201143 1201151 1206901 1206906) (-734 "NAGF02.spad" 1194952 1194960 1201133 1201138) (-733 "NAGF01.spad" 1190555 1190563 1194942 1194947) (-732 "NAGE04.spad" 1184015 1184023 1190545 1190550) (-731 "NAGE02.spad" 1174357 1174365 1184005 1184010) (-730 "NAGE01.spad" 1170241 1170249 1174347 1174352) (-729 "NAGD03.spad" 1168161 1168169 1170231 1170236) (-728 "NAGD02.spad" 1160692 1160700 1168151 1168156) (-727 "NAGD01.spad" 1154805 1154813 1160682 1160687) (-726 "NAGC06.spad" 1150592 1150600 1154795 1154800) (-725 "NAGC05.spad" 1149061 1149069 1150582 1150587) (-724 "NAGC02.spad" 1148316 1148324 1149051 1149056) (-723 "NAALG.spad" 1147851 1147861 1148284 1148311) (-722 "NAALG.spad" 1147406 1147418 1147841 1147846) (-721 "MULTSQFR.spad" 1144364 1144381 1147396 1147401) (-720 "MULTFACT.spad" 1143747 1143764 1144354 1144359) (-719 "MTSCAT.spad" 1141781 1141802 1143645 1143742) (-718 "MTHING.spad" 1141438 1141448 1141771 1141776) (-717 "MSYSCMD.spad" 1140872 1140880 1141428 1141433) (-716 "MSETAGG.spad" 1140705 1140715 1140828 1140867) (-715 "MSET.spad" 1138647 1138657 1140411 1140450) (-714 "MRING.spad" 1135618 1135630 1138355 1138422) (-713 "MRF2.spad" 1135186 1135200 1135608 1135613) (-712 "MRATFAC.spad" 1134732 1134749 1135176 1135181) (-711 "MPRFF.spad" 1132762 1132781 1134722 1134727) (-710 "MPOLY.spad" 1130197 1130212 1130556 1130683) (-709 "MPCPF.spad" 1129461 1129480 1130187 1130192) (-708 "MPC3.spad" 1129276 1129316 1129451 1129456) (-707 "MPC2.spad" 1128918 1128951 1129266 1129271) (-706 "MONOTOOL.spad" 1127253 1127270 1128908 1128913) (-705 "MONOID.spad" 1126572 1126580 1127243 1127248) (-704 "MONOID.spad" 1125889 1125899 1126562 1126567) (-703 "MONOGEN.spad" 1124635 1124648 1125749 1125884) (-702 "MONOGEN.spad" 1123403 1123418 1124519 1124524) (-701 "MONADWU.spad" 1121417 1121425 1123393 1123398) (-700 "MONADWU.spad" 1119429 1119439 1121407 1121412) (-699 "MONAD.spad" 1118573 1118581 1119419 1119424) (-698 "MONAD.spad" 1117715 1117725 1118563 1118568) (-697 "MOEBIUS.spad" 1116401 1116415 1117695 1117710) (-696 "MODULE.spad" 1116271 1116281 1116369 1116396) (-695 "MODULE.spad" 1116161 1116173 1116261 1116266) (-694 "MODRING.spad" 1115492 1115531 1116141 1116156) (-693 "MODOP.spad" 1114151 1114163 1115314 1115381) (-692 "MODMONOM.spad" 1113683 1113701 1114141 1114146) (-691 "MODMON.spad" 1110385 1110401 1111161 1111314) (-690 "MODFIELD.spad" 1109743 1109782 1110287 1110380) (-689 "MMLFORM.spad" 1108603 1108611 1109733 1109738) (-688 "MMAP.spad" 1108343 1108377 1108593 1108598) (-687 "MLO.spad" 1106770 1106780 1108299 1108338) (-686 "MLIFT.spad" 1105342 1105359 1106760 1106765) (-685 "MKUCFUNC.spad" 1104875 1104893 1105332 1105337) (-684 "MKRECORD.spad" 1104477 1104490 1104865 1104870) (-683 "MKFUNC.spad" 1103858 1103868 1104467 1104472) (-682 "MKFLCFN.spad" 1102814 1102824 1103848 1103853) (-681 "MKCHSET.spad" 1102590 1102600 1102804 1102809) (-680 "MKBCFUNC.spad" 1102075 1102093 1102580 1102585) (-679 "MINT.spad" 1101514 1101522 1101977 1102070) (-678 "MHROWRED.spad" 1100015 1100025 1101504 1101509) (-677 "MFLOAT.spad" 1098531 1098539 1099905 1100010) (-676 "MFINFACT.spad" 1097931 1097953 1098521 1098526) (-675 "MESH.spad" 1095668 1095676 1097921 1097926) (-674 "MDDFACT.spad" 1093861 1093871 1095658 1095663) (-673 "MDAGG.spad" 1093136 1093146 1093829 1093856) (-672 "MCMPLX.spad" 1089111 1089119 1089725 1089926) (-671 "MCDEN.spad" 1088319 1088331 1089101 1089106) (-670 "MCALCFN.spad" 1085421 1085447 1088309 1088314) (-669 "MAYBE.spad" 1084670 1084681 1085411 1085416) (-668 "MATSTOR.spad" 1081946 1081956 1084660 1084665) (-667 "MATRIX.spad" 1080650 1080660 1081134 1081161) (-666 "MATLIN.spad" 1077976 1078000 1080534 1080539) (-665 "MATCAT2.spad" 1077244 1077292 1077966 1077971) (-664 "MATCAT.spad" 1068817 1068839 1077200 1077239) (-663 "MATCAT.spad" 1060274 1060298 1068659 1068664) (-662 "MAPPKG3.spad" 1059173 1059187 1060264 1060269) (-661 "MAPPKG2.spad" 1058507 1058519 1059163 1059168) (-660 "MAPPKG1.spad" 1057325 1057335 1058497 1058502) (-659 "MAPPAST.spad" 1056638 1056646 1057315 1057320) (-658 "MAPHACK3.spad" 1056446 1056460 1056628 1056633) (-657 "MAPHACK2.spad" 1056211 1056223 1056436 1056441) (-656 "MAPHACK1.spad" 1055841 1055851 1056201 1056206) (-655 "MAGMA.spad" 1053631 1053648 1055831 1055836) (-654 "MACROAST.spad" 1053210 1053218 1053621 1053626) (-653 "M3D.spad" 1050906 1050916 1052588 1052593) (-652 "LZSTAGG.spad" 1048124 1048134 1050886 1050901) (-651 "LZSTAGG.spad" 1045350 1045362 1048114 1048119) (-650 "LWORD.spad" 1042055 1042072 1045340 1045345) (-649 "LSTAST.spad" 1041839 1041847 1042045 1042050) (-648 "LSQM.spad" 1040062 1040076 1040460 1040511) (-647 "LSPP.spad" 1039595 1039612 1040052 1040057) (-646 "LSMP1.spad" 1037416 1037430 1039585 1039590) (-645 "LSMP.spad" 1036263 1036291 1037406 1037411) (-644 "LSAGG.spad" 1035920 1035930 1036219 1036258) (-643 "LSAGG.spad" 1035609 1035621 1035910 1035915) (-642 "LPOLY.spad" 1034563 1034582 1035465 1035534) (-641 "LPEFRAC.spad" 1033820 1033830 1034553 1034558) (-640 "LOGIC.spad" 1033422 1033430 1033810 1033815) (-639 "LOGIC.spad" 1033022 1033032 1033412 1033417) (-638 "LODOOPS.spad" 1031940 1031952 1033012 1033017) (-637 "LODOF.spad" 1030984 1031001 1031897 1031902) (-636 "LODOCAT.spad" 1029642 1029652 1030940 1030979) (-635 "LODOCAT.spad" 1028298 1028310 1029598 1029603) (-634 "LODO2.spad" 1027571 1027583 1027978 1028017) (-633 "LODO1.spad" 1026971 1026981 1027251 1027290) (-632 "LODO.spad" 1026355 1026371 1026651 1026690) (-631 "LODEEF.spad" 1025127 1025145 1026345 1026350) (-630 "LO.spad" 1024528 1024542 1025061 1025088) (-629 "LNAGG.spad" 1020320 1020330 1024508 1024523) (-628 "LNAGG.spad" 1016086 1016098 1020276 1020281) (-627 "LMOPS.spad" 1012822 1012839 1016076 1016081) (-626 "LMODULE.spad" 1012464 1012474 1012812 1012817) (-625 "LMDICT.spad" 1011747 1011757 1012015 1012042) (-624 "LITERAL.spad" 1011653 1011664 1011737 1011742) (-623 "LIST3.spad" 1010944 1010958 1011643 1011648) (-622 "LIST2MAP.spad" 1007821 1007833 1010934 1010939) (-621 "LIST2.spad" 1006461 1006473 1007811 1007816) (-620 "LIST.spad" 1004179 1004189 1005608 1005635) (-619 "LINEXP.spad" 1003611 1003621 1004159 1004174) (-618 "LINDEP.spad" 1002388 1002400 1003523 1003528) (-617 "LIMITRF.spad" 1000321 1000331 1002378 1002383) (-616 "LIMITPS.spad" 999211 999224 1000311 1000316) (-615 "LIECAT.spad" 998687 998697 999137 999206) (-614 "LIECAT.spad" 998191 998203 998643 998648) (-613 "LIE.spad" 996205 996217 997481 997626) (-612 "LIB.spad" 994253 994261 994864 994879) (-611 "LGROBP.spad" 991606 991625 994243 994248) (-610 "LFCAT.spad" 990625 990633 991596 991601) (-609 "LF.spad" 989544 989560 990615 990620) (-608 "LEXTRIPK.spad" 985047 985062 989534 989539) (-607 "LEXP.spad" 983050 983077 985027 985042) (-606 "LETAST.spad" 982749 982757 983040 983045) (-605 "LEADCDET.spad" 981133 981150 982739 982744) (-604 "LAZM3PK.spad" 979837 979859 981123 981128) (-603 "LAUPOL.spad" 978526 978539 979430 979499) (-602 "LAPLACE.spad" 978099 978115 978516 978521) (-601 "LALG.spad" 977875 977885 978079 978094) (-600 "LALG.spad" 977659 977671 977865 977870) (-599 "LA.spad" 977099 977113 977581 977620) (-598 "KTVLOGIC.spad" 976522 976530 977089 977094) (-597 "KOVACIC.spad" 975235 975252 976512 976517) (-596 "KONVERT.spad" 974957 974967 975225 975230) (-595 "KOERCE.spad" 974694 974704 974947 974952) (-594 "KERNEL2.spad" 974397 974409 974684 974689) (-593 "KERNEL.spad" 972932 972942 974181 974186) (-592 "KDAGG.spad" 972023 972045 972900 972927) (-591 "KDAGG.spad" 971134 971158 972013 972018) (-590 "KAFILE.spad" 970097 970113 970332 970359) (-589 "JORDAN.spad" 967924 967936 969387 969532) (-588 "JOINAST.spad" 967618 967626 967914 967919) (-587 "JAVACODE.spad" 967384 967392 967608 967613) (-586 "IXAGG.spad" 965497 965521 967364 967379) (-585 "IXAGG.spad" 963475 963501 965344 965349) (-584 "IVECTOR.spad" 962246 962261 962401 962428) (-583 "ITUPLE.spad" 961391 961401 962236 962241) (-582 "ITRIGMNP.spad" 960202 960221 961381 961386) (-581 "ITFUN3.spad" 959696 959710 960192 960197) (-580 "ITFUN2.spad" 959426 959438 959686 959691) (-579 "ITAYLOR.spad" 957218 957233 959262 959387) (-578 "ISUPS.spad" 949629 949644 956192 956289) (-577 "ISUMP.spad" 949126 949142 949619 949624) (-576 "ISTRING.spad" 948129 948142 948295 948322) (-575 "ISAST.spad" 947848 947856 948119 948124) (-574 "IRURPK.spad" 946561 946580 947838 947843) (-573 "IRSN.spad" 944521 944529 946551 946556) (-572 "IRRF2F.spad" 942996 943006 944477 944482) (-571 "IRREDFFX.spad" 942597 942608 942986 942991) (-570 "IROOT.spad" 940928 940938 942587 942592) (-569 "IR2F.spad" 940128 940144 940918 940923) (-568 "IR2.spad" 939148 939164 940118 940123) (-567 "IR.spad" 936937 936951 939003 939030) (-566 "IPRNTPK.spad" 936697 936705 936927 936932) (-565 "IPF.spad" 936262 936274 936502 936595) (-564 "IPADIC.spad" 936023 936049 936188 936257) (-563 "IOMODE.spad" 935644 935652 936013 936018) (-562 "IOBCON.spad" 935509 935517 935634 935639) (-561 "INVLAPLA.spad" 935154 935170 935499 935504) (-560 "INTTR.spad" 928412 928429 935144 935149) (-559 "INTTOOLS.spad" 926123 926139 927986 927991) (-558 "INTSLPE.spad" 925429 925437 926113 926118) (-557 "INTRVL.spad" 924995 925005 925343 925424) (-556 "INTRF.spad" 923359 923373 924985 924990) (-555 "INTRET.spad" 922791 922801 923349 923354) (-554 "INTRAT.spad" 921466 921483 922781 922786) (-553 "INTPM.spad" 919829 919845 921109 921114) (-552 "INTPAF.spad" 917604 917622 919761 919766) (-551 "INTPACK.spad" 907914 907922 917594 917599) (-550 "INTHERTR.spad" 907180 907197 907904 907909) (-549 "INTHERAL.spad" 906846 906870 907170 907175) (-548 "INTHEORY.spad" 903259 903267 906836 906841) (-547 "INTG0.spad" 896740 896758 903191 903196) (-546 "INTFTBL.spad" 892194 892202 896730 896735) (-545 "INTFACT.spad" 891253 891263 892184 892189) (-544 "INTEF.spad" 889570 889586 891243 891248) (-543 "INTDOM.spad" 888185 888193 889496 889565) (-542 "INTDOM.spad" 886862 886872 888175 888180) (-541 "INTCAT.spad" 885115 885125 886776 886857) (-540 "INTBIT.spad" 884618 884626 885105 885110) (-539 "INTALG.spad" 883800 883827 884608 884613) (-538 "INTAF.spad" 883292 883308 883790 883795) (-537 "INTABL.spad" 881810 881841 881973 882000) (-536 "INT.spad" 881171 881179 881664 881805) (-535 "INS.spad" 878638 878646 881073 881166) (-534 "INS.spad" 876191 876201 878628 878633) (-533 "INPSIGN.spad" 875647 875660 876181 876186) (-532 "INPRODPF.spad" 874713 874732 875637 875642) (-531 "INPRODFF.spad" 873771 873795 874703 874708) (-530 "INNMFACT.spad" 872742 872759 873761 873766) (-529 "INMODGCD.spad" 872226 872256 872732 872737) (-528 "INFSP.spad" 870511 870533 872216 872221) (-527 "INFPROD0.spad" 869561 869580 870501 870506) (-526 "INFORM1.spad" 869186 869196 869551 869556) (-525 "INFORM.spad" 866347 866355 869176 869181) (-524 "INFINITY.spad" 865899 865907 866337 866342) (-523 "INEP.spad" 864431 864453 865889 865894) (-522 "INDE.spad" 864160 864177 864421 864426) (-521 "INCRMAPS.spad" 863581 863591 864150 864155) (-520 "INBFILE.spad" 862910 862918 863571 863576) (-519 "INBFF.spad" 858680 858691 862900 862905) (-518 "INBCON.spad" 857980 857988 858670 858675) (-517 "INBCON.spad" 857278 857288 857970 857975) (-516 "INAST.spad" 856943 856951 857268 857273) (-515 "IMPTAST.spad" 856651 856659 856933 856938) (-514 "IMATRIX.spad" 855596 855622 856108 856135) (-513 "IMATQF.spad" 854690 854734 855552 855557) (-512 "IMATLIN.spad" 853295 853319 854646 854651) (-511 "ILIST.spad" 851951 851966 852478 852505) (-510 "IIARRAY2.spad" 851339 851377 851558 851585) (-509 "IFF.spad" 850749 850765 851020 851113) (-508 "IFAST.spad" 850363 850371 850739 850744) (-507 "IFARRAY.spad" 847850 847865 849546 849573) (-506 "IFAMON.spad" 847712 847729 847806 847811) (-505 "IEVALAB.spad" 847101 847113 847702 847707) (-504 "IEVALAB.spad" 846488 846502 847091 847096) (-503 "IDPOAMS.spad" 846244 846256 846478 846483) (-502 "IDPOAM.spad" 845964 845976 846234 846239) (-501 "IDPO.spad" 845762 845774 845954 845959) (-500 "IDPC.spad" 844696 844708 845752 845757) (-499 "IDPAM.spad" 844441 844453 844686 844691) (-498 "IDPAG.spad" 844188 844200 844431 844436) (-497 "IDENT.spad" 844105 844113 844178 844183) (-496 "IDECOMP.spad" 841342 841360 844095 844100) (-495 "IDEAL.spad" 836265 836304 841277 841282) (-494 "ICDEN.spad" 835416 835432 836255 836260) (-493 "ICARD.spad" 834605 834613 835406 835411) (-492 "IBPTOOLS.spad" 833198 833215 834595 834600) (-491 "IBITS.spad" 832397 832410 832834 832861) (-490 "IBATOOL.spad" 829272 829291 832387 832392) (-489 "IBACHIN.spad" 827759 827774 829262 829267) (-488 "IARRAY2.spad" 826747 826773 827366 827393) (-487 "IARRAY1.spad" 825792 825807 825930 825957) (-486 "IAN.spad" 824005 824013 825608 825701) (-485 "IALGFACT.spad" 823606 823639 823995 824000) (-484 "HYPCAT.spad" 823030 823038 823596 823601) (-483 "HYPCAT.spad" 822452 822462 823020 823025) (-482 "HOSTNAME.spad" 822260 822268 822442 822447) (-481 "HOAGG.spad" 819518 819528 822240 822255) (-480 "HOAGG.spad" 816561 816573 819285 819290) (-479 "HEXADEC.spad" 814431 814439 815029 815122) (-478 "HEUGCD.spad" 813446 813457 814421 814426) (-477 "HELLFDIV.spad" 813036 813060 813436 813441) (-476 "HEAP.spad" 812428 812438 812643 812670) (-475 "HEADAST.spad" 811959 811967 812418 812423) (-474 "HDP.spad" 803076 803092 803453 803584) (-473 "HDMP.spad" 800252 800267 800870 800997) (-472 "HB.spad" 798489 798497 800242 800247) (-471 "HASHTBL.spad" 796959 796990 797170 797197) (-470 "HASAST.spad" 796675 796683 796949 796954) (-469 "HACKPI.spad" 796158 796166 796577 796670) (-468 "GTSET.spad" 795097 795113 795804 795831) (-467 "GSTBL.spad" 793616 793651 793790 793805) (-466 "GSERIES.spad" 790783 790810 791748 791897) (-465 "GROUP.spad" 790052 790060 790763 790778) (-464 "GROUP.spad" 789329 789339 790042 790047) (-463 "GROEBSOL.spad" 787817 787838 789319 789324) (-462 "GRMOD.spad" 786388 786400 787807 787812) (-461 "GRMOD.spad" 784957 784971 786378 786383) (-460 "GRIMAGE.spad" 777562 777570 784947 784952) (-459 "GRDEF.spad" 775941 775949 777552 777557) (-458 "GRAY.spad" 774400 774408 775931 775936) (-457 "GRALG.spad" 773447 773459 774390 774395) (-456 "GRALG.spad" 772492 772506 773437 773442) (-455 "GPOLSET.spad" 771946 771969 772174 772201) (-454 "GOSPER.spad" 771211 771229 771936 771941) (-453 "GMODPOL.spad" 770349 770376 771179 771206) (-452 "GHENSEL.spad" 769418 769432 770339 770344) (-451 "GENUPS.spad" 765519 765532 769408 769413) (-450 "GENUFACT.spad" 765096 765106 765509 765514) (-449 "GENPGCD.spad" 764680 764697 765086 765091) (-448 "GENMFACT.spad" 764132 764151 764670 764675) (-447 "GENEEZ.spad" 762071 762084 764122 764127) (-446 "GDMP.spad" 759089 759106 759865 759992) (-445 "GCNAALG.spad" 752984 753011 758883 758950) (-444 "GCDDOM.spad" 752156 752164 752910 752979) (-443 "GCDDOM.spad" 751390 751400 752146 752151) (-442 "GBINTERN.spad" 747410 747448 751380 751385) (-441 "GBF.spad" 743167 743205 747400 747405) (-440 "GBEUCLID.spad" 741041 741079 743157 743162) (-439 "GB.spad" 738559 738597 740997 741002) (-438 "GAUSSFAC.spad" 737856 737864 738549 738554) (-437 "GALUTIL.spad" 736178 736188 737812 737817) (-436 "GALPOLYU.spad" 734624 734637 736168 736173) (-435 "GALFACTU.spad" 732789 732808 734614 734619) (-434 "GALFACT.spad" 722922 722933 732779 732784) (-433 "FVFUN.spad" 719935 719943 722902 722917) (-432 "FVC.spad" 718977 718985 719915 719930) (-431 "FUNCTION.spad" 718826 718838 718967 718972) (-430 "FTEM.spad" 717989 717997 718816 718821) (-429 "FT.spad" 716204 716212 717979 717984) (-428 "FSUPFACT.spad" 715104 715123 716140 716145) (-427 "FST.spad" 713190 713198 715094 715099) (-426 "FSRED.spad" 712668 712684 713180 713185) (-425 "FSPRMELT.spad" 711492 711508 712625 712630) (-424 "FSPECF.spad" 709569 709585 711482 711487) (-423 "FSINT.spad" 709227 709243 709559 709564) (-422 "FSERIES.spad" 708414 708426 709047 709146) (-421 "FSCINT.spad" 707727 707743 708404 708409) (-420 "FSAGG2.spad" 706426 706442 707717 707722) (-419 "FSAGG.spad" 705531 705541 706370 706421) (-418 "FSAGG.spad" 704610 704622 705451 705456) (-417 "FS2UPS.spad" 698999 699033 704600 704605) (-416 "FS2EXPXP.spad" 698122 698145 698989 698994) (-415 "FS2.spad" 697767 697783 698112 698117) (-414 "FS.spad" 691817 691827 697530 697762) (-413 "FS.spad" 685657 685669 691372 691377) (-412 "FRUTIL.spad" 684599 684609 685647 685652) (-411 "FRNAALG.spad" 679686 679696 684541 684594) (-410 "FRNAALG.spad" 674785 674797 679642 679647) (-409 "FRNAAF2.spad" 674239 674257 674775 674780) (-408 "FRMOD.spad" 673633 673663 674170 674175) (-407 "FRIDEAL2.spad" 673235 673267 673623 673628) (-406 "FRIDEAL.spad" 672430 672451 673215 673230) (-405 "FRETRCT.spad" 671941 671951 672420 672425) (-404 "FRETRCT.spad" 671318 671330 671799 671804) (-403 "FRAMALG.spad" 669646 669659 671274 671313) (-402 "FRAMALG.spad" 668006 668021 669636 669641) (-401 "FRAC2.spad" 667609 667621 667996 668001) (-400 "FRAC.spad" 664709 664719 665112 665285) (-399 "FR2.spad" 664043 664055 664699 664704) (-398 "FR.spad" 657765 657775 663068 663137) (-397 "FPS.spad" 654574 654582 657655 657760) (-396 "FPS.spad" 651411 651421 654494 654499) (-395 "FPC.spad" 650453 650461 651313 651406) (-394 "FPC.spad" 649581 649591 650443 650448) (-393 "FPATMAB.spad" 649333 649343 649561 649576) (-392 "FPARFRAC.spad" 647806 647823 649323 649328) (-391 "FORTRAN.spad" 646312 646355 647796 647801) (-390 "FORTFN.spad" 643472 643480 646292 646307) (-389 "FORTCAT.spad" 643146 643154 643452 643467) (-388 "FORT.spad" 642075 642083 643136 643141) (-387 "FORMULA1.spad" 641554 641564 642065 642070) (-386 "FORMULA.spad" 638892 638900 641544 641549) (-385 "FORDER.spad" 638583 638607 638882 638887) (-384 "FOP.spad" 637784 637792 638573 638578) (-383 "FNLA.spad" 637208 637230 637752 637779) (-382 "FNCAT.spad" 635536 635544 637198 637203) (-381 "FNAME.spad" 635428 635436 635526 635531) (-380 "FMTC.spad" 635226 635234 635354 635423) (-379 "FMONOID.spad" 632281 632291 635182 635187) (-378 "FMFUN.spad" 629301 629309 632261 632276) (-377 "FMCAT.spad" 626955 626973 629269 629296) (-376 "FMC.spad" 625997 626005 626935 626950) (-375 "FM1.spad" 625354 625366 625931 625958) (-374 "FM.spad" 625049 625061 625288 625315) (-373 "FLOATRP.spad" 622770 622784 625039 625044) (-372 "FLOATCP.spad" 620187 620201 622760 622765) (-371 "FLOAT.spad" 613351 613359 620053 620182) (-370 "FLINEXP.spad" 613063 613073 613331 613346) (-369 "FLINEXP.spad" 612729 612741 612999 613004) (-368 "FLASORT.spad" 612049 612061 612719 612724) (-367 "FLALG.spad" 609695 609714 611975 612044) (-366 "FLAGG2.spad" 608376 608392 609685 609690) (-365 "FLAGG.spad" 605382 605392 608344 608371) (-364 "FLAGG.spad" 602301 602313 605265 605270) (-363 "FINRALG.spad" 600330 600343 602257 602296) (-362 "FINRALG.spad" 598285 598300 600214 600219) (-361 "FINITE.spad" 597437 597445 598275 598280) (-360 "FINAALG.spad" 586418 586428 597379 597432) (-359 "FINAALG.spad" 575411 575423 586374 586379) (-358 "FILECAT.spad" 573929 573946 575401 575406) (-357 "FILE.spad" 573512 573522 573919 573924) (-356 "FIELD.spad" 572918 572926 573414 573507) (-355 "FIELD.spad" 572410 572420 572908 572913) (-354 "FGROUP.spad" 571019 571029 572390 572405) (-353 "FGLMICPK.spad" 569806 569821 571009 571014) (-352 "FFX.spad" 569181 569196 569522 569615) (-351 "FFSLPE.spad" 568670 568691 569171 569176) (-350 "FFPOLY2.spad" 567730 567747 568660 568665) (-349 "FFPOLY.spad" 558982 558993 567720 567725) (-348 "FFP.spad" 558379 558399 558698 558791) (-347 "FFNBX.spad" 556891 556911 558095 558188) (-346 "FFNBP.spad" 555404 555421 556607 556700) (-345 "FFNB.spad" 553869 553890 555085 555178) (-344 "FFINTBAS.spad" 551283 551302 553859 553864) (-343 "FFIELDC.spad" 548858 548866 551185 551278) (-342 "FFIELDC.spad" 546519 546529 548848 548853) (-341 "FFHOM.spad" 545267 545284 546509 546514) (-340 "FFF.spad" 542702 542713 545257 545262) (-339 "FFCGX.spad" 541549 541569 542418 542511) (-338 "FFCGP.spad" 540438 540458 541265 541358) (-337 "FFCG.spad" 539230 539251 540119 540212) (-336 "FFCAT2.spad" 538975 539015 539220 539225) (-335 "FFCAT.spad" 532002 532024 538814 538970) (-334 "FFCAT.spad" 525108 525132 531922 531927) (-333 "FF.spad" 524556 524572 524789 524882) (-332 "FEXPR.spad" 516265 516311 524312 524351) (-331 "FEVALAB.spad" 515971 515981 516255 516260) (-330 "FEVALAB.spad" 515462 515474 515748 515753) (-329 "FDIVCAT.spad" 513504 513528 515452 515457) (-328 "FDIVCAT.spad" 511544 511570 513494 513499) (-327 "FDIV2.spad" 511198 511238 511534 511539) (-326 "FDIV.spad" 510640 510664 511188 511193) (-325 "FCPAK1.spad" 509193 509201 510630 510635) (-324 "FCOMP.spad" 508572 508582 509183 509188) (-323 "FC.spad" 498397 498405 508562 508567) (-322 "FAXF.spad" 491332 491346 498299 498392) (-321 "FAXF.spad" 484319 484335 491288 491293) (-320 "FARRAY.spad" 482465 482475 483502 483529) (-319 "FAMR.spad" 480585 480597 482363 482460) (-318 "FAMR.spad" 478689 478703 480469 480474) (-317 "FAMONOID.spad" 478339 478349 478643 478648) (-316 "FAMONC.spad" 476561 476573 478329 478334) (-315 "FAGROUP.spad" 476167 476177 476457 476484) (-314 "FACUTIL.spad" 474363 474380 476157 476162) (-313 "FACTFUNC.spad" 473539 473549 474353 474358) (-312 "EXPUPXS.spad" 470372 470395 471671 471820) (-311 "EXPRTUBE.spad" 467600 467608 470362 470367) (-310 "EXPRODE.spad" 464472 464488 467590 467595) (-309 "EXPR2UPS.spad" 460564 460577 464462 464467) (-308 "EXPR2.spad" 460267 460279 460554 460559) (-307 "EXPR.spad" 455542 455552 456256 456663) (-306 "EXPEXPAN.spad" 452481 452506 453115 453208) (-305 "EXITAST.spad" 452217 452225 452471 452476) (-304 "EXIT.spad" 451888 451896 452207 452212) (-303 "EVALCYC.spad" 451346 451360 451878 451883) (-302 "EVALAB.spad" 450910 450920 451336 451341) (-301 "EVALAB.spad" 450472 450484 450900 450905) (-300 "EUCDOM.spad" 448014 448022 450398 450467) (-299 "EUCDOM.spad" 445618 445628 448004 448009) (-298 "ESTOOLS2.spad" 445219 445233 445608 445613) (-297 "ESTOOLS1.spad" 444904 444915 445209 445214) (-296 "ESTOOLS.spad" 436744 436752 444894 444899) (-295 "ESCONT1.spad" 436493 436505 436734 436739) (-294 "ESCONT.spad" 433266 433274 436483 436488) (-293 "ES2.spad" 432761 432777 433256 433261) (-292 "ES1.spad" 432327 432343 432751 432756) (-291 "ES.spad" 424874 424882 432317 432322) (-290 "ES.spad" 417327 417337 424772 424777) (-289 "ERROR.spad" 414648 414656 417317 417322) (-288 "EQTBL.spad" 413120 413142 413329 413356) (-287 "EQ2.spad" 412836 412848 413110 413115) (-286 "EQ.spad" 407710 407720 410509 410621) (-285 "EP.spad" 404024 404034 407700 407705) (-284 "ENV.spad" 402726 402734 404014 404019) (-283 "ENTIRER.spad" 402394 402402 402670 402721) (-282 "EMR.spad" 401595 401636 402320 402389) (-281 "ELTAGG.spad" 399835 399854 401585 401590) (-280 "ELTAGG.spad" 398039 398060 399791 399796) (-279 "ELTAB.spad" 397486 397504 398029 398034) (-278 "ELFUTS.spad" 396865 396884 397476 397481) (-277 "ELEMFUN.spad" 396554 396562 396855 396860) (-276 "ELEMFUN.spad" 396241 396251 396544 396549) (-275 "ELAGG.spad" 394172 394182 396209 396236) (-274 "ELAGG.spad" 392052 392064 394091 394096) (-273 "ELABEXPR.spad" 390983 390991 392042 392047) (-272 "EFUPXS.spad" 387759 387789 390939 390944) (-271 "EFULS.spad" 384595 384618 387715 387720) (-270 "EFSTRUC.spad" 382550 382566 384585 384590) (-269 "EF.spad" 377316 377332 382540 382545) (-268 "EAB.spad" 375592 375600 377306 377311) (-267 "E04UCFA.spad" 375128 375136 375582 375587) (-266 "E04NAFA.spad" 374705 374713 375118 375123) (-265 "E04MBFA.spad" 374285 374293 374695 374700) (-264 "E04JAFA.spad" 373821 373829 374275 374280) (-263 "E04GCFA.spad" 373357 373365 373811 373816) (-262 "E04FDFA.spad" 372893 372901 373347 373352) (-261 "E04DGFA.spad" 372429 372437 372883 372888) (-260 "E04AGNT.spad" 368271 368279 372419 372424) (-259 "DVARCAT.spad" 364956 364966 368261 368266) (-258 "DVARCAT.spad" 361639 361651 364946 364951) (-257 "DSMP.spad" 359070 359084 359375 359502) (-256 "DROPT1.spad" 358733 358743 359060 359065) (-255 "DROPT0.spad" 353560 353568 358723 358728) (-254 "DROPT.spad" 347505 347513 353550 353555) (-253 "DRAWPT.spad" 345660 345668 347495 347500) (-252 "DRAWHACK.spad" 344968 344978 345650 345655) (-251 "DRAWCX.spad" 342410 342418 344958 344963) (-250 "DRAWCURV.spad" 341947 341962 342400 342405) (-249 "DRAWCFUN.spad" 331119 331127 341937 341942) (-248 "DRAW.spad" 323719 323732 331109 331114) (-247 "DQAGG.spad" 321875 321885 323675 323714) (-246 "DPOLCAT.spad" 317216 317232 321743 321870) (-245 "DPOLCAT.spad" 312643 312661 317172 317177) (-244 "DPMO.spad" 305946 305962 306084 306385) (-243 "DPMM.spad" 299262 299280 299387 299688) (-242 "DOMAIN.spad" 298533 298541 299252 299257) (-241 "DMP.spad" 295755 295770 296327 296454) (-240 "DLP.spad" 295103 295113 295745 295750) (-239 "DLIST.spad" 293515 293525 294286 294313) (-238 "DLAGG.spad" 291916 291926 293495 293510) (-237 "DIVRING.spad" 291458 291466 291860 291911) (-236 "DIVRING.spad" 291044 291054 291448 291453) (-235 "DISPLAY.spad" 289224 289232 291034 291039) (-234 "DIRPROD2.spad" 288032 288050 289214 289219) (-233 "DIRPROD.spad" 278886 278902 279526 279657) (-232 "DIRPCAT.spad" 277816 277832 278738 278881) (-231 "DIRPCAT.spad" 276487 276505 277411 277416) (-230 "DIOSP.spad" 275312 275320 276477 276482) (-229 "DIOPS.spad" 274284 274294 275280 275307) (-228 "DIOPS.spad" 273242 273254 274240 274245) (-227 "DIFRING.spad" 272534 272542 273222 273237) (-226 "DIFRING.spad" 271834 271844 272524 272529) (-225 "DIFEXT.spad" 270993 271003 271814 271829) (-224 "DIFEXT.spad" 270069 270081 270892 270897) (-223 "DIAGG.spad" 269687 269697 270037 270064) (-222 "DIAGG.spad" 269325 269337 269677 269682) (-221 "DHMATRIX.spad" 267629 267639 268782 268809) (-220 "DFSFUN.spad" 261037 261045 267619 267624) (-219 "DFLOAT.spad" 257758 257766 260927 261032) (-218 "DFINTTLS.spad" 255967 255983 257748 257753) (-217 "DERHAM.spad" 253877 253909 255947 255962) (-216 "DEQUEUE.spad" 253195 253205 253484 253511) (-215 "DEGRED.spad" 252810 252824 253185 253190) (-214 "DEFINTRF.spad" 250380 250390 252800 252805) (-213 "DEFINTEF.spad" 248904 248920 250370 250375) (-212 "DEFAST.spad" 248272 248280 248894 248899) (-211 "DECIMAL.spad" 246154 246162 246740 246833) (-210 "DDFACT.spad" 243953 243970 246144 246149) (-209 "DBLRESP.spad" 243551 243575 243943 243948) (-208 "DBASE.spad" 242123 242133 243541 243546) (-207 "DATABUF.spad" 241611 241624 242113 242118) (-206 "D03FAFA.spad" 241439 241447 241601 241606) (-205 "D03EEFA.spad" 241259 241267 241429 241434) (-204 "D03AGNT.spad" 240339 240347 241249 241254) (-203 "D02EJFA.spad" 239801 239809 240329 240334) (-202 "D02CJFA.spad" 239279 239287 239791 239796) (-201 "D02BHFA.spad" 238769 238777 239269 239274) (-200 "D02BBFA.spad" 238259 238267 238759 238764) (-199 "D02AGNT.spad" 233063 233071 238249 238254) (-198 "D01WGTS.spad" 231382 231390 233053 233058) (-197 "D01TRNS.spad" 231359 231367 231372 231377) (-196 "D01GBFA.spad" 230881 230889 231349 231354) (-195 "D01FCFA.spad" 230403 230411 230871 230876) (-194 "D01ASFA.spad" 229871 229879 230393 230398) (-193 "D01AQFA.spad" 229317 229325 229861 229866) (-192 "D01APFA.spad" 228741 228749 229307 229312) (-191 "D01ANFA.spad" 228235 228243 228731 228736) (-190 "D01AMFA.spad" 227745 227753 228225 228230) (-189 "D01ALFA.spad" 227285 227293 227735 227740) (-188 "D01AKFA.spad" 226811 226819 227275 227280) (-187 "D01AJFA.spad" 226334 226342 226801 226806) (-186 "D01AGNT.spad" 222393 222401 226324 226329) (-185 "CYCLOTOM.spad" 221899 221907 222383 222388) (-184 "CYCLES.spad" 218731 218739 221889 221894) (-183 "CVMP.spad" 218148 218158 218721 218726) (-182 "CTRIGMNP.spad" 216638 216654 218138 218143) (-181 "CTORCALL.spad" 216226 216234 216628 216633) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX2.spad" 195474 195486 195751 195756) (-166 "COMPLEX.spad" 189500 189510 189744 190005) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMMAAST.spad" 183962 183970 184189 184194) (-159 "COMM.spad" 183771 183779 183952 183957) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN2.spad" 153801 153828 154405 154410) (-134 "CARTEN.spad" 148904 148928 153791 153796) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTEARY.spad" 144217 144225 144311 144338) (-128 "BYTE.spad" 143391 143399 144207 144212) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 7af81219..34f7c1f3 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3269 +1,3269 @@ -(145040 . 3431897911) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#2| |#2|) . T)) -((((-550)) . T)) -((($ $) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) ((|#2| |#2|) . T) ((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550))))) -((($) . T)) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#2|) . T)) -((($) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) ((|#2|) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) -(|has| |#1| (-883)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((($) . T) (((-400 (-550))) . T)) -((($) . T)) -((($) . T)) -(((|#2| |#2|) . T)) -((((-142)) . T)) -((((-526)) . T) (((-1127)) . T) (((-219)) . T) (((-372)) . T) (((-866 (-372))) . T)) -(((|#1|) . T)) -((((-219)) . T) (((-837)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -((($ $) . T) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T)) -(-1489 (|has| |#1| (-798)) (|has| |#1| (-825))) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-823)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) +(145075 . 3432414590) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-400 |#2|) |#3|) . T)) +((((-400 (-536))) |has| #1=(-400 |#2|) (-1012 (-400 (-536)))) (((-536)) |has| #1# (-1012 (-536))) ((#1#) . T)) +((((-400 |#2|)) . T)) +((((-536)) |has| #1=(-400 |#2|) (-619 (-536))) ((#1#) . T)) +((((-400 |#2|)) . T)) +((((-400 |#2|) |#3|) . T)) +(|has| (-400 |#2|) (-145)) +((((-400 |#2|) |#3|) . T)) +(|has| (-400 |#2|) (-143)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +(|has| (-400 |#2|) (-227)) +((((-1147)) |has| (-400 |#2|) (-874 (-1147)))) +((((-400 |#2|)) . T)) +(((|#3|) . T)) +(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -(((|#4|) . T)) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((((-837)) . T)) -((((-837)) |has| |#1| (-1069))) -((((-837)) . T) (((-1150)) . T)) -(((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(((|#2| (-474 (-3307 |#1|) (-749))) . T)) -(((|#1| (-522 (-1145))) . T)) -(((#0=(-844 |#1|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#4| (-361)) -(|has| |#3| (-361)) -(((|#1|) . T)) -((((-844 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-542)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((($) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -((((-837)) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1220 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1|) . T) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) -(((|#1| |#2|) . T)) -((((-837)) . T)) (((|#1|) . T)) -(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) (((|#1|) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($ $) . T)) -(((|#2|) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($) . T)) -(|has| |#1| (-361)) +((((-1113 |#2| |#1|)) . T) ((|#1|) . T)) +((((-838)) . T)) (((|#1|) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#2|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) (((|#1| |#1|) . T)) -(|has| |#1| (-542)) -(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1145) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1145) |#2|)))) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(|has| |#1| (-1069)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(|has| |#1| (-1069)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(|has| |#1| (-823)) -((($) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(-1489 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-1489 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) +(((|#1|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-838)) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) (((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1069)) -(|has| |#1| (-1069)) -(((|#1| (-1145) (-1057 (-1145)) (-522 (-1057 (-1145)))) . T)) -((((-550) |#1|) . T)) -((((-550)) . T)) -((((-550)) . T)) -((((-884 |#1|)) . T)) -(((|#1| (-522 |#2|)) . T)) -((((-550)) . T)) -((((-550)) . T)) -(((|#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((|#1| (-749)) . T)) -(|has| |#2| (-771)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(|has| |#2| (-823)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) +((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-1127) |#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(((|#3| (-749)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-1069)) -((((-400 (-550))) . T) (((-550)) . T)) -((((-1145) |#2|) |has| |#2| (-505 (-1145) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|))) -((((-400 (-550))) . T) (((-550)) . T)) +((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((((-400 (-536))) . T) (($) . T)) +(((#1=(-400 (-536)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-593 $) $) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (((-536)) . T) (((-593 $)) . T)) +((((-838)) . T)) +(((|#1|) . T)) +((((-838)) . T)) (((|#1|) . T) (($) . T)) -((((-550)) . T)) -((((-550)) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -((((-550)) . T)) -((((-550)) . T)) -(((#0=(-677) (-1141 #0#)) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -((((-550) |#1|) . T)) -((($) . T) (((-550)) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(|has| |#2| (-356)) +((((-838)) . T)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-837)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-1127) |#1|) . T)) -(((|#3| |#3|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#1|) . T)) -(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) ((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021)))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-550) |#1|) . T)) -((((-837)) . T)) -((((-167 (-219))) |has| |#1| (-996)) (((-167 (-372))) |has| |#1| (-996)) (((-526)) |has| |#1| (-596 (-526))) (((-1141 |#1|)) . T) (((-866 (-550))) |has| |#1| (-596 (-866 (-550)))) (((-866 (-372))) |has| |#1| (-596 (-866 (-372))))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(|has| |#1| (-356)) -(-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) -(-1489 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1021))) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#1|) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -((((-677)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-976)) (|has| |#1| (-1167))) -(((|#2|) . T) (($) . T) (((-400 (-550))) . T)) -(-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))) -((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1143 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) -(((|#4| |#4|) -1489 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1021))) (($ $) |has| |#4| (-170))) -(((|#3| |#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021))) (($ $) |has| |#3| (-170))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-526)) |has| |#2| (-596 (-526))) (((-866 (-372))) |has| |#2| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#2| (-596 (-866 (-550))))) -((((-837)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526))) (((-866 (-372))) |has| |#1| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#1| (-596 (-866 (-550))))) -(((|#4|) -1489 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1021))) (($) |has| |#4| (-170))) -(((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021))) (($) |has| |#3| (-170))) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) . T) (((-550)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) -((((-400 $) (-400 $)) |has| |#2| (-542)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-883)) -((((-1127) (-52)) . T)) -((((-550)) |has| #0=(-400 |#2|) (-619 (-550))) ((#0#) . T)) -((((-526)) . T) (((-219)) . T) (((-372)) . T) (((-866 (-372))) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) -(((|#1|) |has| |#1| (-170))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-837)) . T)) -((((-837)) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) (|has| |#1| (-825)) -(|has| |#1| (-1069)) -(((|#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) . T) (((-1150)) . T)) -((((-129)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((((-129)) . T)) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(|has| |#1| (-227)) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1| (-522 (-796 (-1145)))) . T)) -(((|#1| (-945)) . T)) -(((#0=(-844 |#1|) $) |has| #0# (-279 #0# #0#))) -((((-550) |#4|) . T)) -((((-550) |#3|) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) -(|has| |#1| (-1120)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -(|has| (-1214 |#1| |#2| |#3| |#4|) (-143)) -(|has| (-1214 |#1| |#2| |#3| |#4|) (-145)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1|) |has| |#1| (-170))) -((((-1145)) -12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) -(((|#2|) . T)) -(|has| |#1| (-1069)) -((((-1127) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -(|has| |#2| (-361)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1021))) -((((-837)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((#0=(-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) #0#) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) -((((-550) |#1|) . T)) -((((-837)) . T)) -((((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526)))) (((-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372))))) (((-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) -((((-837)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(((|#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1| (-57 |#1|) (-57 |#1|)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +(((|#1| |#1|) . T)) +((((-838)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-536)) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-536)) . T) (((-400 (-536))) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((((-536)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((((-536)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-381) (-1091)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-536) (-112)) . T)) +((((-536) (-112)) . T)) +((((-536) (-112)) . T)) +((((-525)) . T)) +((((-112)) . T)) +((((-838)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-525)) . T)) +((((-838)) . T)) +((((-838)) . T)) ((($) . T)) -((((-837)) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((((-838)) . T)) ((($) . T)) +((($ $) . T)) ((($) . T)) ((($) . T)) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) . T)) -((((-837)) . T)) -(|has| (-1213 |#2| |#3| |#4|) (-145)) -(|has| (-1213 |#2| |#3| |#4|) (-143)) -(((|#2|) |has| |#2| (-1069)) (((-550)) -12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (((-400 (-550))) -12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (((|#1|) . T)) -(|has| |#1| (-1069)) -((((-837)) . T)) +((((-838)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-116 |#1|)) . T) (((-400 (-536))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +((((-116 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-116 |#1|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-116 |#1|)) . T)) +((((-1147) #1=(-116 |#1|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) +(((#1=(-116 |#1|)) |has| #1# (-302 #1#))) +(((#1=(-116 |#1|) $) |has| #1# (-279 #1# #1#))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) (((|#1|) . T)) -((((-550) |#1|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -((((-837)) |has| |#1| (-1069))) -(-1489 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021)) (|has| |#1| (-1081))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -((((-884 |#1|)) . T)) -((((-400 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-550) |#1|))) -((((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-825)) -(((|#1|) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) (((|#1|) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -(|has| |#1| (-356)) -(-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) -(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) -(|has| |#1| (-356)) -((((-550)) . T)) -(|has| |#1| (-15 * (|#1| (-749) |#1|))) -((((-1111 |#2| (-400 (-926 |#1|)))) . T) (((-400 (-926 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) (((|#1|) . T)) -((((-550) |#1|) . T)) -(((|#2|) . T)) -(-1489 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) (((|#1|) . T)) -((((-1145)) -12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) -(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -((($ $) |has| |#1| (-542))) -(((#0=(-677) (-1141 #0#)) . T)) -((((-837)) . T)) -((((-837)) . T) (((-1228 |#4|)) . T)) -((((-837)) . T) (((-1228 |#3|)) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -((($) |has| |#1| (-542))) -((((-837)) . T)) -((($) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((#1=(-1220 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1220 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -(((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) -(((|#3|) |has| |#3| (-1021))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(|has| |#1| (-1069)) -(((|#2| (-797 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-356)) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1051) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-884 |#1|)) . T)) -((((-142)) . T)) -((((-142)) . T)) -(((|#3|) |has| |#3| (-1069)) (((-550)) -12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069))) (((-400 (-550))) -12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069)))) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) (((|#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -(|has| |#1| (-356)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -((((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(|has| |#2| (-798)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-823)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -(((|#1| |#2|) . T)) -((((-1145)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) -((((-1127) |#1|) . T)) -(((|#1| |#2| |#3| (-522 |#3|)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -((((-837)) . T)) (((|#1|) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(|has| |#1| (-361)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-550)) . T)) -((((-550)) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -((((-837)) . T)) -((((-837)) . T)) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1021))) -((((-1145) #0=(-844 |#1|)) |has| #0# (-505 (-1145) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) -(((|#1|) . T)) -((((-550) |#4|) . T)) -((((-550) |#3|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -((((-400 (-550))) . T) (((-550)) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1| |#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (((|#1|) . T)) +((((-142)) . T) (((-749)) . T) (((-838)) . T)) +((((-128)) . T)) +((((-128)) . T)) +((((-838)) . T)) +((((-128)) . T)) +((((-536) (-128)) . T)) +((((-536) (-128)) . T)) +((((-536) (-128)) . T)) +((((-128)) . T)) +((((-128)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-749)) . T)) +((((-838)) . T)) +((((-536) (-749)) . T) ((|#3| (-749)) . T)) +((((-838)) . T)) +(((|#3|) . T)) +(((|#3| (-749)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-620 (-142))) . T) (((-1129)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +(|has| |#1| (-799)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-343))) +((((-838)) . T)) +(|has| |#1| (-145)) (((|#1|) . T)) -((($) . T) (((-550)) . T) (((-400 (-550))) . T)) -((((-550)) . T)) -((((-550)) . T)) -((($) . T) (((-550)) . T) (((-400 (-550))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +((((-1147)) |has| |#1| (-874 (-1147)))) +(-3886 (|has| |#1| (-227)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(((|#1|) . T)) +((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(((|#1|) |has| |#1| (-302 |#1|))) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) (((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) (((|#1|) . T)) +((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) (((|#1|) . T)) -(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) |has| |#1| (-542))) -((((-550) |#4|) . T)) -((((-550) |#3|) . T)) -((((-837)) . T)) -((((-550)) . T) (((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) -((((-550) |#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1| (-1141 |#1|)) . T)) +(((|#1| (-1141 |#1|)) . T)) +((($) -3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +(((|#1| (-1141 |#1|)) . T)) +(|has| |#1| (-343)) +(|has| |#1| (-343)) +(|has| |#1| (-343)) +(-3886 (|has| |#1| (-361)) (|has| |#1| (-343))) +(|has| |#1| (-825)) (((|#1|) . T)) -((($ $) . T) ((#0=(-839 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1145) $) . T) ((#0# |#1|) . T)) +((((-166 (-219))) |has| |#1| . #1=((-994))) (((-166 (-371))) |has| |#1| . #1#) (((-525)) |has| |#1| (-596 (-525))) (((-1141 |#1|)) . T) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371))))) +(-12 (|has| |#1| (-300)) (|has| |#1| (-884))) +(-12 (|has| |#1| (-976)) (|has| |#1| (-1169))) +(|has| |#1| (-1169)) +(|has| |#1| (-1169)) +(|has| |#1| (-1169)) +(|has| |#1| (-1169)) +(|has| |#1| (-1169)) +(|has| |#1| (-1169)) +(((|#1|) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T) ((#2=(-400 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-400 (-536))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-536)) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-536)) . T) (((-400 (-536))) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((((-536)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((((-536)) . T)) +((((-838)) . T) (((-1152)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-307 |#1|)) . T)) +((((-838)) . T)) +((((-307 |#1|)) . T) (($) . T)) +((((-307 |#1|)) . T)) +((((-536)) . T) (((-400 (-536))) . T)) +((((-371)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-525)) . T) (((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1|) . T)) +(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((|#2|) |has| |#2| (-170))) -((($) -1489 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) ((|#2|) |has| |#2| (-170)) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) -(((|#2| |#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($ $) |has| |#2| (-170))) -((((-142)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) -((((-837)) . T)) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($) |has| |#2| (-170))) -(((|#1|) . T)) -((((-837)) . T)) -(|has| |#1| (-1069)) -(|has| $ (-145)) -((((-550) |#1|) . T)) -((($) -1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) -(|has| |#1| (-356)) -(-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) -(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) -(|has| |#1| (-356)) -(|has| |#1| (-15 * (|#1| (-749) |#1|))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) +((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(|has| |#2| (-170)) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1023))) +((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) +(|has| |#2| (-361)) +(((|#2|) |has| |#2| (-1023))) +(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) +(((|#2|) |has| |#2| (-1072))) +(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) +((((-536) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T)) +((((-536) |#2|) . T)) +((((-536) |#2|) . T)) +(|has| |#2| (-771)) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(((|#2|) |has| |#2| (-356))) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-837)) . T)) -((((-550) (-129)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(((|#2| (-522 (-839 |#1|))) . T)) -((((-837)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (((|#1|) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-565 |#1|)) . T)) -((($) . T)) -(((|#1|) . T) (($) . T)) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -(((|#4|) . T)) -(((|#3|) . T)) -((((-844 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -((((-1145)) -12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) -(((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-550) |#2|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((#1=(-1143 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -(((|#2|) |has| |#2| (-1021))) -(|has| |#1| (-1069)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1143 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -(((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) -(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((((-837)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -(((#0=(-1051) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-356))) -(((|#2|) |has| |#2| (-1069)) (((-550)) -12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (((-400 (-550))) -12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) -((((-550) |#1|) . T)) -((((-837)) . T)) -((((-400 |#2|) |#3|) . T)) -(((|#1| (-400 (-550))) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T) (((-1150)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#2| |#3| (-839 |#1|)) . T)) -((((-1145)) |has| |#2| (-874 (-1145)))) (((|#1|) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -(((|#1| (-749) (-1051)) . T)) -((((-400 (-550))) |has| |#2| (-356)) (($) . T)) -(((|#1| (-522 (-1057 (-1145))) (-1057 (-1145))) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) +(|has| |#1| (-825)) (((|#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(|has| |#2| (-771)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#2| (-823)) -((((-867 |#1|)) . T) (((-797 |#1|)) . T)) -((((-797 (-1145))) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-623 (-550))) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -(|has| |#1| (-227)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((($ $) . T)) -(((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-1220 |#1| |#2| |#3|) $) -12 (|has| (-1220 |#1| |#2| |#3|) (-279 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) (((|#1|) . T)) -((((-1109 |#1| |#2|)) |has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#2|) . T) (((-550)) |has| |#2| (-1012 (-550))) (((-400 (-550))) |has| |#2| (-1012 (-400 (-550))))) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((($) . T)) +((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) ((($) . T)) +(((|#2| (-233 (-4311 |#1|) (-749))) . T)) (((|#2|) . T)) -(((|#3|) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#2|) . T)) -((((-837)) -1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-837))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) (((-1228 |#2|)) . T)) -(((|#1|) |has| |#1| (-170))) -((((-550)) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-550) (-142)) . T)) -((($) -1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) ((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021)))) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) -(((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) -(((|#2|) |has| |#1| (-356))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) . T) (($ $) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| (-522 #0=(-1145)) #0#) . T)) -(((|#1|) . T) (($) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((|#2| (-233 (-4311 |#1|) (-749))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) +((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-825)) +((((-839 |#1|)) . T)) +(|has| |#2| (-884)) +(|has| |#2| (-884)) +((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) +(((|#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) . T)) +((((-838)) . T)) +(((|#4|) |has| |#4| (-170))) +(-3886 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1023))) +(-3886 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1023))) +(-3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) +(-3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) +(((|#3|) . T) ((|#2|) . T) (($) -3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) ((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023)))) +(((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)))) +((((-838)) . T) (((-1229 |#4|)) . T)) (|has| |#4| (-170)) +(((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023))) (($) |has| |#4| (-170))) +(((|#4| |#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023))) (($ $) |has| |#4| (-170))) +(((|#4|) |has| |#4| (-1023))) +((((-1147)) -12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) +(-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) +(|has| |#4| (-361)) +(((|#4|) |has| |#4| (-1023))) +(((|#4|) |has| |#4| (-1023)) (((-536)) -12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023)))) +(((|#4|) |has| |#4| (-1072))) +(((|#4|) |has| |#4| (-1072)) (((-536)) -12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072))) (((-400 (-536))) -12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072)))) +((((-536) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) . T)) +((((-536) |#4|) . T)) +((((-536) |#4|) . T)) +(|has| |#4| (-771)) +(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) +(|has| |#4| (-823)) +(|has| |#4| (-823)) +(((|#4|) |has| |#4| (-356))) +(((|#1| |#4|) . T)) +(((|#3|) |has| |#3| (-170))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(((|#2|) . T) (($) -3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) ((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023)))) +(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) +((((-838)) . T) (((-1229 |#3|)) . T)) (|has| |#3| (-170)) -(((#0=(-400 (-926 |#1|)) #0#) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(|has| |#1| (-1069)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(|has| |#1| (-1069)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-837)) . T) (((-1150)) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T)) -((((-400 (-926 |#1|))) . T)) -((((-550) (-129)) . T)) -(((|#1|) |has| |#1| (-170))) -((((-129)) . T)) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-837)) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1021)) (((-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))) -(((|#1| |#2|) . T)) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1021))) +(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($) |has| |#3| (-170))) +(((|#3| |#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($ $) |has| |#3| (-170))) +(((|#3|) |has| |#3| (-1023))) +((((-1147)) -12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) +(-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) +(|has| |#3| (-361)) +(((|#3|) |has| |#3| (-1023))) +(((|#3|) |has| |#3| (-1023)) (((-536)) -12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) +(((|#3|) |has| |#3| (-1072))) +(((|#3|) |has| |#3| (-1072)) (((-536)) -12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (((-400 (-536))) -12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) +((((-536) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) . T)) +((((-536) |#3|) . T)) +((((-536) |#3|) . T)) (|has| |#3| (-771)) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) (|has| |#3| (-823)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(((|#2|) . T)) -((((-550) (-129)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-550) |#2|) . T)) -(((|#1| (-1125 |#1|)) |has| |#1| (-823))) -(|has| |#1| (-1069)) -(((|#1|) . T)) -(-12 (|has| |#1| (-356)) (|has| |#2| (-1120))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#1| (-1069)) -(((|#2|) . T)) -((((-526)) |has| |#2| (-596 (-526))) (((-866 (-372))) |has| |#2| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#2| (-596 (-866 (-550))))) -(((|#4|) -1489 (|has| |#4| (-170)) (|has| |#4| (-356)))) -(((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)))) -((((-837)) . T)) -(((|#1|) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-883))) -((($ $) . T) ((#0=(-1145) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-796 (-1145)) |#1|) . T) ((#1# $) . T)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -((((-550) |#2|) . T)) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((($) -1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) ((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021)))) -((((-550) |#1|) . T)) -(|has| (-400 |#2|) (-145)) -(|has| (-400 |#2|) (-143)) -(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-400 (-550))) . T)) -((((-837)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-837)) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-381) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#2| (-1120)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-1181)) . T) (((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -(((|#1|) . T)) -((((-381) (-1127)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-116 |#1|)) . T)) -(|has| |#1| (-542)) -((((-129)) . T)) -((((-550) |#1|) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(((|#2|) . T)) -((((-837)) . T)) -((((-797 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -((((-1145) (-52)) . T)) +(|has| |#3| (-823)) +(((|#3|) |has| |#3| (-356))) +(((|#1| |#3|) . T)) +((((-838)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-170))) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#2|) |has| |#2| (-302 |#2|))) -(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((((-838)) . T)) +(|has| |#1| (-227)) +((($) . T)) +(((|#1| (-522 |#3|) |#3|) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) (((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371))))) +((((-1147)) |has| |#1| (-874 (-1147))) ((|#3|) . T)) +(|has| |#1| (-825)) +((($ $) . T) ((|#2| $) |has| |#1| . #1=((-227))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-1141 |#1|)) . T)) -(|has| $ (-145)) -(((|#2|) . T)) -(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -((($) . T) (((-550)) . T) (((-400 (-550))) . T)) -(|has| |#2| (-361)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -((((-550)) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1| (-522 |#3|)) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T)) +(((|#1| (-522 |#3|)) . T)) +((((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) (((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525))))) +((((-1096 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-522 |#3|)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +((((-838)) . T)) +((($) . T)) +((($) . T)) +((((-838)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-838)) . T)) +(((|#1|) |has| |#1| (-356))) +((((-1147)) |has| |#1| (-874 (-1147)))) +(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)))) +(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023)))) +(((|#1| |#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023)))) +(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023))) (($) -3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)))) +(-3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(|has| |#1| (-465)) +(-3886 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072))) +((((-112)) |has| |#1| (-1072)) (((-838)) -3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072))) +((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|))) (((|#1| |#2|) . T)) +((((-838)) . T)) (((|#1| |#2|) . T)) -((((-550)) . T) (((-400 (-550))) . T) (($) . T)) -((((-1143 |#1| |#2| |#3|) $) -12 (|has| (-1143 |#1| |#2| |#3|) (-279 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((($ $) . T)) -((($ $) . T)) -((((-837)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((#0=(-1220 |#1| |#2| |#3|) #0#) -12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1145) #0#) -12 (|has| (-1220 |#1| |#2| |#3|) (-505 (-1145) (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) -(-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))) -(((|#1|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +(|has| (-1216 |#1| |#2| |#3| |#4|) (-143)) +(|has| (-1216 |#1| |#2| |#3| |#4|) (-145)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-1216 |#1| |#2| |#3| |#4|)) . T) (((-400 (-536))) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-536))) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-1216 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1147) #1=(-1216 |#1| |#2| |#3| |#4|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) +(((#1=(-1216 |#1| |#2| |#3| |#4|)) |has| #1# (-302 #1#))) +(((#1=(-1216 |#1| |#2| |#3| |#4|) $) |has| #1# (-279 #1# #1#))) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1210 |#2| |#3| |#4|)) . T) (((-1216 |#1| |#2| |#3| |#4|)) . T)) +((((-1216 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(((|#1|) |has| |#1| (-543))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +((((-838)) . T)) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-543)) (|has| |#1| (-1023)) (|has| |#1| (-1083))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-543)) (|has| |#1| (-1023)) (|has| |#1| (-1083))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-593 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543)) (((-400 (-536))) |has| |#1| (-543))) +((($) -3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-543))) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543)) (((-400 (-536))) |has| |#1| (-543))) +(|has| |#1| (-543)) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-543)) (($) |has| |#1| (-543))) +(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-400 (-536)) #1#) |has| |#1| (-543)) (($ $) |has| |#1| (-543))) +(|has| |#1| (-543)) +(((|#1|) |has| |#1| (-1023))) +(((|#1|) |has| |#1| (-1023)) (((-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) +(((|#1|) . T)) +((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) (((|#1|) . T)) +(|has| |#1| (-465)) +((((-1147)) |has| |#1| (-1023))) (((|#1|) . T)) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-400 (-550))) . T) (((-550)) . T)) -((((-550) (-142)) . T)) -((((-142)) . T)) +((((-525)) |has| |#1| (-596 (-525))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371))))) +((((-48)) -12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (((-593 $)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) -3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))) (((-400 (-920 |#1|))) |has| |#1| (-543)) (((-920 |#1|)) |has| |#1| (-1023)) (((-1147)) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) -((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-112)) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +((((-838)) . T)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-400 (-536))) . T)) +(((|#1| (-400 (-536))) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1|) . T)) +(((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +(((|#1| (-400 (-536)) (-1053)) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +((($ $) . T)) +(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) (((|#1|) . T)) -((((-526)) |has| |#1| (-596 (-526))) (((-219)) . #0=(|has| |#1| (-996))) (((-372)) . #0#)) -((((-837)) . T)) -(|has| |#1| (-798)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) (|has| |#1| (-825)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -(|has| |#1| (-542)) -(|has| |#1| (-883)) -(((|#1|) . T)) -(|has| |#1| (-1069)) -((((-837)) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| (-1228 |#1|) (-1228 |#1|)) . T)) -((((-550) (-142)) . T)) -((($) . T)) -(-1489 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1021))) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-1150)) . T) (((-837)) . T)) -((((-837)) . T)) -(|has| |#1| (-1069)) -(((|#1| (-945)) . T)) -(((|#1| |#1|) . T)) -((($) . T)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-12 (|has| |#1| (-465)) (|has| |#2| (-465))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) (((|#1|) . T)) -(|has| |#2| (-771)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#2| (-823)) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-837)) . T)) -(|has| |#1| (-342)) +(((|#1| (-536)) . T)) +(((#1=(-536) #1#) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-838)) . T)) +((((-838)) . T)) (((|#1|) . T)) +(((|#1| (-749)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-400 (-550))) . T) (($) . T)) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) . T)) -(|has| |#1| (-806)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -(|has| |#1| (-1069)) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((($) |has| |#1| (-542))) -(((|#4|) |has| |#4| (-1069))) -(((|#3|) |has| |#3| (-1069))) -(|has| |#3| (-361)) -(((|#1|) . T) (((-837)) . T)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1220 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((((-837)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(((|#1| |#2|) . T)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1| |#1|) |has| |#1| (-170))) -(|has| |#2| (-356)) +(|has| |#1| (-825)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-400 (-550))) . T) (((-550)) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -((((-142)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) -((($) -1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) ((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021)))) -((((-142)) . T)) -((((-142)) . T)) -(((|#1| |#2| |#3|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-1147)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T) (($) . T)) +(((|#3|) . T)) +((($) . T)) +((($ $) . T) (((-593 $) $) . T)) +((((-838)) . T)) +(((|#3|) . T) (((-593 $)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) (|has| $ (-145)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) (|has| $ (-145)) -(|has| |#1| (-1069)) -((((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1021)) (|has| |#1| (-1081))) -((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|))) -(((|#1| (-400 (-550))) . T)) -(((|#1|) . T)) -((((-1145)) . T)) -(|has| |#1| (-542)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-542)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(((|#2|) . T) (($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(|has| |#4| (-823)) -(((|#2| (-234 (-3307 |#1|) (-749)) (-839 |#1|)) . T)) -(|has| |#3| (-823)) -(((|#1| (-522 |#3|) |#3|) . T)) +((((-880 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-143)) -(((#0=(-400 (-550)) #0#) |has| |#2| (-356)) (($ $) . T)) -((((-844 |#1|)) . T)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) (|has| |#1| (-145)) (|has| |#1| (-361)) (|has| |#1| (-361)) (|has| |#1| (-361)) -(|has| |#1| (-143)) -((((-400 (-550))) |has| |#2| (-356)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-342)) (|has| |#1| (-361))) -((((-1111 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-170)) -(((|#1| |#2|) . T)) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1021))) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -((((-837)) . T)) +(|has| |#1| (-361)) +(((|#1|) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(|has| $ (-145)) +((((-880 |#1|)) . T)) +(((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -((((-677)) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(|has| |#1| (-542)) (((|#1|) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) (((|#1|) . T)) -((((-1145) (-52)) . T)) -((((-837)) . T)) -((((-526)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) (((|#1|) . T)) -((((-837)) . T)) -((((-526)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -(((|#1| (-550)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-400 (-550))) . T)) -(((|#3|) . T) (((-594 $)) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((#0=(-1143 |#1| |#2| |#3|) #0#) -12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1145) #0#) -12 (|has| (-1143 |#1| |#2| |#3|) (-505 (-1145) (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) -((((-837)) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) (((|#1|) . T)) -(((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T)) -((((-1145) (-52)) . T)) -(((|#3|) . T)) -((($ $) . T) ((#0=(-839 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-806)) -(|has| |#1| (-1069)) -(((|#2| |#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($ $) |has| |#2| (-170))) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($) |has| |#2| (-170))) -((((-749)) . T)) -((((-550)) . T)) -(|has| |#1| (-542)) -((((-837)) . T)) -(((|#1| (-400 (-550)) (-1051)) . T)) -(|has| |#1| (-143)) (((|#1|) . T)) -(|has| |#1| (-542)) -((((-550)) . T)) -((((-116 |#1|)) . T)) (((|#1|) . T)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) (|has| |#1| (-145)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -((((-866 (-550))) . T) (((-866 (-372))) . T) (((-526)) . T) (((-1145)) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-837)) . T) (((-1150)) . T)) -((($) . T)) -((((-837)) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(((|#2|) |has| |#2| (-170))) -((($) -1489 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) ((|#2|) |has| |#2| (-170)) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) -((((-844 |#1|)) . T)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) -(|has| |#2| (-1120)) -(((#0=(-52)) . T) (((-2 (|:| -3549 (-1145)) (|:| -3859 #0#))) . T)) -(((|#1| |#2|) . T)) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -(((|#1| (-550) (-1051)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| (-400 (-550)) (-1051)) . T)) -((($) -1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((((-550) |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(|has| |#2| (-361)) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) -((((-837)) . T)) -((((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1143 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) . T)) -(|has| |#1| (-342)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(|has| |#1| (-542)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -(((|#1| |#2|) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -((((-400 (-550))) . T) (((-550)) . T)) -((((-550)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-844 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -((((-837)) . T)) -(((|#3| |#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021))) (($ $) |has| |#3| (-170))) -(|has| |#1| (-996)) -((((-837)) . T)) -(((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021))) (($) |has| |#3| (-170))) -((((-550) (-112)) . T)) -(((|#1|) |has| |#1| (-302 |#1|))) (|has| |#1| (-361)) (|has| |#1| (-361)) (|has| |#1| (-361)) -((((-1145) $) |has| |#1| (-505 (-1145) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|))) -((((-1145)) |has| |#1| (-874 (-1145)))) -(-1489 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342))) -((((-381) (-1089)) . T)) -(((|#1| |#4|) . T)) -(((|#1| |#3|) . T)) +(|has| |#1| (-361)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) ((((-381) |#1|) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(|has| |#1| (-1069)) -((((-837)) . T)) -((((-837)) . T)) -((((-884 |#1|)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) +((((-536)) . T) (((-400 (-536))) . T)) +((((-371)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-525)) . T) (((-1129)) . T) (((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) +((((-219)) . T) (((-838)) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) |has| |#1| (-170))) (((|#1| |#2|) . T)) -((($) . T)) +(((|#1|) . T)) +((((-838)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) -(((#0=(-844 |#1|)) |has| #0# (-302 #0#))) -(((|#1| |#2|) . T)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (((|#1|) . T)) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#1| (-1167)) -(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1021))) -(((|#3|) |has| |#3| (-1021))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(|has| |#1| (-356)) -((((-550)) . T) (((-400 (-550))) . T) (($) . T)) -((($ $) . T) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-550) |#3|) . T)) -((((-837)) . T)) -((((-526)) |has| |#3| (-596 (-526)))) -((((-667 |#3|)) . T) (((-837)) . T)) +((((-838)) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -((($) . T)) -(((#0=(-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) -(|has| |#2| (-825)) -((($) . T)) -(((|#2|) |has| |#2| (-1069))) -((((-837)) -1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-837))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) (((-1228 |#2|)) . T)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -((((-1127) (-52)) . T)) (|has| |#1| (-825)) -((((-837)) . T)) -((((-550)) |has| #0=(-400 |#2|) (-619 (-550))) ((#0#) . T)) -((((-550) (-142)) . T)) -((((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-837)) . T)) -((((-884 |#1|)) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) -(|has| |#1| (-823)) -(|has| |#1| (-356)) -(|has| |#1| (-823)) -(((|#1|) . T) (($) . T)) -(|has| |#1| (-823)) -((((-1145)) |has| |#1| (-874 (-1145)))) -(((|#1| (-1145)) . T)) -(((|#1| (-1228 |#1|) (-1228 |#1|)) . T)) -((((-837)) . T) (((-1150)) . T)) -(((|#1| |#2|) . T)) -((($ $) . T)) -(|has| |#1| (-1069)) -(((|#1| (-1145) (-796 (-1145)) (-522 (-796 (-1145)))) . T)) -((((-400 (-926 |#1|))) . T)) -((((-526)) . T)) -((((-837)) . T)) -((($) . T)) -(((|#2|) . T) (($) . T)) -((((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) +((((-838)) . T)) +((((-838)) . T)) (((|#3|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883)))) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#3|) . T)) +((((-838)) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-400 |#2|)) . T)) +((((-838)) . T)) +(|has| |#1| (-1188)) +((((-525)) |has| |#1| (-596 (-525))) (((-219)) . #1=(|has| |#1| (-994))) (((-371)) . #1#)) +(|has| |#1| (-994)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-1188))) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) +((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|))) +((((-1147) $) |has| |#1| (-505 (-1147) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|))) (((|#1|) . T)) -((((-526)) |has| |#1| (-596 (-526))) (((-866 (-372))) |has| |#1| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#1| (-596 (-866 (-550))))) -((((-837)) . T)) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#2| (-823)) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1021))) -(|has| |#1| (-542)) -(|has| |#1| (-1120)) -((((-1127) |#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-550))) (((-550)) |has| |#1| (-1012 (-550))) (((-1145)) |has| |#1| (-1012 (-1145))) ((|#1|) . T)) -((((-550) |#2|) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -((((-550)) |has| |#1| (-860 (-550))) (((-372)) |has| |#1| (-860 (-372)))) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) -(((|#1|) . T)) -((((-623 |#4|)) . T) (((-837)) . T)) -((((-526)) |has| |#4| (-596 (-526)))) -((((-526)) |has| |#4| (-596 (-526)))) -((((-837)) . T) (((-623 |#4|)) . T)) -((($) |has| |#1| (-823))) +(|has| |#1| (-227)) +((((-1147)) |has| |#1| (-874 (-1147)))) (((|#1|) . T)) -((((-623 |#4|)) . T) (((-837)) . T)) -((((-526)) |has| |#4| (-596 (-526)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1145)) |has| (-400 |#2|) (-874 (-1145)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-837)) -1489 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-595 (-837))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021)) (|has| |#3| (-1069))) (((-1228 |#3|)) . T)) -((((-550) |#2|) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#2| |#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($ $) |has| |#2| (-170))) -((((-837)) . T)) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((|#2|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-1127) (-1145) (-550) (-219) (-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T)) -((((-550) (-112)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-112)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1021))) (($) |has| |#2| (-170))) -(|has| $ (-145)) -((((-400 |#2|)) . T)) -((((-400 (-550))) |has| #0=(-400 |#2|) (-1012 (-400 (-550)))) (((-550)) |has| #0# (-1012 (-550))) ((#0#) . T)) -(((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-170))) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(((|#3|) |has| |#3| (-170))) -(|has| |#1| (-145)) +(((|#1|) . T) (($) . T)) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(-12 (|has| |#1| (-535)) (|has| |#1| (-799))) +((((-838)) . T)) (|has| |#1| (-143)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(|has| |#1| (-145)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(|has| |#1| (-145)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) (|has| |#1| (-145)) (((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-227)) -((((-837)) . T) (((-1150)) . T)) -((((-1145) (-52)) . T)) -((((-837)) . T)) -((((-837)) . T) (((-1150)) . T)) -(((|#1| |#1|) . T)) -((((-1145)) |has| |#2| (-874 (-1145)))) -((((-550) (-112)) . T)) -(|has| |#1| (-542)) -(((|#2|) . T)) -(((|#2|) . T)) +((((-1147)) |has| |#1| (-874 (-1147)))) +(|has| |#1| (-227)) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) ((|#1|) . T) (((-400 (-536))) . T)) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(((|#1|) |has| |#1| (-302 |#1|))) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) +(((|#1|) . T)) +((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(-3886 (|has| |#1| (-798)) (|has| |#1| (-825))) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(((|#1|) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-994)) +((((-525)) |has| |#1| (-596 (-525))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-371)) . #1=(|has| |#1| (-994))) (((-219)) . #1#)) +((((-400 (-536))) |has| |#1| . #1=((-1012 (-536)))) (((-536)) |has| |#1| . #1#) (((-1147)) |has| |#1| (-1012 (-1147))) ((|#1|) . T)) +(|has| |#1| (-1122)) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1|) . T)) +((((-838)) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) (((|#1| |#1|) . T)) +(((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#3|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1|) . T)) -((((-837)) . T)) -((((-526)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-973 |#1|)) . T) ((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-400 (-550))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1141 |#1|)) . T)) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -(((|#3|) . T) (($) . T)) -(|has| |#1| (-825)) -(((|#2|) . T)) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -((((-550) |#2|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#2|) . T)) -((((-550) |#3|) . T)) -(((|#2|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T)) -(|has| |#1| (-1069)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -(|has| |#1| (-38 (-400 (-550)))) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-381) (-1129)) . T)) +((((-838)) . T)) +((((-400 (-920 |#1|))) . T)) +((((-400 (-920 |#1|))) . T)) +((((-1113 |#2| (-400 (-920 |#1|)))) . T) (((-400 (-920 |#1|))) . T)) +((((-838)) . T)) +((((-400 (-920 |#1|))) . T)) +(((#1=(-400 (-920 |#1|)) #1#) . T)) +((((-400 (-920 |#1|))) . T)) +((((-400 (-920 |#1|))) . T)) +((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((($) . T)) +(((|#2| |#3|) . T)) (((|#2|) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#2| |#2|) . T)) -(|has| |#2| (-356)) -(((|#2|) . T) (((-550)) |has| |#2| (-1012 (-550))) (((-400 (-550))) |has| |#2| (-1012 (-400 (-550))))) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((|#2| |#3|) . T)) (((|#2|) . T)) -((((-1127) (-52)) . T)) -(((|#2|) |has| |#2| (-170))) -((((-550) |#3|) . T)) -((((-550) (-142)) . T)) -((((-142)) . T)) -((((-837)) . T)) -((((-112)) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) +((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-825)) +((((-839 |#1|)) . T)) +(|has| |#2| (-884)) +(|has| |#2| (-884)) +((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) +(((|#2| |#3| (-839 |#1|)) . T)) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +((((-838)) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#4|) . T)) +((((-620 |#4|)) . T) (((-838)) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) . T)) +((((-525)) |has| |#4| (-596 (-525)))) +(((|#1| |#2| |#3| |#4|) . T)) +((((-838)) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +((((-838)) . T)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-400 (-536))) . T)) +(((|#1| (-400 (-536))) . T)) (|has| |#1| (-145)) -(((|#1|) . T)) (|has| |#1| (-143)) -((($) . T)) -(|has| |#1| (-542)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((($) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -((((-837)) . T)) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -((((-1127) (-52)) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1|) . T)) +(((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +(((|#1| (-400 (-536)) (-1053)) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +((($ $) . T)) +(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (((|#1| |#2|) . T)) -((((-550) (-142)) . T)) -(((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(|has| |#1| (-825)) -(((|#2| (-749) (-1051)) . T)) +((((-838)) . T)) (((|#1| |#2|) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -(|has| |#1| (-769)) -(((|#1|) |has| |#1| (-170))) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-525)) |has| |#4| (-596 (-525)))) (((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (((|#4|) . T)) +((((-838)) . T) (((-620 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-525)) . T) (((-400 (-1141 (-536)))) . T) (((-219)) . T) (((-371)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((((-371)) . T) (((-219)) . T) (((-838)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-838)) . T) (((-1152)) . T)) (((|#1| |#2|) . T)) -(-1489 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145)))) -(-1489 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))) -(((|#4|) . T)) -(|has| |#1| (-143)) -((((-1127) |#1|) . T)) -(|has| |#1| (-145)) -(((|#1|) . T)) -((((-550)) . T)) -((((-837)) . T)) +((((-838)) . T)) (((|#1| |#2|) . T)) -((((-837)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#3|) . T)) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-837)) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069))) (((-932 |#1|)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#2| (-356)) -(((|#1|) |has| |#1| (-170))) -(((|#2|) |has| |#2| (-1021))) -((((-1127) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -(((|#2| (-867 |#1|)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) ((($) . T)) -((((-381) (-1127)) . T)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) -1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-837))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) (((-1228 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3549 (-1127)) (|:| -3859 #0#))) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -((((-142)) . T)) +(((|#2| (-474 (-4311 |#1|) (-749))) . T)) +(((|#2|) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(|has| |#1| (-465)) -(-1489 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) -(|has| |#1| (-356)) -((((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((($) |has| |#1| (-542))) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-837)) . T)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1220 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((|#2| (-474 (-4311 |#1|) (-749))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) +((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-825)) +((((-839 |#1|)) . T)) +(|has| |#2| (-884)) +(|has| |#2| (-884)) +((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) +(((|#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) . T)) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(((|#2|) |has| |#2| (-170))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) +((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(|has| |#2| (-170)) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1023))) +((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) +(|has| |#2| (-361)) +(((|#2|) |has| |#2| (-1023))) +(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) +(((|#2|) |has| |#2| (-1072))) +(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) +((((-536) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T)) +((((-536) |#2|) . T)) +((((-536) |#2|) . T)) +(|has| |#2| (-771)) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(((|#2|) |has| |#2| (-356))) (((|#1| |#2|) . T)) -((((-1145)) |has| |#1| (-874 (-1145)))) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) -((((-837)) . T)) -(|has| |#1| (-1069)) -(((|#2| (-474 (-3307 |#1|) (-749)) (-839 |#1|)) . T)) -((((-400 (-550))) . #0=(|has| |#2| (-356))) (($) . #0#)) -(((|#1| (-522 (-1145)) (-1145)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) +((((-838)) . T) (((-1152)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) (((|#1|) . T)) -(|has| |#2| (-170)) -(((|#2| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +((((-838)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-838)) . T)) +((((-536)) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-536)) . T) (((-400 (-536))) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((((-536)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((((-536)) . T)) +((((-1129)) . T) (((-838)) . T)) +((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((((-400 (-536))) . T) (($) . T)) +(((#1=(-400 (-536)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-593 $) $) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (((-536)) . T) (((-593 $)) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-1145) (-52)) . T)) -((($ $) . T)) -(((|#1| (-550)) . T)) -((((-884 |#1|)) . T)) -(((|#1|) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1021))) (($) -1489 (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021)))) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -((((-550) |#2|) . T)) -((((-550)) . T)) -((((-1220 |#1| |#2| |#3|)) -12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (|has| |#1| (-825)) -((((-667 |#2|)) . T) (((-837)) . T)) +(((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(((|#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-536) (-112)) . T)) +((((-536) (-112)) . T)) +((((-536) (-112)) . T)) +((((-525)) . T)) +((((-112)) . T)) +((((-838)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-1147)) . T) (((-838)) . T) (((-1152)) . T)) (((|#1| |#2|) . T)) -((((-400 (-926 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#1|) |has| |#1| (-170))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)))) -(|has| |#2| (-825)) -(|has| |#1| (-825)) -(-1489 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-883))) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -((((-550) |#2|) . T)) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)))) -(|has| |#1| (-342)) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -((($) . T) (((-400 (-550))) . T)) -((((-550) (-112)) . T)) -(|has| |#1| (-798)) -(|has| |#1| (-798)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +((((-838)) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(|has| |#1| (-38 (-400 (-550)))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-1145)) |has| |#1| (-874 (-1145))) (((-1051)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) -(((#0=(-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#1| (-1069)) -((((-837)) . T) (((-1150)) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) +(|has| |#1| (-825)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) -(((|#3| |#3|) . T)) -(((|#2|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) (((|#1|) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -((((-837)) . T)) -((((-749)) . T) (((-837)) . T)) -(((|#1| (-749) (-1051)) . T)) -(((|#3|) . T)) (((|#1|) . T)) -((((-142)) . T)) -(((|#2|) |has| |#2| (-170))) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) +((((-838)) . T) (((-1152)) . T)) +((((-565 |#1|)) . T)) +((((-565 |#1|)) . T)) +((((-565 |#1|)) . T)) +((((-565 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +(((#1=(-565 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-565 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-565 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(|has| $ (-145)) +((((-565 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#3| (-170)) -(((|#4|) |has| |#4| (-356))) -(((|#3|) |has| |#3| (-356))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1| |#4| |#5|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-356))) -((((-837)) . T)) -(((|#2|) . T)) -(((|#1| (-1141 |#1|)) . T)) -((((-1051)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((($) . T) ((|#1|) . T) (((-400 (-550))) . T)) -(((|#2|) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -((($) |has| |#1| (-823))) -(|has| |#1| (-883)) -((((-837)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (((|#1|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((#0=(-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) #0#) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -(((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -(((|#1| |#2|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)))) (|has| |#1| (-825)) -(|has| |#1| (-542)) -((((-565 |#1|)) . T)) -((($) . T)) -(((|#2|) . T)) -(-1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-798))) (-12 (|has| |#1| (-356)) (|has| |#2| (-825)))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-884 |#1|)) . T)) -(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T)) -(((|#1| |#4| |#5|) . T)) -(((|#1| (-749)) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1143 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542)))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-650 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-526)) . T)) -((((-837)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#2|) . T)) -(-1489 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021)) (|has| |#3| (-1069))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -(|has| |#1| (-1167)) -(|has| |#1| (-1167)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) -(|has| |#1| (-1167)) -(|has| |#1| (-1167)) -(((|#3| |#3|) . T)) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -((($) . T) (((-400 (-550))) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T) ((#1=(-400 |#1|) #1#) . T) ((|#1| |#1|) . T)) -(((|#3|) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -((((-1127) (-52)) . T)) -(|has| |#1| (-1069)) -(-1489 (|has| |#2| (-798)) (|has| |#2| (-825))) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1|) . T)) +(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +((((-749) |#1|) . T)) +((((-838)) . T)) +((((-1074)) . T)) +((((-838)) . T)) +((((-1129) (-1147) (-536) (-219) (-838)) . T)) ((($) . T)) -((((-1143 |#1| |#2| |#3|)) -12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) -((((-837)) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) +((((-838)) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-837)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(|has| |#2| (-883)) -(|has| |#1| (-356)) -(((|#2|) |has| |#2| (-1069))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -((($) . T) ((|#2|) . T)) -((((-526)) . T) (((-400 (-1141 (-550)))) . T) (((-219)) . T) (((-372)) . T)) -((((-372)) . T) (((-219)) . T) (((-837)) . T)) -(|has| |#1| (-883)) -(|has| |#1| (-883)) -(|has| |#1| (-883)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) ((($ $) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) +((($) . T)) +((($) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-1129)) . T) (((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-536)) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) +((($) . T)) ((($ $) . T)) -((((-550) (-112)) . T)) ((($) . T)) +((((-838)) . T)) +((($) . T)) +((($) . T)) +((((-536)) . T)) (((|#1|) . T)) -((((-550)) . T)) -((((-112)) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1| (-550)) . T)) +((((-838)) . T)) +((($) . T)) +((((-838)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) ((($) . T)) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) (((|#1|) . T)) -((((-550)) . T)) -(((|#1| |#2|) . T)) -((((-1145)) |has| |#1| (-1021))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) +((((-536)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +(|has| $ (-145)) +((($) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +(((|#1|) . T)) +(((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T)) +((((-838)) . T)) +((((-400 (-536))) . T)) +((((-400 (-536))) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-536) (-142)) . T)) +((((-536) (-142)) . T)) +((((-536) (-142)) . T)) +((((-142)) . T)) +((((-838)) . T)) +((((-142)) . T)) +((((-142)) . T)) +(|has| |#1| (-15 * (|#1| (-536) |#1|))) +((((-838)) . T)) +((($ $) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) +(((|#1| (-536) (-1053)) . T)) +((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +(((|#1| (-536)) . T)) +(((|#1| (-536)) . T)) +((($) |has| |#1| (-543))) +((($ $) |has| |#1| (-543))) +((($) |has| |#1| (-543))) +((($) |has| |#1| (-543))) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +((($) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +(((|#1|) . T)) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) (((|#1|) . T)) -((((-837)) . T)) -(((|#1| (-550)) . T)) -(((|#1| (-1220 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-825)) (((|#1|) . T)) -(((|#1| (-400 (-550))) . T)) -(((|#1| (-1192 |#1| |#2| |#3|)) . T)) -(((|#1| (-749)) . T)) (((|#1|) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-837)) . T)) -(|has| |#1| (-1069)) -((((-1127) |#1|) . T)) -((($) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-143)) -(((|#1| (-522 (-796 (-1145))) (-796 (-1145))) . T)) -((((-837)) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1021))) -((((-550) (-112)) . T)) -((((-837)) |has| |#1| (-1069))) -(|has| |#2| (-170)) -((((-550)) . T)) -(|has| |#2| (-823)) +((((-128)) . T) (((-838)) . T)) +((((-1184)) . T) (((-838)) . T) (((-1152)) . T)) +(((|#1|) -3886 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#1|) |has| |#2| (-411 |#1|))) (((|#1|) . T)) -((((-550)) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-342))) -(|has| |#1| (-145)) -((((-837)) . T)) -(((|#3|) . T)) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-837)) . T)) -((((-1213 |#2| |#3| |#4|)) . T) (((-1214 |#1| |#2| |#3| |#4|)) . T)) -((((-837)) . T)) -((((-48)) -12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550)))) (((-594 $)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) -1489 (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550)))) (|has| |#1| (-1012 (-400 (-550))))) (((-400 (-926 |#1|))) |has| |#1| (-542)) (((-926 |#1|)) |has| |#1| (-1021)) (((-1145)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| (-749)) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-302 |#1|))) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -((((-550)) |has| |#1| (-860 (-550))) (((-372)) |has| |#1| (-860 (-372)))) (((|#1|) . T)) -(|has| |#1| (-542)) +(((|#2|) . T) (((-838)) . T)) (((|#1|) . T)) -((((-837)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((|#1|) |has| |#1| (-170))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#3|) |has| |#3| (-1069))) -(((|#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-1213 |#2| |#3| |#4|)) . T)) -((((-112)) . T)) -(|has| |#1| (-798)) -(|has| |#1| (-798)) -(((|#1| (-550) (-1051)) . T)) -((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|))) +((((-1129) |#1|) . T)) +((((-1129) |#1|) . T)) +((((-1129) |#1|) . T)) +((((-1129) |#1|) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-1129) |#1|) . T)) +((((-838)) . T)) +((((-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-525)) |has| |#1| (-596 (-525))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536))))) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) (|has| |#1| (-823)) (|has| |#1| (-823)) -(((|#1| (-550) (-1051)) . T)) -(-1489 (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1| (-400 (-550)) (-1051)) . T)) -(((|#1| (-749) (-1051)) . T)) -(|has| |#1| (-825)) -(((#0=(-884 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) (((|#2|) . T)) +((((-838)) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T) (($) . T)) +(((|#2|) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(|has| |#1| (-1069)) -((((-884 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-1069)) +(((|#2|) . T) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1069)) -((((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-550)))) ((|#2|) |has| |#1| (-356))) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -((((-837)) . T)) -(|has| |#3| (-823)) -((((-837)) . T)) -((((-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -((((-837)) . T)) -(((|#1| |#1|) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1021)))) -(((|#1|) . T)) -((((-550)) . T)) -((((-550)) . T)) -(((|#1|) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1021)))) -(((|#2|) |has| |#2| (-356))) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) -(|has| |#1| (-825)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) |has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-883))) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) . T) (((-550)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -((((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-227)) +((((-400 |#2|)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +(|has| |#2| (-227)) +((($) . T)) +((((-838)) . T)) +((((-1147)) |has| |#2| (-874 (-1147)))) +(((|#2|) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +((((-1129) (-51)) . T)) +((((-838)) . T)) +((((-1129) (-51)) . T)) +((((-1129) (-51)) . T)) +((((-1129) (-51)) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 #1#))) . T)) +(((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) +((((-1129) (-51)) . T)) +(((|#1|) -3886 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#1|) |has| |#2| (-411 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-838)) . T)) (((|#1|) . T)) -(((|#1| (-550)) . T)) -(|has| |#1| (-823)) -(((|#1| (-1143 |#1| |#2| |#3|)) . T)) -(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-799)) (((|#1|) . T)) -(((|#1| (-400 (-550))) . T)) -(((|#1| (-1136 |#1| |#2| |#3|)) . T)) -(((|#1| (-749)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-825)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-838)) . T) (((-1152)) . T)) +(((|#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-838)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T)) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(((|#1| |#2|) . T)) -((((-129)) . T)) -((((-142)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) . T) (($ $) . T)) -((((-837)) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| (-400 |#2|) (-227)) -(|has| |#1| (-883)) -(((|#2|) |has| |#2| (-1021))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(|has| |#1| (-356)) (((|#1|) |has| |#1| (-170))) +((((-838)) . T)) +(((|#1|) . T)) (((|#1| |#1|) . T)) -((((-844 |#1|)) . T)) -((((-837)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1069))) -(|has| |#2| (-825)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-400 (-550))) . T) (((-550)) . T) (((-594 $)) . T)) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -((((-837)) . T)) -((($) . T)) -(|has| |#1| (-825)) -((((-837)) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -(((|#1| (-550) (-1051)) . T)) -((((-884 |#1|)) . T)) -((((-837)) . T)) -(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-170))) +((((-838)) . T)) (((|#1|) . T)) -(((|#1| (-400 (-550)) (-1051)) . T)) -(((|#1| (-749) (-1051)) . T)) -(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-550)) -1489 (|has| (-400 (-550)) (-1012 (-550))) (|has| |#1| (-1012 (-550)))) (((-400 (-550))) . T)) -(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (($) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -(|has| |#2| (-227)) -(((|#2| (-522 (-839 |#1|)) (-839 |#1|)) . T)) -((((-837)) . T)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) . T)) -(((|#1| |#3|) . T)) -((((-837)) . T)) (((|#1|) |has| |#1| (-170))) -((((-677)) . T)) -((((-677)) . T)) -(((|#2|) |has| |#2| (-170))) -(|has| |#2| (-823)) -((((-112)) |has| |#1| (-1069)) (((-837)) -1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021)) (|has| |#1| (-1081)) (|has| |#1| (-1069)))) +((((-838)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) . T)) -((((-837)) . T)) -((((-550) |#1|) . T)) -((((-677)) . T) (((-400 (-550))) . T) (((-550)) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -((((-372)) . T)) -((((-677)) . T)) -((((-400 (-550))) . #0=(|has| |#2| (-356))) (($) . #0#)) (((|#1|) |has| |#1| (-170))) -((((-400 (-926 |#1|))) . T)) +(((|#1|) . T)) +((((-650 |#1|)) . T)) +(((|#2| (-650 |#1|)) . T)) +(((|#2|) . T)) (((|#2| |#2|) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) (((|#2|) . T)) -(|has| |#2| (-825)) -(((|#3|) |has| |#3| (-1021))) -(|has| |#2| (-883)) -(|has| |#1| (-883)) -(|has| |#1| (-356)) -(|has| |#1| (-825)) -((((-1145)) |has| |#2| (-874 (-1145)))) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-465)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-356)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1021)) (|has| |#1| (-1081))) -(|has| |#1| (-38 (-400 (-550)))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-342)) -((((-142)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((($) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#2|) . T) (((-837)) . T)) -(((|#2|) . T) (((-837)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-825)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) +((((-838)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (((|#2|) . T)) -(((|#3|) . T)) -((((-116 |#1|)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-6 (-4350 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-667 |#2|)) . T) (((-838)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-1147)) |has| |#2| (-874 (-1147)))) +(|has| |#2| (-227)) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) +(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T)) +(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +((((-838)) . T) (((-1152)) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1|) . T)) +((((-838)) . T) (((-1152)) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-1184)) . T) (((-838)) . T) (((-1152)) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1|) . T)) +(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) +((((-838)) . T)) +((((-677)) . T)) +((((-677)) . T)) +((((-677)) . T)) +((((-677)) . T)) +((((-677)) . T)) +((((-371)) . T)) +((((-677)) . T)) +(((#1=(-677) (-1141 #1#)) . T)) +(((#1=(-677) (-1141 #1#)) . T)) +(((#1=(-677) (-1141 #1#)) . T)) +((((-677)) . T)) +((((-166 (-219))) . T) (((-166 (-371))) . T) (((-1141 (-677))) . T) (((-864 (-371))) . T)) +((((-677)) . T)) +((((-400 (-536))) . T) (((-677)) . T) (($) . T)) +((((-400 (-536))) . T) (((-677)) . T) (($) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (((-677)) . T) (($) . T)) +(((#1=(-400 (-536)) #1#) . T) ((#2=(-677) #2#) . T) (($ $) . T)) +((((-400 (-536))) . T) (((-677)) . T) (($) . T)) +((((-677)) . T) (((-400 (-536))) . T) (((-536)) . T)) +((((-371)) . T) (((-536)) . T) (((-400 (-536))) . T)) +((((-371)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) +((((-838)) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((($) . T)) +((($) . T)) +((((-838)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-536)) . T)) +(((|#1|) . T) (((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) (|has| |#1| (-361)) -(|has| |#1| (-825)) -(((|#2|) . T) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -((((-116 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) (((|#1|) . T)) -((((-550)) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526))) (((-866 (-550))) |has| |#1| (-596 (-866 (-550)))) (((-866 (-372))) |has| |#1| (-596 (-866 (-372)))) (((-372)) . #0=(|has| |#1| (-996))) (((-219)) . #0#)) -(((|#1|) |has| |#1| (-356))) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((($ $) . T) (((-594 $) $) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((($) . T) (((-1214 |#1| |#2| |#3| |#4|)) . T) (((-400 (-550))) . T)) -((($) -1489 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-542))) -(|has| |#1| (-356)) +((((-838)) . T)) +((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) (|has| |#1| (-356)) -((((-372)) . T) (((-550)) . T) (((-400 (-550))) . T)) -((((-623 (-758 |#1| (-839 |#2|)))) . T) (((-837)) . T)) -((((-526)) |has| (-758 |#1| (-839 |#2|)) (-596 (-526)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-372)) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -((((-837)) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-883))) -(((|#1|) . T)) -(|has| |#1| (-825)) +(((|#1| (-749) (-1053)) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) (|has| |#1| (-825)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -(|has| |#1| (-1069)) -((((-837)) . T)) -((((-1145)) . T) (((-837)) . T) (((-1150)) . T)) -((((-400 (-550))) . T) (((-550)) . T) (((-594 $)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -((((-550)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(((#0=(-1213 |#2| |#3| |#4|)) . T) (((-400 (-550))) |has| #0# (-38 (-400 (-550)))) (($) . T)) -((((-550)) . T)) -(|has| |#1| (-356)) -(-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145))) -(-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))) -(|has| |#1| (-356)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-749)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -(|has| |#1| (-227)) -(|has| |#1| (-356)) -(((|#3|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-550)) |has| |#2| (-619 (-550))) ((|#2|) . T)) -(((|#2|) . T)) -(|has| |#1| (-1069)) -(((|#1| |#2|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -(((|#3|) |has| |#3| (-170))) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) -((((-837)) . T)) -((((-550)) . T)) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-400 (-550))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-837)) . T)) -(((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#0=(-400 (-550)) #0#) |has| |#1| (-356))) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -((($) . T)) -((((-550) |#1|) . T)) -((((-1145)) |has| (-400 |#2|) (-874 (-1145)))) -(((|#1|) . T) (($) -1489 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-550))) |has| |#1| (-356))) -((((-526)) |has| |#2| (-596 (-526)))) -((((-667 |#2|)) . T) (((-837)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -((((-844 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -((((-837)) . T)) -((((-837)) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#2|) |has| |#2| (-1021))) -(((|#1|) . T)) -((((-400 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) -((((-550) |#1|) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) (((|#1|) . T)) -((($) . T)) -((((-550)) . T) (($) . T) (((-400 (-550))) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 (-550))) . T) (($) . T)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-1186))) -((($) . T)) -((((-400 (-550))) |has| #0=(-400 |#2|) (-1012 (-400 (-550)))) (((-550)) |has| #0# (-1012 (-550))) ((#0#) . T)) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +((((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) (((|#1| (-749)) . T)) -(|has| |#1| (-825)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((((-550)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#1| (-823)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-342)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1| |#2|) . T)) -((((-142)) . T)) -((((-758 |#1| (-839 |#2|))) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(|has| |#1| (-1167)) -((((-837)) . T)) -(((|#1|) . T)) -(-1489 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021)) (|has| |#3| (-1069))) -((((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|))) -(((|#2|) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-884 |#1|)) . T)) +(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((((-400 (-926 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-526)) |has| |#4| (-596 (-526)))) -((((-837)) . T) (((-623 |#4|)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-823)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) |has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) -(|has| |#1| (-1069)) -(|has| |#1| (-356)) -(|has| |#1| (-825)) -(((|#1|) . T)) -(((|#1|) . T)) +(|has| |#1| (-1122)) (((|#1|) . T)) -((($) . T) (((-400 (-550))) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145))) -(-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))) +((((-838)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) (|has| |#1| (-143)) (|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-823)) -(((|#1| |#2|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-1069)) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T) (((-550)) . T)) +(((|#2| |#2|) . T)) +((((-113)) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) . T)) +((($) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((($) . T)) +(((|#2| (-522 (-839 |#1|))) . T)) +(((|#2|) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-1069)) -(((|#2|) |has| |#2| (-170))) -(((|#2|) . T)) -(((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-356))) -((((-400 |#2|)) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)))) -((((-309 |#1|)) . T)) -(((|#2|) |has| |#2| (-356))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(((|#2| (-522 (-839 |#1|))) . T)) (((|#2|) . T)) -((((-400 (-550))) . T) (((-677)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((#0=(-758 |#1| (-839 |#2|)) #0#) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) +((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-825)) ((((-839 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) +(|has| |#2| (-884)) +(|has| |#2| (-884)) +((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) +(((|#2| (-522 (-839 |#1|)) (-839 |#1|)) . T)) +(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) -(((|#2|) . T)) -((((-1145)) |has| |#1| (-874 (-1145))) (((-1051)) . T)) -((((-1145)) |has| |#1| (-874 (-1145))) (((-1057 (-1145))) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#4|) |has| |#4| (-1021)) (((-550)) -12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021)))) -(((|#3|) |has| |#3| (-1021)) (((-550)) -12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021)))) (|has| |#1| (-143)) (|has| |#1| (-145)) -((($ $) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021)) (|has| |#1| (-1081)) (|has| |#1| (-1069))) -(|has| |#1| (-542)) -(((|#2|) . T)) -((((-550)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) +(((|#1|) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) -((((-565 |#1|)) . T)) -((($) . T)) -(((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) +((((-838)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (((|#1|) . T)) -((($) . T)) (((|#1|) . T)) -((((-837)) . T)) -(((|#2|) |has| |#2| (-6 (-4346 "*")))) +((((-525)) |has| |#1| (-596 (-525)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))) (((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) +(((|#2|) . T)) +(|has| |#1| (-825)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) (((|#1|) . T)) -((((-400 (-550))) |has| |#2| (-1012 (-400 (-550)))) (((-550)) |has| |#2| (-1012 (-550))) ((|#2|) . T) (((-839 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-400 (-550))) . T)) -((((-1094 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((((-1141 |#1|)) . T) (((-1051)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((((-1094 |#1| (-1145))) . T) (((-1057 (-1145))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-1145)) . T)) -(|has| |#1| (-1069)) -((($) . T)) -(|has| |#1| (-1069)) -((((-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#2| (-860 (-550)))) (((-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#2| (-860 (-372))))) -(((|#1| |#2|) . T)) -((((-1145) |#1|) . T)) -(((|#4|) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -((((-1145) (-52)) . T)) -((((-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T)) -((((-837)) . T)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021)) (|has| |#2| (-1069))) -(((#0=(-1214 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-400 (-550)) #0#) |has| |#1| (-542)) (($ $) |has| |#1| (-542))) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-1214 |#1| |#2| |#3| |#4|)) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-542)) (($) |has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +(((|#1| (-522 |#2|)) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((((-400 (-550))) . T) (($) . T)) -(((|#3|) |has| |#3| (-356))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -((((-1145)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -(((|#2| |#3|) . T)) -(-1489 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((((-1096 |#1| |#2|)) . T) (((-920 |#1|)) |has| |#2| (-596 (-1147))) (((-838)) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T)) +((((-1096 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) (((|#1| (-522 |#2|)) . T)) -(((|#1| (-749)) . T)) -(((|#1| (-522 (-1057 (-1145)))) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(|has| |#2| (-883)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -((((-837)) . T)) -((($ $) . T) ((#0=(-1213 |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-550)) #1#) |has| #0# (-38 (-400 (-550))))) -((((-884 |#1|)) . T)) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -((($) . T) (((-400 (-550))) . T)) -((($) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) +((((-920 |#1|)) |has| |#2| (-596 (-1147))) (((-1129)) -12 (|has| |#1| (-1012 (-536))) (|has| |#2| (-596 (-1147)))) (((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536))))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371))))) (((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525))))) +(((|#1| (-522 |#2|) |#2|) . T)) +(((|#1|) . T)) +((((-1141 |#1|)) . T) (((-838)) . T)) +((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-356)) -(-1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) (|has| |#1| (-356)) -((($) . T) ((#0=(-1213 |#2| |#3| |#4|)) . T) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) -(((|#1| |#2|) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -(-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356)) (|has| |#1| (-342))) -(-1489 (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021))) -((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-112)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -(|has| |#2| (-356)) +(((|#1| (-749) (-1053)) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) (|has| |#1| (-825)) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) (((|#1|) . T)) +(((|#1| (-749)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) (((|#1|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(|has| |#1| (-1069)) -(((|#4|) . T)) -(((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-798)) -(((|#4|) . T)) -((($) . T)) -((($ $) . T)) +((((-1141 |#1|)) . T) (((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1| (-749)) . T)) +(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((((-837)) . T)) -(((|#1| (-522 (-1145))) . T)) -(((|#1|) |has| |#1| (-170))) -((((-837)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#2|) -1489 (|has| |#2| (-6 (-4346 "*"))) (|has| |#2| (-170)))) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(|has| |#2| (-825)) -(|has| |#2| (-883)) -(|has| |#1| (-883)) -(((|#2|) |has| |#2| (-170))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) . T) (((-550)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) . T)) +(|has| |#1| (-1122)) (((|#1|) . T)) -((((-837)) . T)) -(((|#1| |#2|) . T)) -(((|#1| (-400 (-550))) . T)) (((|#1|) . T)) -(-1489 (|has| |#1| (-283)) (|has| |#1| (-356))) -((((-142)) . T)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-823)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) +((((-838)) . T)) +((($) . T) ((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-525)) |has| |#1| (-596 (-525)))) +(|has| |#1| (-361)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526))) (((-866 (-550))) |has| |#1| (-596 (-866 (-550)))) (((-866 (-372))) |has| |#1| (-596 (-866 (-372))))) -((((-1145) (-52)) . T)) -(((|#2|) . T)) +((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(((|#1|) |has| |#1| (-302 |#1|))) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-970 |#1|)) . T) ((|#1|) . T)) +((((-970 |#1|)) . T) ((|#1|) . T) (((-536)) -3886 (|has| |#1| (-1012 (-536))) (|has| (-970 |#1|) (-1012 (-536)))) (((-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| (-970 |#1|) (-1012 (-400 (-536)))))) +(|has| |#1| (-825)) (((|#1|) . T)) +((((-838)) . T)) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(((|#2|) |has| |#2| (-170))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) +((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) +((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(|has| |#2| (-170)) +(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1023))) +((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) +(|has| |#2| (-361)) +(((|#2|) |has| |#2| (-1023))) +(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) +(((|#2|) |has| |#2| (-1072))) +(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) +((((-536) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T)) +((((-536) |#2|) . T)) +((((-536) |#2|) . T)) +(|has| |#2| (-771)) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(((|#2|) |has| |#2| (-356))) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((((-837)) . T)) -((((-623 (-142))) . T) (((-1127)) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -((((-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +((((-838)) . T)) +(|has| |#1| (-227)) +((($) . T)) +(((|#1| (-522 (-796 (-1147))) (-796 (-1147))) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-1147)) |has| |#1| (-874 (-1147))) (((-796 (-1147))) . T)) (|has| |#1| (-825)) -((((-837)) . T)) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) . T)) -(((|#2|) |has| |#2| (-356))) -((((-837)) . T)) -((((-526)) |has| |#4| (-596 (-526)))) -((((-837)) . T) (((-623 |#4|)) . T)) -(((|#2|) . T)) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -(-1489 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1021))) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-1145) (-52)) . T)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(|has| |#1| (-883)) -(|has| |#1| (-883)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((((-550)) . T)) -(((#0=(-400 (-550)) #0#) . T) (($ $) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#1| (-400 (-550)) (-1051)) . T)) -(|has| |#1| (-1069)) -(|has| |#1| (-542)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(|has| |#1| (-798)) -(((#0=(-884 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) -((((-400 |#2|)) . T)) -(|has| |#1| (-823)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) . T) ((#1=(-550) #1#) . T) (($ $) . T)) -((((-884 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -(((|#2|) |has| |#2| (-1021)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) -(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +((($ $) . T) ((#1=(-1147) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-796 (-1147)) |#1|) . T) ((#3# $) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-522 (-796 (-1147)))) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) (|has| |#1| (-145)) (|has| |#1| (-143)) -(((|#2|) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3549 (-1145)) (|:| -3859 #0#))) . T)) -(|has| |#1| (-342)) -((((-550)) . T)) -((((-837)) . T)) -(((#0=(-1214 |#1| |#2| |#3| |#4|) $) |has| #0# (-279 #0# #0#))) -(|has| |#1| (-356)) -(((#0=(-1051) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(((#0=(-400 (-550)) #0#) . T) ((#1=(-677) #1#) . T) (($ $) . T)) -((((-309 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) -(|has| |#1| (-1069)) -(((|#1|) . T)) -(((|#1|) -1489 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|)))) -(((|#1|) -1489 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|)))) -(((|#2|) . T)) -((((-400 (-550))) . T) (((-677)) . T) (($) . T)) -(((|#3| |#3|) . T)) -(|has| |#2| (-227)) -((((-839 |#1|)) . T)) -((((-1145)) |has| |#1| (-874 (-1145))) ((|#3|) . T)) -(-12 (|has| |#1| (-356)) (|has| |#2| (-996))) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-837)) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-400 (-550))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-550)) . T)) -(|has| |#1| (-1069)) -(((|#3|) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-550)) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -(((|#1| |#2|) . T)) -((($) . T)) -((((-565 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((($) . T) (((-400 (-550))) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| (-1228 |#1|) (-1228 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -((((-400 (-550))) |has| |#2| (-1012 (-400 (-550)))) (((-550)) |has| |#2| (-1012 (-550))) ((|#2|) . T) (((-839 |#1|)) . T)) -((((-1094 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((|#2|) . T)) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T)) +(((|#1| (-522 (-796 (-1147)))) . T)) +((((-1096 |#1| (-1147))) . T) (((-796 (-1147))) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-1147)) . T)) +(((|#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) . T)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +((((-400 (-536))) . #1=(|has| |#2| (-356))) (($) . #1#)) +((((-400 (-536))) . #1=(|has| |#2| (-356))) (($) . #1#)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +(|has| |#2| (-356)) +((((-400 (-536))) |has| |#2| (-356)) (($) . T)) +((((-838)) . T)) +((((-400 (-536))) |has| |#2| (-356)) (($) . T)) +(((#1=(-400 (-536)) #1#) |has| |#2| (-356)) (($ $) . T)) +((((-838)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ $) . T)) -((((-650 |#1|)) . T)) -((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#3| (-860 (-550)))) (((-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#3| (-860 (-372))))) -(((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) -((((-142)) . T)) -((($) . T)) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) . T)) -(|has| |#2| (-883)) -(|has| |#1| (-883)) -(|has| |#1| (-883)) -(((|#4|) . T)) -(|has| |#2| (-996)) -((($) . T)) -(|has| |#1| (-883)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((($) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +(|has| |#1| (-227)) +(((|#2|) |has| |#2| (-170))) +(((|#2| |#2|) . T)) (((|#2|) . T)) +((((-838)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((($) |has| |#1| (-823))) +(|has| |#1| (-823)) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((($) . T)) -(|has| |#1| (-356)) -((((-884 |#1|)) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(-1489 (|has| |#1| (-361)) (|has| |#1| (-825))) -(((|#1|) . T)) -((((-837)) . T)) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) -((((-400 |#2|) |#3|) . T)) -((($) . T) (((-400 (-550))) . T)) -((((-749) |#1|) . T)) -(((|#2| (-234 (-3307 |#1|) (-749))) . T)) -(((|#1| (-522 |#3|)) . T)) -((((-400 (-550))) . T)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-837)) . T)) -(((#0=(-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) -(|has| |#1| (-883)) -(|has| |#2| (-356)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-372)) . T) (((-550)) . T)) -(((#0=(-400 (-550)) #0#) . T) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) +((((-838)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (((|#1| |#1|) . T)) -((((-837)) . T)) -(|has| |#1| (-542)) -((((-400 (-550))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) -(|has| |#1| (-38 (-400 (-550)))) -(-12 (|has| |#1| (-535)) (|has| |#1| (-806))) -((((-837)) . T)) -((((-1145)) -1489 (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1145)))))) -(|has| |#1| (-356)) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) -(|has| |#1| (-356)) -((((-400 (-550))) . T) (($) . T)) -((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) -((((-550) |#1|) . T)) +((((-113)) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) . T)) +((((-838)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((($) |has| |#1| (-823))) +(|has| |#1| (-823)) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-356))) -(((|#2|) |has| |#1| (-356))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) +((((-838)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) . T)) (((|#1|) . T)) +((((-838)) . T)) +((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(((|#2|) . T) (((-1145)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1145)))) (((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-550)))) (((-400 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-550))))) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2| |#2|) . T)) (((|#2|) . T)) -((((-1145) #0=(-1214 |#1| |#2| |#3| |#4|)) |has| #0# (-505 (-1145) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) -((((-594 $) $) . T) (($ $) . T)) -((((-167 (-219))) . T) (((-167 (-372))) . T) (((-1141 (-677))) . T) (((-866 (-372))) . T)) -((((-837)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| (-400 |#2|) (-227)) -(((|#1| (-400 (-550))) . T)) +((((-838)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) +(((|#2|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-864 (-536))) . T) (((-864 (-371))) . T) (((-525)) . T) (((-1147)) . T)) +((((-838)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) . T)) +((($) . T)) +((((-838)) . T)) +((($) . T)) ((($ $) . T)) -((((-1145)) |has| |#2| (-874 (-1145)))) ((($) . T)) -((((-837)) . T)) -((((-400 (-550))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -(((|#2|) |has| |#1| (-356))) -((((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-372)))) (((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-550))))) -(|has| |#1| (-356)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-542)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(((|#3|) . T)) +((($) . T)) (((|#1|) . T)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) +((((-838)) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-843 |#1|)) . T) (((-400 (-536))) . T)) +((((-843 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) +((((-843 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-843 |#1|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-843 |#1|)) . T)) +((((-1147) #1=(-843 |#1|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) +(((#1=(-843 |#1|)) |has| #1# (-302 #1#))) +(((#1=(-843 |#1|) $) |has| #1# (-279 #1# #1#))) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +((((-838)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) (((|#2|) . T)) +((((-1147)) |has| |#2| (-874 (-1147)))) +(|has| |#2| (-227)) +(((|#2|) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) ((|#2|) . T) (((-400 (-536))) . T)) +(((|#2|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#2|) . T) (((-400 (-536))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-400 (-536)) #1#) . T) (($ $) . T)) (((|#2|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(((|#1| |#2|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(|has| |#1| (-145)) -((((-1127) |#1|) . T)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(|has| |#1| (-145)) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-361))) -(|has| |#1| (-145)) -((((-565 |#1|)) . T)) -((($) . T)) -((((-400 |#2|)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-342))) -(|has| |#1| (-145)) -((((-837)) . T)) -((($) . T)) -((((-400 (-550))) |has| |#2| (-1012 (-550))) (((-550)) |has| |#2| (-1012 (-550))) (((-1145)) |has| |#2| (-1012 (-1145))) ((|#2|) . T)) -(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) -((((-1109 |#1| |#2|)) . T)) -(((|#1| (-550)) . T)) -(((|#1| (-400 (-550))) . T)) -((((-550)) |has| |#2| (-860 (-550))) (((-372)) |has| |#2| (-860 (-372)))) +((((-1147) |#2|) |has| |#2| (-505 (-1147) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|))) +(((|#2|) |has| |#2| (-302 |#2|))) +(((|#2| $) |has| |#2| (-279 |#2| |#2|))) (((|#2|) . T)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-112)) . T)) -(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) (((|#2|) . T)) -((((-837)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-1145) (-52)) . T)) -((((-400 |#2|)) . T)) -((((-837)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1069)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-114)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-219)) . T) (((-372)) . T) (((-866 (-372))) . T)) -((((-837)) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-550))) |has| |#1| (-542))) -((((-837)) . T)) -((((-837)) . T)) +((((-536)) |has| |#2| (-860 (-536))) (((-371)) |has| |#2| (-860 (-371)))) +(|has| |#2| (-798)) +(|has| |#2| (-798)) +(|has| |#2| (-798)) +(-3886 (|has| |#2| (-798)) (|has| |#2| (-825))) +(|has| |#2| (-798)) +(|has| |#2| (-798)) +(|has| |#2| (-798)) (((|#2|) . T)) -((((-837)) . T)) -(((#0=(-884 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) +(|has| |#2| (-884)) +(|has| |#2| (-994)) +((((-525)) |has| |#2| (-596 (-525))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-371)) . #1=(|has| |#2| (-994))) (((-219)) . #1#)) +((((-400 (-536))) |has| |#2| . #1=((-1012 (-536)))) (((-536)) |has| |#2| . #1#) (((-1147)) |has| |#2| (-1012 (-1147))) ((|#2|) . T)) +(|has| |#2| (-1122)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))) +(-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))) +((((-838)) -3886 (-12 (|has| |#1| (-595 (-838))) (|has| |#2| (-595 (-838)))) (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-1147)) . T) ((|#1|) . T)) +((((-838)) . T)) +((((-650 |#1|)) . T)) +((((-838)) . T)) +((((-838)) . T)) (((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) (((|#1|) . T)) -((((-884 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-356)) -(((|#2|) . T)) -((((-550)) . T)) -((((-837)) . T)) -((((-550)) . T)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-1127)) . T) (((-526)) . T) (((-550)) . T) (((-866 (-550))) . T) (((-372)) . T) (((-219)) . T)) -((((-837)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) . T) ((#0=(-1213 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1145))) (|has| |#1| (-1021)) (|has| |#1| (-1081)) (|has| |#1| (-1069))) -(|has| |#1| (-1120)) -((((-550) |#1|) . T)) (((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-279 #0# #0#))) -(((|#1|) |has| |#1| (-170))) +((((-838)) . T)) +(-3886 (|has| |#1| (-361)) (|has| |#1| (-825))) (((|#1|) . T)) -((((-114)) . T) ((|#1|) . T)) -((((-837)) . T)) -(((|#1| |#2|) . T)) -((((-1145) |#1|) . T)) -(((|#1|) |has| |#1| (-302 |#1|))) -((((-550) |#1|) . T)) +((((-838)) . T)) +((((-536)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +(|has| $ (-145)) +((($) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) . T)) +((($) . T) (((-400 (-536))) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) (((|#1|) . T)) -((((-550)) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(|has| |#1| (-542)) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-372)) . T)) +(|has| |#1| (-825)) (((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-542)) -(|has| |#1| (-1069)) -((((-758 |#1| (-839 |#2|))) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) (((|#1|) . T)) -(((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-883)) -(((|#1| (-522 |#2|)) . T)) -(((|#1| (-749)) . T)) -(|has| |#1| (-227)) -(((|#1| (-522 (-1057 (-1145)))) . T)) -(|has| |#2| (-356)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -((((-837)) . T)) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -((((-837)) . T)) -((((-1089)) . T) (((-837)) . T)) -((((-837)) . T)) +((((-525)) |has| |#1| (-596 (-525))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536))))) +((($) . T)) +(((|#1| (-522 (-1147))) . T)) (((|#1|) . T)) -((($ $) . T) (((-594 $) $) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +(((|#1| (-522 (-1147))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((($ $) . T) ((#1=(-1147) $) . T) ((#1# |#1|) . T)) +(|has| |#1| (-825)) +((((-1147)) . T)) +((((-371)) |has| |#1| (-860 (-371))) (((-536)) |has| |#1| (-860 (-536)))) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T) (((-1147)) . T)) +(((|#1| (-522 (-1147)) (-1147)) . T)) +((((-1091)) . T) (((-838)) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((((-838)) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((((-550)) . T)) -(((|#3|) . T)) -((((-837)) . T)) -(-1489 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) -(-1489 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1021))) -(((#0=(-565 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| (-1228 |#1|) (-1228 |#1|)) . T)) -((((-565 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -((($) . T) (((-400 (-550))) . T)) -((($) . T) (((-400 (-550))) . T)) -(((|#2|) |has| |#2| (-6 (-4346 "*")))) +(|has| |#1| (-825)) (((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) (((|#1|) . T)) -((((-837)) . T)) -((((-287 |#3|)) . T)) -(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) (((|#1|) . T)) -((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -(((|#2|) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -(((|#2|) . T) ((|#6|) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -((((-837)) . T)) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(|has| |#2| (-883)) -(|has| |#1| (-883)) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) (((|#1|) . T)) -((((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) . T)) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) +(-12 (|has| |#1| (-465)) (|has| |#2| (-465))) +(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +(-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) +(-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) +(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-620 (-536))) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-525)) |has| |#1| (-596 (-525)))) (((|#1|) . T)) +((((-1147)) |has| |#1| (-874 (-1147)))) +(|has| |#1| (-227)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-283)) (|has| |#1| (-356))) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) +(((|#1|) . T) (($) -3886 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-536))) |has| |#1| (-356))) +(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#1=(-400 (-536)) #1#) |has| |#1| (-356))) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) +(((|#1|) . T)) +((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(((|#1|) |has| |#1| (-302 |#1|))) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) (((|#1|) . T)) -(((|#1| |#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) (((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(|has| |#1| (-825)) (((|#1|) . T)) -(|has| |#1| (-1069)) (((|#1|) . T)) -((((-1145)) . T) ((|#1|) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) -(((#0=(-400 (-550)) #0#) . T)) -((((-400 (-550))) . T)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) (((|#1|) . T)) (((|#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-526)) . T)) -((((-837)) . T)) -((((-1145)) |has| |#2| (-874 (-1145))) (((-1051)) . T)) -((((-1213 |#2| |#3| |#4|)) . T)) -((((-884 |#1|)) . T)) -((($) . T) (((-400 (-550))) . T)) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -((((-837)) . T)) -(|has| |#1| (-1186)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -((((-1145)) |has| |#1| (-874 (-1145)))) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) . T)) -(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -((($) . T) (((-400 (-550))) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1021)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-356))) -((((-550)) . T)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) -((((-1145) #0=(-116 |#1|)) |has| #0# (-505 (-1145) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) -(((|#2|) . T) (((-550)) |has| |#2| (-1012 (-550))) (((-400 (-550))) |has| |#2| (-1012 (-400 (-550))))) -((((-1051)) . T) ((|#2|) . T) (((-550)) |has| |#2| (-1012 (-550))) (((-400 (-550))) |has| |#2| (-1012 (-400 (-550))))) +((((-400 |#2|) |#3|) . T)) +((((-400 (-536))) |has| #1=(-400 |#2|) (-1012 (-400 (-536)))) (((-536)) |has| #1# (-1012 (-536))) ((#1#) . T)) +((((-400 |#2|)) . T)) +((((-536)) |has| #1=(-400 |#2|) (-619 (-536))) ((#1#) . T)) +((((-400 |#2|)) . T)) +((((-400 |#2|) |#3|) . T)) +(|has| (-400 |#2|) (-145)) +((((-400 |#2|) |#3|) . T)) +(|has| (-400 |#2|) (-143)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +(|has| (-400 |#2|) (-227)) +((((-1147)) |has| (-400 |#2|) (-874 (-1147)))) +((((-400 |#2|)) . T)) +(((|#3|) . T)) +(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-838)) . T)) +((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +(((|#1| |#2| |#3|) . T)) +((((-838)) . T)) +((((-536)) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((($) . T) (((-536)) . T) (((-400 (-536))) . T)) +((((-536)) . T) (($) . T) (((-400 (-536))) . T)) +((((-536)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-400 (-536))) . T) (((-536)) . T)) +((((-536)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T)) +(((|#1|) . T) (($) . T) (((-400 (-536))) . T) (((-536)) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) . T) ((#2=(-536) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) +(((|#1|) . T) (((-400 (-536))) . T)) +(((|#1|) . T) (((-536)) -3886 (|has| |#1| (-1012 (-536))) (|has| (-400 (-536)) (-1012 (-536)))) (((-400 (-536))) . T)) +(|has| |#1| (-1072)) +((((-838)) |has| |#1| (-1072))) +(|has| |#1| (-1072)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#4|) . T)) +((((-620 |#4|)) . T) (((-838)) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) . T)) +((((-525)) |has| |#4| (-596 (-525)))) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +((((-838)) . T)) +(((|#1|) . T) (($) . T)) +((((-1147) (-51)) . T)) +((((-838)) . T)) +((((-1147) (-51)) . T)) +((((-1147) (-51)) . T)) +((((-1147) (-51)) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4215 (-1147)) (|:| -2186 #1#))) . T)) +(((#1=(-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-1147) (-51)) . T)) +((((-838)) . T) (((-1152)) . T)) +(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) +((((-758 |#1| (-839 |#2|))) . T)) +((((-620 (-758 |#1| (-839 |#2|)))) . T) (((-838)) . T)) +((((-758 |#1| (-839 |#2|))) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) +(((#1=(-758 |#1| (-839 |#2|)) #1#) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) +((((-758 |#1| (-839 |#2|))) . T)) +((((-525)) |has| (-758 |#1| (-839 |#2|)) (-596 (-525)))) +(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) +(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) +((((-525)) |has| |#3| (-596 (-525)))) +(((|#3|) |has| |#3| (-356))) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +((((-667 |#3|)) . T) (((-838)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) +(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +((($) . T)) +((((-838)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-536)) . T)) +((((-1147) (-51)) . T)) +((((-838)) . T)) +((((-1147) (-51)) . T)) +((((-1147) (-51)) . T)) +((((-1147) (-51)) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4215 (-1147)) (|:| -2186 #1#))) . T)) +(((#1=(-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) +((((-1147) (-51)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-286 |#3|)) . T)) +(((|#3| |#3|) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#3| |#3|) . T)) +((((-838)) . T)) +((((-838)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-356))) +((((-1147)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) +(-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) +(-3886 (|has| |#1| (-361)) (|has| |#1| (-343))) +(|has| |#1| (-343)) +(|has| |#1| (-343)) +(-3886 (|has| |#1| (-143)) (|has| |#1| (-343))) +(|has| |#1| (-343)) +(((|#1| |#2|) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($ $) . T) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +(|has| |#1| (-145)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((((-550) (-749)) . T) ((|#3| (-749)) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) (((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-837)) . T)) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((((-550)) |has| |#1| (-860 (-550))) (((-372)) |has| |#1| (-860 (-372)))) -(((|#1|) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -(-12 (|has| |#1| (-356)) (|has| |#2| (-883))) -((((-400 (-550))) . T) (((-677)) . T) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) +((((-838)) . T)) +((((-838)) . T)) (((|#1|) . T)) +((((-838)) . T)) +(|has| |#1| (-227)) +((($) . T)) +(((|#1| (-522 (-1059 (-1147))) (-1059 (-1147))) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-1147)) |has| |#1| (-874 (-1147))) (((-1059 (-1147))) . T)) +(|has| |#1| (-825)) +((($ $) . T) ((#1=(-1147) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1059 (-1147)) |#1|) . T) ((#3# $) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-522 (-1059 (-1147)))) . T)) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -(|has| |#1| (-356)) -(((|#2|) . T)) +(((|#1| (-522 (-1059 (-1147)))) . T)) +((((-1096 |#1| (-1147))) . T) (((-1059 (-1147))) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-1147)) . T)) +(((|#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) . T)) +((((-838)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| (-620 |#1|)) |has| |#1| (-823))) +(|has| |#1| (-1072)) +((((-838)) |has| |#1| (-1072))) +(|has| |#1| (-1072)) (((|#1|) . T)) +((((-838)) . T) (((-1152)) . T)) +(|has| |#1| (-1072)) +((((-838)) |has| |#1| (-1072))) +(|has| |#1| (-1072)) +((((-838)) . T) (((-1152)) . T)) (((|#1|) . T)) -((((-839 |#1|)) . T)) (((|#1|) . T)) +((((-838)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (((|#1|) . T)) -(((|#2| (-749)) . T)) -((((-1145)) . T)) -((((-844 |#1|)) . T)) -(-1489 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-837)) . T)) (((|#1|) . T)) -(-1489 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))) -((((-844 |#1|)) . T)) +((((-525)) |has| |#1| (-596 (-525)))) (((|#1|) . T)) (|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -((($ $) . T) (((-594 $) $) . T)) -((($) . T)) -((((-837)) . T)) -((((-550)) . T)) -(((|#2|) . T)) -((((-837)) . T)) -(((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) -((((-837)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -((($) . T) ((|#2|) . T) (((-400 (-550))) . T)) -(|has| |#1| (-1069)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(|has| |#2| (-883)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -((((-526)) |has| |#2| (-596 (-526))) (((-866 (-372))) |has| |#2| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#2| (-596 (-866 (-550))))) -((((-837)) . T)) -((((-837)) . T)) -(((|#3|) |has| |#3| (-1021)) (((-550)) -12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021)))) -((((-1094 |#1| |#2|)) . T) (((-926 |#1|)) |has| |#2| (-596 (-1145))) (((-837)) . T)) -((((-926 |#1|)) |has| |#2| (-596 (-1145))) (((-1127)) -12 (|has| |#1| (-1012 (-550))) (|has| |#2| (-596 (-1145)))) (((-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550))))) (((-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372))))) (((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526))))) -((((-1141 |#1|)) . T) (((-837)) . T)) -((((-837)) . T)) -((((-400 (-550))) |has| |#2| (-1012 (-400 (-550)))) (((-550)) |has| |#2| (-1012 (-550))) ((|#2|) . T) (((-839 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T) (((-1145)) . T)) -((((-837)) . T)) -((((-550)) . T)) -((($) . T)) -((((-372)) |has| |#1| (-860 (-372))) (((-550)) |has| |#1| (-860 (-550)))) -((((-550)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-550)) . T) (((-400 (-550))) . T)) -(((|#1|) |has| |#1| (-302 |#1|))) -((((-837)) . T)) -((((-372)) . T)) -(((|#1|) . T)) (((|#1|) . T)) -((((-837)) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-400 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1069)) -(((|#2| (-474 (-3307 |#1|) (-749))) . T)) -((((-550) |#1|) . T)) -((((-1127)) . T) (((-837)) . T)) -(((|#2| |#2|) . T)) -(((|#1| (-522 (-1145))) . T)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-550)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1145)) |has| |#1| (-874 (-1145))) (((-1051)) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) -(|has| |#1| (-542)) -((($) . T) (((-400 (-550))) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-1129) (-1147) (-536) (-219) (-838)) . T)) +((((-838)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +((((-838)) . T)) +(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) +(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) +(((|#3|) |has| |#3| (-170))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +(-3886 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) +((($) -3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) ((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023)))) +(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) +((((-838)) -3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-595 (-838))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) (((-1229 |#3|)) . T)) +(|has| |#3| (-170)) +(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($) |has| |#3| (-170))) +(((|#3| |#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($ $) |has| |#3| (-170))) +(((|#3|) |has| |#3| (-1023))) +((((-1147)) -12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) +(-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) +(|has| |#3| (-361)) +(((|#3|) |has| |#3| (-1023))) +(((|#3|) |has| |#3| (-1023)) (((-536)) -12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) +(((|#3|) |has| |#3| (-1072))) +(((|#3|) |has| |#3| (-1072)) (((-536)) -12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (((-400 (-536))) -12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) +((((-536) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) . T)) +((((-536) |#3|) . T)) +((((-536) |#3|) . T)) +(|has| |#3| (-771)) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) +(|has| |#3| (-823)) +(|has| |#3| (-823)) +(((|#3|) |has| |#3| (-356))) +(((|#1| |#3|) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) ((($) . T)) +((((-838)) . T)) ((($) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -(((|#1|) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-837)) . T)) -((((-142)) . T)) -(((|#1|) . T) (((-400 (-550))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -(((|#1|) . T)) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((((-837)) . T)) -((((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-550)) |has| |#1| (-1012 (-550))) ((|#1|) . T) ((|#2|) . T)) -((((-1051)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550))))) -((((-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#2| (-860 (-372)))) (((-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#2| (-860 (-550))))) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -((((-550) |#1|) . T)) -(((|#1| |#1|) . T)) -((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) +((($ $) . T)) ((($) . T)) -((((-677)) . T)) -((((-758 |#1| (-839 |#2|))) . T)) ((($) . T)) -((((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-1069)) -(|has| |#1| (-1069)) -(|has| |#2| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-38 (-400 (-550)))) -((((-550)) . T)) -((((-1145)) -12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) -((((-1145)) -12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) +((((-536)) . T)) +((((-536)) . T)) +((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) +((((-536)) . T)) +((((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525)))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371))))) (((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) +((($) . T)) +(((|#1| (-522 |#2|)) . T)) (((|#1|) . T)) -(|has| |#1| (-227)) -(((|#1| (-522 |#3|)) . T)) -(|has| |#1| (-361)) -(((|#2| (-234 (-3307 |#1|) (-749))) . T)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T) (($) . T)) +((((-838)) . T)) +((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) (((|#1| (-522 |#2|)) . T)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((|#1| (-749)) . T)) -(|has| |#1| (-542)) -(-1489 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-837)) . T)) -(-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -(-1489 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(((|#1|) |has| |#1| (-170))) -(((|#4|) |has| |#4| (-1021))) -(((|#3|) |has| |#3| (-1021))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -((((-837)) . T)) -((($) . T) (((-400 (-550))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1069)) (((-550)) -12 (|has| |#4| (-1012 (-550))) (|has| |#4| (-1069))) (((-400 (-550))) -12 (|has| |#4| (-1012 (-400 (-550)))) (|has| |#4| (-1069)))) -(((|#3|) |has| |#3| (-1069)) (((-550)) -12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069))) (((-400 (-550))) -12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069)))) -(|has| |#2| (-356)) -(((|#2|) |has| |#2| (-1021)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((|#1|) . T)) -(|has| |#2| (-356)) -(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(((|#2| |#2|) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) +(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) +(|has| |#1| (-825)) (((|#2|) . T)) -((((-837)) |has| |#1| (-1069))) +((((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371)))) (((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536))))) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T) ((|#2|) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) ((($) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) -(|has| |#1| (-356)) -(((|#1|) |has| |#2| (-410 |#1|))) -(((|#1|) |has| |#2| (-410 |#1|))) -((((-884 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-1181)) . T) (((-837)) . T) (((-1150)) . T)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) |has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -((((-550) |#1|) . T)) -((((-550) |#1|) . T)) -((((-550) |#1|) . T)) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-550) |#1|) . T)) -(((|#1|) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((((-1145)) |has| |#1| (-874 (-1145))) (((-796 (-1145))) . T)) -(-1489 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-797 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-837)) . T)) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1021))) +((($ $) . T) ((|#2| $) . T)) +(((|#2|) . T)) +((((-838)) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +(((|#1| (-522 |#2|)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-400 (-550)))) -((((-837)) . T)) -((((-1214 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-550))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-550))) |has| |#1| (-542))) -(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) -(|has| |#1| (-356)) -(-1489 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) -(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) -(|has| |#1| (-356)) -(((|#1|) . T)) -(((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) -((((-550) |#1|) . T)) -((((-309 |#1|)) . T)) -(((#0=(-677) (-1141 #0#)) . T)) -((((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-823)) -((($ $) . T) ((#0=(-839 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1094 |#1| (-1145))) . T) (((-796 (-1145))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1012 (-550))) (((-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) (((-1145)) . T)) -((($) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1051) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1145) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-1057 (-1145)) |#1|) . T) ((#1# $) . T)) +((((-838)) . T)) +(((|#1|) . T)) +((((-1152)) . T) (((-838)) . T)) +((((-838)) . T)) +((((-1111 |#1| |#2|)) . T)) +(((#1=(-1111 |#1| |#2|) #1#) |has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|)))) +((((-1111 |#1| |#2|)) |has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|)))) +((((-838)) . T)) +((((-1111 |#1| |#2|)) . T)) +((((-525)) |has| |#2| (-596 (-525)))) +(((|#2|) |has| |#2| (-6 (-4350 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-667 |#2|)) . T) (((-838)) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) -(|has| |#2| (-883)) -((($) . T) ((#0=(-1213 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) -((((-550) |#1|) . T)) -(((#0=(-1214 |#1| |#2| |#3| |#4|)) |has| #0# (-302 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +(((|#2|) -3886 (|has| |#2| (-6 (-4350 "*"))) (|has| |#2| (-170)))) +(((|#2|) . T)) +((((-1147)) |has| |#2| (-874 (-1147)))) (|has| |#2| (-227)) -(|has| $ (-145)) -((((-837)) . T)) -((($) . T) (((-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) -((((-837)) . T)) -(|has| |#1| (-823)) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) -((((-400 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-837)) . T)) -(((|#2| (-650 |#1|)) . T)) -(-12 (|has| |#1| (-300)) (|has| |#1| (-883))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(((|#2|) . T)) +(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) +(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T)) +(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-525)) |has| |#4| (-596 (-525)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (((|#4|) . T)) -(|has| |#1| (-542)) -((($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T)) -((((-1145)) -1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) -(((|#1|) . T) (($) -1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) -((((-550) |#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) +((((-838)) . T) (((-620 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(((|#1| (-522 (-796 (-1145)))) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) (((|#1|) . T)) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) (((|#1|) . T)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -((($) . T) (((-844 |#1|)) . T) (((-400 (-550))) . T)) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-542)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-400 |#2|)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-400 (-550)) #0#) . T) (($ $) . T)) -((((-550)) . T)) -((((-837)) . T)) -(((|#2|) . T) (((-400 (-550))) . T) (($) . T)) -((((-565 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) -((((-837)) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-550) |#1|) . T)) -((((-837)) . T)) -((($ $) . T) (((-1145) $) . T)) -((((-1220 |#1| |#2| |#3|)) . T)) -((((-526)) |has| |#2| (-596 (-526))) (((-866 (-372))) |has| |#2| (-596 (-866 (-372)))) (((-866 (-550))) |has| |#2| (-596 (-866 (-550))))) -((((-837)) . T)) -((((-837)) . T)) -((((-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#3| (-596 (-866 (-550))))) (((-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#3| (-596 (-866 (-372))))) (((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526))))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1|) . T) (((-837)) . T) (((-1150)) . T)) -((((-837)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) -((((-837)) . T)) -((((-1220 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -((((-1220 |#1| |#2| |#3|)) . T) (((-1192 |#1| |#2| |#3|)) . T)) -((((-1145)) . T) (((-837)) . T)) -((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883)))) -(((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((((-1073)) . T)) -((((-837)) . T)) -((($) -1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) -((($) . T)) -((($) -1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(|has| |#2| (-883)) -(|has| |#1| (-883)) (((|#1|) . T)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) (((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -((((-677)) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-400 (-550))) . T) (($) . T)) -(((|#1| (-550)) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) +((((-525)) |has| |#1| (-596 (-525)))) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-536) (-142)) . T)) +((((-536) (-142)) . T)) +((((-536) (-142)) . T)) +((((-142)) . T)) +((((-142)) . T)) +((((-1129) |#1|) . T)) +((((-838)) . T)) +((((-1129) |#1|) . T)) +((((-1129) |#1|) . T)) +((((-1129) |#1|) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) +((((-1129) |#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1145 |#1| |#2| |#3|)) . T)) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) (|has| |#1| (-356)) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1145 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))))) +(((#1=(-1145 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|)))) (((-1147) #1#) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))))) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) (|has| |#1| (-356)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(-1489 (|has| |#1| (-170)) (|has| |#1| (-542))) -(((|#1| (-550)) . T)) -(((|#1| (-400 (-550))) . T)) -(((|#1| (-749)) . T)) -((((-400 (-550))) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -((((-550) |#1|) . T)) -((((-550) |#1|) . T)) -(|has| |#1| (-1069)) -((((-550) |#1|) . T)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) +((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) +((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) +(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-145)))) +(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-143)))) +((((-838)) . T)) +(((|#1|) . T)) +((((-1145 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-279 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-536) (-1053)) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((#2=(-1145 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-536)) . T)) +(((|#1| (-536)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-1145 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-838)) . T)) +((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(|has| |#1| (-356)) +(((|#1| (-749) (-1053)) . T)) +(|has| |#1| (-884)) +(|has| |#1| (-884)) +((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) +(|has| |#1| (-825)) +((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) (((|#1|) . T)) +(((|#1| (-749)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) (((|#1|) . T)) -((((-866 (-372))) . T) (((-866 (-550))) . T) (((-1145)) . T) (((-526)) . T)) +((((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1| (-749)) . T)) +(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1122)) (((|#1|) . T)) -((((-837)) . T)) -(-1489 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -(-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -((((-550)) . T)) -((((-550)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(((|#1| |#2|) . T)) +((((-1145 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(-1489 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1021))) -((((-1145)) -12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) -(-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) +(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +((($ $) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +(((|#1| (-400 (-536)) (-1053)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) +(((|#1| (-400 (-536))) . T)) +(((|#1| (-400 (-536))) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +((((-838)) . T)) +(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) (|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1| (-1138 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-749)) . T)) +(((|#1| (-749)) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1| (-749) (-1053)) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) +((($ $) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-749) |#1|))) +(((|#1|) . T)) +((((-838)) . T)) +((((-371)) . T) (((-536)) . T)) +((((-864 (-371))) . T) (((-864 (-536))) . T) (((-1147)) . T) (((-525)) . T)) +((((-838)) . T)) +(((|#1| (-945)) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((((-838)) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1|) . T)) +(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1| (-945)) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T)) (((|#1| |#2|) . T)) +((((-838)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-227)) -((((-837)) . T)) -(((|#1| (-749) (-1051)) . T)) -((((-550) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-550) |#1|) . T)) -((((-550) |#1|) . T)) -((((-116 |#1|)) . T)) -((((-400 (-550))) . T) (((-550)) . T)) -(((|#2|) |has| |#2| (-1021))) -((((-400 (-550))) . T) (($) . T)) -(((|#2|) . T)) -((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-550)) . T)) -((((-550)) . T)) -((((-1127) (-1145) (-550) (-219) (-837)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1489 (|has| |#1| (-342)) (|has| |#1| (-361))) (((|#1| |#2|) . T)) -((($) . T) ((|#1|) . T)) -((((-837)) . T)) -((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) -(((|#2|) |has| |#2| (-1069)) (((-550)) -12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (((-400 (-550))) -12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) -((((-526)) |has| |#1| (-596 (-526)))) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-825)) (|has| |#1| (-1069)))) -((($) . T) (((-400 (-550))) . T)) -(|has| |#1| (-883)) -(|has| |#1| (-883)) -((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-996))) (((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-996))) (((-866 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-866 (-372))))) (((-866 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-866 (-550))))) (((-526)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-526))))) -((((-837)) . T)) -((((-837)) . T)) -(((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -(((|#2|) . T)) -(-1489 (|has| |#1| (-21)) (|has| |#1| (-823))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-837)) -1489 (-12 (|has| |#1| (-595 (-837))) (|has| |#2| (-595 (-837)))) (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))))) -((((-400 |#2|) |#3|) . T)) -((((-400 (-550))) . T) (($) . T)) -(|has| |#1| (-38 (-400 (-550)))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-381) (-1129)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1147) $) . T)) +((((-1147)) . T)) +((((-838)) . T)) +(((|#1| (-522 #1=(-1147)) #1#) . T)) +((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) +(((|#1| (-522 (-1147))) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-1147)) . T)) +(|has| |#1| (-1072)) +(|has| |#1| (-1072)) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072))) (((-932 |#1|)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1219 |#1| |#2| |#3|)) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) (|has| |#1| (-356)) -((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) -(|has| (-400 |#2|) (-145)) -(|has| (-400 |#2|) (-143)) -((((-677)) . T)) -(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) -(((#0=(-550) #0#) . T)) -((($) . T) (((-400 (-550))) . T)) -(-1489 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1021))) -(-1489 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1021))) -((((-837)) . T) (((-1150)) . T)) -(|has| |#4| (-771)) -(-1489 (|has| |#4| (-771)) (|has| |#4| (-823))) -(|has| |#4| (-823)) -(|has| |#3| (-771)) -(-1489 (|has| |#3| (-771)) (|has| |#3| (-823))) -(|has| |#3| (-823)) -((((-550)) . T)) -(((|#2|) . T)) -((((-1145)) -1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) -((((-1145)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1219 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))))) +(((#1=(-1219 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|)))) (((-1147) #1#) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) +((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-145)))) +(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-143)))) +((((-838)) . T)) +(((|#1|) . T)) +((((-1219 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-536) (-1053)) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((#2=(-1219 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-536)) . T)) +(((|#1| (-536)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-1219 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-356))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-1122))) +(((|#2|) . T) (((-1147)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))) (((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) (((-400 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-994))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-884))) +(((|#2|) |has| |#1| (-356))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-798))) (-12 (|has| |#1| (-356)) (|has| |#2| (-825)))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +((((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371)))) (((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536))))) +(|has| |#1| (-356)) +(((|#2|) |has| |#1| (-356))) +((((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))) ((|#2|) |has| |#1| (-356))) +(((|#2|) |has| |#1| (-356))) +(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1147) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) +(((|#2|) |has| |#1| (-356))) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) +((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) +(((|#2|) |has| |#1| (-356))) +((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) (((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) (((-864 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371))))) (((-864 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))) (((-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525))))) +(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145)))) +(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))) +((((-838)) . T)) (((|#1|) . T)) -((((-839 |#1|)) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1109 |#1| |#2|)) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-996)) -(((|#2|) . T) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -((((-837)) . T)) -((((-526)) |has| |#2| (-596 (-526))) (((-866 (-550))) |has| |#2| (-596 (-866 (-550)))) (((-866 (-372))) |has| |#2| (-596 (-866 (-372)))) (((-372)) . #0=(|has| |#2| (-996))) (((-219)) . #0#)) -((((-1145) (-52)) . T)) -(|has| |#1| (-38 (-400 (-550)))) -(|has| |#1| (-38 (-400 (-550)))) -(((|#2|) . T)) -((($ $) . T)) -((((-400 (-550))) . T) (((-677)) . T) (($) . T)) -((((-1143 |#1| |#2| |#3|)) . T)) -((((-1143 |#1| |#2| |#3|)) . T) (((-1136 |#1| |#2| |#3|)) . T)) -((((-837)) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-550) |#1|) . T)) -((((-1143 |#1| |#2| |#3|)) |has| |#1| (-356))) -(((|#1| |#2| |#3| |#4|) . T)) +(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T)) +(((|#1| (-536) (-1053)) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T)) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-536)) . T)) +(((|#1| (-536)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| |#2|) . T)) +(((|#1| (-1124 |#1|)) |has| |#1| (-823))) +(|has| |#1| (-1072)) +((((-838)) |has| |#1| (-1072))) +(|has| |#1| (-1072)) (((|#1|) . T)) (((|#2|) . T)) +((((-838)) . T)) +((((-400 $) (-400 $)) |has| |#2| (-543)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-356)) +(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) +(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) (|has| |#2| (-356)) -(((|#3|) . T) ((|#2|) . T) (($) -1489 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1021))) ((|#4|) -1489 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1021)))) -(((|#2|) . T) (($) -1489 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1021))) ((|#3|) -1489 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1021)))) +(((|#2| (-749) (-1053)) . T)) +(|has| |#2| (-884)) +(|has| |#2| (-884)) +((((-1147)) |has| |#2| (-874 (-1147))) (((-1053)) . T)) +(|has| |#2| (-825)) +((((-536)) |has| |#2| (-619 (-536))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-749)) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-143)) +((($) -3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) |has| |#2| (-170)) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) +((($) . T) ((|#2|) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) +((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2| |#2|) . T) ((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536))))) +((($) -3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) |has| |#2| (-170)) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) +(((|#2|) . T)) +((((-1053)) . T) ((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) +(((|#2| (-749)) . T)) +(((#1=(-1053) |#2|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1122)) +(((|#2|) . T)) +((((-1219 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +((($ $) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +(((|#1| (-400 (-536)) (-1053)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(((|#1| (-400 (-536))) . T)) +(((|#1| (-400 (-536))) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-356)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +((((-838)) . T)) +(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1| (-1189 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) (((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +((($ $) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +(((|#1| (-400 (-536)) (-1053)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(((|#1| (-400 (-536))) . T)) +(((|#1| (-400 (-536))) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)) -((((-116 |#1|)) . T)) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +((((-838)) . T)) +(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) +(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) +(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(((|#1| |#2|) . T)) +((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) +(|has| (-1210 |#2| |#3| |#4|) (-145)) +(|has| (-1210 |#2| |#3| |#4|) (-143)) +((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) +((((-838)) . T)) +((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) +((($ $) . T) ((#1=(-1210 |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-536)) #2#) |has| #1# (-38 (-400 (-536))))) +(((#1=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-536))) |has| #1# (-38 (-400 (-536)))) (($) . T)) +((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) +((((-1210 |#2| |#3| |#4|)) . T)) +((((-1210 |#2| |#3| |#4|)) . T)) +((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(|has| |#1| (-38 (-400 (-536)))) +(((|#1| (-749)) . T)) +(((|#1| (-749)) . T)) +(|has| |#1| (-543)) +(|has| |#1| (-543)) +(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) +((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +(((|#1| (-749) (-1053)) . T)) +((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) +((($ $) . T)) +((((-838)) . T)) +(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-749) |#1|))) (((|#1|) . T)) +((((-1147)) . T) (((-838)) . T)) (((|#1|) . T)) -((((-400 (-550))) |has| |#2| (-1012 (-400 (-550)))) (((-550)) |has| |#2| (-1012 (-550))) ((|#2|) . T) (((-839 |#1|)) . T)) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) (((|#1|) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) -((((-129)) . T) (((-837)) . T)) -((((-550) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-536) |#1|) . T)) +((((-525)) |has| |#1| (-596 (-525)))) (((|#1|) . T)) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) (((|#1|) . T)) +(|has| |#1| (-825)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T)) -((($ $) . T)) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-883))) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((((-837)) . T)) -((((-837)) . T)) -((((-837)) . T)) -(((|#1| (-522 |#2|)) . T)) -((((-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) . T)) -(((|#1| (-550)) . T)) -(((|#1| (-400 (-550))) . T)) -(((|#1| (-749)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -(-1489 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-883))) -(-1489 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-883))) -((($) . T)) -(((|#2| (-522 (-839 |#1|))) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-837)) . T) (((-1150)) . T)) -((((-550) |#1|) . T)) -((((-837)) . T) (((-1150)) . T)) -(((|#2|) . T)) -(((|#2| (-749)) . T)) -((((-837)) -1489 (|has| |#1| (-595 (-837))) (|has| |#1| (-1069)))) (((|#1|) . T)) +((((-838)) . T)) +((((-838)) . T)) +((((-838)) . T) (((-1152)) . T)) +((((-838)) . T) (((-1152)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-838)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-525)) |has| |#4| (-596 (-525)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) . T)) +((((-838)) . T) (((-620 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1127) |#1|) . T)) -((((-400 |#2|)) . T)) -((((-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(((|#1| |#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-838)) . T)) ((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-170))) +((((-797 |#1|)) . T)) +(((|#2| (-797 |#1|)) . T)) +(((|#2| (-867 |#1|)) . T)) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-838)) . T)) +((((-867 |#1|)) . T) (((-797 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-1147) |#1|) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +((((-838)) . T)) +((((-797 (-1147))) . T)) +((((-1147) |#1|) . T)) +(((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-279 |#2| |#2|))) -(((|#1| (-623 |#1|)) |has| |#1| (-823))) -(-1489 (|has| |#1| (-227)) (|has| |#1| (-342))) -(-1489 (|has| |#1| (-356)) (|has| |#1| (-342))) -(|has| |#1| (-1069)) -(((|#1|) . T)) -((((-400 (-550))) . T) (($) . T)) -((((-973 |#1|)) . T) ((|#1|) . T) (((-550)) -1489 (|has| (-973 |#1|) (-1012 (-550))) (|has| |#1| (-1012 (-550)))) (((-400 (-550))) -1489 (|has| (-973 |#1|) (-1012 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -((((-1145)) |has| |#1| (-874 (-1145)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) -(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1109 |#1| |#2|) #0#) |has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((#0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-302 #0#))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +((((-838)) . T)) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-838)) . T)) +((((-797 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-536)) . T)) ((($ $) . T)) -(-1489 (|has| |#1| (-825)) (|has| |#1| (-1069))) -((($ $) . T) ((#0=(-839 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-227)) ((|#2| |#1|) |has| |#1| (-227)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-470 . -1069) T) ((-257 . -505) 144931) ((-241 . -505) 144874) ((-239 . -1069) 144824) ((-557 . -111) 144809) ((-522 . -23) T) ((-137 . -1069) T) ((-136 . -1069) T) ((-117 . -302) 144766) ((-132 . -1069) T) ((-471 . -505) 144558) ((-672 . -101) T) ((-1110 . -505) 144477) ((-383 . -130) T) ((-1241 . -950) 144446) ((-31 . -92) T) ((-584 . -481) 144430) ((-601 . -130) T) ((-797 . -821) T) ((-514 . -56) 144380) ((-58 . -505) 144313) ((-510 . -505) 144246) ((-411 . -874) 144205) ((-167 . -1021) T) ((-507 . -505) 144138) ((-488 . -505) 144071) ((-487 . -505) 144004) ((-777 . -1012) 143787) ((-677 . -38) 143752) ((-336 . -342) T) ((-1063 . -1062) 143736) ((-1063 . -1069) 143714) ((-167 . -237) 143665) ((-167 . -227) 143616) ((-1063 . -1064) 143574) ((-846 . -279) 143532) ((-219 . -773) T) ((-219 . -770) T) ((-672 . -277) NIL) ((-1119 . -1158) 143511) ((-400 . -966) 143495) ((-679 . -21) T) ((-679 . -25) T) ((-1243 . -626) 143469) ((-309 . -158) 143448) ((-309 . -141) 143427) ((-1119 . -106) 143377) ((-133 . -25) T) ((-40 . -225) 143354) ((-116 . -21) T) ((-116 . -25) T) ((-590 . -281) 143330) ((-467 . -281) 143309) ((-1201 . -1021) T) ((-830 . -1021) T) ((-777 . -331) 143293) ((-117 . -1120) NIL) ((-90 . -595) 143225) ((-469 . -130) T) ((-576 . -1182) T) ((-1201 . -319) 143202) ((-557 . -1021) T) ((-1201 . -227) T) ((-640 . -696) 143186) ((-1065 . -595) 143152) ((-932 . -281) 143129) ((-59 . -34) T) ((-1059 . -595) 143095) ((-1043 . -595) 143061) ((-1032 . -773) T) ((-1032 . -770) T) ((-794 . -705) T) ((-710 . -47) 143026) ((-603 . -38) 143013) ((-348 . -283) T) ((-345 . -283) T) ((-337 . -283) T) ((-257 . -283) 142944) ((-241 . -283) 142875) ((-1036 . -595) 142841) ((-1010 . -595) 142807) ((-998 . -101) T) ((-993 . -595) 142773) ((-406 . -705) T) ((-117 . -38) 142718) ((-606 . -595) 142684) ((-406 . -465) T) ((-475 . -595) 142650) ((-347 . -101) T) ((-212 . -595) 142616) ((-1176 . -1028) T) ((-690 . -1028) T) ((-1143 . -47) 142593) ((-1142 . -47) 142563) ((-1136 . -47) 142540) ((-1009 . -149) 142486) ((-884 . -283) T) ((-1095 . -47) 142458) ((-672 . -302) NIL) ((-506 . -595) 142440) ((-501 . -595) 142422) ((-499 . -595) 142404) ((-320 . -1069) 142354) ((-691 . -444) 142285) ((-48 . -101) T) ((-1212 . -279) 142270) ((-1191 . -279) 142190) ((-623 . -644) 142174) ((-623 . -629) 142158) ((-332 . -21) T) ((-332 . -25) T) ((-40 . -342) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-623 . -366) 142142) ((-584 . -279) 142119) ((-587 . -595) 142086) ((-381 . -101) T) ((-1089 . -141) T) ((-126 . -595) 142018) ((-848 . -1069) T) ((-636 . -404) 142002) ((-693 . -595) 141984) ((-160 . -595) 141966) ((-155 . -595) 141948) ((-1243 . -705) T) ((-1071 . -34) T) ((-845 . -773) NIL) ((-845 . -770) NIL) ((-833 . -825) T) ((-710 . -860) NIL) ((-1252 . -130) T) ((-374 . -130) T) ((-878 . -101) T) ((-710 . -1012) 141824) ((-522 . -130) T) ((-1056 . -404) 141808) ((-974 . -481) 141792) ((-117 . -393) 141769) ((-1136 . -1182) 141748) ((-760 . -404) 141732) ((-758 . -404) 141716) ((-917 . -34) T) ((-672 . -1120) NIL) ((-244 . -626) 141551) ((-243 . -626) 141373) ((-795 . -894) 141352) ((-446 . -404) 141336) ((-584 . -19) 141320) ((-1115 . -1175) 141289) ((-1136 . -860) NIL) ((-1136 . -858) 141241) ((-584 . -586) 141218) ((-1168 . -595) 141150) ((-1144 . -595) 141132) ((-61 . -388) T) ((-1142 . -1012) 141067) ((-1136 . -1012) 141033) ((-672 . -38) 140983) ((-466 . -279) 140968) ((-710 . -370) 140952) ((-636 . -1028) T) ((-1212 . -976) 140918) ((-1191 . -976) 140884) ((-1033 . -1158) 140859) ((-846 . -596) 140667) ((-846 . -595) 140649) ((-1155 . -481) 140586) ((-411 . -996) 140565) ((-48 . -302) 140552) ((-1033 . -106) 140498) ((-471 . -481) 140435) ((-511 . -1182) T) ((-1136 . -331) 140387) ((-1110 . -481) 140358) ((-1136 . -370) 140310) ((-1056 . -1028) T) ((-430 . -101) T) ((-181 . -1069) T) ((-244 . -34) T) ((-243 . -34) T) ((-760 . -1028) T) ((-758 . -1028) T) ((-710 . -874) 140287) ((-446 . -1028) T) ((-58 . -481) 140271) ((-1008 . -1027) 140245) ((-510 . -481) 140229) ((-507 . -481) 140213) ((-488 . -481) 140197) ((-487 . -481) 140181) ((-239 . -505) 140114) ((-1008 . -111) 140081) ((-1143 . -874) 139994) ((-1142 . -874) 139900) ((-1136 . -874) 139733) ((-648 . -1081) T) ((-1095 . -874) 139717) ((-624 . -92) T) ((-347 . -1120) T) ((-315 . -1027) 139699) ((-244 . -769) 139678) ((-244 . -772) 139629) ((-244 . -771) 139608) ((-243 . -769) 139587) ((-243 . -772) 139538) ((-243 . -771) 139517) ((-31 . -595) 139483) ((-50 . -1028) T) ((-244 . -705) 139393) ((-243 . -705) 139303) ((-1176 . -1069) T) ((-648 . -23) T) ((-565 . -1028) T) ((-509 . -1028) T) ((-372 . -1027) 139268) ((-315 . -111) 139243) ((-72 . -376) T) ((-72 . -388) T) ((-998 . -38) 139180) ((-672 . -393) 139162) ((-98 . -101) T) ((-690 . -1069) T) ((-977 . -143) 139134) ((-977 . -145) 139106) ((-372 . -111) 139062) ((-312 . -1186) 139041) ((-466 . -976) 139007) ((-347 . -38) 138972) ((-40 . -363) 138944) ((-847 . -595) 138816) ((-127 . -125) 138800) ((-121 . -125) 138784) ((-812 . -1027) 138754) ((-811 . -21) 138706) ((-805 . -1027) 138690) ((-811 . -25) 138642) ((-312 . -542) 138593) ((-550 . -806) T) ((-234 . -1182) T) ((-812 . -111) 138558) ((-805 . -111) 138537) ((-1212 . -595) 138519) ((-1191 . -595) 138501) ((-1191 . -596) 138174) ((-1141 . -883) 138153) ((-1094 . -883) 138132) ((-48 . -38) 138097) ((-1250 . -1081) T) ((-584 . -595) 138009) ((-584 . -596) 137970) ((-1248 . -1081) T) ((-234 . -1012) 137797) ((-1141 . -626) 137722) ((-1094 . -626) 137647) ((-697 . -595) 137629) ((-829 . -626) 137603) ((-482 . -1069) T) ((-1250 . -23) T) ((-1248 . -23) T) ((-1008 . -1021) T) ((-1155 . -279) 137582) ((-167 . -361) 137533) ((-978 . -1182) T) ((-44 . -23) T) ((-471 . -279) 137512) ((-569 . -1069) T) ((-1115 . -1078) 137481) ((-1073 . -1072) 137433) ((-128 . -1182) T) ((-383 . -21) T) ((-383 . -25) T) ((-150 . -1081) T) ((-1256 . -101) T) ((-978 . -858) 137415) ((-978 . -860) 137397) ((-1176 . -696) 137294) ((-603 . -225) 137278) ((-601 . -21) T) ((-282 . -542) T) ((-601 . -25) T) ((-1162 . -1069) T) ((-690 . -696) 137243) ((-234 . -370) 137212) ((-978 . -1012) 137172) ((-372 . -1021) T) ((-217 . -1028) T) ((-117 . -225) 137149) ((-58 . -279) 137126) ((-150 . -23) T) ((-507 . -279) 137103) ((-320 . -505) 137036) ((-487 . -279) 137013) ((-372 . -237) T) ((-372 . -227) T) ((-812 . -1021) T) ((-805 . -1021) T) ((-691 . -923) 136982) ((-679 . -825) T) ((-466 . -595) 136964) ((-805 . -227) 136943) ((-133 . -825) T) ((-636 . -1069) T) ((-1155 . -586) 136922) ((-536 . -1158) 136901) ((-329 . -1069) T) ((-312 . -356) 136880) ((-400 . -145) 136859) ((-400 . -143) 136838) ((-938 . -1081) 136737) ((-234 . -874) 136669) ((-793 . -1081) 136579) ((-632 . -827) 136563) ((-471 . -586) 136542) ((-536 . -106) 136492) ((-978 . -370) 136474) ((-978 . -331) 136456) ((-96 . -1069) T) ((-938 . -23) 136267) ((-469 . -21) T) ((-469 . -25) T) ((-793 . -23) 136137) ((-1145 . -595) 136119) ((-58 . -19) 136103) ((-1145 . -596) 136025) ((-1141 . -705) T) ((-1094 . -705) T) ((-507 . -19) 136009) ((-487 . -19) 135993) ((-58 . -586) 135970) ((-1056 . -1069) T) ((-875 . -101) 135948) ((-829 . -705) T) ((-760 . -1069) T) ((-507 . -586) 135925) ((-487 . -586) 135902) ((-758 . -1069) T) ((-758 . -1035) 135869) ((-453 . -1069) T) ((-446 . -1069) T) ((-569 . -696) 135844) ((-627 . -1069) T) ((-978 . -874) NIL) ((-1220 . -47) 135821) ((-607 . -1081) T) ((-648 . -130) T) ((-1214 . -101) T) ((-1213 . -47) 135791) ((-1192 . -47) 135768) ((-1176 . -170) 135719) ((-1049 . -1186) 135670) ((-268 . -1069) T) ((-84 . -433) T) ((-84 . -388) T) ((-1142 . -300) 135649) ((-1136 . -300) 135628) ((-50 . -1069) T) ((-1049 . -542) 135579) ((-690 . -170) T) ((-578 . -47) 135556) ((-219 . -626) 135521) ((-565 . -1069) T) ((-509 . -1069) T) ((-352 . -1186) T) ((-346 . -1186) T) ((-338 . -1186) T) ((-479 . -798) T) ((-479 . -894) T) ((-312 . -1081) T) ((-107 . -1186) T) ((-332 . -825) T) ((-211 . -894) T) ((-211 . -798) T) ((-693 . -1027) 135491) ((-352 . -542) T) ((-346 . -542) T) ((-338 . -542) T) ((-107 . -542) T) ((-636 . -696) 135461) ((-1136 . -996) NIL) ((-312 . -23) T) ((-66 . -1182) T) ((-974 . -595) 135393) ((-672 . -225) 135375) ((-693 . -111) 135340) ((-623 . -34) T) ((-239 . -481) 135324) ((-1071 . -1067) 135308) ((-169 . -1069) T) ((-926 . -883) 135287) ((-473 . -883) 135266) ((-1256 . -1120) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-1250 . -130) T) ((-1248 . -130) T) ((-1056 . -696) 135115) ((-1032 . -626) 135102) ((-926 . -626) 135027) ((-760 . -696) 134856) ((-526 . -595) 134838) ((-526 . -596) 134819) ((-758 . -696) 134668) ((-1241 . -101) T) ((-1046 . -101) T) ((-374 . -25) T) ((-374 . -21) T) ((-473 . -626) 134593) ((-453 . -696) 134564) ((-446 . -696) 134413) ((-961 . -101) T) ((-1224 . -595) 134379) ((-1213 . -1012) 134314) ((-1192 . -1182) 134293) ((-716 . -101) T) ((-1192 . -860) NIL) ((-1192 . -858) 134245) ((-1155 . -596) NIL) ((-1155 . -595) 134227) ((-522 . -25) T) ((-1111 . -1092) 134172) ((-1018 . -1175) 134101) ((-875 . -302) 134039) ((-336 . -1028) T) ((-139 . -101) T) ((-44 . -130) T) ((-282 . -1081) T) ((-659 . -92) T) ((-654 . -92) T) ((-642 . -595) 134021) ((-624 . -595) 133974) ((-470 . -92) T) ((-348 . -595) 133956) ((-345 . -595) 133938) ((-337 . -595) 133920) ((-257 . -596) 133668) ((-257 . -595) 133650) ((-241 . -595) 133632) ((-241 . -596) 133493) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1192 . -1012) 133459) ((-1176 . -505) 133426) ((-1110 . -595) 133408) ((-797 . -832) T) ((-797 . -705) T) ((-584 . -281) 133385) ((-565 . -696) 133350) ((-471 . -596) NIL) ((-471 . -595) 133332) ((-509 . -696) 133277) ((-309 . -101) T) ((-306 . -101) T) ((-282 . -23) T) ((-150 . -130) T) ((-379 . -705) T) ((-846 . -1027) 133229) ((-884 . -595) 133211) ((-884 . -596) 133193) ((-846 . -111) 133131) ((-135 . -101) T) ((-114 . -101) T) ((-691 . -1204) 133115) ((-693 . -1021) T) ((-672 . -342) NIL) ((-510 . -595) 133047) ((-372 . -773) T) ((-217 . -1069) T) ((-372 . -770) T) ((-219 . -772) T) ((-219 . -769) T) ((-58 . -596) 133008) ((-58 . -595) 132920) ((-219 . -705) T) ((-507 . -596) 132881) ((-507 . -595) 132793) ((-488 . -595) 132725) ((-487 . -596) 132686) ((-487 . -595) 132598) ((-1049 . -356) 132549) ((-40 . -404) 132526) ((-76 . -1182) T) ((-845 . -883) NIL) ((-352 . -322) 132510) ((-352 . -356) T) ((-346 . -322) 132494) ((-346 . -356) T) ((-338 . -322) 132478) ((-338 . -356) T) ((-309 . -277) 132457) ((-107 . -356) T) ((-69 . -1182) T) ((-1192 . -331) 132409) ((-845 . -626) 132354) ((-1192 . -370) 132306) ((-938 . -130) 132161) ((-793 . -130) 132031) ((-932 . -629) 132015) ((-1056 . -170) 131926) ((-932 . -366) 131910) ((-1032 . -772) T) ((-1032 . -769) T) ((-760 . -170) 131801) ((-758 . -170) 131712) ((-794 . -47) 131674) ((-1032 . -705) T) ((-320 . -481) 131658) ((-926 . -705) T) ((-446 . -170) 131569) ((-239 . -279) 131546) ((-473 . -705) T) ((-1241 . -302) 131484) ((-1220 . -874) 131397) ((-1213 . -874) 131303) ((-1212 . -1027) 131138) ((-1192 . -874) 130971) ((-1191 . -1027) 130779) ((-1176 . -283) 130758) ((-1115 . -149) 130742) ((-1089 . -101) T) ((-1044 . -101) T) ((-901 . -929) T) ((-716 . -302) 130680) ((-74 . -1182) T) ((-30 . -929) T) ((-167 . -883) 130633) ((-642 . -375) 130605) ((-112 . -819) T) ((-1 . -595) 130587) ((-1087 . -1069) T) ((-1049 . -23) T) ((-50 . -600) 130571) ((-1049 . -1081) T) ((-977 . -402) 130543) ((-578 . -874) 130456) ((-431 . -101) T) ((-139 . -302) NIL) ((-846 . -1021) T) ((-811 . -825) 130435) ((-80 . -1182) T) ((-690 . -283) T) ((-40 . -1028) T) ((-565 . -170) T) ((-509 . -170) T) ((-502 . -595) 130417) ((-167 . -626) 130327) ((-498 . -595) 130309) ((-344 . -145) 130291) ((-344 . -143) T) ((-352 . -1081) T) ((-346 . -1081) T) ((-338 . -1081) T) ((-978 . -300) T) ((-888 . -300) T) ((-846 . -237) T) ((-107 . -1081) T) ((-846 . -227) 130270) ((-1212 . -111) 130091) ((-1191 . -111) 129880) ((-239 . -1216) 129864) ((-550 . -823) T) ((-352 . -23) T) ((-347 . -342) T) ((-309 . -302) 129851) ((-306 . -302) 129792) ((-346 . -23) T) ((-312 . -130) T) ((-338 . -23) T) ((-978 . -996) T) ((-107 . -23) T) ((-239 . -586) 129769) ((-1214 . -38) 129661) ((-1201 . -883) 129640) ((-112 . -1069) T) ((-1009 . -101) T) ((-1201 . -626) 129565) ((-845 . -772) NIL) ((-830 . -626) 129539) ((-845 . -769) NIL) ((-794 . -860) NIL) ((-845 . -705) T) ((-1056 . -505) 129412) ((-760 . -505) 129359) ((-758 . -505) 129311) ((-557 . -626) 129298) ((-794 . -1012) 129126) ((-446 . -505) 129069) ((-381 . -382) T) ((-59 . -1182) T) ((-601 . -825) 129048) ((-491 . -639) T) ((-1115 . -950) 129017) ((-977 . -444) T) ((-677 . -823) T) ((-501 . -770) T) ((-466 . -1027) 128852) ((-336 . -1069) T) ((-306 . -1120) NIL) ((-282 . -130) T) ((-387 . -1069) T) ((-672 . -363) 128819) ((-844 . -1028) T) ((-217 . -600) 128796) ((-320 . -279) 128773) ((-466 . -111) 128594) ((-1212 . -1021) T) ((-1191 . -1021) T) ((-794 . -370) 128578) ((-167 . -705) T) ((-632 . -101) T) ((-1212 . -237) 128557) ((-1212 . -227) 128509) ((-1191 . -227) 128414) ((-1191 . -237) 128393) ((-977 . -395) NIL) ((-648 . -619) 128341) ((-309 . -38) 128251) ((-306 . -38) 128180) ((-68 . -595) 128162) ((-312 . -484) 128128) ((-1155 . -281) 128107) ((-1082 . -1081) 128017) ((-82 . -1182) T) ((-60 . -595) 127999) ((-471 . -281) 127978) ((-1243 . -1012) 127955) ((-1133 . -1069) T) ((-1082 . -23) 127825) ((-794 . -874) 127761) ((-1201 . -705) T) ((-1071 . -1182) T) ((-1056 . -283) 127692) ((-940 . -1069) T) ((-867 . -101) T) ((-760 . -283) 127603) ((-320 . -19) 127587) ((-58 . -281) 127564) ((-758 . -283) 127495) ((-830 . -705) T) ((-117 . -823) NIL) ((-507 . -281) 127472) ((-320 . -586) 127449) ((-487 . -281) 127426) ((-446 . -283) 127357) ((-1009 . -302) 127208) ((-557 . -705) T) ((-659 . -595) 127158) ((-654 . -595) 127124) ((-640 . -595) 127106) ((-470 . -595) 127072) ((-239 . -596) 127033) ((-239 . -595) 126945) ((-137 . -595) 126911) ((-136 . -595) 126877) ((-132 . -595) 126843) ((-1116 . -34) T) ((-917 . -1182) T) ((-336 . -696) 126788) ((-648 . -25) T) ((-648 . -21) T) ((-466 . -1021) T) ((-615 . -410) 126753) ((-589 . -410) 126718) ((-1089 . -1120) T) ((-565 . -283) T) ((-509 . -283) T) ((-1213 . -300) 126697) ((-466 . -227) 126649) ((-466 . -237) 126628) ((-1192 . -300) 126607) ((-1192 . -996) NIL) ((-1049 . -130) T) ((-846 . -773) 126586) ((-142 . -101) T) ((-40 . -1069) T) ((-846 . -770) 126565) ((-623 . -984) 126549) ((-564 . -1028) T) ((-550 . -1028) T) ((-486 . -1028) T) ((-400 . -444) T) ((-352 . -130) T) ((-309 . -393) 126533) ((-306 . -393) 126494) ((-346 . -130) T) ((-338 . -130) T) ((-1150 . -1069) T) ((-1089 . -38) 126481) ((-1063 . -595) 126448) ((-107 . -130) T) ((-928 . -1069) T) ((-895 . -1069) T) ((-749 . -1069) T) ((-650 . -1069) T) ((-497 . -1052) T) ((-679 . -145) T) ((-116 . -145) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-642 . -1027) 126432) ((-522 . -825) T) ((-491 . -825) T) ((-348 . -1027) 126384) ((-345 . -1027) 126336) ((-337 . -1027) 126288) ((-244 . -1182) T) ((-243 . -1182) T) ((-257 . -1027) 126131) ((-241 . -1027) 125974) ((-642 . -111) 125953) ((-348 . -111) 125891) ((-345 . -111) 125829) ((-337 . -111) 125767) ((-257 . -111) 125596) ((-241 . -111) 125425) ((-795 . -1186) 125404) ((-603 . -404) 125388) ((-44 . -21) T) ((-44 . -25) T) ((-793 . -619) 125294) ((-795 . -542) 125273) ((-244 . -1012) 125100) ((-243 . -1012) 124927) ((-126 . -119) 124911) ((-884 . -1027) 124876) ((-677 . -1028) T) ((-691 . -101) T) ((-336 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -595) 124858) ((-884 . -111) 124814) ((-40 . -696) 124759) ((-844 . -1069) T) ((-320 . -596) 124720) ((-320 . -595) 124632) ((-1191 . -770) 124585) ((-1191 . -773) 124538) ((-244 . -370) 124507) ((-243 . -370) 124476) ((-632 . -38) 124446) ((-590 . -34) T) ((-474 . -1081) 124356) ((-467 . -34) T) ((-1082 . -130) 124226) ((-938 . -25) 124037) ((-848 . -595) 124019) ((-938 . -21) 123974) ((-793 . -21) 123884) ((-793 . -25) 123735) ((-603 . -1028) T) ((-1147 . -542) 123714) ((-1141 . -47) 123691) ((-348 . -1021) T) ((-345 . -1021) T) ((-474 . -23) 123561) ((-337 . -1021) T) ((-257 . -1021) T) ((-241 . -1021) T) ((-1094 . -47) 123533) ((-117 . -1028) T) ((-1008 . -626) 123507) ((-932 . -34) T) ((-348 . -227) 123486) ((-348 . -237) T) ((-345 . -227) 123465) ((-345 . -237) T) ((-241 . -319) 123422) ((-337 . -227) 123401) ((-337 . -237) T) ((-257 . -319) 123373) ((-257 . -227) 123352) ((-1125 . -149) 123336) ((-244 . -874) 123268) ((-243 . -874) 123200) ((-1051 . -825) T) ((-1195 . -1182) T) ((-407 . -1081) T) ((-1025 . -23) T) ((-884 . -1021) T) ((-315 . -626) 123182) ((-998 . -823) T) ((-1176 . -976) 123148) ((-1142 . -894) 123127) ((-1136 . -894) 123106) ((-884 . -237) T) ((-795 . -356) 123085) ((-378 . -23) T) ((-127 . -1069) 123063) ((-121 . -1069) 123041) ((-884 . -227) T) ((-1136 . -798) NIL) ((-372 . -626) 123006) ((-844 . -696) 122993) ((-1018 . -149) 122958) ((-40 . -170) T) ((-672 . -404) 122940) ((-691 . -302) 122927) ((-812 . -626) 122887) ((-805 . -626) 122861) ((-312 . -25) T) ((-312 . -21) T) ((-636 . -279) 122840) ((-564 . -1069) T) ((-550 . -1069) T) ((-486 . -1069) T) ((-239 . -281) 122817) ((-306 . -225) 122778) ((-1141 . -860) NIL) ((-1094 . -860) 122637) ((-129 . -825) T) ((-1141 . -1012) 122517) ((-1094 . -1012) 122400) ((-181 . -595) 122382) ((-829 . -1012) 122278) ((-760 . -279) 122205) ((-795 . -1081) T) ((-1008 . -705) T) ((-584 . -629) 122189) ((-1018 . -950) 122118) ((-973 . -101) T) ((-795 . -23) T) ((-691 . -1120) 122096) ((-672 . -1028) T) ((-584 . -366) 122080) ((-344 . -444) T) ((-336 . -283) T) ((-1229 . -1069) T) ((-242 . -1069) T) ((-392 . -101) T) ((-282 . -21) T) ((-282 . -25) T) ((-354 . -705) T) ((-689 . -1069) T) ((-677 . -1069) T) ((-354 . -465) T) ((-1176 . -595) 122062) ((-1141 . -370) 122046) ((-1094 . -370) 122030) ((-998 . -404) 121992) ((-139 . -223) 121974) ((-372 . -772) T) ((-372 . -769) T) ((-844 . -170) T) ((-372 . -705) T) ((-690 . -595) 121956) ((-691 . -38) 121785) ((-1228 . -1226) 121769) ((-344 . -395) T) ((-1228 . -1069) 121719) ((-564 . -696) 121706) ((-550 . -696) 121693) ((-486 . -696) 121658) ((-309 . -609) 121637) ((-812 . -705) T) ((-805 . -705) T) ((-623 . -1182) T) ((-1049 . -619) 121585) ((-1141 . -874) 121528) ((-1094 . -874) 121512) ((-640 . -1027) 121496) ((-107 . -619) 121478) ((-474 . -130) 121348) ((-1147 . -1081) T) ((-926 . -47) 121317) ((-603 . -1069) T) ((-640 . -111) 121296) ((-482 . -595) 121262) ((-320 . -281) 121239) ((-473 . -47) 121196) ((-1147 . -23) T) ((-117 . -1069) T) ((-102 . -101) 121174) ((-1240 . -1081) T) ((-1025 . -130) T) ((-998 . -1028) T) ((-797 . -1012) 121158) ((-977 . -703) 121130) ((-1240 . -23) T) ((-677 . -696) 121095) ((-569 . -595) 121077) ((-379 . -1012) 121061) ((-347 . -1028) T) ((-378 . -130) T) ((-317 . -1012) 121045) ((-219 . -860) 121027) ((-978 . -894) T) ((-90 . -34) T) ((-978 . -798) T) ((-888 . -894) T) ((-479 . -1186) T) ((-1162 . -595) 121009) ((-1074 . -1069) T) ((-211 . -1186) T) ((-973 . -302) 120974) ((-219 . -1012) 120934) ((-40 . -283) T) ((-1049 . -21) T) ((-1049 . -25) T) ((-1089 . -806) T) ((-479 . -542) T) ((-352 . -25) T) ((-211 . -542) T) ((-352 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-693 . -626) 120894) ((-338 . -25) T) ((-338 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1028) T) ((-564 . -170) T) ((-550 . -170) T) ((-486 . -170) T) ((-636 . -595) 120876) ((-716 . -715) 120860) ((-329 . -595) 120842) ((-67 . -376) T) ((-67 . -388) T) ((-1071 . -106) 120826) ((-1032 . -860) 120808) ((-926 . -860) 120733) ((-631 . -1081) T) ((-603 . -696) 120720) ((-473 . -860) NIL) ((-1115 . -101) T) ((-1032 . -1012) 120702) ((-96 . -595) 120684) ((-469 . -145) T) ((-926 . -1012) 120564) ((-117 . -696) 120509) ((-631 . -23) T) ((-473 . -1012) 120385) ((-1056 . -596) NIL) ((-1056 . -595) 120367) ((-760 . -596) NIL) ((-760 . -595) 120328) ((-758 . -596) 119962) ((-758 . -595) 119876) ((-1082 . -619) 119782) ((-453 . -595) 119764) ((-446 . -595) 119746) ((-446 . -596) 119607) ((-1009 . -223) 119553) ((-846 . -883) 119532) ((-126 . -34) T) ((-795 . -130) T) ((-627 . -595) 119514) ((-563 . -101) T) ((-348 . -1247) 119498) ((-345 . -1247) 119482) ((-337 . -1247) 119466) ((-127 . -505) 119399) ((-121 . -505) 119332) ((-502 . -770) T) ((-502 . -773) T) ((-501 . -772) T) ((-102 . -302) 119270) ((-216 . -101) 119248) ((-672 . -1069) T) ((-677 . -170) T) ((-846 . -626) 119200) ((-64 . -377) T) ((-268 . -595) 119182) ((-64 . -388) T) ((-926 . -370) 119166) ((-844 . -283) T) ((-50 . -595) 119148) ((-973 . -38) 119096) ((-565 . -595) 119078) ((-473 . -370) 119062) ((-565 . -596) 119044) ((-509 . -595) 119026) ((-884 . -1247) 119013) ((-845 . -1182) T) ((-679 . -444) T) ((-486 . -505) 118979) ((-479 . -356) T) ((-348 . -361) 118958) ((-345 . -361) 118937) ((-337 . -361) 118916) ((-211 . -356) T) ((-693 . -705) T) ((-116 . -444) T) ((-1251 . -1242) 118900) ((-845 . -858) 118877) ((-845 . -860) NIL) ((-938 . -825) 118776) ((-793 . -825) 118727) ((-632 . -634) 118711) ((-1168 . -34) T) ((-169 . -595) 118693) ((-1082 . -21) 118603) ((-1082 . -25) 118454) ((-845 . -1012) 118431) ((-926 . -874) 118412) ((-1201 . -47) 118389) ((-884 . -361) T) ((-58 . -629) 118373) ((-507 . -629) 118357) ((-473 . -874) 118334) ((-70 . -433) T) ((-70 . -388) T) ((-487 . -629) 118318) ((-58 . -366) 118302) ((-603 . -170) T) ((-507 . -366) 118286) ((-487 . -366) 118270) ((-805 . -687) 118254) ((-1141 . -300) 118233) ((-1147 . -130) T) ((-117 . -170) T) ((-1115 . -302) 118171) ((-167 . -1182) T) ((-615 . -723) 118155) ((-589 . -723) 118139) ((-1240 . -130) T) ((-1213 . -894) 118118) ((-1192 . -894) 118097) ((-1192 . -798) NIL) ((-672 . -696) 118047) ((-1191 . -883) 118000) ((-998 . -1069) T) ((-845 . -370) 117977) ((-845 . -331) 117954) ((-879 . -1081) T) ((-167 . -858) 117938) ((-167 . -860) 117863) ((-479 . -1081) T) ((-347 . -1069) T) ((-211 . -1081) T) ((-75 . -433) T) ((-75 . -388) T) ((-167 . -1012) 117759) ((-312 . -825) T) ((-1228 . -505) 117692) ((-1212 . -626) 117589) ((-1191 . -626) 117459) ((-846 . -772) 117438) ((-846 . -769) 117417) ((-846 . -705) T) ((-479 . -23) T) ((-217 . -595) 117399) ((-172 . -444) T) ((-216 . -302) 117337) ((-85 . -433) T) ((-85 . -388) T) ((-211 . -23) T) ((-1252 . -1245) 117316) ((-564 . -283) T) ((-550 . -283) T) ((-655 . -1012) 117300) ((-486 . -283) T) ((-135 . -462) 117255) ((-48 . -1069) T) ((-691 . -225) 117239) ((-845 . -874) NIL) ((-1201 . -860) NIL) ((-863 . -101) T) ((-859 . -101) T) ((-381 . -1069) T) ((-167 . -370) 117223) ((-167 . -331) 117207) ((-1201 . -1012) 117087) ((-830 . -1012) 116983) ((-1111 . -101) T) ((-631 . -130) T) ((-117 . -505) 116891) ((-640 . -770) 116870) ((-640 . -773) 116849) ((-557 . -1012) 116831) ((-287 . -1235) 116801) ((-840 . -101) T) ((-937 . -542) 116780) ((-1176 . -1027) 116663) ((-474 . -619) 116569) ((-878 . -1069) T) ((-998 . -696) 116506) ((-690 . -1027) 116471) ((-598 . -101) T) ((-584 . -34) T) ((-1116 . -1182) T) ((-1176 . -111) 116340) ((-466 . -626) 116237) ((-347 . -696) 116182) ((-167 . -874) 116141) ((-677 . -283) T) ((-672 . -170) T) ((-690 . -111) 116097) ((-1256 . -1028) T) ((-1201 . -370) 116081) ((-411 . -1186) 116059) ((-1087 . -595) 116041) ((-306 . -823) NIL) ((-411 . -542) T) ((-219 . -300) T) ((-1191 . -769) 115994) ((-1191 . -772) 115947) ((-1212 . -705) T) ((-1191 . -705) T) ((-48 . -696) 115912) ((-219 . -996) T) ((-344 . -1235) 115889) ((-1214 . -404) 115855) ((-697 . -705) T) ((-1201 . -874) 115798) ((-112 . -595) 115780) ((-112 . -596) 115762) ((-697 . -465) T) ((-474 . -21) 115672) ((-127 . -481) 115656) ((-121 . -481) 115640) ((-474 . -25) 115491) ((-603 . -283) T) ((-569 . -1027) 115466) ((-430 . -1069) T) ((-1032 . -300) T) ((-117 . -283) T) ((-1073 . -101) T) ((-977 . -101) T) ((-569 . -111) 115434) ((-1111 . -302) 115372) ((-1176 . -1021) T) ((-1032 . -996) T) ((-65 . -1182) T) ((-1025 . -25) T) ((-1025 . -21) T) ((-690 . -1021) T) ((-378 . -21) T) ((-378 . -25) T) ((-672 . -505) NIL) ((-998 . -170) T) ((-690 . -237) T) ((-1032 . -535) T) ((-497 . -101) T) ((-493 . -101) T) ((-347 . -170) T) ((-336 . -595) 115354) ((-387 . -595) 115336) ((-466 . -705) T) ((-1089 . -823) T) ((-866 . -1012) 115304) ((-107 . -825) T) ((-636 . -1027) 115288) ((-479 . -130) T) ((-1214 . -1028) T) ((-211 . -130) T) ((-1125 . -101) 115266) ((-98 . -1069) T) ((-239 . -644) 115250) ((-239 . -629) 115234) ((-636 . -111) 115213) ((-309 . -404) 115197) ((-239 . -366) 115181) ((-1128 . -229) 115128) ((-973 . -225) 115112) ((-73 . -1182) T) ((-48 . -170) T) ((-679 . -380) T) ((-679 . -141) T) ((-1251 . -101) T) ((-1056 . -1027) 114955) ((-257 . -883) 114934) ((-241 . -883) 114913) ((-760 . -1027) 114736) ((-758 . -1027) 114579) ((-590 . -1182) T) ((-1133 . -595) 114561) ((-1056 . -111) 114390) ((-1018 . -101) T) ((-467 . -1182) T) ((-453 . -1027) 114361) ((-446 . -1027) 114204) ((-642 . -626) 114188) ((-845 . -300) T) ((-760 . -111) 113997) ((-758 . -111) 113826) ((-348 . -626) 113778) ((-345 . -626) 113730) ((-337 . -626) 113682) ((-257 . -626) 113607) ((-241 . -626) 113532) ((-1127 . -825) T) ((-1057 . -1012) 113516) ((-453 . -111) 113477) ((-446 . -111) 113306) ((-1045 . -1012) 113283) ((-974 . -34) T) ((-940 . -595) 113265) ((-932 . -1182) T) ((-126 . -984) 113249) ((-937 . -1081) T) ((-845 . -996) NIL) ((-714 . -1081) T) ((-694 . -1081) T) ((-1228 . -481) 113233) ((-1111 . -38) 113193) ((-937 . -23) T) ((-818 . -101) T) ((-795 . -21) T) ((-795 . -25) T) ((-714 . -23) T) ((-694 . -23) T) ((-110 . -639) T) ((-884 . -626) 113158) ((-565 . -1027) 113123) ((-509 . -1027) 113068) ((-221 . -56) 113026) ((-445 . -23) T) ((-400 . -101) T) ((-256 . -101) T) ((-672 . -283) T) ((-840 . -38) 112996) ((-565 . -111) 112952) ((-509 . -111) 112881) ((-411 . -1081) T) ((-309 . -1028) 112771) ((-306 . -1028) T) ((-636 . -1021) T) ((-1256 . -1069) T) ((-167 . -300) 112702) ((-411 . -23) T) ((-40 . -595) 112684) ((-40 . -596) 112668) ((-107 . -966) 112650) ((-116 . -843) 112634) ((-48 . -505) 112600) ((-1168 . -984) 112584) ((-1150 . -595) 112566) ((-1155 . -34) T) ((-928 . -595) 112532) ((-895 . -595) 112514) ((-1082 . -825) 112465) ((-749 . -595) 112447) ((-650 . -595) 112429) ((-1125 . -302) 112367) ((-471 . -34) T) ((-1061 . -1182) T) ((-469 . -444) T) ((-1056 . -1021) T) ((-1110 . -34) T) ((-760 . -1021) T) ((-758 . -1021) T) ((-625 . -229) 112351) ((-612 . -229) 112297) ((-1201 . -300) 112276) ((-1056 . -319) 112237) ((-446 . -1021) T) ((-1147 . -21) T) ((-1056 . -227) 112216) ((-760 . -319) 112193) ((-760 . -227) T) ((-758 . -319) 112165) ((-710 . -1186) 112144) ((-320 . -629) 112128) ((-1147 . -25) T) ((-58 . -34) T) ((-510 . -34) T) ((-507 . -34) T) ((-446 . -319) 112107) ((-320 . -366) 112091) ((-488 . -34) T) ((-487 . -34) T) ((-977 . -1120) NIL) ((-710 . -542) 112022) ((-615 . -101) T) ((-589 . -101) T) ((-348 . -705) T) ((-345 . -705) T) ((-337 . -705) T) ((-257 . -705) T) ((-241 . -705) T) ((-1018 . -302) 111930) ((-875 . -1069) 111908) ((-50 . -1021) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1143 . -542) 111887) ((-1142 . -1186) 111866) ((-565 . -1021) T) ((-509 . -1021) T) ((-1136 . -1186) 111845) ((-354 . -1012) 111829) ((-315 . -1012) 111813) ((-998 . -283) T) ((-372 . -860) 111795) ((-1142 . -542) 111746) ((-1136 . -542) 111697) ((-977 . -38) 111642) ((-777 . -1081) T) ((-884 . -705) T) ((-565 . -237) T) ((-565 . -227) T) ((-509 . -227) T) ((-509 . -237) T) ((-1095 . -542) 111621) ((-347 . -283) T) ((-625 . -673) 111605) ((-372 . -1012) 111565) ((-1089 . -1028) T) ((-102 . -125) 111549) ((-777 . -23) T) ((-1228 . -279) 111526) ((-400 . -302) 111491) ((-1250 . -1245) 111467) ((-1248 . -1245) 111446) ((-1214 . -1069) T) ((-844 . -595) 111428) ((-812 . -1012) 111397) ((-197 . -765) T) ((-196 . -765) T) ((-195 . -765) T) ((-194 . -765) T) ((-193 . -765) T) ((-192 . -765) T) ((-191 . -765) T) ((-190 . -765) T) ((-189 . -765) T) ((-188 . -765) T) ((-486 . -976) T) ((-267 . -814) T) ((-266 . -814) T) ((-265 . -814) T) ((-264 . -814) T) ((-48 . -283) T) ((-263 . -814) T) ((-262 . -814) T) ((-261 . -814) T) ((-187 . -765) T) ((-594 . -825) T) ((-632 . -404) 111381) ((-110 . -825) T) ((-631 . -21) T) ((-631 . -25) T) ((-1251 . -38) 111351) ((-117 . -279) 111302) ((-1228 . -19) 111286) ((-1228 . -586) 111263) ((-1241 . -1069) T) ((-1046 . -1069) T) ((-961 . -1069) T) ((-937 . -130) T) ((-716 . -1069) T) ((-714 . -130) T) ((-694 . -130) T) ((-502 . -771) T) ((-400 . -1120) 111241) ((-445 . -130) T) ((-502 . -772) T) ((-217 . -1021) T) ((-287 . -101) 111023) ((-139 . -1069) T) ((-677 . -976) T) ((-90 . -1182) T) ((-127 . -595) 110955) ((-121 . -595) 110887) ((-1256 . -170) T) ((-1142 . -356) 110866) ((-1136 . -356) 110845) ((-309 . -1069) T) ((-411 . -130) T) ((-306 . -1069) T) ((-400 . -38) 110797) ((-1102 . -101) T) ((-1214 . -696) 110689) ((-632 . -1028) T) ((-1104 . -1223) T) ((-312 . -143) 110668) ((-312 . -145) 110647) ((-135 . -1069) T) ((-114 . -1069) T) ((-833 . -101) T) ((-564 . -595) 110629) ((-550 . -596) 110528) ((-550 . -595) 110510) ((-486 . -595) 110492) ((-486 . -596) 110437) ((-477 . -23) T) ((-474 . -825) 110388) ((-479 . -619) 110370) ((-939 . -595) 110352) ((-211 . -619) 110334) ((-219 . -397) T) ((-640 . -626) 110318) ((-1141 . -894) 110297) ((-710 . -1081) T) ((-344 . -101) T) ((-1181 . -1052) T) ((-796 . -825) T) ((-710 . -23) T) ((-336 . -1027) 110242) ((-1127 . -1126) T) ((-1116 . -106) 110226) ((-1143 . -1081) T) ((-1142 . -1081) T) ((-506 . -1012) 110210) ((-1136 . -1081) T) ((-1095 . -1081) T) ((-336 . -111) 110139) ((-978 . -1186) T) ((-126 . -1182) T) ((-888 . -1186) T) ((-672 . -279) NIL) ((-1229 . -595) 110121) ((-1143 . -23) T) ((-1142 . -23) T) ((-1136 . -23) T) ((-978 . -542) T) ((-1111 . -225) 110105) ((-888 . -542) T) ((-1095 . -23) T) ((-242 . -595) 110087) ((-1044 . -1069) T) ((-777 . -130) T) ((-689 . -595) 110069) ((-309 . -696) 109979) ((-306 . -696) 109908) ((-677 . -595) 109890) ((-677 . -596) 109835) ((-400 . -393) 109819) ((-431 . -1069) T) ((-479 . -25) T) ((-479 . -21) T) ((-1089 . -1069) T) ((-211 . -25) T) ((-211 . -21) T) ((-691 . -404) 109803) ((-693 . -1012) 109772) ((-1228 . -595) 109684) ((-1228 . -596) 109645) ((-1214 . -170) T) ((-239 . -34) T) ((-900 . -948) T) ((-1168 . -1182) T) ((-640 . -769) 109624) ((-640 . -772) 109603) ((-391 . -388) T) ((-514 . -101) 109581) ((-1009 . -1069) T) ((-216 . -969) 109565) ((-495 . -101) T) ((-603 . -595) 109547) ((-45 . -825) NIL) ((-603 . -596) 109524) ((-1009 . -592) 109499) ((-875 . -505) 109432) ((-336 . -1021) T) ((-117 . -596) NIL) ((-117 . -595) 109414) ((-846 . -1182) T) ((-648 . -410) 109398) ((-648 . -1092) 109343) ((-491 . -149) 109325) ((-336 . -227) T) ((-336 . -237) T) ((-40 . -1027) 109270) ((-846 . -858) 109254) ((-846 . -860) 109179) ((-691 . -1028) T) ((-672 . -976) NIL) ((-3 . |UnionCategory|) T) ((-1212 . -47) 109149) ((-1191 . -47) 109126) ((-1110 . -984) 109097) ((-219 . -894) T) ((-40 . -111) 109026) ((-846 . -1012) 108890) ((-1089 . -696) 108877) ((-1074 . -595) 108859) ((-1049 . -145) 108838) ((-1049 . -143) 108789) ((-978 . -356) T) ((-312 . -1170) 108755) ((-372 . -300) T) ((-312 . -1167) 108721) ((-309 . -170) 108700) ((-306 . -170) T) ((-977 . -225) 108677) ((-888 . -356) T) ((-565 . -1247) 108664) ((-509 . -1247) 108641) ((-352 . -145) 108620) ((-352 . -143) 108571) ((-346 . -145) 108550) ((-346 . -143) 108501) ((-590 . -1158) 108477) ((-338 . -145) 108456) ((-338 . -143) 108407) ((-312 . -35) 108373) ((-467 . -1158) 108352) ((0 . |EnumerationCategory|) T) ((-312 . -94) 108318) ((-372 . -996) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -229) 108268) ((-632 . -1069) T) ((-590 . -106) 108215) ((-477 . -130) T) ((-467 . -106) 108165) ((-234 . -1081) 108075) ((-846 . -370) 108059) ((-846 . -331) 108043) ((-234 . -23) 107913) ((-1032 . -894) T) ((-1032 . -798) T) ((-565 . -361) T) ((-509 . -361) T) ((-344 . -1120) T) ((-320 . -34) T) ((-44 . -410) 107897) ((-847 . -1182) T) ((-383 . -723) 107881) ((-1241 . -505) 107814) ((-710 . -130) T) ((-1220 . -542) 107793) ((-1213 . -1186) 107772) ((-1213 . -542) 107723) ((-1192 . -1186) 107702) ((-304 . -1052) T) ((-1192 . -542) 107653) ((-716 . -505) 107586) ((-1191 . -1182) 107565) ((-1191 . -860) 107438) ((-867 . -1069) T) ((-142 . -819) T) ((-1191 . -858) 107408) ((-669 . -595) 107390) ((-1143 . -130) T) ((-514 . -302) 107328) ((-1142 . -130) T) ((-139 . -505) NIL) ((-1136 . -130) T) ((-1095 . -130) T) ((-998 . -976) T) ((-978 . -23) T) ((-344 . -38) 107293) ((-978 . -1081) T) ((-888 . -1081) T) ((-81 . -595) 107275) ((-40 . -1021) T) ((-844 . -1027) 107262) ((-977 . -342) NIL) ((-846 . -874) 107221) ((-679 . -101) T) ((-945 . -23) T) ((-584 . -1182) T) ((-888 . -23) T) ((-844 . -111) 107206) ((-420 . -1081) T) ((-466 . -47) 107176) ((-207 . -101) T) ((-133 . -101) T) ((-40 . -227) 107148) ((-40 . -237) T) ((-116 . -101) T) ((-579 . -542) 107127) ((-578 . -542) 107106) ((-672 . -595) 107088) ((-672 . -596) 106996) ((-309 . -505) 106962) ((-306 . -505) 106854) ((-1212 . -1012) 106838) ((-1191 . -1012) 106624) ((-973 . -404) 106608) ((-420 . -23) T) ((-1089 . -170) T) ((-1214 . -283) T) ((-632 . -696) 106578) ((-142 . -1069) T) ((-48 . -976) T) ((-400 . -225) 106562) ((-288 . -229) 106512) ((-845 . -894) T) ((-845 . -798) NIL) ((-839 . -825) T) ((-1191 . -331) 106482) ((-1191 . -370) 106452) ((-216 . -1090) 106436) ((-1228 . -281) 106413) ((-1176 . -626) 106338) ((-937 . -21) T) ((-937 . -25) T) ((-714 . -21) T) ((-714 . -25) T) ((-694 . -21) T) ((-694 . -25) T) ((-690 . -626) 106303) ((-445 . -21) T) ((-445 . -25) T) ((-332 . -101) T) ((-172 . -101) T) ((-973 . -1028) T) ((-844 . -1021) T) ((-752 . -101) T) ((-1213 . -356) 106282) ((-1212 . -874) 106188) ((-1192 . -356) 106167) ((-1191 . -874) 106018) ((-998 . -595) 106000) ((-400 . -806) 105953) ((-1143 . -484) 105919) ((-167 . -894) 105850) ((-1142 . -484) 105816) ((-1136 . -484) 105782) ((-691 . -1069) T) ((-1095 . -484) 105748) ((-564 . -1027) 105735) ((-550 . -1027) 105722) ((-486 . -1027) 105687) ((-309 . -283) 105666) ((-306 . -283) T) ((-347 . -595) 105648) ((-411 . -25) T) ((-411 . -21) T) ((-98 . -279) 105627) ((-564 . -111) 105612) ((-550 . -111) 105597) ((-486 . -111) 105553) ((-1145 . -860) 105520) ((-875 . -481) 105504) ((-48 . -595) 105486) ((-48 . -596) 105431) ((-234 . -130) 105301) ((-1201 . -894) 105280) ((-794 . -1186) 105259) ((-1009 . -505) 105103) ((-381 . -595) 105085) ((-794 . -542) 105016) ((-569 . -626) 104991) ((-257 . -47) 104963) ((-241 . -47) 104920) ((-522 . -500) 104897) ((-974 . -1182) T) ((-677 . -1027) 104862) ((-1220 . -1081) T) ((-1213 . -1081) T) ((-1192 . -1081) T) ((-977 . -363) 104834) ((-112 . -361) T) ((-466 . -874) 104740) ((-1220 . -23) T) ((-1213 . -23) T) ((-878 . -595) 104722) ((-90 . -106) 104706) ((-1176 . -705) T) ((-879 . -825) 104657) ((-679 . -1120) T) ((-677 . -111) 104613) ((-1192 . -23) T) ((-579 . -1081) T) ((-578 . -1081) T) ((-691 . -696) 104442) ((-690 . -705) T) ((-1089 . -283) T) ((-978 . -130) T) ((-479 . -825) T) ((-945 . -130) T) ((-888 . -130) T) ((-777 . -25) T) ((-211 . -825) T) ((-777 . -21) T) ((-564 . -1021) T) ((-550 . -1021) T) ((-486 . -1021) T) ((-579 . -23) T) ((-336 . -1247) 104419) ((-312 . -444) 104398) ((-332 . -302) 104385) ((-578 . -23) T) ((-420 . -130) T) ((-636 . -626) 104359) ((-239 . -984) 104343) ((-846 . -300) T) ((-1252 . -1242) 104327) ((-749 . -770) T) ((-749 . -773) T) ((-679 . -38) 104314) ((-550 . -227) T) ((-486 . -237) T) ((-486 . -227) T) ((-1119 . -229) 104264) ((-1056 . -883) 104243) ((-116 . -38) 104230) ((-203 . -778) T) ((-202 . -778) T) ((-201 . -778) T) ((-200 . -778) T) ((-846 . -996) 104209) ((-1241 . -481) 104193) ((-760 . -883) 104172) ((-758 . -883) 104151) ((-1155 . -1182) T) ((-446 . -883) 104130) ((-716 . -481) 104114) ((-1056 . -626) 104039) ((-760 . -626) 103964) ((-603 . -1027) 103951) ((-471 . -1182) T) ((-336 . -361) T) ((-139 . -481) 103933) ((-758 . -626) 103858) ((-1110 . -1182) T) ((-453 . -626) 103829) ((-257 . -860) 103688) ((-241 . -860) NIL) ((-117 . -1027) 103633) ((-446 . -626) 103558) ((-642 . -1012) 103535) ((-603 . -111) 103520) ((-348 . -1012) 103504) ((-345 . -1012) 103488) ((-337 . -1012) 103472) ((-257 . -1012) 103316) ((-241 . -1012) 103192) ((-117 . -111) 103121) ((-58 . -1182) T) ((-510 . -1182) T) ((-507 . -1182) T) ((-488 . -1182) T) ((-487 . -1182) T) ((-430 . -595) 103103) ((-427 . -595) 103085) ((-3 . -101) T) ((-1001 . -1175) 103054) ((-811 . -101) T) ((-667 . -56) 103012) ((-677 . -1021) T) ((-50 . -626) 102986) ((-282 . -444) T) ((-468 . -1175) 102955) ((0 . -101) T) ((-565 . -626) 102920) ((-509 . -626) 102865) ((-49 . -101) T) ((-884 . -1012) 102852) ((-677 . -237) T) ((-1049 . -402) 102831) ((-710 . -619) 102779) ((-973 . -1069) T) ((-691 . -170) 102670) ((-479 . -966) 102652) ((-257 . -370) 102636) ((-241 . -370) 102620) ((-392 . -1069) T) ((-332 . -38) 102604) ((-1000 . -101) 102582) ((-211 . -966) 102564) ((-172 . -38) 102496) ((-1212 . -300) 102475) ((-1191 . -300) 102454) ((-636 . -705) T) ((-98 . -595) 102436) ((-1136 . -619) 102388) ((-477 . -25) T) ((-477 . -21) T) ((-1191 . -996) 102341) ((-603 . -1021) T) ((-372 . -397) T) ((-383 . -101) T) ((-257 . -874) 102287) ((-241 . -874) 102264) ((-117 . -1021) T) ((-794 . -1081) T) ((-1056 . -705) T) ((-603 . -227) 102243) ((-601 . -101) T) ((-760 . -705) T) ((-758 . -705) T) ((-406 . -1081) T) ((-117 . -237) T) ((-40 . -361) NIL) ((-117 . -227) NIL) ((-446 . -705) T) ((-794 . -23) T) ((-710 . -25) T) ((-710 . -21) T) ((-681 . -825) T) ((-1046 . -279) 102222) ((-77 . -389) T) ((-77 . -388) T) ((-672 . -1027) 102172) ((-1220 . -130) T) ((-1213 . -130) T) ((-1192 . -130) T) ((-1111 . -404) 102156) ((-615 . -360) 102088) ((-589 . -360) 102020) ((-1125 . -1118) 102004) ((-102 . -1069) 101982) ((-1143 . -25) T) ((-1143 . -21) T) ((-1142 . -21) T) ((-973 . -696) 101930) ((-217 . -626) 101897) ((-672 . -111) 101831) ((-50 . -705) T) ((-1142 . -25) T) ((-344 . -342) T) ((-1136 . -21) T) ((-1049 . -444) 101782) ((-1136 . -25) T) ((-691 . -505) 101729) ((-565 . -705) T) ((-509 . -705) T) ((-1095 . -21) T) ((-1095 . -25) T) ((-579 . -130) T) ((-578 . -130) T) ((-352 . -444) T) ((-346 . -444) T) ((-338 . -444) T) ((-466 . -300) 101708) ((-306 . -279) 101643) ((-107 . -444) T) ((-78 . -433) T) ((-78 . -388) T) ((-469 . -101) T) ((-1256 . -595) 101625) ((-1256 . -596) 101607) ((-1049 . -395) 101586) ((-1009 . -481) 101517) ((-550 . -773) T) ((-550 . -770) T) ((-1033 . -229) 101463) ((-352 . -395) 101414) ((-346 . -395) 101365) ((-338 . -395) 101316) ((-1243 . -1081) T) ((-1243 . -23) T) ((-1230 . -101) T) ((-173 . -595) 101298) ((-1111 . -1028) T) ((-648 . -723) 101282) ((-1147 . -143) 101261) ((-1147 . -145) 101240) ((-1115 . -1069) T) ((-1115 . -1041) 101209) ((-68 . -1182) T) ((-998 . -1027) 101146) ((-840 . -1028) T) ((-234 . -619) 101052) ((-672 . -1021) T) ((-347 . -1027) 100997) ((-60 . -1182) T) ((-998 . -111) 100913) ((-875 . -595) 100845) ((-672 . -237) T) ((-672 . -227) NIL) ((-818 . -823) 100824) ((-677 . -773) T) ((-677 . -770) T) ((-977 . -404) 100801) ((-347 . -111) 100730) ((-372 . -894) T) ((-400 . -823) 100709) ((-691 . -283) 100620) ((-217 . -705) T) ((-1220 . -484) 100586) ((-1213 . -484) 100552) ((-1192 . -484) 100518) ((-563 . -1069) T) ((-309 . -976) 100497) ((-216 . -1069) 100475) ((-312 . -947) 100437) ((-104 . -101) T) ((-48 . -1027) 100402) ((-1252 . -101) T) ((-374 . -101) T) ((-48 . -111) 100358) ((-978 . -619) 100340) ((-1214 . -595) 100322) ((-522 . -101) T) ((-491 . -101) T) ((-1102 . -1103) 100306) ((-150 . -1235) 100290) ((-239 . -1182) T) ((-1181 . -101) T) ((-1141 . -1186) 100269) ((-1094 . -1186) 100248) ((-234 . -21) 100158) ((-234 . -25) 100009) ((-127 . -119) 99993) ((-121 . -119) 99977) ((-44 . -723) 99961) ((-1141 . -542) 99872) ((-1094 . -542) 99803) ((-1009 . -279) 99778) ((-1135 . -1052) T) ((-968 . -1052) T) ((-794 . -130) T) ((-117 . -773) NIL) ((-117 . -770) NIL) ((-348 . -300) T) ((-345 . -300) T) ((-337 . -300) T) ((-1063 . -1182) T) ((-244 . -1081) 99688) ((-243 . -1081) 99598) ((-998 . -1021) T) ((-977 . -1028) T) ((-336 . -626) 99543) ((-601 . -38) 99527) ((-1241 . -595) 99489) ((-1241 . -596) 99450) ((-1046 . -595) 99432) ((-998 . -237) T) ((-347 . -1021) T) ((-793 . -1235) 99402) ((-244 . -23) T) ((-243 . -23) T) ((-961 . -595) 99384) ((-716 . -596) 99345) ((-716 . -595) 99327) ((-777 . -825) 99306) ((-973 . -505) 99218) ((-347 . -227) T) ((-347 . -237) T) ((-1128 . -149) 99165) ((-978 . -25) T) ((-139 . -596) 99124) ((-139 . -595) 99106) ((-884 . -300) T) ((-978 . -21) T) ((-945 . -25) T) ((-888 . -21) T) ((-888 . -25) T) ((-420 . -21) T) ((-420 . -25) T) ((-818 . -404) 99090) ((-48 . -1021) T) ((-1250 . -1242) 99074) ((-1248 . -1242) 99058) ((-1009 . -586) 99033) ((-309 . -596) 98894) ((-309 . -595) 98876) ((-306 . -596) NIL) ((-306 . -595) 98858) ((-48 . -237) T) ((-48 . -227) T) ((-632 . -279) 98819) ((-536 . -229) 98769) ((-135 . -595) 98751) ((-114 . -595) 98733) ((-469 . -38) 98698) ((-1252 . -1249) 98677) ((-1243 . -130) T) ((-1251 . -1028) T) ((-1051 . -101) T) ((-87 . -1182) T) ((-491 . -302) NIL) ((-974 . -106) 98661) ((-863 . -1069) T) ((-859 . -1069) T) ((-1228 . -629) 98645) ((-1228 . -366) 98629) ((-320 . -1182) T) ((-576 . -825) T) ((-1111 . -1069) T) ((-1111 . -1024) 98569) ((-102 . -505) 98502) ((-901 . -595) 98484) ((-336 . -705) T) ((-30 . -595) 98466) ((-840 . -1069) T) ((-818 . -1028) 98445) ((-40 . -626) 98390) ((-219 . -1186) T) ((-400 . -1028) T) ((-1127 . -149) 98372) ((-973 . -283) 98323) ((-598 . -1069) T) ((-219 . -542) T) ((-312 . -1209) 98307) ((-312 . -1206) 98277) ((-1155 . -1158) 98256) ((-1044 . -595) 98238) ((-625 . -149) 98222) ((-612 . -149) 98168) ((-1155 . -106) 98118) ((-471 . -1158) 98097) ((-479 . -145) T) ((-479 . -143) NIL) ((-1089 . -596) 98012) ((-431 . -595) 97994) ((-211 . -145) T) ((-211 . -143) NIL) ((-1089 . -595) 97976) ((-129 . -101) T) ((-52 . -101) T) ((-1192 . -619) 97928) ((-471 . -106) 97878) ((-967 . -23) T) ((-1252 . -38) 97848) ((-1141 . -1081) T) ((-1094 . -1081) T) ((-1032 . -1186) T) ((-304 . -101) T) ((-829 . -1081) T) ((-926 . -1186) 97827) ((-473 . -1186) 97806) ((-710 . -825) 97785) ((-1032 . -542) T) ((-926 . -542) 97716) ((-1141 . -23) T) ((-1094 . -23) T) ((-829 . -23) T) ((-473 . -542) 97647) ((-1111 . -696) 97579) ((-1115 . -505) 97512) ((-1009 . -596) NIL) ((-1009 . -595) 97494) ((-95 . -1052) T) ((-840 . -696) 97464) ((-1176 . -47) 97433) ((-244 . -130) T) ((-243 . -130) T) ((-1073 . -1069) T) ((-977 . -1069) T) ((-61 . -595) 97415) ((-1136 . -825) NIL) ((-998 . -770) T) ((-998 . -773) T) ((-1256 . -1027) 97402) ((-1256 . -111) 97387) ((-844 . -626) 97374) ((-1220 . -25) T) ((-1220 . -21) T) ((-1213 . -21) T) ((-1213 . -25) T) ((-1192 . -21) T) ((-1192 . -25) T) ((-1001 . -149) 97358) ((-846 . -798) 97337) ((-846 . -894) T) ((-691 . -279) 97264) ((-579 . -21) T) ((-579 . -25) T) ((-578 . -21) T) ((-40 . -705) T) ((-216 . -505) 97197) ((-578 . -25) T) ((-468 . -149) 97181) ((-455 . -149) 97165) ((-895 . -772) T) ((-895 . -705) T) ((-749 . -771) T) ((-749 . -772) T) ((-497 . -1069) T) ((-493 . -1069) T) ((-749 . -705) T) ((-219 . -356) T) ((-1125 . -1069) 97143) ((-845 . -1186) T) ((-632 . -595) 97125) ((-845 . -542) T) ((-672 . -361) NIL) ((-352 . -1235) 97109) ((-648 . -101) T) ((-346 . -1235) 97093) ((-338 . -1235) 97077) ((-1251 . -1069) T) ((-511 . -825) 97056) ((-795 . -444) 97035) ((-1018 . -1069) T) ((-1018 . -1041) 96964) ((-1001 . -950) 96933) ((-797 . -1081) T) ((-977 . -696) 96878) ((-379 . -1081) T) ((-468 . -950) 96847) ((-455 . -950) 96816) ((-110 . -149) 96798) ((-72 . -595) 96780) ((-867 . -595) 96762) ((-1049 . -703) 96741) ((-1256 . -1021) T) ((-794 . -619) 96689) ((-287 . -1028) 96631) ((-167 . -1186) 96536) ((-219 . -1081) T) ((-317 . -23) T) ((-1136 . -966) 96488) ((-818 . -1069) T) ((-1095 . -719) 96467) ((-1214 . -1027) 96372) ((-1212 . -894) 96351) ((-844 . -705) T) ((-167 . -542) 96262) ((-1191 . -894) 96241) ((-564 . -626) 96228) ((-400 . -1069) T) ((-550 . -626) 96215) ((-256 . -1069) T) ((-486 . -626) 96180) ((-219 . -23) T) ((-1191 . -798) 96133) ((-1250 . -101) T) ((-347 . -1247) 96110) ((-1248 . -101) T) ((-1214 . -111) 96002) ((-142 . -595) 95984) ((-967 . -130) T) ((-44 . -101) T) ((-234 . -825) 95935) ((-1201 . -1186) 95914) ((-102 . -481) 95898) ((-1251 . -696) 95868) ((-1056 . -47) 95829) ((-1032 . -1081) T) ((-926 . -1081) T) ((-127 . -34) T) ((-121 . -34) T) ((-760 . -47) 95806) ((-758 . -47) 95778) ((-1201 . -542) 95689) ((-347 . -361) T) ((-473 . -1081) T) ((-1141 . -130) T) ((-1094 . -130) T) ((-446 . -47) 95668) ((-845 . -356) T) ((-829 . -130) T) ((-150 . -101) T) ((-1032 . -23) T) ((-926 . -23) T) ((-557 . -542) T) ((-794 . -25) T) ((-794 . -21) T) ((-1111 . -505) 95601) ((-575 . -1052) T) ((-569 . -1012) 95585) ((-473 . -23) T) ((-344 . -1028) T) ((-1176 . -874) 95566) ((-648 . -302) 95504) ((-1082 . -1235) 95474) ((-677 . -626) 95439) ((-977 . -170) T) ((-937 . -143) 95418) ((-615 . -1069) T) ((-589 . -1069) T) ((-937 . -145) 95397) ((-978 . -825) T) ((-714 . -145) 95376) ((-714 . -143) 95355) ((-945 . -825) T) ((-466 . -894) 95334) ((-309 . -1027) 95244) ((-306 . -1027) 95173) ((-973 . -279) 95131) ((-400 . -696) 95083) ((-128 . -825) T) ((-679 . -823) T) ((-1214 . -1021) T) ((-309 . -111) 94979) ((-306 . -111) 94892) ((-938 . -101) T) ((-793 . -101) 94682) ((-691 . -596) NIL) ((-691 . -595) 94664) ((-636 . -1012) 94560) ((-1214 . -319) 94504) ((-1009 . -281) 94479) ((-564 . -705) T) ((-550 . -772) T) ((-167 . -356) 94430) ((-550 . -769) T) ((-550 . -705) T) ((-486 . -705) T) ((-1115 . -481) 94414) ((-1056 . -860) NIL) ((-845 . -1081) T) ((-117 . -883) NIL) ((-1250 . -1249) 94390) ((-1248 . -1249) 94369) ((-760 . -860) NIL) ((-758 . -860) 94228) ((-1243 . -25) T) ((-1243 . -21) T) ((-1179 . -101) 94206) ((-1075 . -388) T) ((-603 . -626) 94193) ((-446 . -860) NIL) ((-653 . -101) 94171) ((-1056 . -1012) 93998) ((-845 . -23) T) ((-760 . -1012) 93857) ((-758 . -1012) 93714) ((-117 . -626) 93659) ((-446 . -1012) 93535) ((-627 . -1012) 93519) ((-607 . -101) T) ((-216 . -481) 93503) ((-1228 . -34) T) ((-615 . -696) 93487) ((-589 . -696) 93471) ((-648 . -38) 93431) ((-312 . -101) T) ((-84 . -595) 93413) ((-50 . -1012) 93397) ((-1089 . -1027) 93384) ((-1056 . -370) 93368) ((-760 . -370) 93352) ((-59 . -56) 93314) ((-677 . -772) T) ((-677 . -769) T) ((-565 . -1012) 93301) ((-509 . -1012) 93278) ((-677 . -705) T) ((-317 . -130) T) ((-309 . -1021) 93168) ((-306 . -1021) T) ((-167 . -1081) T) ((-758 . -370) 93152) ((-45 . -149) 93102) ((-978 . -966) 93084) ((-446 . -370) 93068) ((-400 . -170) T) ((-309 . -237) 93047) ((-306 . -237) T) ((-306 . -227) NIL) ((-287 . -1069) 92829) ((-219 . -130) T) ((-1089 . -111) 92814) ((-167 . -23) T) ((-777 . -145) 92793) ((-777 . -143) 92772) ((-244 . -619) 92678) ((-243 . -619) 92584) ((-312 . -277) 92550) ((-1125 . -505) 92483) ((-1102 . -1069) T) ((-219 . -1030) T) ((-793 . -302) 92421) ((-1056 . -874) 92356) ((-760 . -874) 92299) ((-758 . -874) 92283) ((-1250 . -38) 92253) ((-1248 . -38) 92223) ((-1201 . -1081) T) ((-830 . -1081) T) ((-446 . -874) 92200) ((-833 . -1069) T) ((-1201 . -23) T) ((-557 . -1081) T) ((-830 . -23) T) ((-603 . -705) T) ((-348 . -894) T) ((-345 . -894) T) ((-282 . -101) T) ((-337 . -894) T) ((-1032 . -130) T) ((-944 . -1052) T) ((-926 . -130) T) ((-117 . -772) NIL) ((-117 . -769) NIL) ((-117 . -705) T) ((-672 . -883) NIL) ((-1018 . -505) 92101) ((-473 . -130) T) ((-557 . -23) T) ((-653 . -302) 92039) ((-615 . -740) T) ((-589 . -740) T) ((-1192 . -825) NIL) ((-977 . -283) T) ((-244 . -21) T) ((-672 . -626) 91989) ((-344 . -1069) T) ((-244 . -25) T) ((-243 . -21) T) ((-243 . -25) T) ((-150 . -38) 91973) ((-2 . -101) T) ((-884 . -894) T) ((-474 . -1235) 91943) ((-217 . -1012) 91920) ((-1089 . -1021) T) ((-690 . -300) T) ((-287 . -696) 91862) ((-679 . -1028) T) ((-479 . -444) T) ((-400 . -505) 91774) ((-211 . -444) T) ((-1089 . -227) T) ((-288 . -149) 91724) ((-973 . -596) 91685) ((-973 . -595) 91667) ((-963 . -595) 91649) ((-116 . -1028) T) ((-632 . -1027) 91633) ((-219 . -484) T) ((-392 . -595) 91615) ((-392 . -596) 91592) ((-1025 . -1235) 91562) ((-632 . -111) 91541) ((-1111 . -481) 91525) ((-793 . -38) 91495) ((-62 . -433) T) ((-62 . -388) T) ((-1128 . -101) T) ((-845 . -130) T) ((-476 . -101) 91473) ((-1256 . -361) T) ((-1049 . -101) T) ((-1031 . -101) T) ((-344 . -696) 91418) ((-710 . -145) 91397) ((-710 . -143) 91376) ((-998 . -626) 91313) ((-514 . -1069) 91291) ((-352 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-107 . -101) T) ((-495 . -1069) T) ((-347 . -626) 91236) ((-1141 . -619) 91184) ((-1094 . -619) 91132) ((-378 . -500) 91111) ((-811 . -823) 91090) ((-372 . -1186) T) ((-672 . -705) T) ((-332 . -1028) T) ((-1192 . -966) 91042) ((-172 . -1028) T) ((-102 . -595) 90974) ((-1143 . -143) 90953) ((-1143 . -145) 90932) ((-372 . -542) T) ((-1142 . -145) 90911) ((-1142 . -143) 90890) ((-1136 . -143) 90797) ((-400 . -283) T) ((-1136 . -145) 90704) ((-1095 . -145) 90683) ((-1095 . -143) 90662) ((-312 . -38) 90503) ((-167 . -130) T) ((-306 . -773) NIL) ((-306 . -770) NIL) ((-632 . -1021) T) ((-48 . -626) 90468) ((-1135 . -101) T) ((-968 . -101) T) ((-967 . -21) T) ((-127 . -984) 90452) ((-121 . -984) 90436) ((-967 . -25) T) ((-875 . -119) 90420) ((-1127 . -101) T) ((-794 . -825) 90399) ((-1201 . -130) T) ((-1141 . -25) T) ((-1141 . -21) T) ((-830 . -130) T) ((-1094 . -25) T) ((-1094 . -21) T) ((-829 . -25) T) ((-829 . -21) T) ((-760 . -300) 90378) ((-625 . -101) 90356) ((-612 . -101) T) ((-1128 . -302) 90151) ((-557 . -130) T) ((-601 . -823) 90130) ((-1125 . -481) 90114) ((-1119 . -149) 90064) ((-1115 . -595) 90026) ((-1115 . -596) 89987) ((-998 . -769) T) ((-998 . -772) T) ((-998 . -705) T) ((-476 . -302) 89925) ((-445 . -410) 89895) ((-344 . -170) T) ((-282 . -38) 89882) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-336 . -1012) 89859) ((-206 . -101) T) ((-205 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-197 . -101) T) ((-196 . -101) T) ((-691 . -1027) 89682) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-347 . -705) T) ((-691 . -111) 89491) ((-648 . -225) 89475) ((-565 . -300) T) ((-509 . -300) T) ((-287 . -505) 89424) ((-107 . -302) NIL) ((-71 . -388) T) ((-1082 . -101) 89214) ((-811 . -404) 89198) ((-1089 . -773) T) ((-1089 . -770) T) ((-679 . -1069) T) ((-563 . -595) 89180) ((-372 . -356) T) ((-167 . -484) 89158) ((-207 . -1069) T) ((-216 . -595) 89090) ((-133 . -1069) T) ((-116 . -1069) T) ((-48 . -705) T) ((-1018 . -481) 89055) ((-497 . -92) T) ((-139 . -418) 89037) ((-139 . -361) T) ((-1001 . -101) T) ((-503 . -500) 89016) ((-468 . -101) T) ((-455 . -101) T) ((-1008 . -1081) T) ((-1143 . -35) 88982) ((-1143 . -94) 88948) ((-1143 . -1170) 88914) ((-1143 . -1167) 88880) ((-1127 . -302) NIL) ((-88 . -389) T) ((-88 . -388) T) ((-1049 . -1120) 88859) ((-1142 . -1167) 88825) ((-1142 . -1170) 88791) ((-1008 . -23) T) ((-1142 . -94) 88757) ((-557 . -484) T) ((-1142 . -35) 88723) ((-1136 . -1167) 88689) ((-1136 . -1170) 88655) ((-1136 . -94) 88621) ((-354 . -1081) T) ((-352 . -1120) 88600) ((-346 . -1120) 88579) ((-338 . -1120) 88558) ((-1136 . -35) 88524) ((-1095 . -35) 88490) ((-1095 . -94) 88456) ((-107 . -1120) T) ((-1095 . -1170) 88422) ((-811 . -1028) 88401) ((-625 . -302) 88339) ((-612 . -302) 88190) ((-1095 . -1167) 88156) ((-691 . -1021) T) ((-1032 . -619) 88138) ((-1049 . -38) 88006) ((-926 . -619) 87954) ((-978 . -145) T) ((-978 . -143) NIL) ((-372 . -1081) T) ((-317 . -25) T) ((-315 . -23) T) ((-917 . -825) 87933) ((-691 . -319) 87910) ((-473 . -619) 87858) ((-40 . -1012) 87746) ((-679 . -696) 87733) ((-691 . -227) T) ((-332 . -1069) T) ((-172 . -1069) T) ((-324 . -825) T) ((-411 . -444) 87683) ((-372 . -23) T) ((-352 . -38) 87648) ((-346 . -38) 87613) ((-338 . -38) 87578) ((-79 . -433) T) ((-79 . -388) T) ((-219 . -25) T) ((-219 . -21) T) ((-812 . -1081) T) ((-107 . -38) 87528) ((-805 . -1081) T) ((-752 . -1069) T) ((-116 . -696) 87515) ((-650 . -1012) 87499) ((-594 . -101) T) ((-812 . -23) T) ((-805 . -23) T) ((-1125 . -279) 87476) ((-1082 . -302) 87414) ((-1071 . -229) 87398) ((-63 . -389) T) ((-63 . -388) T) ((-110 . -101) T) ((-40 . -370) 87375) ((-95 . -101) T) ((-631 . -827) 87359) ((-1104 . -1052) T) ((-1032 . -21) T) ((-1032 . -25) T) ((-793 . -225) 87328) ((-926 . -25) T) ((-926 . -21) T) ((-601 . -1028) T) ((-473 . -25) T) ((-473 . -21) T) ((-1001 . -302) 87266) ((-863 . -595) 87248) ((-859 . -595) 87230) ((-244 . -825) 87181) ((-243 . -825) 87132) ((-514 . -505) 87065) ((-845 . -619) 87042) ((-468 . -302) 86980) ((-455 . -302) 86918) ((-344 . -283) T) ((-1125 . -1216) 86902) ((-1111 . -595) 86864) ((-1111 . -596) 86825) ((-1109 . -101) T) ((-973 . -1027) 86721) ((-40 . -874) 86673) ((-1125 . -586) 86650) ((-1256 . -626) 86637) ((-1033 . -149) 86583) ((-846 . -1186) T) ((-973 . -111) 86465) ((-332 . -696) 86449) ((-840 . -595) 86431) ((-172 . -696) 86363) ((-400 . -279) 86321) ((-846 . -542) T) ((-107 . -393) 86303) ((-83 . -377) T) ((-83 . -388) T) ((-679 . -170) T) ((-598 . -595) 86285) ((-98 . -705) T) ((-474 . -101) 86075) ((-98 . -465) T) ((-116 . -170) T) ((-1082 . -38) 86045) ((-167 . -619) 85993) ((-1025 . -101) T) ((-845 . -25) T) ((-793 . -232) 85972) ((-845 . -21) T) ((-796 . -101) T) ((-407 . -101) T) ((-378 . -101) T) ((-110 . -302) NIL) ((-221 . -101) 85950) ((-127 . -1182) T) ((-121 . -1182) T) ((-1008 . -130) T) ((-648 . -360) 85934) ((-973 . -1021) T) ((-1201 . -619) 85882) ((-1073 . -595) 85864) ((-977 . -595) 85846) ((-506 . -23) T) ((-501 . -23) T) ((-336 . -300) T) ((-499 . -23) T) ((-315 . -130) T) ((-3 . -1069) T) ((-977 . -596) 85830) ((-973 . -237) 85809) ((-973 . -227) 85788) ((-1256 . -705) T) ((-1220 . -143) 85767) ((-811 . -1069) T) ((-1220 . -145) 85746) ((-1213 . -145) 85725) ((-1213 . -143) 85704) ((-1212 . -1186) 85683) ((-1192 . -143) 85590) ((-1192 . -145) 85497) ((-1191 . -1186) 85476) ((-372 . -130) T) ((-550 . -860) 85458) ((0 . -1069) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1069) T) ((-1214 . -626) 85363) ((-1212 . -542) 85314) ((-693 . -1081) T) ((-1191 . -542) 85265) ((-550 . -1012) 85247) ((-578 . -145) 85226) ((-578 . -143) 85205) ((-486 . -1012) 85148) ((-1104 . -1106) T) ((-86 . -377) T) ((-86 . -388) T) ((-846 . -356) T) ((-812 . -130) T) ((-805 . -130) T) ((-693 . -23) T) ((-497 . -595) 85098) ((-493 . -595) 85080) ((-1252 . -1028) T) ((-372 . -1030) T) ((-1000 . -1069) 85058) ((-875 . -34) T) ((-474 . -302) 84996) ((-575 . -101) T) ((-1125 . -596) 84957) ((-1125 . -595) 84889) ((-1141 . -825) 84868) ((-45 . -101) T) ((-1094 . -825) 84847) ((-795 . -101) T) ((-1201 . -25) T) ((-1201 . -21) T) ((-830 . -25) T) ((-44 . -360) 84831) ((-830 . -21) T) ((-710 . -444) 84782) ((-1251 . -595) 84764) ((-1025 . -302) 84702) ((-649 . -1052) T) ((-588 . -1052) T) ((-383 . -1069) T) ((-557 . -25) T) ((-557 . -21) T) ((-178 . -1052) T) ((-159 . -1052) T) ((-154 . -1052) T) ((-152 . -1052) T) ((-601 . -1069) T) ((-677 . -860) 84684) ((-1228 . -1182) T) ((-221 . -302) 84622) ((-142 . -361) T) ((-1018 . -596) 84564) ((-1018 . -595) 84507) ((-306 . -883) NIL) ((-677 . -1012) 84452) ((-690 . -894) T) ((-466 . -1186) 84431) ((-1142 . -444) 84410) ((-1136 . -444) 84389) ((-323 . -101) T) ((-846 . -1081) T) ((-309 . -626) 84210) ((-306 . -626) 84139) ((-466 . -542) 84090) ((-332 . -505) 84056) ((-536 . -149) 84006) ((-40 . -300) T) ((-818 . -595) 83988) ((-679 . -283) T) ((-846 . -23) T) ((-372 . -484) T) ((-1049 . -225) 83958) ((-503 . -101) T) ((-400 . -596) 83766) ((-400 . -595) 83748) ((-256 . -595) 83730) ((-116 . -283) T) ((-1214 . -705) T) ((-1212 . -356) 83709) ((-1191 . -356) 83688) ((-1241 . -34) T) ((-117 . -1182) T) ((-107 . -225) 83670) ((-1147 . -101) T) ((-469 . -1069) T) ((-514 . -481) 83654) ((-716 . -34) T) ((-474 . -38) 83624) ((-139 . -34) T) ((-117 . -858) 83601) ((-117 . -860) NIL) ((-603 . -1012) 83484) ((-623 . -825) 83463) ((-1240 . -101) T) ((-288 . -101) T) ((-691 . -361) 83442) ((-117 . -1012) 83419) ((-383 . -696) 83403) ((-601 . -696) 83387) ((-45 . -302) 83191) ((-794 . -143) 83170) ((-794 . -145) 83149) ((-1251 . -375) 83128) ((-797 . -825) T) ((-1230 . -1069) T) ((-1128 . -223) 83075) ((-379 . -825) 83054) ((-1220 . -1170) 83020) ((-1220 . -1167) 82986) ((-1213 . -1167) 82952) ((-506 . -130) T) ((-1213 . -1170) 82918) ((-1192 . -1167) 82884) ((-1192 . -1170) 82850) ((-1220 . -35) 82816) ((-1220 . -94) 82782) ((-615 . -595) 82751) ((-589 . -595) 82720) ((-219 . -825) T) ((-1213 . -94) 82686) ((-1213 . -35) 82652) ((-1212 . -1081) T) ((-1089 . -626) 82639) ((-1192 . -94) 82605) ((-1191 . -1081) T) ((-576 . -149) 82587) ((-1049 . -342) 82566) ((-172 . -283) T) ((-117 . -370) 82543) ((-117 . -331) 82520) ((-1192 . -35) 82486) ((-844 . -300) T) ((-306 . -772) NIL) ((-306 . -769) NIL) ((-309 . -705) 82335) ((-306 . -705) T) ((-466 . -356) 82314) ((-352 . -342) 82293) ((-346 . -342) 82272) ((-338 . -342) 82251) ((-309 . -465) 82230) ((-1212 . -23) T) ((-1191 . -23) T) ((-697 . -1081) T) ((-693 . -130) T) ((-631 . -101) T) ((-469 . -696) 82195) ((-45 . -275) 82145) ((-104 . -1069) T) ((-67 . -595) 82127) ((-944 . -101) T) ((-839 . -101) T) ((-603 . -874) 82086) ((-1252 . -1069) T) ((-374 . -1069) T) ((-1181 . -1069) T) ((-81 . -1182) T) ((-1032 . -825) T) ((-926 . -825) 82065) ((-117 . -874) NIL) ((-760 . -894) 82044) ((-692 . -825) T) ((-522 . -1069) T) ((-491 . -1069) T) ((-348 . -1186) T) ((-345 . -1186) T) ((-337 . -1186) T) ((-257 . -1186) 82023) ((-241 . -1186) 82002) ((-1082 . -225) 81971) ((-473 . -825) 81950) ((-1111 . -1027) 81934) ((-383 . -740) T) ((-1127 . -806) T) ((-672 . -1182) T) ((-348 . -542) T) ((-345 . -542) T) ((-337 . -542) T) ((-257 . -542) 81865) ((-241 . -542) 81796) ((-516 . -1052) T) ((-1111 . -111) 81775) ((-445 . -723) 81745) ((-840 . -1027) 81715) ((-795 . -38) 81657) ((-672 . -858) 81639) ((-672 . -860) 81621) ((-288 . -302) 81425) ((-884 . -1186) T) ((-648 . -404) 81409) ((-840 . -111) 81374) ((-672 . -1012) 81319) ((-978 . -444) T) ((-884 . -542) T) ((-565 . -894) T) ((-466 . -1081) T) ((-509 . -894) T) ((-1125 . -281) 81296) ((-888 . -444) T) ((-64 . -595) 81278) ((-612 . -223) 81224) ((-466 . -23) T) ((-1089 . -772) T) ((-846 . -130) T) ((-1089 . -769) T) ((-1243 . -1245) 81203) ((-1089 . -705) T) ((-632 . -626) 81177) ((-287 . -595) 80918) ((-1009 . -34) T) ((-793 . -823) 80897) ((-564 . -300) T) ((-550 . -300) T) ((-486 . -300) T) ((-1252 . -696) 80867) ((-672 . -370) 80849) ((-672 . -331) 80831) ((-469 . -170) T) ((-374 . -696) 80801) ((-845 . -825) NIL) ((-550 . -996) T) ((-486 . -996) T) ((-1102 . -595) 80783) ((-1082 . -232) 80762) ((-208 . -101) T) ((-1119 . -101) T) ((-70 . -595) 80744) ((-1111 . -1021) T) ((-1147 . -38) 80641) ((-833 . -595) 80623) ((-550 . -535) T) ((-648 . -1028) T) ((-710 . -923) 80576) ((-1111 . -227) 80555) ((-1051 . -1069) T) ((-1008 . -25) T) ((-1008 . -21) T) ((-977 . -1027) 80500) ((-879 . -101) T) ((-840 . -1021) T) ((-672 . -874) NIL) ((-348 . -322) 80484) ((-348 . -356) T) ((-345 . -322) 80468) ((-345 . -356) T) ((-337 . -322) 80452) ((-337 . -356) T) ((-479 . -101) T) ((-1240 . -38) 80422) ((-514 . -665) 80372) ((-211 . -101) T) ((-998 . -1012) 80252) ((-977 . -111) 80181) ((-1143 . -947) 80150) ((-1142 . -947) 80112) ((-511 . -149) 80096) ((-1049 . -363) 80075) ((-344 . -595) 80057) ((-315 . -21) T) ((-347 . -1012) 80034) ((-315 . -25) T) ((-1136 . -947) 80003) ((-1095 . -947) 79970) ((-75 . -595) 79952) ((-677 . -300) T) ((-167 . -825) 79931) ((-884 . -356) T) ((-372 . -25) T) ((-372 . -21) T) ((-884 . -322) 79918) ((-85 . -595) 79900) ((-677 . -996) T) ((-655 . -825) T) ((-1212 . -130) T) ((-1191 . -130) T) ((-875 . -984) 79884) ((-812 . -21) T) ((-48 . -1012) 79827) ((-812 . -25) T) ((-805 . -25) T) ((-805 . -21) T) ((-1250 . -1028) T) ((-1248 . -1028) T) ((-632 . -705) T) ((-1251 . -1027) 79811) ((-1201 . -825) 79790) ((-793 . -404) 79759) ((-102 . -119) 79743) ((-129 . -1069) T) ((-52 . -1069) T) ((-900 . -595) 79725) ((-845 . -966) 79702) ((-801 . -101) T) ((-1251 . -111) 79681) ((-631 . -38) 79651) ((-557 . -825) T) ((-348 . -1081) T) ((-345 . -1081) T) ((-337 . -1081) T) ((-257 . -1081) T) ((-241 . -1081) T) ((-603 . -300) 79630) ((-1119 . -302) 79434) ((-515 . -1052) T) ((-304 . -1069) T) ((-642 . -23) T) ((-474 . -225) 79403) ((-150 . -1028) T) ((-348 . -23) T) ((-345 . -23) T) ((-337 . -23) T) ((-117 . -300) T) ((-257 . -23) T) ((-241 . -23) T) ((-977 . -1021) T) ((-691 . -883) 79382) ((-977 . -227) 79354) ((-977 . -237) T) ((-117 . -996) NIL) ((-884 . -1081) T) ((-1213 . -444) 79333) ((-1192 . -444) 79312) ((-514 . -595) 79244) ((-691 . -626) 79169) ((-400 . -1027) 79121) ((-495 . -595) 79103) ((-884 . -23) T) ((-479 . -302) NIL) ((-466 . -130) T) ((-211 . -302) NIL) ((-400 . -111) 79041) ((-793 . -1028) 78971) ((-716 . -1067) 78955) ((-1212 . -484) 78921) ((-1191 . -484) 78887) ((-469 . -283) T) ((-139 . -1067) 78869) ((-128 . -149) 78851) ((-1251 . -1021) T) ((-1033 . -101) T) ((-491 . -505) NIL) ((-681 . -101) T) ((-474 . -232) 78830) ((-1141 . -143) 78809) ((-1141 . -145) 78788) ((-1094 . -145) 78767) ((-1094 . -143) 78746) ((-615 . -1027) 78730) ((-589 . -1027) 78714) ((-648 . -1069) T) ((-648 . -1024) 78654) ((-1143 . -1219) 78638) ((-1143 . -1206) 78615) ((-479 . -1120) T) ((-1142 . -1211) 78576) ((-1142 . -1206) 78546) ((-1142 . -1209) 78530) ((-211 . -1120) T) ((-336 . -894) T) ((-796 . -259) 78514) ((-615 . -111) 78493) ((-589 . -111) 78472) ((-1136 . -1190) 78433) ((-818 . -1021) 78412) ((-1136 . -1206) 78389) ((-506 . -25) T) ((-486 . -295) T) ((-502 . -23) T) ((-501 . -25) T) ((-499 . -25) T) ((-498 . -23) T) ((-1136 . -1188) 78373) ((-400 . -1021) T) ((-312 . -1028) T) ((-672 . -300) T) ((-107 . -823) T) ((-400 . -237) T) ((-400 . -227) 78352) ((-691 . -705) T) ((-479 . -38) 78302) ((-211 . -38) 78252) ((-466 . -484) 78218) ((-1127 . -1113) T) ((-1070 . -101) T) ((-679 . -595) 78200) ((-679 . -596) 78115) ((-693 . -21) T) ((-693 . -25) T) ((-1104 . -101) T) ((-207 . -595) 78097) ((-133 . -595) 78079) ((-116 . -595) 78061) ((-155 . -25) T) ((-1250 . -1069) T) ((-846 . -619) 78009) ((-1248 . -1069) T) ((-937 . -101) T) ((-714 . -101) T) ((-694 . -101) T) ((-445 . -101) T) ((-794 . -444) 77960) ((-44 . -1069) T) ((-1057 . -825) T) ((-642 . -130) T) ((-1033 . -302) 77811) ((-648 . -696) 77795) ((-282 . -1028) T) ((-348 . -130) T) ((-345 . -130) T) ((-337 . -130) T) ((-257 . -130) T) ((-241 . -130) T) ((-411 . -101) T) ((-150 . -1069) T) ((-45 . -223) 77745) ((-932 . -825) 77724) ((-973 . -626) 77662) ((-234 . -1235) 77632) ((-998 . -300) T) ((-287 . -1027) 77553) ((-884 . -130) T) ((-40 . -894) T) ((-479 . -393) 77535) ((-347 . -300) T) ((-211 . -393) 77517) ((-1049 . -404) 77501) ((-287 . -111) 77417) ((-846 . -25) T) ((-846 . -21) T) ((-332 . -595) 77399) ((-1214 . -47) 77343) ((-219 . -145) T) ((-172 . -595) 77325) ((-1082 . -823) 77304) ((-752 . -595) 77286) ((-590 . -229) 77233) ((-467 . -229) 77183) ((-1250 . -696) 77153) ((-48 . -300) T) ((-1248 . -696) 77123) ((-938 . -1069) T) ((-793 . -1069) 76913) ((-305 . -101) T) ((-875 . -1182) T) ((-48 . -996) T) ((-1191 . -619) 76821) ((-667 . -101) 76799) ((-44 . -696) 76783) ((-536 . -101) T) ((-66 . -376) T) ((-66 . -388) T) ((-640 . -23) T) ((-648 . -740) T) ((-1179 . -1069) 76761) ((-344 . -1027) 76706) ((-653 . -1069) 76684) ((-1032 . -145) T) ((-926 . -145) 76663) ((-926 . -143) 76642) ((-777 . -101) T) ((-150 . -696) 76626) ((-473 . -145) 76605) ((-473 . -143) 76584) ((-344 . -111) 76513) ((-1049 . -1028) T) ((-315 . -825) 76492) ((-1220 . -947) 76461) ((-607 . -1069) T) ((-1213 . -947) 76423) ((-502 . -130) T) ((-498 . -130) T) ((-288 . -223) 76373) ((-352 . -1028) T) ((-346 . -1028) T) ((-338 . -1028) T) ((-287 . -1021) 76315) ((-1192 . -947) 76284) ((-372 . -825) T) ((-107 . -1028) T) ((-973 . -705) T) ((-844 . -894) T) ((-818 . -773) 76263) ((-818 . -770) 76242) ((-411 . -302) 76181) ((-460 . -101) T) ((-578 . -947) 76150) ((-312 . -1069) T) ((-400 . -773) 76129) ((-400 . -770) 76108) ((-491 . -481) 76090) ((-1214 . -1012) 76056) ((-1212 . -21) T) ((-1212 . -25) T) ((-1191 . -21) T) ((-1191 . -25) T) ((-793 . -696) 75998) ((-677 . -397) T) ((-1241 . -1182) T) ((-588 . -101) T) ((-1082 . -404) 75967) ((-977 . -361) NIL) ((-649 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-716 . -1182) T) ((-44 . -740) T) ((-576 . -101) T) ((-76 . -389) T) ((-76 . -388) T) ((-631 . -634) 75951) ((-139 . -1182) T) ((-845 . -145) T) ((-845 . -143) NIL) ((-1181 . -92) T) ((-344 . -1021) T) ((-69 . -376) T) ((-69 . -388) T) ((-1134 . -101) T) ((-648 . -505) 75884) ((-667 . -302) 75822) ((-937 . -38) 75719) ((-714 . -38) 75689) ((-536 . -302) 75493) ((-309 . -1182) T) ((-344 . -227) T) ((-344 . -237) T) ((-306 . -1182) T) ((-282 . -1069) T) ((-1149 . -595) 75475) ((-690 . -1186) T) ((-1125 . -629) 75459) ((-1176 . -542) 75438) ((-690 . -542) T) ((-309 . -858) 75422) ((-309 . -860) 75347) ((-306 . -858) 75308) ((-306 . -860) NIL) ((-777 . -302) 75273) ((-312 . -696) 75114) ((-317 . -316) 75091) ((-477 . -101) T) ((-466 . -25) T) ((-466 . -21) T) ((-411 . -38) 75065) ((-309 . -1012) 74728) ((-219 . -1167) T) ((-219 . -1170) T) ((-3 . -595) 74710) ((-306 . -1012) 74640) ((-2 . -1069) T) ((-2 . |RecordCategory|) T) ((-811 . -595) 74622) ((-1082 . -1028) 74552) ((-564 . -894) T) ((-550 . -798) T) ((-550 . -894) T) ((-486 . -894) T) ((-135 . -1012) 74536) ((-219 . -94) T) ((-74 . -433) T) ((-74 . -388) T) ((0 . -595) 74518) ((-167 . -145) 74497) ((-167 . -143) 74448) ((-219 . -35) T) ((-49 . -595) 74430) ((-469 . -1028) T) ((-479 . -225) 74412) ((-476 . -942) 74396) ((-474 . -823) 74375) ((-211 . -225) 74357) ((-80 . -433) T) ((-80 . -388) T) ((-1115 . -34) T) ((-793 . -170) 74336) ((-710 . -101) T) ((-1000 . -595) 74303) ((-491 . -279) 74278) ((-309 . -370) 74247) ((-306 . -370) 74208) ((-306 . -331) 74169) ((-1054 . -595) 74151) ((-794 . -923) 74098) ((-640 . -130) T) ((-1201 . -143) 74077) ((-1201 . -145) 74056) ((-1143 . -101) T) ((-1142 . -101) T) ((-1136 . -101) T) ((-1128 . -1069) T) ((-1095 . -101) T) ((-216 . -34) T) ((-282 . -696) 74043) ((-1128 . -592) 74019) ((-576 . -302) NIL) ((-476 . -1069) 73997) ((-383 . -595) 73979) ((-501 . -825) T) ((-1119 . -223) 73929) ((-1220 . -1219) 73913) ((-1220 . -1206) 73890) ((-1213 . -1211) 73851) ((-1213 . -1206) 73821) ((-1213 . -1209) 73805) ((-1192 . -1190) 73766) ((-1192 . -1206) 73743) ((-601 . -595) 73725) ((-1192 . -1188) 73709) ((-677 . -894) T) ((-1143 . -277) 73675) ((-1142 . -277) 73641) ((-1136 . -277) 73607) ((-1049 . -1069) T) ((-1031 . -1069) T) ((-48 . -295) T) ((-309 . -874) 73573) ((-306 . -874) NIL) ((-1031 . -1038) 73552) ((-1089 . -860) 73534) ((-777 . -38) 73518) ((-257 . -619) 73466) ((-241 . -619) 73414) ((-679 . -1027) 73401) ((-578 . -1206) 73378) ((-1095 . -277) 73344) ((-312 . -170) 73275) ((-352 . -1069) T) ((-346 . -1069) T) ((-338 . -1069) T) ((-491 . -19) 73257) ((-1089 . -1012) 73239) ((-1071 . -149) 73223) ((-107 . -1069) T) ((-116 . -1027) 73210) ((-690 . -356) T) ((-491 . -586) 73185) ((-679 . -111) 73170) ((-429 . -101) T) ((-45 . -1118) 73120) ((-116 . -111) 73105) ((-615 . -699) T) ((-589 . -699) T) ((-793 . -505) 73038) ((-1009 . -1182) T) ((-917 . -149) 73022) ((-516 . -101) T) ((-511 . -101) 72972) ((-1141 . -444) 72903) ((-1135 . -1069) T) ((-1056 . -1186) 72882) ((-760 . -1186) 72861) ((-758 . -1186) 72840) ((-61 . -1182) T) ((-469 . -595) 72792) ((-469 . -596) 72714) ((-1127 . -1069) T) ((-1111 . -626) 72688) ((-1094 . -444) 72639) ((-1056 . -542) 72570) ((-474 . -404) 72539) ((-603 . -894) 72518) ((-446 . -1186) 72497) ((-968 . -1069) T) ((-760 . -542) 72408) ((-391 . -595) 72390) ((-758 . -542) 72321) ((-653 . -505) 72254) ((-710 . -302) 72241) ((-642 . -25) T) ((-642 . -21) T) ((-446 . -542) 72172) ((-117 . -894) T) ((-117 . -798) NIL) ((-348 . -25) T) ((-348 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-82 . -377) T) ((-82 . -388) T) ((-241 . -25) T) ((-241 . -21) T) ((-1230 . -595) 72154) ((-1176 . -1081) T) ((-1176 . -23) T) ((-1136 . -302) 72039) ((-1095 . -302) 72026) ((-1049 . -696) 71894) ((-840 . -626) 71854) ((-917 . -954) 71838) ((-884 . -21) T) ((-282 . -170) T) ((-884 . -25) T) ((-304 . -92) T) ((-846 . -825) 71789) ((-690 . -1081) T) ((-690 . -23) T) ((-625 . -1069) 71767) ((-612 . -592) 71742) ((-612 . -1069) T) ((-565 . -1186) T) ((-509 . -1186) T) ((-565 . -542) T) ((-509 . -542) T) ((-352 . -696) 71694) ((-346 . -696) 71646) ((-338 . -696) 71598) ((-332 . -1027) 71582) ((-172 . -111) 71493) ((-172 . -1027) 71425) ((-107 . -696) 71375) ((-332 . -111) 71354) ((-267 . -1069) T) ((-266 . -1069) T) ((-265 . -1069) T) ((-264 . -1069) T) ((-679 . -1021) T) ((-263 . -1069) T) ((-262 . -1069) T) ((-261 . -1069) T) ((-206 . -1069) T) ((-205 . -1069) T) ((-203 . -1069) T) ((-167 . -1170) 71332) ((-167 . -1167) 71310) ((-202 . -1069) T) ((-201 . -1069) T) ((-116 . -1021) T) ((-200 . -1069) T) ((-197 . -1069) T) ((-679 . -227) T) ((-196 . -1069) T) ((-195 . -1069) T) ((-194 . -1069) T) ((-193 . -1069) T) ((-192 . -1069) T) ((-191 . -1069) T) ((-190 . -1069) T) ((-189 . -1069) T) ((-188 . -1069) T) ((-187 . -1069) T) ((-234 . -101) 71100) ((-167 . -35) 71078) ((-167 . -94) 71056) ((-632 . -1012) 70952) ((-474 . -1028) 70882) ((-1082 . -1069) 70672) ((-1111 . -34) T) ((-648 . -481) 70656) ((-72 . -1182) T) ((-104 . -595) 70638) ((-1252 . -595) 70620) ((-374 . -595) 70602) ((-710 . -38) 70451) ((-557 . -1170) T) ((-557 . -1167) T) ((-522 . -595) 70433) ((-511 . -302) 70371) ((-491 . -595) 70353) ((-491 . -596) 70335) ((-1181 . -595) 70301) ((-1136 . -1120) NIL) ((-1001 . -1041) 70270) ((-1001 . -1069) T) ((-978 . -101) T) ((-945 . -101) T) ((-888 . -101) T) ((-867 . -1012) 70247) ((-1111 . -705) T) ((-977 . -626) 70192) ((-468 . -1069) T) ((-455 . -1069) T) ((-569 . -23) T) ((-557 . -35) T) ((-557 . -94) T) ((-420 . -101) T) ((-1033 . -223) 70138) ((-128 . -101) T) ((-1143 . -38) 70035) ((-840 . -705) T) ((-672 . -894) T) ((-502 . -25) T) ((-498 . -21) T) ((-498 . -25) T) ((-1142 . -38) 69876) ((-332 . -1021) T) ((-1136 . -38) 69672) ((-1049 . -170) T) ((-172 . -1021) T) ((-1095 . -38) 69569) ((-691 . -47) 69546) ((-352 . -170) T) ((-346 . -170) T) ((-510 . -56) 69520) ((-488 . -56) 69470) ((-344 . -1247) 69447) ((-219 . -444) T) ((-312 . -283) 69398) ((-338 . -170) T) ((-172 . -237) T) ((-1191 . -825) 69297) ((-107 . -170) T) ((-846 . -966) 69281) ((-636 . -1081) T) ((-565 . -356) T) ((-565 . -322) 69268) ((-509 . -322) 69245) ((-509 . -356) T) ((-309 . -300) 69224) ((-306 . -300) T) ((-584 . -825) 69203) ((-1082 . -696) 69145) ((-511 . -275) 69129) ((-636 . -23) T) ((-411 . -225) 69113) ((-306 . -996) NIL) ((-329 . -23) T) ((-102 . -984) 69097) ((-45 . -36) 69076) ((-594 . -1069) T) ((-344 . -361) T) ((-515 . -101) T) ((-486 . -27) T) ((-234 . -302) 69014) ((-1056 . -1081) T) ((-1251 . -626) 68988) ((-760 . -1081) T) ((-758 . -1081) T) ((-446 . -1081) T) ((-1032 . -444) T) ((-926 . -444) 68939) ((-1084 . -1052) T) ((-110 . -1069) T) ((-1056 . -23) T) ((-795 . -1028) T) ((-760 . -23) T) ((-758 . -23) T) ((-473 . -444) 68890) ((-1128 . -505) 68673) ((-374 . -375) 68652) ((-1147 . -404) 68636) ((-453 . -23) T) ((-446 . -23) T) ((-95 . -1069) T) ((-476 . -505) 68569) ((-282 . -283) T) ((-1051 . -595) 68551) ((-400 . -883) 68530) ((-50 . -1081) T) ((-998 . -894) T) ((-977 . -705) T) ((-691 . -860) NIL) ((-565 . -1081) T) ((-509 . -1081) T) ((-818 . -626) 68503) ((-1176 . -130) T) ((-1136 . -393) 68455) ((-978 . -302) NIL) ((-793 . -481) 68439) ((-347 . -894) T) ((-1125 . -34) T) ((-400 . -626) 68391) ((-50 . -23) T) ((-690 . -130) T) ((-691 . -1012) 68271) ((-565 . -23) T) ((-107 . -505) NIL) ((-509 . -23) T) ((-167 . -402) 68242) ((-128 . -302) NIL) ((-1109 . -1069) T) ((-1243 . -1242) 68226) ((-679 . -773) T) ((-679 . -770) T) ((-1089 . -300) T) ((-372 . -145) T) ((-273 . -595) 68208) ((-1191 . -966) 68178) ((-48 . -894) T) ((-653 . -481) 68162) ((-244 . -1235) 68132) ((-243 . -1235) 68102) ((-1145 . -825) T) ((-1082 . -170) 68081) ((-1089 . -996) T) ((-1018 . -34) T) ((-812 . -145) 68060) ((-812 . -143) 68039) ((-716 . -106) 68023) ((-594 . -131) T) ((-474 . -1069) 67813) ((-1147 . -1028) T) ((-845 . -444) T) ((-84 . -1182) T) ((-234 . -38) 67783) ((-139 . -106) 67765) ((-691 . -370) 67749) ((-1089 . -535) T) ((-383 . -1027) 67733) ((-1251 . -705) T) ((-1141 . -923) 67702) ((-129 . -595) 67669) ((-52 . -595) 67651) ((-1094 . -923) 67618) ((-631 . -404) 67602) ((-1240 . -1028) T) ((-601 . -1027) 67586) ((-640 . -25) T) ((-640 . -21) T) ((-1127 . -505) NIL) ((-1220 . -101) T) ((-1213 . -101) T) ((-383 . -111) 67565) ((-216 . -247) 67549) ((-1192 . -101) T) ((-1025 . -1069) T) ((-978 . -1120) T) ((-1025 . -1024) 67489) ((-796 . -1069) T) ((-336 . -1186) T) ((-615 . -626) 67473) ((-601 . -111) 67452) ((-589 . -626) 67436) ((-579 . -101) T) ((-569 . -130) T) ((-578 . -101) T) ((-407 . -1069) T) ((-378 . -1069) T) ((-304 . -595) 67402) ((-221 . -1069) 67380) ((-625 . -505) 67313) ((-612 . -505) 67157) ((-811 . -1021) 67136) ((-623 . -149) 67120) ((-336 . -542) T) ((-691 . -874) 67063) ((-536 . -223) 67013) ((-1220 . -277) 66979) ((-1049 . -283) 66930) ((-479 . -823) T) ((-217 . -1081) T) ((-1213 . -277) 66896) ((-1192 . -277) 66862) ((-978 . -38) 66812) ((-211 . -823) T) ((-1176 . -484) 66778) ((-888 . -38) 66730) ((-818 . -772) 66709) ((-818 . -769) 66688) ((-818 . -705) 66667) ((-352 . -283) T) ((-346 . -283) T) ((-338 . -283) T) ((-167 . -444) 66598) ((-420 . -38) 66582) ((-107 . -283) T) ((-217 . -23) T) ((-400 . -772) 66561) ((-400 . -769) 66540) ((-400 . -705) T) ((-491 . -281) 66515) ((-469 . -1027) 66480) ((-636 . -130) T) ((-1082 . -505) 66413) ((-329 . -130) T) ((-167 . -395) 66392) ((-474 . -696) 66334) ((-793 . -279) 66311) ((-469 . -111) 66267) ((-631 . -1028) T) ((-1201 . -444) 66198) ((-1239 . -1052) T) ((-1238 . -1052) T) ((-1056 . -130) T) ((-257 . -825) 66177) ((-241 . -825) 66156) ((-760 . -130) T) ((-758 . -130) T) ((-557 . -444) T) ((-1025 . -696) 66098) ((-601 . -1021) T) ((-1001 . -505) 66031) ((-575 . -1069) T) ((-453 . -130) T) ((-446 . -130) T) ((-45 . -1069) T) ((-378 . -696) 66001) ((-795 . -1069) T) ((-468 . -505) 65934) ((-455 . -505) 65867) ((-445 . -360) 65837) ((-45 . -592) 65816) ((-309 . -295) T) ((-648 . -595) 65778) ((-58 . -825) 65757) ((-1192 . -302) 65642) ((-978 . -393) 65624) ((-793 . -586) 65601) ((-507 . -825) 65580) ((-487 . -825) 65559) ((-40 . -1186) T) ((-973 . -1012) 65455) ((-50 . -130) T) ((-565 . -130) T) ((-509 . -130) T) ((-287 . -626) 65315) ((-336 . -322) 65292) ((-336 . -356) T) ((-315 . -316) 65269) ((-312 . -279) 65254) ((-40 . -542) T) ((-372 . -1167) T) ((-372 . -1170) T) ((-1009 . -1158) 65229) ((-1155 . -229) 65179) ((-1136 . -225) 65131) ((-323 . -1069) T) ((-372 . -94) T) ((-372 . -35) T) ((-1009 . -106) 65077) ((-469 . -1021) T) ((-471 . -229) 65027) ((-1128 . -481) 64961) ((-1252 . -1027) 64945) ((-374 . -1027) 64929) ((-469 . -237) T) ((-794 . -101) T) ((-693 . -145) 64908) ((-693 . -143) 64887) ((-476 . -481) 64871) ((-477 . -328) 64840) ((-1252 . -111) 64819) ((-503 . -1069) T) ((-474 . -170) 64798) ((-973 . -370) 64782) ((-406 . -101) T) ((-374 . -111) 64761) ((-973 . -331) 64745) ((-272 . -957) 64729) ((-271 . -957) 64713) ((-1250 . -595) 64695) ((-1248 . -595) 64677) ((-110 . -505) NIL) ((-1141 . -1204) 64661) ((-829 . -827) 64645) ((-1147 . -1069) T) ((-102 . -1182) T) ((-926 . -923) 64606) ((-795 . -696) 64548) ((-1192 . -1120) NIL) ((-473 . -923) 64493) ((-1032 . -141) T) ((-59 . -101) 64471) ((-44 . -595) 64453) ((-77 . -595) 64435) ((-344 . -626) 64380) ((-1240 . -1069) T) ((-502 . -825) T) ((-336 . -1081) T) ((-288 . -1069) T) ((-973 . -874) 64339) ((-288 . -592) 64318) ((-1220 . -38) 64215) ((-1213 . -38) 64056) ((-479 . -1028) T) ((-1192 . -38) 63852) ((-211 . -1028) T) ((-336 . -23) T) ((-150 . -595) 63834) ((-811 . -773) 63813) ((-811 . -770) 63792) ((-579 . -38) 63765) ((-578 . -38) 63662) ((-844 . -542) T) ((-217 . -130) T) ((-312 . -976) 63628) ((-78 . -595) 63610) ((-691 . -300) 63589) ((-287 . -705) 63491) ((-802 . -101) T) ((-839 . -819) T) ((-287 . -465) 63470) ((-1243 . -101) T) ((-40 . -356) T) ((-846 . -145) 63449) ((-846 . -143) 63428) ((-1127 . -481) 63410) ((-1252 . -1021) T) ((-474 . -505) 63343) ((-1115 . -1182) T) ((-938 . -595) 63325) ((-625 . -481) 63309) ((-612 . -481) 63240) ((-793 . -595) 62971) ((-48 . -27) T) ((-1147 . -696) 62868) ((-631 . -1069) T) ((-836 . -835) T) ((-429 . -357) 62842) ((-1071 . -101) T) ((-794 . -302) 62829) ((-944 . -1069) T) ((-839 . -1069) T) ((-1248 . -375) 62801) ((-1025 . -505) 62734) ((-1128 . -279) 62710) ((-234 . -225) 62679) ((-1240 . -696) 62649) ((-1135 . -92) T) ((-968 . -92) T) ((-795 . -170) 62628) ((-221 . -505) 62561) ((-601 . -773) 62540) ((-601 . -770) 62519) ((-1179 . -595) 62431) ((-216 . -1182) T) ((-653 . -595) 62363) ((-1125 . -984) 62347) ((-917 . -101) 62297) ((-344 . -705) T) ((-836 . -595) 62279) ((-1192 . -393) 62231) ((-1082 . -481) 62215) ((-59 . -302) 62153) ((-324 . -101) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-40 . -1081) T) ((-690 . -21) T) ((-607 . -595) 62135) ((-506 . -316) 62114) ((-690 . -25) T) ((-107 . -279) NIL) ((-895 . -1081) T) ((-40 . -23) T) ((-749 . -1081) T) ((-550 . -1186) T) ((-486 . -1186) T) ((-312 . -595) 62096) ((-978 . -225) 62078) ((-167 . -164) 62062) ((-564 . -542) T) ((-550 . -542) T) ((-486 . -542) T) ((-749 . -23) T) ((-1212 . -145) 62041) ((-1128 . -586) 62017) ((-1212 . -143) 61996) ((-1001 . -481) 61980) ((-1191 . -143) 61905) ((-1191 . -145) 61830) ((-1243 . -1249) 61809) ((-468 . -481) 61793) ((-455 . -481) 61777) ((-514 . -34) T) ((-631 . -696) 61747) ((-112 . -941) T) ((-640 . -825) 61726) ((-1147 . -170) 61677) ((-358 . -101) T) ((-234 . -232) 61656) ((-244 . -101) T) ((-243 . -101) T) ((-1201 . -923) 61625) ((-109 . -101) T) ((-239 . -825) 61604) ((-794 . -38) 61453) ((-45 . -505) 61245) ((-1127 . -279) 61220) ((-208 . -1069) T) ((-1119 . -1069) T) ((-1119 . -592) 61199) ((-569 . -25) T) ((-569 . -21) T) ((-1071 . -302) 61137) ((-937 . -404) 61121) ((-677 . -1186) T) ((-612 . -279) 61096) ((-1056 . -619) 61044) ((-760 . -619) 60992) ((-758 . -619) 60940) ((-336 . -130) T) ((-282 . -595) 60922) ((-677 . -542) T) ((-879 . -1069) T) ((-844 . -1081) T) ((-446 . -619) 60870) ((-879 . -877) 60854) ((-372 . -444) T) ((-479 . -1069) T) ((-679 . -626) 60841) ((-917 . -302) 60779) ((-211 . -1069) T) ((-309 . -894) 60758) ((-306 . -894) T) ((-306 . -798) NIL) ((-383 . -699) T) ((-844 . -23) T) ((-116 . -626) 60745) ((-466 . -143) 60724) ((-411 . -404) 60708) ((-466 . -145) 60687) ((-110 . -481) 60669) ((-2 . -595) 60651) ((-1127 . -19) 60633) ((-1127 . -586) 60608) ((-636 . -21) T) ((-636 . -25) T) ((-576 . -1113) T) ((-1082 . -279) 60585) ((-329 . -25) T) ((-329 . -21) T) ((-486 . -356) T) ((-1243 . -38) 60555) ((-1111 . -1182) T) ((-612 . -586) 60530) ((-1056 . -25) T) ((-1056 . -21) T) ((-522 . -770) T) ((-522 . -773) T) ((-117 . -1186) T) ((-937 . -1028) T) ((-603 . -542) T) ((-760 . -25) T) ((-760 . -21) T) ((-758 . -21) T) ((-758 . -25) T) ((-714 . -1028) T) ((-694 . -1028) T) ((-648 . -1027) 60514) ((-508 . -1052) T) ((-453 . -25) T) ((-117 . -542) T) ((-453 . -21) T) ((-446 . -25) T) ((-446 . -21) T) ((-1111 . -1012) 60410) ((-795 . -283) 60389) ((-801 . -1069) T) ((-940 . -941) T) ((-648 . -111) 60368) ((-288 . -505) 60160) ((-1250 . -1027) 60144) ((-1248 . -1027) 60128) ((-1212 . -1167) 60094) ((-244 . -302) 60032) ((-243 . -302) 59970) ((-1195 . -101) 59948) ((-1128 . -596) NIL) ((-1128 . -595) 59930) ((-1212 . -1170) 59896) ((-1192 . -225) 59848) ((-1191 . -1167) 59814) ((-95 . -92) T) ((-1191 . -1170) 59780) ((-1111 . -370) 59764) ((-1089 . -798) T) ((-1089 . -894) T) ((-1082 . -586) 59741) ((-1049 . -596) 59725) ((-476 . -595) 59657) ((-793 . -281) 59634) ((-590 . -149) 59581) ((-411 . -1028) T) ((-479 . -696) 59531) ((-474 . -481) 59515) ((-320 . -825) 59494) ((-332 . -626) 59468) ((-50 . -21) T) ((-50 . -25) T) ((-211 . -696) 59418) ((-167 . -703) 59389) ((-172 . -626) 59321) ((-565 . -21) T) ((-565 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-467 . -149) 59271) ((-1049 . -595) 59253) ((-1031 . -595) 59235) ((-967 . -101) T) ((-837 . -101) T) ((-777 . -404) 59199) ((-40 . -130) T) ((-677 . -356) T) ((-206 . -869) T) ((-679 . -772) T) ((-679 . -769) T) ((-564 . -1081) T) ((-550 . -1081) T) ((-486 . -1081) T) ((-679 . -705) T) ((-352 . -595) 59181) ((-346 . -595) 59163) ((-338 . -595) 59145) ((-65 . -389) T) ((-65 . -388) T) ((-107 . -596) 59075) ((-107 . -595) 59057) ((-205 . -869) T) ((-932 . -149) 59041) ((-1212 . -94) 59007) ((-749 . -130) T) ((-133 . -705) T) ((-116 . -705) T) ((-1212 . -35) 58973) ((-1025 . -481) 58957) ((-564 . -23) T) ((-550 . -23) T) ((-486 . -23) T) ((-1191 . -94) 58923) ((-1191 . -35) 58889) ((-1141 . -101) T) ((-1094 . -101) T) ((-829 . -101) T) ((-221 . -481) 58873) ((-1250 . -111) 58852) ((-1248 . -111) 58831) ((-44 . -1027) 58815) ((-1201 . -1204) 58799) ((-830 . -827) 58783) ((-1147 . -283) 58762) ((-110 . -279) 58737) ((-1111 . -874) 58696) ((-44 . -111) 58675) ((-1150 . -1223) T) ((-1135 . -595) 58641) ((-648 . -1021) T) ((-1127 . -596) NIL) ((-1127 . -595) 58623) ((-1033 . -592) 58598) ((-1033 . -1069) T) ((-968 . -595) 58564) ((-73 . -433) T) ((-73 . -388) T) ((-648 . -227) 58543) ((-150 . -1027) 58527) ((-557 . -540) 58511) ((-348 . -145) 58490) ((-348 . -143) 58441) ((-345 . -145) 58420) ((-681 . -1069) T) ((-345 . -143) 58371) ((-337 . -145) 58350) ((-337 . -143) 58301) ((-257 . -143) 58280) ((-257 . -145) 58259) ((-244 . -38) 58229) ((-241 . -145) 58208) ((-117 . -356) T) ((-241 . -143) 58187) ((-243 . -38) 58157) ((-150 . -111) 58136) ((-977 . -1012) 58024) ((-1136 . -823) NIL) ((-672 . -1186) T) ((-777 . -1028) T) ((-677 . -1081) T) ((-1250 . -1021) T) ((-1248 . -1021) T) ((-1125 . -1182) T) ((-977 . -370) 58001) ((-884 . -143) T) ((-884 . -145) 57983) ((-844 . -130) T) ((-793 . -1027) 57880) ((-672 . -542) T) ((-677 . -23) T) ((-625 . -595) 57812) ((-625 . -596) 57773) ((-612 . -596) NIL) ((-612 . -595) 57755) ((-479 . -170) T) ((-217 . -21) T) ((-211 . -170) T) ((-217 . -25) T) ((-466 . -1170) 57721) ((-466 . -1167) 57687) ((-267 . -595) 57669) ((-266 . -595) 57651) ((-265 . -595) 57633) ((-264 . -595) 57615) ((-263 . -595) 57597) ((-491 . -629) 57579) ((-262 . -595) 57561) ((-332 . -705) T) ((-261 . -595) 57543) ((-110 . -19) 57525) ((-172 . -705) T) ((-491 . -366) 57507) ((-206 . -595) 57489) ((-511 . -1118) 57473) ((-491 . -123) T) ((-110 . -586) 57448) ((-205 . -595) 57430) ((-466 . -35) 57396) ((-466 . -94) 57362) ((-203 . -595) 57344) ((-202 . -595) 57326) ((-201 . -595) 57308) ((-200 . -595) 57290) ((-197 . -595) 57272) ((-196 . -595) 57254) ((-195 . -595) 57236) ((-194 . -595) 57218) ((-193 . -595) 57200) ((-192 . -595) 57182) ((-191 . -595) 57164) ((-526 . -1072) 57116) ((-190 . -595) 57098) ((-189 . -595) 57080) ((-45 . -481) 57017) ((-188 . -595) 56999) ((-187 . -595) 56981) ((-1084 . -101) T) ((-793 . -111) 56871) ((-623 . -101) 56821) ((-474 . -279) 56798) ((-1082 . -595) 56529) ((-1070 . -1069) T) ((-1018 . -1182) T) ((-1251 . -1012) 56513) ((-603 . -1081) T) ((-1141 . -302) 56500) ((-1104 . -1069) T) ((-1094 . -302) 56487) ((-1065 . -1052) T) ((-1059 . -1052) T) ((-1043 . -1052) T) ((-1036 . -1052) T) ((-1010 . -1052) T) ((-993 . -1052) T) ((-117 . -1081) T) ((-797 . -101) T) ((-606 . -1052) T) ((-603 . -23) T) ((-1119 . -505) 56279) ((-475 . -1052) T) ((-977 . -874) 56231) ((-379 . -101) T) ((-317 . -101) T) ((-212 . -1052) T) ((-937 . -1069) T) ((-150 . -1021) T) ((-117 . -23) T) ((-710 . -404) 56215) ((-714 . -1069) T) ((-694 . -1069) T) ((-681 . -131) T) ((-445 . -1069) T) ((-400 . -1182) T) ((-309 . -423) 56199) ((-575 . -92) T) ((-1001 . -596) 56160) ((-998 . -1186) T) ((-219 . -101) T) ((-1001 . -595) 56122) ((-794 . -225) 56106) ((-998 . -542) T) ((-811 . -626) 56079) ((-347 . -1186) T) ((-468 . -595) 56041) ((-468 . -596) 56002) ((-455 . -596) 55963) ((-455 . -595) 55925) ((-400 . -858) 55909) ((-312 . -1027) 55744) ((-400 . -860) 55669) ((-818 . -1012) 55565) ((-479 . -505) NIL) ((-474 . -586) 55542) ((-347 . -542) T) ((-211 . -505) NIL) ((-846 . -444) T) ((-411 . -1069) T) ((-400 . -1012) 55406) ((-312 . -111) 55227) ((-672 . -356) T) ((-219 . -277) T) ((-48 . -1186) T) ((-793 . -1021) 55157) ((-564 . -130) T) ((-550 . -130) T) ((-486 . -130) T) ((-48 . -542) T) ((-1128 . -281) 55133) ((-1141 . -1120) 55111) ((-309 . -27) 55090) ((-1032 . -101) T) ((-793 . -227) 55042) ((-234 . -823) 55021) ((-926 . -101) T) ((-692 . -101) T) ((-288 . -481) 54958) ((-473 . -101) T) ((-710 . -1028) T) ((-594 . -595) 54940) ((-594 . -596) 54801) ((-400 . -370) 54785) ((-400 . -331) 54769) ((-1141 . -38) 54598) ((-1094 . -38) 54447) ((-829 . -38) 54417) ((-383 . -626) 54401) ((-623 . -302) 54339) ((-937 . -696) 54236) ((-714 . -696) 54206) ((-216 . -106) 54190) ((-45 . -279) 54115) ((-601 . -626) 54089) ((-305 . -1069) T) ((-282 . -1027) 54076) ((-110 . -595) 54058) ((-110 . -596) 54040) ((-445 . -696) 54010) ((-794 . -246) 53949) ((-667 . -1069) 53927) ((-536 . -1069) T) ((-1143 . -1028) T) ((-1142 . -1028) T) ((-1136 . -1028) T) ((-282 . -111) 53912) ((-1095 . -1028) T) ((-536 . -592) 53891) ((-95 . -595) 53857) ((-978 . -823) T) ((-221 . -665) 53815) ((-672 . -1081) T) ((-1176 . -719) 53791) ((-312 . -1021) T) ((-336 . -25) T) ((-336 . -21) T) ((-400 . -874) 53750) ((-67 . -1182) T) ((-811 . -772) 53729) ((-411 . -696) 53703) ((-777 . -1069) T) ((-811 . -769) 53682) ((-677 . -130) T) ((-691 . -894) 53661) ((-672 . -23) T) ((-479 . -283) T) ((-811 . -705) 53640) ((-312 . -227) 53592) ((-312 . -237) 53571) ((-211 . -283) T) ((-998 . -356) T) ((-1212 . -444) 53550) ((-1191 . -444) 53529) ((-347 . -322) 53506) ((-347 . -356) T) ((-1109 . -595) 53488) ((-45 . -1216) 53438) ((-845 . -101) T) ((-623 . -275) 53422) ((-677 . -1030) T) ((-1239 . -101) T) ((-469 . -626) 53387) ((-460 . -1069) T) ((-45 . -586) 53312) ((-1238 . -101) T) ((-1127 . -281) 53287) ((-40 . -619) 53226) ((-48 . -356) T) ((-1075 . -595) 53208) ((-1056 . -825) 53187) ((-612 . -281) 53162) ((-760 . -825) 53141) ((-758 . -825) 53120) ((-474 . -595) 52851) ((-234 . -404) 52820) ((-926 . -302) 52807) ((-446 . -825) 52786) ((-64 . -1182) T) ((-1033 . -505) 52630) ((-603 . -130) T) ((-473 . -302) 52617) ((-588 . -1069) T) ((-117 . -130) T) ((-649 . -1069) T) ((-282 . -1021) T) ((-178 . -1069) T) ((-159 . -1069) T) ((-154 . -1069) T) ((-152 . -1069) T) ((-445 . -740) T) ((-31 . -1052) T) ((-937 . -170) 52568) ((-944 . -92) T) ((-1049 . -1027) 52478) ((-601 . -772) 52457) ((-576 . -1069) T) ((-601 . -769) 52436) ((-601 . -705) T) ((-288 . -279) 52415) ((-287 . -1182) T) ((-1025 . -595) 52377) ((-1025 . -596) 52338) ((-998 . -1081) T) ((-167 . -101) T) ((-268 . -825) T) ((-1134 . -1069) T) ((-796 . -595) 52320) ((-1082 . -281) 52297) ((-1071 . -223) 52281) ((-977 . -300) T) ((-777 . -696) 52265) ((-352 . -1027) 52217) ((-347 . -1081) T) ((-346 . -1027) 52169) ((-407 . -595) 52151) ((-378 . -595) 52133) ((-338 . -1027) 52085) ((-221 . -595) 52017) ((-1049 . -111) 51913) ((-998 . -23) T) ((-107 . -1027) 51863) ((-872 . -101) T) ((-816 . -101) T) ((-786 . -101) T) ((-747 . -101) T) ((-655 . -101) T) ((-466 . -444) 51842) ((-411 . -170) T) ((-352 . -111) 51780) ((-346 . -111) 51718) ((-338 . -111) 51656) ((-244 . -225) 51625) ((-243 . -225) 51594) ((-347 . -23) T) ((-70 . -1182) T) ((-219 . -38) 51559) ((-107 . -111) 51493) ((-40 . -25) T) ((-40 . -21) T) ((-648 . -699) T) ((-167 . -277) 51471) ((-48 . -1081) T) ((-895 . -25) T) ((-749 . -25) T) ((-1119 . -481) 51408) ((-477 . -1069) T) ((-1252 . -626) 51382) ((-1201 . -101) T) ((-830 . -101) T) ((-234 . -1028) 51312) ((-1032 . -1120) T) ((-938 . -770) 51265) ((-374 . -626) 51249) ((-48 . -23) T) ((-938 . -773) 51202) ((-793 . -773) 51153) ((-793 . -770) 51104) ((-288 . -586) 51083) ((-469 . -705) T) ((-557 . -101) T) ((-845 . -302) 51040) ((-631 . -279) 51019) ((-112 . -639) T) ((-75 . -1182) T) ((-1032 . -38) 51006) ((-642 . -367) 50985) ((-926 . -38) 50834) ((-710 . -1069) T) ((-473 . -38) 50683) ((-85 . -1182) T) ((-557 . -277) T) ((-1192 . -823) NIL) ((-575 . -595) 50649) ((-1143 . -1069) T) ((-1142 . -1069) T) ((-1136 . -1069) T) ((-344 . -1012) 50626) ((-1049 . -1021) T) ((-978 . -1028) T) ((-45 . -595) 50608) ((-45 . -596) NIL) ((-888 . -1028) T) ((-795 . -595) 50590) ((-1116 . -101) 50568) ((-1049 . -237) 50519) ((-420 . -1028) T) ((-352 . -1021) T) ((-346 . -1021) T) ((-358 . -357) 50496) ((-338 . -1021) T) ((-244 . -232) 50475) ((-243 . -232) 50454) ((-109 . -357) 50428) ((-1049 . -227) 50353) ((-1095 . -1069) T) ((-287 . -874) 50312) ((-107 . -1021) T) ((-672 . -130) T) ((-411 . -505) 50154) ((-352 . -227) 50133) ((-352 . -237) T) ((-44 . -699) T) ((-346 . -227) 50112) ((-346 . -237) T) ((-338 . -227) 50091) ((-338 . -237) T) ((-167 . -302) 50056) ((-107 . -237) T) ((-107 . -227) T) ((-312 . -770) T) ((-844 . -21) T) ((-844 . -25) T) ((-400 . -300) T) ((-491 . -34) T) ((-110 . -281) 50031) ((-1082 . -1027) 49928) ((-845 . -1120) NIL) ((-323 . -595) 49910) ((-400 . -996) 49889) ((-1082 . -111) 49779) ((-669 . -1223) T) ((-429 . -1069) T) ((-1252 . -705) T) ((-62 . -595) 49761) ((-845 . -38) 49706) ((-514 . -1182) T) ((-584 . -149) 49690) ((-503 . -595) 49672) ((-1201 . -302) 49659) ((-710 . -696) 49508) ((-522 . -771) T) ((-522 . -772) T) ((-550 . -619) 49490) ((-486 . -619) 49450) ((-348 . -444) T) ((-345 . -444) T) ((-337 . -444) T) ((-257 . -444) 49401) ((-516 . -1069) T) ((-511 . -1069) 49351) ((-241 . -444) 49302) ((-1119 . -279) 49281) ((-1147 . -595) 49263) ((-667 . -505) 49196) ((-937 . -283) 49175) ((-536 . -505) 48967) ((-1141 . -225) 48951) ((-167 . -1120) 48930) ((-1240 . -595) 48912) ((-1143 . -696) 48809) ((-1142 . -696) 48650) ((-866 . -101) T) ((-1136 . -696) 48446) ((-1095 . -696) 48343) ((-1125 . -652) 48327) ((-348 . -395) 48278) ((-345 . -395) 48229) ((-337 . -395) 48180) ((-998 . -130) T) ((-777 . -505) 48092) ((-288 . -596) NIL) ((-288 . -595) 48074) ((-884 . -444) T) ((-938 . -361) 48027) ((-793 . -361) 48006) ((-501 . -500) 47985) ((-499 . -500) 47964) ((-479 . -279) NIL) ((-474 . -281) 47941) ((-411 . -283) T) ((-347 . -130) T) ((-211 . -279) NIL) ((-672 . -484) NIL) ((-98 . -1081) T) ((-167 . -38) 47769) ((-1212 . -947) 47731) ((-1116 . -302) 47669) ((-1191 . -947) 47638) ((-884 . -395) T) ((-1082 . -1021) 47568) ((-1214 . -542) T) ((-1119 . -586) 47547) ((-112 . -825) T) ((-1033 . -481) 47478) ((-564 . -21) T) ((-564 . -25) T) ((-550 . -21) T) ((-550 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-1201 . -1120) 47456) ((-1082 . -227) 47408) ((-48 . -130) T) ((-1163 . -101) T) ((-234 . -1069) 47198) ((-845 . -393) 47175) ((-1057 . -101) T) ((-1045 . -101) T) ((-590 . -101) T) ((-467 . -101) T) ((-1201 . -38) 47004) ((-830 . -38) 46974) ((-710 . -170) 46885) ((-631 . -595) 46867) ((-624 . -1052) T) ((-557 . -38) 46854) ((-944 . -595) 46820) ((-932 . -101) 46770) ((-839 . -595) 46752) ((-839 . -596) 46674) ((-576 . -505) NIL) ((-1220 . -1028) T) ((-1213 . -1028) T) ((-1192 . -1028) T) ((-579 . -1028) T) ((-578 . -1028) T) ((-1256 . -1081) T) ((-1143 . -170) 46625) ((-1142 . -170) 46556) ((-1136 . -170) 46487) ((-1095 . -170) 46438) ((-978 . -1069) T) ((-945 . -1069) T) ((-888 . -1069) T) ((-1176 . -145) 46417) ((-777 . -775) 46401) ((-677 . -25) T) ((-677 . -21) T) ((-117 . -619) 46378) ((-679 . -860) 46360) ((-420 . -1069) T) ((-309 . -1186) 46339) ((-306 . -1186) T) ((-167 . -393) 46323) ((-1176 . -143) 46302) ((-466 . -947) 46264) ((-128 . -1069) T) ((-71 . -595) 46246) ((-107 . -773) T) ((-107 . -770) T) ((-309 . -542) 46225) ((-679 . -1012) 46207) ((-306 . -542) T) ((-1256 . -23) T) ((-133 . -1012) 46189) ((-474 . -1027) 46086) ((-45 . -281) 46011) ((-234 . -696) 45953) ((-508 . -101) T) ((-474 . -111) 45843) ((-1061 . -101) 45821) ((-1008 . -101) T) ((-623 . -806) 45800) ((-710 . -505) 45743) ((-1025 . -1027) 45727) ((-1104 . -92) T) ((-1033 . -279) 45702) ((-603 . -21) T) ((-603 . -25) T) ((-515 . -1069) T) ((-354 . -101) T) ((-315 . -101) T) ((-648 . -626) 45676) ((-378 . -1027) 45660) ((-1025 . -111) 45639) ((-794 . -404) 45623) ((-117 . -25) T) ((-88 . -595) 45605) ((-117 . -21) T) ((-590 . -302) 45400) ((-467 . -302) 45204) ((-1119 . -596) NIL) ((-378 . -111) 45183) ((-372 . -101) T) ((-208 . -595) 45165) ((-1119 . -595) 45147) ((-978 . -696) 45097) ((-1136 . -505) 44866) ((-888 . -696) 44818) ((-1095 . -505) 44788) ((-344 . -300) T) ((-1155 . -149) 44738) ((-932 . -302) 44676) ((-812 . -101) T) ((-420 . -696) 44660) ((-219 . -806) T) ((-805 . -101) T) ((-803 . -101) T) ((-471 . -149) 44610) ((-1212 . -1211) 44589) ((-1089 . -1186) T) ((-332 . -1012) 44556) ((-1212 . -1206) 44526) ((-1212 . -1209) 44510) ((-1191 . -1190) 44489) ((-79 . -595) 44471) ((-879 . -595) 44453) ((-1191 . -1206) 44430) ((-1089 . -542) T) ((-895 . -825) T) ((-749 . -825) T) ((-479 . -596) 44360) ((-479 . -595) 44342) ((-372 . -277) T) ((-650 . -825) T) ((-1191 . -1188) 44326) ((-1214 . -1081) T) ((-211 . -596) 44256) ((-211 . -595) 44238) ((-1033 . -586) 44213) ((-58 . -149) 44197) ((-507 . -149) 44181) ((-487 . -149) 44165) ((-352 . -1247) 44149) ((-346 . -1247) 44133) ((-338 . -1247) 44117) ((-309 . -356) 44096) ((-306 . -356) T) ((-474 . -1021) 44026) ((-672 . -619) 44008) ((-1250 . -626) 43982) ((-1248 . -626) 43956) ((-1214 . -23) T) ((-667 . -481) 43940) ((-63 . -595) 43922) ((-1082 . -773) 43873) ((-1082 . -770) 43824) ((-536 . -481) 43761) ((-648 . -34) T) ((-474 . -227) 43713) ((-288 . -281) 43692) ((-234 . -170) 43671) ((-794 . -1028) T) ((-44 . -626) 43629) ((-1049 . -361) 43580) ((-710 . -283) 43511) ((-511 . -505) 43444) ((-795 . -1027) 43395) ((-1056 . -143) 43374) ((-352 . -361) 43353) ((-346 . -361) 43332) ((-338 . -361) 43311) ((-1056 . -145) 43290) ((-845 . -225) 43267) ((-795 . -111) 43209) ((-760 . -143) 43188) ((-760 . -145) 43167) ((-257 . -923) 43134) ((-244 . -823) 43113) ((-241 . -923) 43058) ((-243 . -823) 43037) ((-758 . -143) 43016) ((-758 . -145) 42995) ((-150 . -626) 42969) ((-446 . -145) 42948) ((-446 . -143) 42927) ((-648 . -705) T) ((-801 . -595) 42909) ((-1220 . -1069) T) ((-1213 . -1069) T) ((-1192 . -1069) T) ((-1176 . -1170) 42875) ((-1176 . -1167) 42841) ((-1143 . -283) 42820) ((-1142 . -283) 42771) ((-1136 . -283) 42722) ((-1095 . -283) 42701) ((-332 . -874) 42682) ((-978 . -170) T) ((-888 . -170) T) ((-579 . -1069) T) ((-578 . -1069) T) ((-672 . -21) T) ((-672 . -25) T) ((-466 . -1209) 42666) ((-466 . -1206) 42636) ((-411 . -279) 42564) ((-309 . -1081) 42413) ((-306 . -1081) T) ((-1176 . -35) 42379) ((-1176 . -94) 42345) ((-83 . -595) 42327) ((-90 . -101) 42305) ((-1256 . -130) T) ((-565 . -143) T) ((-565 . -145) 42287) ((-509 . -145) 42269) ((-509 . -143) T) ((-309 . -23) 42121) ((-40 . -335) 42095) ((-306 . -23) T) ((-1127 . -629) 42077) ((-1243 . -1028) T) ((-1127 . -366) 42059) ((-793 . -626) 41907) ((-1065 . -101) T) ((-1059 . -101) T) ((-1043 . -101) T) ((-167 . -225) 41891) ((-1036 . -101) T) ((-1010 . -101) T) ((-993 . -101) T) ((-576 . -481) 41873) ((-606 . -101) T) ((-234 . -505) 41806) ((-475 . -101) T) ((-1250 . -705) T) ((-1248 . -705) T) ((-212 . -101) T) ((-1147 . -1027) 41689) ((-1147 . -111) 41558) ((-836 . -171) T) ((-795 . -1021) T) ((-659 . -1052) T) ((-654 . -1052) T) ((-506 . -101) T) ((-501 . -101) T) ((-48 . -619) 41518) ((-499 . -101) T) ((-470 . -1052) T) ((-1240 . -1027) 41488) ((-137 . -1052) T) ((-136 . -1052) T) ((-132 . -1052) T) ((-1008 . -38) 41472) ((-795 . -227) T) ((-795 . -237) 41451) ((-1240 . -111) 41416) ((-1220 . -696) 41313) ((-536 . -279) 41292) ((-1213 . -696) 41133) ((-1201 . -225) 41117) ((-588 . -92) T) ((-1033 . -596) NIL) ((-1033 . -595) 41099) ((-649 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1192 . -696) 40895) ((-977 . -894) T) ((-681 . -595) 40864) ((-150 . -705) T) ((-1082 . -361) 40843) ((-978 . -505) NIL) ((-244 . -404) 40812) ((-243 . -404) 40781) ((-998 . -25) T) ((-998 . -21) T) ((-579 . -696) 40754) ((-578 . -696) 40651) ((-777 . -279) 40609) ((-126 . -101) 40587) ((-811 . -1012) 40483) ((-167 . -806) 40462) ((-312 . -626) 40359) ((-793 . -34) T) ((-693 . -101) T) ((-1089 . -1081) T) ((-128 . -505) NIL) ((-1000 . -1182) T) ((-372 . -38) 40324) ((-347 . -25) T) ((-347 . -21) T) ((-160 . -101) T) ((-155 . -101) T) ((-348 . -1235) 40308) ((-345 . -1235) 40292) ((-337 . -1235) 40276) ((-167 . -342) 40255) ((-550 . -825) T) ((-486 . -825) T) ((-1089 . -23) T) ((-86 . -595) 40237) ((-679 . -300) T) ((-812 . -38) 40207) ((-805 . -38) 40177) ((-1214 . -130) T) ((-1119 . -281) 40156) ((-938 . -771) 40109) ((-938 . -772) 40062) ((-793 . -769) 40041) ((-116 . -300) T) ((-90 . -302) 39979) ((-653 . -34) T) ((-536 . -586) 39958) ((-48 . -25) T) ((-48 . -21) T) ((-793 . -772) 39909) ((-793 . -771) 39888) ((-679 . -996) T) ((-631 . -1027) 39872) ((-938 . -705) 39771) ((-793 . -705) 39681) ((-938 . -465) 39634) ((-474 . -773) 39585) ((-474 . -770) 39536) ((-884 . -1235) 39523) ((-1147 . -1021) T) ((-631 . -111) 39502) ((-1147 . -319) 39479) ((-1168 . -101) 39457) ((-1070 . -595) 39439) ((-679 . -535) T) ((-794 . -1069) T) ((-1240 . -1021) T) ((-406 . -1069) T) ((-1104 . -595) 39405) ((-244 . -1028) 39335) ((-243 . -1028) 39265) ((-282 . -626) 39252) ((-576 . -279) 39227) ((-667 . -665) 39185) ((-937 . -595) 39167) ((-846 . -101) T) ((-714 . -595) 39149) ((-694 . -595) 39131) ((-1220 . -170) 39082) ((-1213 . -170) 39013) ((-1192 . -170) 38944) ((-677 . -825) T) ((-978 . -283) T) ((-445 . -595) 38926) ((-607 . -705) T) ((-59 . -1069) 38904) ((-239 . -149) 38888) ((-888 . -283) T) ((-998 . -986) T) ((-607 . -465) T) ((-691 . -1186) 38867) ((-579 . -170) 38846) ((-578 . -170) 38797) ((-1228 . -825) 38776) ((-691 . -542) 38687) ((-400 . -894) T) ((-400 . -798) 38666) ((-312 . -772) T) ((-312 . -705) T) ((-411 . -595) 38648) ((-411 . -596) 38556) ((-623 . -1118) 38540) ((-110 . -629) 38522) ((-172 . -300) T) ((-126 . -302) 38460) ((-110 . -366) 38442) ((-391 . -1182) T) ((-309 . -130) 38313) ((-306 . -130) T) ((-68 . -388) T) ((-110 . -123) T) ((-511 . -481) 38297) ((-632 . -1081) T) ((-576 . -19) 38279) ((-60 . -433) T) ((-60 . -388) T) ((-802 . -1069) T) ((-576 . -586) 38254) ((-469 . -1012) 38214) ((-631 . -1021) T) ((-632 . -23) T) ((-1243 . -1069) T) ((-31 . -101) T) ((-794 . -696) 38063) ((-117 . -825) NIL) ((-1141 . -404) 38047) ((-1094 . -404) 38031) ((-829 . -404) 38015) ((-847 . -101) 37966) ((-1212 . -101) T) ((-1192 . -505) 37735) ((-1191 . -101) T) ((-516 . -92) T) ((-1168 . -302) 37673) ((-305 . -595) 37655) ((-1143 . -279) 37640) ((-1071 . -1069) T) ((-1142 . -279) 37625) ((-1049 . -626) 37535) ((-282 . -705) T) ((-107 . -883) NIL) ((-667 . -595) 37467) ((-667 . -596) 37428) ((-583 . -595) 37410) ((-536 . -596) NIL) ((-536 . -595) 37392) ((-520 . -595) 37374) ((-1136 . -279) 37222) ((-479 . -1027) 37172) ((-690 . -444) T) ((-502 . -500) 37151) ((-498 . -500) 37130) ((-211 . -1027) 37080) ((-352 . -626) 37032) ((-346 . -626) 36984) ((-219 . -823) T) ((-338 . -626) 36936) ((-584 . -101) 36886) ((-474 . -361) 36865) ((-107 . -626) 36815) ((-479 . -111) 36749) ((-234 . -481) 36733) ((-336 . -145) 36715) ((-336 . -143) T) ((-167 . -363) 36686) ((-917 . -1226) 36670) ((-211 . -111) 36604) ((-846 . -302) 36569) ((-917 . -1069) 36519) ((-777 . -596) 36480) ((-777 . -595) 36462) ((-697 . -101) T) ((-324 . -1069) T) ((-1089 . -130) T) ((-693 . -38) 36432) ((-309 . -484) 36411) ((-491 . -1182) T) ((-1212 . -277) 36377) ((-1191 . -277) 36343) ((-320 . -149) 36327) ((-1033 . -281) 36302) ((-1243 . -696) 36272) ((-1128 . -34) T) ((-1252 . -1012) 36249) ((-460 . -595) 36231) ((-476 . -34) T) ((-374 . -1012) 36215) ((-1141 . -1028) T) ((-1094 . -1028) T) ((-829 . -1028) T) ((-1032 . -823) T) ((-794 . -170) 36126) ((-511 . -279) 36103) ((-128 . -481) 36085) ((-1220 . -283) 36064) ((-117 . -966) 36041) ((-1213 . -283) 35992) ((-1163 . -357) 35966) ((-1057 . -259) 35950) ((-649 . -595) 35916) ((-588 . -595) 35866) ((-466 . -101) T) ((-178 . -595) 35832) ((-159 . -595) 35798) ((-154 . -595) 35764) ((-358 . -1069) T) ((-244 . -1069) T) ((-243 . -1069) T) ((-152 . -595) 35730) ((-109 . -1069) T) ((-1192 . -283) 35681) ((-846 . -1120) 35659) ((-1143 . -976) 35625) ((-590 . -357) 35565) ((-1142 . -976) 35531) ((-590 . -223) 35478) ((-576 . -595) 35460) ((-576 . -596) NIL) ((-672 . -825) T) ((-467 . -223) 35410) ((-479 . -1021) T) ((-1136 . -976) 35376) ((-87 . -432) T) ((-87 . -388) T) ((-211 . -1021) T) ((-1095 . -976) 35342) ((-1049 . -705) T) ((-691 . -1081) T) ((-579 . -283) 35321) ((-578 . -283) 35300) ((-479 . -237) T) ((-479 . -227) T) ((-211 . -237) T) ((-211 . -227) T) ((-1134 . -595) 35282) ((-846 . -38) 35234) ((-352 . -705) T) ((-346 . -705) T) ((-338 . -705) T) ((-107 . -772) T) ((-107 . -769) T) ((-511 . -1216) 35218) ((-107 . -705) T) ((-691 . -23) T) ((-1256 . -25) T) ((-466 . -277) 35184) ((-1256 . -21) T) ((-1191 . -302) 35123) ((-1145 . -101) T) ((-40 . -143) 35095) ((-40 . -145) 35067) ((-511 . -586) 35044) ((-1082 . -626) 34892) ((-584 . -302) 34830) ((-45 . -629) 34780) ((-45 . -644) 34730) ((-45 . -366) 34680) ((-1127 . -34) T) ((-845 . -823) NIL) ((-632 . -130) T) ((-477 . -595) 34662) ((-234 . -279) 34639) ((-625 . -34) T) ((-612 . -34) T) ((-1056 . -444) 34590) ((-794 . -505) 34464) ((-760 . -444) 34395) ((-758 . -444) 34346) ((-446 . -444) 34297) ((-926 . -404) 34281) ((-710 . -595) 34263) ((-244 . -696) 34205) ((-243 . -696) 34147) ((-710 . -596) 34008) ((-473 . -404) 33992) ((-332 . -295) T) ((-515 . -92) T) ((-344 . -894) T) ((-974 . -101) 33970) ((-998 . -825) T) ((-59 . -505) 33903) ((-1191 . -1120) 33855) ((-978 . -279) NIL) ((-219 . -1028) T) ((-372 . -806) T) ((-1082 . -34) T) ((-1195 . -1062) 33839) ((-565 . -444) T) ((-509 . -444) T) ((-1195 . -1069) 33817) ((-1195 . -1064) 33774) ((-234 . -586) 33751) ((-1143 . -595) 33733) ((-1142 . -595) 33715) ((-1136 . -595) 33697) ((-1136 . -596) NIL) ((-1095 . -595) 33679) ((-128 . -279) 33654) ((-846 . -393) 33638) ((-526 . -101) T) ((-1212 . -38) 33479) ((-1191 . -38) 33293) ((-844 . -145) T) ((-565 . -395) T) ((-48 . -825) T) ((-509 . -395) T) ((-1224 . -101) T) ((-1214 . -21) T) ((-1214 . -25) T) ((-1082 . -769) 33272) ((-1082 . -772) 33223) ((-1082 . -771) 33202) ((-967 . -1069) T) ((-1001 . -34) T) ((-837 . -1069) T) ((-1082 . -705) 33112) ((-642 . -101) T) ((-624 . -101) T) ((-536 . -281) 33091) ((-1155 . -101) T) ((-468 . -34) T) ((-455 . -34) T) ((-348 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-257 . -101) T) ((-241 . -101) T) ((-469 . -300) T) ((-1032 . -1028) T) ((-926 . -1028) T) ((-309 . -619) 32997) ((-306 . -619) 32958) ((-473 . -1028) T) ((-471 . -101) T) ((-429 . -595) 32940) ((-1141 . -1069) T) ((-1094 . -1069) T) ((-829 . -1069) T) ((-1110 . -101) T) ((-794 . -283) 32871) ((-937 . -1027) 32754) ((-469 . -996) T) ((-128 . -19) 32736) ((-714 . -1027) 32706) ((-128 . -586) 32681) ((-445 . -1027) 32651) ((-1116 . -1090) 32635) ((-1071 . -505) 32568) ((-937 . -111) 32437) ((-884 . -101) T) ((-714 . -111) 32402) ((-516 . -595) 32368) ((-58 . -101) 32318) ((-511 . -596) 32279) ((-511 . -595) 32191) ((-510 . -101) 32169) ((-507 . -101) 32119) ((-488 . -101) 32097) ((-487 . -101) 32047) ((-445 . -111) 32010) ((-244 . -170) 31989) ((-243 . -170) 31968) ((-411 . -1027) 31942) ((-1176 . -947) 31904) ((-973 . -1081) T) ((-917 . -505) 31837) ((-479 . -773) T) ((-466 . -38) 31678) ((-411 . -111) 31645) ((-479 . -770) T) ((-974 . -302) 31583) ((-211 . -773) T) ((-211 . -770) T) ((-973 . -23) T) ((-691 . -130) T) ((-1191 . -393) 31553) ((-309 . -25) 31405) ((-167 . -404) 31389) ((-309 . -21) 31260) ((-306 . -25) T) ((-306 . -21) T) ((-839 . -361) T) ((-110 . -34) T) ((-474 . -626) 31108) ((-845 . -1028) T) ((-576 . -281) 31083) ((-564 . -145) T) ((-550 . -145) T) ((-486 . -145) T) ((-1141 . -696) 30912) ((-1094 . -696) 30761) ((-1089 . -619) 30743) ((-829 . -696) 30713) ((-648 . -1182) T) ((-1 . -101) T) ((-234 . -595) 30444) ((-1084 . -1069) T) ((-1201 . -404) 30428) ((-1155 . -302) 30232) ((-937 . -1021) T) ((-714 . -1021) T) ((-694 . -1021) T) ((-623 . -1069) 30182) ((-1025 . -626) 30166) ((-830 . -404) 30150) ((-502 . -101) T) ((-498 . -101) T) ((-241 . -302) 30137) ((-257 . -302) 30124) ((-937 . -319) 30103) ((-378 . -626) 30087) ((-471 . -302) 29891) ((-244 . -505) 29824) ((-648 . -1012) 29720) ((-243 . -505) 29653) ((-1110 . -302) 29579) ((-797 . -1069) T) ((-777 . -1027) 29563) ((-1220 . -279) 29548) ((-1213 . -279) 29533) ((-1192 . -279) 29381) ((-379 . -1069) T) ((-317 . -1069) T) ((-411 . -1021) T) ((-167 . -1028) T) ((-58 . -302) 29319) ((-777 . -111) 29298) ((-578 . -279) 29283) ((-510 . -302) 29221) ((-507 . -302) 29159) ((-488 . -302) 29097) ((-487 . -302) 29035) ((-411 . -227) 29014) ((-474 . -34) T) ((-978 . -596) 28944) ((-219 . -1069) T) ((-978 . -595) 28926) ((-945 . -595) 28908) ((-945 . -596) 28883) ((-888 . -595) 28865) ((-677 . -145) T) ((-679 . -894) T) ((-679 . -798) T) ((-420 . -595) 28847) ((-1089 . -21) T) ((-128 . -596) NIL) ((-128 . -595) 28829) ((-1089 . -25) T) ((-648 . -370) 28813) ((-116 . -894) T) ((-846 . -225) 28797) ((-77 . -1182) T) ((-126 . -125) 28781) ((-1025 . -34) T) ((-1250 . -1012) 28755) ((-1248 . -1012) 28712) ((-1201 . -1028) T) ((-830 . -1028) T) ((-474 . -769) 28691) ((-348 . -1120) 28670) ((-345 . -1120) 28649) ((-337 . -1120) 28628) ((-474 . -772) 28579) ((-474 . -771) 28558) ((-221 . -34) T) ((-474 . -705) 28468) ((-59 . -481) 28452) ((-557 . -1028) T) ((-1141 . -170) 28343) ((-1094 . -170) 28254) ((-1032 . -1069) T) ((-1056 . -923) 28199) ((-926 . -1069) T) ((-795 . -626) 28150) ((-760 . -923) 28119) ((-692 . -1069) T) ((-758 . -923) 28086) ((-507 . -275) 28070) ((-648 . -874) 28029) ((-473 . -1069) T) ((-446 . -923) 27996) ((-78 . -1182) T) ((-348 . -38) 27961) ((-345 . -38) 27926) ((-337 . -38) 27891) ((-257 . -38) 27740) ((-241 . -38) 27589) ((-884 . -1120) T) ((-603 . -145) 27568) ((-603 . -143) 27547) ((-515 . -595) 27513) ((-117 . -145) T) ((-117 . -143) NIL) ((-407 . -705) T) ((-777 . -1021) T) ((-336 . -444) T) ((-1220 . -976) 27479) ((-1213 . -976) 27445) ((-1192 . -976) 27411) ((-884 . -38) 27376) ((-219 . -696) 27341) ((-312 . -47) 27311) ((-40 . -402) 27283) ((-138 . -595) 27265) ((-973 . -130) T) ((-793 . -1182) T) ((-172 . -894) T) ((-336 . -395) T) ((-511 . -281) 27242) ((-793 . -1012) 27069) ((-45 . -34) T) ((-659 . -101) T) ((-654 . -101) T) ((-640 . -101) T) ((-632 . -21) T) ((-632 . -25) T) ((-1191 . -225) 27039) ((-1071 . -481) 27023) ((-470 . -101) T) ((-653 . -1182) T) ((-239 . -101) 26973) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-845 . -1069) T) ((-1147 . -626) 26898) ((-1032 . -696) 26885) ((-710 . -1027) 26728) ((-1141 . -505) 26675) ((-926 . -696) 26524) ((-1094 . -505) 26476) ((-1239 . -1069) T) ((-1238 . -1069) T) ((-473 . -696) 26325) ((-66 . -595) 26307) ((-710 . -111) 26136) ((-917 . -481) 26120) ((-1240 . -626) 26080) ((-795 . -705) T) ((-1143 . -1027) 25963) ((-1142 . -1027) 25798) ((-1136 . -1027) 25588) ((-1095 . -1027) 25471) ((-977 . -1186) T) ((-1063 . -101) 25449) ((-793 . -370) 25418) ((-977 . -542) T) ((-1143 . -111) 25287) ((-1142 . -111) 25108) ((-1136 . -111) 24877) ((-1095 . -111) 24746) ((-1074 . -1072) 24710) ((-372 . -823) T) ((-1220 . -595) 24692) ((-1213 . -595) 24674) ((-1192 . -595) 24656) ((-1192 . -596) NIL) ((-234 . -281) 24633) ((-40 . -444) T) ((-219 . -170) T) ((-167 . -1069) T) ((-672 . -145) T) ((-672 . -143) NIL) ((-579 . -595) 24615) ((-578 . -595) 24597) ((-872 . -1069) T) ((-816 . -1069) T) ((-786 . -1069) T) ((-747 . -1069) T) ((-636 . -827) 24581) ((-655 . -1069) T) ((-793 . -874) 24513) ((-40 . -395) NIL) ((-1089 . -639) T) ((-845 . -696) 24458) ((-244 . -481) 24442) ((-243 . -481) 24426) ((-691 . -619) 24374) ((-631 . -626) 24348) ((-288 . -34) T) ((-710 . -1021) T) ((-565 . -1235) 24335) ((-509 . -1235) 24312) ((-1201 . -1069) T) ((-1141 . -283) 24223) ((-1094 . -283) 24154) ((-1032 . -170) T) ((-830 . -1069) T) ((-926 . -170) 24065) ((-760 . -1204) 24049) ((-623 . -505) 23982) ((-76 . -595) 23964) ((-710 . -319) 23929) ((-1147 . -705) T) ((-557 . -1069) T) ((-473 . -170) 23840) ((-239 . -302) 23778) ((-128 . -281) 23753) ((-1111 . -1081) T) ((-69 . -595) 23735) ((-1240 . -705) T) ((-1143 . -1021) T) ((-1142 . -1021) T) ((-320 . -101) 23685) ((-1136 . -1021) T) ((-1111 . -23) T) ((-1095 . -1021) T) ((-90 . -1090) 23669) ((-840 . -1081) T) ((-1143 . -227) 23628) ((-1142 . -237) 23607) ((-1142 . -227) 23559) ((-1136 . -227) 23446) ((-1136 . -237) 23425) ((-312 . -874) 23331) ((-840 . -23) T) ((-167 . -696) 23159) ((-400 . -1186) T) ((-1070 . -361) T) ((-998 . -145) T) ((-977 . -356) T) ((-844 . -444) T) ((-917 . -279) 23136) ((-309 . -825) T) ((-306 . -825) NIL) ((-848 . -101) T) ((-691 . -25) T) ((-400 . -542) T) ((-691 . -21) T) ((-347 . -145) 23118) ((-347 . -143) T) ((-1116 . -1069) 23096) ((-445 . -699) T) ((-74 . -595) 23078) ((-114 . -825) T) ((-239 . -275) 23062) ((-234 . -1027) 22959) ((-80 . -595) 22941) ((-714 . -361) 22894) ((-1145 . -806) T) ((-716 . -229) 22878) ((-1128 . -1182) T) ((-139 . -229) 22860) ((-234 . -111) 22750) ((-1201 . -696) 22579) ((-48 . -145) T) ((-845 . -170) T) ((-830 . -696) 22549) ((-476 . -1182) T) ((-926 . -505) 22496) ((-631 . -705) T) ((-557 . -696) 22483) ((-1008 . -1028) T) ((-473 . -505) 22426) ((-917 . -19) 22410) ((-917 . -586) 22387) ((-794 . -596) NIL) ((-794 . -595) 22369) ((-978 . -1027) 22319) ((-406 . -595) 22301) ((-244 . -279) 22278) ((-243 . -279) 22255) ((-479 . -883) NIL) ((-309 . -29) 22225) ((-107 . -1182) T) ((-977 . -1081) T) ((-211 . -883) NIL) ((-888 . -1027) 22177) ((-1049 . -1012) 22073) ((-978 . -111) 22007) ((-716 . -673) 21991) ((-257 . -225) 21975) ((-420 . -1027) 21959) ((-372 . -1028) T) ((-977 . -23) T) ((-888 . -111) 21897) ((-672 . -1170) NIL) ((-479 . -626) 21847) ((-107 . -858) 21829) ((-107 . -860) 21811) ((-672 . -1167) NIL) ((-211 . -626) 21761) ((-352 . -1012) 21745) ((-346 . -1012) 21729) ((-320 . -302) 21667) ((-338 . -1012) 21651) ((-219 . -283) T) ((-420 . -111) 21630) ((-59 . -595) 21562) ((-167 . -170) T) ((-1089 . -825) T) ((-107 . -1012) 21522) ((-866 . -1069) T) ((-812 . -1028) T) ((-805 . -1028) T) ((-672 . -35) NIL) ((-672 . -94) NIL) ((-306 . -966) 21483) ((-181 . -101) T) ((-564 . -444) T) ((-550 . -444) T) ((-486 . -444) T) ((-400 . -356) T) ((-234 . -1021) 21413) ((-1119 . -34) T) ((-469 . -894) T) ((-973 . -619) 21361) ((-244 . -586) 21338) ((-243 . -586) 21315) ((-1049 . -370) 21299) ((-845 . -505) 21207) ((-234 . -227) 21159) ((-1127 . -1182) T) ((-802 . -595) 21141) ((-1251 . -1081) T) ((-1243 . -595) 21123) ((-1201 . -170) 21014) ((-107 . -370) 20996) ((-107 . -331) 20978) ((-1032 . -283) T) ((-926 . -283) 20909) ((-777 . -361) 20888) ((-625 . -1182) T) ((-612 . -1182) T) ((-473 . -283) 20819) ((-557 . -170) T) ((-320 . -275) 20803) ((-1251 . -23) T) ((-1176 . -101) T) ((-1163 . -1069) T) ((-1057 . -1069) T) ((-1045 . -1069) T) ((-82 . -595) 20785) ((-690 . -101) T) ((-348 . -342) 20764) ((-590 . -1069) T) ((-345 . -342) 20743) ((-337 . -342) 20722) ((-467 . -1069) T) ((-1155 . -223) 20672) ((-257 . -246) 20634) ((-1111 . -130) T) ((-590 . -592) 20610) ((-1049 . -874) 20543) ((-978 . -1021) T) ((-888 . -1021) T) ((-467 . -592) 20522) ((-1136 . -770) NIL) ((-1136 . -773) NIL) ((-1071 . -596) 20483) ((-471 . -223) 20433) ((-1071 . -595) 20415) ((-978 . -237) T) ((-978 . -227) T) ((-420 . -1021) T) ((-932 . -1069) 20365) ((-888 . -237) T) ((-840 . -130) T) ((-677 . -444) T) ((-818 . -1081) 20344) ((-107 . -874) NIL) ((-1176 . -277) 20310) ((-846 . -823) 20289) ((-1082 . -1182) T) ((-879 . -705) T) ((-167 . -505) 20201) ((-973 . -25) T) ((-879 . -465) T) ((-400 . -1081) T) ((-479 . -772) T) ((-479 . -769) T) ((-884 . -342) T) ((-479 . -705) T) ((-211 . -772) T) ((-211 . -769) T) ((-973 . -21) T) ((-211 . -705) T) ((-818 . -23) 20153) ((-312 . -300) 20132) ((-1009 . -229) 20078) ((-400 . -23) T) ((-917 . -596) 20039) ((-917 . -595) 19951) ((-623 . -481) 19935) ((-45 . -984) 19885) ((-598 . -941) T) ((-482 . -101) T) ((-324 . -595) 19867) ((-1082 . -1012) 19694) ((-576 . -629) 19676) ((-576 . -366) 19658) ((-336 . -1235) 19635) ((-1001 . -1182) T) ((-845 . -283) T) ((-1201 . -505) 19582) ((-468 . -1182) T) ((-455 . -1182) T) ((-569 . -101) T) ((-1141 . -279) 19509) ((-603 . -444) 19488) ((-974 . -969) 19472) ((-1243 . -375) 19444) ((-508 . -1069) T) ((-117 . -444) T) ((-1162 . -101) T) ((-1061 . -1069) 19422) ((-1008 . -1069) T) ((-1084 . -92) T) ((-867 . -825) T) ((-344 . -1186) T) ((-1220 . -1027) 19305) ((-1082 . -370) 19274) ((-1213 . -1027) 19109) ((-1192 . -1027) 18899) ((-1220 . -111) 18768) ((-1213 . -111) 18589) ((-1192 . -111) 18358) ((-1176 . -302) 18345) ((-344 . -542) T) ((-358 . -595) 18327) ((-282 . -300) T) ((-579 . -1027) 18300) ((-578 . -1027) 18183) ((-354 . -1069) T) ((-315 . -1069) T) ((-244 . -595) 18144) ((-243 . -595) 18105) ((-977 . -130) T) ((-109 . -595) 18087) ((-615 . -23) T) ((-672 . -402) 18054) ((-589 . -23) T) ((-636 . -101) T) ((-579 . -111) 18025) ((-578 . -111) 17894) ((-372 . -1069) T) ((-329 . -101) T) ((-167 . -283) 17805) ((-1191 . -823) 17758) ((-693 . -1028) T) ((-1116 . -505) 17691) ((-1082 . -874) 17623) ((-812 . -1069) T) ((-805 . -1069) T) ((-803 . -1069) T) ((-96 . -101) T) ((-142 . -825) T) ((-594 . -858) 17607) ((-110 . -1182) T) ((-1056 . -101) T) ((-1033 . -34) T) ((-760 . -101) T) ((-758 . -101) T) ((-453 . -101) T) ((-446 . -101) T) ((-234 . -773) 17558) ((-234 . -770) 17509) ((-627 . -101) T) ((-1201 . -283) 17420) ((-642 . -614) 17404) ((-623 . -279) 17381) ((-1008 . -696) 17365) ((-557 . -283) T) ((-937 . -626) 17290) ((-1251 . -130) T) ((-714 . -626) 17250) ((-694 . -626) 17237) ((-268 . -101) T) ((-445 . -626) 17167) ((-50 . -101) T) ((-565 . -101) T) ((-509 . -101) T) ((-1220 . -1021) T) ((-1213 . -1021) T) ((-1192 . -1021) T) ((-1220 . -227) 17126) ((-315 . -696) 17108) ((-1213 . -237) 17087) ((-1213 . -227) 17039) ((-1192 . -227) 16926) ((-1192 . -237) 16905) ((-1176 . -38) 16802) ((-978 . -773) T) ((-579 . -1021) T) ((-578 . -1021) T) ((-978 . -770) T) ((-945 . -773) T) ((-945 . -770) T) ((-846 . -1028) T) ((-844 . -843) 16786) ((-108 . -595) 16768) ((-672 . -444) T) ((-372 . -696) 16733) ((-411 . -626) 16707) ((-691 . -825) 16686) ((-690 . -38) 16651) ((-578 . -227) 16610) ((-40 . -703) 16582) ((-344 . -322) 16559) ((-344 . -356) T) ((-1049 . -300) 16510) ((-287 . -1081) 16391) ((-1075 . -1182) T) ((-169 . -101) T) ((-1195 . -595) 16358) ((-818 . -130) 16310) ((-623 . -1216) 16294) ((-812 . -696) 16264) ((-805 . -696) 16234) ((-474 . -1182) T) ((-352 . -300) T) ((-346 . -300) T) ((-338 . -300) T) ((-623 . -586) 16211) ((-400 . -130) T) ((-511 . -644) 16195) ((-107 . -300) T) ((-287 . -23) 16078) ((-511 . -629) 16062) ((-672 . -395) NIL) ((-511 . -366) 16046) ((-284 . -595) 16028) ((-90 . -1069) 16006) ((-107 . -996) T) ((-550 . -141) T) ((-1228 . -149) 15990) ((-474 . -1012) 15817) ((-1214 . -143) 15778) ((-1214 . -145) 15739) ((-1025 . -1182) T) ((-967 . -595) 15721) ((-837 . -595) 15703) ((-794 . -1027) 15546) ((-1239 . -92) T) ((-1065 . -1069) T) ((-1059 . -1069) T) ((-1056 . -302) 15533) ((-1043 . -1069) T) ((-221 . -1182) T) ((-1036 . -1069) T) ((-1010 . -1069) T) ((-993 . -1069) T) ((-760 . -302) 15520) ((-758 . -302) 15507) ((-1238 . -92) T) ((-794 . -111) 15336) ((-1141 . -596) NIL) ((-606 . -1069) T) ((-1141 . -595) 15318) ((-520 . -171) T) ((-446 . -302) 15305) ((-475 . -1069) T) ((-1094 . -595) 15287) ((-1094 . -596) 15035) ((-1008 . -170) T) ((-212 . -1069) T) ((-829 . -595) 15017) ((-917 . -281) 14994) ((-590 . -505) 14777) ((-796 . -1012) 14761) ((-467 . -505) 14553) ((-937 . -705) T) ((-714 . -705) T) ((-694 . -705) T) ((-344 . -1081) T) ((-1148 . -595) 14535) ((-217 . -101) T) ((-474 . -370) 14504) ((-506 . -1069) T) ((-501 . -1069) T) ((-499 . -1069) T) ((-777 . -626) 14478) ((-998 . -444) T) ((-932 . -505) 14411) ((-344 . -23) T) ((-615 . -130) T) ((-589 . -130) T) ((-347 . -444) T) ((-234 . -361) 14390) ((-372 . -170) T) ((-1212 . -1028) T) ((-1191 . -1028) T) ((-219 . -976) T) ((-677 . -380) T) ((-411 . -705) T) ((-679 . -1186) T) ((-1111 . -619) 14338) ((-564 . -843) 14322) ((-1128 . -1158) 14298) ((-679 . -542) T) ((-126 . -1069) 14276) ((-1243 . -1027) 14260) ((-693 . -1069) T) ((-474 . -874) 14192) ((-636 . -38) 14162) ((-347 . -395) T) ((-309 . -145) 14141) ((-309 . -143) 14120) ((-116 . -542) T) ((-306 . -145) 14076) ((-306 . -143) 14032) ((-48 . -444) T) ((-160 . -1069) T) ((-155 . -1069) T) ((-1128 . -106) 13979) ((-760 . -1120) 13957) ((-667 . -34) T) ((-1243 . -111) 13936) ((-536 . -34) T) ((-476 . -106) 13920) ((-244 . -281) 13897) ((-243 . -281) 13874) ((-845 . -279) 13825) ((-45 . -1182) T) ((-794 . -1021) T) ((-1147 . -47) 13802) ((-794 . -319) 13764) ((-1056 . -38) 13613) ((-794 . -227) 13592) ((-760 . -38) 13421) ((-758 . -38) 13270) ((-128 . -629) 13252) ((-446 . -38) 13101) ((-128 . -366) 13083) ((-1084 . -595) 13049) ((-1087 . -101) T) ((-623 . -596) 13010) ((-623 . -595) 12922) ((-565 . -1120) T) ((-509 . -1120) T) ((-1116 . -481) 12906) ((-1168 . -1069) 12884) ((-1111 . -25) T) ((-1111 . -21) T) ((-466 . -1028) T) ((-1192 . -770) NIL) ((-1192 . -773) NIL) ((-973 . -825) 12863) ((-797 . -595) 12845) ((-840 . -21) T) ((-840 . -25) T) ((-777 . -705) T) ((-172 . -1186) T) ((-565 . -38) 12810) ((-509 . -38) 12775) ((-379 . -595) 12757) ((-317 . -595) 12739) ((-167 . -279) 12697) ((-62 . -1182) T) ((-112 . -101) T) ((-846 . -1069) T) ((-172 . -542) T) ((-693 . -696) 12667) ((-287 . -130) 12550) ((-219 . -595) 12532) ((-219 . -596) 12462) ((-977 . -619) 12401) ((-1243 . -1021) T) ((-1089 . -145) T) ((-612 . -1158) 12376) ((-710 . -883) 12355) ((-576 . -34) T) ((-625 . -106) 12339) ((-612 . -106) 12285) ((-1201 . -279) 12212) ((-710 . -626) 12137) ((-288 . -1182) T) ((-1147 . -1012) 12033) ((-520 . -518) T) ((-1136 . -883) NIL) ((-1032 . -596) 11948) ((-1032 . -595) 11930) ((-926 . -595) 11912) ((-336 . -101) T) ((-244 . -1027) 11809) ((-243 . -1027) 11706) ((-387 . -101) T) ((-31 . -1069) T) ((-926 . -596) 11567) ((-692 . -595) 11549) ((-1241 . -1175) 11518) ((-473 . -595) 11500) ((-473 . -596) 11361) ((-241 . -404) 11345) ((-257 . -404) 11329) ((-244 . -111) 11219) ((-243 . -111) 11109) ((-1143 . -626) 11034) ((-1142 . -626) 10931) ((-1136 . -626) 10783) ((-1095 . -626) 10708) ((-344 . -130) T) ((-81 . -433) T) ((-81 . -388) T) ((-977 . -25) T) ((-977 . -21) T) ((-847 . -1069) 10659) ((-846 . -696) 10611) ((-372 . -283) T) ((-167 . -976) 10563) ((-672 . -380) T) ((-973 . -971) 10547) ((-679 . -1081) T) ((-672 . -164) 10529) ((-1212 . -1069) T) ((-1191 . -1069) T) ((-309 . -1167) 10508) ((-309 . -1170) 10487) ((-1133 . -101) T) ((-309 . -933) 10466) ((-133 . -1081) T) ((-116 . -1081) T) ((-584 . -1226) 10450) ((-679 . -23) T) ((-584 . -1069) 10400) ((-90 . -505) 10333) ((-172 . -356) T) ((-309 . -94) 10312) ((-309 . -35) 10291) ((-590 . -481) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-940 . -101) T) ((-697 . -1069) T) ((-467 . -481) 10162) ((-400 . -619) 10110) ((-631 . -1012) 10006) ((-932 . -481) 9990) ((-348 . -1028) T) ((-345 . -1028) T) ((-337 . -1028) T) ((-257 . -1028) T) ((-241 . -1028) T) ((-845 . -596) NIL) ((-845 . -595) 9972) ((-1251 . -21) T) ((-1239 . -595) 9938) ((-1238 . -595) 9904) ((-557 . -976) T) ((-710 . -705) T) ((-1251 . -25) T) ((-244 . -1021) 9834) ((-243 . -1021) 9764) ((-71 . -1182) T) ((-244 . -227) 9716) ((-243 . -227) 9668) ((-40 . -101) T) ((-884 . -1028) T) ((-1150 . -101) T) ((-1143 . -705) T) ((-1142 . -705) T) ((-1136 . -705) T) ((-1136 . -769) NIL) ((-1136 . -772) NIL) ((-928 . -101) T) ((-895 . -101) T) ((-1095 . -705) T) ((-749 . -101) T) ((-650 . -101) T) ((-466 . -1069) T) ((-332 . -1081) T) ((-172 . -1081) T) ((-312 . -894) 9647) ((-1212 . -696) 9488) ((-846 . -170) T) ((-1191 . -696) 9302) ((-818 . -21) 9254) ((-818 . -25) 9206) ((-239 . -1118) 9190) ((-126 . -505) 9123) ((-400 . -25) T) ((-400 . -21) T) ((-332 . -23) T) ((-167 . -596) 8891) ((-167 . -595) 8873) ((-172 . -23) T) ((-623 . -281) 8850) ((-511 . -34) T) ((-872 . -595) 8832) ((-88 . -1182) T) ((-816 . -595) 8814) ((-786 . -595) 8796) ((-747 . -595) 8778) ((-655 . -595) 8760) ((-234 . -626) 8608) ((-1145 . -1069) T) ((-1141 . -1027) 8431) ((-1119 . -1182) T) ((-1094 . -1027) 8274) ((-829 . -1027) 8258) ((-1141 . -111) 8067) ((-1094 . -111) 7896) ((-829 . -111) 7875) ((-1201 . -596) NIL) ((-1201 . -595) 7857) ((-336 . -1120) T) ((-830 . -595) 7839) ((-1045 . -279) 7818) ((-79 . -1182) T) ((-978 . -883) NIL) ((-590 . -279) 7794) ((-1168 . -505) 7727) ((-479 . -1182) T) ((-557 . -595) 7709) ((-467 . -279) 7688) ((-508 . -92) T) ((-211 . -1182) T) ((-1056 . -225) 7672) ((-282 . -894) T) ((-795 . -300) 7651) ((-844 . -101) T) ((-760 . -225) 7635) ((-978 . -626) 7585) ((-932 . -279) 7562) ((-888 . -626) 7514) ((-615 . -21) T) ((-615 . -25) T) ((-589 . -21) T) ((-336 . -38) 7479) ((-672 . -703) 7446) ((-479 . -858) 7428) ((-479 . -860) 7410) ((-466 . -696) 7251) ((-211 . -858) 7233) ((-63 . -1182) T) ((-211 . -860) 7215) ((-589 . -25) T) ((-420 . -626) 7189) ((-479 . -1012) 7149) ((-846 . -505) 7061) ((-211 . -1012) 7021) ((-234 . -34) T) ((-974 . -1069) 6999) ((-1212 . -170) 6930) ((-1191 . -170) 6861) ((-691 . -143) 6840) ((-691 . -145) 6819) ((-679 . -130) T) ((-135 . -457) 6796) ((-636 . -634) 6780) ((-1116 . -595) 6712) ((-116 . -130) T) ((-469 . -1186) T) ((-590 . -586) 6688) ((-467 . -586) 6667) ((-329 . -328) 6636) ((-526 . -1069) T) ((-469 . -542) T) ((-1141 . -1021) T) ((-1094 . -1021) T) ((-829 . -1021) T) ((-234 . -769) 6615) ((-234 . -772) 6566) ((-234 . -771) 6545) ((-1141 . -319) 6522) ((-234 . -705) 6432) ((-932 . -19) 6416) ((-479 . -370) 6398) ((-479 . -331) 6380) ((-1094 . -319) 6352) ((-347 . -1235) 6329) ((-211 . -370) 6311) ((-211 . -331) 6293) ((-932 . -586) 6270) ((-1141 . -227) T) ((-642 . -1069) T) ((-624 . -1069) T) ((-1224 . -1069) T) ((-1155 . -1069) T) ((-1056 . -246) 6207) ((-348 . -1069) T) ((-345 . -1069) T) ((-337 . -1069) T) ((-257 . -1069) T) ((-241 . -1069) T) ((-83 . -1182) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1155 . -592) 6142) ((-471 . -1069) T) ((-1110 . -1069) T) ((-471 . -592) 6121) ((-244 . -773) 6072) ((-244 . -770) 6023) ((-243 . -773) 5974) ((-40 . -1120) NIL) ((-243 . -770) 5925) ((-1049 . -894) 5876) ((-978 . -772) T) ((-978 . -769) T) ((-978 . -705) T) ((-945 . -772) T) ((-888 . -705) T) ((-90 . -481) 5860) ((-479 . -874) NIL) ((-884 . -1069) T) ((-219 . -1027) 5825) ((-846 . -283) T) ((-211 . -874) NIL) ((-811 . -1081) 5804) ((-58 . -1069) 5754) ((-510 . -1069) 5732) ((-507 . -1069) 5682) ((-488 . -1069) 5660) ((-487 . -1069) 5610) ((-564 . -101) T) ((-550 . -101) T) ((-486 . -101) T) ((-466 . -170) 5541) ((-352 . -894) T) ((-346 . -894) T) ((-338 . -894) T) ((-219 . -111) 5497) ((-811 . -23) 5449) ((-420 . -705) T) ((-107 . -894) T) ((-40 . -38) 5394) ((-107 . -798) T) ((-565 . -342) T) ((-509 . -342) T) ((-1191 . -505) 5254) ((-309 . -444) 5233) ((-306 . -444) T) ((-812 . -279) 5212) ((-332 . -130) T) ((-172 . -130) T) ((-287 . -25) 5076) ((-287 . -21) 4959) ((-45 . -1158) 4938) ((-65 . -595) 4920) ((-866 . -595) 4902) ((-584 . -505) 4835) ((-45 . -106) 4785) ((-1071 . -418) 4769) ((-1071 . -361) 4748) ((-1033 . -1182) T) ((-1032 . -1027) 4735) ((-926 . -1027) 4578) ((-1229 . -101) T) ((-1228 . -101) 4528) ((-473 . -1027) 4371) ((-642 . -696) 4355) ((-1032 . -111) 4340) ((-926 . -111) 4169) ((-469 . -356) T) ((-348 . -696) 4121) ((-345 . -696) 4073) ((-337 . -696) 4025) ((-257 . -696) 3874) ((-241 . -696) 3723) ((-1220 . -626) 3648) ((-1192 . -883) NIL) ((-1065 . -92) T) ((-1059 . -92) T) ((-917 . -629) 3632) ((-1043 . -92) T) ((-473 . -111) 3461) ((-1036 . -92) T) ((-1010 . -92) T) ((-917 . -366) 3445) ((-242 . -101) T) ((-993 . -92) T) ((-73 . -595) 3427) ((-937 . -47) 3406) ((-601 . -1081) T) ((-1 . -1069) T) ((-689 . -101) T) ((-677 . -101) T) ((-1213 . -626) 3303) ((-606 . -92) T) ((-1163 . -595) 3285) ((-1057 . -595) 3267) ((-126 . -481) 3251) ((-475 . -92) T) ((-1045 . -595) 3233) ((-383 . -23) T) ((-86 . -1182) T) ((-212 . -92) T) ((-1192 . -626) 3085) ((-884 . -696) 3050) ((-601 . -23) T) ((-590 . -595) 3032) ((-590 . -596) NIL) ((-467 . -596) NIL) ((-467 . -595) 3014) ((-502 . -1069) T) ((-498 . -1069) T) ((-344 . -25) T) ((-344 . -21) T) ((-127 . -302) 2952) ((-121 . -302) 2890) ((-579 . -626) 2877) ((-219 . -1021) T) ((-578 . -626) 2802) ((-372 . -976) T) ((-219 . -237) T) ((-219 . -227) T) ((-932 . -596) 2763) ((-932 . -595) 2675) ((-844 . -38) 2662) ((-1212 . -283) 2613) ((-1191 . -283) 2564) ((-1089 . -444) T) ((-493 . -825) T) ((-309 . -1108) 2543) ((-973 . -145) 2522) ((-973 . -143) 2501) ((-486 . -302) 2488) ((-288 . -1158) 2467) ((-469 . -1081) T) ((-845 . -1027) 2412) ((-603 . -101) T) ((-1168 . -481) 2396) ((-244 . -361) 2375) ((-243 . -361) 2354) ((-288 . -106) 2304) ((-1032 . -1021) T) ((-117 . -101) T) ((-926 . -1021) T) ((-845 . -111) 2233) ((-469 . -23) T) ((-473 . -1021) T) ((-1032 . -227) T) ((-926 . -319) 2202) ((-473 . -319) 2159) ((-348 . -170) T) ((-345 . -170) T) ((-337 . -170) T) ((-257 . -170) 2070) ((-241 . -170) 1981) ((-937 . -1012) 1877) ((-714 . -1012) 1848) ((-508 . -595) 1814) ((-1074 . -101) T) ((-1061 . -595) 1781) ((-1008 . -595) 1763) ((-1220 . -705) T) ((-1213 . -705) T) ((-1192 . -769) NIL) ((-167 . -1027) 1673) ((-1192 . -772) NIL) ((-884 . -170) T) ((-1192 . -705) T) ((-1241 . -149) 1657) ((-977 . -335) 1631) ((-974 . -505) 1564) ((-818 . -825) 1543) ((-550 . -1120) T) ((-466 . -283) 1494) ((-579 . -705) T) ((-354 . -595) 1476) ((-315 . -595) 1458) ((-411 . -1012) 1354) ((-578 . -705) T) ((-400 . -825) 1305) ((-167 . -111) 1201) ((-811 . -130) 1153) ((-716 . -149) 1137) ((-1228 . -302) 1075) ((-479 . -300) T) ((-372 . -595) 1042) ((-511 . -984) 1026) ((-372 . -596) 940) ((-211 . -300) T) ((-139 . -149) 922) ((-693 . -279) 901) ((-479 . -996) T) ((-564 . -38) 888) ((-550 . -38) 875) ((-486 . -38) 840) ((-211 . -996) T) ((-845 . -1021) T) ((-812 . -595) 822) ((-805 . -595) 804) ((-803 . -595) 786) ((-794 . -883) 765) ((-1252 . -1081) T) ((-1201 . -1027) 588) ((-830 . -1027) 572) ((-845 . -237) T) ((-845 . -227) NIL) ((-667 . -1182) T) ((-1252 . -23) T) ((-794 . -626) 497) ((-536 . -1182) T) ((-411 . -331) 481) ((-557 . -1027) 468) ((-1201 . -111) 277) ((-679 . -619) 259) ((-830 . -111) 238) ((-374 . -23) T) ((-1155 . -505) 30) ((-640 . -1069) T) ((-659 . -1069) T) ((-654 . -1069) T))
\ No newline at end of file +((($) . T)) +((((-838)) . T)) +((($) . T)) +(((-1258 . -170) T) ((-1258 . -705) T) ((-1258 . -1083) T) ((-1258 . -1030) T) ((-1258 . -1023) T) ((-1258 . -626) 145062) ((-1258 . -130) T) ((-1258 . -25) T) ((-1258 . -101) T) ((-1258 . -595) 145044) ((-1258 . -1072) T) ((-1258 . -23) T) ((-1258 . -21) T) ((-1258 . -1029) 145031) ((-1258 . -111) 145016) ((-1258 . -361) T) ((-1258 . -596) 144998) ((-1258 . -1122) T) ((-1254 . -1252) 144977) ((-1254 . -1012) 144954) ((-1254 . -1023) T) ((-1254 . -1030) T) ((-1254 . -1083) T) ((-1254 . -705) T) ((-1254 . -21) T) ((-1254 . -23) T) ((-1254 . -1072) T) ((-1254 . -595) 144936) ((-1254 . -101) T) ((-1254 . -25) T) ((-1254 . -130) T) ((-1254 . -626) 144910) ((-1254 . -1244) 144894) ((-1254 . -696) 144864) ((-1254 . -1029) 144848) ((-1254 . -111) 144827) ((-1254 . -38) 144797) ((-1254 . -1249) 144776) ((-1253 . -1023) T) ((-1253 . -1030) T) ((-1253 . -1083) T) ((-1253 . -705) T) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1072) T) ((-1253 . -595) 144758) ((-1253 . -101) T) ((-1253 . -25) T) ((-1253 . -130) T) ((-1253 . -626) 144732) ((-1253 . -1244) 144716) ((-1253 . -696) 144686) ((-1253 . -1029) 144670) ((-1253 . -111) 144649) ((-1253 . -38) 144619) ((-1253 . -377) 144598) ((-1253 . -1012) 144582) ((-1251 . -1252) 144558) ((-1251 . -1012) 144532) ((-1251 . -1023) T) ((-1251 . -1030) T) ((-1251 . -1083) T) ((-1251 . -705) T) ((-1251 . -21) T) ((-1251 . -23) T) ((-1251 . -1072) T) ((-1251 . -595) 144514) ((-1251 . -101) T) ((-1251 . -25) T) ((-1251 . -130) T) ((-1251 . -626) 144488) ((-1251 . -1244) 144472) ((-1251 . -696) 144442) ((-1251 . -1029) 144426) ((-1251 . -111) 144405) ((-1251 . -38) 144375) ((-1251 . -1249) 144351) ((-1250 . -1252) 144330) ((-1250 . -1012) 144287) ((-1250 . -1023) T) ((-1250 . -1030) T) ((-1250 . -1083) T) ((-1250 . -705) T) ((-1250 . -21) T) ((-1250 . -23) T) ((-1250 . -1072) T) ((-1250 . -595) 144269) ((-1250 . -101) T) ((-1250 . -25) T) ((-1250 . -130) T) ((-1250 . -626) 144243) ((-1250 . -1244) 144227) ((-1250 . -696) 144197) ((-1250 . -1029) 144181) ((-1250 . -111) 144160) ((-1250 . -38) 144130) ((-1250 . -1249) 144109) ((-1250 . -377) 144081) ((-1245 . -377) 144053) ((-1245 . -1012) 144030) ((-1245 . -696) 144000) ((-1245 . -626) 143974) ((-1245 . -130) T) ((-1245 . -25) T) ((-1245 . -101) T) ((-1245 . -595) 143956) ((-1245 . -1072) T) ((-1245 . -23) T) ((-1245 . -21) T) ((-1245 . -1029) 143940) ((-1245 . -111) 143919) ((-1245 . -1252) 143898) ((-1245 . -1023) T) ((-1245 . -1030) T) ((-1245 . -1083) T) ((-1245 . -705) T) ((-1245 . -1244) 143882) ((-1245 . -38) 143852) ((-1245 . -1249) 143831) ((-1243 . -1178) 143800) ((-1243 . -595) 143762) ((-1243 . -149) 143746) ((-1243 . -34) T) ((-1243 . -1183) T) ((-1243 . -302) 143684) ((-1243 . -505) 143617) ((-1243 . -1072) T) ((-1243 . -101) T) ((-1243 . -481) 143601) ((-1243 . -596) 143562) ((-1243 . -950) 143531) ((-1242 . -1023) T) ((-1242 . -1030) T) ((-1242 . -1083) T) ((-1242 . -705) T) ((-1242 . -21) T) ((-1242 . -23) T) ((-1242 . -1072) T) ((-1242 . -595) 143513) ((-1242 . -101) T) ((-1242 . -25) T) ((-1242 . -130) T) ((-1242 . -626) 143473) ((-1242 . -38) 143443) ((-1242 . -111) 143408) ((-1242 . -1029) 143378) ((-1242 . -696) 143348) ((-1241 . -1054) T) ((-1241 . -595) 143314) ((-1241 . -1072) T) ((-1241 . -101) T) ((-1241 . -92) T) ((-1240 . -1054) T) ((-1240 . -595) 143280) ((-1240 . -1072) T) ((-1240 . -101) T) ((-1240 . -92) T) ((-1233 . -1072) T) ((-1233 . -595) 143262) ((-1233 . -101) T) ((-1232 . -1072) T) ((-1232 . -595) 143244) ((-1232 . -101) T) ((-1229 . -1228) 143228) ((-1229 . -365) 143212) ((-1229 . -825) 143191) ((-1229 . -149) 143175) ((-1229 . -34) T) ((-1229 . -1183) T) ((-1229 . -595) 143087) ((-1229 . -302) 143025) ((-1229 . -505) 142958) ((-1229 . -1072) 142908) ((-1229 . -101) 142858) ((-1229 . -481) 142842) ((-1229 . -596) 142803) ((-1229 . -586) 142780) ((-1229 . -279) 142757) ((-1229 . -281) 142734) ((-1229 . -629) 142718) ((-1229 . -19) 142702) ((-1226 . -1072) T) ((-1226 . -595) 142668) ((-1226 . -101) T) ((-1219 . -1222) 142652) ((-1219 . -227) 142611) ((-1219 . -626) 142536) ((-1219 . -130) T) ((-1219 . -25) T) ((-1219 . -101) T) ((-1219 . -595) 142518) ((-1219 . -1072) T) ((-1219 . -23) T) ((-1219 . -21) T) ((-1219 . -705) T) ((-1219 . -1083) T) ((-1219 . -1030) T) ((-1219 . -1023) T) ((-1219 . -279) 142503) ((-1219 . -874) 142416) ((-1219 . -947) 142385) ((-1219 . -38) 142282) ((-1219 . -111) 142151) ((-1219 . -1029) 142034) ((-1219 . -696) 141931) ((-1219 . -143) 141910) ((-1219 . -145) 141889) ((-1219 . -170) 141840) ((-1219 . -543) 141819) ((-1219 . -283) 141798) ((-1219 . -47) 141775) ((-1219 . -1208) 141752) ((-1219 . -35) 141718) ((-1219 . -94) 141684) ((-1219 . -277) 141650) ((-1219 . -484) 141616) ((-1219 . -1172) 141582) ((-1219 . -1169) 141548) ((-1219 . -976) 141514) ((-1216 . -319) 141458) ((-1216 . -1012) 141424) ((-1216 . -405) 141390) ((-1216 . -38) 141282) ((-1216 . -626) 141187) ((-1216 . -705) T) ((-1216 . -1083) T) ((-1216 . -1030) T) ((-1216 . -1023) T) ((-1216 . -111) 141079) ((-1216 . -1029) 140984) ((-1216 . -21) T) ((-1216 . -23) T) ((-1216 . -1072) T) ((-1216 . -595) 140966) ((-1216 . -101) T) ((-1216 . -25) T) ((-1216 . -130) T) ((-1216 . -696) 140858) ((-1216 . -143) 140819) ((-1216 . -145) 140780) ((-1216 . -170) T) ((-1216 . -543) T) ((-1216 . -283) T) ((-1216 . -47) 140724) ((-1215 . -1214) 140703) ((-1215 . -356) 140682) ((-1215 . -1188) 140661) ((-1215 . -895) 140640) ((-1215 . -543) 140591) ((-1215 . -170) 140522) ((-1215 . -696) 140363) ((-1215 . -38) 140204) ((-1215 . -444) 140183) ((-1215 . -300) 140162) ((-1215 . -626) 140059) ((-1215 . -705) T) ((-1215 . -1083) T) ((-1215 . -1030) T) ((-1215 . -1023) T) ((-1215 . -111) 139880) ((-1215 . -1029) 139715) ((-1215 . -21) T) ((-1215 . -23) T) ((-1215 . -1072) T) ((-1215 . -595) 139697) ((-1215 . -101) T) ((-1215 . -25) T) ((-1215 . -130) T) ((-1215 . -283) 139648) ((-1215 . -237) 139627) ((-1215 . -976) 139593) ((-1215 . -1169) 139559) ((-1215 . -1172) 139525) ((-1215 . -484) 139491) ((-1215 . -277) 139457) ((-1215 . -94) 139423) ((-1215 . -35) 139389) ((-1215 . -1208) 139359) ((-1215 . -47) 139329) ((-1215 . -145) 139308) ((-1215 . -143) 139287) ((-1215 . -947) 139249) ((-1215 . -874) 139155) ((-1215 . -279) 139140) ((-1215 . -227) 139092) ((-1215 . -1212) 139076) ((-1215 . -1012) 139060) ((-1210 . -1214) 139021) ((-1210 . -356) 139000) ((-1210 . -1188) 138979) ((-1210 . -895) 138958) ((-1210 . -543) 138909) ((-1210 . -170) 138840) ((-1210 . -696) 138681) ((-1210 . -38) 138522) ((-1210 . -444) 138501) ((-1210 . -300) 138480) ((-1210 . -626) 138377) ((-1210 . -705) T) ((-1210 . -1083) T) ((-1210 . -1030) T) ((-1210 . -1023) T) ((-1210 . -111) 138198) ((-1210 . -1029) 138033) ((-1210 . -21) T) ((-1210 . -23) T) ((-1210 . -1072) T) ((-1210 . -595) 138015) ((-1210 . -101) T) ((-1210 . -25) T) ((-1210 . -130) T) ((-1210 . -283) 137966) ((-1210 . -237) 137945) ((-1210 . -976) 137911) ((-1210 . -1169) 137877) ((-1210 . -1172) 137843) ((-1210 . -484) 137809) ((-1210 . -277) 137775) ((-1210 . -94) 137741) ((-1210 . -35) 137707) ((-1210 . -1208) 137677) ((-1210 . -47) 137647) ((-1210 . -145) 137626) ((-1210 . -143) 137605) ((-1210 . -947) 137567) ((-1210 . -874) 137473) ((-1210 . -279) 137458) ((-1210 . -227) 137410) ((-1210 . -1212) 137394) ((-1210 . -1012) 137329) ((-1198 . -1205) 137313) ((-1198 . -1122) 137291) ((-1198 . -596) NIL) ((-1198 . -302) 137278) ((-1198 . -505) 137225) ((-1198 . -319) 137202) ((-1198 . -1012) 137082) ((-1198 . -405) 137066) ((-1198 . -38) 136895) ((-1198 . -111) 136704) ((-1198 . -1029) 136527) ((-1198 . -626) 136452) ((-1198 . -696) 136281) ((-1198 . -143) 136260) ((-1198 . -145) 136239) ((-1198 . -47) 136216) ((-1198 . -370) 136200) ((-1198 . -619) 136148) ((-1198 . -825) 136127) ((-1198 . -874) 136070) ((-1198 . -860) NIL) ((-1198 . -884) 136049) ((-1198 . -1188) 136028) ((-1198 . -924) 135997) ((-1198 . -895) 135976) ((-1198 . -543) 135887) ((-1198 . -283) 135798) ((-1198 . -170) 135689) ((-1198 . -444) 135620) ((-1198 . -300) 135599) ((-1198 . -279) 135526) ((-1198 . -227) T) ((-1198 . -130) T) ((-1198 . -25) T) ((-1198 . -101) T) ((-1198 . -595) 135508) ((-1198 . -1072) T) ((-1198 . -23) T) ((-1198 . -21) T) ((-1198 . -705) T) ((-1198 . -1083) T) ((-1198 . -1030) T) ((-1198 . -1023) T) ((-1198 . -225) 135492) ((-1196 . -1065) 135476) ((-1196 . -1183) T) ((-1196 . -1072) 135454) ((-1196 . -595) 135421) ((-1196 . -101) 135399) ((-1196 . -1066) 135356) ((-1194 . -1193) 135335) ((-1194 . -976) 135301) ((-1194 . -1169) 135267) ((-1194 . -1172) 135233) ((-1194 . -484) 135199) ((-1194 . -277) 135165) ((-1194 . -94) 135131) ((-1194 . -35) 135097) ((-1194 . -1208) 135074) ((-1194 . -47) 135051) ((-1194 . -696) 134865) ((-1194 . -626) 134735) ((-1194 . -1029) 134543) ((-1194 . -111) 134332) ((-1194 . -38) 134146) ((-1194 . -947) 134115) ((-1194 . -279) 134035) ((-1194 . -1191) 134019) ((-1194 . -705) T) ((-1194 . -1083) T) ((-1194 . -1030) T) ((-1194 . -1023) T) ((-1194 . -21) T) ((-1194 . -23) T) ((-1194 . -1072) T) ((-1194 . -595) 134001) ((-1194 . -101) T) ((-1194 . -25) T) ((-1194 . -130) T) ((-1194 . -143) 133926) ((-1194 . -145) 133851) ((-1194 . -596) 133524) ((-1194 . -225) 133494) ((-1194 . -874) 133345) ((-1194 . -227) 133250) ((-1194 . -356) 133229) ((-1194 . -1188) 133208) ((-1194 . -895) 133187) ((-1194 . -543) 133138) ((-1194 . -170) 133069) ((-1194 . -444) 133048) ((-1194 . -300) 133027) ((-1194 . -283) 132978) ((-1194 . -237) 132957) ((-1194 . -331) 132927) ((-1194 . -505) 132787) ((-1194 . -302) 132726) ((-1194 . -370) 132696) ((-1194 . -619) 132604) ((-1194 . -393) 132574) ((-1194 . -1183) 132553) ((-1194 . -860) 132426) ((-1194 . -798) 132379) ((-1194 . -769) 132332) ((-1194 . -770) 132285) ((-1194 . -825) 132184) ((-1194 . -772) 132137) ((-1194 . -775) 132090) ((-1194 . -823) 132043) ((-1194 . -858) 132013) ((-1194 . -884) 131966) ((-1194 . -994) 131919) ((-1194 . -1012) 131705) ((-1194 . -1122) 131657) ((-1194 . -965) 131627) ((-1189 . -1193) 131588) ((-1189 . -976) 131554) ((-1189 . -1169) 131520) ((-1189 . -1172) 131486) ((-1189 . -484) 131452) ((-1189 . -277) 131418) ((-1189 . -94) 131384) ((-1189 . -35) 131350) ((-1189 . -1208) 131327) ((-1189 . -47) 131304) ((-1189 . -696) 131100) ((-1189 . -626) 130952) ((-1189 . -1029) 130742) ((-1189 . -111) 130511) ((-1189 . -38) 130307) ((-1189 . -947) 130276) ((-1189 . -279) 130124) ((-1189 . -1191) 130108) ((-1189 . -705) T) ((-1189 . -1083) T) ((-1189 . -1030) T) ((-1189 . -1023) T) ((-1189 . -21) T) ((-1189 . -23) T) ((-1189 . -1072) T) ((-1189 . -595) 130090) ((-1189 . -101) T) ((-1189 . -25) T) ((-1189 . -130) T) ((-1189 . -143) 129997) ((-1189 . -145) 129904) ((-1189 . -596) NIL) ((-1189 . -225) 129856) ((-1189 . -874) 129689) ((-1189 . -227) 129576) ((-1189 . -356) 129555) ((-1189 . -1188) 129534) ((-1189 . -895) 129513) ((-1189 . -543) 129464) ((-1189 . -170) 129395) ((-1189 . -444) 129374) ((-1189 . -300) 129353) ((-1189 . -283) 129304) ((-1189 . -237) 129283) ((-1189 . -331) 129235) ((-1189 . -505) 129004) ((-1189 . -302) 128889) ((-1189 . -370) 128841) ((-1189 . -619) 128793) ((-1189 . -393) 128745) ((-1189 . -1183) 128724) ((-1189 . -860) NIL) ((-1189 . -798) NIL) ((-1189 . -769) NIL) ((-1189 . -770) NIL) ((-1189 . -825) NIL) ((-1189 . -772) NIL) ((-1189 . -775) NIL) ((-1189 . -823) NIL) ((-1189 . -858) 128676) ((-1189 . -884) NIL) ((-1189 . -994) NIL) ((-1189 . -1012) 128642) ((-1189 . -1122) NIL) ((-1189 . -965) 128594) ((-1184 . -1054) T) ((-1184 . -595) 128560) ((-1184 . -1072) T) ((-1184 . -101) T) ((-1184 . -92) T) ((-1181 . -595) 128472) ((-1181 . -1072) 128450) ((-1181 . -101) 128428) ((-1176 . -719) 128404) ((-1176 . -35) 128370) ((-1176 . -94) 128336) ((-1176 . -277) 128302) ((-1176 . -484) 128268) ((-1176 . -1172) 128234) ((-1176 . -1169) 128200) ((-1176 . -976) 128166) ((-1176 . -47) 128135) ((-1176 . -38) 128032) ((-1176 . -696) 127929) ((-1176 . -283) 127908) ((-1176 . -543) 127887) ((-1176 . -111) 127756) ((-1176 . -1029) 127639) ((-1176 . -170) 127590) ((-1176 . -145) 127569) ((-1176 . -143) 127548) ((-1176 . -626) 127473) ((-1176 . -947) 127435) ((-1176 . -1023) T) ((-1176 . -1030) T) ((-1176 . -1083) T) ((-1176 . -705) T) ((-1176 . -21) T) ((-1176 . -23) T) ((-1176 . -1072) T) ((-1176 . -595) 127417) ((-1176 . -101) T) ((-1176 . -25) T) ((-1176 . -130) T) ((-1176 . -874) 127398) ((-1176 . -505) 127365) ((-1176 . -302) 127352) ((-1170 . -984) 127336) ((-1170 . -34) T) ((-1170 . -1183) T) ((-1170 . -595) 127268) ((-1170 . -302) 127206) ((-1170 . -505) 127139) ((-1170 . -1072) 127117) ((-1170 . -101) 127095) ((-1170 . -481) 127079) ((-1165 . -358) 127053) ((-1165 . -101) T) ((-1165 . -595) 127035) ((-1165 . -1072) T) ((-1163 . -1072) T) ((-1163 . -595) 127017) ((-1163 . -101) T) ((-1156 . -1160) 126996) ((-1156 . -223) 126946) ((-1156 . -106) 126896) ((-1156 . -302) 126700) ((-1156 . -505) 126492) ((-1156 . -481) 126429) ((-1156 . -149) 126379) ((-1156 . -596) NIL) ((-1156 . -229) 126329) ((-1156 . -592) 126308) ((-1156 . -281) 126287) ((-1156 . -279) 126266) ((-1156 . -101) T) ((-1156 . -1072) T) ((-1156 . -595) 126248) ((-1156 . -1183) T) ((-1156 . -34) T) ((-1156 . -586) 126227) ((-1152 . -1225) T) ((-1152 . -1072) T) ((-1152 . -595) 126209) ((-1152 . -101) T) ((-1151 . -595) 126191) ((-1150 . -595) 126173) ((-1149 . -319) 126150) ((-1149 . -1012) 126046) ((-1149 . -405) 126030) ((-1149 . -38) 125927) ((-1149 . -626) 125852) ((-1149 . -705) T) ((-1149 . -1083) T) ((-1149 . -1030) T) ((-1149 . -1023) T) ((-1149 . -111) 125721) ((-1149 . -1029) 125604) ((-1149 . -21) T) ((-1149 . -23) T) ((-1149 . -1072) T) ((-1149 . -595) 125586) ((-1149 . -101) T) ((-1149 . -25) T) ((-1149 . -130) T) ((-1149 . -696) 125483) ((-1149 . -143) 125462) ((-1149 . -145) 125441) ((-1149 . -170) 125392) ((-1149 . -543) 125371) ((-1149 . -283) 125350) ((-1149 . -47) 125327) ((-1147 . -825) T) ((-1147 . -101) T) ((-1147 . -595) 125309) ((-1147 . -1072) T) ((-1147 . -596) 125231) ((-1147 . -799) T) ((-1147 . -860) 125198) ((-1146 . -595) 125180) ((-1145 . -1222) 125164) ((-1145 . -227) 125123) ((-1145 . -626) 125048) ((-1145 . -130) T) ((-1145 . -25) T) ((-1145 . -101) T) ((-1145 . -595) 125030) ((-1145 . -1072) T) ((-1145 . -23) T) ((-1145 . -21) T) ((-1145 . -705) T) ((-1145 . -1083) T) ((-1145 . -1030) T) ((-1145 . -1023) T) ((-1145 . -279) 125015) ((-1145 . -874) 124928) ((-1145 . -947) 124897) ((-1145 . -38) 124794) ((-1145 . -111) 124663) ((-1145 . -1029) 124546) ((-1145 . -696) 124443) ((-1145 . -143) 124422) ((-1145 . -145) 124401) ((-1145 . -170) 124352) ((-1145 . -543) 124331) ((-1145 . -283) 124310) ((-1145 . -47) 124287) ((-1145 . -1208) 124264) ((-1145 . -35) 124230) ((-1145 . -94) 124196) ((-1145 . -277) 124162) ((-1145 . -484) 124128) ((-1145 . -1172) 124094) ((-1145 . -1169) 124060) ((-1145 . -976) 124026) ((-1144 . -1214) 123987) ((-1144 . -356) 123966) ((-1144 . -1188) 123945) ((-1144 . -895) 123924) ((-1144 . -543) 123875) ((-1144 . -170) 123806) ((-1144 . -696) 123647) ((-1144 . -38) 123488) ((-1144 . -444) 123467) ((-1144 . -300) 123446) ((-1144 . -626) 123343) ((-1144 . -705) T) ((-1144 . -1083) T) ((-1144 . -1030) T) ((-1144 . -1023) T) ((-1144 . -111) 123164) ((-1144 . -1029) 122999) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1072) T) ((-1144 . -595) 122981) ((-1144 . -101) T) ((-1144 . -25) T) ((-1144 . -130) T) ((-1144 . -283) 122932) ((-1144 . -237) 122911) ((-1144 . -976) 122877) ((-1144 . -1169) 122843) ((-1144 . -1172) 122809) ((-1144 . -484) 122775) ((-1144 . -277) 122741) ((-1144 . -94) 122707) ((-1144 . -35) 122673) ((-1144 . -1208) 122643) ((-1144 . -47) 122613) ((-1144 . -145) 122592) ((-1144 . -143) 122571) ((-1144 . -947) 122533) ((-1144 . -874) 122439) ((-1144 . -279) 122424) ((-1144 . -227) 122376) ((-1144 . -1212) 122360) ((-1144 . -1012) 122295) ((-1141 . -1205) 122279) ((-1141 . -1122) 122257) ((-1141 . -596) NIL) ((-1141 . -302) 122244) ((-1141 . -505) 122191) ((-1141 . -319) 122168) ((-1141 . -1012) 122048) ((-1141 . -405) 122032) ((-1141 . -38) 121861) ((-1141 . -111) 121670) ((-1141 . -1029) 121493) ((-1141 . -626) 121418) ((-1141 . -696) 121247) ((-1141 . -143) 121226) ((-1141 . -145) 121205) ((-1141 . -47) 121182) ((-1141 . -370) 121166) ((-1141 . -619) 121114) ((-1141 . -825) 121093) ((-1141 . -874) 121036) ((-1141 . -860) NIL) ((-1141 . -884) 121015) ((-1141 . -1188) 120994) ((-1141 . -924) 120963) ((-1141 . -895) 120942) ((-1141 . -543) 120853) ((-1141 . -283) 120764) ((-1141 . -170) 120655) ((-1141 . -444) 120586) ((-1141 . -300) 120565) ((-1141 . -279) 120492) ((-1141 . -227) T) ((-1141 . -130) T) ((-1141 . -25) T) ((-1141 . -101) T) ((-1141 . -595) 120474) ((-1141 . -1072) T) ((-1141 . -23) T) ((-1141 . -21) T) ((-1141 . -705) T) ((-1141 . -1083) T) ((-1141 . -1030) T) ((-1141 . -1023) T) ((-1141 . -225) 120458) ((-1138 . -1193) 120419) ((-1138 . -976) 120385) ((-1138 . -1169) 120351) ((-1138 . -1172) 120317) ((-1138 . -484) 120283) ((-1138 . -277) 120249) ((-1138 . -94) 120215) ((-1138 . -35) 120181) ((-1138 . -1208) 120158) ((-1138 . -47) 120135) ((-1138 . -696) 119931) ((-1138 . -626) 119783) ((-1138 . -1029) 119573) ((-1138 . -111) 119342) ((-1138 . -38) 119138) ((-1138 . -947) 119107) ((-1138 . -279) 118955) ((-1138 . -1191) 118939) ((-1138 . -705) T) ((-1138 . -1083) T) ((-1138 . -1030) T) ((-1138 . -1023) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1072) T) ((-1138 . -595) 118921) ((-1138 . -101) T) ((-1138 . -25) T) ((-1138 . -130) T) ((-1138 . -143) 118828) ((-1138 . -145) 118735) ((-1138 . -596) NIL) ((-1138 . -225) 118687) ((-1138 . -874) 118520) ((-1138 . -227) 118407) ((-1138 . -356) 118386) ((-1138 . -1188) 118365) ((-1138 . -895) 118344) ((-1138 . -543) 118295) ((-1138 . -170) 118226) ((-1138 . -444) 118205) ((-1138 . -300) 118184) ((-1138 . -283) 118135) ((-1138 . -237) 118114) ((-1138 . -331) 118066) ((-1138 . -505) 117835) ((-1138 . -302) 117720) ((-1138 . -370) 117672) ((-1138 . -619) 117624) ((-1138 . -393) 117576) ((-1138 . -1183) 117555) ((-1138 . -860) NIL) ((-1138 . -798) NIL) ((-1138 . -769) NIL) ((-1138 . -770) NIL) ((-1138 . -825) NIL) ((-1138 . -772) NIL) ((-1138 . -775) NIL) ((-1138 . -823) NIL) ((-1138 . -858) 117507) ((-1138 . -884) NIL) ((-1138 . -994) NIL) ((-1138 . -1012) 117473) ((-1138 . -1122) NIL) ((-1138 . -965) 117425) ((-1137 . -1054) T) ((-1137 . -595) 117391) ((-1137 . -1072) T) ((-1137 . -101) T) ((-1137 . -92) T) ((-1136 . -1072) T) ((-1136 . -595) 117373) ((-1136 . -101) T) ((-1135 . -1072) T) ((-1135 . -595) 117355) ((-1135 . -101) T) ((-1130 . -1160) 117331) ((-1130 . -223) 117278) ((-1130 . -106) 117225) ((-1130 . -302) 117020) ((-1130 . -505) 116803) ((-1130 . -481) 116737) ((-1130 . -149) 116684) ((-1130 . -596) NIL) ((-1130 . -229) 116631) ((-1130 . -592) 116607) ((-1130 . -281) 116583) ((-1130 . -279) 116559) ((-1130 . -101) T) ((-1130 . -1072) T) ((-1130 . -595) 116541) ((-1130 . -1183) T) ((-1130 . -34) T) ((-1130 . -586) 116517) ((-1129 . -1128) T) ((-1129 . -19) 116499) ((-1129 . -629) 116481) ((-1129 . -281) 116456) ((-1129 . -279) 116431) ((-1129 . -586) 116406) ((-1129 . -596) NIL) ((-1129 . -481) 116388) ((-1129 . -505) NIL) ((-1129 . -302) NIL) ((-1129 . -1183) T) ((-1129 . -34) T) ((-1129 . -149) 116370) ((-1129 . -825) T) ((-1129 . -365) 116352) ((-1129 . -1115) T) ((-1129 . -101) T) ((-1129 . -595) 116334) ((-1129 . -1072) T) ((-1129 . -799) T) ((-1124 . -652) 116318) ((-1124 . -629) 116302) ((-1124 . -281) 116279) ((-1124 . -279) 116256) ((-1124 . -586) 116233) ((-1124 . -596) 116194) ((-1124 . -481) 116178) ((-1124 . -101) 116156) ((-1124 . -1072) 116134) ((-1124 . -505) 116067) ((-1124 . -302) 116005) ((-1124 . -595) 115937) ((-1124 . -1183) T) ((-1124 . -34) T) ((-1124 . -149) 115921) ((-1124 . -1218) 115905) ((-1124 . -984) 115889) ((-1124 . -1120) 115873) ((-1121 . -1160) 115852) ((-1121 . -223) 115802) ((-1121 . -106) 115752) ((-1121 . -302) 115556) ((-1121 . -505) 115348) ((-1121 . -481) 115285) ((-1121 . -149) 115235) ((-1121 . -596) NIL) ((-1121 . -229) 115185) ((-1121 . -592) 115164) ((-1121 . -281) 115143) ((-1121 . -279) 115122) ((-1121 . -101) T) ((-1121 . -1072) T) ((-1121 . -595) 115104) ((-1121 . -1183) T) ((-1121 . -34) T) ((-1121 . -586) 115083) ((-1118 . -1092) 115067) ((-1118 . -481) 115051) ((-1118 . -101) 115029) ((-1118 . -1072) 115007) ((-1118 . -505) 114940) ((-1118 . -302) 114878) ((-1118 . -595) 114810) ((-1118 . -1183) T) ((-1118 . -34) T) ((-1118 . -106) 114794) ((-1117 . -1080) 114763) ((-1117 . -1178) 114732) ((-1117 . -595) 114694) ((-1117 . -149) 114678) ((-1117 . -34) T) ((-1117 . -1183) T) ((-1117 . -302) 114616) ((-1117 . -505) 114549) ((-1117 . -1072) T) ((-1117 . -101) T) ((-1117 . -481) 114533) ((-1117 . -596) 114494) ((-1117 . -950) 114463) ((-1117 . -1043) 114432) ((-1113 . -1094) 114377) ((-1113 . -481) 114361) ((-1113 . -505) 114294) ((-1113 . -302) 114232) ((-1113 . -1183) T) ((-1113 . -34) T) ((-1113 . -1026) 114172) ((-1113 . -1012) 114068) ((-1113 . -405) 114052) ((-1113 . -619) 114000) ((-1113 . -370) 113984) ((-1113 . -227) 113963) ((-1113 . -874) 113922) ((-1113 . -225) 113906) ((-1113 . -696) 113838) ((-1113 . -626) 113812) ((-1113 . -130) T) ((-1113 . -25) T) ((-1113 . -101) T) ((-1113 . -595) 113774) ((-1113 . -1072) T) ((-1113 . -23) T) ((-1113 . -21) T) ((-1113 . -1029) 113758) ((-1113 . -111) 113737) ((-1113 . -1023) T) ((-1113 . -1030) T) ((-1113 . -1083) T) ((-1113 . -705) T) ((-1113 . -38) 113697) ((-1113 . -596) 113658) ((-1112 . -984) 113629) ((-1112 . -34) T) ((-1112 . -1183) T) ((-1112 . -595) 113611) ((-1112 . -302) 113537) ((-1112 . -505) 113456) ((-1112 . -1072) T) ((-1112 . -101) T) ((-1112 . -481) 113427) ((-1111 . -1072) T) ((-1111 . -595) 113409) ((-1111 . -101) T) ((-1106 . -1108) T) ((-1106 . -1225) T) ((-1106 . -92) T) ((-1106 . -101) T) ((-1106 . -595) 113375) ((-1106 . -1072) T) ((-1106 . -1054) T) ((-1104 . -1105) 113359) ((-1104 . -101) T) ((-1104 . -595) 113341) ((-1104 . -1072) T) ((-1097 . -719) 113320) ((-1097 . -35) 113286) ((-1097 . -94) 113252) ((-1097 . -277) 113218) ((-1097 . -484) 113184) ((-1097 . -1172) 113150) ((-1097 . -1169) 113116) ((-1097 . -976) 113082) ((-1097 . -47) 113054) ((-1097 . -38) 112951) ((-1097 . -696) 112848) ((-1097 . -283) 112827) ((-1097 . -543) 112806) ((-1097 . -111) 112675) ((-1097 . -1029) 112558) ((-1097 . -170) 112509) ((-1097 . -145) 112488) ((-1097 . -143) 112467) ((-1097 . -626) 112392) ((-1097 . -947) 112359) ((-1097 . -1023) T) ((-1097 . -1030) T) ((-1097 . -1083) T) ((-1097 . -705) T) ((-1097 . -21) T) ((-1097 . -23) T) ((-1097 . -1072) T) ((-1097 . -595) 112341) ((-1097 . -101) T) ((-1097 . -25) T) ((-1097 . -130) T) ((-1097 . -874) 112325) ((-1097 . -505) 112295) ((-1097 . -302) 112282) ((-1096 . -924) 112249) ((-1096 . -1012) 112132) ((-1096 . -1188) 112111) ((-1096 . -884) 112090) ((-1096 . -860) 111949) ((-1096 . -874) 111933) ((-1096 . -825) 111912) ((-1096 . -505) 111864) ((-1096 . -444) 111815) ((-1096 . -619) 111763) ((-1096 . -370) 111747) ((-1096 . -47) 111719) ((-1096 . -38) 111568) ((-1096 . -696) 111417) ((-1096 . -283) 111348) ((-1096 . -543) 111279) ((-1096 . -111) 111108) ((-1096 . -1029) 110951) ((-1096 . -170) 110862) ((-1096 . -145) 110841) ((-1096 . -143) 110820) ((-1096 . -626) 110745) ((-1096 . -130) T) ((-1096 . -25) T) ((-1096 . -101) T) ((-1096 . -595) 110727) ((-1096 . -1072) T) ((-1096 . -23) T) ((-1096 . -21) T) ((-1096 . -1023) T) ((-1096 . -1030) T) ((-1096 . -1083) T) ((-1096 . -705) T) ((-1096 . -405) 110711) ((-1096 . -319) 110683) ((-1096 . -302) 110670) ((-1096 . -596) 110418) ((-1091 . -535) T) ((-1091 . -1188) T) ((-1091 . -1122) T) ((-1091 . -1012) 110400) ((-1091 . -596) 110315) ((-1091 . -994) T) ((-1091 . -860) 110297) ((-1091 . -823) T) ((-1091 . -775) T) ((-1091 . -772) T) ((-1091 . -825) T) ((-1091 . -770) T) ((-1091 . -769) T) ((-1091 . -798) T) ((-1091 . -619) 110279) ((-1091 . -895) T) ((-1091 . -543) T) ((-1091 . -283) T) ((-1091 . -170) T) ((-1091 . -696) 110266) ((-1091 . -1029) 110253) ((-1091 . -111) 110238) ((-1091 . -38) 110225) ((-1091 . -444) T) ((-1091 . -300) T) ((-1091 . -227) T) ((-1091 . -141) T) ((-1091 . -1023) T) ((-1091 . -1030) T) ((-1091 . -1083) T) ((-1091 . -705) T) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1072) T) ((-1091 . -595) 110207) ((-1091 . -101) T) ((-1091 . -25) T) ((-1091 . -130) T) ((-1091 . -626) 110194) ((-1091 . -145) T) ((-1091 . -640) T) ((-1091 . -799) T) ((-1087 . -1054) T) ((-1087 . -595) 110160) ((-1087 . -1072) T) ((-1087 . -101) T) ((-1087 . -92) T) ((-1086 . -1072) T) ((-1086 . -595) 110142) ((-1086 . -101) T) ((-1084 . -232) 110121) ((-1084 . -1237) 110091) ((-1084 . -769) 110070) ((-1084 . -823) 110049) ((-1084 . -775) 110000) ((-1084 . -772) 109951) ((-1084 . -825) 109902) ((-1084 . -770) 109853) ((-1084 . -771) 109832) ((-1084 . -281) 109809) ((-1084 . -279) 109786) ((-1084 . -481) 109770) ((-1084 . -505) 109703) ((-1084 . -302) 109641) ((-1084 . -1183) T) ((-1084 . -34) T) ((-1084 . -586) 109618) ((-1084 . -1012) 109445) ((-1084 . -405) 109414) ((-1084 . -619) 109320) ((-1084 . -370) 109289) ((-1084 . -361) 109268) ((-1084 . -227) 109220) ((-1084 . -874) 109152) ((-1084 . -225) 109121) ((-1084 . -111) 109011) ((-1084 . -1029) 108908) ((-1084 . -170) 108887) ((-1084 . -595) 108618) ((-1084 . -696) 108560) ((-1084 . -626) 108408) ((-1084 . -130) 108278) ((-1084 . -23) 108148) ((-1084 . -21) 108058) ((-1084 . -1023) 107988) ((-1084 . -1030) 107918) ((-1084 . -1083) 107828) ((-1084 . -705) 107738) ((-1084 . -38) 107708) ((-1084 . -1072) 107498) ((-1084 . -101) 107288) ((-1084 . -25) 107139) ((-1077 . -389) T) ((-1077 . -1183) T) ((-1077 . -595) 107121) ((-1076 . -1075) 107085) ((-1076 . -101) T) ((-1076 . -595) 107067) ((-1076 . -1072) T) ((-1074 . -1075) 107019) ((-1074 . -101) T) ((-1074 . -595) 107001) ((-1074 . -1072) T) ((-1073 . -361) T) ((-1073 . -101) T) ((-1073 . -595) 106983) ((-1073 . -1072) T) ((-1068 . -419) 106967) ((-1068 . -1070) 106951) ((-1068 . -361) 106930) ((-1068 . -229) 106914) ((-1068 . -596) 106875) ((-1068 . -149) 106859) ((-1068 . -481) 106843) ((-1068 . -101) T) ((-1068 . -1072) T) ((-1068 . -505) 106776) ((-1068 . -302) 106714) ((-1068 . -595) 106696) ((-1068 . -1183) T) ((-1068 . -34) T) ((-1068 . -106) 106680) ((-1068 . -223) 106664) ((-1067 . -1054) T) ((-1067 . -595) 106630) ((-1067 . -1072) T) ((-1067 . -101) T) ((-1067 . -92) T) ((-1063 . -1183) T) ((-1063 . -1072) 106608) ((-1063 . -595) 106575) ((-1063 . -101) 106553) ((-1062 . -1054) T) ((-1062 . -595) 106519) ((-1062 . -1072) T) ((-1062 . -101) T) ((-1062 . -92) T) ((-1060 . -1065) 106503) ((-1060 . -1183) T) ((-1060 . -1072) 106481) ((-1060 . -595) 106448) ((-1060 . -101) 106426) ((-1060 . -1066) 106384) ((-1059 . -259) 106368) ((-1059 . -1012) 106352) ((-1059 . -1072) T) ((-1059 . -595) 106334) ((-1059 . -101) T) ((-1059 . -825) T) ((-1058 . -246) 106271) ((-1058 . -1012) 106098) ((-1058 . -596) NIL) ((-1058 . -319) 106059) ((-1058 . -405) 106043) ((-1058 . -38) 105892) ((-1058 . -111) 105721) ((-1058 . -1029) 105564) ((-1058 . -626) 105489) ((-1058 . -696) 105338) ((-1058 . -143) 105317) ((-1058 . -145) 105296) ((-1058 . -170) 105207) ((-1058 . -543) 105138) ((-1058 . -283) 105069) ((-1058 . -47) 105030) ((-1058 . -370) 105014) ((-1058 . -619) 104962) ((-1058 . -444) 104913) ((-1058 . -505) 104780) ((-1058 . -825) 104759) ((-1058 . -874) 104694) ((-1058 . -860) NIL) ((-1058 . -884) 104673) ((-1058 . -1188) 104652) ((-1058 . -924) 104597) ((-1058 . -302) 104584) ((-1058 . -227) 104563) ((-1058 . -130) T) ((-1058 . -25) T) ((-1058 . -101) T) ((-1058 . -595) 104545) ((-1058 . -1072) T) ((-1058 . -23) T) ((-1058 . -21) T) ((-1058 . -705) T) ((-1058 . -1083) T) ((-1058 . -1030) T) ((-1058 . -1023) T) ((-1058 . -225) 104529) ((-1056 . -595) 104511) ((-1053 . -825) T) ((-1053 . -101) T) ((-1053 . -595) 104493) ((-1053 . -1072) T) ((-1050 . -703) 104472) ((-1050 . -1012) 104368) ((-1050 . -405) 104352) ((-1050 . -619) 104300) ((-1050 . -370) 104284) ((-1050 . -363) 104263) ((-1050 . -145) 104242) ((-1050 . -696) 104110) ((-1050 . -626) 104020) ((-1050 . -1029) 103930) ((-1050 . -111) 103826) ((-1050 . -38) 103694) ((-1050 . -403) 103673) ((-1050 . -395) 103652) ((-1050 . -143) 103603) ((-1050 . -1122) 103582) ((-1050 . -343) 103561) ((-1050 . -361) 103512) ((-1050 . -237) 103463) ((-1050 . -283) 103414) ((-1050 . -300) 103365) ((-1050 . -444) 103316) ((-1050 . -543) 103267) ((-1050 . -895) 103218) ((-1050 . -1188) 103169) ((-1050 . -356) 103120) ((-1050 . -227) 103045) ((-1050 . -874) 102978) ((-1050 . -225) 102948) ((-1050 . -596) 102932) ((-1050 . -21) T) ((-1050 . -23) T) ((-1050 . -1072) T) ((-1050 . -595) 102914) ((-1050 . -101) T) ((-1050 . -25) T) ((-1050 . -130) T) ((-1050 . -1023) T) ((-1050 . -1030) T) ((-1050 . -1083) T) ((-1050 . -705) T) ((-1050 . -170) T) ((-1048 . -1072) T) ((-1048 . -595) 102896) ((-1048 . -101) T) ((-1048 . -279) 102875) ((-1047 . -1072) T) ((-1047 . -595) 102857) ((-1047 . -101) T) ((-1046 . -1072) T) ((-1046 . -595) 102839) ((-1046 . -101) T) ((-1046 . -279) 102818) ((-1046 . -1012) 102795) ((-1045 . -1054) T) ((-1045 . -595) 102761) ((-1045 . -1072) T) ((-1045 . -101) T) ((-1045 . -92) T) ((-1038 . -1054) T) ((-1038 . -595) 102727) ((-1038 . -1072) T) ((-1038 . -101) T) ((-1038 . -92) T) ((-1035 . -1160) 102702) ((-1035 . -223) 102648) ((-1035 . -106) 102594) ((-1035 . -302) 102445) ((-1035 . -505) 102289) ((-1035 . -481) 102220) ((-1035 . -149) 102166) ((-1035 . -596) NIL) ((-1035 . -229) 102112) ((-1035 . -592) 102087) ((-1035 . -281) 102062) ((-1035 . -279) 102037) ((-1035 . -101) T) ((-1035 . -1072) T) ((-1035 . -595) 102019) ((-1035 . -1183) T) ((-1035 . -34) T) ((-1035 . -586) 101994) ((-1034 . -535) T) ((-1034 . -1188) T) ((-1034 . -1122) T) ((-1034 . -1012) 101976) ((-1034 . -596) 101891) ((-1034 . -994) T) ((-1034 . -860) 101873) ((-1034 . -823) T) ((-1034 . -775) T) ((-1034 . -772) T) ((-1034 . -825) T) ((-1034 . -770) T) ((-1034 . -769) T) ((-1034 . -798) T) ((-1034 . -619) 101855) ((-1034 . -895) T) ((-1034 . -543) T) ((-1034 . -283) T) ((-1034 . -170) T) ((-1034 . -696) 101842) ((-1034 . -1029) 101829) ((-1034 . -111) 101814) ((-1034 . -38) 101801) ((-1034 . -444) T) ((-1034 . -300) T) ((-1034 . -227) T) ((-1034 . -141) T) ((-1034 . -1023) T) ((-1034 . -1030) T) ((-1034 . -1083) T) ((-1034 . -705) T) ((-1034 . -21) T) ((-1034 . -23) T) ((-1034 . -1072) T) ((-1034 . -595) 101783) ((-1034 . -101) T) ((-1034 . -25) T) ((-1034 . -130) T) ((-1034 . -626) 101770) ((-1034 . -145) T) ((-1033 . -1040) 101749) ((-1033 . -101) T) ((-1033 . -595) 101731) ((-1033 . -1072) T) ((-1027 . -1026) 101671) ((-1027 . -696) 101613) ((-1027 . -34) T) ((-1027 . -1183) T) ((-1027 . -302) 101551) ((-1027 . -505) 101484) ((-1027 . -481) 101468) ((-1027 . -626) 101452) ((-1027 . -130) T) ((-1027 . -25) T) ((-1027 . -101) T) ((-1027 . -595) 101414) ((-1027 . -1072) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1029) 101398) ((-1027 . -111) 101377) ((-1027 . -1237) 101347) ((-1027 . -596) 101308) ((-1020 . -1043) 101237) ((-1020 . -950) 101166) ((-1020 . -596) 101108) ((-1020 . -481) 101073) ((-1020 . -101) T) ((-1020 . -1072) T) ((-1020 . -505) 100974) ((-1020 . -302) 100882) ((-1020 . -595) 100825) ((-1020 . -1183) T) ((-1020 . -34) T) ((-1020 . -149) 100790) ((-1020 . -1178) 100719) ((-1010 . -1054) T) ((-1010 . -595) 100685) ((-1010 . -1072) T) ((-1010 . -101) T) ((-1010 . -92) T) ((-1009 . -1160) 100660) ((-1009 . -223) 100606) ((-1009 . -106) 100552) ((-1009 . -302) 100403) ((-1009 . -505) 100247) ((-1009 . -481) 100178) ((-1009 . -149) 100124) ((-1009 . -596) NIL) ((-1009 . -229) 100070) ((-1009 . -592) 100045) ((-1009 . -281) 100020) ((-1009 . -279) 99995) ((-1009 . -101) T) ((-1009 . -1072) T) ((-1009 . -595) 99977) ((-1009 . -1183) T) ((-1009 . -34) T) ((-1009 . -586) 99952) ((-1008 . -170) T) ((-1008 . -705) T) ((-1008 . -1083) T) ((-1008 . -1030) T) ((-1008 . -1023) T) ((-1008 . -626) 99926) ((-1008 . -130) T) ((-1008 . -25) T) ((-1008 . -101) T) ((-1008 . -595) 99908) ((-1008 . -1072) T) ((-1008 . -23) T) ((-1008 . -21) T) ((-1008 . -1029) 99882) ((-1008 . -111) 99849) ((-1008 . -38) 99833) ((-1008 . -696) 99817) ((-1001 . -1043) 99786) ((-1001 . -950) 99755) ((-1001 . -596) 99716) ((-1001 . -481) 99700) ((-1001 . -101) T) ((-1001 . -1072) T) ((-1001 . -505) 99633) ((-1001 . -302) 99571) ((-1001 . -595) 99533) ((-1001 . -1183) T) ((-1001 . -34) T) ((-1001 . -149) 99517) ((-1001 . -1178) 99486) ((-1000 . -1183) T) ((-1000 . -1072) 99464) ((-1000 . -595) 99431) ((-1000 . -101) 99409) ((-998 . -986) T) ((-998 . -976) T) ((-998 . -769) T) ((-998 . -770) T) ((-998 . -825) T) ((-998 . -772) T) ((-998 . -775) T) ((-998 . -823) T) ((-998 . -1012) 99289) ((-998 . -405) 99251) ((-998 . -237) T) ((-998 . -283) T) ((-998 . -300) T) ((-998 . -444) T) ((-998 . -38) 99188) ((-998 . -696) 99125) ((-998 . -543) T) ((-998 . -895) T) ((-998 . -1188) T) ((-998 . -356) T) ((-998 . -111) 99041) ((-998 . -1029) 98978) ((-998 . -170) T) ((-998 . -145) T) ((-998 . -626) 98915) ((-998 . -130) T) ((-998 . -25) T) ((-998 . -101) T) ((-998 . -595) 98897) ((-998 . -1072) T) ((-998 . -23) T) ((-998 . -21) T) ((-998 . -1023) T) ((-998 . -1030) T) ((-998 . -1083) T) ((-998 . -705) T) ((-993 . -1054) T) ((-993 . -595) 98863) ((-993 . -1072) T) ((-993 . -101) T) ((-993 . -92) T) ((-978 . -965) 98845) ((-978 . -1122) T) ((-978 . -1012) 98805) ((-978 . -596) 98735) ((-978 . -994) T) ((-978 . -884) NIL) ((-978 . -858) 98717) ((-978 . -823) T) ((-978 . -775) T) ((-978 . -772) T) ((-978 . -825) T) ((-978 . -770) T) ((-978 . -769) T) ((-978 . -798) T) ((-978 . -860) 98699) ((-978 . -1183) T) ((-978 . -393) 98681) ((-978 . -619) 98663) ((-978 . -370) 98645) ((-978 . -279) NIL) ((-978 . -302) NIL) ((-978 . -505) NIL) ((-978 . -331) 98627) ((-978 . -237) T) ((-978 . -111) 98561) ((-978 . -1029) 98511) ((-978 . -283) T) ((-978 . -696) 98461) ((-978 . -626) 98411) ((-978 . -38) 98361) ((-978 . -300) T) ((-978 . -444) T) ((-978 . -170) T) ((-978 . -543) T) ((-978 . -895) T) ((-978 . -1188) T) ((-978 . -356) T) ((-978 . -227) T) ((-978 . -874) NIL) ((-978 . -225) 98343) ((-978 . -145) T) ((-978 . -143) NIL) ((-978 . -130) T) ((-978 . -25) T) ((-978 . -101) T) ((-978 . -595) 98325) ((-978 . -1072) T) ((-978 . -23) T) ((-978 . -21) T) ((-978 . -1023) T) ((-978 . -1030) T) ((-978 . -1083) T) ((-978 . -705) T) ((-977 . -335) 98299) ((-977 . -170) T) ((-977 . -705) T) ((-977 . -1083) T) ((-977 . -1030) T) ((-977 . -1023) T) ((-977 . -626) 98244) ((-977 . -130) T) ((-977 . -25) T) ((-977 . -101) T) ((-977 . -595) 98226) ((-977 . -1072) T) ((-977 . -23) T) ((-977 . -21) T) ((-977 . -1029) 98171) ((-977 . -111) 98100) ((-977 . -596) 98084) ((-977 . -225) 98061) ((-977 . -874) 98013) ((-977 . -227) 97985) ((-977 . -356) T) ((-977 . -1188) T) ((-977 . -895) T) ((-977 . -543) T) ((-977 . -696) 97930) ((-977 . -38) 97875) ((-977 . -444) T) ((-977 . -300) T) ((-977 . -283) T) ((-977 . -237) T) ((-977 . -361) NIL) ((-977 . -343) NIL) ((-977 . -1122) NIL) ((-977 . -143) 97847) ((-977 . -395) NIL) ((-977 . -403) 97819) ((-977 . -145) 97791) ((-977 . -363) 97763) ((-977 . -370) 97740) ((-977 . -619) 97679) ((-977 . -405) 97656) ((-977 . -1012) 97544) ((-977 . -703) 97516) ((-974 . -969) 97500) ((-974 . -481) 97484) ((-974 . -101) 97462) ((-974 . -1072) 97440) ((-974 . -505) 97373) ((-974 . -302) 97311) ((-974 . -595) 97243) ((-974 . -1183) T) ((-974 . -34) T) ((-974 . -106) 97227) ((-970 . -972) 97211) ((-970 . -825) 97190) ((-970 . -1012) 97086) ((-970 . -405) 97070) ((-970 . -619) 97018) ((-970 . -370) 97002) ((-970 . -279) 96960) ((-970 . -302) 96925) ((-970 . -505) 96837) ((-970 . -331) 96821) ((-970 . -38) 96769) ((-970 . -111) 96651) ((-970 . -1029) 96547) ((-970 . -626) 96485) ((-970 . -696) 96433) ((-970 . -283) 96384) ((-970 . -237) 96363) ((-970 . -227) 96342) ((-970 . -874) 96301) ((-970 . -225) 96285) ((-970 . -596) 96246) ((-970 . -145) 96225) ((-970 . -143) 96204) ((-970 . -130) T) ((-970 . -25) T) ((-970 . -101) T) ((-970 . -595) 96186) ((-970 . -1072) T) ((-970 . -23) T) ((-970 . -21) T) ((-970 . -1023) T) ((-970 . -1030) T) ((-970 . -1083) T) ((-970 . -705) T) ((-968 . -1054) T) ((-968 . -595) 96152) ((-968 . -1072) T) ((-968 . -101) T) ((-968 . -92) T) ((-967 . -21) T) ((-967 . -23) T) ((-967 . -1072) T) ((-967 . -595) 96134) ((-967 . -101) T) ((-967 . -25) T) ((-967 . -130) T) ((-963 . -595) 96116) ((-960 . -1072) T) ((-960 . -595) 96098) ((-960 . -101) T) ((-945 . -775) T) ((-945 . -772) T) ((-945 . -825) T) ((-945 . -770) T) ((-945 . -23) T) ((-945 . -1072) T) ((-945 . -595) 96080) ((-945 . -101) T) ((-945 . -25) T) ((-945 . -130) T) ((-945 . -596) 96055) ((-944 . -1054) T) ((-944 . -595) 96021) ((-944 . -1072) T) ((-944 . -101) T) ((-944 . -92) T) ((-940 . -941) T) ((-940 . -101) T) ((-940 . -595) 96003) ((-940 . -1072) T) ((-939 . -595) 95985) ((-938 . -1072) T) ((-938 . -595) 95967) ((-938 . -101) T) ((-938 . -361) 95920) ((-938 . -705) 95819) ((-938 . -1083) 95718) ((-938 . -23) 95529) ((-938 . -25) 95340) ((-938 . -130) 95195) ((-938 . -465) 95148) ((-938 . -21) 95103) ((-938 . -771) 95056) ((-938 . -770) 95009) ((-938 . -825) 94908) ((-938 . -772) 94861) ((-938 . -775) 94814) ((-932 . -19) 94798) ((-932 . -629) 94782) ((-932 . -281) 94759) ((-932 . -279) 94736) ((-932 . -586) 94713) ((-932 . -596) 94674) ((-932 . -481) 94658) ((-932 . -101) 94608) ((-932 . -1072) 94558) ((-932 . -505) 94491) ((-932 . -302) 94429) ((-932 . -595) 94341) ((-932 . -1183) T) ((-932 . -34) T) ((-932 . -149) 94325) ((-932 . -825) 94304) ((-932 . -365) 94288) ((-930 . -319) 94267) ((-930 . -1012) 94163) ((-930 . -405) 94147) ((-930 . -38) 94044) ((-930 . -626) 93969) ((-930 . -705) T) ((-930 . -1083) T) ((-930 . -1030) T) ((-930 . -1023) T) ((-930 . -111) 93838) ((-930 . -1029) 93721) ((-930 . -21) T) ((-930 . -23) T) ((-930 . -1072) T) ((-930 . -595) 93703) ((-930 . -101) T) ((-930 . -25) T) ((-930 . -130) T) ((-930 . -696) 93600) ((-930 . -143) 93579) ((-930 . -145) 93558) ((-930 . -170) 93509) ((-930 . -543) 93488) ((-930 . -283) 93467) ((-930 . -47) 93446) ((-928 . -1072) T) ((-928 . -595) 93412) ((-928 . -101) T) ((-920 . -924) 93373) ((-920 . -1012) 93253) ((-920 . -1188) 93232) ((-920 . -884) 93211) ((-920 . -860) 93136) ((-920 . -874) 93117) ((-920 . -825) 93096) ((-920 . -505) 93043) ((-920 . -444) 92994) ((-920 . -619) 92942) ((-920 . -370) 92926) ((-920 . -47) 92895) ((-920 . -38) 92744) ((-920 . -696) 92593) ((-920 . -283) 92524) ((-920 . -543) 92455) ((-920 . -111) 92284) ((-920 . -1029) 92127) ((-920 . -170) 92038) ((-920 . -145) 92017) ((-920 . -143) 91996) ((-920 . -626) 91921) ((-920 . -130) T) ((-920 . -25) T) ((-920 . -101) T) ((-920 . -595) 91903) ((-920 . -1072) T) ((-920 . -23) T) ((-920 . -21) T) ((-920 . -1023) T) ((-920 . -1030) T) ((-920 . -1083) T) ((-920 . -705) T) ((-920 . -405) 91887) ((-920 . -319) 91856) ((-920 . -302) 91843) ((-920 . -596) 91704) ((-917 . -954) 91688) ((-917 . -19) 91672) ((-917 . -629) 91656) ((-917 . -281) 91633) ((-917 . -279) 91610) ((-917 . -586) 91587) ((-917 . -596) 91548) ((-917 . -481) 91532) ((-917 . -101) 91482) ((-917 . -1072) 91432) ((-917 . -505) 91365) ((-917 . -302) 91303) ((-917 . -595) 91215) ((-917 . -1183) T) ((-917 . -34) T) ((-917 . -149) 91199) ((-917 . -825) 91178) ((-917 . -365) 91162) ((-917 . -1228) 91146) ((-901 . -948) T) ((-901 . -595) 91128) ((-899 . -929) T) ((-899 . -595) 91110) ((-893 . -772) T) ((-893 . -825) T) ((-893 . -1072) T) ((-893 . -595) 91092) ((-893 . -101) T) ((-893 . -25) T) ((-893 . -705) T) ((-893 . -1083) T) ((-888 . -356) T) ((-888 . -1188) T) ((-888 . -895) T) ((-888 . -543) T) ((-888 . -170) T) ((-888 . -696) 91044) ((-888 . -38) 90996) ((-888 . -444) T) ((-888 . -300) T) ((-888 . -626) 90948) ((-888 . -705) T) ((-888 . -1083) T) ((-888 . -1030) T) ((-888 . -1023) T) ((-888 . -111) 90886) ((-888 . -1029) 90838) ((-888 . -21) T) ((-888 . -23) T) ((-888 . -1072) T) ((-888 . -595) 90820) ((-888 . -101) T) ((-888 . -25) T) ((-888 . -130) T) ((-888 . -283) T) ((-888 . -237) T) ((-880 . -343) T) ((-880 . -1122) T) ((-880 . -361) T) ((-880 . -143) T) ((-880 . -356) T) ((-880 . -1188) T) ((-880 . -895) T) ((-880 . -543) T) ((-880 . -170) T) ((-880 . -696) 90785) ((-880 . -38) 90750) ((-880 . -444) T) ((-880 . -300) T) ((-880 . -111) 90706) ((-880 . -1029) 90671) ((-880 . -626) 90636) ((-880 . -283) T) ((-880 . -237) T) ((-880 . -395) T) ((-880 . -1023) T) ((-880 . -1030) T) ((-880 . -1083) T) ((-880 . -705) T) ((-880 . -21) T) ((-880 . -23) T) ((-880 . -1072) T) ((-880 . -595) 90618) ((-880 . -101) T) ((-880 . -25) T) ((-880 . -130) T) ((-880 . -227) T) ((-880 . -322) 90605) ((-880 . -145) 90587) ((-880 . -1012) 90574) ((-880 . -1237) 90561) ((-880 . -1248) 90548) ((-880 . -596) 90530) ((-879 . -1072) T) ((-879 . -595) 90512) ((-879 . -101) T) ((-876 . -878) 90496) ((-876 . -825) 90447) ((-876 . -705) T) ((-876 . -1072) T) ((-876 . -595) 90429) ((-876 . -101) T) ((-876 . -1083) T) ((-876 . -465) T) ((-875 . -119) 90413) ((-875 . -481) 90397) ((-875 . -101) 90375) ((-875 . -1072) 90353) ((-875 . -505) 90286) ((-875 . -302) 90224) ((-875 . -595) 90156) ((-875 . -1183) T) ((-875 . -34) T) ((-875 . -984) 90140) ((-872 . -1072) T) ((-872 . -595) 90122) ((-872 . -101) T) ((-867 . -825) T) ((-867 . -101) T) ((-867 . -595) 90104) ((-867 . -1072) T) ((-867 . -1012) 90081) ((-864 . -1072) T) ((-864 . -595) 90063) ((-864 . -101) T) ((-864 . -1012) 90031) ((-862 . -1072) T) ((-862 . -595) 90013) ((-862 . -101) T) ((-859 . -1072) T) ((-859 . -595) 89995) ((-859 . -101) T) ((-848 . -1072) T) ((-848 . -595) 89977) ((-848 . -101) T) ((-847 . -1183) T) ((-847 . -595) 89849) ((-847 . -1072) 89800) ((-847 . -101) 89751) ((-846 . -965) 89735) ((-846 . -1122) 89713) ((-846 . -1012) 89579) ((-846 . -596) 89387) ((-846 . -994) 89366) ((-846 . -884) 89345) ((-846 . -858) 89329) ((-846 . -823) 89308) ((-846 . -775) 89287) ((-846 . -772) 89266) ((-846 . -825) 89217) ((-846 . -770) 89196) ((-846 . -769) 89175) ((-846 . -798) 89154) ((-846 . -860) 89079) ((-846 . -1183) T) ((-846 . -393) 89063) ((-846 . -619) 89011) ((-846 . -370) 88995) ((-846 . -279) 88953) ((-846 . -302) 88918) ((-846 . -505) 88830) ((-846 . -331) 88814) ((-846 . -237) T) ((-846 . -111) 88752) ((-846 . -1029) 88704) ((-846 . -283) T) ((-846 . -696) 88656) ((-846 . -626) 88608) ((-846 . -38) 88560) ((-846 . -300) T) ((-846 . -444) T) ((-846 . -170) T) ((-846 . -543) T) ((-846 . -895) T) ((-846 . -1188) T) ((-846 . -356) T) ((-846 . -227) 88539) ((-846 . -874) 88498) ((-846 . -225) 88482) ((-846 . -145) 88461) ((-846 . -143) 88440) ((-846 . -130) T) ((-846 . -25) T) ((-846 . -101) T) ((-846 . -595) 88422) ((-846 . -1072) T) ((-846 . -23) T) ((-846 . -21) T) ((-846 . -1023) T) ((-846 . -1030) T) ((-846 . -1083) T) ((-846 . -705) T) ((-845 . -965) 88399) ((-845 . -1122) NIL) ((-845 . -1012) 88376) ((-845 . -596) NIL) ((-845 . -994) NIL) ((-845 . -884) NIL) ((-845 . -858) 88353) ((-845 . -823) NIL) ((-845 . -775) NIL) ((-845 . -772) NIL) ((-845 . -825) NIL) ((-845 . -770) NIL) ((-845 . -769) NIL) ((-845 . -798) NIL) ((-845 . -860) NIL) ((-845 . -1183) T) ((-845 . -393) 88330) ((-845 . -619) 88307) ((-845 . -370) 88284) ((-845 . -279) 88235) ((-845 . -302) 88192) ((-845 . -505) 88100) ((-845 . -331) 88077) ((-845 . -237) T) ((-845 . -111) 88006) ((-845 . -1029) 87951) ((-845 . -283) T) ((-845 . -696) 87896) ((-845 . -626) 87841) ((-845 . -38) 87786) ((-845 . -300) T) ((-845 . -444) T) ((-845 . -170) T) ((-845 . -543) T) ((-845 . -895) T) ((-845 . -1188) T) ((-845 . -356) T) ((-845 . -227) NIL) ((-845 . -874) NIL) ((-845 . -225) 87763) ((-845 . -145) T) ((-845 . -143) NIL) ((-845 . -130) T) ((-845 . -25) T) ((-845 . -101) T) ((-845 . -595) 87745) ((-845 . -1072) T) ((-845 . -23) T) ((-845 . -21) T) ((-845 . -1023) T) ((-845 . -1030) T) ((-845 . -1083) T) ((-845 . -705) T) ((-843 . -844) 87729) ((-843 . -895) T) ((-843 . -543) T) ((-843 . -283) T) ((-843 . -170) T) ((-843 . -696) 87716) ((-843 . -1029) 87703) ((-843 . -111) 87688) ((-843 . -38) 87675) ((-843 . -444) T) ((-843 . -300) T) ((-843 . -1023) T) ((-843 . -1030) T) ((-843 . -1083) T) ((-843 . -705) T) ((-843 . -21) T) ((-843 . -23) T) ((-843 . -1072) T) ((-843 . -595) 87657) ((-843 . -101) T) ((-843 . -25) T) ((-843 . -130) T) ((-843 . -626) 87644) ((-843 . -145) T) ((-840 . -1023) T) ((-840 . -1030) T) ((-840 . -1083) T) ((-840 . -705) T) ((-840 . -21) T) ((-840 . -23) T) ((-840 . -1072) T) ((-840 . -595) 87626) ((-840 . -101) T) ((-840 . -25) T) ((-840 . -130) T) ((-840 . -626) 87586) ((-840 . -38) 87556) ((-840 . -111) 87521) ((-840 . -1029) 87491) ((-840 . -696) 87461) ((-839 . -819) T) ((-839 . -825) T) ((-839 . -1072) T) ((-839 . -595) 87443) ((-839 . -101) T) ((-839 . -361) T) ((-839 . -596) 87365) ((-838 . -1072) T) ((-838 . -595) 87347) ((-838 . -101) T) ((-837 . -836) T) ((-837 . -171) T) ((-837 . -595) 87329) ((-833 . -825) T) ((-833 . -101) T) ((-833 . -595) 87311) ((-833 . -1072) T) ((-830 . -827) 87295) ((-830 . -1012) 87191) ((-830 . -405) 87175) ((-830 . -696) 87145) ((-830 . -626) 87119) ((-830 . -130) T) ((-830 . -25) T) ((-830 . -101) T) ((-830 . -595) 87101) ((-830 . -1072) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1029) 87085) ((-830 . -111) 87064) ((-830 . -1023) T) ((-830 . -1030) T) ((-830 . -1083) T) ((-830 . -705) T) ((-830 . -38) 87034) ((-829 . -827) 87018) ((-829 . -1012) 86914) ((-829 . -405) 86898) ((-829 . -696) 86868) ((-829 . -626) 86842) ((-829 . -130) T) ((-829 . -25) T) ((-829 . -101) T) ((-829 . -595) 86824) ((-829 . -1072) T) ((-829 . -23) T) ((-829 . -21) T) ((-829 . -1029) 86808) ((-829 . -111) 86787) ((-829 . -1023) T) ((-829 . -1030) T) ((-829 . -1083) T) ((-829 . -705) T) ((-829 . -38) 86757) ((-817 . -1072) T) ((-817 . -595) 86739) ((-817 . -101) T) ((-817 . -405) 86723) ((-817 . -1012) 86619) ((-817 . -21) 86571) ((-817 . -23) 86523) ((-817 . -25) 86475) ((-817 . -130) 86427) ((-817 . -823) 86406) ((-817 . -626) 86379) ((-817 . -1030) 86358) ((-817 . -1023) 86337) ((-817 . -775) 86316) ((-817 . -772) 86295) ((-817 . -825) 86274) ((-817 . -770) 86253) ((-817 . -769) 86232) ((-817 . -1083) 86211) ((-817 . -705) 86190) ((-816 . -1072) T) ((-816 . -595) 86172) ((-816 . -101) T) ((-812 . -1023) T) ((-812 . -1030) T) ((-812 . -1083) T) ((-812 . -705) T) ((-812 . -21) T) ((-812 . -23) T) ((-812 . -1072) T) ((-812 . -595) 86154) ((-812 . -101) T) ((-812 . -25) T) ((-812 . -130) T) ((-812 . -626) 86114) ((-812 . -1012) 86083) ((-812 . -279) 86062) ((-812 . -145) 86041) ((-812 . -143) 86020) ((-812 . -38) 85990) ((-812 . -111) 85955) ((-812 . -1029) 85925) ((-812 . -696) 85895) ((-810 . -1072) T) ((-810 . -595) 85877) ((-810 . -101) T) ((-810 . -405) 85861) ((-810 . -1012) 85757) ((-810 . -21) 85709) ((-810 . -23) 85661) ((-810 . -25) 85613) ((-810 . -130) 85565) ((-810 . -823) 85544) ((-810 . -626) 85517) ((-810 . -1030) 85496) ((-810 . -1023) 85475) ((-810 . -775) 85454) ((-810 . -772) 85433) ((-810 . -825) 85412) ((-810 . -770) 85391) ((-810 . -769) 85370) ((-810 . -1083) 85349) ((-810 . -705) 85328) ((-806 . -687) 85312) ((-806 . -696) 85282) ((-806 . -626) 85256) ((-806 . -130) T) ((-806 . -25) T) ((-806 . -101) T) ((-806 . -595) 85238) ((-806 . -1072) T) ((-806 . -23) T) ((-806 . -21) T) ((-806 . -1029) 85222) ((-806 . -111) 85201) ((-806 . -1023) T) ((-806 . -1030) T) ((-806 . -1083) T) ((-806 . -705) T) ((-806 . -38) 85171) ((-806 . -227) 85150) ((-804 . -1072) T) ((-804 . -595) 85132) ((-804 . -101) T) ((-803 . -1072) T) ((-803 . -595) 85114) ((-803 . -101) T) ((-802 . -1072) T) ((-802 . -595) 85096) ((-802 . -101) T) ((-797 . -821) T) ((-797 . -825) T) ((-797 . -832) T) ((-797 . -1083) T) ((-797 . -101) T) ((-797 . -595) 85078) ((-797 . -1072) T) ((-797 . -705) T) ((-797 . -1012) 85062) ((-796 . -259) 85046) ((-796 . -1012) 85030) ((-796 . -1072) T) ((-796 . -595) 85012) ((-796 . -101) T) ((-796 . -825) T) ((-795 . -111) 84954) ((-795 . -1029) 84905) ((-795 . -21) T) ((-795 . -23) T) ((-795 . -1072) T) ((-795 . -595) 84887) ((-795 . -101) T) ((-795 . -25) T) ((-795 . -130) T) ((-795 . -626) 84838) ((-795 . -227) T) ((-795 . -705) T) ((-795 . -1083) T) ((-795 . -1030) T) ((-795 . -1023) T) ((-795 . -356) 84817) ((-795 . -1188) 84796) ((-795 . -895) 84775) ((-795 . -543) 84754) ((-795 . -170) 84733) ((-795 . -696) 84675) ((-795 . -38) 84617) ((-795 . -444) 84596) ((-795 . -300) 84575) ((-795 . -283) 84554) ((-795 . -237) 84533) ((-794 . -246) 84472) ((-794 . -1012) 84300) ((-794 . -596) NIL) ((-794 . -319) 84262) ((-794 . -405) 84246) ((-794 . -38) 84095) ((-794 . -111) 83924) ((-794 . -1029) 83767) ((-794 . -626) 83692) ((-794 . -696) 83541) ((-794 . -143) 83520) ((-794 . -145) 83499) ((-794 . -170) 83410) ((-794 . -543) 83341) ((-794 . -283) 83272) ((-794 . -47) 83234) ((-794 . -370) 83218) ((-794 . -619) 83166) ((-794 . -444) 83117) ((-794 . -505) 82985) ((-794 . -825) 82964) ((-794 . -874) 82900) ((-794 . -860) NIL) ((-794 . -884) 82879) ((-794 . -1188) 82858) ((-794 . -924) 82805) ((-794 . -302) 82792) ((-794 . -227) 82771) ((-794 . -130) T) ((-794 . -25) T) ((-794 . -101) T) ((-794 . -595) 82753) ((-794 . -1072) T) ((-794 . -23) T) ((-794 . -21) T) ((-794 . -705) T) ((-794 . -1083) T) ((-794 . -1030) T) ((-794 . -1023) T) ((-794 . -225) 82737) ((-793 . -232) 82716) ((-793 . -1237) 82686) ((-793 . -769) 82665) ((-793 . -823) 82644) ((-793 . -775) 82595) ((-793 . -772) 82546) ((-793 . -825) 82497) ((-793 . -770) 82448) ((-793 . -771) 82427) ((-793 . -281) 82404) ((-793 . -279) 82381) ((-793 . -481) 82365) ((-793 . -505) 82298) ((-793 . -302) 82236) ((-793 . -1183) T) ((-793 . -34) T) ((-793 . -586) 82213) ((-793 . -1012) 82040) ((-793 . -405) 82009) ((-793 . -619) 81915) ((-793 . -370) 81884) ((-793 . -361) 81863) ((-793 . -227) 81815) ((-793 . -874) 81747) ((-793 . -225) 81716) ((-793 . -111) 81606) ((-793 . -1029) 81503) ((-793 . -170) 81482) ((-793 . -595) 81213) ((-793 . -696) 81155) ((-793 . -626) 81003) ((-793 . -130) 80873) ((-793 . -23) 80743) ((-793 . -21) 80653) ((-793 . -1023) 80583) ((-793 . -1030) 80513) ((-793 . -1083) 80423) ((-793 . -705) 80333) ((-793 . -38) 80303) ((-793 . -1072) 80093) ((-793 . -101) 79883) ((-793 . -25) 79734) ((-786 . -1072) T) ((-786 . -595) 79716) ((-786 . -101) T) ((-776 . -774) 79700) ((-776 . -825) 79679) ((-776 . -1012) 79462) ((-776 . -405) 79426) ((-776 . -279) 79384) ((-776 . -302) 79349) ((-776 . -505) 79261) ((-776 . -331) 79245) ((-776 . -361) 79224) ((-776 . -596) 79185) ((-776 . -145) 79164) ((-776 . -143) 79143) ((-776 . -696) 79127) ((-776 . -626) 79101) ((-776 . -130) T) ((-776 . -25) T) ((-776 . -101) T) ((-776 . -595) 79083) ((-776 . -1072) T) ((-776 . -23) T) ((-776 . -21) T) ((-776 . -1029) 79067) ((-776 . -111) 79046) ((-776 . -1023) T) ((-776 . -1030) T) ((-776 . -1083) T) ((-776 . -705) T) ((-776 . -38) 79030) ((-759 . -1205) 79014) ((-759 . -1122) 78992) ((-759 . -596) NIL) ((-759 . -302) 78979) ((-759 . -505) 78926) ((-759 . -319) 78903) ((-759 . -1012) 78762) ((-759 . -405) 78746) ((-759 . -38) 78575) ((-759 . -111) 78384) ((-759 . -1029) 78207) ((-759 . -626) 78132) ((-759 . -696) 77961) ((-759 . -143) 77940) ((-759 . -145) 77919) ((-759 . -47) 77896) ((-759 . -370) 77880) ((-759 . -619) 77828) ((-759 . -825) 77807) ((-759 . -874) 77750) ((-759 . -860) NIL) ((-759 . -884) 77729) ((-759 . -1188) 77708) ((-759 . -924) 77677) ((-759 . -895) 77656) ((-759 . -543) 77567) ((-759 . -283) 77478) ((-759 . -170) 77369) ((-759 . -444) 77300) ((-759 . -300) 77279) ((-759 . -279) 77206) ((-759 . -227) T) ((-759 . -130) T) ((-759 . -25) T) ((-759 . -101) T) ((-759 . -595) 77167) ((-759 . -1072) T) ((-759 . -23) T) ((-759 . -21) T) ((-759 . -705) T) ((-759 . -1083) T) ((-759 . -1030) T) ((-759 . -1023) T) ((-759 . -225) 77151) ((-758 . -1037) 77118) ((-758 . -596) 76752) ((-758 . -302) 76739) ((-758 . -505) 76691) ((-758 . -319) 76663) ((-758 . -1012) 76520) ((-758 . -405) 76504) ((-758 . -38) 76353) ((-758 . -626) 76278) ((-758 . -705) T) ((-758 . -1083) T) ((-758 . -1030) T) ((-758 . -1023) T) ((-758 . -111) 76107) ((-758 . -1029) 75950) ((-758 . -21) T) ((-758 . -23) T) ((-758 . -1072) T) ((-758 . -595) 75864) ((-758 . -101) T) ((-758 . -25) T) ((-758 . -130) T) ((-758 . -696) 75713) ((-758 . -143) 75692) ((-758 . -145) 75671) ((-758 . -170) 75582) ((-758 . -543) 75513) ((-758 . -283) 75444) ((-758 . -47) 75416) ((-758 . -370) 75400) ((-758 . -619) 75348) ((-758 . -444) 75299) ((-758 . -825) 75278) ((-758 . -874) 75262) ((-758 . -860) 75121) ((-758 . -884) 75100) ((-758 . -1188) 75079) ((-758 . -924) 75046) ((-751 . -1072) T) ((-751 . -595) 75028) ((-751 . -101) T) ((-749 . -771) T) ((-749 . -130) T) ((-749 . -25) T) ((-749 . -101) T) ((-749 . -595) 75010) ((-749 . -1072) T) ((-749 . -23) T) ((-749 . -770) T) ((-749 . -825) T) ((-749 . -772) T) ((-749 . -775) T) ((-749 . -705) T) ((-749 . -1083) T) ((-747 . -1072) T) ((-747 . -595) 74992) ((-747 . -101) T) ((-715 . -716) 74976) ((-715 . -1070) 74960) ((-715 . -229) 74944) ((-715 . -596) 74905) ((-715 . -149) 74889) ((-715 . -481) 74873) ((-715 . -101) T) ((-715 . -1072) T) ((-715 . -505) 74806) ((-715 . -302) 74744) ((-715 . -595) 74726) ((-715 . -1183) T) ((-715 . -34) T) ((-715 . -106) 74710) ((-715 . -673) 74694) ((-714 . -1023) T) ((-714 . -1030) T) ((-714 . -1083) T) ((-714 . -705) T) ((-714 . -21) T) ((-714 . -23) T) ((-714 . -1072) T) ((-714 . -595) 74676) ((-714 . -101) T) ((-714 . -25) T) ((-714 . -130) T) ((-714 . -626) 74636) ((-714 . -1012) 74607) ((-714 . -145) 74586) ((-714 . -143) 74565) ((-714 . -38) 74535) ((-714 . -111) 74500) ((-714 . -1029) 74470) ((-714 . -696) 74440) ((-714 . -361) 74393) ((-710 . -924) 74346) ((-710 . -1012) 74222) ((-710 . -1188) 74201) ((-710 . -884) 74180) ((-710 . -860) NIL) ((-710 . -874) 74157) ((-710 . -825) 74136) ((-710 . -505) 74079) ((-710 . -444) 74030) ((-710 . -619) 73978) ((-710 . -370) 73962) ((-710 . -47) 73927) ((-710 . -38) 73776) ((-710 . -696) 73625) ((-710 . -283) 73556) ((-710 . -543) 73487) ((-710 . -111) 73316) ((-710 . -1029) 73159) ((-710 . -170) 73070) ((-710 . -145) 73049) ((-710 . -143) 73028) ((-710 . -626) 72953) ((-710 . -130) T) ((-710 . -25) T) ((-710 . -101) T) ((-710 . -595) 72935) ((-710 . -1072) T) ((-710 . -23) T) ((-710 . -21) T) ((-710 . -1023) T) ((-710 . -1030) T) ((-710 . -1083) T) ((-710 . -705) T) ((-710 . -405) 72919) ((-710 . -319) 72884) ((-710 . -302) 72871) ((-710 . -596) 72732) ((-697 . -465) T) ((-697 . -1083) T) ((-697 . -101) T) ((-697 . -595) 72714) ((-697 . -1072) T) ((-697 . -705) T) ((-694 . -1023) T) ((-694 . -1030) T) ((-694 . -1083) T) ((-694 . -705) T) ((-694 . -21) T) ((-694 . -23) T) ((-694 . -1072) T) ((-694 . -595) 72696) ((-694 . -101) T) ((-694 . -25) T) ((-694 . -130) T) ((-694 . -626) 72683) ((-693 . -1023) T) ((-693 . -1030) T) ((-693 . -1083) T) ((-693 . -705) T) ((-693 . -21) T) ((-693 . -23) T) ((-693 . -1072) T) ((-693 . -595) 72665) ((-693 . -101) T) ((-693 . -25) T) ((-693 . -130) T) ((-693 . -626) 72625) ((-693 . -1012) 72594) ((-693 . -279) 72573) ((-693 . -145) 72552) ((-693 . -143) 72531) ((-693 . -38) 72501) ((-693 . -111) 72466) ((-693 . -1029) 72436) ((-693 . -696) 72406) ((-692 . -825) T) ((-692 . -101) T) ((-692 . -595) 72388) ((-692 . -1072) T) ((-691 . -1205) 72372) ((-691 . -1122) 72350) ((-691 . -596) NIL) ((-691 . -302) 72337) ((-691 . -505) 72284) ((-691 . -319) 72261) ((-691 . -1012) 72141) ((-691 . -405) 72125) ((-691 . -38) 71954) ((-691 . -111) 71763) ((-691 . -1029) 71586) ((-691 . -626) 71511) ((-691 . -696) 71340) ((-691 . -143) 71319) ((-691 . -145) 71298) ((-691 . -47) 71275) ((-691 . -370) 71259) ((-691 . -619) 71207) ((-691 . -825) 71186) ((-691 . -874) 71129) ((-691 . -860) NIL) ((-691 . -884) 71108) ((-691 . -1188) 71087) ((-691 . -924) 71056) ((-691 . -895) 71035) ((-691 . -543) 70946) ((-691 . -283) 70857) ((-691 . -170) 70748) ((-691 . -444) 70679) ((-691 . -300) 70658) ((-691 . -279) 70585) ((-691 . -227) T) ((-691 . -130) T) ((-691 . -25) T) ((-691 . -101) T) ((-691 . -595) 70567) ((-691 . -1072) T) ((-691 . -23) T) ((-691 . -21) T) ((-691 . -705) T) ((-691 . -1083) T) ((-691 . -1030) T) ((-691 . -1023) T) ((-691 . -225) 70551) ((-691 . -361) 70530) ((-690 . -356) T) ((-690 . -1188) T) ((-690 . -895) T) ((-690 . -543) T) ((-690 . -170) T) ((-690 . -696) 70495) ((-690 . -38) 70460) ((-690 . -444) T) ((-690 . -300) T) ((-690 . -626) 70425) ((-690 . -705) T) ((-690 . -1083) T) ((-690 . -1030) T) ((-690 . -1023) T) ((-690 . -111) 70381) ((-690 . -1029) 70346) ((-690 . -21) T) ((-690 . -23) T) ((-690 . -1072) T) ((-690 . -595) 70328) ((-690 . -101) T) ((-690 . -25) T) ((-690 . -130) T) ((-690 . -283) T) ((-690 . -237) T) ((-689 . -1072) T) ((-689 . -595) 70310) ((-689 . -101) T) ((-681 . -131) T) ((-681 . -1072) T) ((-681 . -595) 70279) ((-681 . -101) T) ((-681 . -825) T) ((-679 . -380) T) ((-679 . -1012) 70261) ((-679 . -825) T) ((-679 . -38) 70248) ((-679 . -705) T) ((-679 . -1083) T) ((-679 . -1030) T) ((-679 . -1023) T) ((-679 . -111) 70233) ((-679 . -1029) 70220) ((-679 . -21) T) ((-679 . -23) T) ((-679 . -1072) T) ((-679 . -595) 70202) ((-679 . -101) T) ((-679 . -25) T) ((-679 . -130) T) ((-679 . -626) 70189) ((-679 . -696) 70176) ((-679 . -170) T) ((-679 . -283) T) ((-679 . -543) T) ((-679 . -535) T) ((-679 . -1188) T) ((-679 . -1122) T) ((-679 . -596) 70091) ((-679 . -994) T) ((-679 . -860) 70073) ((-679 . -823) T) ((-679 . -775) T) ((-679 . -772) T) ((-679 . -770) T) ((-679 . -769) T) ((-679 . -798) T) ((-679 . -619) 70055) ((-679 . -895) T) ((-679 . -444) T) ((-679 . -300) T) ((-679 . -227) T) ((-679 . -141) T) ((-679 . -145) T) ((-677 . -397) T) ((-677 . -145) T) ((-677 . -626) 70020) ((-677 . -130) T) ((-677 . -25) T) ((-677 . -101) T) ((-677 . -595) 70002) ((-677 . -1072) T) ((-677 . -23) T) ((-677 . -21) T) ((-677 . -705) T) ((-677 . -1083) T) ((-677 . -1030) T) ((-677 . -1023) T) ((-677 . -596) 69947) ((-677 . -356) T) ((-677 . -1188) T) ((-677 . -895) T) ((-677 . -543) T) ((-677 . -170) T) ((-677 . -696) 69912) ((-677 . -38) 69877) ((-677 . -444) T) ((-677 . -300) T) ((-677 . -111) 69833) ((-677 . -1029) 69798) ((-677 . -283) T) ((-677 . -237) T) ((-677 . -823) T) ((-677 . -775) T) ((-677 . -772) T) ((-677 . -825) T) ((-677 . -770) T) ((-677 . -769) T) ((-677 . -860) 69780) ((-677 . -976) T) ((-677 . -994) T) ((-677 . -1012) 69725) ((-677 . -1032) T) ((-677 . -380) T) ((-672 . -380) T) ((-672 . -1012) 69670) ((-672 . -825) T) ((-672 . -38) 69620) ((-672 . -705) T) ((-672 . -1083) T) ((-672 . -1030) T) ((-672 . -1023) T) ((-672 . -111) 69554) ((-672 . -1029) 69504) ((-672 . -21) T) ((-672 . -23) T) ((-672 . -1072) T) ((-672 . -595) 69486) ((-672 . -101) T) ((-672 . -25) T) ((-672 . -130) T) ((-672 . -626) 69436) ((-672 . -696) 69386) ((-672 . -170) T) ((-672 . -283) T) ((-672 . -543) T) ((-672 . -164) 69368) ((-672 . -35) NIL) ((-672 . -94) NIL) ((-672 . -277) NIL) ((-672 . -484) NIL) ((-672 . -1172) NIL) ((-672 . -1169) NIL) ((-672 . -976) NIL) ((-672 . -884) NIL) ((-672 . -596) 69276) ((-672 . -858) 69258) ((-672 . -361) NIL) ((-672 . -343) NIL) ((-672 . -1122) NIL) ((-672 . -395) NIL) ((-672 . -403) 69225) ((-672 . -363) 69192) ((-672 . -703) 69159) ((-672 . -405) 69141) ((-672 . -860) 69123) ((-672 . -1183) T) ((-672 . -393) 69105) ((-672 . -619) 69087) ((-672 . -370) 69069) ((-672 . -279) NIL) ((-672 . -302) NIL) ((-672 . -505) NIL) ((-672 . -331) 69051) ((-672 . -237) T) ((-672 . -1188) T) ((-672 . -356) T) ((-672 . -895) T) ((-672 . -444) T) ((-672 . -300) T) ((-672 . -227) NIL) ((-672 . -874) NIL) ((-672 . -225) 69033) ((-672 . -145) T) ((-672 . -143) NIL) ((-669 . -1225) T) ((-669 . -595) 69015) ((-667 . -664) 68973) ((-667 . -481) 68957) ((-667 . -101) 68935) ((-667 . -1072) 68913) ((-667 . -505) 68846) ((-667 . -302) 68784) ((-667 . -595) 68716) ((-667 . -1183) T) ((-667 . -34) T) ((-667 . -56) 68674) ((-667 . -596) 68635) ((-659 . -1054) T) ((-659 . -595) 68585) ((-659 . -1072) T) ((-659 . -101) T) ((-659 . -92) T) ((-655 . -825) T) ((-655 . -101) T) ((-655 . -595) 68567) ((-655 . -1072) T) ((-655 . -1012) 68551) ((-654 . -1054) T) ((-654 . -595) 68517) ((-654 . -1072) T) ((-654 . -101) T) ((-654 . -92) T) ((-653 . -481) 68501) ((-653 . -101) 68479) ((-653 . -1072) 68457) ((-653 . -505) 68390) ((-653 . -302) 68328) ((-653 . -595) 68260) ((-653 . -1183) T) ((-653 . -34) T) ((-650 . -825) T) ((-650 . -101) T) ((-650 . -595) 68242) ((-650 . -1072) T) ((-650 . -1012) 68226) ((-649 . -1054) T) ((-649 . -595) 68192) ((-649 . -1072) T) ((-649 . -101) T) ((-649 . -92) T) ((-648 . -1094) 68137) ((-648 . -481) 68121) ((-648 . -505) 68054) ((-648 . -302) 67992) ((-648 . -1183) T) ((-648 . -34) T) ((-648 . -1026) 67932) ((-648 . -1012) 67828) ((-648 . -405) 67812) ((-648 . -619) 67760) ((-648 . -370) 67744) ((-648 . -227) 67723) ((-648 . -874) 67682) ((-648 . -225) 67666) ((-648 . -696) 67650) ((-648 . -626) 67624) ((-648 . -130) T) ((-648 . -25) T) ((-648 . -101) T) ((-648 . -595) 67586) ((-648 . -1072) T) ((-648 . -23) T) ((-648 . -21) T) ((-648 . -1029) 67570) ((-648 . -111) 67549) ((-648 . -1023) T) ((-648 . -1030) T) ((-648 . -1083) T) ((-648 . -705) T) ((-648 . -38) 67509) ((-648 . -411) 67493) ((-648 . -723) 67477) ((-648 . -699) T) ((-648 . -740) T) ((-648 . -360) 67461) ((-642 . -367) 67440) ((-642 . -696) 67424) ((-642 . -626) 67408) ((-642 . -130) T) ((-642 . -25) T) ((-642 . -101) T) ((-642 . -595) 67390) ((-642 . -1072) T) ((-642 . -23) T) ((-642 . -21) T) ((-642 . -1029) 67374) ((-642 . -111) 67353) ((-642 . -615) 67337) ((-642 . -377) 67309) ((-642 . -1012) 67286) ((-634 . -636) 67270) ((-634 . -38) 67240) ((-634 . -626) 67214) ((-634 . -705) T) ((-634 . -1083) T) ((-634 . -1030) T) ((-634 . -1023) T) ((-634 . -111) 67193) ((-634 . -1029) 67177) ((-634 . -21) T) ((-634 . -23) T) ((-634 . -1072) T) ((-634 . -595) 67159) ((-634 . -101) T) ((-634 . -25) T) ((-634 . -130) T) ((-634 . -696) 67129) ((-634 . -405) 67113) ((-634 . -1012) 67009) ((-634 . -827) 66993) ((-634 . -279) 66954) ((-633 . -636) 66938) ((-633 . -38) 66908) ((-633 . -626) 66882) ((-633 . -705) T) ((-633 . -1083) T) ((-633 . -1030) T) ((-633 . -1023) T) ((-633 . -111) 66861) ((-633 . -1029) 66845) ((-633 . -21) T) ((-633 . -23) T) ((-633 . -1072) T) ((-633 . -595) 66827) ((-633 . -101) T) ((-633 . -25) T) ((-633 . -130) T) ((-633 . -696) 66797) ((-633 . -405) 66781) ((-633 . -1012) 66677) ((-633 . -827) 66661) ((-633 . -279) 66640) ((-632 . -636) 66624) ((-632 . -38) 66594) ((-632 . -626) 66568) ((-632 . -705) T) ((-632 . -1083) T) ((-632 . -1030) T) ((-632 . -1023) T) ((-632 . -111) 66547) ((-632 . -1029) 66531) ((-632 . -21) T) ((-632 . -23) T) ((-632 . -1072) T) ((-632 . -595) 66513) ((-632 . -101) T) ((-632 . -25) T) ((-632 . -130) T) ((-632 . -696) 66483) ((-632 . -405) 66467) ((-632 . -1012) 66363) ((-632 . -827) 66347) ((-632 . -279) 66326) ((-630 . -696) 66310) ((-630 . -626) 66294) ((-630 . -130) T) ((-630 . -25) T) ((-630 . -101) T) ((-630 . -595) 66276) ((-630 . -1072) T) ((-630 . -23) T) ((-630 . -21) T) ((-630 . -1029) 66260) ((-630 . -111) 66239) ((-630 . -769) 66218) ((-630 . -770) 66197) ((-630 . -825) 66176) ((-630 . -772) 66155) ((-630 . -775) 66134) ((-627 . -1072) T) ((-627 . -595) 66116) ((-627 . -101) T) ((-627 . -1012) 66100) ((-625 . -673) 66084) ((-625 . -106) 66068) ((-625 . -34) T) ((-625 . -1183) T) ((-625 . -595) 66000) ((-625 . -302) 65938) ((-625 . -505) 65871) ((-625 . -1072) 65849) ((-625 . -101) 65827) ((-625 . -481) 65811) ((-625 . -149) 65795) ((-625 . -596) 65756) ((-625 . -229) 65740) ((-624 . -1054) T) ((-624 . -595) 65693) ((-624 . -1072) T) ((-624 . -101) T) ((-624 . -92) T) ((-620 . -644) 65677) ((-620 . -1218) 65661) ((-620 . -984) 65645) ((-620 . -1120) 65629) ((-620 . -825) 65608) ((-620 . -365) 65592) ((-620 . -629) 65576) ((-620 . -281) 65553) ((-620 . -279) 65530) ((-620 . -586) 65507) ((-620 . -596) 65468) ((-620 . -481) 65452) ((-620 . -101) 65402) ((-620 . -1072) 65352) ((-620 . -505) 65285) ((-620 . -302) 65223) ((-620 . -595) 65135) ((-620 . -1183) T) ((-620 . -34) T) ((-620 . -149) 65119) ((-620 . -275) 65103) ((-620 . -799) 65082) ((-613 . -723) 65066) ((-613 . -699) T) ((-613 . -740) T) ((-613 . -111) 65045) ((-613 . -1029) 65029) ((-613 . -21) T) ((-613 . -23) T) ((-613 . -1072) T) ((-613 . -595) 64998) ((-613 . -101) T) ((-613 . -25) T) ((-613 . -130) T) ((-613 . -626) 64982) ((-613 . -696) 64966) ((-613 . -411) 64931) ((-613 . -360) 64863) ((-612 . -1160) 64838) ((-612 . -223) 64784) ((-612 . -106) 64730) ((-612 . -302) 64581) ((-612 . -505) 64425) ((-612 . -481) 64356) ((-612 . -149) 64302) ((-612 . -596) NIL) ((-612 . -229) 64248) ((-612 . -592) 64223) ((-612 . -281) 64198) ((-612 . -279) 64173) ((-612 . -101) T) ((-612 . -1072) T) ((-612 . -595) 64155) ((-612 . -1183) T) ((-612 . -34) T) ((-612 . -586) 64130) ((-607 . -465) T) ((-607 . -1083) T) ((-607 . -101) T) ((-607 . -595) 64112) ((-607 . -1072) T) ((-607 . -705) T) ((-606 . -1054) T) ((-606 . -595) 64078) ((-606 . -1072) T) ((-606 . -101) T) ((-606 . -92) T) ((-603 . -225) 64062) ((-603 . -874) 64021) ((-603 . -1023) T) ((-603 . -1030) T) ((-603 . -1083) T) ((-603 . -705) T) ((-603 . -21) T) ((-603 . -23) T) ((-603 . -1072) T) ((-603 . -595) 64003) ((-603 . -101) T) ((-603 . -25) T) ((-603 . -130) T) ((-603 . -626) 63990) ((-603 . -227) 63969) ((-603 . -543) T) ((-603 . -283) T) ((-603 . -170) T) ((-603 . -696) 63956) ((-603 . -1029) 63943) ((-603 . -111) 63928) ((-603 . -38) 63915) ((-603 . -596) 63892) ((-603 . -405) 63876) ((-603 . -1012) 63759) ((-603 . -145) 63738) ((-603 . -143) 63717) ((-603 . -300) 63696) ((-603 . -444) 63675) ((-603 . -895) 63654) ((-599 . -38) 63638) ((-599 . -626) 63612) ((-599 . -705) T) ((-599 . -1083) T) ((-599 . -1030) T) ((-599 . -1023) T) ((-599 . -111) 63591) ((-599 . -1029) 63575) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1072) T) ((-599 . -595) 63557) ((-599 . -101) T) ((-599 . -25) T) ((-599 . -130) T) ((-599 . -696) 63541) ((-599 . -823) 63520) ((-599 . -775) 63499) ((-599 . -772) 63478) ((-599 . -825) 63457) ((-599 . -770) 63436) ((-599 . -769) 63415) ((-598 . -941) T) ((-598 . -101) T) ((-598 . -595) 63397) ((-598 . -1072) T) ((-593 . -131) T) ((-593 . -1072) T) ((-593 . -595) 63379) ((-593 . -101) T) ((-593 . -825) T) ((-593 . -858) 63363) ((-593 . -596) 63224) ((-590 . -358) 63164) ((-590 . -101) T) ((-590 . -595) 63146) ((-590 . -1072) T) ((-590 . -1160) 63122) ((-590 . -223) 63069) ((-590 . -106) 63016) ((-590 . -302) 62811) ((-590 . -505) 62594) ((-590 . -481) 62528) ((-590 . -149) 62475) ((-590 . -596) NIL) ((-590 . -229) 62422) ((-590 . -592) 62398) ((-590 . -281) 62374) ((-590 . -279) 62350) ((-590 . -1183) T) ((-590 . -34) T) ((-590 . -586) 62326) ((-589 . -723) 62310) ((-589 . -699) T) ((-589 . -740) T) ((-589 . -111) 62289) ((-589 . -1029) 62273) ((-589 . -21) T) ((-589 . -23) T) ((-589 . -1072) T) ((-589 . -595) 62242) ((-589 . -101) T) ((-589 . -25) T) ((-589 . -130) T) ((-589 . -626) 62226) ((-589 . -696) 62210) ((-589 . -411) 62175) ((-589 . -360) 62107) ((-588 . -1054) T) ((-588 . -595) 62057) ((-588 . -1072) T) ((-588 . -101) T) ((-588 . -92) T) ((-587 . -595) 62024) ((-584 . -1228) 62008) ((-584 . -365) 61992) ((-584 . -825) 61971) ((-584 . -149) 61955) ((-584 . -34) T) ((-584 . -1183) T) ((-584 . -595) 61867) ((-584 . -302) 61805) ((-584 . -505) 61738) ((-584 . -1072) 61688) ((-584 . -101) 61638) ((-584 . -481) 61622) ((-584 . -596) 61583) ((-584 . -586) 61560) ((-584 . -279) 61537) ((-584 . -281) 61514) ((-584 . -629) 61498) ((-584 . -19) 61482) ((-583 . -595) 61464) ((-579 . -1023) T) ((-579 . -1030) T) ((-579 . -1083) T) ((-579 . -705) T) ((-579 . -21) T) ((-579 . -23) T) ((-579 . -1072) T) ((-579 . -595) 61446) ((-579 . -101) T) ((-579 . -25) T) ((-579 . -130) T) ((-579 . -626) 61433) ((-579 . -543) 61412) ((-579 . -283) 61391) ((-579 . -170) 61370) ((-579 . -696) 61343) ((-579 . -1029) 61316) ((-579 . -111) 61287) ((-579 . -38) 61260) ((-578 . -1208) 61237) ((-578 . -47) 61214) ((-578 . -38) 61111) ((-578 . -696) 61008) ((-578 . -283) 60987) ((-578 . -543) 60966) ((-578 . -111) 60835) ((-578 . -1029) 60718) ((-578 . -170) 60669) ((-578 . -145) 60648) ((-578 . -143) 60627) ((-578 . -626) 60552) ((-578 . -947) 60521) ((-578 . -874) 60434) ((-578 . -279) 60419) ((-578 . -1023) T) ((-578 . -1030) T) ((-578 . -1083) T) ((-578 . -705) T) ((-578 . -21) T) ((-578 . -23) T) ((-578 . -1072) T) ((-578 . -595) 60401) ((-578 . -101) T) ((-578 . -25) T) ((-578 . -130) T) ((-578 . -227) 60360) ((-576 . -1115) T) ((-576 . -365) 60342) ((-576 . -825) T) ((-576 . -149) 60324) ((-576 . -34) T) ((-576 . -1183) T) ((-576 . -595) 60306) ((-576 . -302) NIL) ((-576 . -505) NIL) ((-576 . -1072) T) ((-576 . -101) T) ((-576 . -481) 60288) ((-576 . -596) NIL) ((-576 . -586) 60263) ((-576 . -279) 60238) ((-576 . -281) 60213) ((-576 . -629) 60195) ((-576 . -19) 60177) ((-575 . -1054) T) ((-575 . -595) 60143) ((-575 . -1072) T) ((-575 . -101) T) ((-575 . -92) T) ((-567 . -696) 60118) ((-567 . -626) 60093) ((-567 . -130) T) ((-567 . -25) T) ((-567 . -101) T) ((-567 . -595) 60075) ((-567 . -1072) T) ((-567 . -23) T) ((-567 . -21) T) ((-567 . -1029) 60050) ((-567 . -111) 60018) ((-567 . -1012) 60002) ((-565 . -343) T) ((-565 . -1122) T) ((-565 . -361) T) ((-565 . -143) T) ((-565 . -356) T) ((-565 . -1188) T) ((-565 . -895) T) ((-565 . -543) T) ((-565 . -170) T) ((-565 . -696) 59967) ((-565 . -38) 59932) ((-565 . -444) T) ((-565 . -300) T) ((-565 . -111) 59888) ((-565 . -1029) 59853) ((-565 . -626) 59818) ((-565 . -283) T) ((-565 . -237) T) ((-565 . -395) T) ((-565 . -1023) T) ((-565 . -1030) T) ((-565 . -1083) T) ((-565 . -705) T) ((-565 . -21) T) ((-565 . -23) T) ((-565 . -1072) T) ((-565 . -595) 59800) ((-565 . -101) T) ((-565 . -25) T) ((-565 . -130) T) ((-565 . -227) T) ((-565 . -322) 59787) ((-565 . -145) 59769) ((-565 . -1012) 59756) ((-565 . -1237) 59743) ((-565 . -1248) 59730) ((-565 . -596) 59712) ((-564 . -844) 59696) ((-564 . -895) T) ((-564 . -543) T) ((-564 . -283) T) ((-564 . -170) T) ((-564 . -696) 59683) ((-564 . -1029) 59670) ((-564 . -111) 59655) ((-564 . -38) 59642) ((-564 . -444) T) ((-564 . -300) T) ((-564 . -1023) T) ((-564 . -1030) T) ((-564 . -1083) T) ((-564 . -705) T) ((-564 . -21) T) ((-564 . -23) T) ((-564 . -1072) T) ((-564 . -595) 59624) ((-564 . -101) T) ((-564 . -25) T) ((-564 . -130) T) ((-564 . -626) 59611) ((-564 . -145) T) ((-563 . -1072) T) ((-563 . -595) 59593) ((-563 . -101) T) ((-557 . -541) 59577) ((-557 . -35) T) ((-557 . -94) T) ((-557 . -277) T) ((-557 . -484) T) ((-557 . -1172) T) ((-557 . -1169) T) ((-557 . -1012) 59559) ((-557 . -976) T) ((-557 . -825) T) ((-557 . -543) T) ((-557 . -283) T) ((-557 . -170) T) ((-557 . -696) 59546) ((-557 . -626) 59533) ((-557 . -130) T) ((-557 . -25) T) ((-557 . -101) T) ((-557 . -595) 59515) ((-557 . -1072) T) ((-557 . -23) T) ((-557 . -21) T) ((-557 . -1029) 59502) ((-557 . -111) 59487) ((-557 . -1023) T) ((-557 . -1030) T) ((-557 . -1083) T) ((-557 . -705) T) ((-557 . -38) 59474) ((-557 . -444) T) ((-537 . -1160) 59453) ((-537 . -223) 59403) ((-537 . -106) 59353) ((-537 . -302) 59157) ((-537 . -505) 58949) ((-537 . -481) 58886) ((-537 . -149) 58836) ((-537 . -596) NIL) ((-537 . -229) 58786) ((-537 . -592) 58765) ((-537 . -281) 58744) ((-537 . -279) 58723) ((-537 . -101) T) ((-537 . -1072) T) ((-537 . -595) 58705) ((-537 . -1183) T) ((-537 . -34) T) ((-537 . -586) 58684) ((-536 . -535) T) ((-536 . -1188) T) ((-536 . -1122) T) ((-536 . -1012) 58666) ((-536 . -596) 58565) ((-536 . -994) T) ((-536 . -860) 58547) ((-536 . -823) T) ((-536 . -775) T) ((-536 . -772) T) ((-536 . -825) T) ((-536 . -770) T) ((-536 . -769) T) ((-536 . -798) T) ((-536 . -619) 58529) ((-536 . -895) T) ((-536 . -543) T) ((-536 . -283) T) ((-536 . -170) T) ((-536 . -696) 58516) ((-536 . -1029) 58503) ((-536 . -111) 58488) ((-536 . -38) 58475) ((-536 . -444) T) ((-536 . -300) T) ((-536 . -227) T) ((-536 . -141) T) ((-536 . -1023) T) ((-536 . -1030) T) ((-536 . -1083) T) ((-536 . -705) T) ((-536 . -21) T) ((-536 . -23) T) ((-536 . -1072) T) ((-536 . -595) 58457) ((-536 . -101) T) ((-536 . -25) T) ((-536 . -130) T) ((-536 . -626) 58444) ((-536 . -145) T) ((-536 . -799) T) ((-525 . -1075) 58396) ((-525 . -101) T) ((-525 . -595) 58378) ((-525 . -1072) T) ((-525 . -596) 58359) ((-522 . -771) T) ((-522 . -130) T) ((-522 . -25) T) ((-522 . -101) T) ((-522 . -595) 58341) ((-522 . -1072) T) ((-522 . -23) T) ((-522 . -770) T) ((-522 . -825) T) ((-522 . -772) T) ((-522 . -775) T) ((-522 . -500) 58318) ((-520 . -518) T) ((-520 . -171) T) ((-520 . -595) 58300) ((-516 . -1054) T) ((-516 . -595) 58266) ((-516 . -1072) T) ((-516 . -101) T) ((-516 . -92) T) ((-515 . -1054) T) ((-515 . -595) 58232) ((-515 . -1072) T) ((-515 . -101) T) ((-515 . -92) T) ((-514 . -664) 58182) ((-514 . -481) 58166) ((-514 . -101) 58144) ((-514 . -1072) 58122) ((-514 . -505) 58055) ((-514 . -302) 57993) ((-514 . -595) 57925) ((-514 . -1183) T) ((-514 . -34) T) ((-514 . -56) 57875) ((-511 . -644) 57859) ((-511 . -1218) 57843) ((-511 . -984) 57827) ((-511 . -1120) 57811) ((-511 . -825) 57790) ((-511 . -365) 57774) ((-511 . -629) 57758) ((-511 . -281) 57735) ((-511 . -279) 57712) ((-511 . -586) 57689) ((-511 . -596) 57650) ((-511 . -481) 57634) ((-511 . -101) 57584) ((-511 . -1072) 57534) ((-511 . -505) 57467) ((-511 . -302) 57405) ((-511 . -595) 57317) ((-511 . -1183) T) ((-511 . -34) T) ((-511 . -149) 57301) ((-511 . -275) 57285) ((-510 . -56) 57259) ((-510 . -34) T) ((-510 . -1183) T) ((-510 . -595) 57191) ((-510 . -302) 57129) ((-510 . -505) 57062) ((-510 . -1072) 57040) ((-510 . -101) 57018) ((-510 . -481) 57002) ((-509 . -322) 56979) ((-509 . -227) T) ((-509 . -361) T) ((-509 . -1122) T) ((-509 . -343) T) ((-509 . -145) 56961) ((-509 . -626) 56906) ((-509 . -130) T) ((-509 . -25) T) ((-509 . -101) T) ((-509 . -595) 56888) ((-509 . -1072) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -705) T) ((-509 . -1083) T) ((-509 . -1030) T) ((-509 . -1023) T) ((-509 . -356) T) ((-509 . -1188) T) ((-509 . -895) T) ((-509 . -543) T) ((-509 . -170) T) ((-509 . -696) 56833) ((-509 . -38) 56798) ((-509 . -444) T) ((-509 . -300) T) ((-509 . -111) 56727) ((-509 . -1029) 56672) ((-509 . -283) T) ((-509 . -237) T) ((-509 . -395) T) ((-509 . -143) T) ((-509 . -1012) 56649) ((-509 . -1237) 56626) ((-509 . -1248) 56603) ((-508 . -1054) T) ((-508 . -595) 56569) ((-508 . -1072) T) ((-508 . -101) T) ((-508 . -92) T) ((-507 . -19) 56553) ((-507 . -629) 56537) ((-507 . -281) 56514) ((-507 . -279) 56491) ((-507 . -586) 56468) ((-507 . -596) 56429) ((-507 . -481) 56413) ((-507 . -101) 56363) ((-507 . -1072) 56313) ((-507 . -505) 56246) ((-507 . -302) 56184) ((-507 . -595) 56096) ((-507 . -1183) T) ((-507 . -34) T) ((-507 . -149) 56080) ((-507 . -825) 56059) ((-507 . -365) 56043) ((-507 . -275) 56027) ((-506 . -316) 56006) ((-506 . -1012) 55990) ((-506 . -23) T) ((-506 . -1072) T) ((-506 . -595) 55972) ((-506 . -101) T) ((-506 . -25) T) ((-506 . -130) T) ((-503 . -771) T) ((-503 . -130) T) ((-503 . -25) T) ((-503 . -101) T) ((-503 . -595) 55954) ((-503 . -1072) T) ((-503 . -23) T) ((-503 . -770) T) ((-503 . -825) T) ((-503 . -772) T) ((-503 . -775) T) ((-503 . -500) 55933) ((-502 . -770) T) ((-502 . -825) T) ((-502 . -772) T) ((-502 . -25) T) ((-502 . -101) T) ((-502 . -595) 55915) ((-502 . -1072) T) ((-502 . -23) T) ((-502 . -500) 55894) ((-501 . -500) 55873) ((-501 . -101) T) ((-501 . -595) 55855) ((-501 . -1072) T) ((-499 . -23) T) ((-499 . -1072) T) ((-499 . -595) 55837) ((-499 . -101) T) ((-499 . -25) T) ((-499 . -500) 55816) ((-498 . -21) T) ((-498 . -23) T) ((-498 . -1072) T) ((-498 . -595) 55798) ((-498 . -101) T) ((-498 . -25) T) ((-498 . -130) T) ((-498 . -500) 55777) ((-497 . -1054) T) ((-497 . -595) 55727) ((-497 . -1072) T) ((-497 . -101) T) ((-497 . -92) T) ((-495 . -1072) T) ((-495 . -595) 55709) ((-495 . -101) T) ((-493 . -825) T) ((-493 . -101) T) ((-493 . -595) 55691) ((-493 . -1072) T) ((-491 . -123) T) ((-491 . -365) 55673) ((-491 . -825) T) ((-491 . -149) 55655) ((-491 . -34) T) ((-491 . -1183) T) ((-491 . -595) 55637) ((-491 . -302) NIL) ((-491 . -505) NIL) ((-491 . -1072) T) ((-491 . -481) 55619) ((-491 . -596) 55601) ((-491 . -586) 55576) ((-491 . -279) 55551) ((-491 . -281) 55526) ((-491 . -629) 55508) ((-491 . -19) 55490) ((-491 . -101) T) ((-491 . -640) T) ((-488 . -56) 55440) ((-488 . -34) T) ((-488 . -1183) T) ((-488 . -595) 55372) ((-488 . -302) 55310) ((-488 . -505) 55243) ((-488 . -1072) 55221) ((-488 . -101) 55199) ((-488 . -481) 55183) ((-487 . -19) 55167) ((-487 . -629) 55151) ((-487 . -281) 55128) ((-487 . -279) 55105) ((-487 . -586) 55082) ((-487 . -596) 55043) ((-487 . -481) 55027) ((-487 . -101) 54977) ((-487 . -1072) 54927) ((-487 . -505) 54860) ((-487 . -302) 54798) ((-487 . -595) 54710) ((-487 . -1183) T) ((-487 . -34) T) ((-487 . -149) 54694) ((-487 . -825) 54673) ((-487 . -365) 54657) ((-486 . -291) T) ((-486 . -1012) 54600) ((-486 . -1072) T) ((-486 . -595) 54582) ((-486 . -101) T) ((-486 . -825) T) ((-486 . -505) 54548) ((-486 . -302) 54535) ((-486 . -27) T) ((-486 . -976) T) ((-486 . -237) T) ((-486 . -111) 54491) ((-486 . -1029) 54456) ((-486 . -283) T) ((-486 . -696) 54421) ((-486 . -626) 54386) ((-486 . -130) T) ((-486 . -25) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1023) T) ((-486 . -1030) T) ((-486 . -1083) T) ((-486 . -705) T) ((-486 . -38) 54351) ((-486 . -300) T) ((-486 . -444) T) ((-486 . -170) T) ((-486 . -543) T) ((-486 . -895) T) ((-486 . -1188) T) ((-486 . -356) T) ((-486 . -619) 54311) ((-486 . -994) T) ((-486 . -596) 54256) ((-486 . -145) T) ((-486 . -227) T) ((-482 . -1072) T) ((-482 . -595) 54222) ((-482 . -101) T) ((-479 . -965) 54204) ((-479 . -1122) T) ((-479 . -1012) 54164) ((-479 . -596) 54094) ((-479 . -994) T) ((-479 . -884) NIL) ((-479 . -858) 54076) ((-479 . -823) T) ((-479 . -775) T) ((-479 . -772) T) ((-479 . -825) T) ((-479 . -770) T) ((-479 . -769) T) ((-479 . -798) T) ((-479 . -860) 54058) ((-479 . -1183) T) ((-479 . -393) 54040) ((-479 . -619) 54022) ((-479 . -370) 54004) ((-479 . -279) NIL) ((-479 . -302) NIL) ((-479 . -505) NIL) ((-479 . -331) 53986) ((-479 . -237) T) ((-479 . -111) 53920) ((-479 . -1029) 53870) ((-479 . -283) T) ((-479 . -696) 53820) ((-479 . -626) 53770) ((-479 . -38) 53720) ((-479 . -300) T) ((-479 . -444) T) ((-479 . -170) T) ((-479 . -543) T) ((-479 . -895) T) ((-479 . -1188) T) ((-479 . -356) T) ((-479 . -227) T) ((-479 . -874) NIL) ((-479 . -225) 53702) ((-479 . -145) T) ((-479 . -143) NIL) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -595) 53684) ((-479 . -1072) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1023) T) ((-479 . -1030) T) ((-479 . -1083) T) ((-479 . -705) T) ((-477 . -329) 53653) ((-477 . -130) T) ((-477 . -25) T) ((-477 . -101) T) ((-477 . -595) 53635) ((-477 . -1072) T) ((-477 . -23) T) ((-477 . -21) T) ((-476 . -942) 53619) ((-476 . -481) 53603) ((-476 . -101) 53581) ((-476 . -1072) 53559) ((-476 . -505) 53492) ((-476 . -302) 53430) ((-476 . -595) 53362) ((-476 . -1183) T) ((-476 . -34) T) ((-476 . -106) 53346) ((-475 . -1054) T) ((-475 . -595) 53312) ((-475 . -1072) T) ((-475 . -101) T) ((-475 . -92) T) ((-474 . -232) 53291) ((-474 . -1237) 53261) ((-474 . -769) 53240) ((-474 . -823) 53219) ((-474 . -775) 53170) ((-474 . -772) 53121) ((-474 . -825) 53072) ((-474 . -770) 53023) ((-474 . -771) 53002) ((-474 . -281) 52979) ((-474 . -279) 52956) ((-474 . -481) 52940) ((-474 . -505) 52873) ((-474 . -302) 52811) ((-474 . -1183) T) ((-474 . -34) T) ((-474 . -586) 52788) ((-474 . -1012) 52615) ((-474 . -405) 52584) ((-474 . -619) 52490) ((-474 . -370) 52459) ((-474 . -361) 52438) ((-474 . -227) 52390) ((-474 . -874) 52322) ((-474 . -225) 52291) ((-474 . -111) 52181) ((-474 . -1029) 52078) ((-474 . -170) 52057) ((-474 . -595) 51788) ((-474 . -696) 51730) ((-474 . -626) 51578) ((-474 . -130) 51448) ((-474 . -23) 51318) ((-474 . -21) 51228) ((-474 . -1023) 51158) ((-474 . -1030) 51088) ((-474 . -1083) 50998) ((-474 . -705) 50908) ((-474 . -38) 50878) ((-474 . -1072) 50668) ((-474 . -101) 50458) ((-474 . -25) 50309) ((-473 . -924) 50254) ((-473 . -1012) 50130) ((-473 . -1188) 50109) ((-473 . -884) 50088) ((-473 . -860) NIL) ((-473 . -874) 50065) ((-473 . -825) 50044) ((-473 . -505) 49987) ((-473 . -444) 49938) ((-473 . -619) 49886) ((-473 . -370) 49870) ((-473 . -47) 49827) ((-473 . -38) 49676) ((-473 . -696) 49525) ((-473 . -283) 49456) ((-473 . -543) 49387) ((-473 . -111) 49216) ((-473 . -1029) 49059) ((-473 . -170) 48970) ((-473 . -145) 48949) ((-473 . -143) 48928) ((-473 . -626) 48853) ((-473 . -130) T) ((-473 . -25) T) ((-473 . -101) T) ((-473 . -595) 48835) ((-473 . -1072) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1023) T) ((-473 . -1030) T) ((-473 . -1083) T) ((-473 . -705) T) ((-473 . -405) 48819) ((-473 . -319) 48776) ((-473 . -302) 48763) ((-473 . -596) 48624) ((-471 . -1160) 48603) ((-471 . -223) 48553) ((-471 . -106) 48503) ((-471 . -302) 48307) ((-471 . -505) 48099) ((-471 . -481) 48036) ((-471 . -149) 47986) ((-471 . -596) NIL) ((-471 . -229) 47936) ((-471 . -592) 47915) ((-471 . -281) 47894) ((-471 . -279) 47873) ((-471 . -101) T) ((-471 . -1072) T) ((-471 . -595) 47855) ((-471 . -1183) T) ((-471 . -34) T) ((-471 . -586) 47834) ((-470 . -1054) T) ((-470 . -595) 47800) ((-470 . -1072) T) ((-470 . -101) T) ((-470 . -92) T) ((-469 . -356) T) ((-469 . -1188) T) ((-469 . -895) T) ((-469 . -543) T) ((-469 . -170) T) ((-469 . -696) 47765) ((-469 . -38) 47730) ((-469 . -444) T) ((-469 . -300) T) ((-469 . -626) 47695) ((-469 . -705) T) ((-469 . -1083) T) ((-469 . -1030) T) ((-469 . -1023) T) ((-469 . -111) 47651) ((-469 . -1029) 47616) ((-469 . -21) T) ((-469 . -23) T) ((-469 . -1072) T) ((-469 . -595) 47568) ((-469 . -101) T) ((-469 . -25) T) ((-469 . -130) T) ((-469 . -283) T) ((-469 . -237) T) ((-469 . -145) T) ((-469 . -1012) 47528) ((-469 . -994) T) ((-469 . -596) 47450) ((-468 . -1178) 47419) ((-468 . -595) 47381) ((-468 . -149) 47365) ((-468 . -34) T) ((-468 . -1183) T) ((-468 . -302) 47303) ((-468 . -505) 47236) ((-468 . -1072) T) ((-468 . -101) T) ((-468 . -481) 47220) ((-468 . -596) 47181) ((-468 . -950) 47150) ((-467 . -1160) 47129) ((-467 . -223) 47079) ((-467 . -106) 47029) ((-467 . -302) 46833) ((-467 . -505) 46625) ((-467 . -481) 46562) ((-467 . -149) 46512) ((-467 . -596) NIL) ((-467 . -229) 46462) ((-467 . -592) 46441) ((-467 . -281) 46420) ((-467 . -279) 46399) ((-467 . -101) T) ((-467 . -1072) T) ((-467 . -595) 46381) ((-467 . -1183) T) ((-467 . -34) T) ((-467 . -586) 46360) ((-466 . -1212) 46344) ((-466 . -227) 46296) ((-466 . -279) 46281) ((-466 . -874) 46187) ((-466 . -947) 46149) ((-466 . -38) 45990) ((-466 . -111) 45811) ((-466 . -1029) 45646) ((-466 . -626) 45543) ((-466 . -696) 45384) ((-466 . -143) 45363) ((-466 . -145) 45342) ((-466 . -47) 45312) ((-466 . -1208) 45282) ((-466 . -35) 45248) ((-466 . -94) 45214) ((-466 . -277) 45180) ((-466 . -484) 45146) ((-466 . -1172) 45112) ((-466 . -1169) 45078) ((-466 . -976) 45044) ((-466 . -237) 45023) ((-466 . -283) 44974) ((-466 . -130) T) ((-466 . -25) T) ((-466 . -101) T) ((-466 . -595) 44956) ((-466 . -1072) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1023) T) ((-466 . -1030) T) ((-466 . -1083) T) ((-466 . -705) T) ((-466 . -300) 44935) ((-466 . -444) 44914) ((-466 . -170) 44845) ((-466 . -543) 44796) ((-466 . -895) 44775) ((-466 . -1188) 44754) ((-466 . -356) 44733) ((-460 . -1072) T) ((-460 . -595) 44715) ((-460 . -101) T) ((-455 . -950) 44684) ((-455 . -596) 44645) ((-455 . -481) 44629) ((-455 . -101) T) ((-455 . -1072) T) ((-455 . -505) 44562) ((-455 . -302) 44500) ((-455 . -595) 44462) ((-455 . -1183) T) ((-455 . -34) T) ((-455 . -149) 44446) ((-453 . -696) 44417) ((-453 . -626) 44388) ((-453 . -130) T) ((-453 . -25) T) ((-453 . -101) T) ((-453 . -595) 44370) ((-453 . -1072) T) ((-453 . -23) T) ((-453 . -21) T) ((-453 . -1029) 44341) ((-453 . -111) 44302) ((-446 . -924) 44269) ((-446 . -1012) 44145) ((-446 . -1188) 44124) ((-446 . -884) 44103) ((-446 . -860) NIL) ((-446 . -874) 44080) ((-446 . -825) 44059) ((-446 . -505) 44002) ((-446 . -444) 43953) ((-446 . -619) 43901) ((-446 . -370) 43885) ((-446 . -47) 43864) ((-446 . -38) 43713) ((-446 . -696) 43562) ((-446 . -283) 43493) ((-446 . -543) 43424) ((-446 . -111) 43253) ((-446 . -1029) 43096) ((-446 . -170) 43007) ((-446 . -145) 42986) ((-446 . -143) 42965) ((-446 . -626) 42890) ((-446 . -130) T) ((-446 . -25) T) ((-446 . -101) T) ((-446 . -595) 42872) ((-446 . -1072) T) ((-446 . -23) T) ((-446 . -21) T) ((-446 . -1023) T) ((-446 . -1030) T) ((-446 . -1083) T) ((-446 . -705) T) ((-446 . -405) 42856) ((-446 . -319) 42835) ((-446 . -302) 42822) ((-446 . -596) 42683) ((-445 . -411) 42653) ((-445 . -723) 42623) ((-445 . -699) T) ((-445 . -740) T) ((-445 . -111) 42586) ((-445 . -1029) 42556) ((-445 . -21) T) ((-445 . -23) T) ((-445 . -1072) T) ((-445 . -595) 42538) ((-445 . -101) T) ((-445 . -25) T) ((-445 . -130) T) ((-445 . -626) 42468) ((-445 . -696) 42438) ((-445 . -360) 42408) ((-431 . -1072) T) ((-431 . -595) 42390) ((-431 . -101) T) ((-430 . -358) 42364) ((-430 . -101) T) ((-430 . -595) 42346) ((-430 . -1072) T) ((-429 . -1072) T) ((-429 . -595) 42328) ((-429 . -101) T) ((-427 . -595) 42310) ((-422 . -38) 42294) ((-422 . -626) 42268) ((-422 . -705) T) ((-422 . -1083) T) ((-422 . -1030) T) ((-422 . -1023) T) ((-422 . -111) 42247) ((-422 . -1029) 42231) ((-422 . -21) T) ((-422 . -23) T) ((-422 . -1072) T) ((-422 . -595) 42213) ((-422 . -101) T) ((-422 . -25) T) ((-422 . -130) T) ((-422 . -696) 42197) ((-408 . -705) T) ((-408 . -1072) T) ((-408 . -595) 42179) ((-408 . -101) T) ((-408 . -1083) T) ((-406 . -465) T) ((-406 . -1083) T) ((-406 . -101) T) ((-406 . -595) 42161) ((-406 . -1072) T) ((-406 . -705) T) ((-400 . -965) 42145) ((-400 . -1122) 42123) ((-400 . -1012) 41989) ((-400 . -596) 41797) ((-400 . -994) 41776) ((-400 . -884) 41755) ((-400 . -858) 41739) ((-400 . -823) 41718) ((-400 . -775) 41697) ((-400 . -772) 41676) ((-400 . -825) 41627) ((-400 . -770) 41606) ((-400 . -769) 41585) ((-400 . -798) 41564) ((-400 . -860) 41489) ((-400 . -1183) T) ((-400 . -393) 41473) ((-400 . -619) 41421) ((-400 . -370) 41405) ((-400 . -279) 41363) ((-400 . -302) 41328) ((-400 . -505) 41240) ((-400 . -331) 41224) ((-400 . -237) T) ((-400 . -111) 41162) ((-400 . -1029) 41114) ((-400 . -283) T) ((-400 . -696) 41066) ((-400 . -626) 41018) ((-400 . -38) 40970) ((-400 . -300) T) ((-400 . -444) T) ((-400 . -170) T) ((-400 . -543) T) ((-400 . -895) T) ((-400 . -1188) T) ((-400 . -356) T) ((-400 . -227) 40949) ((-400 . -874) 40908) ((-400 . -225) 40892) ((-400 . -145) 40871) ((-400 . -143) 40850) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -595) 40832) ((-400 . -1072) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1023) T) ((-400 . -1030) T) ((-400 . -1083) T) ((-400 . -705) T) ((-400 . -799) 40785) ((-398 . -543) T) ((-398 . -283) T) ((-398 . -170) T) ((-398 . -696) 40759) ((-398 . -626) 40733) ((-398 . -130) T) ((-398 . -25) T) ((-398 . -101) T) ((-398 . -595) 40715) ((-398 . -1072) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -1029) 40689) ((-398 . -111) 40656) ((-398 . -1023) T) ((-398 . -1030) T) ((-398 . -1083) T) ((-398 . -705) T) ((-398 . -38) 40630) ((-398 . -225) 40614) ((-398 . -874) 40573) ((-398 . -227) 40552) ((-398 . -331) 40536) ((-398 . -505) 40378) ((-398 . -302) 40317) ((-398 . -279) 40245) ((-398 . -405) 40229) ((-398 . -1012) 40125) ((-398 . -444) 40075) ((-398 . -994) 40054) ((-398 . -596) 39962) ((-398 . -1188) 39940) ((-392 . -1072) T) ((-392 . -595) 39922) ((-392 . -101) T) ((-392 . -596) 39899) ((-391 . -389) T) ((-391 . -1183) T) ((-391 . -595) 39881) ((-386 . -1072) T) ((-386 . -595) 39863) ((-386 . -101) T) ((-383 . -723) 39847) ((-383 . -699) T) ((-383 . -740) T) ((-383 . -111) 39826) ((-383 . -1029) 39810) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1072) T) ((-383 . -595) 39792) ((-383 . -101) T) ((-383 . -25) T) ((-383 . -130) T) ((-383 . -626) 39776) ((-383 . -696) 39760) ((-381 . -382) T) ((-381 . -101) T) ((-381 . -595) 39742) ((-381 . -1072) T) ((-379 . -705) T) ((-379 . -1072) T) ((-379 . -595) 39724) ((-379 . -101) T) ((-379 . -1083) T) ((-379 . -1012) 39708) ((-379 . -825) 39687) ((-375 . -377) 39666) ((-375 . -1012) 39650) ((-375 . -696) 39620) ((-375 . -626) 39604) ((-375 . -130) T) ((-375 . -25) T) ((-375 . -101) T) ((-375 . -595) 39586) ((-375 . -1072) T) ((-375 . -23) T) ((-375 . -21) T) ((-375 . -1029) 39570) ((-375 . -111) 39549) ((-374 . -111) 39528) ((-374 . -1029) 39512) ((-374 . -21) T) ((-374 . -23) T) ((-374 . -1072) T) ((-374 . -595) 39494) ((-374 . -101) T) ((-374 . -25) T) ((-374 . -130) T) ((-374 . -626) 39478) ((-374 . -500) 39457) ((-374 . -696) 39427) ((-371 . -397) T) ((-371 . -145) T) ((-371 . -626) 39392) ((-371 . -130) T) ((-371 . -25) T) ((-371 . -101) T) ((-371 . -595) 39359) ((-371 . -1072) T) ((-371 . -23) T) ((-371 . -21) T) ((-371 . -705) T) ((-371 . -1083) T) ((-371 . -1030) T) ((-371 . -1023) T) ((-371 . -596) 39273) ((-371 . -356) T) ((-371 . -1188) T) ((-371 . -895) T) ((-371 . -543) T) ((-371 . -170) T) ((-371 . -696) 39238) ((-371 . -38) 39203) ((-371 . -444) T) ((-371 . -300) T) ((-371 . -111) 39159) ((-371 . -1029) 39124) ((-371 . -283) T) ((-371 . -237) T) ((-371 . -823) T) ((-371 . -775) T) ((-371 . -772) T) ((-371 . -825) T) ((-371 . -770) T) ((-371 . -769) T) ((-371 . -860) 39106) ((-371 . -976) T) ((-371 . -994) T) ((-371 . -1012) 39066) ((-371 . -1032) T) ((-371 . -227) T) ((-371 . -799) T) ((-371 . -1169) T) ((-371 . -1172) T) ((-371 . -484) T) ((-371 . -277) T) ((-371 . -94) T) ((-371 . -35) T) ((-357 . -358) 39043) ((-357 . -101) T) ((-357 . -595) 39025) ((-357 . -1072) T) ((-354 . -465) T) ((-354 . -1083) T) ((-354 . -101) T) ((-354 . -595) 39007) ((-354 . -1072) T) ((-354 . -705) T) ((-354 . -1012) 38991) ((-352 . -322) 38975) ((-352 . -227) 38954) ((-352 . -361) 38933) ((-352 . -1122) 38912) ((-352 . -343) 38891) ((-352 . -145) 38870) ((-352 . -626) 38822) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -101) T) ((-352 . -595) 38804) ((-352 . -1072) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -705) T) ((-352 . -1083) T) ((-352 . -1030) T) ((-352 . -1023) T) ((-352 . -356) T) ((-352 . -1188) T) ((-352 . -895) T) ((-352 . -543) T) ((-352 . -170) T) ((-352 . -696) 38756) ((-352 . -38) 38721) ((-352 . -444) T) ((-352 . -300) T) ((-352 . -111) 38659) ((-352 . -1029) 38611) ((-352 . -283) T) ((-352 . -237) T) ((-352 . -395) 38562) ((-352 . -143) 38513) ((-352 . -1012) 38497) ((-352 . -1237) 38481) ((-352 . -1248) 38465) ((-348 . -322) 38449) ((-348 . -227) 38428) ((-348 . -361) 38407) ((-348 . -1122) 38386) ((-348 . -343) 38365) ((-348 . -145) 38344) ((-348 . -626) 38296) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -595) 38278) ((-348 . -1072) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -705) T) ((-348 . -1083) T) ((-348 . -1030) T) ((-348 . -1023) T) ((-348 . -356) T) ((-348 . -1188) T) ((-348 . -895) T) ((-348 . -543) T) ((-348 . -170) T) ((-348 . -696) 38230) ((-348 . -38) 38195) ((-348 . -444) T) ((-348 . -300) T) ((-348 . -111) 38133) ((-348 . -1029) 38085) ((-348 . -283) T) ((-348 . -237) T) ((-348 . -395) 38036) ((-348 . -143) 37987) ((-348 . -1012) 37971) ((-348 . -1237) 37955) ((-348 . -1248) 37939) ((-347 . -322) 37923) ((-347 . -227) 37902) ((-347 . -361) 37881) ((-347 . -1122) 37860) ((-347 . -343) 37839) ((-347 . -145) 37818) ((-347 . -626) 37770) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -595) 37752) ((-347 . -1072) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -705) T) ((-347 . -1083) T) ((-347 . -1030) T) ((-347 . -1023) T) ((-347 . -356) T) ((-347 . -1188) T) ((-347 . -895) T) ((-347 . -543) T) ((-347 . -170) T) ((-347 . -696) 37704) ((-347 . -38) 37669) ((-347 . -444) T) ((-347 . -300) T) ((-347 . -111) 37607) ((-347 . -1029) 37559) ((-347 . -283) T) ((-347 . -237) T) ((-347 . -395) 37510) ((-347 . -143) 37461) ((-347 . -1012) 37445) ((-347 . -1237) 37429) ((-347 . -1248) 37413) ((-346 . -322) 37397) ((-346 . -227) 37376) ((-346 . -361) 37355) ((-346 . -1122) 37334) ((-346 . -343) 37313) ((-346 . -145) 37292) ((-346 . -626) 37244) ((-346 . -130) T) ((-346 . -25) T) ((-346 . -101) T) ((-346 . -595) 37226) ((-346 . -1072) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -705) T) ((-346 . -1083) T) ((-346 . -1030) T) ((-346 . -1023) T) ((-346 . -356) T) ((-346 . -1188) T) ((-346 . -895) T) ((-346 . -543) T) ((-346 . -170) T) ((-346 . -696) 37178) ((-346 . -38) 37143) ((-346 . -444) T) ((-346 . -300) T) ((-346 . -111) 37081) ((-346 . -1029) 37033) ((-346 . -283) T) ((-346 . -237) T) ((-346 . -395) 36984) ((-346 . -143) 36935) ((-346 . -1012) 36919) ((-346 . -1237) 36903) ((-346 . -1248) 36887) ((-345 . -322) 36864) ((-345 . -227) T) ((-345 . -361) T) ((-345 . -1122) T) ((-345 . -343) T) ((-345 . -145) 36846) ((-345 . -626) 36791) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -101) T) ((-345 . -595) 36773) ((-345 . -1072) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -705) T) ((-345 . -1083) T) ((-345 . -1030) T) ((-345 . -1023) T) ((-345 . -356) T) ((-345 . -1188) T) ((-345 . -895) T) ((-345 . -543) T) ((-345 . -170) T) ((-345 . -696) 36718) ((-345 . -38) 36683) ((-345 . -444) T) ((-345 . -300) T) ((-345 . -111) 36612) ((-345 . -1029) 36557) ((-345 . -283) T) ((-345 . -237) T) ((-345 . -395) T) ((-345 . -143) T) ((-345 . -1012) 36534) ((-345 . -1237) 36511) ((-345 . -1248) 36488) ((-339 . -322) 36472) ((-339 . -227) 36451) ((-339 . -361) 36430) ((-339 . -1122) 36409) ((-339 . -343) 36388) ((-339 . -145) 36367) ((-339 . -626) 36319) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -595) 36301) ((-339 . -1072) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -705) T) ((-339 . -1083) T) ((-339 . -1030) T) ((-339 . -1023) T) ((-339 . -356) T) ((-339 . -1188) T) ((-339 . -895) T) ((-339 . -543) T) ((-339 . -170) T) ((-339 . -696) 36253) ((-339 . -38) 36218) ((-339 . -444) T) ((-339 . -300) T) ((-339 . -111) 36156) ((-339 . -1029) 36108) ((-339 . -283) T) ((-339 . -237) T) ((-339 . -395) 36059) ((-339 . -143) 36010) ((-339 . -1012) 35994) ((-339 . -1237) 35978) ((-339 . -1248) 35962) ((-338 . -322) 35946) ((-338 . -227) 35925) ((-338 . -361) 35904) ((-338 . -1122) 35883) ((-338 . -343) 35862) ((-338 . -145) 35841) ((-338 . -626) 35793) ((-338 . -130) T) ((-338 . -25) T) ((-338 . -101) T) ((-338 . -595) 35775) ((-338 . -1072) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -705) T) ((-338 . -1083) T) ((-338 . -1030) T) ((-338 . -1023) T) ((-338 . -356) T) ((-338 . -1188) T) ((-338 . -895) T) ((-338 . -543) T) ((-338 . -170) T) ((-338 . -696) 35727) ((-338 . -38) 35692) ((-338 . -444) T) ((-338 . -300) T) ((-338 . -111) 35630) ((-338 . -1029) 35582) ((-338 . -283) T) ((-338 . -237) T) ((-338 . -395) 35533) ((-338 . -143) 35484) ((-338 . -1012) 35468) ((-338 . -1237) 35452) ((-338 . -1248) 35436) ((-337 . -322) 35413) ((-337 . -227) T) ((-337 . -361) T) ((-337 . -1122) T) ((-337 . -343) T) ((-337 . -145) 35395) ((-337 . -626) 35340) ((-337 . -130) T) ((-337 . -25) T) ((-337 . -101) T) ((-337 . -595) 35322) ((-337 . -1072) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -705) T) ((-337 . -1083) T) ((-337 . -1030) T) ((-337 . -1023) T) ((-337 . -356) T) ((-337 . -1188) T) ((-337 . -895) T) ((-337 . -543) T) ((-337 . -170) T) ((-337 . -696) 35267) ((-337 . -38) 35232) ((-337 . -444) T) ((-337 . -300) T) ((-337 . -111) 35161) ((-337 . -1029) 35106) ((-337 . -283) T) ((-337 . -237) T) ((-337 . -395) T) ((-337 . -143) T) ((-337 . -1012) 35083) ((-337 . -1237) 35060) ((-337 . -1248) 35037) ((-333 . -322) 35014) ((-333 . -227) T) ((-333 . -361) T) ((-333 . -1122) T) ((-333 . -343) T) ((-333 . -145) 34996) ((-333 . -626) 34941) ((-333 . -130) T) ((-333 . -25) T) ((-333 . -101) T) ((-333 . -595) 34923) ((-333 . -1072) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -705) T) ((-333 . -1083) T) ((-333 . -1030) T) ((-333 . -1023) T) ((-333 . -356) T) ((-333 . -1188) T) ((-333 . -895) T) ((-333 . -543) T) ((-333 . -170) T) ((-333 . -696) 34868) ((-333 . -38) 34833) ((-333 . -444) T) ((-333 . -300) T) ((-333 . -111) 34762) ((-333 . -1029) 34707) ((-333 . -283) T) ((-333 . -237) T) ((-333 . -395) T) ((-333 . -143) T) ((-333 . -1012) 34684) ((-333 . -1237) 34661) ((-333 . -1248) 34638) ((-332 . -291) T) ((-332 . -1012) 34605) ((-332 . -1072) T) ((-332 . -595) 34587) ((-332 . -101) T) ((-332 . -825) T) ((-332 . -505) 34553) ((-332 . -302) 34540) ((-332 . -38) 34524) ((-332 . -626) 34498) ((-332 . -705) T) ((-332 . -1083) T) ((-332 . -1030) T) ((-332 . -1023) T) ((-332 . -111) 34477) ((-332 . -1029) 34461) ((-332 . -21) T) ((-332 . -23) T) ((-332 . -25) T) ((-332 . -130) T) ((-332 . -696) 34445) ((-332 . -874) 34426) ((-326 . -329) 34395) ((-326 . -130) T) ((-326 . -25) T) ((-326 . -101) T) ((-326 . -595) 34377) ((-326 . -1072) T) ((-326 . -23) T) ((-326 . -21) T) ((-324 . -825) T) ((-324 . -101) T) ((-324 . -595) 34359) ((-324 . -1072) T) ((-323 . -1072) T) ((-323 . -595) 34341) ((-323 . -101) T) ((-320 . -19) 34325) ((-320 . -629) 34309) ((-320 . -281) 34286) ((-320 . -279) 34263) ((-320 . -586) 34240) ((-320 . -596) 34201) ((-320 . -481) 34185) ((-320 . -101) 34135) ((-320 . -1072) 34085) ((-320 . -505) 34018) ((-320 . -302) 33956) ((-320 . -595) 33868) ((-320 . -1183) T) ((-320 . -34) T) ((-320 . -149) 33852) ((-320 . -825) 33831) ((-320 . -365) 33815) ((-320 . -275) 33799) ((-317 . -316) 33776) ((-317 . -1012) 33760) ((-317 . -23) T) ((-317 . -1072) T) ((-317 . -595) 33742) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-315 . -21) T) ((-315 . -23) T) ((-315 . -1072) T) ((-315 . -595) 33724) ((-315 . -101) T) ((-315 . -25) T) ((-315 . -130) T) ((-315 . -696) 33706) ((-315 . -626) 33688) ((-315 . -1029) 33670) ((-315 . -111) 33645) ((-315 . -316) 33622) ((-315 . -1012) 33606) ((-315 . -825) 33585) ((-312 . -1212) 33569) ((-312 . -227) 33521) ((-312 . -279) 33506) ((-312 . -874) 33412) ((-312 . -947) 33374) ((-312 . -38) 33215) ((-312 . -111) 33036) ((-312 . -1029) 32871) ((-312 . -626) 32768) ((-312 . -696) 32609) ((-312 . -143) 32588) ((-312 . -145) 32567) ((-312 . -47) 32537) ((-312 . -1208) 32507) ((-312 . -35) 32473) ((-312 . -94) 32439) ((-312 . -277) 32405) ((-312 . -484) 32371) ((-312 . -1172) 32337) ((-312 . -1169) 32303) ((-312 . -976) 32269) ((-312 . -237) 32248) ((-312 . -283) 32199) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -101) T) ((-312 . -595) 32181) ((-312 . -1072) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1023) T) ((-312 . -1030) T) ((-312 . -1083) T) ((-312 . -705) T) ((-312 . -300) 32160) ((-312 . -444) 32139) ((-312 . -170) 32070) ((-312 . -543) 32021) ((-312 . -895) 32000) ((-312 . -1188) 31979) ((-312 . -356) 31958) ((-312 . -770) T) ((-312 . -825) T) ((-312 . -772) T) ((-307 . -414) 31942) ((-307 . -1012) 31605) ((-307 . -596) 31466) ((-307 . -858) 31450) ((-307 . -874) 31416) ((-307 . -465) 31395) ((-307 . -405) 31379) ((-307 . -860) 31304) ((-307 . -1183) T) ((-307 . -393) 31288) ((-307 . -619) 31194) ((-307 . -370) 31163) ((-307 . -237) 31142) ((-307 . -111) 31038) ((-307 . -1029) 30948) ((-307 . -283) 30927) ((-307 . -696) 30837) ((-307 . -626) 30658) ((-307 . -38) 30568) ((-307 . -300) 30547) ((-307 . -444) 30526) ((-307 . -170) 30505) ((-307 . -543) 30484) ((-307 . -895) 30463) ((-307 . -1188) 30442) ((-307 . -356) 30421) ((-307 . -302) 30408) ((-307 . -505) 30374) ((-307 . -825) T) ((-307 . -291) T) ((-307 . -145) 30353) ((-307 . -143) 30332) ((-307 . -1023) 30222) ((-307 . -1030) 30112) ((-307 . -1083) 29961) ((-307 . -705) 29810) ((-307 . -130) 29681) ((-307 . -25) 29533) ((-307 . -101) T) ((-307 . -595) 29515) ((-307 . -1072) T) ((-307 . -23) 29367) ((-307 . -21) 29238) ((-307 . -29) 29208) ((-307 . -976) 29187) ((-307 . -27) 29166) ((-307 . -1169) 29145) ((-307 . -1172) 29124) ((-307 . -484) 29103) ((-307 . -277) 29082) ((-307 . -94) 29061) ((-307 . -35) 29040) ((-307 . -158) 29019) ((-307 . -141) 28998) ((-307 . -610) 28977) ((-307 . -934) 28956) ((-307 . -1110) 28935) ((-306 . -965) 28896) ((-306 . -1122) NIL) ((-306 . -1012) 28826) ((-306 . -596) NIL) ((-306 . -994) NIL) ((-306 . -884) NIL) ((-306 . -858) 28787) ((-306 . -823) NIL) ((-306 . -775) NIL) ((-306 . -772) NIL) ((-306 . -825) NIL) ((-306 . -770) NIL) ((-306 . -769) NIL) ((-306 . -798) NIL) ((-306 . -860) NIL) ((-306 . -1183) T) ((-306 . -393) 28748) ((-306 . -619) 28709) ((-306 . -370) 28670) ((-306 . -279) 28605) ((-306 . -302) 28546) ((-306 . -505) 28438) ((-306 . -331) 28399) ((-306 . -237) T) ((-306 . -111) 28312) ((-306 . -1029) 28241) ((-306 . -283) T) ((-306 . -696) 28170) ((-306 . -626) 28099) ((-306 . -38) 28028) ((-306 . -300) T) ((-306 . -444) T) ((-306 . -170) T) ((-306 . -543) T) ((-306 . -895) T) ((-306 . -1188) T) ((-306 . -356) T) ((-306 . -227) NIL) ((-306 . -874) NIL) ((-306 . -225) 27989) ((-306 . -145) 27945) ((-306 . -143) 27901) ((-306 . -130) T) ((-306 . -25) T) ((-306 . -101) T) ((-306 . -595) 27883) ((-306 . -1072) T) ((-306 . -23) T) ((-306 . -21) T) ((-306 . -1023) T) ((-306 . -1030) T) ((-306 . -1083) T) ((-306 . -705) T) ((-305 . -1054) T) ((-305 . -595) 27849) ((-305 . -1072) T) ((-305 . -101) T) ((-305 . -92) T) ((-304 . -1072) T) ((-304 . -595) 27831) ((-304 . -101) T) ((-288 . -1160) 27810) ((-288 . -223) 27760) ((-288 . -106) 27710) ((-288 . -302) 27514) ((-288 . -505) 27306) ((-288 . -481) 27243) ((-288 . -149) 27193) ((-288 . -596) NIL) ((-288 . -229) 27143) ((-288 . -592) 27122) ((-288 . -281) 27101) ((-288 . -279) 27080) ((-288 . -101) T) ((-288 . -1072) T) ((-288 . -595) 27062) ((-288 . -1183) T) ((-288 . -34) T) ((-288 . -586) 27041) ((-286 . -1183) T) ((-286 . -505) 26990) ((-286 . -1072) 26772) ((-286 . -595) 26513) ((-286 . -101) 26295) ((-286 . -25) 26159) ((-286 . -21) 26042) ((-286 . -23) 25925) ((-286 . -130) 25808) ((-286 . -1083) 25689) ((-286 . -705) 25591) ((-286 . -465) 25570) ((-286 . -1023) 25512) ((-286 . -1030) 25454) ((-286 . -626) 25314) ((-286 . -111) 25230) ((-286 . -1029) 25151) ((-286 . -696) 25093) ((-286 . -874) 25052) ((-286 . -1237) 25022) ((-284 . -595) 25004) ((-282 . -300) T) ((-282 . -444) T) ((-282 . -38) 24991) ((-282 . -705) T) ((-282 . -1083) T) ((-282 . -1030) T) ((-282 . -1023) T) ((-282 . -111) 24976) ((-282 . -1029) 24963) ((-282 . -21) T) ((-282 . -23) T) ((-282 . -1072) T) ((-282 . -595) 24945) ((-282 . -101) T) ((-282 . -25) T) ((-282 . -130) T) ((-282 . -626) 24932) ((-282 . -696) 24919) ((-282 . -170) T) ((-282 . -283) T) ((-282 . -543) T) ((-282 . -895) T) ((-273 . -595) 24901) ((-272 . -957) 24885) ((-271 . -957) 24869) ((-268 . -825) T) ((-268 . -101) T) ((-268 . -595) 24851) ((-268 . -1072) T) ((-267 . -814) T) ((-267 . -101) T) ((-267 . -595) 24833) ((-267 . -1072) T) ((-266 . -814) T) ((-266 . -101) T) ((-266 . -595) 24815) ((-266 . -1072) T) ((-265 . -814) T) ((-265 . -101) T) ((-265 . -595) 24797) ((-265 . -1072) T) ((-264 . -814) T) ((-264 . -101) T) ((-264 . -595) 24779) ((-264 . -1072) T) ((-263 . -814) T) ((-263 . -101) T) ((-263 . -595) 24761) ((-263 . -1072) T) ((-262 . -814) T) ((-262 . -101) T) ((-262 . -595) 24743) ((-262 . -1072) T) ((-261 . -814) T) ((-261 . -101) T) ((-261 . -595) 24725) ((-261 . -1072) T) ((-257 . -246) 24687) ((-257 . -1012) 24531) ((-257 . -596) 24279) ((-257 . -319) 24251) ((-257 . -405) 24235) ((-257 . -38) 24084) ((-257 . -111) 23913) ((-257 . -1029) 23756) ((-257 . -626) 23681) ((-257 . -696) 23530) ((-257 . -143) 23509) ((-257 . -145) 23488) ((-257 . -170) 23399) ((-257 . -543) 23330) ((-257 . -283) 23261) ((-257 . -47) 23233) ((-257 . -370) 23217) ((-257 . -619) 23165) ((-257 . -444) 23116) ((-257 . -505) 23001) ((-257 . -825) 22980) ((-257 . -874) 22926) ((-257 . -860) 22785) ((-257 . -884) 22764) ((-257 . -1188) 22743) ((-257 . -924) 22710) ((-257 . -302) 22697) ((-257 . -227) 22676) ((-257 . -130) T) ((-257 . -25) T) ((-257 . -101) T) ((-257 . -595) 22658) ((-257 . -1072) T) ((-257 . -23) T) ((-257 . -21) T) ((-257 . -705) T) ((-257 . -1083) T) ((-257 . -1030) T) ((-257 . -1023) T) ((-257 . -225) 22642) ((-254 . -1072) T) ((-254 . -595) 22624) ((-254 . -101) T) ((-244 . -232) 22603) ((-244 . -1237) 22573) ((-244 . -769) 22552) ((-244 . -823) 22531) ((-244 . -775) 22482) ((-244 . -772) 22433) ((-244 . -825) 22384) ((-244 . -770) 22335) ((-244 . -771) 22314) ((-244 . -281) 22291) ((-244 . -279) 22268) ((-244 . -481) 22252) ((-244 . -505) 22185) ((-244 . -302) 22123) ((-244 . -1183) T) ((-244 . -34) T) ((-244 . -586) 22100) ((-244 . -1012) 21927) ((-244 . -405) 21896) ((-244 . -619) 21802) ((-244 . -370) 21771) ((-244 . -361) 21750) ((-244 . -227) 21702) ((-244 . -874) 21634) ((-244 . -225) 21603) ((-244 . -111) 21493) ((-244 . -1029) 21390) ((-244 . -170) 21369) ((-244 . -595) 21330) ((-244 . -696) 21272) ((-244 . -626) 21107) ((-244 . -130) T) ((-244 . -23) T) ((-244 . -21) T) ((-244 . -1023) 21037) ((-244 . -1030) 20967) ((-244 . -1083) 20877) ((-244 . -705) 20787) ((-244 . -38) 20757) ((-244 . -1072) T) ((-244 . -101) T) ((-244 . -25) T) ((-243 . -232) 20736) ((-243 . -1237) 20706) ((-243 . -769) 20685) ((-243 . -823) 20664) ((-243 . -775) 20615) ((-243 . -772) 20566) ((-243 . -825) 20517) ((-243 . -770) 20468) ((-243 . -771) 20447) ((-243 . -281) 20424) ((-243 . -279) 20401) ((-243 . -481) 20385) ((-243 . -505) 20318) ((-243 . -302) 20256) ((-243 . -1183) T) ((-243 . -34) T) ((-243 . -586) 20233) ((-243 . -1012) 20060) ((-243 . -405) 20029) ((-243 . -619) 19935) ((-243 . -370) 19904) ((-243 . -361) 19883) ((-243 . -227) 19835) ((-243 . -874) 19767) ((-243 . -225) 19736) ((-243 . -111) 19626) ((-243 . -1029) 19523) ((-243 . -170) 19502) ((-243 . -595) 19463) ((-243 . -696) 19405) ((-243 . -626) 19227) ((-243 . -130) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1023) 19157) ((-243 . -1030) 19087) ((-243 . -1083) 18997) ((-243 . -705) 18907) ((-243 . -38) 18877) ((-243 . -1072) T) ((-243 . -101) T) ((-243 . -25) T) ((-242 . -1072) T) ((-242 . -595) 18859) ((-242 . -101) T) ((-241 . -924) 18804) ((-241 . -1012) 18680) ((-241 . -1188) 18659) ((-241 . -884) 18638) ((-241 . -860) NIL) ((-241 . -874) 18615) ((-241 . -825) 18594) ((-241 . -505) 18537) ((-241 . -444) 18488) ((-241 . -619) 18436) ((-241 . -370) 18420) ((-241 . -47) 18377) ((-241 . -38) 18226) ((-241 . -696) 18075) ((-241 . -283) 18006) ((-241 . -543) 17937) ((-241 . -111) 17766) ((-241 . -1029) 17609) ((-241 . -170) 17520) ((-241 . -145) 17499) ((-241 . -143) 17478) ((-241 . -626) 17403) ((-241 . -130) T) ((-241 . -25) T) ((-241 . -101) T) ((-241 . -595) 17385) ((-241 . -1072) T) ((-241 . -23) T) ((-241 . -21) T) ((-241 . -1023) T) ((-241 . -1030) T) ((-241 . -1083) T) ((-241 . -705) T) ((-241 . -405) 17369) ((-241 . -319) 17326) ((-241 . -302) 17313) ((-241 . -596) 17174) ((-239 . -644) 17158) ((-239 . -1218) 17142) ((-239 . -984) 17126) ((-239 . -1120) 17110) ((-239 . -825) 17089) ((-239 . -365) 17073) ((-239 . -629) 17057) ((-239 . -281) 17034) ((-239 . -279) 17011) ((-239 . -586) 16988) ((-239 . -596) 16949) ((-239 . -481) 16933) ((-239 . -101) 16883) ((-239 . -1072) 16833) ((-239 . -505) 16766) ((-239 . -302) 16704) ((-239 . -595) 16616) ((-239 . -1183) T) ((-239 . -34) T) ((-239 . -149) 16600) ((-239 . -275) 16584) ((-233 . -232) 16563) ((-233 . -1237) 16533) ((-233 . -769) 16512) ((-233 . -823) 16491) ((-233 . -775) 16442) ((-233 . -772) 16393) ((-233 . -825) 16344) ((-233 . -770) 16295) ((-233 . -771) 16274) ((-233 . -281) 16251) ((-233 . -279) 16228) ((-233 . -481) 16212) ((-233 . -505) 16145) ((-233 . -302) 16083) ((-233 . -1183) T) ((-233 . -34) T) ((-233 . -586) 16060) ((-233 . -1012) 15887) ((-233 . -405) 15856) ((-233 . -619) 15762) ((-233 . -370) 15731) ((-233 . -361) 15710) ((-233 . -227) 15662) ((-233 . -874) 15594) ((-233 . -225) 15563) ((-233 . -111) 15453) ((-233 . -1029) 15350) ((-233 . -170) 15329) ((-233 . -595) 15060) ((-233 . -696) 15002) ((-233 . -626) 14850) ((-233 . -130) 14720) ((-233 . -23) 14590) ((-233 . -21) 14500) ((-233 . -1023) 14430) ((-233 . -1030) 14360) ((-233 . -1083) 14270) ((-233 . -705) 14180) ((-233 . -38) 14150) ((-233 . -1072) 13940) ((-233 . -101) 13730) ((-233 . -25) 13581) ((-221 . -664) 13539) ((-221 . -481) 13523) ((-221 . -101) 13501) ((-221 . -1072) 13479) ((-221 . -505) 13412) ((-221 . -302) 13350) ((-221 . -595) 13282) ((-221 . -1183) T) ((-221 . -34) T) ((-221 . -56) 13240) ((-219 . -397) T) ((-219 . -145) T) ((-219 . -626) 13205) ((-219 . -130) T) ((-219 . -25) T) ((-219 . -101) T) ((-219 . -595) 13187) ((-219 . -1072) T) ((-219 . -23) T) ((-219 . -21) T) ((-219 . -705) T) ((-219 . -1083) T) ((-219 . -1030) T) ((-219 . -1023) T) ((-219 . -596) 13117) ((-219 . -356) T) ((-219 . -1188) T) ((-219 . -895) T) ((-219 . -543) T) ((-219 . -170) T) ((-219 . -696) 13082) ((-219 . -38) 13047) ((-219 . -444) T) ((-219 . -300) T) ((-219 . -111) 13003) ((-219 . -1029) 12968) ((-219 . -283) T) ((-219 . -237) T) ((-219 . -823) T) ((-219 . -775) T) ((-219 . -772) T) ((-219 . -825) T) ((-219 . -770) T) ((-219 . -769) T) ((-219 . -860) 12950) ((-219 . -976) T) ((-219 . -994) T) ((-219 . -1012) 12910) ((-219 . -1032) T) ((-219 . -227) T) ((-219 . -799) T) ((-219 . -1169) T) ((-219 . -1172) T) ((-219 . -484) T) ((-219 . -277) T) ((-219 . -94) T) ((-219 . -35) T) ((-217 . -601) 12887) ((-217 . -626) 12854) ((-217 . -705) T) ((-217 . -1083) T) ((-217 . -1030) T) ((-217 . -1023) T) ((-217 . -21) T) ((-217 . -23) T) ((-217 . -1072) T) ((-217 . -595) 12836) ((-217 . -101) T) ((-217 . -25) T) ((-217 . -130) T) ((-217 . -1012) 12813) ((-216 . -247) 12797) ((-216 . -1092) 12781) ((-216 . -106) 12765) ((-216 . -34) T) ((-216 . -1183) T) ((-216 . -595) 12697) ((-216 . -302) 12635) ((-216 . -505) 12568) ((-216 . -1072) 12546) ((-216 . -101) 12524) ((-216 . -481) 12508) ((-216 . -969) 12492) ((-212 . -1054) T) ((-212 . -595) 12458) ((-212 . -1072) T) ((-212 . -101) T) ((-212 . -92) T) ((-211 . -965) 12440) ((-211 . -1122) T) ((-211 . -1012) 12400) ((-211 . -596) 12330) ((-211 . -994) T) ((-211 . -884) NIL) ((-211 . -858) 12312) ((-211 . -823) T) ((-211 . -775) T) ((-211 . -772) T) ((-211 . -825) T) ((-211 . -770) T) ((-211 . -769) T) ((-211 . -798) T) ((-211 . -860) 12294) ((-211 . -1183) T) ((-211 . -393) 12276) ((-211 . -619) 12258) ((-211 . -370) 12240) ((-211 . -279) NIL) ((-211 . -302) NIL) ((-211 . -505) NIL) ((-211 . -331) 12222) ((-211 . -237) T) ((-211 . -111) 12156) ((-211 . -1029) 12106) ((-211 . -283) T) ((-211 . -696) 12056) ((-211 . -626) 12006) ((-211 . -38) 11956) ((-211 . -300) T) ((-211 . -444) T) ((-211 . -170) T) ((-211 . -543) T) ((-211 . -895) T) ((-211 . -1188) T) ((-211 . -356) T) ((-211 . -227) T) ((-211 . -874) NIL) ((-211 . -225) 11938) ((-211 . -145) T) ((-211 . -143) NIL) ((-211 . -130) T) ((-211 . -25) T) ((-211 . -101) T) ((-211 . -595) 11920) ((-211 . -1072) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -1023) T) ((-211 . -1030) T) ((-211 . -1083) T) ((-211 . -705) T) ((-208 . -1072) T) ((-208 . -595) 11902) ((-208 . -101) T) ((-207 . -1072) T) ((-207 . -595) 11884) ((-207 . -101) T) ((-206 . -869) T) ((-206 . -101) T) ((-206 . -595) 11866) ((-206 . -1072) T) ((-205 . -869) T) ((-205 . -101) T) ((-205 . -595) 11848) ((-205 . -1072) T) ((-203 . -778) T) ((-203 . -101) T) ((-203 . -595) 11830) ((-203 . -1072) T) ((-202 . -778) T) ((-202 . -101) T) ((-202 . -595) 11812) ((-202 . -1072) T) ((-201 . -778) T) ((-201 . -101) T) ((-201 . -595) 11794) ((-201 . -1072) T) ((-200 . -778) T) ((-200 . -101) T) ((-200 . -595) 11776) ((-200 . -1072) T) ((-197 . -765) T) ((-197 . -101) T) ((-197 . -595) 11758) ((-197 . -1072) T) ((-196 . -765) T) ((-196 . -101) T) ((-196 . -595) 11740) ((-196 . -1072) T) ((-195 . -765) T) ((-195 . -101) T) ((-195 . -595) 11722) ((-195 . -1072) T) ((-194 . -765) T) ((-194 . -101) T) ((-194 . -595) 11704) ((-194 . -1072) T) ((-193 . -765) T) ((-193 . -101) T) ((-193 . -595) 11686) ((-193 . -1072) T) ((-192 . -765) T) ((-192 . -101) T) ((-192 . -595) 11668) ((-192 . -1072) T) ((-191 . -765) T) ((-191 . -101) T) ((-191 . -595) 11650) ((-191 . -1072) T) ((-190 . -765) T) ((-190 . -101) T) ((-190 . -595) 11632) ((-190 . -1072) T) ((-189 . -765) T) ((-189 . -101) T) ((-189 . -595) 11614) ((-189 . -1072) T) ((-188 . -765) T) ((-188 . -101) T) ((-188 . -595) 11596) ((-188 . -1072) T) ((-187 . -765) T) ((-187 . -101) T) ((-187 . -595) 11578) ((-187 . -1072) T) ((-181 . -1072) T) ((-181 . -595) 11560) ((-181 . -101) T) ((-178 . -1054) T) ((-178 . -595) 11526) ((-178 . -1072) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -595) 11508) ((-172 . -38) 11440) ((-172 . -626) 11372) ((-172 . -705) T) ((-172 . -1083) T) ((-172 . -1030) T) ((-172 . -1023) T) ((-172 . -111) 11283) ((-172 . -1029) 11215) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1072) T) ((-172 . -595) 11197) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -696) 11129) ((-172 . -356) T) ((-172 . -1188) T) ((-172 . -895) T) ((-172 . -543) T) ((-172 . -170) T) ((-172 . -444) T) ((-172 . -300) T) ((-172 . -283) T) ((-172 . -237) T) ((-169 . -1072) T) ((-169 . -595) 11111) ((-169 . -101) T) ((-166 . -164) 11095) ((-166 . -35) 11073) ((-166 . -94) 11051) ((-166 . -277) 11029) ((-166 . -484) 11007) ((-166 . -1172) 10985) ((-166 . -1169) 10963) ((-166 . -976) 10915) ((-166 . -884) 10868) ((-166 . -596) 10630) ((-166 . -858) 10614) ((-166 . -825) 10593) ((-166 . -361) 10544) ((-166 . -343) 10523) ((-166 . -1122) 10502) ((-166 . -395) 10481) ((-166 . -403) 10452) ((-166 . -38) 10280) ((-166 . -111) 10176) ((-166 . -1029) 10086) ((-166 . -626) 9996) ((-166 . -696) 9824) ((-166 . -363) 9795) ((-166 . -703) 9766) ((-166 . -1012) 9662) ((-166 . -405) 9646) ((-166 . -860) 9571) ((-166 . -1183) T) ((-166 . -393) 9555) ((-166 . -619) 9503) ((-166 . -370) 9487) ((-166 . -279) 9445) ((-166 . -302) 9410) ((-166 . -505) 9322) ((-166 . -331) 9306) ((-166 . -237) 9257) ((-166 . -1188) 9162) ((-166 . -356) 9113) ((-166 . -895) 9044) ((-166 . -543) 8955) ((-166 . -283) 8866) ((-166 . -444) 8797) ((-166 . -300) 8728) ((-166 . -227) 8679) ((-166 . -874) 8638) ((-166 . -225) 8622) ((-166 . -170) T) ((-166 . -145) 8601) ((-166 . -1023) T) ((-166 . -1030) T) ((-166 . -1083) T) ((-166 . -705) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1072) T) ((-166 . -595) 8583) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8534) ((-166 . -799) 8513) ((-160 . -1054) T) ((-160 . -595) 8479) ((-160 . -1072) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1072) T) ((-159 . -595) 8461) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -595) 8443) ((-155 . -1072) T) ((-154 . -1054) T) ((-154 . -595) 8409) ((-154 . -1072) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1054) T) ((-152 . -595) 8375) ((-152 . -1072) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1023) T) ((-150 . -1030) T) ((-150 . -1083) T) ((-150 . -705) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1072) T) ((-150 . -595) 8357) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -626) 8331) ((-150 . -38) 8315) ((-150 . -111) 8294) ((-150 . -1029) 8278) ((-150 . -696) 8262) ((-150 . -1237) 8246) ((-142 . -819) T) ((-142 . -825) T) ((-142 . -1072) T) ((-142 . -595) 8228) ((-142 . -101) T) ((-142 . -361) T) ((-139 . -1072) T) ((-139 . -595) 8210) ((-139 . -101) T) ((-139 . -596) 8169) ((-139 . -419) 8151) ((-139 . -1070) 8133) ((-139 . -361) T) ((-139 . -229) 8115) ((-139 . -149) 8097) ((-139 . -481) 8079) ((-139 . -505) NIL) ((-139 . -302) NIL) ((-139 . -1183) T) ((-139 . -34) T) ((-139 . -106) 8061) ((-139 . -223) 8043) ((-138 . -595) 8025) ((-137 . -1054) T) ((-137 . -595) 7991) ((-137 . -1072) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1054) T) ((-136 . -595) 7957) ((-136 . -1072) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -457) 7934) ((-134 . -1012) 7918) ((-134 . -1072) T) ((-134 . -595) 7900) ((-134 . -101) T) ((-134 . -462) 7855) ((-133 . -825) T) ((-133 . -101) T) ((-133 . -595) 7837) ((-133 . -1072) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -705) T) ((-133 . -1083) T) ((-133 . -1012) 7819) ((-132 . -1054) T) ((-132 . -595) 7785) ((-132 . -1072) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7767) ((-129 . -629) 7749) ((-129 . -281) 7724) ((-129 . -279) 7699) ((-129 . -586) 7674) ((-129 . -596) NIL) ((-129 . -481) 7656) ((-129 . -101) T) ((-129 . -1072) T) ((-129 . -505) NIL) ((-129 . -302) NIL) ((-129 . -595) 7638) ((-129 . -1183) T) ((-129 . -34) T) ((-129 . -149) 7620) ((-129 . -825) T) ((-129 . -365) 7602) ((-128 . -825) T) ((-128 . -101) T) ((-128 . -595) 7554) ((-128 . -1072) T) ((-127 . -125) 7538) ((-127 . -984) 7522) ((-127 . -34) T) ((-127 . -1183) T) ((-127 . -595) 7454) ((-127 . -302) 7392) ((-127 . -505) 7325) ((-127 . -1072) 7303) ((-127 . -101) 7281) ((-127 . -481) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -984) 7217) ((-126 . -34) T) ((-126 . -1183) T) ((-126 . -595) 7149) ((-126 . -302) 7087) ((-126 . -505) 7020) ((-126 . -1072) 6998) ((-126 . -101) 6976) ((-126 . -481) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -984) 6912) ((-121 . -34) T) ((-121 . -1183) T) ((-121 . -595) 6844) ((-121 . -302) 6782) ((-121 . -505) 6715) ((-121 . -1072) 6693) ((-121 . -101) 6671) ((-121 . -481) 6655) ((-121 . -119) 6639) ((-117 . -965) 6616) ((-117 . -1122) NIL) ((-117 . -1012) 6593) ((-117 . -596) NIL) ((-117 . -994) NIL) ((-117 . -884) NIL) ((-117 . -858) 6570) ((-117 . -823) NIL) ((-117 . -775) NIL) ((-117 . -772) NIL) ((-117 . -825) NIL) ((-117 . -770) NIL) ((-117 . -769) NIL) ((-117 . -798) NIL) ((-117 . -860) NIL) ((-117 . -1183) T) ((-117 . -393) 6547) ((-117 . -619) 6524) ((-117 . -370) 6501) ((-117 . -279) 6452) ((-117 . -302) 6409) ((-117 . -505) 6317) ((-117 . -331) 6294) ((-117 . -237) T) ((-117 . -111) 6223) ((-117 . -1029) 6168) ((-117 . -283) T) ((-117 . -696) 6113) ((-117 . -626) 6058) ((-117 . -38) 6003) ((-117 . -300) T) ((-117 . -444) T) ((-117 . -170) T) ((-117 . -543) T) ((-117 . -895) T) ((-117 . -1188) T) ((-117 . -356) T) ((-117 . -227) NIL) ((-117 . -874) NIL) ((-117 . -225) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -595) 5962) ((-117 . -1072) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1023) T) ((-117 . -1030) T) ((-117 . -1083) T) ((-117 . -705) T) ((-116 . -844) 5946) ((-116 . -895) T) ((-116 . -543) T) ((-116 . -283) T) ((-116 . -170) T) ((-116 . -696) 5933) ((-116 . -1029) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -444) T) ((-116 . -300) T) ((-116 . -1023) T) ((-116 . -1030) T) ((-116 . -1083) T) ((-116 . -705) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1072) T) ((-116 . -595) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -626) 5861) ((-116 . -145) T) ((-113 . -825) T) ((-113 . -101) T) ((-113 . -595) 5843) ((-113 . -1072) T) ((-112 . -819) T) ((-112 . -825) T) ((-112 . -1072) T) ((-112 . -595) 5825) ((-112 . -101) T) ((-112 . -361) T) ((-112 . -640) T) ((-112 . -941) T) ((-112 . -596) 5807) ((-110 . -123) T) ((-110 . -365) 5789) ((-110 . -825) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1183) T) ((-110 . -595) 5753) ((-110 . -302) NIL) ((-110 . -505) NIL) ((-110 . -1072) T) ((-110 . -481) 5735) ((-110 . -596) 5717) ((-110 . -586) 5692) ((-110 . -279) 5667) ((-110 . -281) 5642) ((-110 . -629) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -640) T) ((-109 . -358) 5580) ((-109 . -101) T) ((-109 . -595) 5562) ((-109 . -1072) T) ((-108 . -595) 5544) ((-107 . -965) 5526) ((-107 . -1122) T) ((-107 . -1012) 5486) ((-107 . -596) 5416) ((-107 . -994) T) ((-107 . -884) NIL) ((-107 . -858) 5398) ((-107 . -823) T) ((-107 . -775) T) ((-107 . -772) T) ((-107 . -825) T) ((-107 . -770) T) ((-107 . -769) T) ((-107 . -798) T) ((-107 . -860) 5380) ((-107 . -1183) T) ((-107 . -393) 5362) ((-107 . -619) 5344) ((-107 . -370) 5326) ((-107 . -279) NIL) ((-107 . -302) NIL) ((-107 . -505) NIL) ((-107 . -331) 5308) ((-107 . -237) T) ((-107 . -111) 5242) ((-107 . -1029) 5192) ((-107 . -283) T) ((-107 . -696) 5142) ((-107 . -626) 5092) ((-107 . -38) 5042) ((-107 . -300) T) ((-107 . -444) T) ((-107 . -170) T) ((-107 . -543) T) ((-107 . -895) T) ((-107 . -1188) T) ((-107 . -356) T) ((-107 . -227) T) ((-107 . -874) NIL) ((-107 . -225) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -595) 5006) ((-107 . -1072) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1023) T) ((-107 . -1030) T) ((-107 . -1083) T) ((-107 . -705) T) ((-104 . -1072) T) ((-104 . -595) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -984) 4956) ((-102 . -34) T) ((-102 . -1183) T) ((-102 . -595) 4888) ((-102 . -302) 4826) ((-102 . -505) 4759) ((-102 . -1072) 4737) ((-102 . -101) 4715) ((-102 . -481) 4699) ((-102 . -119) 4683) ((-98 . -465) T) ((-98 . -1083) T) ((-98 . -101) T) ((-98 . -595) 4665) ((-98 . -1072) T) ((-98 . -705) T) ((-98 . -279) 4644) ((-96 . -1072) T) ((-96 . -595) 4626) ((-96 . -101) T) ((-95 . -1054) T) ((-95 . -595) 4592) ((-95 . -1072) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1092) 4576) ((-90 . -481) 4560) ((-90 . -101) 4538) ((-90 . -1072) 4516) ((-90 . -505) 4449) ((-90 . -302) 4387) ((-90 . -595) 4319) ((-90 . -1183) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -390) T) ((-88 . -595) 4285) ((-88 . -1183) T) ((-88 . -389) T) ((-87 . -378) T) ((-87 . -595) 4267) ((-87 . -1183) T) ((-87 . -389) T) ((-86 . -432) T) ((-86 . -595) 4249) ((-86 . -1183) T) ((-86 . -389) T) ((-85 . -433) T) ((-85 . -595) 4231) ((-85 . -1183) T) ((-85 . -389) T) ((-84 . -378) T) ((-84 . -595) 4213) ((-84 . -1183) T) ((-84 . -389) T) ((-83 . -378) T) ((-83 . -595) 4195) ((-83 . -1183) T) ((-83 . -389) T) ((-82 . -433) T) ((-82 . -595) 4177) ((-82 . -1183) T) ((-82 . -389) T) ((-81 . -433) T) ((-81 . -595) 4159) ((-81 . -1183) T) ((-81 . -389) T) ((-80 . -433) T) ((-80 . -595) 4141) ((-80 . -1183) T) ((-80 . -389) T) ((-79 . -433) T) ((-79 . -595) 4123) ((-79 . -1183) T) ((-79 . -389) T) ((-78 . -433) T) ((-78 . -595) 4105) ((-78 . -1183) T) ((-78 . -389) T) ((-77 . -390) T) ((-77 . -595) 4087) ((-77 . -1183) T) ((-77 . -389) T) ((-76 . -433) T) ((-76 . -595) 4069) ((-76 . -1183) T) ((-76 . -389) T) ((-75 . -433) T) ((-75 . -595) 4051) ((-75 . -1183) T) ((-75 . -389) T) ((-74 . -390) T) ((-74 . -595) 4033) ((-74 . -1183) T) ((-74 . -389) T) ((-73 . -433) T) ((-73 . -595) 4015) ((-73 . -1183) T) ((-73 . -389) T) ((-72 . -376) T) ((-72 . -595) 3997) ((-72 . -1183) T) ((-72 . -389) T) ((-71 . -389) T) ((-71 . -1183) T) ((-71 . -595) 3979) ((-70 . -433) T) ((-70 . -595) 3961) ((-70 . -1183) T) ((-70 . -389) T) ((-69 . -376) T) ((-69 . -595) 3943) ((-69 . -1183) T) ((-69 . -389) T) ((-68 . -389) T) ((-68 . -1183) T) ((-68 . -595) 3925) ((-67 . -376) T) ((-67 . -595) 3907) ((-67 . -1183) T) ((-67 . -389) T) ((-66 . -376) T) ((-66 . -595) 3889) ((-66 . -1183) T) ((-66 . -389) T) ((-65 . -390) T) ((-65 . -595) 3871) ((-65 . -1183) T) ((-65 . -389) T) ((-64 . -378) T) ((-64 . -595) 3853) ((-64 . -1183) T) ((-64 . -389) T) ((-63 . -433) T) ((-63 . -595) 3835) ((-63 . -1183) T) ((-63 . -389) T) ((-62 . -389) T) ((-62 . -1183) T) ((-62 . -595) 3817) ((-61 . -433) T) ((-61 . -595) 3799) ((-61 . -1183) T) ((-61 . -389) T) ((-60 . -390) T) ((-60 . -595) 3781) ((-60 . -1183) T) ((-60 . -389) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1183) T) ((-59 . -595) 3675) ((-59 . -302) 3613) ((-59 . -505) 3546) ((-59 . -1072) 3524) ((-59 . -101) 3502) ((-59 . -481) 3486) ((-57 . -19) 3470) ((-57 . -629) 3454) ((-57 . -281) 3431) ((-57 . -279) 3408) ((-57 . -586) 3385) ((-57 . -596) 3346) ((-57 . -481) 3330) ((-57 . -101) 3280) ((-57 . -1072) 3230) ((-57 . -505) 3163) ((-57 . -302) 3101) ((-57 . -595) 3013) ((-57 . -1183) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -825) 2976) ((-57 . -365) 2960) ((-51 . -1072) T) ((-51 . -595) 2942) ((-51 . -101) T) ((-50 . -601) 2926) ((-50 . -626) 2900) ((-50 . -705) T) ((-50 . -1083) T) ((-50 . -1030) T) ((-50 . -1023) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1072) T) ((-50 . -595) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1012) 2866) ((-49 . -1072) T) ((-49 . -595) 2848) ((-49 . -101) T) ((-48 . -291) T) ((-48 . -1012) 2791) ((-48 . -1072) T) ((-48 . -595) 2773) ((-48 . -101) T) ((-48 . -825) T) ((-48 . -505) 2739) ((-48 . -302) 2726) ((-48 . -27) T) ((-48 . -976) T) ((-48 . -237) T) ((-48 . -111) 2682) ((-48 . -1029) 2647) ((-48 . -283) T) ((-48 . -696) 2612) ((-48 . -626) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1023) T) ((-48 . -1030) T) ((-48 . -1083) T) ((-48 . -705) T) ((-48 . -38) 2542) ((-48 . -300) T) ((-48 . -444) T) ((-48 . -170) T) ((-48 . -543) T) ((-48 . -895) T) ((-48 . -1188) T) ((-48 . -356) T) ((-48 . -619) 2502) ((-48 . -994) T) ((-48 . -596) 2447) ((-48 . -145) T) ((-48 . -227) T) ((-45 . -36) 2426) ((-45 . -586) 2351) ((-45 . -302) 2155) ((-45 . -505) 1947) ((-45 . -481) 1884) ((-45 . -279) 1809) ((-45 . -281) 1734) ((-45 . -592) 1713) ((-45 . -229) 1663) ((-45 . -106) 1613) ((-45 . -223) 1563) ((-45 . -1160) 1542) ((-45 . -275) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1183) T) ((-45 . -595) 1424) ((-45 . -1072) T) ((-45 . -101) T) ((-45 . -596) NIL) ((-45 . -629) 1374) ((-45 . -365) 1324) ((-45 . -825) NIL) ((-45 . -1120) 1274) ((-45 . -984) 1224) ((-45 . -1218) 1174) ((-45 . -644) 1124) ((-44 . -411) 1108) ((-44 . -723) 1092) ((-44 . -699) T) ((-44 . -740) T) ((-44 . -111) 1071) ((-44 . -1029) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1072) T) ((-44 . -595) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -626) 995) ((-44 . -696) 979) ((-44 . -360) 963) ((-40 . -335) 937) ((-40 . -170) T) ((-40 . -705) T) ((-40 . -1083) T) ((-40 . -1030) T) ((-40 . -1023) T) ((-40 . -626) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -595) 864) ((-40 . -1072) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1029) 809) ((-40 . -111) 738) ((-40 . -596) 722) ((-40 . -225) 699) ((-40 . -874) 651) ((-40 . -227) 623) ((-40 . -356) T) ((-40 . -1188) T) ((-40 . -895) T) ((-40 . -543) T) ((-40 . -696) 568) ((-40 . -38) 513) ((-40 . -444) T) ((-40 . -300) T) ((-40 . -283) T) ((-40 . -237) T) ((-40 . -361) NIL) ((-40 . -343) NIL) ((-40 . -1122) NIL) ((-40 . -143) 485) ((-40 . -395) NIL) ((-40 . -403) 457) ((-40 . -145) 429) ((-40 . -363) 401) ((-40 . -370) 378) ((-40 . -619) 317) ((-40 . -405) 294) ((-40 . -1012) 182) ((-40 . -703) 154) ((-31 . -1054) T) ((-31 . -595) 120) ((-31 . -1072) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -929) T) ((-30 . -595) 102) ((0 . |EnumerationCategory|) T) ((0 . -595) 84) ((0 . -1072) T) ((0 . -101) T) ((-1 . -1072) T) ((-1 . -595) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -595) 48) ((-2 . -1072) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -595) 30) ((-3 . -1072) T) ((-3 . -101) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index d0afd9e6..e9ff6a49 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,1120 +1,996 @@ -(30 . 3431897904) -(4347 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3432414583) +(4351 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| - |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| - |AbelianSemiGroup| |AlgebraicallyClosedField&| - |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| - |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst| - |AlgebraicFunction| |Aggregate&| |Aggregate| - |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| - |Algebra| |AlgFactor| |AlgebraicFunctionField| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| + |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| + |AlgebraicallyClosedField&| |AlgebraicallyClosedField| + |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| + |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&| + |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| + |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| - |AlgebraGivenByStructuralConstants| |AssociationList| - |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| - |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| - |ApplyUnivariateSkewPolynomial| |ApplyRules| + |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| + |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| + |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| - |OneDimensionalArrayFunctions2| |OneDimensionalArray| - |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| - |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| - |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| - |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| - |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| - |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| - |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| - |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| - |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| - |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| - |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| - |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| - |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid| - |CachableSet| |CapsuleAst| |CardinalNumber| - |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| + |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| + |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| + |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| + |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| + |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| + |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| + |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| + |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| + |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| + |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits| + |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1| + |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| + |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| + |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| + |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |Byte| |ByteArray| + |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| |CardinalNumber| + |CartesianTensor| |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |Category| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| - |CharacteristicPolynomialPackage| |CharacteristicZero| - |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| - |Collection&| |Collection| |CliffordAlgebra| - |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| - |ColonAst| |Color| |CombinatorialFunction| - |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst| - |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| - |ComplexFunctions2| |Complex| |ComplexPattern| - |SubSpaceComponentProperty| |CommutativeRing| |Conduit| - |ContinuedFraction| |Contour| |CoordinateSystems| + |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| + |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| + |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| + |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| + |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| + |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| + |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| + |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| - |CyclicStreamTools| |ConstructorCall| - |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| - |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| - |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| - |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| - |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| - |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| - |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| - |DefinitionAst| |ElementaryFunctionDefiniteIntegration| - |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| - |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| - |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| - |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| + |ConstructorCall| |ComplexTrigonometricManipulations| + |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| + |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| + |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| + |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| + |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| + |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage| + |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| + |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| + |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| + |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| + |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| - |DirectProductCategory&| |DirectProductCategory| - |DirectProductFunctions2| |DirectProduct| |DisplayPackage| - |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| - |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| + |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| + |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| + |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| - |DrawNumericHack| |TopLevelDrawFunctions| - |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DrawOption| - |DifferentialSparseMultivariatePolynomial| + |DequeueAggregate| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForCompiledFunctions| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| + |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| - |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| - |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| - |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| - |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| - |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| - |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| - |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| - |ExponentialExpansion| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |Expression| - |ExpressionSpaceODESolver| |ExpressionTubePlot| - |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| - |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| - |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| - |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| - |FortranCode| |FourierComponent| |FortranCodePackage1| - |FiniteDivisorFunctions2| |FiniteDivisorCategory&| - |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| - |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| - |FunctionFieldCategory| |FiniteFieldCyclicGroup| - |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| + |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| + |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| + |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| + |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| + |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| + |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| + |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| + |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| + |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| + |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| + |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| + |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| + |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| + |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| - |FiniteFieldCategory| |FunctionFieldIntegralBasis| - |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteField| - |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| - |FiniteFieldPolynomialPackage| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| + |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| + |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| + |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| - |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| - |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| - |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| - |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| - |FreeModuleCat| |FortranMatrixCategory| - |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| - |FortranMachineTypeCategory| |FileName| |FileNameCategory| - |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| - |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| - |FortranFunctionCategory| |FortranPackage| |FortranProgram| - |FullPartialFractionExpansion| |FullyPatternMatchable| - |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| - |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| - |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| - |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| - |FractionalIdeal| |FramedModule| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| + |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| + |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| + |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| + |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| + |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| + |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| + |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| + |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| + |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| + |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| + |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| + |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| + |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| + |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| - |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| - |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| - |FiniteSetAggregate&| |FiniteSetAggregate| - |FunctionSpaceComplexIntegration| |FourierSeries| - |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| + |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| + |FunctionSpace| |FunctionSpaceFunctions2| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| + |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| + |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| - |FortranType| |FunctionCalled| |FortranVectorCategory| - |FortranVectorFunctionCategory| |GaloisGroupFactorizer| - |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| - |GaloisGroupUtilities| |GaussianFactorizationPackage| + |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| + |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| + |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| + |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| + |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| - |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| - |GeneralDistributedMultivariatePolynomial| |GenExEuclid| - |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| + |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| - |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| - |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| - |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| - |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable| - |HallBasis| |HomogeneousDistributedMultivariatePolynomial| - |HomogeneousDirectProduct| |HeadAst| |Heap| - |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| + |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| + |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| + |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| + |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| + |Pi| |HasAst| |HashTable| |HallBasis| + |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| + |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |Hostname| - |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| - |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| + |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| + |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| - |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| - |IdealDecompositionPackage| |Identifier| - |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| - |IndexedDirectProductCategory| - |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| - |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| - |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| - |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| - |InAst| |InputByteConduit&| |InputByteConduit| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| + |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| + |Identifier| |IndexedDirectProductAbelianGroup| + |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| + |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| + |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| + |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps| - |IndexedExponents| |InnerNumericEigenPackage| |Infinity| - |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| + |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputForm| + |InputFormFunctions1| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| - |InfiniteProductFiniteField| |InfiniteProductPrimeField| - |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| - |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| - |IntervalCategory| |IntegralDomain&| |IntegralDomain| - |ElementaryIntegration| |IntegerFactorizationPackage| - |IntegrationFunctionsTable| |GenusZeroIntegration| - |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |Integer| + |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| + |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |InnerTable| + |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| + |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| + |IntegerFactorizationPackage| |IntegrationFunctionsTable| + |GenusZeroIntegration| |IntegerNumberTheoryFunctions| + |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| - |InputOutputByteConduit| |IOMode| |InnerPAdicInteger| - |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| - |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| - |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| - |IrrRepSymNatPackage| - |InternalRationalUnivariateRepresentationPackage| |IsAst| - |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| - |InnerTaylorSeries| |InfiniteTupleFunctions2| - |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| - |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| - |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| - |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| - |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic| - |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| - |LaurentPolynomial| |LazardSetSolvingPackage| - |LeadingCoefDetermination| |LetAst| |LieExponentials| - |LexTriangularPackage| |LiouvillianFunctionCategory| - |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| - |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| - |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| - |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| - |ListMonoidOps| |LinearAggregate&| |LinearAggregate| - |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| + |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| + |IOMode| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| + |IntegrationResult| |IntegrationResultFunctions2| + |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| + |IntegrationResultRFToFunction| |IrrRepSymNatPackage| + |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString| + |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| + |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| + |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| + |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| + |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| + |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| + |Kovacic| |KleeneTrivalentLogic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| + |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| + |LeadingCoefDetermination| |LetAst| |LieExponentials| |LexTriangularPackage| + |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage| + |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| + |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| + |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap| + |ListFunctions3| |Literal| |ListMultiDictionary| |LeftModule| |ListMonoidOps| + |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| + |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperator| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage1| - |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| - |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| - |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma| - |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| - |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| - |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| - |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| + |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| + |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| + |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| + |MacroAst| |Magma| |MappingPackageInternalHacks1| + |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| + |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| + |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| - |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| - |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| - |MakeBinaryCompiledFunction| |MakeCachableSet| - |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| - |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| - |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| - |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| - |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| - |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| - |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| - |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| - |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| - |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| - |MultivariateFactorize| |MultivariateSquareFree| - |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| + |MultiDictionary| |ModularDistinctDegreeFactorizer| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| + |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| + |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| + |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| + |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| + |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| + |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| + |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| + |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| + |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| + |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| + |MultisetAggregate| |MoreSystemCommands| |MergeThing| + |MultivariateTaylorSeriesCategory| |MultivariateFactorize| + |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| - |NagMatrixOperationsPackage| |NagEigenPackage| - |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| - |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| - |NonAssociativeRing| |NumericComplexEigenPackage| - |NumericContinuedFraction| |NonCommutativeOperatorDivision| - |NumberFieldIntegralBasis| |NumericalIntegrationProblem| - |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| - |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| - |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| - |NewSparseUnivariatePolynomialFunctions2| - |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| - |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| - |NumericalIntegrationCategory| + |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| + |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| + |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| + |NumericComplexEigenPackage| |NumericContinuedFraction| + |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| + |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| + |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| + |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| + |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| + |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| + |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| - |OrderedCancellationAbelianMonoid| |OctonionCategory&| - |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| - |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| - |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| - |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| - |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| - |SystemODESolver| |ODETools| |OrderedDirectProduct| - |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| - |OrderlyDifferentialVariable| |OrderedFreeMonoid| - |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| - |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| - |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| - |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| - |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| - |OperationsQuery| |NumericalOptimizationCategory| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| + |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| + |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| + |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| + |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| + |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| + |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| + |OrderedDirectProduct| |OrderlyDifferentialPolynomial| + |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| + |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| + |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| + |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| + |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| + |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| - |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| - |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| - |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| - |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&| - |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage| - |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| - |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| - |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| - |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| - |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| - |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| - |ParametricSurface| |PartitionsAndPermutations| |Patternable| - |PatternMatchListResult| |PatternMatchable| |PatternMatch| - |PatternMatchResultFunctions2| |PatternMatchResult| - |PatternFunctions1| |PatternFunctions2| |Pattern| - |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| + |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| + |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| + |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| + |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| + |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile| + |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials| + |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| + |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair| + |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| + |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| + |Parser| |ParametricSurfaceFunctions2| |ParametricSurface| + |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| + |PatternMatchable| |PatternMatch| |PatternMatchResult| + |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1| + |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| - |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| - |PolynomialFactorizationByRecursion| + |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| + |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| - |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| - |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| - |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| - |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| - |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| - |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| - |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| + |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| + |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| + |PrincipalIdealDomain| |PolynomialInterpolation| + |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| + |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| + |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |FunctionSpaceAttachPredicates| |AttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| - |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| - |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| - |PolynomialCategory| |PolynomialCategoryQuotientFunctions| - |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| - |PortNumber| |PlottablePlaneCurveCategory| - |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| - |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| - |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| - |Property| |PropositionalFormula| |PropositionalLogic| - |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| - |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| - |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| - |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| - |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| - |PushVariables| |PAdicWildFunctionFieldIntegralBasis| - |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| - |QueryEquation| |QuotientFieldCategoryFunctions2| - |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| - |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&| - |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| - |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| - |RadixExpansion| |RadixUtilities| |RandomNumberSource| - |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| - |RecursiveAggregate| |RealClosedField&| |RealClosedField| - |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| - |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| - |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| - |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| - |RegularTriangularSet| |RepresentationPackage1| - |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| + |AttachPredicates| |FunctionSpaceAttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| + |PolynomialNumberTheoryFunctions| |Point| |PolToPol| + |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| + |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| + |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| + |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| + |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| + |PrintPackage| |Product| |Property| |PropositionalFormula| + |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| + |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| + |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| + |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| + |PartialTranscendentalFunctions| |PushVariables| + |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| + |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| + |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| + |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&| + |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| + |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| + |RandomNumberSource| |RationalFactorize| |RationalRetractions| + |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| + |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| + |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| + |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage| + |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| + |Reference| |RegularTriangularSet| |RadicalEigenPackage| + |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RandomFloatDistributions| |RationalFunctionFactor| - |RationalFunctionFactorizer| |RationalFunction| |RegularChain| + |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| - |RectangularMatrixCategory&| |RectangularMatrixCategory| - |RectangularMatrix| |RectangularMatrixCategoryFunctions2| - |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| - |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| - |RecursivePolynomialCategory&| |RecursivePolynomialCategory| + |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| + |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| + |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| + |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled| - |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| - |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| - |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| - |SpadSyntaxCategory| |SortedCache| |Scope| + |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled| + |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| + |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| + |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| - |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| - |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&| - |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| - |Set| |SExpressionCategory| |SExpression| |SExpressionOf| - |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| - |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| - |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| - |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst| - |ElementaryFunctionSign| |RationalFunctionSign| |Signature| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| - |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| - |SmithNormalForm| |SparseMultivariatePolynomial| - |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| - |PolynomialSolveByFormulas| |RadicalSolvePackage| - |TransSolvePackageService| |TransSolvePackage| |SortPackage| - |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| + |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst| + |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| + |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| + |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| + |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| + |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| + |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| + |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| + |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| + |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| + |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| + |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| - |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| - |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| - |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| - |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| - |StreamTranscendentalFunctionsNonCommutative| - |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| - |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries| - |FunctionSpaceSum| |RationalFunctionSum| - |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| - |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| + |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| + |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream| + |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| + |String| |StringTable| |StreamTaylorSeriesOperations| + |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| + |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst| + |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| + |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| + |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| - |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table| + |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| - |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| - |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| - |Tree| |TrigonometricFunctionCategory&| - |TrigonometricFunctionCategory| |TrigonometricManipulations| - |TriangularMatrixOperations| |TranscendentalManipulations| - |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| - |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type| - |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| + |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| + |TrigonometricManipulations| |TriangularMatrixOperations| + |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| + |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| + |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| - |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| + |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| + |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| - |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| - |UnivariatePolynomialFunctions2| - |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| + |UniversalSegmentFunctions2| |UnivariatePolynomial| + |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| - |UnivariatePolynomialCategoryFunctions2| - |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| + |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| - |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesWithExponentialSingularity| - |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| + |UnivariatePuiseuxSeriesConstructor| + |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| + |UnaryRecursiveAggregate| |UnivariateTaylorSeries| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| - |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| - |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| - |TwoDimensionalViewport| |ThreeDimensionalViewport| - |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| - |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst| - |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| - |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| - |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| - |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| + |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| + |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| + |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| + |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| + |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| + |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| + |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |fracPart| |traverse| |prindINFO| - |selectOrPolynomials| |drawToScale| |partialQuotients| - |outputAsScript| |rootSimp| |redPo| |low| |iiabs| |fglmIfCan| |style| - |twist| |suchThat| |leftLcm| |symbolTable| |currentEnv| |divisor| - |indicialEquation| |nthRootIfCan| |expenseOfEvaluation| - |ScanFloatIgnoreSpacesIfCan| - |rewriteSetByReducingWithParticularGenerators| |safeFloor| |odd?| - |difference| |putColorInfo| |e02aef| |internalLastSubResultant| - |signAround| |true| |height| |jordanAdmissible?| |Lazard| - |pushFortranOutputStack| |row| |ldf2lst| |brace| |pdf2ef| |decompose| - |loopPoints| |createIrreduciblePoly| |and| |cyclic| - |popFortranOutputStack| |readByteIfCan!| |resultantReduit| |eq| - |c02aff| |s13adf| |setProperty!| |clearFortranOutputStack| |cSec| - |qfactor| |outputAsFortran| |UpTriBddDenomInv| |dihedral| |iter| - |rangePascalTriangle| |halfExtendedResultant2| |getGoodPrime| - |exactQuotient| |leftNorm| |nilFactor| |testDim| |getPickedPoints| - |tree| |changeThreshhold| |symFunc| |basisOfLeftNucleus| |mapExpon| - |minPoly| |makeSeries| |f02xef| |prepareDecompose| |value| - |functionIsFracPolynomial?| |rightPower| |previous| |tValues| - |principal?| |moebius| |bernoulliB| |qPot| |principalIdeal| |f02aff| - |OMputSymbol| |minimize| |rightUnits| |algint| |mightHaveRoots| - |commutator| |predicates| |operator| |polygon| |subHeight| |e02gaf| - |tan2cot| |level| |iiacoth| |infinite?| |internalSubPolSet?| |cAsinh| - |froot| |cothIfCan| |clipPointsDefault| |groebgen| - |cyclotomicFactorization| |solveLinearPolynomialEquation| |c06fuf| - |semiDegreeSubResultantEuclidean| |normDeriv2| - |solveLinearPolynomialEquationByRecursion| |entries| |frst| |unknown| - |cAcos| |inverseIntegralMatrixAtInfinity| |baseRDE| |matrixDimensions| - |inconsistent?| |bitLength| |aromberg| |maxrank| |solveInField| - |polar| |lazyIrreducibleFactors| |cLog| |region| |constructorName| - |integerIfCan| |cAsec| |maxPoints| |isobaric?| |dflist| |parametersOf| - |front| |binaryFunction| |changeBase| |rightZero| |repeatUntilLoop| - |supRittWu?| |stronglyReduced?| |setPrologue!| |real| |jacobian| - |trace2PowMod| |fullPartialFraction| |every?| |e04ucf| - |indicialEquations| |impliesOperands| |lazyPremWithDefault| |imag| - |perfectNthPower?| |gradient| |f01rdf| |setright!| |rename!| |rules| - |directProduct| |bernoulli| |numberOfNormalPoly| |showTheSymbolTable| - |s21bcf| |leftRank| |wrregime| |changeWeightLevel| |sech2cosh| - |vectorise| |fortranCharacter| |exactQuotient!| |squareFreePrim| - |factorAndSplit| |nullity| |binomial| |basisOfRightAnnihilator| - |sumOfDivisors| |integers| |bright| |cross| |selectODEIVPRoutines| - |destruct| |more?| |collectUnder| |coleman| |functionIsOscillatory| - |infieldint| |limit| |root| |poisson| |mapGen| - |stoseInternalLastSubResultant| |ode| |distance| |column| |f07adf| - |getButtonValue| |bfEntry| |generators| |completeHensel| - |OMencodingSGML| |presub| |paren| |OMgetEndError| |s14abf| |nextPrime| - |topFortranOutputStack| |colorFunction| |ref| - |setLegalFortranSourceExtensions| |iiGamma| |buildSyntax| |typeList| - |insert| NOT |ParCond| |s17dlf| |quasiAlgebraicSet| |swapRows!| - |setRealSteps| |critMonD1| |numerator| |cTanh| |lazyPseudoQuotient| - |sqfree| |monomial| OR |hermiteH| |leastMonomial| |writeLine!| |obj| - |prologue| |nary?| |deepExpand| |inRadical?| |returnType!| - |zeroDimensional?| |trapezoidalo| |multivariate| |nextsubResultant2| - AND |rootProduct| |divide| |element?| |exQuo| |oneDimensionalArray| - |pseudoQuotient| |zerosOf| |cache| |delete| |s17dcf| |normFactors| - |leaf?| |variables| |minordet| |halfExtendedSubResultantGcd2| - |primitivePart!| |diophantineSystem| |matrixConcat3D| |iisec| - |eigenvector| |explicitEntries?| |e02adf| |alternatingGroup| |sec2cos| - |asinIfCan| |makeSketch| |alternating| |imagI| |distribute| - |increment| |submod| |internalDecompose| |torsionIfCan| |recip| - |shift| |upperCase!| |top!| |iprint| |linearAssociatedExp| - |setProperty| |logpart| |redpps| |multiplyCoefficients| - |listConjugateBases| |d01asf| |rightRankPolynomial| |OMputEndAtp| - |fixedPoints| |numericalOptimization| |eval| |hypergeometric0F1| - |setMinPoints3D| |iiasinh| |idealSimplify| |selectPolynomials| - |areEquivalent?| |suffix?| |create| |lowerCase?| |vconcat| - |ListOfTerms| |clipParametric| |increasePrecision| |vspace| |prime?| - |tensorProduct| |taylor| |norm| |homogeneous?| |create3Space| - |sinhcosh| |palgint| |showTypeInOutput| |iidsum| |precision| |ode1| - |extractPoint| |readIfCan!| |listLoops| |laurent| |prefix?| |s17adf| - |ffactor| |leftRemainder| |closedCurve| |coerceP| |seriesToOutputForm| - |reduction| |shufflein| |recur| |Vectorise| |puiseux| - |OMencodingBinary| |crushedSet| |setEmpty!| |subspace| |rootsOf| - |sturmVariationsOf| |expintfldpoly| - |removeRoughlyRedundantFactorsInPol| |c06frf| |f01qdf| |rdHack1| - |symmetricTensors| |tower| * |factors| |sizeLess?| - |numberOfFractionalTerms| |charthRoot| |find| |leadingTerm| - |linkToFortran| |normalDenom| |s17agf| |inv| |nextItem| - |reduceByQuasiMonic| |content| |lastSubResultant| |multiEuclideanTree| - |iflist2Result| |getCode| |monicRightDivide| |ground?| |setvalue!| - |maxRowIndex| |headReduced?| |partialFraction| |lintgcd| - |leadingCoefficientRicDE| |pow| |blue| |singularitiesOf| |log10| - |ground| |coerceS| |s13acf| |connect| |nthFractionalTerm| |exp| - |setRow!| |genus| |reverseLex| |sinIfCan| |bitand| |commaSeparate| - |operation| |declare| |notOperand| |setTopPredicate| |rightLcm| - |stoseInvertible?| |leadingMonomial| |showRegion| |infix?| |makeop| - |untab| |cycleTail| |separateFactors| |bitior| |distdfact| |btwFact| - |s21baf| |perfectSqrt| |semiSubResultantGcdEuclidean2| - |leadingCoefficient| |supDimElseRittWu?| |complexNumeric| |mask| - |f04axf| |twoFactor| |lquo| |csc2sin| |nextNormalPoly| |cotIfCan| - |prinshINFO| |sequence| |pointPlot| |primitiveMonomials| |medialSet| - |setleaves!| |finiteBasis| |split!| |leftAlternative?| |eulerPhi| - |rightDiscriminant| |doubleComplex?| |leftPower| |reductum| |kernels| - |physicalLength!| |inspect| |clipBoolean| |bezoutDiscriminant| - |replace| |less?| |gcdprim| |failed?| |bezoutResultant| |OMputString| - |univariate| |digamma| |d01amf| |coefficient| |quasiMonicPolynomials| - |exteriorDifferential| |shade| |negative?| |rightUnit| |lexGroebner| - |insert!| |getRef| |lazyPseudoRemainder| |intermediateResultsIF| - |OMgetEndAttr| |degreeSubResultantEuclidean| |over| |completeHermite| - |condition| |fractionPart| |options| |factorGroebnerBasis| - |makeViewport2D| |var1StepsDefault| |newReduc| |monicDecomposeIfCan| - |meshFun2Var| |prepareSubResAlgo| |noLinearFactor?| |elements| - |factor| |currentSubProgram| |OMsupportsCD?| |argscript| - |getExplanations| |compiledFunction| |knownInfBasis| - |indicialEquationAtInfinity| |dioSolve| |besselJ| |sqrt| |lighting| - |bombieriNorm| |setMaxPoints3D| |component| |getProperties| - |algebraicVariables| |lyndonIfCan| |components| |cSin| |string| - |symmetricProduct| |irreducibleFactor| |tanh2trigh| |allRootsOf| |dom| - |exprHasAlgebraicWeight| |leastAffineMultiple| |expression| - |removeCoshSq| |mvar| |monicDivide| |simplifyLog| |sparsityIF| - |genericRightTraceForm| |autoReduced?| |polarCoordinates| |octon| - |rightScalarTimes!| |integral| |f02aef| |integer| |jacobi| |stirling2| - |Ei| |primPartElseUnitCanonical| |OMreceive| |d01ajf| |s19abf| - |fortranLinkerArgs| |invertibleElseSplit?| |lllp| |integralMatrix| - |safeCeiling| |basisOfMiddleNucleus| |trim| |OMreadFile| |resultant| - |asecIfCan| |dimensions| |isPower| |bit?| |atom?| - |tryFunctionalDecomposition?| |genericRightNorm| |basisOfCentroid| - |cosSinInfo| |edf2df| |f04mbf| |nonSingularModel| |reify| |linearPart| - |iisech| |center| |title| |rightRemainder| |removeSquaresIfCan| - |viewDefaults| |weierstrass| |sort| |tableau| |internalIntegrate0| - |s20acf| |prefixRagits| |associates?| |OMgetAtp| |leadingSupport| - |graeffe| |zeroSquareMatrix| |escape| |subMatrix| |exists?| |block| - |complexForm| |critB| |genericLeftNorm| |ellipticCylindrical| - |insertBottom!| |pascalTriangle| |elliptic| |xn| |e04jaf| |sorted?| - |pushuconst| RF2UTS |e| |printingInfo?| |lazyPseudoDivide| |resetNew| - |rootSplit| |mindeg| |summation| |f02wef| |normalizedAssociate| - |c06gcf| |airyAi| |sumSquares| |primlimitedint| |polyred| |ridHack1| - |quatern| |name| |numberOfFactors| |fullDisplay| |setref| - |setAdaptive| |mapUnivariateIfCan| |pToDmp| |compile| |random| |body| - |adaptive3D?| |cubic| |lineColorDefault| |chiSquare1| - |noncommutativeJordanAlgebra?| |e02dff| |leadingIdeal| |iiatanh| - |fixedPoint| |complexNormalize| |binary| |dimension| |iiacot| - |solveLinear| |chainSubResultants| |pointSizeDefault| |partition| |lo| - |iiexp| |rk4qc| |reducedContinuedFraction| |conjug| |normalElement| - |certainlySubVariety?| |debug| |linearlyDependentOverZ?| - |dihedralGroup| |nthRoot| |incr| |splitLinear| |makeCrit| |cAcosh| - |lowerCase| |fortranLiteral| |lfinfieldint| D |leastPower| |hi| - |addPointLast| |belong?| |string?| |nsqfree| |removeCosSq| |iiasin| - |prime| |squareMatrix| |e01sbf| |listOfMonoms| |powers| - |multiEuclidean| |log2| |polygon?| |trunc| |intensity| - |identification| |toseInvertible?| |palgRDE| |antiCommutator| - |tanIfCan| |e02daf| |mathieu22| |startPolynomial| |validExponential| - |OMserve| |e02ajf| |unvectorise| Y |tanAn| |factorsOfCyclicGroupSize| - |selectfirst| |showTheRoutinesTable| |multiplyExponents| |conjugates| - |internalZeroSetSplit| |delta| |doubleFloatFormat| |directory| |orbit| - |extractIndex| |scripted?| |intcompBasis| |rCoord| |f04atf| - |ricDsolve| |laguerre| |finiteBound| |subset?| |close| |plot| - |firstUncouplingMatrix| |tubeRadius| |optAttributes| |stFuncN| - |elRow2!| |SturmHabichtSequence| |s17akf| |mapmult| |slash| - |stosePrepareSubResAlgo| |tubePlot| |writeByteIfCan!| |setButtonValue| - |float?| |GospersMethod| |display| |pade| |clikeUniv| |status| - |tablePow| |resultantEuclidean| |minPol| |child?| - |completeEchelonBasis| |remove| |f01maf| |pmintegrate| |setLabelValue| - |probablyZeroDim?| |createMultiplicationTable| |outputSpacing| |arg1| - |extractIfCan| |euclideanSize| |lSpaceBasis| |print| |dmpToP| - |OMconnInDevice| |subtractIfCan| |s13aaf| |asechIfCan| |cosh2sech| - |readable?| |arg2| |reverse| |setStatus| |last| |viewWriteAvailable| - |perspective| |formula| |bracket| |sylvesterMatrix| |kroneckerDelta| - |assoc| |euclideanGroebner| |polyRDE| |modifyPointData| |lambda| - |restorePrecision| |setProperties| |rightCharacteristicPolynomial| - |coerceL| |getMatch| |iroot| |saturate| |conditions| |ratPoly| - |cAsech| |graphState| |morphism| |input| BY |stoseInvertibleSetsqfreg| - |movedPoints| |generate| |rightAlternative?| |rk4a| |edf2fi| - |factorSquareFreeByRecursion| |match| |solve1| |inverseLaplace| - |concat!| |createPrimitiveElement| |library| |OMunhandledSymbol| - |mainKernel| |endOfFile?| |hyperelliptic| |modularGcd| |decimal| - |mapBivariate| |s19adf| |incrementBy| |uniform01| |nrows| SEGMENT - |iisqrt3| |fortranCompilerName| |pol| |setOfMinN| |simplifyExp| - |halfExtendedResultant1| |infix| |degreePartition| |dimensionsOf| - |digit| |expand| |ncols| |OMputVariable| |unitVector| |setErrorBound| - |lfextlimint| |harmonic| |selectMultiDimensionalRoutines| |bumptab1| - |hasoln| |coth2trigh| |filterWhile| |stFunc1| |meshPar2Var| - |resetVariableOrder| |stopTable!| |mapSolve| |llprop| |Si| - |getBadValues| |representationType| |powmod| |iiacosh| |set| - |filterUntil| |position!| |composites| |mkcomm| |lepol| |iibinom| - |clip| |pair?| |computeCycleLength| |palglimint| |associatedEquations| - |select| |att2Result| |factorsOfDegree| |perfectSquare?| |invertible?| - |cardinality| |linearMatrix| |leftExactQuotient| - |numericalIntegration| |rombergo| |minset| |character?| |mdeg| - |partialNumerators| |lowerCase!| |radicalEigenvector| |reflect| - |getStream| |prinpolINFO| |besselI| - |removeRoughlyRedundantFactorsInPols| |leftScalarTimes!| - |lazyGintegrate| |cAtanh| |dmpToHdmp| |lifting| |nullary?| |logIfCan| - |d01gaf| |RemainderList| |rootPoly| |leftTraceMatrix| - |subResultantGcd| |degreeSubResultant| UP2UTS |cons| |e04gcf| - |beauzamyBound| |extractSplittingLeaf| |makeVariable| |OMputAttr| - |laplacian| |critpOrder| |maxrow| |systemSizeIF| |anticoord| - |inputBinaryFile| |biRank| |nthExponent| |delay| |critM| |s01eaf| - |integrate| |zeroVector| |palgint0| |boundOfCauchy| |constant?| - |approximate| |term| |acoshIfCan| |generalSqFr| |solid| |e02bcf| - |cCos| |makeRecord| |quoted?| |double| |monicModulo| |seriesSolve| - |selectsecond| |complex| |iiatan| |partitions| |fixedDivisor| - |eisensteinIrreducible?| |semiLastSubResultantEuclidean| |max| - |LowTriBddDenomInv| |exp1| |pointColorDefault| |setProperties!| - |rewriteIdealWithHeadRemainder| |stopMusserTrials| |headAst| - |positiveRemainder| |factorPolynomial| |fixPredicate| |property| - |tracePowMod| |e02bef| |routines| |lfunc| |unparse| |yellow| - |primaryDecomp| |fintegrate| |pseudoRemainder| |findCycle| - |extractClosed| |balancedFactorisation| |pmComplexintegrate| |show| - |createZechTable| |OMread| |f02adf| |retract| |source| |getIdentifier| - |removeRedundantFactors| |basis| |squareFree| |alphanumeric| |f02ajf| - |plenaryPower| |divisorCascade| |subNodeOf?| |acotIfCan| - |tubeRadiusDefault| |singularAtInfinity?| |iomode| |lflimitedint| - |univariatePolynomials| |subTriSet?| |units| ~= |red| |trace| - |leftRegularRepresentation| |c06gsf| |numberOfPrimitivePoly| - |compBound| |c06ecf| |OMlistSymbols| |cycleRagits| |tanQ| - |rootDirectory| |coerce| |localAbs| |f02awf| |f04maf| |ignore?| - |rightExactQuotient| |stack| |permutations| |genericRightDiscriminant| - |mathieu24| |enterPointData| |powern| |construct| - |squareFreeLexTriangular| |s15adf| |roughBase?| |declare!| - |realElementary| |acothIfCan| |integralRepresents| |iteratedInitials| - |pushucoef| |complexEigenvectors| |generator| |changeVar| |toScale| - |tubePoints| |mathieu12| |groebner?| |normalise| |target| = - |countRealRootsMultiple| |totalLex| |ReduceOrder| |interval| - |nextLatticePermutation| |e02zaf| |multinomial| |enqueue!| FG2F - |extendedResultant| |domainOf| |equality| |identityMatrix| |code| - |fillPascalTriangle| |f01bsf| |dim| |createNormalPrimitivePoly| - |ramified?| |pointLists| |expextendedint| |OMclose| |/\\| - |retractIfCan| |cup| < |OMgetObject| |semiDiscriminantEuclidean| - |applyRules| |flexible?| |processTemplate| |doubleDisc| |symbol?| - |romberg| |merge!| |\\/| |constDsolve| > |or?| |scan| |unit| - |innerSolve1| |firstNumer| |ideal| |OMputBVar| |directSum| - |parametric?| |kovacic| <= |constantOpIfCan| |makeMulti| |e01saf| - |s18def| |squareFreePart| |aQuartic| |cyclic?| |changeNameToObjf| - |evaluate| |d03faf| >= |sn| |real?| |aQuadratic| |numberOfVariables| - |basisOfCenter| |zeroDimPrime?| |consnewpol| |segment| - |explicitlyEmpty?| |quadratic| |loadNativeModule| |monomials| |f02fjf| - |overbar| |sin?| |coefChoose| |bivariatePolynomials| |mesh| |rotate| - |flexibleArray| |dmp2rfi| |output| |OMputEndObject| |listBranches| - |toseLastSubResultant| |edf2efi| |modulus| |bounds| |extractTop!| - |realZeros| |limitedIntegrate| |cyclePartition| |constantLeft| + - |monicRightFactorIfCan| |diagonals| |increase| |subscript| |write!| - |associatorDependence| |contains?| |is?| |coth2tanh| |scopes| |latex| - - |e02def| |preprocess| |kmax| |lhs| |c05pbf| |writeBytes!| - |setScreenResolution| |iFTable| |hdmpToDmp| |transform| |divideIfCan| - / |polyRicDE| |tan2trig| |minus!| |rhs| |outputAsTex| |fortranDouble| - |univariateSolve| |constantToUnaryFunction| |chiSquare| |map| |gethi| - |chvar| |imagk| |lowerPolynomial| |semiResultantEuclideannaif| - |algintegrate| |normalDeriv| |putGraph| |pointData| |cos2sec| - |fortranCarriageReturn| |viewZoomDefault| |printStats!| - |numFunEvals3D| |diagonal| |second| |setelt| |rightMult| - |SturmHabicht| |s18aef| |nativeModuleExtension| |plusInfinity| - |minColIndex| |rotatey| |dec| |diagonal?| |one?| |solveRetract| - |semiResultantEuclidean1| |third| |doubleRank| |numerators| |hdmpToP| - |ScanFloatIgnoreSpaces| |minusInfinity| |zCoord| |node| |host| - |reciprocalPolynomial| |decomposeFunc| |byte| - |createLowComplexityTable| |copy| |LazardQuotient2| |has?| |iisinh| - |BasicMethod| |squareFreeFactors| |merge| |primintegrate| - |localIntegralBasis| |lexTriangular| |stoseInvertible?sqfreg| |d02raf| - |irreducibleRepresentation| |currentScope| |f07aef| |karatsuba| - |convert| |numericIfCan| |parabolic| |OMbindTCP| |cSech| |contours| - |totalDegree| |horizConcat| |getSyntaxFormsFromFile| |shellSort| - |nextsousResultant2| |match?| |init| |stopTableGcd!| - |subresultantSequence| |quasiComponent| |primlimintfrac| - |removeZeroes| |autoCoerce| |tail| |pastel| |doubleResultant| - |getConstant| |initiallyReduce| |multisect| |mainForm| |reducedForm| - |argumentListOf| |ipow| |selectIntegrationRoutines| |mirror| - |setnext!| |s17def| |useSingleFactorBound| |npcoef| |inc| |void| |lex| - |ef2edf| |closeComponent| |fill!| |OMgetSymbol| |type| |stop| - |curryLeft| |sqfrFactor| |d02bbf| |jacobiIdentity?| |numberOfChildren| - |width| |middle| |copyInto!| |d02gaf| |antisymmetricTensors| |remove!| - |maxIndex| |expt| |OMUnknownSymbol?| |addBadValue| |oblateSpheroidal| - |error| |getMultiplicationTable| |multiple?| |df2ef| - |purelyTranscendental?| |LyndonWordsList1| |genericLeftTrace| - |polCase| |curryRight| |expr| |hexDigit?| |setValue!| |iicos| - |specialTrigs| |nextIrreduciblePoly| |lexico| |assert| |midpoints| - |splitConstant| |idealiserMatrix| |complexLimit| |transcendenceDegree| - |toroidal| F2FG |var1Steps| |nthCoef| |updatF| |binding| - |nextPrimitivePoly| |sh| |irreducibleFactors| |sechIfCan| - |commonDenominator| |qroot| |remainder| |leadingIndex| |readBytes!| - |diff| |pushup| |strongGenerators| |rowEchLocal| |changeMeasure| - |showAll?| |accuracyIF| |infinityNorm| |cond| |green| |vedf2vef| - |groebSolve| |integralBasisAtInfinity| |complexExpand| |critMTonD1| - |removeConstantTerm| |variable| |numberOfImproperPartitions| - |OMgetFloat| |curve?| |d03eef| |optional| |complexSolve| |omError| - |linSolve| |mix| |UnVectorise| |zeroDim?| |iterators| |airyBi| - |redPol| |meshPar1Var| |continue| |addPoint| |antiCommutative?| - |compound?| |mergeFactors| |color| |viewport2D| |overlap| - |infiniteProduct| |equation| |split| |generic| - |removeSuperfluousQuasiComponents| |rational?| |transcendent?| |nor| - |rowEch| |getVariableOrder| |complementaryBasis| |removeDuplicates!| - |rectangularMatrix| |next| |numberOfComputedEntries| |order| - |createPrimitivePoly| |sts2stst| |e01sff| |fmecg| |quoByVar| - |invertIfCan| |e01bgf| |constantIfCan| |hexDigit| - |rightMinimalPolynomial| |palgLODE0| |e02ahf| |outputFloating| - |clearCache| |geometric| |cTan| |oddlambert| |createThreeSpace| - |rationalPower| |tab| |exprToXXP| |dark| |insertMatch| - |exprHasWeightCosWXorSinWX| |fTable| |eigenMatrix| |OMsetEncoding| - |LiePolyIfCan| |totalDifferential| |symmetricRemainder| |sinh2csch| - |permanent| |removeRedundantFactorsInContents| |bivariate?| - |scanOneDimSubspaces| |quasiRegular?| |randnum| |lazyIntegrate| - |arguments| |firstSubsetGray| |square?| |expandTrigProducts| |linear| - |iisqrt2| |cRationalPower| |linGenPos| |cyclicCopy| |viewThetaDefault| - |basisOfLeftNucloid| |figureUnits| |part?| |OMgetError| |orOperands| - |typeLists| |getGraph| |fixedPointExquo| |equiv| |tube| - |curveColorPalette| |null| |primitiveElement| |expIfCan| |polynomial| - |leftMult| |nullary| |hasHi| |constantOperator| |approxNthRoot| - |minPoints| |cyclicSubmodule| |getlo| |intPatternMatch| |case| - |systemCommand| |showScalarValues| |po| |birth| |leviCivitaSymbol| - |f01qcf| |lazyVariations| |exponential| |number?| |solveLinearlyOverQ| - |absolutelyIrreducible?| |Zero| |pushdterm| |setMaxPoints| |assign| - |coshIfCan| |rightRegularRepresentation| |positive?| |divergence| - |prem| |f04adf| |getOperator| |reducedQPowers| |One| |OMconnectTCP| - |generalTwoFactor| |separant| |rightTraceMatrix| |vertConcat| - |clearTheIFTable| |bat| |removeDuplicates| |spherical| |rightNorm| - |invmod| |point| |overlabel| |normal| |message| |deleteRoutine!| - |numberOfHues| |rischNormalize| |fortranInteger| |singleFactorBound| - |bsolve| |startTableGcd!| |generalizedContinuumHypothesisAssumed?| - |psolve| |addMatchRestricted| |point?| |leftFactor| |prinb| - |makeResult| |rightExtendedGcd| |primitivePart| |char| |randomLC| - |sort!| |discriminantEuclidean| - |removeRoughlyRedundantFactorsInContents| |nextColeman| - |stoseInvertibleSetreg| |space| |setPredicates| |categoryFrame| - |numberOfIrreduciblePoly| |erf| |series| |mainDefiningPolynomial| - |imagE| |upDateBranches| |comparison| |hclf| |mapUnivariate| - |roughSubIdeal?| |dequeue!| |s18adf| |addiag| |outerProduct| - |shrinkable| |elt| |OMlistCDs| |initializeGroupForWordProblem| |plus!| - |diagonalProduct| |light| |substring?| |cartesian| |satisfy?| - |regularRepresentation| |hasTopPredicate?| |iiacsch| |optional?| - |startStats!| |unitNormalize| |child| |innerint| |binaryTree| - |atanIfCan| |insertionSort!| |nonQsign| |conditionsForIdempotents| - |dilog| |overset?| |s18dcf| |sincos| |uniform| |vector| |exprToGenUPS| - |factorOfDegree| |univcase| |droot| - |generalizedContinuumHypothesisAssumed| |palginfieldint| |f02agf| - |s17dhf| |min| |integralLastSubResultant| |float| |sin| - |stoseLastSubResultant| |differentiate| |deref| |f04jgf| |getMeasure| - |modularGcdPrimitive| GF2FG |build| |cCsc| |normalForm| |cos| - |functionIsContinuousAtEndPoints| |numberOfOperations| |hermite| - |infieldIntegrate| |d01gbf| |numberOfCycles| |shallowCopy| |t| |swap| - |forLoop| |sizePascalTriangle| |empty| |tan| |represents| - |dimensionOfIrreducibleRepresentation| |viewSizeDefault| |f02akf| - |karatsubaOnce| |lieAdmissible?| |outputArgs| |bandedHessian| - |patternMatchTimes| |singRicDE| |normalized?| |cot| |factorSFBRlcUnit| - |lastSubResultantEuclidean| |minimalPolynomial| |nil| |bitTruth| - |makeSUP| |primextendedint| |tanh2coth| |factor1| |f02bjf| - |denomRicDE| |sec| |getProperty| |setEpilogue!| |doublyTransitive?| - |OMputBind| |legendreP| |lazy?| |setCondition!| |f2df| |diag| - |numeric| |defineProperty| |csc| |selectOptimizationRoutines| - |pseudoDivide| |nextPrimitiveNormalPoly| |sayLength| |HenselLift| - |resetAttributeButtons| |mapExponents| |radical| |mergeDifference| - |e02agf| |checkPrecision| |trigs| |asin| |pdf2df| - |derivationCoordinates| |setrest!| |range| |evaluateInverse| - |UP2ifCan| |members| |getMultiplicationMatrix| |superHeight| - |truncate| |acos| |splitNodeOf!| |newTypeLists| |chebyshevU| |e02bdf| - |laurentRep| |goto| |shiftRight| |linearAssociatedOrder| |mr| - |univariatePolynomial| |isExpt| |integralBasis| |atan| |aLinear| GE - |henselFact| |conditionP| |currentCategoryFrame| |discreteLog| - |semiIndiceSubResultantEuclidean| |mapUp!| |problemPoints| - |limitedint| |factorset| |acot| |groebner| GT |computeCycleEntry| - |contract| |lift| |mesh?| |wholeRagits| |invmultisect| |outputFixed| - |s17acf| |e02ddf| |OMencodingUnknown| |retractable?| LE - |bipolarCylindrical| |c05nbf| |tanhIfCan| |subPolSet?| |reduce| - |leftTrace| |fractionFreeGauss!| |HermiteIntegrate| - |semiResultantReduitEuclidean| |infLex?| |symbolTableOf| |cCsch| LT - |showSummary| |isMult| |shuffle| - |rewriteIdealWithQuasiMonicGenerators| |aCubic| |normalizeAtInfinity| - |quickSort| |back| |associative?| |polyPart| |completeEval| |f04qaf| - |sumOfSquares| |structuralConstants| |Lazard2| |hostPlatform| - |OMReadError?| |possiblyInfinite?| |leaves| |ravel| |mkAnswer| - |rootKerSimp| |hMonic| |badNum| LODO2FUN |neglist| |createNormalPoly| - |mulmod| |showAttributes| |removeZero| |argument| |maxColIndex| - |reshape| |zeroOf| |ceiling| |scalarTypeOf| |coefficients| - |integralAtInfinity?| |parts| |and?| |mapdiv| |expPot| |nextPartition| - |iipow| |toseSquareFreePart| |compactFraction| |alphanumeric?| |iisin| - |modTree| |primextintfrac| |const| |OMgetType| - |basisOfLeftAnnihilator| |magnitude| |LyndonBasis| |rightRecip| - |exponential1| |contractSolve| |sample| |showFortranOutputStack| - |algebraicCoefficients?| |exprToUPS| |eigenvalues| |expandLog| - |quadraticNorm| |supersub| |coordinates| |rur| |lyndon?| |s14aaf| - |cExp| |midpoint| |OMgetBind| |createGenericMatrix| |iiacsc| - |raisePolynomial| |duplicates| |rightGcd| |relerror| |largest| - |ddFact| |stoseSquareFreePart| |maximumExponent| |varList| |isPlus| - |conjugate| |heap| |Frobenius| |df2fi| |selectFiniteRoutines| |update| - |ScanArabic| |elliptic?| |unrankImproperPartitions1| - |generateIrredPoly| |pushdown| |symmetricDifference| |flagFactor| - |adaptive| |duplicates?| |e02baf| |OMgetEndBVar| |stirling1| |power!| - |swap!| |limitPlus| |leftFactorIfCan| |OMgetInteger| - |expressIdealMember| |alphabetic?| |yCoord| |Beta| |elementary| - |inverseIntegralMatrix| |selectAndPolynomials| |points| |dfRange| - |unitCanonical| |credPol| |f01mcf| |reopen!| |normInvertible?| - |variationOfParameters| |d02ejf| |readLine!| |commutativeEquality| - |closedCurve?| |iCompose| |lambert| |nthExpon| - |subResultantGcdEuclidean| |regime| |weighted| |rightDivide| |mapCoef| - |exponent| |checkForZero| |phiCoord| |branchPointAtInfinity?| |depth| - |logGamma| |equiv?| |stripCommentsAndBlanks| |cot2tan| - |genericRightMinimalPolynomial| |palgRDE0| |f01rcf| |log| |bringDown| - |cfirst| |imagi| |SFunction| |primintfldpoly| |torsion?| - |invertibleSet| |position| |isList| |printStatement| |characteristic| - |derivative| |appendPoint| |notelem| |useSingleFactorBound?| - |minIndex| |standardBasisOfCyclicSubmodule| |infRittWu?| - |subResultantChain| |bottom!| |numberOfComponents| |computePowers| - |listRepresentation| |wholePart| |cyclotomicDecomposition| |s19aaf| - |extendedSubResultantGcd| |direction| |uncouplingMatrices| |edf2ef| - |cscIfCan| |function| |nullSpace| |imagJ| |pquo| |c05adf| - |normalizeIfCan| |splitSquarefree| |cAcoth| |radix| |mat| - |wordsForStrongGenerators| |quotient| |maxint| |copies| - |primPartElseUnitCanonical!| |initTable!| |e04naf| |denomLODE| - |makeYoungTableau| |nil?| |characteristicSet| |gcdcofactprim| |rquo| - |basisOfRightNucleus| |exponents| |complexNumericIfCan| |cCoth| - |clearTheSymbolTable| |youngGroup| |product| |rationalPoints| - |jordanAlgebra?| |plus| |OMwrite| |mainContent| |sinhIfCan| |pile| - |paraboloidal| |fortran| |simpsono| |ratDsolve| |heapSort| - |setsubMatrix!| |eq?| |gderiv| |double?| |subQuasiComponent?| - |exptMod| |meatAxe| |factorList| |imports| |makeSin| - |explicitlyFinite?| |roughBasicSet| |index?| |linearDependence| - |OMgetApp| |rational| |e01bff| |setAdaptive3D| |s17aff| |scale| - |endSubProgram| |collect| |augment| |bindings| |thenBranch| - |triangSolve| |numberOfDivisors| |hue| |anfactor| |minGbasis| - |binaryTournament| |c06gbf| |zeroSetSplit| |wordInGenerators| - |completeSmith| |times| |ptree| |backOldPos| |rationalIfCan| - |monomRDE| |topPredicate| |tubePointsDefault| |brillhartTrials| - |distFact| |numFunEvals| |evenlambert| |ParCondList| - |purelyAlgebraic?| |decreasePrecision| |symmetricGroup| |weakBiRank| - |bothWays| |cAcsc| |repSq| |semicolonSeparate| |shallowExpand| |root?| - |drawComplex| |presuper| |colorDef| |coerceImages| |mainCoefficients| - |clearTheFTable| |rootOf| |reducedDiscriminant| |push!| |atanhIfCan| - |viewpoint| |zeroDimPrimary?| |combineFeatureCompatibility| - |eigenvectors| |divideIfCan!| |withPredicates| |monom| |bezoutMatrix| - |stiffnessAndStabilityOfODEIF| |ratpart| |lcm| |padicallyExpand| - |sturmSequence| |cyclicGroup| |cyclicEntries| |collectQuasiMonic| - |drawComplexVectorField| |recoverAfterFail| |userOrdered?| |elRow1!| - |screenResolution3D| |getDatabase| |rarrow| |bandedJacobian| |result| - |dictionary| |c06fqf| |characteristicSerie| |iicoth| |common| |d01alf| - |OMputEndApp| |testModulus| |append| |trueEqual| |d01aqf| |Gamma| - |read!| |unravel| |gcd| |tanSum| |opeval| |qelt| |script| |quadratic?| - |karatsubaDivide| |totolex| |antiAssociative?| |linearlyDependent?| - |option?| |false| |nthr| |lllip| |leftRecip| |f02abf| |OMgetEndBind| - |powerSum| |readLineIfCan!| |fortranLogical| |s17ajf| |Hausdorff| - |xRange| |getCurve| |showClipRegion| |leftDivide| |setPoly| - |OMreadStr| |equivOperands| |incrementKthElement| |roman| |yRange| - |tex| |argumentList!| |virtualDegree| |f01qef| - |rewriteSetWithReduction| |unmakeSUP| |elColumn2!| |OMgetEndObject| - |cycleLength| |zRange| |cap| |outputForm| |qqq| |roughEqualIdeals?| - |unitsColorDefault| |#| |upperCase?| |redmat| |fortranLiteralLine| - |map!| |weights| |polynomialZeros| |numberOfComposites| |setClosed| - |eyeDistance| |qsetelt!| |groebnerFactorize| |hex| |asimpson| |iicsc| - |bfKeys| |stoseInvertibleSet| |numberOfMonomials| |nthFactor| |d01anf| - F |secIfCan| |e02dcf| |showAllElements| |explimitedint| |frobenius| - |localUnquote| |setMinPoints| |bubbleSort!| |genericRightTrace| - |times!| |high| |abelianGroup| |isAbsolutelyIrreducible?| |cn| - |halfExtendedSubResultantGcd1| |schema| |fractRagits| |id| - |minimumDegree| |gcdcofact| |factorSquareFreePolynomial| |matrixGcd| - |purelyAlgebraicLeadingMonomial?| |tRange| |lastSubResultantElseSplit| - |SturmHabichtCoefficients| |constantRight| |complex?| - |complexElementary| |approxSqrt| |quartic| |characteristicPolynomial| - |expandPower| |rdregime| |outputList| |acsch| |table| |interReduce| - |iilog| |permutationRepresentation| |size?| |totalGroebner| |zero| - |skewSFunction| |LiePoly| |selectSumOfSquaresRoutines| |lp| |new| - |radicalEigenvectors| |f02bbf| |zero?| |rightQuotient| |listOfLists| - |iiasec| |rootBound| |d02kef| |writable?| |brillhartIrreducible?| - |smith| |acschIfCan| |nlde| |And| |factorByRecursion| |maxPoints3D| - |mindegTerm| |zeroSetSplitIntoTriangularSystems| |printCode| - |rationalApproximation| |s17ahf| |minRowIndex| |rank| |Or| |s17aef| - |pomopo!| |prevPrime| |insertTop!| |any?| |sum| - |unrankImproperPartitions0| |newLine| |replaceKthElement| |exquo| - |Not| |interpretString| |s18acf| |toseInvertibleSet| |charpol| - |lyndon| |mainPrimitivePart| |exponentialOrder| |imagK| |div| - |LyndonCoordinates| |e04mbf| |null?| |viewPosDefault| |fibonacci| - |objectOf| |external?| |patternVariable| |relativeApprox| |quo| |f2st| - |li| |newSubProgram| |quote| |zoom| |tableForDiscreteLogarithm| - |OMsend| |setScreenResolution3D| |monomial?| |thetaCoord| - |hitherPlane| |extractBottom!| |deleteProperty!| |unary?| |categories| - |hash| |triangulate| |var2StepsDefault| |palglimint0| |f04asf| - |calcRanges| |dot| |factorSquareFree| |crest| |idealiser| |rem| - |inrootof| |count| |gcdPrimitive| |gcdPolynomial| - |stoseInvertible?reg| |eulerE| |d01akf| |radicalRoots| |acscIfCan| - |resize| |lists| |modularFactor| |e02akf| |oddInfiniteProduct| - |continuedFraction| |refine| |identitySquareMatrix| |optpair| |iitanh| - |coercePreimagesImages| |s20adf| |s21bdf| |normalize| |tanNa| |left| - |sequences| |radicalOfLeftTraceForm| |ldf2vmf| - |createLowComplexityNormalBasis| |removeSinSq| - |stiffnessAndStabilityFactor| |moebiusMu| |removeSuperfluousCases| - |int| |right| |makingStats?| |normalizedDivide| |viewWriteDefault| - |decrease| |insertRoot!| |subscriptedVariables| |trailingCoefficient| - |symbolIfCan| |setStatus!| |euclideanNormalForm| |goodPoint| - |padicFraction| |dAndcExp| |besselY| |extension| |mainExpression| - |linearDependenceOverZ| |adaptive?| |corrPoly| |d02cjf| |mathieu23| - |OMParseError?| |maxdeg| |nonLinearPart| |makeCos| |baseRDEsys| - |integer?| |oddintegers| |cAcsch| |s19acf| |blankSeparate| - |divideExponents| |sortConstraints| |mpsode| |cAtan| |basicSet| - |variable?| |highCommonTerms| |interpolate| |Nul| |axesColorDefault| - |polygamma| |constantCoefficientRicDE| |printHeader| |minPoints3D| - |exprHasLogarithmicWeights| |collectUpper| |imaginary| |trigs2explogs| - |pop!| |listYoungTableaus| |drawCurves| |htrigs| |rotatez| |Ci| |push| - |aspFilename| |not| |key| |clipSurface| |iicot| |internalAugment| - |unprotectedRemoveRedundantFactors| |cSinh| |list?| |outputGeneral| - |adjoint| |e01bef| |leftOne| |relationsIdeal| |lprop| |mainMonomials| - |discriminant| |reindex| |generalLambert| |filename| |upperCase| - |leadingBasisTerm| |transpose| |bivariateSLPEBR| |simpleBounds?| - |isOpen?| |ord| |palgextint| |not?| |extract!| |possiblyNewVariety?| - |prefix| |rename| |complement| |extendedEuclidean| |graphStates| - |iidprod| |makeprod| |failed| |parse| |rischDEsys| |sncndn| - |rubiksGroup| |symbol| |test| |monicCompleteDecompose| - |createPrimitiveNormalPoly| |internalSubQuasiComponent?| |ratDenom| - |rootNormalize| |algSplitSimple| |realRoots| |updatD| |e04fdf| - |updateStatus!| |outlineRender| |integralDerivationMatrix| - |cyclicEqual?| |lfintegrate| |c06fpf| |PDESolve| |denominator| - |weight| |deepestInitial| |indices| |measure| |showTheFTable| |label| - |balancedBinaryTree| |identity| |csch2sinh| |superscript| |signature| - |associatedSystem| |OMputObject| |asinhIfCan| |seed| |stronglyReduce| - |recolor| |exprex| |iicsch| |divisors| |musserTrials| |mapMatrixIfCan| - |algebraicOf| |solveid| |packageCall| |factorials| |socf2socdf| - |algebraic?| |rspace| |mappingAst| |iterationVar| |definingEquations| - |Aleph| |KrullNumber| |factorial| |getZechTable| |legendre| - |controlPanel| |ODESolve| |pleskenSplit| |move| |minimumExponent| - |cot2trig| |any| |physicalLength| |stopTableInvSet!| |unaryFunction| - |An| |s21bbf| |shanksDiscLogAlgorithm| |positiveSolve| |intChoose| - |degree| |reduceBasisAtInfinity| |OMputFloat| |epilogue| - |monicLeftDivide| |iiacos| |generalizedEigenvectors| |lfextendedint| - |cycleElt| |univariate?| |setFieldInfo| |padecf| |tanintegrate| - |composite| |OMputEndError| |singular?| |iExquo| |leftUnit| - |trapezoidal| |schwerpunkt| |setFormula!| |wordInStrongGenerators| - |f02aaf| |symmetric?| |ode2| |approximants| |node?| |fortranComplex| - |varselect| |index| |coord| |d01apf| |addMatch| - |rewriteIdealWithRemainder| |antisymmetric?| |search| - |prolateSpheroidal| |pureLex| |bumptab| |choosemon| |sub| |returns| - |enumerate| |mainVariables| |initiallyReduced?| |option| |c06ebf| - |coordinate| |cycleSplit!| |critT| |roughUnitIdeal?| |measure2Result| - |tryFunctionalDecomposition| |makeEq| |getOrder| - |SturmHabichtMultiple| |pointColor| |zeroMatrix| |qinterval| |pr2dmp| - |pair| |properties| |partialDenominators| |head| |even?| - |lazyResidueClass| |viewDeltaXDefault| |leftGcd| |euler| |shiftRoots| - |semiResultantEuclidean2| |parseString| |nothing| |translate| - |OMgetEndAtp| |quasiMonic?| |setlast!| |createMultiplicationMatrix| - |eof?| |rk4f| |or| |lazyPrem| |list| |changeName| |operators| - |ScanRoman| |extendIfCan| |monic?| |delete!| |useEisensteinCriterion| - |normal?| |reorder| |car| |palgLODE| |symmetricPower| |reducedSystem| - |primes| |rationalPoint?| |graphImage| |monomialIntPoly| |moduloP| - |cdr| |extractProperty| |mkIntegral| |inverse| |genericPosition| - |errorKind| |addPoint2| |setDifference| |reverse!| |pole?| |d01fcf| - |findBinding| |complexZeros| |OMopenString| |startTable!| |curry| - |nthFlag| |setIntersection| |wholeRadix| |swapColumns!| |OMputAtp| - |FormatRoman| |leftMinimalPolynomial| |genericLeftTraceForm| - |particularSolution| |rightTrim| |simplify| |leftRankPolynomial| |box| - |setUnion| |postfix| |OMgetString| |open?| |computeBasis| |logical?| - |OMputEndBind| |indiceSubResultantEuclidean| - |removeRedundantFactorsInPols| |c02agf| |f04arf| |leftTrim| - |setClipValue| |complexEigenvalues| |splitDenominator| |apply| - |orthonormalBasis| |comment| |c06ekf| |critBonD| |leftUnits| |setelt!| - |cycleEntry| |rootOfIrreduciblePoly| |OMputEndBVar| |f01brf| |f07fef| - |lifting1| |safetyMargin| |usingTable?| |cycles| |flatten| |universe| - |checkRur| |mainSquareFreePart| |e02bbf| |resultantEuclideannaif| - |size| |signatureAst| |rroot| |viewport3D| |definingPolynomial| - |isTimes| |fortranReal| |rightFactorCandidate| |alternative?| - |hasSolution?| |subResultantsChain| |length| |atrapezoidal| |xCoord| - |mathieu11| |nextSubsetGray| |cycle| |nodeOf?| |fprindINFO| |expint| - |pattern| |innerEigenvectors| |scripts| |basisOfNucleus| |implies| - |e04dgf| |palgextint0| |cyclotomic| |e01daf| |debug3D| |first| |entry| - |e01baf| |dn| |andOperands| |e01sef| ** |viewDeltaYDefault| |f02axf| - |power| |moreAlgebraic?| |taylorIfCan| |rest| |isOp| |branchPoint?| - |createRandomElement| |OMgetAttr| |xor| |leftCharacteristicPolynomial| - |mainCharacterization| |round| |substitute| |triangularSystems| - |inGroundField?| |outputBinaryFile| |laplace| |d02gbf| |triangular?| - |linearPolynomials| |datalist| |initial| |makeFR| |makeGraphImage| - |LyndonWordsList| |rowEchelonLocal| EQ |OMputInteger| |binomThmExpt| - |initials| |yCoordinates| |symmetricSquare| |subSet| |realSolve| - |internal?| |expenseOfEvaluationIF| |iicosh| |compose| |repeating| - |qualifier| |vark| |rule| |check| |ramifiedAtInfinity?| |unitNormal| - |inHallBasis?| |pushNewContour| |radicalEigenvalues| |ocf2ocdf| - |rightFactorIfCan| |tab1| |taylorQuoByVar| |graphs| |simpson| - |randomR| |member?| |df2st| |monomRDEsys| |floor| |d02bhf| |drawStyle| - |extendedIntegrate| |OMUnknownCD?| |outputMeasure| |inverseColeman| - |returnTypeOf| |linear?| |pointColorPalette| |trivialIdeal?| - |cschIfCan| |PollardSmallFactor| |gramschmidt| |deepestTail| |top| - |makeTerm| |OMgetEndApp| |generalizedInverse| |FormatArabic| - |radicalSolve| |setfirst!| |inf| |explogs2trigs| |expintegrate| - |repeating?| |externalList| |imagj| |unit?| |c06eaf| |scalarMatrix| - |surface| |lagrange| |se2rfi| |headReduce| |kind| |in?| |term?| - |orbits| |selectNonFiniteRoutines| |ranges| |besselK| |denominators| - |leader| |comp| |nextSublist| |df2mf| |OMgetBVar| |ptFunc| - |showIntensityFunctions| |createNormalElement| |startTableInvSet!| - |resetBadValues| |subCase?| |c06gqf| |unexpand| |mapDown!| - |countRealRoots| |countable?| |RittWuCompare| |op| |coerceListOfPairs| - |iitan| |laurentIfCan| |sPol| |goodnessOfFit| |realEigenvalues| - |traceMatrix| |setprevious!| |select!| |groebnerIdeal| - |solveLinearPolynomialEquationByFractions| |rischDE| |key?| - |OMopenFile| |diagonalMatrix| |hessian| |makeUnit| |screenResolution| - |quotientByP| |parent| |concat| |slex| |arity| |parabolicCylindrical| - |solid?| |d03edf| |complete| |internalInfRittWu?| |plotPolar| - |extensionDegree| |setAttributeButtonStep| |bag| |complexRoots| - |differentialVariables| |say| |normal01| |ran| |fractRadix| - |cyclicParents| UTS2UP ~ |atoms| |dequeue| |cAcot| - |algebraicDecompose| |constantKernel| |convergents| |OMputError| |Is| - |headRemainder| |quasiRegular| |modifyPoint| |clearTable!| - |alphabetic| |curveColor| |permutationGroup| |moduleSum| - |univariatePolynomialsGcds| |reseed| |union| |open| |digit?| |cCot| - |rightOne| |squareFreePolynomial| |digits| |deriv| |finite?| - |clearDenominator| |gbasis| |f07fdf| |viewPhiDefault| |errorInfo| - |mainVariable| |callForm?| |s15aef| |central?| |cCosh| |resultantnaif| - |lazyPquo| |showTheIFTable| |predicate| |chineseRemainder| |shiftLeft| - |call| |rk4| |intersect| |lookup| |printInfo!| |children| |revert| - |rootPower| |f01ref| |nodes| |fi2df| |setleft!| |sdf2lst| - |permutation| |reset| |useEisensteinCriterion?| |pToHdmp| |freeOf?| - |leadingExponent| |getOperands| |integralCoordinates| |palgintegrate| - |mkPrim| |showArrayValues| |powerAssociative?| |factorFraction| - |module| |setColumn!| |makeFloatFunction| |generalInfiniteProduct| - |entry?| |multiset| |s17dgf| |write| |rangeIsFinite| - |fortranDoubleComplex| |messagePrint| |janko2| |radicalSimplify| - |pdct| |save| |inR?| |OMconnOutDevice| |bumprow| |s18aff| - |rationalFunction| |iiperm| |asec| |commutative?| |innerSolve| - |complexIntegrate| |LazardQuotient| |cylindrical| |prod| |computeInt| - |OMputApp| |localReal?| |acsc| |elem?| |rst| |algDsolve| |branchIfCan| - |genericLeftMinimalPolynomial| |addmod| |OMgetVariable| |super| - |mantissa| |sinh| |noKaratsuba| |primitive?| |generic?| |patternMatch| - |mainValue| |associator| |definingInequation| |curve| |separate| - |var2Steps| |parameters| |cosh| |clipWithRanges| |hconcat| |myDegree| - |numer| |stFunc2| |implies?| |sin2csc| |nand| |e04ycf| |mainVariable?| - |tanh| |rotate!| |graphCurves| |denom| |taylorRep| |constant| - |arrayStack| |generalizedEigenvector| |sizeMultiplication| - |scaleRoots| |hcrf| |coth| |deepCopy| |integerBound| |s14baf| - |radPoly| |iiasech| |generalPosition| |realEigenvectors| - |hasPredicate?| |linearAssociatedLog| |listexp| - |basisOfCommutingElements| |sech| |leftQuotient| |companionBlocks| - |ksec| |pi| |abs| |lieAlgebra?| |primeFactor| |copy!| |e01bhf| - |perfectNthRoot| |csch| |setPosition| |mainMonomial| |infinity| |port| - |cAsin| |OMcloseConn| |removeIrreducibleRedundantFactors| - |setchildren!| |d01bbf| |badValues| |compdegd| |asinh| |whatInfinity| - |cosIfCan| |csubst| |pack!| |multMonom| |keys| - |resultantReduitEuclidean| |queue| |subNode?| |leftDiscriminant| - |empty?| |acosh| |transcendentalDecompose| |setVariableOrder| - |binarySearchTree| |terms| |cPower| |matrix| |irreducible?| - |leftExtendedGcd| |fortranTypeOf| |sumOfKthPowerDivisors| |solve| - |subst| |close!| |kernel| |atanh| |OMputEndAttr| |axes| |OMmakeConn| - |optimize| |firstDenom| |semiSubResultantGcdEuclidean1| |reduced?| - |elseBranch| |closed?| |bipolar| |acoth| |indiceSubResultant| - |setOrder| |separateDegrees| |draw| |leftZero| |sup| - |LagrangeInterpolation| |basisOfRightNucloid| |conical| - |internalIntegrate| |asech| |minrank| |rowEchelon| |BumInSepFFE| - |someBasis| |monomialIntegrate| |whileLoop| |setTex!| |bitCoef| - |lazyEvaluate| |coHeight| |hspace| |chebyshevT| |extend| - |setImagSteps| |determinant| |multiple| |laguerreL| - |nextNormalPrimitivePoly| |makeViewport3D| |printInfo| - |quotedOperators| |charClass| |totalfract| |evenInfiniteProduct| - |printTypes| |rightTrace| |applyQuote| |rotatex| |subresultantVector| - |makeObject| |iifact| |zag| |sylvesterSequence| |linears| - |selectPDERoutines| |objects| |wreath| |rightRank| |rootRadius| - |useNagFunctions| |squareTop| |B1solve| |integral?| - |stoseIntegralLastSubResultant| |base| |acosIfCan| |OMsupportsSymbol?| - |sign| |coef| |integralMatrixAtInfinity| |extendedint| |interpret| - |reduceLODE| |algebraicSort| |dominantTerm| |isQuotient| |f04faf| - |ruleset| |simplifyPower| |genericLeftDiscriminant| |wronskianMatrix| - |OMencodingXML| |removeSinhSq| |bits| |f04mcf| |enterInCache| - |primeFrobenius| |bat1| |quadraticForm| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| + |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| + |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| + |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| + |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| + |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| + |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| + |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| + |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf| + |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray| + |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack| + |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons| + |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation| + |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| + |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| + |inspect| |extract!| |bag| |binding| |position!| |test| |setProperties| + |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?| + |unary?| |nullary?| |arity| |properties| |derivative| |constantOperator| + |constantOpIfCan| |integerBound| |setright!| |setleft!| + |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| + |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| + |bitior| |bitand| |byte| |subtractIfCan| |setPosition| + |generalizedContinuumHypothesisAssumed| + |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| + |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |kind| |alphanumeric| + |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| + |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| + |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| + |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| + |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial| + |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm| + |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators| + |numerators| |convergents| |approximants| |reducedForm| |partialQuotients| + |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push| + |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic| + |parabolicCylindrical| |paraboloidal| |ellipticCylindrical| + |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical| + |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| + |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| + |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| + |computeCycleLength| |computeCycleEntry| |arguments| |constructorName| + |coerceP| |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| + |cup| |wreath| |SFunction| |skewSFunction| |cyclotomicDecomposition| + |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| + |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| + |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| + |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor| + |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF| + |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?| + |elliptic?| |doubleResultant| |distdfact| |separateDegrees| |trace2PowMod| + |tracePowMod| |irreducible?| |decimal| |innerint| |exteriorDifferential| + |totalDifferential| |homogeneous?| |leadingBasisTerm| |ignore?| |computeInt| + |checkForZero| |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| + |identity| |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| + |sayLength| |setnext!| |setprevious!| |next| |previous| |datalist| + |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial| + |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!| + |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| + |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps| + |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction| + |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale| + |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space| + |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound| + |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| + |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| + |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| + |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| + |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| + |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| + |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| + |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn| + |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!| + |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues| + |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| + |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| + |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| + |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf| + |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf| + |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi| + |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st| + |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result| + |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist| + |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?| + |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot| + |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial| + |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| + |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder| + |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode| + |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block| + |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop| + |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix| + |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor| + |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple| + |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents| + |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| + |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| + |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| + |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| + |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| + |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| + |getZechTable| |createZechTable| |createMultiplicationTable| + |createMultiplicationMatrix| |createLowComplexityTable| + |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| + |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| + |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| + |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| + |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| + |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| + |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| + |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| + |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| + |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| + |associatorDependence| |lieAlgebra?| |jordanAlgebra?| + |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| + |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| + |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| + |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| + |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| + |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| + |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| + |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve| + |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?| + |extension| |directory| |filename| |shallowExpand| |deepExpand| + |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack| + |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula| + |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| + |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| + |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| + |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor| + |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| + |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| + |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| + |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| + |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| + |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| + |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| + |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| + |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| + |fortranDouble| |fortranReal| |external?| |scalarTypeOf| + |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| + |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| + |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| + |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| + |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| + |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| + |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| + |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| + |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| + |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| + |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| + |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| + |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| + |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| + |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| + |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| + |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| + |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| + |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| + |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| + |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| + |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| + |putColorInfo| |appendPoint| |component| |ranges| |pointLists| + |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| + |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| + |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| + |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| + |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| + |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| + |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| + |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| + |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| + |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength| + |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports| + |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol| + |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis| + |normalElement| |minimalPolynomial| |eof?| |inputBinaryFile| |increment| + |incrementBy| |charpol| |solve1| |innerEigenvectors| |compile| |declare| + |parseString| |unparse| |flatten| |lambda| |binary| |packageCall| |interpret| + |innerSolve1| |innerSolve| |makeEq| |modularGcdPrimitive| |modularGcd| + |reduction| |signAround| |invmod| |powmod| |mulmod| |submod| |addmod| |mask| + |dec| |inc| |symmetricRemainder| |positiveRemainder| |bit?| |algint| + |algintegrate| |palgintegrate| |palginfieldint| |bitLength| |bitCoef| + |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?| + |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint| + |lfintegrate| |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable| + |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0| + |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| + |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| + |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| + |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| + |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| + |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| + |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| + |expintegrate| |tanintegrate| |primextendedint| |expextendedint| + |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| + |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| + |inverseLaplace| |bothWays| |input| |iprint| |elem?| |notelem| |logpart| + |ratpart| |mkAnswer| |perfectNthPower?| |perfectNthRoot| |approxNthRoot| + |perfectSquare?| |perfectSqrt| |approxSqrt| |generateIrredPoly| + |complexExpand| |complexIntegrate| |dimensionOfIrreducibleRepresentation| + |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| + |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| + |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| + |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| + |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG + |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| + |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| + |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true| + |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase| + |distFact| |identification| |LyndonCoordinates| |LyndonBasis| + |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular| + |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei| + |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord| + |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit| + |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem| + |setDifference| |setIntersection| |setUnion| |append| |null| |nil| + |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| + |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm| + |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| + |symmetricProduct| |symmetricPower| |directSum| + |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| + |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| + |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| + |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| + |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| + |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| + |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| + |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| + |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| + |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| + |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence| + |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| + |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| + |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| + |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| + |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| + |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| + |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| + |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| + |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| + |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| + |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| + |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference| + |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| + |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| + |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| + |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| + |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| + |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| + |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| + |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| + |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| + |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| + |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| + |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| + |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| + |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| + |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| + |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| + |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| + |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| + |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| + |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| + |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| + |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| + |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| + |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate| + |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp| + |characteristicPolynomial| |realEigenvalues| |realEigenvectors| + |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant| + |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| + |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| + |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| + |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| + |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| + |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| + |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable| + |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve| + |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| + |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| + |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| + |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| + |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn| + |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP| + |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp| + |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp| + |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError| + |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString| + |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar| + |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr| + |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger| + |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType| + |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown| + |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?| + |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile| + |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?| + |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop| + |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase| + |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?| + |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| + |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| + |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| + |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| + |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| + |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |isOpen?| + |outputBinaryFile| |quo| |rem| |div| >= > ~= |blankSeparate| + |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| |prod| + |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| |super| + |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| |postfix| + |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| |superHeight| + |subHeight| |height| |width| |doubleFloatFormat| |messagePrint| |message| + |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits| + |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| + |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates| + |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult| + |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| + |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| + |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| + |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| + |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| + |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve| + |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages| + |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| + |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| + |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints| + |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| + |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| + |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| + |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| + |charthRoot| |conditionP| |solveLinearPolynomialEquation| + |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| + |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| + |doubleDisc| |polyred| |padicFraction| |padicallyExpand| + |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| + |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| + |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| + |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| + |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| + |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| + |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| + |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| + |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| + |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| + |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| + |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| + |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| + |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| + |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| + |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| + |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| + |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| + |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| + |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| + |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| + |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| + |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?| + |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?| + |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and| + |merge!| |resultantEuclidean| |semiResultantEuclidean2| + |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean| + |semiIndiceSubResultantEuclidean| |degreeSubResultant| + |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean| + |lastSubResultantEuclidean| |semiLastSubResultantEuclidean| + |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2| + |semiSubResultantGcdEuclidean1| |discriminantEuclidean| + |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit| + |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard| + |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| + |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| + |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| + |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| + |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| + |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| + |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| + |unprotectedRemoveRedundantFactors| |removeRedundantFactors| + |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| + |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| + |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| + |linearPolynomials| |bivariate?| |bivariatePolynomials| + |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| + |interReduce| |roughBasicSet| |crushedSet| + |rewriteSetByReducingWithParticularGenerators| + |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| + |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| + |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| + |irreducibleFactors| |lazyIrreducibleFactors| + |removeIrreducibleRedundantFactors| |normalForm| |changeBase| + |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| + |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| + |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| + |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| + |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| + |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| + |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| + |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| + |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| + |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| + |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| + |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| + |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| + |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| + |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| + |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint| + |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = + |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector| + |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt| + |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix| + |symmetricTensors| |tensorProduct| |permutationRepresentation| + |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| + |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| + |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues| + |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate| + |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal| + |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue| + |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric| + |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| + |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| + |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| + |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| + |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| + |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!| + |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold| + |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| + |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| + |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| + |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| + |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| + |subResultantChain| |halfExtendedSubResultantGcd2| + |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| + |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| + |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| + |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| + |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| + |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| + |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators| + |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| + |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| + |invertibleSet| |invertible?| |invertibleElseSplit?| + |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| + |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| + |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| + |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression| + |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| + |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope| + |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates| + |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?| + |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| + |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| + |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| + |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| + |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| + |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| + |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| + |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| + |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| + |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| + |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| + |stoseIntegralLastSubResultant| |stoseLastSubResultant| + |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| + |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| + |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| + |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| + |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| + |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| + |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| + |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| + |signatureAst| |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth| + |top| |pop!| |push!| |minordet| |determinant| |diagonalProduct| |trace| + |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith| + |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve| + |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| + |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| + |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop| + |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| + |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData| + |composites| |components| |numberOfComposites| |numberOfComponents| + |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs| + |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| + |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!| + |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!| + |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| + |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| + |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| + |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| + |KrullNumber| |numberOfVariables| |algebraicDecompose| + |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches| + |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack| + |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct| + |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct| + |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output| + |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers| + |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag| + |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos| + |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh| + |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch| + |subresultantVector| |primitivePart| |pointData| |parent| |level| + |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| + |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| + |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| + |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| + |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list| + |string| |argscript| |superscript| |subscript| |script| |scripts| |scripted?| + |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| + |printHeader| |returnType!| |argumentList!| |endSubProgram| + |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| + |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList| + |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case| + |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| + |solve| |triangularSystems| |rootDirectory| |hostPlatform| + |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1| + |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr| + |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!| + |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?| + |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString| + |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue| + |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| + |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| + |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| + |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| + |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| + |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog| + |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh| + |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig| + |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq| + |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate| + |coefficient| |coHeight| |extendIfCan| |algebraicVariables| + |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic| + |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce| + |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?| + |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent| + |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?| + |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select| + |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?| + |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder| + |resetVariableOrder| |prime?| |rationalFunction| |taylorIfCan| |taylor| + |removeZeroes| |taylorRep| |factor| |factorSquareFree| |henselFact| |hasHi| + |segment| SEGMENT |fmecg| |commonDenominator| |clearDenominator| + |splitDenominator| |monicRightFactorIfCan| |rightFactorIfCan| + |leftFactorIfCan| |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan| + |noKaratsuba| |karatsubaOnce| |karatsuba| |separate| |pseudoDivide| + |pseudoQuotient| |composite| |subResultantGcd| |resultant| |discriminant| + |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide| + |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend| + |approximate| |truncate| |order| |center| |terms| |squareFreePart| + |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep| + |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!| + |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail| + |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first| + |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert| + |oddlambert| |lambert| |lagrange| |differentiate| |univariatePolynomial| + |integrate| ** |polynomial| |multiplyCoefficients| |quoByVar| |coefficients| + |series| |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| + |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| + |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves| + |drawCurves| |update| |show| |scale| |connect| |region| |points| |units| + |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D| + |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset| + |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion| + |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate| + |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint| + |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace| + |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault| + |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault| + |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault| + |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault| + |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault| + |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv| + |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |qualifier| + |mainExpression| |condition| |changeWeightLevel| |characteristicSerie| + |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree| + |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| + |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| + |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant| + |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| * + |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| + |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| + |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| + |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 14c18906..d63b31cf 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5164 +1,5174 @@ -(3175758 . 3431897926) -((-1837 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2734 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2409 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-1195 (-550)) |#2|) 34)) (-3770 (($ $) 59)) (-2924 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3088 (((-550) (-1 (-112) |#2|) $) 22) (((-550) |#2| $) NIL) (((-550) |#2| $ (-550)) 73)) (-2971 (((-623 |#2|) $) 13)) (-2441 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3311 (($ (-1 |#2| |#2|) $) 29)) (-2392 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1476 (($ |#2| $ (-550)) NIL) (($ $ $ (-550)) 50)) (-1614 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1410 (((-112) (-1 (-112) |#2|) $) 21)) (-2757 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL) (($ $ (-1195 (-550))) 49)) (-1512 (($ $ (-550)) 56) (($ $ (-1195 (-550))) 55)) (-3457 (((-749) (-1 (-112) |#2|) $) 26) (((-749) |#2| $) NIL)) (-2502 (($ $ $ (-550)) 52)) (-2435 (($ $) 51)) (-2245 (($ (-623 |#2|)) 53)) (-4006 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-623 $)) 62)) (-2233 (((-837) $) 69)) (-3404 (((-112) (-1 (-112) |#2|) $) 20)) (-2264 (((-112) $ $) 72)) (-2290 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2264 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -2502 (|#1| |#1| |#1| (-550))) (-15 -1837 ((-112) |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2409 (|#2| |#1| (-1195 (-550)) |#2|)) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2409 (|#2| |#1| (-550) |#2|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -2971 ((-623 |#2|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) (-19 |#2|) (-1182)) (T -18)) +(3167315 . 3432414603) +((-1843 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1841 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4142 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-1196 (-536)) |#2|) 34)) (-2372 (($ $) 59)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3773 (((-536) (-1 (-112) |#2|) $) 22) (((-536) |#2| $) NIL) (((-536) |#2| $ (-536)) 73)) (-2063 (((-620 |#2|) $) 13)) (-3867 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2067 (($ (-1 |#2| |#2|) $) 29)) (-4313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2377 (($ |#2| $ (-536)) NIL) (($ $ $ (-536)) 50)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL) (($ $ (-1196 (-536))) 49)) (-2378 (($ $ (-536)) 56) (($ $ (-1196 (-536))) 55)) (-2064 (((-749) (-1 (-112) |#2|) $) 26) (((-749) |#2| $) NIL)) (-1842 (($ $ $ (-536)) 52)) (-3754 (($ $) 51)) (-3879 (($ (-620 |#2|)) 53)) (-4156 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-620 $)) 62)) (-4312 (((-838) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3382 (((-112) $ $) 72)) (-3013 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -1843 ((-112) |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) (-19 |#2|) (-1183)) (T -18)) NIL -(-10 -8 (-15 -2264 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -2502 (|#1| |#1| |#1| (-550))) (-15 -1837 ((-112) |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2409 (|#2| |#1| (-1195 (-550)) |#2|)) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2409 (|#2| |#1| (-550) |#2|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -2971 ((-623 |#2|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-3088 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 70)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 82 (|has| |#1| (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-19 |#1|) (-138) (-1182)) (T -19)) +(-10 -8 (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -1843 ((-112) |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-19 |#1|) (-138) (-1183)) (T -19)) NIL -(-13 (-366 |t#1|) (-10 -7 (-6 -4345))) -(((-34) . T) ((-101) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1069) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-1182) . T)) -((-1993 (((-3 $ "failed") $ $) 12)) (-2370 (($ $) NIL) (($ $ $) 9)) (* (($ (-895) $) NIL) (($ (-749) $) 16) (($ (-550) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) (-21)) (T -20)) +(-13 (-365 |t#1|) (-10 -7 (-6 -4349))) +(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) +((-1367 (((-3 $ "failed") $ $) 12)) (-4192 (($ $) NIL) (($ $ $) 9)) (* (($ (-893) $) NIL) (($ (-749) $) 16) (($ (-536) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20))) +(-10 -8 (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20))) (((-21) (-138)) (T -21)) -((-2370 (*1 *1 *1) (-4 *1 (-21))) (-2370 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-550))))) -(-13 (-130) (-10 -8 (-15 -2370 ($ $)) (-15 -2370 ($ $ $)) (-15 * ($ (-550) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-3378 (((-112) $) 10)) (-2991 (($) 15)) (* (($ (-895) $) 14) (($ (-749) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 -2991 (|#1|)) (-15 * (|#1| (-895) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 -2991 (|#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15))) +((-4192 (*1 *1 *1) (-4 *1 (-21))) (-4192 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-536))))) +(-13 (-130) (-10 -8 (-15 -4192 ($ $)) (-15 -4192 ($ $ $)) (-15 * ($ (-536) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-3534 (((-112) $) 10)) (-3891 (($) 15)) (* (($ (-893) $) 14) (($ (-749) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 * (|#1| (-893) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) (((-23) (-138)) (T -23)) -((-2688 (*1 *1) (-4 *1 (-23))) (-2991 (*1 *1) (-4 *1 (-23))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749))))) -(-13 (-25) (-10 -8 (-15 (-2688) ($) -4165) (-15 -2991 ($) -4165) (-15 -3378 ((-112) $)) (-15 * ($ (-749) $)))) -(((-25) . T) ((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((* (($ (-895) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-895) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13))) +((-2986 (*1 *1) (-4 *1 (-23))) (-3891 (*1 *1) (-4 *1 (-23))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749))))) +(-13 (-25) (-10 -8 (-15 (-2986) ($) -4306) (-15 -3891 ($) -4306) (-15 -3534 ((-112) $)) (-15 * ($ (-749) $)))) +(((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((* (($ (-893) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-893) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13))) (((-25) (-138)) (T -25)) -((-2358 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895))))) -(-13 (-1069) (-10 -8 (-15 -2358 ($ $ $)) (-15 * ($ (-895) $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-1510 (((-623 $) (-926 $)) 29) (((-623 $) (-1141 $)) 16) (((-623 $) (-1141 $) (-1145)) 20)) (-2966 (($ (-926 $)) 27) (($ (-1141 $)) 11) (($ (-1141 $) (-1145)) 54)) (-1600 (((-623 $) (-926 $)) 30) (((-623 $) (-1141 $)) 18) (((-623 $) (-1141 $) (-1145)) 19)) (-3217 (($ (-926 $)) 28) (($ (-1141 $)) 13) (($ (-1141 $) (-1145)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1510 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1510 ((-623 |#1|) (-1141 |#1|))) (-15 -1510 ((-623 |#1|) (-926 |#1|))) (-15 -2966 (|#1| (-1141 |#1|) (-1145))) (-15 -2966 (|#1| (-1141 |#1|))) (-15 -2966 (|#1| (-926 |#1|))) (-15 -1600 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1600 ((-623 |#1|) (-1141 |#1|))) (-15 -1600 ((-623 |#1|) (-926 |#1|))) (-15 -3217 (|#1| (-1141 |#1|) (-1145))) (-15 -3217 (|#1| (-1141 |#1|))) (-15 -3217 (|#1| (-926 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1510 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1510 ((-623 |#1|) (-1141 |#1|))) (-15 -1510 ((-623 |#1|) (-926 |#1|))) (-15 -2966 (|#1| (-1141 |#1|) (-1145))) (-15 -2966 (|#1| (-1141 |#1|))) (-15 -2966 (|#1| (-926 |#1|))) (-15 -1600 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1600 ((-623 |#1|) (-1141 |#1|))) (-15 -1600 ((-623 |#1|) (-926 |#1|))) (-15 -3217 (|#1| (-1141 |#1|) (-1145))) (-15 -3217 (|#1| (-1141 |#1|))) (-15 -3217 (|#1| (-926 |#1|)))) -((-2221 (((-112) $ $) 7)) (-1510 (((-623 $) (-926 $)) 77) (((-623 $) (-1141 $)) 76) (((-623 $) (-1141 $) (-1145)) 75)) (-2966 (($ (-926 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1145)) 78)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1745 (($ $) 89)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-1600 (((-623 $) (-926 $)) 83) (((-623 $) (-1141 $)) 82) (((-623 $) (-1141 $) (-1145)) 81)) (-3217 (($ (-926 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1145)) 84)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 88)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 87)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +((-4194 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-893))))) +(-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ (-893) $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-1662 (((-620 $) (-920 $)) 29) (((-620 $) (-1141 $)) 16) (((-620 $) (-1141 $) (-1147)) 20)) (-1263 (($ (-920 $)) 27) (($ (-1141 $)) 11) (($ (-1141 $) (-1147)) 54)) (-1264 (((-620 $) (-920 $)) 30) (((-620 $) (-1141 $)) 18) (((-620 $) (-1141 $) (-1147)) 19)) (-3529 (($ (-920 $)) 28) (($ (-1141 $)) 13) (($ (-1141 $) (-1147)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) +((-2893 (((-112) $ $) 7)) (-1662 (((-620 $) (-920 $)) 77) (((-620 $) (-1141 $)) 76) (((-620 $) (-1141 $) (-1147)) 75)) (-1263 (($ (-920 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1147)) 78)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-1264 (((-620 $) (-920 $)) 83) (((-620 $) (-1141 $)) 82) (((-620 $) (-1141 $) (-1147)) 81)) (-3529 (($ (-920 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1147)) 84)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 88)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 87)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) (((-27) (-138)) (T -27)) -((-3217 (*1 *1 *2) (-12 (-5 *2 (-926 *1)) (-4 *1 (-27)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1145)) (-4 *1 (-27)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1145)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-926 *1)) (-4 *1 (-27)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1145)) (-4 *1 (-27)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1145)) (-4 *1 (-27)) (-5 *2 (-623 *1))))) -(-13 (-356) (-976) (-10 -8 (-15 -3217 ($ (-926 $))) (-15 -3217 ($ (-1141 $))) (-15 -3217 ($ (-1141 $) (-1145))) (-15 -1600 ((-623 $) (-926 $))) (-15 -1600 ((-623 $) (-1141 $))) (-15 -1600 ((-623 $) (-1141 $) (-1145))) (-15 -2966 ($ (-926 $))) (-15 -2966 ($ (-1141 $))) (-15 -2966 ($ (-1141 $) (-1145))) (-15 -1510 ((-623 $) (-926 $))) (-15 -1510 ((-623 $) (-1141 $))) (-15 -1510 ((-623 $) (-1141 $) (-1145))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-976) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-1510 (((-623 $) (-926 $)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-1141 $) (-1145)) 50) (((-623 $) $) 19) (((-623 $) $ (-1145)) 41)) (-2966 (($ (-926 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1145)) 52) (($ $) 17) (($ $ (-1145)) 37)) (-1600 (((-623 $) (-926 $)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-1141 $) (-1145)) 48) (((-623 $) $) 15) (((-623 $) $ (-1145)) 43)) (-3217 (($ (-926 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1145)) NIL) (($ $) 12) (($ $ (-1145)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1510 ((-623 |#1|) |#1| (-1145))) (-15 -2966 (|#1| |#1| (-1145))) (-15 -1510 ((-623 |#1|) |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -1600 ((-623 |#1|) |#1| (-1145))) (-15 -3217 (|#1| |#1| (-1145))) (-15 -1600 ((-623 |#1|) |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -1510 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1510 ((-623 |#1|) (-1141 |#1|))) (-15 -1510 ((-623 |#1|) (-926 |#1|))) (-15 -2966 (|#1| (-1141 |#1|) (-1145))) (-15 -2966 (|#1| (-1141 |#1|))) (-15 -2966 (|#1| (-926 |#1|))) (-15 -1600 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1600 ((-623 |#1|) (-1141 |#1|))) (-15 -1600 ((-623 |#1|) (-926 |#1|))) (-15 -3217 (|#1| (-1141 |#1|) (-1145))) (-15 -3217 (|#1| (-1141 |#1|))) (-15 -3217 (|#1| (-926 |#1|)))) (-29 |#2|) (-13 (-825) (-542))) (T -28)) -NIL -(-10 -8 (-15 -1510 ((-623 |#1|) |#1| (-1145))) (-15 -2966 (|#1| |#1| (-1145))) (-15 -1510 ((-623 |#1|) |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -1600 ((-623 |#1|) |#1| (-1145))) (-15 -3217 (|#1| |#1| (-1145))) (-15 -1600 ((-623 |#1|) |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -1510 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1510 ((-623 |#1|) (-1141 |#1|))) (-15 -1510 ((-623 |#1|) (-926 |#1|))) (-15 -2966 (|#1| (-1141 |#1|) (-1145))) (-15 -2966 (|#1| (-1141 |#1|))) (-15 -2966 (|#1| (-926 |#1|))) (-15 -1600 ((-623 |#1|) (-1141 |#1|) (-1145))) (-15 -1600 ((-623 |#1|) (-1141 |#1|))) (-15 -1600 ((-623 |#1|) (-926 |#1|))) (-15 -3217 (|#1| (-1141 |#1|) (-1145))) (-15 -3217 (|#1| (-1141 |#1|))) (-15 -3217 (|#1| (-926 |#1|)))) -((-2221 (((-112) $ $) 7)) (-1510 (((-623 $) (-926 $)) 77) (((-623 $) (-1141 $)) 76) (((-623 $) (-1141 $) (-1145)) 75) (((-623 $) $) 123) (((-623 $) $ (-1145)) 121)) (-2966 (($ (-926 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1145)) 78) (($ $) 124) (($ $ (-1145)) 122)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1145)) $) 198)) (-1705 (((-400 (-1141 $)) $ (-594 $)) 230 (|has| |#1| (-542)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1608 (((-623 (-594 $)) $) 161)) (-1993 (((-3 $ "failed") $ $) 19)) (-4230 (($ $ (-623 (-594 $)) (-623 $)) 151) (($ $ (-623 (-287 $))) 150) (($ $ (-287 $)) 149)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1745 (($ $) 89)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-1600 (((-623 $) (-926 $)) 83) (((-623 $) (-1141 $)) 82) (((-623 $) (-1141 $) (-1145)) 81) (((-623 $) $) 127) (((-623 $) $ (-1145)) 125)) (-3217 (($ (-926 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1145)) 84) (($ $) 128) (($ $ (-1145)) 126)) (-2288 (((-3 (-926 |#1|) "failed") $) 248 (|has| |#1| (-1021))) (((-3 (-400 (-926 |#1|)) "failed") $) 232 (|has| |#1| (-542))) (((-3 |#1| "failed") $) 194) (((-3 (-550) "failed") $) 192 (|has| |#1| (-1012 (-550)))) (((-3 (-1145) "failed") $) 185) (((-3 (-594 $) "failed") $) 136) (((-3 (-400 (-550)) "failed") $) 120 (-1489 (-12 (|has| |#1| (-1012 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1012 (-400 (-550))))))) (-2202 (((-926 |#1|) $) 249 (|has| |#1| (-1021))) (((-400 (-926 |#1|)) $) 233 (|has| |#1| (-542))) ((|#1| $) 195) (((-550) $) 191 (|has| |#1| (-1012 (-550)))) (((-1145) $) 186) (((-594 $) $) 137) (((-400 (-550)) $) 119 (-1489 (-12 (|has| |#1| (-1012 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1012 (-400 (-550))))))) (-3455 (($ $ $) 53)) (-3756 (((-667 |#1|) (-667 $)) 238 (|has| |#1| (-1021))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 237 (|has| |#1| (-1021))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 118 (-1489 (-1304 (|has| |#1| (-1021)) (|has| |#1| (-619 (-550)))) (-1304 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))) (((-667 (-550)) (-667 $)) 117 (-1489 (-1304 (|has| |#1| (-1021)) (|has| |#1| (-619 (-550)))) (-1304 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))))) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 190 (|has| |#1| (-860 (-372)))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 189 (|has| |#1| (-860 (-550))))) (-1465 (($ (-623 $)) 155) (($ $) 154)) (-3745 (((-623 (-114)) $) 162)) (-1355 (((-114) (-114)) 163)) (-2419 (((-112) $) 30)) (-1286 (((-112) $) 183 (|has| $ (-1012 (-550))))) (-1484 (($ $) 215 (|has| |#1| (-1021)))) (-4153 (((-1094 |#1| (-594 $)) $) 214 (|has| |#1| (-1021)))) (-1893 (($ $ (-550)) 88)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-1333 (((-1141 $) (-594 $)) 180 (|has| $ (-1021)))) (-2793 (($ $ $) 134)) (-2173 (($ $ $) 133)) (-2392 (($ (-1 $ $) (-594 $)) 169)) (-2041 (((-3 (-594 $) "failed") $) 159)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1694 (((-623 (-594 $)) $) 160)) (-4232 (($ (-114) (-623 $)) 168) (($ (-114) $) 167)) (-3833 (((-3 (-623 $) "failed") $) 209 (|has| |#1| (-1081)))) (-1795 (((-3 (-2 (|:| |val| $) (|:| -3068 (-550))) "failed") $) 218 (|has| |#1| (-1021)))) (-3017 (((-3 (-623 $) "failed") $) 211 (|has| |#1| (-25)))) (-2934 (((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 $))) "failed") $) 212 (|has| |#1| (-25)))) (-2891 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-1145)) 217 (|has| |#1| (-1021))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-114)) 216 (|has| |#1| (-1021))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $) 210 (|has| |#1| (-1081)))) (-2366 (((-112) $ (-1145)) 166) (((-112) $ (-114)) 165)) (-1619 (($ $) 67)) (-1293 (((-749) $) 158)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 196)) (-1639 ((|#1| $) 197)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-4087 (((-112) $ (-1145)) 171) (((-112) $ $) 170)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3725 (((-112) $) 182 (|has| $ (-1012 (-550))))) (-1553 (($ $ (-1145) (-749) (-1 $ $)) 222 (|has| |#1| (-1021))) (($ $ (-1145) (-749) (-1 $ (-623 $))) 221 (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 220 (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ $))) 219 (|has| |#1| (-1021))) (($ $ (-623 (-114)) (-623 $) (-1145)) 208 (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1145)) 207 (|has| |#1| (-596 (-526)))) (($ $) 206 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1145))) 205 (|has| |#1| (-596 (-526)))) (($ $ (-1145)) 204 (|has| |#1| (-596 (-526)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-623 $))) 178) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 177) (($ $ (-623 (-114)) (-623 (-1 $ $))) 176) (($ $ (-1145) (-1 $ $)) 175) (($ $ (-1145) (-1 $ (-623 $))) 174) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) 173) (($ $ (-623 (-1145)) (-623 (-1 $ $))) 172) (($ $ (-623 $) (-623 $)) 143) (($ $ $ $) 142) (($ $ (-287 $)) 141) (($ $ (-623 (-287 $))) 140) (($ $ (-623 (-594 $)) (-623 $)) 139) (($ $ (-594 $) $) 138)) (-1988 (((-749) $) 56)) (-2757 (($ (-114) (-623 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-1532 (($ $ $) 157) (($ $) 156)) (-2798 (($ $ (-1145)) 246 (|has| |#1| (-1021))) (($ $ (-623 (-1145))) 245 (|has| |#1| (-1021))) (($ $ (-1145) (-749)) 244 (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) 243 (|has| |#1| (-1021)))) (-3608 (($ $) 225 (|has| |#1| (-542)))) (-4163 (((-1094 |#1| (-594 $)) $) 224 (|has| |#1| (-542)))) (-3832 (($ $) 181 (|has| $ (-1021)))) (-2451 (((-526) $) 252 (|has| |#1| (-596 (-526)))) (($ (-411 $)) 223 (|has| |#1| (-542))) (((-866 (-372)) $) 188 (|has| |#1| (-596 (-866 (-372))))) (((-866 (-550)) $) 187 (|has| |#1| (-596 (-866 (-550)))))) (-3018 (($ $ $) 251 (|has| |#1| (-465)))) (-1353 (($ $ $) 250 (|has| |#1| (-465)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-926 |#1|)) 247 (|has| |#1| (-1021))) (($ (-400 (-926 |#1|))) 231 (|has| |#1| (-542))) (($ (-400 (-926 (-400 |#1|)))) 229 (|has| |#1| (-542))) (($ (-926 (-400 |#1|))) 228 (|has| |#1| (-542))) (($ (-400 |#1|)) 227 (|has| |#1| (-542))) (($ (-1094 |#1| (-594 $))) 213 (|has| |#1| (-1021))) (($ |#1|) 193) (($ (-1145)) 184) (($ (-594 $)) 135)) (-1613 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-3790 (($ (-623 $)) 153) (($ $) 152)) (-1905 (((-112) (-114)) 164)) (-1819 (((-112) $ $) 37)) (-4282 (($ (-1145) (-623 $)) 203) (($ (-1145) $ $ $ $) 202) (($ (-1145) $ $ $) 201) (($ (-1145) $ $) 200) (($ (-1145) $) 199)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1145)) 242 (|has| |#1| (-1021))) (($ $ (-623 (-1145))) 241 (|has| |#1| (-1021))) (($ $ (-1145) (-749)) 240 (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) 239 (|has| |#1| (-1021)))) (-2324 (((-112) $ $) 131)) (-2302 (((-112) $ $) 130)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 132)) (-2290 (((-112) $ $) 129)) (-2382 (($ $ $) 62) (($ (-1094 |#1| (-594 $)) (-1094 |#1| (-594 $))) 226 (|has| |#1| (-542)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 87)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) -(((-29 |#1|) (-138) (-13 (-825) (-542))) (T -29)) -((-3217 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) (-1600 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) (-3217 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) (-1600 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *4)))) (-2966 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) (-1510 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) (-1510 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-423 |t#1|) (-10 -8 (-15 -3217 ($ $)) (-15 -1600 ((-623 $) $)) (-15 -3217 ($ $ (-1145))) (-15 -1600 ((-623 $) $ (-1145))) (-15 -2966 ($ $)) (-15 -1510 ((-623 $) $)) (-15 -2966 ($ $ (-1145))) (-15 -1510 ((-623 $) $ (-1145))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-866 (-372))) |has| |#1| (-596 (-866 (-372)))) ((-596 (-866 (-550))) |has| |#1| (-596 (-866 (-550)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-295) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1021)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-423 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) . T) ((-619 (-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) ((-619 |#1|) |has| |#1| (-1021)) ((-696 #0#) . T) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-874 (-1145)) |has| |#1| (-1021)) ((-860 (-372)) |has| |#1| (-860 (-372))) ((-860 (-550)) |has| |#1| (-860 (-550))) ((-858 |#1|) . T) ((-894) . T) ((-976) . T) ((-1012 (-400 (-550))) -1489 (|has| |#1| (-1012 (-400 (-550)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550))))) ((-1012 (-400 (-926 |#1|))) |has| |#1| (-542)) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 (-594 $)) . T) ((-1012 (-926 |#1|)) |has| |#1| (-1021)) ((-1012 (-1145)) . T) ((-1012 |#1|) . T) ((-1027 #0#) . T) ((-1027 |#1|) |has| |#1| (-170)) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1182) . T) ((-1186) . T)) -((-3291 (((-1063 (-219)) $) NIL)) (-3282 (((-1063 (-219)) $) NIL)) (-3471 (($ $ (-219)) 125)) (-1529 (($ (-926 (-550)) (-1145) (-1145) (-1063 (-400 (-550))) (-1063 (-400 (-550)))) 83)) (-2348 (((-623 (-623 (-917 (-219)))) $) 137)) (-2233 (((-837) $) 149))) -(((-30) (-13 (-929) (-10 -8 (-15 -1529 ($ (-926 (-550)) (-1145) (-1145) (-1063 (-400 (-550))) (-1063 (-400 (-550))))) (-15 -3471 ($ $ (-219)))))) (T -30)) -((-1529 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-926 (-550))) (-5 *3 (-1145)) (-5 *4 (-1063 (-400 (-550)))) (-5 *1 (-30)))) (-3471 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))) -(-13 (-929) (-10 -8 (-15 -1529 ($ (-926 (-550)) (-1145) (-1145) (-1063 (-400 (-550))) (-1063 (-400 (-550))))) (-15 -3471 ($ $ (-219))))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 11)) (-4300 (((-1104) $) 9)) (-2264 (((-112) $ $) NIL))) -(((-31) (-13 (-1052) (-10 -8 (-15 -4300 ((-1104) $)) (-15 -1865 ((-1104) $))))) (T -31)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-31)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-31))))) -(-13 (-1052) (-10 -8 (-15 -4300 ((-1104) $)) (-15 -1865 ((-1104) $)))) -((-3217 ((|#2| (-1141 |#2|) (-1145)) 43)) (-1355 (((-114) (-114)) 56)) (-1333 (((-1141 |#2|) (-594 |#2|)) 133 (|has| |#1| (-1012 (-550))))) (-2018 ((|#2| |#1| (-550)) 122 (|has| |#1| (-1012 (-550))))) (-3456 ((|#2| (-1141 |#2|) |#2|) 30)) (-2788 (((-837) (-623 |#2|)) 85)) (-3832 ((|#2| |#2|) 129 (|has| |#1| (-1012 (-550))))) (-1905 (((-112) (-114)) 18)) (** ((|#2| |#2| (-400 (-550))) 96 (|has| |#1| (-1012 (-550)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| (-1141 |#2|) (-1145))) (-15 -1355 ((-114) (-114))) (-15 -1905 ((-112) (-114))) (-15 -3456 (|#2| (-1141 |#2|) |#2|)) (-15 -2788 ((-837) (-623 |#2|))) (IF (|has| |#1| (-1012 (-550))) (PROGN (-15 ** (|#2| |#2| (-400 (-550)))) (-15 -1333 ((-1141 |#2|) (-594 |#2|))) (-15 -3832 (|#2| |#2|)) (-15 -2018 (|#2| |#1| (-550)))) |%noBranch|)) (-13 (-825) (-542)) (-423 |#1|)) (T -32)) -((-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1012 *4)) (-4 *3 (-13 (-825) (-542))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-1012 (-550))) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1012 (-550))) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-1012 (-550))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-837)) (-5 *1 (-32 *4 *5)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *4)) (-4 *4 (-423 *3)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1145)) (-4 *2 (-423 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-542)))))) -(-10 -7 (-15 -3217 (|#2| (-1141 |#2|) (-1145))) (-15 -1355 ((-114) (-114))) (-15 -1905 ((-112) (-114))) (-15 -3456 (|#2| (-1141 |#2|) |#2|)) (-15 -2788 ((-837) (-623 |#2|))) (IF (|has| |#1| (-1012 (-550))) (PROGN (-15 ** (|#2| |#2| (-400 (-550)))) (-15 -1333 ((-1141 |#2|) (-594 |#2|))) (-15 -3832 (|#2| |#2|)) (-15 -2018 (|#2| |#1| (-550)))) |%noBranch|)) -((-3368 (((-112) $ (-749)) 16)) (-2991 (($) 10)) (-1445 (((-112) $ (-749)) 15)) (-1700 (((-112) $ (-749)) 14)) (-3155 (((-112) $ $) 8)) (-4217 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -2991 (|#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749))) (-15 -4217 ((-112) |#1|)) (-15 -3155 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2991 (|#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749))) (-15 -4217 ((-112) |#1|)) (-15 -3155 ((-112) |#1| |#1|))) -((-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-1445 (((-112) $ (-749)) 9)) (-1700 (((-112) $ (-749)) 10)) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2435 (($ $) 13)) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1264 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-1263 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1))))) +(-13 (-356) (-976) (-10 -8 (-15 -3529 ($ (-920 $))) (-15 -3529 ($ (-1141 $))) (-15 -3529 ($ (-1141 $) (-1147))) (-15 -1264 ((-620 $) (-920 $))) (-15 -1264 ((-620 $) (-1141 $))) (-15 -1264 ((-620 $) (-1141 $) (-1147))) (-15 -1263 ($ (-920 $))) (-15 -1263 ($ (-1141 $))) (-15 -1263 ($ (-1141 $) (-1147))) (-15 -1662 ((-620 $) (-920 $))) (-15 -1662 ((-620 $) (-1141 $))) (-15 -1662 ((-620 $) (-1141 $) (-1147))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-976) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-1662 (((-620 $) (-920 $)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 $) (-1147)) 50) (((-620 $) $) 19) (((-620 $) $ (-1147)) 41)) (-1263 (($ (-920 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1147)) 52) (($ $) 17) (($ $ (-1147)) 37)) (-1264 (((-620 $) (-920 $)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 $) (-1147)) 48) (((-620 $) $) 15) (((-620 $) $ (-1147)) 43)) (-3529 (($ (-920 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1147)) NIL) (($ $) 12) (($ $ (-1147)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1662 ((-620 |#1|) |#1| (-1147))) (-15 -1263 (|#1| |#1| (-1147))) (-15 -1662 ((-620 |#1|) |#1|)) (-15 -1263 (|#1| |#1|)) (-15 -1264 ((-620 |#1|) |#1| (-1147))) (-15 -3529 (|#1| |#1| (-1147))) (-15 -1264 ((-620 |#1|) |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) (-29 |#2|) (-13 (-825) (-543))) (T -28)) +NIL +(-10 -8 (-15 -1662 ((-620 |#1|) |#1| (-1147))) (-15 -1263 (|#1| |#1| (-1147))) (-15 -1662 ((-620 |#1|) |#1|)) (-15 -1263 (|#1| |#1|)) (-15 -1264 ((-620 |#1|) |#1| (-1147))) (-15 -3529 (|#1| |#1| (-1147))) (-15 -1264 ((-620 |#1|) |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) +((-2893 (((-112) $ $) 7)) (-1662 (((-620 $) (-920 $)) 77) (((-620 $) (-1141 $)) 76) (((-620 $) (-1141 $) (-1147)) 75) (((-620 $) $) 123) (((-620 $) $ (-1147)) 121)) (-1263 (($ (-920 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1147)) 78) (($ $) 124) (($ $ (-1147)) 122)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1147)) $) 198)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 230 (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1655 (((-620 (-593 $)) $) 161)) (-1367 (((-3 $ "failed") $ $) 19)) (-1659 (($ $ (-620 (-593 $)) (-620 $)) 151) (($ $ (-620 (-286 $))) 150) (($ $ (-286 $)) 149)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-1264 (((-620 $) (-920 $)) 83) (((-620 $) (-1141 $)) 82) (((-620 $) (-1141 $) (-1147)) 81) (((-620 $) $) 127) (((-620 $) $ (-1147)) 125)) (-3529 (($ (-920 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1147)) 84) (($ $) 128) (($ $ (-1147)) 126)) (-3503 (((-3 (-920 |#1|) #1="failed") $) 248 (|has| |#1| (-1023))) (((-3 (-400 (-920 |#1|)) #1#) $) 232 (|has| |#1| (-543))) (((-3 |#1| #1#) $) 194) (((-3 (-536) #1#) $) 192 (|has| |#1| (-1012 (-536)))) (((-3 (-1147) #1#) $) 185) (((-3 (-593 $) #1#) $) 136) (((-3 (-400 (-536)) #1#) $) 120 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-920 |#1|) $) 249 (|has| |#1| (-1023))) (((-400 (-920 |#1|)) $) 233 (|has| |#1| (-543))) ((|#1| $) 195) (((-536) $) 191 (|has| |#1| (-1012 (-536)))) (((-1147) $) 186) (((-593 $) $) 137) (((-400 (-536)) $) 119 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) 53)) (-2357 (((-667 |#1|) (-667 $)) 238 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 237 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 118 (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (((-667 (-536)) (-667 $)) 117 (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 190 (|has| |#1| (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 189 (|has| |#1| (-860 (-536))))) (-2898 (($ (-620 $)) 155) (($ $) 154)) (-1654 (((-620 (-113)) $) 162)) (-3375 (((-113) (-113)) 163)) (-2497 (((-112) $) 30)) (-3001 (((-112) $) 183 (|has| $ (-1012 (-536))))) (-3324 (($ $) 215 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 214 (|has| |#1| (-1023)))) (-3339 (($ $ (-536)) 88)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-1652 (((-1141 $) (-593 $)) 180 (|has| $ (-1023)))) (-3672 (($ $ $) 134)) (-3673 (($ $ $) 133)) (-4313 (($ (-1 $ $) (-593 $)) 169)) (-1657 (((-3 (-593 $) "failed") $) 159)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 160)) (-2312 (($ (-113) (-620 $)) 168) (($ (-113) $) 167)) (-3151 (((-3 (-620 $) #3="failed") $) 209 (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) #3#) $) 218 (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) #3#) $) 211 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-1147)) 217 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-113)) 216 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $) 210 (|has| |#1| (-1083)))) (-2959 (((-112) $ (-1147)) 166) (((-112) $ (-113)) 165)) (-2729 (($ $) 67)) (-2928 (((-749) $) 158)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 196)) (-1910 ((|#1| $) 197)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1653 (((-112) $ (-1147)) 171) (((-112) $ $) 170)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-3002 (((-112) $) 182 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-1147) (-749) (-1 $ $)) 222 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) 221 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 220 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 219 (|has| |#1| (-1023))) (($ $ (-620 (-113)) (-620 $) (-1147)) 208 (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 207 (|has| |#1| (-596 (-525)))) (($ $) 206 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) 205 (|has| |#1| (-596 (-525)))) (($ $ (-1147)) 204 (|has| |#1| (-596 (-525)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-620 $))) 178) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 177) (($ $ (-620 (-113)) (-620 (-1 $ $))) 176) (($ $ (-1147) (-1 $ $)) 175) (($ $ (-1147) (-1 $ (-620 $))) 174) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 173) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 172) (($ $ (-620 $) (-620 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-620 (-286 $))) 140) (($ $ (-620 (-593 $)) (-620 $)) 139) (($ $ (-593 $) $) 138)) (-1699 (((-749) $) 56)) (-4154 (($ (-113) (-620 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1658 (($ $ $) 157) (($ $) 156)) (-4165 (($ $ (-1147)) 246 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 245 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 244 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) 243 (|has| |#1| (-1023)))) (-3323 (($ $) 225 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 224 (|has| |#1| (-543)))) (-3531 (($ $) 181 (|has| $ (-1023)))) (-4325 (((-525) $) 252 (|has| |#1| (-596 (-525)))) (($ (-398 $)) 223 (|has| |#1| (-543))) (((-864 (-371)) $) 188 (|has| |#1| (-596 (-864 (-371))))) (((-864 (-536)) $) 187 (|has| |#1| (-596 (-864 (-536)))))) (-3337 (($ $ $) 251 (|has| |#1| (-465)))) (-2681 (($ $ $) 250 (|has| |#1| (-465)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-920 |#1|)) 247 (|has| |#1| (-1023))) (($ (-400 (-920 |#1|))) 231 (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) 229 (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) 228 (|has| |#1| (-543))) (($ (-400 |#1|)) 227 (|has| |#1| (-543))) (($ (-1096 |#1| (-593 $))) 213 (|has| |#1| (-1023))) (($ |#1|) 193) (($ (-1147)) 184) (($ (-593 $)) 135)) (-3030 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2915 (($ (-620 $)) 153) (($ $) 152)) (-2333 (((-112) (-113)) 164)) (-2172 (((-112) $ $) 37)) (-1909 (($ (-1147) (-620 $)) 203) (($ (-1147) $ $ $ $) 202) (($ (-1147) $ $ $) 201) (($ (-1147) $ $) 200) (($ (-1147) $) 199)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1147)) 242 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 241 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 240 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) 239 (|has| |#1| (-1023)))) (-2891 (((-112) $ $) 131)) (-2892 (((-112) $ $) 130)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 132)) (-3013 (((-112) $ $) 129)) (-4303 (($ $ $) 62) (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 226 (|has| |#1| (-543)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 87)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) +(((-29 |#1|) (-138) (-13 (-825) (-543))) (T -29)) +((-3529 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) (-1264 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) (-1264 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *4)))) (-1263 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) (-1263 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -3529 ($ $)) (-15 -1264 ((-620 $) $)) (-15 -3529 ($ $ (-1147))) (-15 -1264 ((-620 $) $ (-1147))) (-15 -1263 ($ $)) (-15 -1662 ((-620 $) $)) (-15 -1263 ($ $ (-1147))) (-15 -1662 ((-620 $) $ (-1147))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-291) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1023)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-414 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) . T) ((-619 (-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) ((-619 |#1|) |has| |#1| (-1023)) ((-696 #1#) . T) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-874 (-1147)) |has| |#1| (-1023)) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-895) . T) ((-976) . T) ((-1012 (-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) ((-1012 (-400 (-920 |#1|))) |has| |#1| (-543)) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-593 $)) . T) ((-1012 (-920 |#1|)) |has| |#1| (-1023)) ((-1012 (-1147)) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) |has| |#1| (-170)) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1183) . T) ((-1188) . T)) +((-3224 (((-1060 (-219)) $) NIL)) (-3225 (((-1060 (-219)) $) NIL)) (-3464 (($ $ (-219)) 125)) (-1265 (($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536)))) 83)) (-3226 (((-620 (-620 (-917 (-219)))) $) 137)) (-4312 (((-838) $) 149))) +(((-30) (-13 (-929) (-10 -8 (-15 -1265 ($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536))))) (-15 -3464 ($ $ (-219)))))) (T -30)) +((-1265 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-920 (-536))) (-5 *3 (-1147)) (-5 *4 (-1060 (-400 (-536)))) (-5 *1 (-30)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))) +(-13 (-929) (-10 -8 (-15 -1265 ($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536))))) (-15 -3464 ($ $ (-219))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 11)) (-3022 (((-1106) $) 9)) (-3382 (((-112) $ $) NIL))) +(((-31) (-13 (-1054) (-10 -8 (-15 -3022 ((-1106) $)) (-15 -3579 ((-1106) $))))) (T -31)) +((-3022 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31))))) +(-13 (-1054) (-10 -8 (-15 -3022 ((-1106) $)) (-15 -3579 ((-1106) $)))) +((-3529 ((|#2| (-1141 |#2|) (-1147)) 43)) (-3375 (((-113) (-113)) 56)) (-1652 (((-1141 |#2|) (-593 |#2|)) 133 (|has| |#1| (-1012 (-536))))) (-1268 ((|#2| |#1| (-536)) 122 (|has| |#1| (-1012 (-536))))) (-1266 ((|#2| (-1141 |#2|) |#2|) 30)) (-1267 (((-838) (-620 |#2|)) 85)) (-3531 ((|#2| |#2|) 129 (|has| |#1| (-1012 (-536))))) (-2333 (((-112) (-113)) 18)) (** ((|#2| |#2| (-400 (-536))) 96 (|has| |#1| (-1012 (-536)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3529 (|#2| (-1141 |#2|) (-1147))) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -1266 (|#2| (-1141 |#2|) |#2|)) (-15 -1267 ((-838) (-620 |#2|))) (IF (|has| |#1| (-1012 (-536))) (PROGN (-15 ** (|#2| |#2| (-400 (-536)))) (-15 -1652 ((-1141 |#2|) (-593 |#2|))) (-15 -3531 (|#2| |#2|)) (-15 -1268 (|#2| |#1| (-536)))) |%noBranch|)) (-13 (-825) (-543)) (-414 |#1|)) (T -32)) +((-1268 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1012 *4)) (-4 *3 (-13 (-825) (-543))))) (-3531 (*1 *2 *2) (-12 (-4 *3 (-1012 (-536))) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *2)) (-4 *2 (-414 *3)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-593 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-838)) (-5 *1 (-32 *4 *5)))) (-1266 (*1 *2 *3 *2) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-32 *4 *2)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *4)) (-4 *4 (-414 *3)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1147)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-543)))))) +(-10 -7 (-15 -3529 (|#2| (-1141 |#2|) (-1147))) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -1266 (|#2| (-1141 |#2|) |#2|)) (-15 -1267 ((-838) (-620 |#2|))) (IF (|has| |#1| (-1012 (-536))) (PROGN (-15 ** (|#2| |#2| (-400 (-536)))) (-15 -1652 ((-1141 |#2|) (-593 |#2|))) (-15 -3531 (|#2| |#2|)) (-15 -1268 (|#2| |#1| (-536)))) |%noBranch|)) +((-1269 (((-112) $ (-749)) 16)) (-3891 (($) 10)) (-4077 (((-112) $ (-749)) 15)) (-4074 (((-112) $ (-749)) 14)) (-1270 (((-112) $ $) 8)) (-3757 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3891 (|#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3757 ((-112) |#1|)) (-15 -1270 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3891 (|#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3757 ((-112) |#1|)) (-15 -1270 ((-112) |#1| |#1|))) +((-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-4077 (((-112) $ (-749)) 9)) (-4074 (((-112) $ (-749)) 10)) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3754 (($ $) 13)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) (((-34) (-138)) (T -34)) -((-3155 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2435 (*1 *1 *1) (-4 *1 (-34))) (-2819 (*1 *1) (-4 *1 (-34))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1700 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-1445 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-3368 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-2991 (*1 *1) (-4 *1 (-34))) (-3307 (*1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-34)) (-5 *2 (-749))))) -(-13 (-1182) (-10 -8 (-15 -3155 ((-112) $ $)) (-15 -2435 ($ $)) (-15 -2819 ($)) (-15 -4217 ((-112) $)) (-15 -1700 ((-112) $ (-749))) (-15 -1445 ((-112) $ (-749))) (-15 -3368 ((-112) $ (-749))) (-15 -2991 ($) -4165) (IF (|has| $ (-6 -4344)) (-15 -3307 ((-749) $)) |%noBranch|))) -(((-1182) . T)) -((-4233 (($ $) 11)) (-4206 (($ $) 10)) (-4255 (($ $) 9)) (-3363 (($ $) 8)) (-4244 (($ $) 7)) (-4218 (($ $) 6))) +((-1270 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3754 (*1 *1 *1) (-4 *1 (-34))) (-3923 (*1 *1) (-4 *1 (-34))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4074 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-4077 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-1269 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-3891 (*1 *1) (-4 *1 (-34))) (-4311 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-34)) (-5 *2 (-749))))) +(-13 (-1183) (-10 -8 (-15 -1270 ((-112) $ $)) (-15 -3754 ($ $)) (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -4074 ((-112) $ (-749))) (-15 -4077 ((-112) $ (-749))) (-15 -1269 ((-112) $ (-749))) (-15 -3891 ($) -4306) (IF (|has| $ (-6 -4348)) (-15 -4311 ((-749) $)) |%noBranch|))) +(((-1183) . T)) +((-3847 (($ $) 11)) (-3845 (($ $) 10)) (-3849 (($ $) 9)) (-3850 (($ $) 8)) (-3848 (($ $) 7)) (-3846 (($ $) 6))) (((-35) (-138)) (T -35)) -((-4233 (*1 *1 *1) (-4 *1 (-35))) (-4206 (*1 *1 *1) (-4 *1 (-35))) (-4255 (*1 *1 *1) (-4 *1 (-35))) (-3363 (*1 *1 *1) (-4 *1 (-35))) (-4244 (*1 *1 *1) (-4 *1 (-35))) (-4218 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -4218 ($ $)) (-15 -4244 ($ $)) (-15 -3363 ($ $)) (-15 -4255 ($ $)) (-15 -4206 ($ $)) (-15 -4233 ($ $)))) -((-2221 (((-112) $ $) 19 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-1337 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 125)) (-2422 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 148)) (-2470 (($ $) 146)) (-3364 (($) 72) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 71)) (-3037 (((-1233) $ |#1| |#1|) 99 (|has| $ (-6 -4345))) (((-1233) $ (-550) (-550)) 178 (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 159 (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2734 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 200 (|has| $ (-6 -4345))) (($ $) 199 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3368 (((-112) $ (-749)) 8)) (-1629 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 134 (|has| $ (-6 -4345)))) (-2872 (($ $ $) 155 (|has| $ (-6 -4345)))) (-3737 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 157 (|has| $ (-6 -4345)))) (-3946 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 153 (|has| $ (-6 -4345)))) (-2409 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 189 (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-1195 (-550)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 160 (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "last" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 158 (|has| $ (-6 -4345))) (($ $ "rest" $) 156 (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "first" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 154 (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "value" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 133 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 132 (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 45 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 216)) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 175 (|has| $ (-6 -4344)))) (-2408 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 147)) (-3696 (((-3 |#2| "failed") |#1| $) 61)) (-2991 (($) 7 T CONST)) (-3770 (($ $) 201 (|has| $ (-6 -4345)))) (-1999 (($ $) 211)) (-3870 (($ $ (-749)) 142) (($ $) 140)) (-2599 (($ $) 214 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-2708 (($ $) 58 (-1489 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))) (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 220) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 215 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 54 (|has| $ (-6 -4344))) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 174 (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 56 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 53 (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 52 (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 176 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 173 (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 172 (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 190 (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) 88) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) 188)) (-2950 (((-112) $) 192)) (-3088 (((-550) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 208) (((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 207 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) (((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) 206 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4344))) (((-623 |#2|) $) 79 (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 114 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 123)) (-3687 (((-112) $ $) 131 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-3375 (($ (-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 169)) (-1445 (((-112) $ (-749)) 9)) (-3096 ((|#1| $) 96 (|has| |#1| (-825))) (((-550) $) 180 (|has| (-550) (-825)))) (-2793 (($ $ $) 198 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2299 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2441 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 29 (|has| $ (-6 -4344))) (((-623 |#2|) $) 80 (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 115 (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344)))) (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))))) (-2506 ((|#1| $) 95 (|has| |#1| (-825))) (((-550) $) 181 (|has| (-550) (-825)))) (-2173 (($ $ $) 197 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4345))) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 110 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 109)) (-3743 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 225)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 128)) (-1515 (((-112) $) 124)) (-2369 (((-1127) $) 22 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2001 (($ $ (-749)) 145) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 143)) (-4212 (((-623 |#1|) $) 63)) (-3998 (((-112) |#1| $) 64)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 39)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 40) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) 219) (($ $ $ (-550)) 218)) (-1476 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) 162) (($ $ $ (-550)) 161)) (-3611 (((-623 |#1|) $) 93) (((-623 (-550)) $) 183)) (-3166 (((-112) |#1| $) 92) (((-112) (-550) $) 184)) (-3445 (((-1089) $) 21 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3858 ((|#2| $) 97 (|has| |#1| (-825))) (($ $ (-749)) 139) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 137)) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 51) (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 171)) (-2491 (($ $ |#2|) 98 (|has| $ (-6 -4345))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 179 (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 41)) (-3164 (((-112) $) 191)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 112 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) 26 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 25 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 24 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 23 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 121 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 120 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 119 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) 118 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 182 (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-1375 (((-623 |#2|) $) 91) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 185)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 187) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) 186) (($ $ (-1195 (-550))) 165) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "first") 138) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "value") 126)) (-1456 (((-550) $ $) 129)) (-3246 (($) 49) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 48)) (-3749 (($ $ (-550)) 222) (($ $ (-1195 (-550))) 221)) (-1512 (($ $ (-550)) 164) (($ $ (-1195 (-550))) 163)) (-2320 (((-112) $) 127)) (-1662 (($ $) 151)) (-3709 (($ $) 152 (|has| $ (-6 -4345)))) (-3300 (((-749) $) 150)) (-3813 (($ $) 149)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 113 (|has| $ (-6 -4344)))) (-2502 (($ $ $ (-550)) 202 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526)))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 50) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 170)) (-2037 (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 224) (($ $ $) 223)) (-4006 (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 168) (($ (-623 $)) 167) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 136) (($ $ $) 135)) (-2233 (((-837) $) 18 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837)))))) (-4075 (((-623 $) $) 122)) (-1977 (((-112) $ $) 130 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 42)) (-2008 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") |#1| $) 108)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 111 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 195 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2302 (((-112) $ $) 194 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2264 (((-112) $ $) 20 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2313 (((-112) $ $) 196 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2290 (((-112) $ $) 193 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-36 |#1| |#2|) (-138) (-1069) (-1069)) (T -36)) -((-2008 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| -3549 *3) (|:| -3859 *4)))))) -(-13 (-1158 |t#1| |t#2|) (-644 (-2 (|:| -3549 |t#1|) (|:| -3859 |t#2|))) (-10 -8 (-15 -2008 ((-3 (-2 (|:| -3549 |t#1|) (|:| -3859 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((-101) -1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825))) ((-595 (-837)) -1489 (|has| |#2| (-1069)) (|has| |#2| (-595 (-837))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837)))) ((-149 #1=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((-596 (-526)) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 #2=(-550) #1#) . T) ((-279 |#1| |#2|) . T) ((-281 #2# #1#) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-275 #1#) . T) ((-366 #1#) . T) ((-481 #1#) . T) ((-481 |#2|) . T) ((-586 #2# #1#) . T) ((-586 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-592 |#1| |#2|) . T) ((-629 #1#) . T) ((-644 #1#) . T) ((-825) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)) ((-984 #1#) . T) ((-1069) -1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825))) ((-1118 #1#) . T) ((-1158 |#1| |#2|) . T) ((-1182) . T) ((-1216 #1#) . T)) -((-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-38 |#2|) (-170)) (T -37)) -NIL -(-10 -8 (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3847 (*1 *1 *1) (-4 *1 (-35))) (-3845 (*1 *1 *1) (-4 *1 (-35))) (-3849 (*1 *1 *1) (-4 *1 (-35))) (-3850 (*1 *1 *1) (-4 *1 (-35))) (-3848 (*1 *1 *1) (-4 *1 (-35))) (-3846 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3846 ($ $)) (-15 -3848 ($ $)) (-15 -3850 ($ $)) (-15 -3849 ($ $)) (-15 -3845 ($ $)) (-15 -3847 ($ $)))) +((-2893 (((-112) $ $) 19 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3756 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 125)) (-4149 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 148)) (-4151 (($ $) 146)) (-3955 (($) 72) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 71)) (-2300 (((-1235) $ |#1| |#1|) 99 (|has| $ (-6 -4349))) (((-1235) $ (-536) (-536)) 178 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 159 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1841 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 200 (|has| $ (-6 -4349))) (($ $) 199 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-3353 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 134 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 155 (|has| $ (-6 -4349)))) (-4140 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 157 (|has| $ (-6 -4349)))) (-4143 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 153 (|has| $ (-6 -4349)))) (-4142 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 189 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-1196 (-536)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 160 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1="last" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 158 (|has| $ (-6 -4349))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3="first" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 154 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4="value" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 133 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 132 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 216)) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 175 (|has| $ (-6 -4348)))) (-4150 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 147)) (-2309 (((-3 |#2| #5="failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-2372 (($ $) 201 (|has| $ (-6 -4349)))) (-2373 (($ $) 211)) (-4153 (($ $ (-749)) 142) (($ $) 140)) (-2450 (($ $) 214 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1398 (($ $) 58 (-3886 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))) (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 220) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 215 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 174 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 176 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 173 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 172 (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 190 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 88) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 188)) (-3796 (((-112) $) 192)) (-3773 (((-536) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 208) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 207 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 206 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348))) (((-620 |#2|) $) 79 (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 114 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 123)) (-3355 (((-112) $ $) 131 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3972 (($ (-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 169)) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 96 (|has| |#1| (-825))) (((-536) $) 180 (|has| (-536) (-825)))) (-3672 (($ $ $) 198 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3187 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3867 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348))) (((-620 |#2|) $) 80 (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 115 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 95 (|has| |#1| (-825))) (((-536) $) 181 (|has| (-536) (-825)))) (-3673 (($ $ $) 197 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 110 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 109)) (-3892 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 225)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 128)) (-3876 (((-112) $) 124)) (-3588 (((-1129) $) 22 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4152 (($ $ (-749)) 145) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 143)) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 219) (($ $ $ (-536)) 218)) (-2377 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 162) (($ $ $ (-536)) 161)) (-2305 (((-620 |#1|) $) 93) (((-620 (-536)) $) 183)) (-2306 (((-112) |#1| $) 92) (((-112) (-536) $) 184)) (-3589 (((-1091) $) 21 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4155 ((|#2| $) 97 (|has| |#1| (-825))) (($ $ (-749)) 139) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 137)) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51) (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6#) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 171)) (-2301 (($ $ |#2|) 98 (|has| $ (-6 -4349))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 179 (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-3797 (((-112) $) 191)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 112 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 121 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 120 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 119 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 118 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 182 (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2307 (((-620 |#2|) $) 91) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 185)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 187) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 186) (($ $ (-1196 (-536))) 165) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3#) 138) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4#) 126)) (-3357 (((-536) $ $) 129)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-1627 (($ $ (-536)) 222) (($ $ (-1196 (-536))) 221)) (-2378 (($ $ (-536)) 164) (($ $ (-1196 (-536))) 163)) (-3991 (((-112) $) 127)) (-4146 (($ $) 151)) (-4144 (($ $) 152 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 150)) (-4148 (($ $) 149)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 113 (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) 202 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525)))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 170)) (-4145 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 224) (($ $ $) 223)) (-4156 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 168) (($ (-620 $)) 167) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 136) (($ $ $) 135)) (-4312 (((-838) $) 18 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))))) (-3871 (((-620 $) $) 122)) (-3356 (((-112) $ $) 130 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-1271 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") |#1| $) 108)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 111 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 195 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2892 (((-112) $ $) 194 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3382 (((-112) $ $) 20 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3012 (((-112) $ $) 196 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3013 (((-112) $ $) 193 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-36 |#1| |#2|) (-138) (-1072) (-1072)) (T -36)) +((-1271 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-2 (|:| -4215 *3) (|:| -2186 *4)))))) +(-13 (-1160 |t#1| |t#2|) (-644 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))) (-10 -8 (-15 -1271 ((-3 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| |#2| (-1072))) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-149 #2=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 #3=(-536) #2#) . T) ((-279 |#1| |#2|) . T) ((-281 #3# #2#) . T) ((-281 |#1| |#2|) . T) ((-302 #2#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-275 #2#) . T) ((-365 #2#) . T) ((-481 #2#) . T) ((-481 |#2|) . T) ((-586 #3# #2#) . T) ((-586 |#1| |#2|) . T) ((-505 #2# #2#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-592 |#1| |#2|) . T) ((-629 #2#) . T) ((-644 #2#) . T) ((-825) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) ((-984 #2#) . T) ((-1072) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| |#2| (-1072))) ((-1120 #2#) . T) ((-1160 |#1| |#2|) . T) ((-1183) . T) ((-1218 #2#) . T)) +((-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-38 |#2|) (-170)) (T -37)) +NIL +(-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-38 |#1|) (-138) (-170)) (T -38)) -((-2233 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) -(-13 (-1021) (-696 |t#1|) (-10 -8 (-15 -2233 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2590 (((-411 |#1|) |#1|) 41)) (-1735 (((-411 |#1|) |#1|) 30) (((-411 |#1|) |#1| (-623 (-48))) 33)) (-2847 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -1735 ((-411 |#1|) |#1| (-623 (-48)))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2590 ((-411 |#1|) |#1|)) (-15 -2847 ((-112) |#1|))) (-1204 (-48))) (T -39)) -((-2847 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48))))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48)))))) -(-10 -7 (-15 -1735 ((-411 |#1|) |#1| (-623 (-48)))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2590 ((-411 |#1|) |#1|)) (-15 -2847 ((-112) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3897 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-3050 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3953 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-3992 (((-667 (-400 |#2|)) (-1228 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-2223 (((-400 |#2|) $) NIL)) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-400 |#2|) (-342)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2207 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1611 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3828 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-2215 (((-112)) NIL)) (-3676 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| (-400 |#2|) (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| (-400 |#2|) (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-400 |#2|) $) NIL)) (-2821 (($ (-1228 (-400 |#2|)) (-1228 $)) NIL) (($ (-1228 (-400 |#2|))) 57) (($ (-1228 |#2|) |#2|) 125)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-3455 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2766 (((-667 (-400 |#2|)) $ (-1228 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-400 |#2|))) (|:| |vec| (-1228 (-400 |#2|)))) (-667 $) (-1228 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-3662 (((-1228 $) (-1228 $)) NIL)) (-2924 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-1537 (((-3 $ "failed") $) NIL)) (-3142 (((-623 (-623 |#1|))) NIL (|has| |#1| (-361)))) (-3758 (((-112) |#1| |#1|) NIL)) (-3398 (((-895)) NIL)) (-1864 (($) NIL (|has| (-400 |#2|) (-361)))) (-3910 (((-112)) NIL)) (-2283 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3429 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| (-400 |#2|) (-356)))) (-2731 (($ $) NIL)) (-2664 (($) NIL (|has| (-400 |#2|) (-342)))) (-4139 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-4322 (($ $ (-749)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-1568 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2603 (((-895) $) NIL (|has| (-400 |#2|) (-342))) (((-811 (-895)) $) NIL (|has| (-400 |#2|) (-342)))) (-2419 (((-112) $) NIL)) (-3101 (((-749)) NIL)) (-2938 (((-1228 $) (-1228 $)) 102)) (-1571 (((-400 |#2|) $) NIL)) (-1804 (((-623 (-926 |#1|)) (-1145)) NIL (|has| |#1| (-356)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2835 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-4073 (((-895) $) NIL (|has| (-400 |#2|) (-361)))) (-2910 ((|#3| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2369 (((-1127) $) NIL)) (-1741 (((-1233) (-749)) 79)) (-1379 (((-667 (-400 |#2|))) 51)) (-3046 (((-667 (-400 |#2|))) 44)) (-1619 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2252 (($ (-1228 |#2|) |#2|) 126)) (-4305 (((-667 (-400 |#2|))) 45)) (-1787 (((-667 (-400 |#2|))) 43)) (-3603 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-4090 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) 64)) (-2560 (((-1228 $)) 42)) (-2892 (((-1228 $)) 41)) (-2970 (((-112) $) NIL)) (-4298 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2463 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3690 (($ (-895)) NIL (|has| (-400 |#2|) (-361)))) (-2043 (((-3 |#2| "failed")) NIL)) (-3445 (((-1089) $) NIL)) (-1646 (((-749)) NIL)) (-2256 (($) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3260 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-400 |#2|) (-342)))) (-1735 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1988 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-2757 ((|#1| $ |#1| |#1|) NIL)) (-1834 (((-3 |#2| "failed")) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3563 (((-400 |#2|) (-1228 $)) NIL) (((-400 |#2|)) 39)) (-2899 (((-749) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-2798 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2871 (((-667 (-400 |#2|)) (-1228 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3832 ((|#3|) 50)) (-2038 (($) NIL (|has| (-400 |#2|) (-342)))) (-2999 (((-1228 (-400 |#2|)) $ (-1228 $)) NIL) (((-667 (-400 |#2|)) (-1228 $) (-1228 $)) NIL) (((-1228 (-400 |#2|)) $) 58) (((-667 (-400 |#2|)) (-1228 $)) 103)) (-2451 (((-1228 (-400 |#2|)) $) NIL) (($ (-1228 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-342)))) (-2598 (((-1228 $) (-1228 $)) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-550))) NIL (-1489 (|has| (-400 |#2|) (-1012 (-400 (-550)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1613 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-3359 ((|#3| $) NIL)) (-3091 (((-749)) NIL)) (-3071 (((-112)) 37)) (-3872 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2206 (((-1228 $)) 93)) (-1819 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3597 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2687 (((-112)) NIL)) (-2688 (($) 16 T CONST)) (-2700 (($) 26 T CONST)) (-1901 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) NIL (|has| (-400 |#2|) (-356))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1741 ((-1233) (-749))))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) |#3|) (T -40)) -((-1741 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1204 *4)) (-5 *2 (-1233)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1204 (-400 *5))) (-14 *7 *6)))) -(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1741 ((-1233) (-749))))) -((-1844 ((|#2| |#2|) 48)) (-1268 ((|#2| |#2|) 120 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-550)))))) (-1504 ((|#2| |#2|) 87 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-550)))))) (-4077 ((|#2| |#2|) 88 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-550)))))) (-2954 ((|#2| (-114) |#2| (-749)) 116 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-550)))))) (-2021 (((-1141 |#2|) |#2|) 45)) (-3595 ((|#2| |#2| (-623 (-594 |#2|))) 18) ((|#2| |#2| (-623 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1844 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3595 (|#2| |#2| |#2|)) (-15 -3595 (|#2| |#2| (-623 |#2|))) (-15 -3595 (|#2| |#2| (-623 (-594 |#2|)))) (-15 -2021 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-550))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -4077 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -1268 (|#2| |#2|)) (-15 -2954 (|#2| (-114) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-542) (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 |#1| (-594 $)) $)) (-15 -4163 ((-1094 |#1| (-594 $)) $)) (-15 -2233 ($ (-1094 |#1| (-594 $))))))) (T -41)) -((-2954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) (-4 *5 (-1012 (-550))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-423 *5)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *5 (-594 $)) $)) (-15 -4163 ((-1094 *5 (-594 $)) $)) (-15 -2233 ($ (-1094 *5 (-594 $))))))))) (-1268 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $))))))))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $))))))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $))))))))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) (-15 -4163 ((-1094 *4 (-594 $)) $)) (-15 -2233 ($ (-1094 *4 (-594 $))))))))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-594 *2))) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) (-15 -4163 ((-1094 *4 (-594 $)) $)) (-15 -2233 ($ (-1094 *4 (-594 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) (-15 -4163 ((-1094 *4 (-594 $)) $)) (-15 -2233 ($ (-1094 *4 (-594 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-3595 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $))))))))) (-3595 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $))))))))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) (-15 -4163 ((-1094 *3 (-594 $)) $)) (-15 -2233 ($ (-1094 *3 (-594 $)))))))))) -(-10 -7 (-15 -1844 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3595 (|#2| |#2| |#2|)) (-15 -3595 (|#2| |#2| (-623 |#2|))) (-15 -3595 (|#2| |#2| (-623 (-594 |#2|)))) (-15 -2021 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-550))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -4077 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -1268 (|#2| |#2|)) (-15 -2954 (|#2| (-114) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1735 (((-411 (-1141 |#3|)) (-1141 |#3|) (-623 (-48))) 23) (((-411 |#3|) |#3| (-623 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1735 ((-411 |#3|) |#3| (-623 (-48)))) (-15 -1735 ((-411 (-1141 |#3|)) (-1141 |#3|) (-623 (-48))))) (-825) (-771) (-923 (-48) |#2| |#1|)) (T -42)) -((-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *7 (-923 (-48) *6 *5)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-923 (-48) *6 *5))))) -(-10 -7 (-15 -1735 ((-411 |#3|) |#3| (-623 (-48)))) (-15 -1735 ((-411 (-1141 |#3|)) (-1141 |#3|) (-623 (-48))))) -((-3204 (((-749) |#2|) 65)) (-4293 (((-749) |#2|) 68)) (-3482 (((-623 |#2|)) 33)) (-1427 (((-749) |#2|) 67)) (-2423 (((-749) |#2|) 64)) (-2144 (((-749) |#2|) 66)) (-4252 (((-623 (-667 |#1|))) 60)) (-3135 (((-623 |#2|)) 55)) (-1438 (((-623 |#2|) |#2|) 43)) (-3851 (((-623 |#2|)) 57)) (-1789 (((-623 |#2|)) 56)) (-2652 (((-623 (-667 |#1|))) 48)) (-1331 (((-623 |#2|)) 54)) (-2985 (((-623 |#2|) |#2|) 42)) (-4182 (((-623 |#2|)) 50)) (-1800 (((-623 (-667 |#1|))) 61)) (-2329 (((-623 |#2|)) 59)) (-2206 (((-1228 |#2|) (-1228 |#2|)) 84 (|has| |#1| (-300))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1427 ((-749) |#2|)) (-15 -4293 ((-749) |#2|)) (-15 -2423 ((-749) |#2|)) (-15 -3204 ((-749) |#2|)) (-15 -2144 ((-749) |#2|)) (-15 -4182 ((-623 |#2|))) (-15 -2985 ((-623 |#2|) |#2|)) (-15 -1438 ((-623 |#2|) |#2|)) (-15 -1331 ((-623 |#2|))) (-15 -3135 ((-623 |#2|))) (-15 -1789 ((-623 |#2|))) (-15 -3851 ((-623 |#2|))) (-15 -2329 ((-623 |#2|))) (-15 -2652 ((-623 (-667 |#1|)))) (-15 -4252 ((-623 (-667 |#1|)))) (-15 -1800 ((-623 (-667 |#1|)))) (-15 -3482 ((-623 |#2|))) (IF (|has| |#1| (-300)) (-15 -2206 ((-1228 |#2|) (-1228 |#2|))) |%noBranch|)) (-542) (-410 |#1|)) (T -43)) -((-2206 (*1 *2 *2) (-12 (-5 *2 (-1228 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) (-3482 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1800 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4252 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2652 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2329 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3851 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1789 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3135 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1331 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2985 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-4182 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2144 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-4293 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4))))) -(-10 -7 (-15 -1427 ((-749) |#2|)) (-15 -4293 ((-749) |#2|)) (-15 -2423 ((-749) |#2|)) (-15 -3204 ((-749) |#2|)) (-15 -2144 ((-749) |#2|)) (-15 -4182 ((-623 |#2|))) (-15 -2985 ((-623 |#2|) |#2|)) (-15 -1438 ((-623 |#2|) |#2|)) (-15 -1331 ((-623 |#2|))) (-15 -3135 ((-623 |#2|))) (-15 -1789 ((-623 |#2|))) (-15 -3851 ((-623 |#2|))) (-15 -2329 ((-623 |#2|))) (-15 -2652 ((-623 (-667 |#1|)))) (-15 -4252 ((-623 (-667 |#1|)))) (-15 -1800 ((-623 (-667 |#1|)))) (-15 -3482 ((-623 |#2|))) (IF (|has| |#1| (-300)) (-15 -2206 ((-1228 |#2|) (-1228 |#2|))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2305 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2946 (((-1228 (-667 |#1|)) (-1228 $)) NIL) (((-1228 (-667 |#1|))) 24)) (-4259 (((-1228 $)) 51)) (-2991 (($) NIL T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (|has| |#1| (-542)))) (-1713 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-2704 (((-667 |#1|) (-1228 $)) NIL) (((-667 |#1|)) NIL)) (-4281 ((|#1| $) NIL)) (-2693 (((-667 |#1|) $ (-1228 $)) NIL) (((-667 |#1|) $) NIL)) (-2988 (((-3 $ "failed") $) NIL (|has| |#1| (-542)))) (-1549 (((-1141 (-926 |#1|))) NIL (|has| |#1| (-356)))) (-1339 (($ $ (-895)) NIL)) (-2710 ((|#1| $) NIL)) (-2613 (((-1141 |#1|) $) NIL (|has| |#1| (-542)))) (-1690 ((|#1| (-1228 $)) NIL) ((|#1|) NIL)) (-2015 (((-1141 |#1|) $) NIL)) (-2030 (((-112)) 87)) (-2821 (($ (-1228 |#1|) (-1228 $)) NIL) (($ (-1228 |#1|)) NIL)) (-1537 (((-3 $ "failed") $) 14 (|has| |#1| (-542)))) (-3398 (((-895)) 52)) (-4094 (((-112)) NIL)) (-2210 (($ $ (-895)) NIL)) (-1870 (((-112)) NIL)) (-4189 (((-112)) NIL)) (-2826 (((-112)) 89)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (|has| |#1| (-542)))) (-3678 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-2128 (((-667 |#1|) (-1228 $)) NIL) (((-667 |#1|)) NIL)) (-2925 ((|#1| $) NIL)) (-2224 (((-667 |#1|) $ (-1228 $)) NIL) (((-667 |#1|) $) NIL)) (-3274 (((-3 $ "failed") $) NIL (|has| |#1| (-542)))) (-3789 (((-1141 (-926 |#1|))) NIL (|has| |#1| (-356)))) (-1692 (($ $ (-895)) NIL)) (-1324 ((|#1| $) NIL)) (-3784 (((-1141 |#1|) $) NIL (|has| |#1| (-542)))) (-4216 ((|#1| (-1228 $)) NIL) ((|#1|) NIL)) (-3876 (((-1141 |#1|) $) NIL)) (-1688 (((-112)) 86)) (-2369 (((-1127) $) NIL)) (-3143 (((-112)) 93)) (-1294 (((-112)) 92)) (-2498 (((-112)) 94)) (-3445 (((-1089) $) NIL)) (-2294 (((-112)) 88)) (-2757 ((|#1| $ (-550)) 54)) (-2999 (((-1228 |#1|) $ (-1228 $)) 48) (((-667 |#1|) (-1228 $) (-1228 $)) NIL) (((-1228 |#1|) $) 28) (((-667 |#1|) (-1228 $)) NIL)) (-2451 (((-1228 |#1|) $) NIL) (($ (-1228 |#1|)) NIL)) (-2778 (((-623 (-926 |#1|)) (-1228 $)) NIL) (((-623 (-926 |#1|))) NIL)) (-1353 (($ $ $) NIL)) (-4118 (((-112)) 84)) (-2233 (((-837) $) 69) (($ (-1228 |#1|)) 22)) (-2206 (((-1228 $)) 45)) (-2364 (((-623 (-1228 |#1|))) NIL (|has| |#1| (-542)))) (-4143 (($ $ $ $) NIL)) (-2941 (((-112)) 82)) (-3806 (($ (-667 |#1|) $) 18)) (-1923 (($ $ $) NIL)) (-2582 (((-112)) 85)) (-3268 (((-112)) 83)) (-3836 (((-112)) 81)) (-2688 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1111 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-410 |#1|) (-626 (-1111 |#2| |#1|)) (-10 -8 (-15 -2233 ($ (-1228 |#1|))))) (-356) (-895) (-623 (-1145)) (-1228 (-667 |#1|))) (T -44)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-356)) (-14 *6 (-1228 (-667 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-623 (-1145)))))) -(-13 (-410 |#1|) (-626 (-1111 |#2| |#1|)) (-10 -8 (-15 -2233 ($ (-1228 |#1|))))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-1337 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2422 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2470 (($ $) NIL)) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345))) (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2734 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825))))) (-1814 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-1629 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345)))) (-2872 (($ $ $) 27 (|has| $ (-6 -4345)))) (-3737 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345)))) (-3946 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 29 (|has| $ (-6 -4345)))) (-2409 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-1195 (-550)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "last" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345))) (($ $ "rest" $) NIL (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "first" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "value" (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2408 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3696 (((-3 |#2| "failed") |#1| $) 37)) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-3870 (($ $ (-749)) NIL) (($ $) 24)) (-2599 (($ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) NIL)) (-2950 (((-112) $) NIL)) (-3088 (((-550) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) (((-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 18 (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 18 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-3375 (($ (-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825))) (((-550) $) 32 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2299 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2441 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825))) (((-550) $) 34 (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345))) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-3743 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) 42 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-2001 (($ $ (-749)) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-4212 (((-623 |#1|) $) 20)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-1476 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 |#1|) $) NIL) (((-623 (-550)) $) NIL)) (-3166 (((-112) |#1| $) NIL) (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825))) (($ $ (-749)) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 23)) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3164 (((-112) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-1375 (((-623 |#2|) $) NIL) (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 17)) (-4217 (((-112) $) 16)) (-2819 (($) 13)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ (-550)) NIL) (($ $ (-1195 (-550))) NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "first") NIL) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $ "value") NIL)) (-1456 (((-550) $ $) NIL)) (-3246 (($) 12) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3749 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-2320 (((-112) $) NIL)) (-1662 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4345)))) (-3300 (((-749) $) NIL)) (-3813 (($ $) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2037 (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL) (($ $ $) NIL)) (-4006 (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL) (($ (-623 $)) NIL) (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 25) (($ $ $) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2008 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") |#1| $) 44)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-2313 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-825)))) (-3307 (((-749) $) 22 (|has| $ (-6 -4344))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1069) (-1069)) (T -45)) +((-4312 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) +(-13 (-1023) (-696 |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3772 (((-398 |#1|) |#1|) 41)) (-4087 (((-398 |#1|) |#1|) 30) (((-398 |#1|) |#1| (-620 (-48))) 33)) (-1272 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1| (-620 (-48)))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3772 ((-398 |#1|) |#1|)) (-15 -1272 ((-112) |#1|))) (-1205 (-48))) (T -39)) +((-1272 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-3772 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48)))))) +(-10 -7 (-15 -4087 ((-398 |#1|) |#1| (-620 (-48)))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3772 ((-398 |#1|) |#1|)) (-15 -1272 ((-112) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2173 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-3684 (((-400 |#2|) $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) NIL) (($ (-1229 (-400 |#2|))) 57) (($ (-1229 |#2|) |#2|) 125)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-1763 (((-1229 $) (-1229 $)) NIL)) (-4197 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-1750 (((-620 (-620 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2888 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-400 |#2|) (-356)))) (-3852 (($ $) NIL)) (-3161 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) NIL (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) NIL (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) NIL)) (-3731 (((-749)) NIL)) (-1764 (((-1229 $) (-1229 $)) 102)) (-3462 (((-400 |#2|) $) NIL)) (-1751 (((-620 (-920 |#1|)) (-1147)) NIL (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) NIL (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) NIL)) (-1273 (((-1235) (-749)) 79)) (-1759 (((-667 (-400 |#2|))) 51)) (-1761 (((-667 (-400 |#2|))) 44)) (-2729 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 126)) (-1760 (((-667 (-400 |#2|))) 45)) (-1762 (((-667 (-400 |#2|))) 43)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 64)) (-1768 (((-1229 $)) 42)) (-4273 (((-1229 $)) 41)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3799 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) NIL)) (-3589 (((-1091) $) NIL)) (-1777 (((-749)) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) NIL) (((-400 |#2|)) 39)) (-1882 (((-749) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 50)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 |#2|)) $) 58) (((-667 (-400 |#2|)) (-1229 $)) 103)) (-4325 (((-1229 (-400 |#2|)) $) NIL) (($ (-1229 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3030 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) NIL)) (-3456 (((-749)) NIL)) (-1774 (((-112)) 37)) (-1773 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2123 (((-1229 $)) 93)) (-2172 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2986 (($) 16 T CONST)) (-2992 (($) 26 T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) NIL (|has| (-400 |#2|) (-356))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1273 ((-1235) (-749))))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) |#3|) (T -40)) +((-1273 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *2 (-1235)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1205 (-400 *5))) (-14 *7 *6)))) +(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1273 ((-1235) (-749))))) +((-1274 ((|#2| |#2|) 48)) (-1279 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1278 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1277 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1280 ((|#2| (-113) |#2| (-749)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1276 (((-1141 |#2|) |#2|) 45)) (-1275 ((|#2| |#2| (-620 (-593 |#2|))) 18) ((|#2| |#2| (-620 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -1275 (|#2| |#2| |#2|)) (-15 -1275 (|#2| |#2| (-620 |#2|))) (-15 -1275 (|#2| |#2| (-620 (-593 |#2|)))) (-15 -1276 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-536))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1277 (|#2| |#2|)) (-15 -1278 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| (-113) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-543) (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 |#1| (-593 $)) $)) (-15 -3325 ((-1096 |#1| (-593 $)) $)) (-15 -4312 ($ (-1096 |#1| (-593 $))))))) (T -41)) +((-1280 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) (-4 *5 (-1012 (-536))) (-4 *5 (-543)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *5 (-593 $)) $)) (-15 -3325 ((-1096 *5 (-593 $)) $)) (-15 -4312 ($ (-1096 *5 (-593 $))))))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1278 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1276 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))))) (-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-593 *2))) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))) (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) (-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))) (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) (-1275 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) +(-10 -7 (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -1275 (|#2| |#2| |#2|)) (-15 -1275 (|#2| |#2| (-620 |#2|))) (-15 -1275 (|#2| |#2| (-620 (-593 |#2|)))) (-15 -1276 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-536))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1277 (|#2| |#2|)) (-15 -1278 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| (-113) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4087 (((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))) 23) (((-398 |#3|) |#3| (-620 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3| (-620 (-48)))) (-15 -4087 ((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))))) (-825) (-771) (-924 (-48) |#2| |#1|)) (T -42)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *7 (-924 (-48) *6 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-924 (-48) *6 *5))))) +(-10 -7 (-15 -4087 ((-398 |#3|) |#3| (-620 (-48)))) (-15 -4087 ((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))))) +((-1284 (((-749) |#2|) 65)) (-1282 (((-749) |#2|) 68)) (-1297 (((-620 |#2|)) 33)) (-1281 (((-749) |#2|) 67)) (-1283 (((-749) |#2|) 64)) (-1285 (((-749) |#2|) 66)) (-1295 (((-620 (-667 |#1|))) 60)) (-1290 (((-620 |#2|)) 55)) (-1288 (((-620 |#2|) |#2|) 43)) (-1292 (((-620 |#2|)) 57)) (-1291 (((-620 |#2|)) 56)) (-1294 (((-620 (-667 |#1|))) 48)) (-1289 (((-620 |#2|)) 54)) (-1287 (((-620 |#2|) |#2|) 42)) (-1286 (((-620 |#2|)) 50)) (-1296 (((-620 (-667 |#1|))) 61)) (-1293 (((-620 |#2|)) 59)) (-2123 (((-1229 |#2|) (-1229 |#2|)) 84 (|has| |#1| (-300))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1281 ((-749) |#2|)) (-15 -1282 ((-749) |#2|)) (-15 -1283 ((-749) |#2|)) (-15 -1284 ((-749) |#2|)) (-15 -1285 ((-749) |#2|)) (-15 -1286 ((-620 |#2|))) (-15 -1287 ((-620 |#2|) |#2|)) (-15 -1288 ((-620 |#2|) |#2|)) (-15 -1289 ((-620 |#2|))) (-15 -1290 ((-620 |#2|))) (-15 -1291 ((-620 |#2|))) (-15 -1292 ((-620 |#2|))) (-15 -1293 ((-620 |#2|))) (-15 -1294 ((-620 (-667 |#1|)))) (-15 -1295 ((-620 (-667 |#1|)))) (-15 -1296 ((-620 (-667 |#1|)))) (-15 -1297 ((-620 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1229 |#2|) (-1229 |#2|))) |%noBranch|)) (-543) (-411 |#1|)) (T -43)) +((-2123 (*1 *2 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-43 *3 *4)))) (-1297 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1295 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1294 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1293 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1292 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1290 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1289 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1288 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1286 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1284 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1282 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1281 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(-10 -7 (-15 -1281 ((-749) |#2|)) (-15 -1282 ((-749) |#2|)) (-15 -1283 ((-749) |#2|)) (-15 -1284 ((-749) |#2|)) (-15 -1285 ((-749) |#2|)) (-15 -1286 ((-620 |#2|))) (-15 -1287 ((-620 |#2|) |#2|)) (-15 -1288 ((-620 |#2|) |#2|)) (-15 -1289 ((-620 |#2|))) (-15 -1290 ((-620 |#2|))) (-15 -1291 ((-620 |#2|))) (-15 -1292 ((-620 |#2|))) (-15 -1293 ((-620 |#2|))) (-15 -1294 ((-620 (-667 |#1|)))) (-15 -1295 ((-620 (-667 |#1|)))) (-15 -1296 ((-620 (-667 |#1|)))) (-15 -1297 ((-620 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1229 |#2|) (-1229 |#2|))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) NIL) (((-1229 (-667 |#1|))) 24)) (-1840 (((-1229 $)) 51)) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#1| (-543)))) (-1814 (((-3 $ #1#)) NIL (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-1838 ((|#1| $) NIL)) (-1900 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| |#1| (-543)))) (-2017 (((-1141 (-920 |#1|))) NIL (|has| |#1| (-356)))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL)) (-1816 (((-1141 |#1|) $) NIL (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1834 (((-1141 |#1|) $) NIL)) (-1828 (((-112)) 87)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) NIL)) (-3816 (((-3 $ #1#) $) 14 (|has| |#1| (-543)))) (-3439 (((-893)) 52)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) 89)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#1| (-543)))) (-1815 (((-3 $ #1#)) NIL (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-1839 ((|#1| $) NIL)) (-1901 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| |#1| (-543)))) (-2021 (((-1141 (-920 |#1|))) NIL (|has| |#1| (-356)))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL)) (-1817 (((-1141 |#1|) $) NIL (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1835 (((-1141 |#1|) $) NIL)) (-1829 (((-112)) 86)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) 93)) (-1822 (((-112)) 92)) (-1824 (((-112)) 94)) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) 88)) (-4154 ((|#1| $ (-536)) 54)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) 28) (((-667 |#1|) (-1229 $)) NIL)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) NIL) (((-620 (-920 |#1|))) NIL)) (-2681 (($ $ $) NIL)) (-1833 (((-112)) 84)) (-4312 (((-838) $) 69) (($ (-1229 |#1|)) 22)) (-2123 (((-1229 $)) 45)) (-1818 (((-620 (-1229 |#1|))) NIL (|has| |#1| (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) 82)) (-2875 (($ (-667 |#1|) $) 18)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) 85)) (-1830 (((-112)) 83)) (-1826 (((-112)) 81)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1113 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-626 (-1113 |#2| |#1|)) (-10 -8 (-15 -4312 ($ (-1229 |#1|))))) (-356) (-893) (-620 (-1147)) (-1229 (-667 |#1|))) (T -44)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-14 *6 (-1229 (-667 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147)))))) +(-13 (-411 |#1|) (-626 (-1113 |#2| |#1|)) (-10 -8 (-15 -4312 ($ (-1229 |#1|))))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3756 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-4149 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-4151 (($ $) NIL)) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349))) (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1841 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825))))) (-3237 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-3353 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 27 (|has| $ (-6 -4349)))) (-4140 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-4143 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 29 (|has| $ (-6 -4349)))) (-4142 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-1196 (-536)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1="last" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3="first" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4="value" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4150 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2309 (((-3 |#2| #5="failed") |#1| $) 37)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $ (-749)) NIL) (($ $) 24)) (-2450 (($ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 18 (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 18 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3972 (($ (-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825))) (((-536) $) 32 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3187 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3867 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825))) (((-536) $) 34 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-3892 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) 42 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4152 (($ $ (-749)) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2739 (((-620 |#1|) $) 20)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2377 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 |#1|) $) NIL) (((-620 (-536)) $) NIL)) (-2306 (((-112) |#1| $) NIL) (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825))) (($ $ (-749)) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 23)) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6#) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2307 (((-620 |#2|) $) NIL) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 17)) (-3757 (((-112) $) 16)) (-3923 (($) 13)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3#) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4#) NIL)) (-3357 (((-536) $ $) NIL)) (-1518 (($) 12) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-1627 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4145 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (($ $ $) NIL)) (-4156 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (($ (-620 $)) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 25) (($ $ $) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-1271 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") |#1| $) 44)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3012 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-4311 (((-749) $) 22 (|has| $ (-6 -4348))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1072) (-1072)) (T -45)) NIL (-36 |#1| |#2|) -((-3438 (((-112) $) 12)) (-2392 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-550)) $) 25) (($ $ (-400 (-550))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) (-47 |#2| |#3|) (-1021) (-770)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-3438 (((-112) $) 60)) (-1488 (($ |#1| |#2|) 59)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3661 ((|#2| $) 62)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-1708 ((|#1| $ |#2|) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-47 |#1| |#2|) (-138) (-1021) (-770)) (T -47)) -((-1670 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-112)))) (-1488 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) (-1708 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) (-4 *2 (-356))))) -(-13 (-1021) (-111 |t#1| |t#1|) (-10 -8 (-15 -1670 (|t#1| $)) (-15 -1657 ($ $)) (-15 -3661 (|t#2| $)) (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (-15 -3438 ((-112) $)) (-15 -1488 ($ |t#1| |t#2|)) (-15 -1693 ($ $)) (-15 -1708 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -2382 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-542)) (-6 (-542)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (-6 (-38 (-400 (-550)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-1510 (((-623 $) (-1141 $) (-1145)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-926 $)) NIL)) (-2966 (($ (-1141 $) (-1145)) NIL) (($ (-1141 $)) NIL) (($ (-926 $)) NIL)) (-3378 (((-112) $) 11)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1608 (((-623 (-594 $)) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4230 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1600 (((-623 $) (-1141 $) (-1145)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-926 $)) NIL)) (-3217 (($ (-1141 $) (-1145)) NIL) (($ (-1141 $)) NIL) (($ (-926 $)) NIL)) (-2288 (((-3 (-594 $) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2202 (((-594 $) $) NIL) (((-550) $) NIL) (((-400 (-550)) $) NIL)) (-3455 (($ $ $) NIL)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-400 (-550)))) (|:| |vec| (-1228 (-400 (-550))))) (-667 $) (-1228 $)) NIL) (((-667 (-400 (-550))) (-667 $)) NIL)) (-2924 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1465 (($ $) NIL) (($ (-623 $)) NIL)) (-3745 (((-623 (-114)) $) NIL)) (-1355 (((-114) (-114)) NIL)) (-2419 (((-112) $) 14)) (-1286 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-4153 (((-1094 (-550) (-594 $)) $) NIL)) (-1893 (($ $ (-550)) NIL)) (-1571 (((-1141 $) (-1141 $) (-594 $)) NIL) (((-1141 $) (-1141 $) (-623 (-594 $))) NIL) (($ $ (-594 $)) NIL) (($ $ (-623 (-594 $))) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1333 (((-1141 $) (-594 $)) NIL (|has| $ (-1021)))) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 $ $) (-594 $)) NIL)) (-2041 (((-3 (-594 $) "failed") $) NIL)) (-3231 (($ (-623 $)) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-1694 (((-623 (-594 $)) $) NIL)) (-4232 (($ (-114) $) NIL) (($ (-114) (-623 $)) NIL)) (-2366 (((-112) $ (-114)) NIL) (((-112) $ (-1145)) NIL)) (-1619 (($ $) NIL)) (-1293 (((-749) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ (-623 $)) NIL) (($ $ $) NIL)) (-4087 (((-112) $ $) NIL) (((-112) $ (-1145)) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1145) (-1 $ (-623 $))) NIL) (($ $ (-1145) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1988 (((-749) $) NIL)) (-2757 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-1532 (($ $) NIL) (($ $ $) NIL)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-4163 (((-1094 (-550) (-594 $)) $) NIL)) (-3832 (($ $) NIL (|has| $ (-1021)))) (-2451 (((-372) $) NIL) (((-219) $) NIL) (((-167 (-372)) $) NIL)) (-2233 (((-837) $) NIL) (($ (-594 $)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1094 (-550) (-594 $))) NIL)) (-3091 (((-749)) NIL)) (-3790 (($ $) NIL) (($ (-623 $)) NIL)) (-1905 (((-112) (-114)) NIL)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 7 T CONST)) (-2700 (($) 12 T CONST)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 16)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2370 (($ $ $) 15) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-400 (-550))) NIL) (($ $ (-550)) NIL) (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL))) -(((-48) (-13 (-295) (-27) (-1012 (-550)) (-1012 (-400 (-550))) (-619 (-550)) (-996) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -2233 ($ (-1094 (-550) (-594 $)))) (-15 -4153 ((-1094 (-550) (-594 $)) $)) (-15 -4163 ((-1094 (-550) (-594 $)) $)) (-15 -2924 ($ $)) (-15 -1571 ((-1141 $) (-1141 $) (-594 $))) (-15 -1571 ((-1141 $) (-1141 $) (-623 (-594 $)))) (-15 -1571 ($ $ (-594 $))) (-15 -1571 ($ $ (-623 (-594 $))))))) (T -48)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-2924 (*1 *1 *1) (-5 *1 (-48))) (-1571 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-594 (-48))) (-5 *1 (-48)))) (-1571 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-623 (-594 (-48)))) (-5 *1 (-48)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-48))) (-5 *1 (-48)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-48)))) (-5 *1 (-48))))) -(-13 (-295) (-27) (-1012 (-550)) (-1012 (-400 (-550))) (-619 (-550)) (-996) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -2233 ($ (-1094 (-550) (-594 $)))) (-15 -4153 ((-1094 (-550) (-594 $)) $)) (-15 -4163 ((-1094 (-550) (-594 $)) $)) (-15 -2924 ($ $)) (-15 -1571 ((-1141 $) (-1141 $) (-594 $))) (-15 -1571 ((-1141 $) (-1141 $) (-623 (-594 $)))) (-15 -1571 ($ $ (-594 $))) (-15 -1571 ($ $ (-623 (-594 $)))))) -((-2221 (((-112) $ $) NIL)) (-4148 (((-623 (-1145)) $) 17)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 7)) (-1865 (((-1150) $) 18)) (-2264 (((-112) $ $) NIL))) -(((-49) (-13 (-1069) (-10 -8 (-15 -4148 ((-623 (-1145)) $)) (-15 -1865 ((-1150) $))))) (T -49)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-49)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-49))))) -(-13 (-1069) (-10 -8 (-15 -4148 ((-623 (-1145)) $)) (-15 -1865 ((-1150) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 61)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2918 (((-112) $) 20)) (-2288 (((-3 |#1| "failed") $) 23)) (-2202 ((|#1| $) 24)) (-1693 (($ $) 28)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1670 ((|#1| $) 21)) (-3568 (($ $) 50)) (-2369 (((-1127) $) NIL)) (-1572 (((-112) $) 30)) (-3445 (((-1089) $) NIL)) (-2256 (($ (-749)) 48)) (-1644 (($ (-623 (-550))) 49)) (-3661 (((-749) $) 31)) (-2233 (((-837) $) 64) (($ (-550)) 45) (($ |#1|) 43)) (-1708 ((|#1| $ $) 19)) (-3091 (((-749)) 47)) (-2688 (($) 32 T CONST)) (-2700 (($) 14 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-600 |#1|) (-1012 |#1|) (-10 -8 (-15 -1670 (|#1| $)) (-15 -3568 ($ $)) (-15 -1693 ($ $)) (-15 -1708 (|#1| $ $)) (-15 -2256 ($ (-749))) (-15 -1644 ($ (-623 (-550)))) (-15 -1572 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3661 ((-749) $)) (-15 -2392 ($ (-1 |#1| |#1|) $)))) (-1021) (-623 (-1145))) (T -50)) -((-1670 (*1 *2 *1) (-12 (-4 *2 (-1021)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1145))))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1021)) (-14 *3 (-623 (-1145))))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1021)) (-14 *3 (-623 (-1145))))) (-1708 (*1 *2 *1 *1) (-12 (-4 *2 (-1021)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1145))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-50 *3 *4)) (-14 *4 (-623 (-1145)))))) -(-13 (-600 |#1|) (-1012 |#1|) (-10 -8 (-15 -1670 (|#1| $)) (-15 -3568 ($ $)) (-15 -1693 ($ $)) (-15 -1708 (|#1| $ $)) (-15 -2256 ($ (-749))) (-15 -1644 ($ (-623 (-550)))) (-15 -1572 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3661 ((-749) $)) (-15 -2392 ($ (-1 |#1| |#1|) $)))) -((-2918 (((-112) (-52)) 13)) (-2288 (((-3 |#1| "failed") (-52)) 21)) (-2202 ((|#1| (-52)) 22)) (-2233 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -2233 ((-52) |#1|)) (-15 -2288 ((-3 |#1| "failed") (-52))) (-15 -2918 ((-112) (-52))) (-15 -2202 (|#1| (-52)))) (-1182)) (T -51)) -((-2202 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1182)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1182)))) (-2288 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1182)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1182))))) -(-10 -7 (-15 -2233 ((-52) |#1|)) (-15 -2288 ((-3 |#1| "failed") (-52))) (-15 -2918 ((-112) (-52))) (-15 -2202 (|#1| (-52)))) -((-2221 (((-112) $ $) NIL)) (-1576 (((-1127) (-112)) 25)) (-3425 (((-837) $) 24)) (-1493 (((-752) $) 12)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2275 (((-837) $) 16)) (-1760 (((-1073) $) 14)) (-2233 (((-837) $) 32)) (-3652 (($ (-1073) (-752)) 33)) (-2264 (((-112) $ $) 18))) -(((-52) (-13 (-1069) (-10 -8 (-15 -3652 ($ (-1073) (-752))) (-15 -2275 ((-837) $)) (-15 -3425 ((-837) $)) (-15 -1760 ((-1073) $)) (-15 -1493 ((-752) $)) (-15 -1576 ((-1127) (-112)))))) (T -52)) -((-3652 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-752)) (-5 *1 (-52)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-52)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-52)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-52)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-752)) (-5 *1 (-52)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1127)) (-5 *1 (-52))))) -(-13 (-1069) (-10 -8 (-15 -3652 ($ (-1073) (-752))) (-15 -2275 ((-837) $)) (-15 -3425 ((-837) $)) (-15 -1760 ((-1073) $)) (-15 -1493 ((-752) $)) (-15 -1576 ((-1127) (-112))))) -((-3806 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3806 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1021) (-626 |#1|) (-827 |#1|)) (T -53)) -((-3806 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1021)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5))))) -(-10 -7 (-15 -3806 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3333 ((|#3| |#3| (-623 (-1145))) 35)) (-2293 ((|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3| (-895)) 22) ((|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2293 (|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3|)) (-15 -2293 (|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3| (-895))) (-15 -3333 (|#3| |#3| (-623 (-1145))))) (-1069) (-13 (-1021) (-860 |#1|) (-825) (-596 (-866 |#1|))) (-13 (-423 |#2|) (-860 |#1|) (-596 (-866 |#1|)))) (T -54)) -((-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) (-2293 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 (-1045 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1069)) (-4 *6 (-13 (-1021) (-860 *5) (-825) (-596 (-866 *5)))) (-4 *2 (-13 (-423 *6) (-860 *5) (-596 (-866 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2293 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-1045 *4 *5 *2))) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2293 (|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3|)) (-15 -2293 (|#3| (-623 (-1045 |#1| |#2| |#3|)) |#3| (-895))) (-15 -3333 (|#3| |#3| (-623 (-1145))))) -((-3368 (((-112) $ (-749)) 23)) (-1645 (($ $ (-550) |#3|) 47)) (-4097 (($ $ (-550) |#4|) 51)) (-1297 ((|#3| $ (-550)) 60)) (-2971 (((-623 |#2|) $) 30)) (-1445 (((-112) $ (-749)) 25)) (-3922 (((-112) |#2| $) 55)) (-3311 (($ (-1 |#2| |#2|) $) 38)) (-2392 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-1700 (((-112) $ (-749)) 24)) (-2491 (($ $ |#2|) 35)) (-1410 (((-112) (-1 (-112) |#2|) $) 19)) (-2757 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) 27)) (-3457 (((-749) (-1 (-112) |#2|) $) 28) (((-749) |#2| $) 57)) (-2435 (($ $) 34)) (-1457 ((|#4| $ (-550)) 63)) (-2233 (((-837) $) 69)) (-3404 (((-112) (-1 (-112) |#2|) $) 18)) (-2264 (((-112) $ $) 54)) (-3307 (((-749) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4097 (|#1| |#1| (-550) |#4|)) (-15 -1645 (|#1| |#1| (-550) |#3|)) (-15 -2971 ((-623 |#2|) |#1|)) (-15 -1457 (|#4| |#1| (-550))) (-15 -1297 (|#3| |#1| (-550))) (-15 -2757 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550))) (-15 -2491 (|#1| |#1| |#2|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749))) (-15 -2435 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1182) (-366 |#2|) (-366 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4097 (|#1| |#1| (-550) |#4|)) (-15 -1645 (|#1| |#1| (-550) |#3|)) (-15 -2971 ((-623 |#2|) |#1|)) (-15 -1457 (|#4| |#1| (-550))) (-15 -1297 (|#3| |#1| (-550))) (-15 -2757 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550))) (-15 -2491 (|#1| |#1| |#2|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749))) (-15 -2435 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) (-550) |#1|) 44)) (-1645 (($ $ (-550) |#2|) 42)) (-4097 (($ $ (-550) |#3|) 41)) (-2991 (($) 7 T CONST)) (-1297 ((|#2| $ (-550)) 46)) (-3317 ((|#1| $ (-550) (-550) |#1|) 43)) (-3263 ((|#1| $ (-550) (-550)) 48)) (-2971 (((-623 |#1|) $) 30)) (-2050 (((-749) $) 51)) (-3375 (($ (-749) (-749) |#1|) 57)) (-2063 (((-749) $) 50)) (-1445 (((-112) $ (-749)) 9)) (-3397 (((-550) $) 55)) (-2415 (((-550) $) 53)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1630 (((-550) $) 54)) (-2964 (((-550) $) 52)) (-3311 (($ (-1 |#1| |#1|) $) 34)) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) 56)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) (-550)) 49) ((|#1| $ (-550) (-550) |#1|) 47)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-1457 ((|#3| $ (-550)) 45)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-56 |#1| |#2| |#3|) (-138) (-1182) (-366 |t#1|) (-366 |t#1|)) (T -56)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3375 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1182)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2491 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1182)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-749)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-749)))) (-2757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1182)))) (-3263 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1182)))) (-2757 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1182)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-1457 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1182)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-623 *3)))) (-2409 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-3317 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1182)) (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))) (-4097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1182)) (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2392 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4345) (-6 -4344) (-15 -3375 ($ (-749) (-749) |t#1|)) (-15 -2491 ($ $ |t#1|)) (-15 -3397 ((-550) $)) (-15 -1630 ((-550) $)) (-15 -2415 ((-550) $)) (-15 -2964 ((-550) $)) (-15 -2050 ((-749) $)) (-15 -2063 ((-749) $)) (-15 -2757 (|t#1| $ (-550) (-550))) (-15 -3263 (|t#1| $ (-550) (-550))) (-15 -2757 (|t#1| $ (-550) (-550) |t#1|)) (-15 -1297 (|t#2| $ (-550))) (-15 -1457 (|t#3| $ (-550))) (-15 -2971 ((-623 |t#1|) $)) (-15 -2409 (|t#1| $ (-550) (-550) |t#1|)) (-15 -3317 (|t#1| $ (-550) (-550) |t#1|)) (-15 -1645 ($ $ (-550) |t#2|)) (-15 -4097 ($ $ (-550) |t#3|)) (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (-15 -3311 ($ (-1 |t#1| |t#1|) $)) (-15 -2392 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2392 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2304 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2924 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2392 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -2304 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2392 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1182) (-1182)) (T -57)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-57 *5 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1182)) (-4 *5 (-1182)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -2304 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2392 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) 11 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1508 (($ (-623 |#1|)) 13) (($ (-749) |#1|) 14)) (-3375 (($ (-749) |#1|) 9)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 7)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1508 ($ (-623 |#1|))) (-15 -1508 ($ (-749) |#1|)))) (-1182)) (T -58)) -((-1508 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-58 *3)))) (-1508 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-58 *3)) (-4 *3 (-1182))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1508 ($ (-623 |#1|))) (-15 -1508 ($ (-749) |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1645 (($ $ (-550) (-58 |#1|)) NIL)) (-4097 (($ $ (-550) (-58 |#1|)) NIL)) (-2991 (($) NIL T CONST)) (-1297 (((-58 |#1|) $ (-550)) NIL)) (-3317 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3263 ((|#1| $ (-550) (-550)) NIL)) (-2971 (((-623 |#1|) $) NIL)) (-2050 (((-749) $) NIL)) (-3375 (($ (-749) (-749) |#1|) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-1457 (((-58 |#1|) $ (-550)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4345))) (-1182)) (T -59)) -NIL -(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4345))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 74) (((-3 $ "failed") (-1228 (-309 (-550)))) 63) (((-3 $ "failed") (-1228 (-926 (-372)))) 94) (((-3 $ "failed") (-1228 (-926 (-550)))) 84) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 52) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 39)) (-2202 (($ (-1228 (-309 (-372)))) 70) (($ (-1228 (-309 (-550)))) 59) (($ (-1228 (-926 (-372)))) 90) (($ (-1228 (-926 (-550)))) 80) (($ (-1228 (-400 (-926 (-372))))) 48) (($ (-1228 (-400 (-926 (-550))))) 32)) (-1316 (((-1233) $) 120)) (-2233 (((-837) $) 113) (($ (-623 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 101) (($ (-1228 (-332 (-2245 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2245) (-677)))) 31))) -(((-60 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2245) (-677))))))) (-1145)) (T -60)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2245) (-677)))) (-5 *1 (-60 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2245) (-677))))))) -((-1316 (((-1233) $) 53) (((-1233)) 54)) (-2233 (((-837) $) 50))) -(((-61 |#1|) (-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) (-1145)) (T -61)) -((-1316 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-61 *3)) (-14 *3 (-1145))))) -(-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 144) (((-3 $ "failed") (-1228 (-309 (-550)))) 134) (((-3 $ "failed") (-1228 (-926 (-372)))) 164) (((-3 $ "failed") (-1228 (-926 (-550)))) 154) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 123) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 111)) (-2202 (($ (-1228 (-309 (-372)))) 140) (($ (-1228 (-309 (-550)))) 130) (($ (-1228 (-926 (-372)))) 160) (($ (-1228 (-926 (-550)))) 150) (($ (-1228 (-400 (-926 (-372))))) 119) (($ (-1228 (-400 (-926 (-550))))) 104)) (-1316 (((-1233) $) 97)) (-2233 (((-837) $) 91) (($ (-623 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 32) (($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677)))) 89))) -(((-62 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677))))))) (-1145)) (T -62)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677)))) (-5 *1 (-62 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677))))))) -((-2288 (((-3 $ "failed") (-309 (-372))) 41) (((-3 $ "failed") (-309 (-550))) 46) (((-3 $ "failed") (-926 (-372))) 50) (((-3 $ "failed") (-926 (-550))) 54) (((-3 $ "failed") (-400 (-926 (-372)))) 36) (((-3 $ "failed") (-400 (-926 (-550)))) 29)) (-2202 (($ (-309 (-372))) 39) (($ (-309 (-550))) 44) (($ (-926 (-372))) 48) (($ (-926 (-550))) 52) (($ (-400 (-926 (-372)))) 34) (($ (-400 (-926 (-550)))) 26)) (-1316 (((-1233) $) 76)) (-2233 (((-837) $) 69) (($ (-623 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 64) (($ (-332 (-2245 (QUOTE X)) (-2245) (-677))) 25))) -(((-63 |#1|) (-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245 (QUOTE X)) (-2245) (-677)))))) (-1145)) (T -63)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-332 (-2245 (QUOTE X)) (-2245) (-677))) (-5 *1 (-63 *3)) (-14 *3 (-1145))))) -(-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245 (QUOTE X)) (-2245) (-677)))))) -((-2288 (((-3 $ "failed") (-667 (-309 (-372)))) 109) (((-3 $ "failed") (-667 (-309 (-550)))) 97) (((-3 $ "failed") (-667 (-926 (-372)))) 131) (((-3 $ "failed") (-667 (-926 (-550)))) 120) (((-3 $ "failed") (-667 (-400 (-926 (-372))))) 85) (((-3 $ "failed") (-667 (-400 (-926 (-550))))) 71)) (-2202 (($ (-667 (-309 (-372)))) 105) (($ (-667 (-309 (-550)))) 93) (($ (-667 (-926 (-372)))) 127) (($ (-667 (-926 (-550)))) 116) (($ (-667 (-400 (-926 (-372))))) 81) (($ (-667 (-400 (-926 (-550))))) 64)) (-1316 (((-1233) $) 139)) (-2233 (((-837) $) 133) (($ (-623 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 31) (($ (-667 (-332 (-2245) (-2245 (QUOTE X) (QUOTE HESS)) (-677)))) 54))) -(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245) (-2245 (QUOTE X) (QUOTE HESS)) (-677))))))) (-1145)) (T -64)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-2245) (-2245 (QUOTE X) (QUOTE HESS)) (-677)))) (-5 *1 (-64 *3)) (-14 *3 (-1145))))) -(-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245) (-2245 (QUOTE X) (QUOTE HESS)) (-677))))))) -((-2288 (((-3 $ "failed") (-309 (-372))) 59) (((-3 $ "failed") (-309 (-550))) 64) (((-3 $ "failed") (-926 (-372))) 68) (((-3 $ "failed") (-926 (-550))) 72) (((-3 $ "failed") (-400 (-926 (-372)))) 54) (((-3 $ "failed") (-400 (-926 (-550)))) 47)) (-2202 (($ (-309 (-372))) 57) (($ (-309 (-550))) 62) (($ (-926 (-372))) 66) (($ (-926 (-550))) 70) (($ (-400 (-926 (-372)))) 52) (($ (-400 (-926 (-550)))) 44)) (-1316 (((-1233) $) 81)) (-2233 (((-837) $) 75) (($ (-623 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 31) (($ (-332 (-2245) (-2245 (QUOTE XC)) (-677))) 39))) -(((-65 |#1|) (-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE XC)) (-677)))))) (-1145)) (T -65)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-332 (-2245) (-2245 (QUOTE XC)) (-677))) (-5 *1 (-65 *3)) (-14 *3 (-1145))))) -(-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE XC)) (-677)))))) -((-1316 (((-1233) $) 63)) (-2233 (((-837) $) 57) (($ (-667 (-677))) 49) (($ (-623 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 53))) -(((-66 |#1|) (-376) (-1145)) (T -66)) +((-4292 (((-112) $) 12)) (-4313 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-536)) $) 25) (($ $ (-400 (-536))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-47 |#2| |#3|) (-1023) (-770)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-47 |#1| |#2|) (-138) (-1023) (-770)) (T -47)) +((-3520 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) (-3221 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-356))))) +(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (-15 -3520 (|t#1| $)) (-15 -3222 ($ $)) (-15 -4302 (|t#2| $)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -4292 ((-112) $)) (-15 -3221 ($ |t#1| |t#2|)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-543)) (-6 (-543)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (-6 (-38 (-400 (-536)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-1263 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3534 (((-112) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1655 (((-620 (-593 $)) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-1264 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-3529 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-536) $) NIL) (((-400 (-536)) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-400 (-536)))) (|:| |vec| (-1229 (-400 (-536))))) (-667 $) (-1229 $)) NIL) (((-667 (-400 (-536))) (-667 $)) NIL)) (-4197 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) 14)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3326 (((-1096 (-536) (-593 $)) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (((-1141 $) (-1141 $) (-593 $)) NIL) (((-1141 $) (-1141 $) (-620 (-593 $))) NIL) (($ $ (-593 $)) NIL) (($ $ (-620 (-593 $))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-1652 (((-1141 $) (-593 $)) NIL (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2729 (($ $) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-749) $) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-3325 (((-1096 (-536) (-593 $)) $) NIL)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-166 (-371)) $) NIL)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-1096 (-536) (-593 $))) NIL)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 7 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 16)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $ $) 15) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-400 (-536))) NIL) (($ $ (-536)) NIL) (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) +(((-48) (-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $))))))) (T -48)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-4197 (*1 *1 *1) (-5 *1 (-48))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-593 (-48))) (-5 *1 (-48)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-620 (-593 (-48)))) (-5 *1 (-48)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-593 (-48))) (-5 *1 (-48)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-48)))) (-5 *1 (-48))))) +(-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $)))))) +((-2893 (((-112) $ $) NIL)) (-2055 (((-620 (-1147)) $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3579 (((-1152) $) 18)) (-3382 (((-112) $ $) NIL))) +(((-49) (-13 (-1072) (-10 -8 (-15 -2055 ((-620 (-1147)) $)) (-15 -3579 ((-1152) $))))) (T -49)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-49)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-49))))) +(-13 (-1072) (-10 -8 (-15 -2055 ((-620 (-1147)) $)) (-15 -3579 ((-1152) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 61)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2990 (((-112) $) 20)) (-3503 (((-3 |#1| "failed") $) 23)) (-3502 ((|#1| $) 24)) (-4314 (($ $) 28)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3520 ((|#1| $) 21)) (-1508 (($ $) 50)) (-3588 (((-1129) $) NIL)) (-1507 (((-112) $) 30)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) 48)) (-4298 (($ (-620 (-536))) 49)) (-4302 (((-749) $) 31)) (-4312 (((-838) $) 64) (($ (-536)) 45) (($ |#1|) 43)) (-4035 ((|#1| $ $) 19)) (-3456 (((-749)) 47)) (-2986 (($) 32 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-601 |#1|) (-1012 |#1|) (-10 -8 (-15 -3520 (|#1| $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 (|#1| $ $)) (-15 -2496 ($ (-749))) (-15 -4298 ($ (-620 (-536)))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-749) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)))) (-1023) (-620 (-1147))) (T -50)) +((-3520 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) (-4035 (*1 *2 *1 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-50 *3 *4)) (-14 *4 (-620 (-1147)))))) +(-13 (-601 |#1|) (-1012 |#1|) (-10 -8 (-15 -3520 (|#1| $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 (|#1| $ $)) (-15 -2496 ($ (-749))) (-15 -4298 ($ (-620 (-536)))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-749) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)))) +((-2893 (((-112) $ $) NIL)) (-1298 (((-1129) (-112)) 25)) (-1301 (((-838) $) 24)) (-1299 (((-751) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1302 (((-838) $) 16)) (-1300 (((-1074) $) 14)) (-4312 (((-838) $) 32)) (-1303 (($ (-1074) (-751)) 33)) (-3382 (((-112) $ $) 18))) +(((-51) (-13 (-1072) (-10 -8 (-15 -1303 ($ (-1074) (-751))) (-15 -1302 ((-838) $)) (-15 -1301 ((-838) $)) (-15 -1300 ((-1074) $)) (-15 -1299 ((-751) $)) (-15 -1298 ((-1129) (-112)))))) (T -51)) +((-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-751)) (-5 *1 (-51)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-51)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-51)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1129)) (-5 *1 (-51))))) +(-13 (-1072) (-10 -8 (-15 -1303 ($ (-1074) (-751))) (-15 -1302 ((-838) $)) (-15 -1301 ((-838) $)) (-15 -1300 ((-1074) $)) (-15 -1299 ((-751) $)) (-15 -1298 ((-1129) (-112))))) +((-2990 (((-112) (-51)) 13)) (-3503 (((-3 |#1| "failed") (-51)) 21)) (-3502 ((|#1| (-51)) 22)) (-4312 (((-51) |#1|) 18))) +(((-52 |#1|) (-10 -7 (-15 -4312 ((-51) |#1|)) (-15 -3503 ((-3 |#1| "failed") (-51))) (-15 -2990 ((-112) (-51))) (-15 -3502 (|#1| (-51)))) (-1183)) (T -52)) +((-3502 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1183)))) (-3503 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1183))))) +(-10 -7 (-15 -4312 ((-51) |#1|)) (-15 -3503 ((-3 |#1| "failed") (-51))) (-15 -2990 ((-112) (-51))) (-15 -3502 (|#1| (-51)))) +((-2875 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2875 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1023) (-626 |#1|) (-827 |#1|)) (T -53)) +((-2875 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1023)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5))))) +(-10 -7 (-15 -2875 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1305 ((|#3| |#3| (-620 (-1147))) 35)) (-1304 ((|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893)) 22) ((|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|)) (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893))) (-15 -1305 (|#3| |#3| (-620 (-1147))))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -54)) +((-1305 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-1304 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-620 (-1046 *5 *6 *2))) (-5 *4 (-893)) (-4 *5 (-1072)) (-4 *6 (-13 (-1023) (-860 *5) (-825) (-596 (-864 *5)))) (-4 *2 (-13 (-414 *6) (-860 *5) (-596 (-864 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1304 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-1046 *4 *5 *2))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|)) (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893))) (-15 -1305 (|#3| |#3| (-620 (-1147))))) +((-1269 (((-112) $ (-749)) 23)) (-1307 (($ $ (-536) |#3|) 47)) (-1306 (($ $ (-536) |#4|) 51)) (-3442 ((|#3| $ (-536)) 60)) (-2063 (((-620 |#2|) $) 30)) (-4077 (((-112) $ (-749)) 25)) (-3591 (((-112) |#2| $) 55)) (-2067 (($ (-1 |#2| |#2|) $) 38)) (-4313 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4074 (((-112) $ (-749)) 24)) (-2301 (($ $ |#2|) 35)) (-2065 (((-112) (-1 (-112) |#2|) $) 19)) (-4154 ((|#2| $ (-536) (-536)) NIL) ((|#2| $ (-536) (-536) |#2|) 27)) (-2064 (((-749) (-1 (-112) |#2|) $) 28) (((-749) |#2| $) 57)) (-3754 (($ $) 34)) (-3441 ((|#4| $ (-536)) 63)) (-4312 (((-838) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 18)) (-3382 (((-112) $ $) 54)) (-4311 (((-749) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1306 (|#1| |#1| (-536) |#4|)) (-15 -1307 (|#1| |#1| (-536) |#3|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -3441 (|#4| |#1| (-536))) (-15 -3442 (|#3| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3754 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1183) (-365 |#2|) (-365 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1306 (|#1| |#1| (-536) |#4|)) (-15 -1307 (|#1| |#1| (-536) |#3|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -3441 (|#4| |#1| (-536))) (-15 -3442 (|#3| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3754 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) (-536) |#1|) 44)) (-1307 (($ $ (-536) |#2|) 42)) (-1306 (($ $ (-536) |#3|) 41)) (-3891 (($) 7 T CONST)) (-3442 ((|#2| $ (-536)) 46)) (-1632 ((|#1| $ (-536) (-536) |#1|) 43)) (-3443 ((|#1| $ (-536) (-536)) 48)) (-2063 (((-620 |#1|) $) 30)) (-3445 (((-749) $) 51)) (-3972 (($ (-749) (-749) |#1|) 57)) (-3444 (((-749) $) 50)) (-4077 (((-112) $ (-749)) 9)) (-3449 (((-536) $) 55)) (-3447 (((-536) $) 53)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 54)) (-3446 (((-536) $) 52)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) 56)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) (-536)) 49) ((|#1| $ (-536) (-536) |#1|) 47)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-3441 ((|#3| $ (-536)) 45)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-56 |#1| |#2| |#3|) (-138) (-1183) (-365 |t#1|) (-365 |t#1|)) (T -56)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3972 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1183)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2301 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-749)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-749)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1183)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-620 *3)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1632 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-1306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4313 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(-13 (-481 |t#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3972 ($ (-749) (-749) |t#1|)) (-15 -2301 ($ $ |t#1|)) (-15 -3449 ((-536) $)) (-15 -3448 ((-536) $)) (-15 -3447 ((-536) $)) (-15 -3446 ((-536) $)) (-15 -3445 ((-749) $)) (-15 -3444 ((-749) $)) (-15 -4154 (|t#1| $ (-536) (-536))) (-15 -3443 (|t#1| $ (-536) (-536))) (-15 -4154 (|t#1| $ (-536) (-536) |t#1|)) (-15 -3442 (|t#2| $ (-536))) (-15 -3441 (|t#3| $ (-536))) (-15 -2063 ((-620 |t#1|) $)) (-15 -4142 (|t#1| $ (-536) (-536) |t#1|)) (-15 -1632 (|t#1| $ (-536) (-536) |t#1|)) (-15 -1307 ($ $ (-536) |t#2|)) (-15 -1306 ($ $ (-536) |t#3|)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 11 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-1308 (($ (-620 |#1|)) 13) (($ (-749) |#1|) 14)) (-3972 (($ (-749) |#1|) 9)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 7)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1308 ($ (-620 |#1|))) (-15 -1308 ($ (-749) |#1|)))) (-1183)) (T -57)) +((-1308 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-57 *3)))) (-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-57 *3)) (-4 *3 (-1183))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1308 ($ (-620 |#1|))) (-15 -1308 ($ (-749) |#1|)))) +((-4196 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4313 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4196 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4313 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1183) (-1183)) (T -58)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-58 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4196 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4313 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL)) (-1307 (($ $ (-536) (-57 |#1|)) NIL)) (-1306 (($ $ (-536) (-57 |#1|)) NIL)) (-3891 (($) NIL T CONST)) (-3442 (((-57 |#1|) $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-57 |#1|) $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4349))) (-1183)) (T -59)) +NIL +(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4349))) +((-3503 (((-3 $ #1="failed") (-307 (-371))) 41) (((-3 $ #1#) (-307 (-536))) 46) (((-3 $ #1#) (-920 (-371))) 50) (((-3 $ #1#) (-920 (-536))) 54) (((-3 $ #1#) (-400 (-920 (-371)))) 36) (((-3 $ #1#) (-400 (-920 (-536)))) 29)) (-3502 (($ (-307 (-371))) 39) (($ (-307 (-536))) 44) (($ (-920 (-371))) 48) (($ (-920 (-536))) 52) (($ (-400 (-920 (-371)))) 34) (($ (-400 (-920 (-536)))) 26)) (-3734 (((-1235) $) 76)) (-4312 (((-838) $) 69) (($ (-620 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 64) (($ (-332 (-3879 (QUOTE X)) (-3879) (-677))) 25))) +(((-60 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879) (-677)))))) (-1147)) (T -60)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879 (QUOTE X)) (-3879) (-677))) (-5 *1 (-60 *3)) (-14 *3 (-1147))))) +(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879) (-677)))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 74) (((-3 $ #1#) (-1229 (-307 (-536)))) 63) (((-3 $ #1#) (-1229 (-920 (-371)))) 94) (((-3 $ #1#) (-1229 (-920 (-536)))) 84) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 52) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 39)) (-3502 (($ (-1229 (-307 (-371)))) 70) (($ (-1229 (-307 (-536)))) 59) (($ (-1229 (-920 (-371)))) 90) (($ (-1229 (-920 (-536)))) 80) (($ (-1229 (-400 (-920 (-371))))) 48) (($ (-1229 (-400 (-920 (-536))))) 32)) (-3734 (((-1235) $) 120)) (-4312 (((-838) $) 113) (($ (-620 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 101) (($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677)))) 31))) +(((-61 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677))))))) (-1147)) (T -61)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677)))) (-5 *1 (-61 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677))))))) +((-3734 (((-1235) $) 53) (((-1235)) 54)) (-4312 (((-838) $) 50))) +(((-62 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -62)) +((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-62 *3)) (-14 *3 (-1147))))) +(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 144) (((-3 $ #1#) (-1229 (-307 (-536)))) 134) (((-3 $ #1#) (-1229 (-920 (-371)))) 164) (((-3 $ #1#) (-1229 (-920 (-536)))) 154) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 123) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 111)) (-3502 (($ (-1229 (-307 (-371)))) 140) (($ (-1229 (-307 (-536)))) 130) (($ (-1229 (-920 (-371)))) 160) (($ (-1229 (-920 (-536)))) 150) (($ (-1229 (-400 (-920 (-371))))) 119) (($ (-1229 (-400 (-920 (-536))))) 104)) (-3734 (((-1235) $) 97)) (-4312 (((-838) $) 91) (($ (-620 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 32) (($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) 89))) +(((-63 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) (-1147)) (T -63)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) (-5 *1 (-63 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 109) (((-3 $ #1#) (-667 (-307 (-536)))) 97) (((-3 $ #1#) (-667 (-920 (-371)))) 131) (((-3 $ #1#) (-667 (-920 (-536)))) 120) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 85) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 71)) (-3502 (($ (-667 (-307 (-371)))) 105) (($ (-667 (-307 (-536)))) 93) (($ (-667 (-920 (-371)))) 127) (($ (-667 (-920 (-536)))) 116) (($ (-667 (-400 (-920 (-371))))) 81) (($ (-667 (-400 (-920 (-536))))) 64)) (-3734 (((-1235) $) 139)) (-4312 (((-838) $) 133) (($ (-620 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 31) (($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677)))) 54))) +(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677))))))) (-1147)) (T -64)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677)))) (-5 *1 (-64 *3)) (-14 *3 (-1147))))) +(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-307 (-371))) 59) (((-3 $ #1#) (-307 (-536))) 64) (((-3 $ #1#) (-920 (-371))) 68) (((-3 $ #1#) (-920 (-536))) 72) (((-3 $ #1#) (-400 (-920 (-371)))) 54) (((-3 $ #1#) (-400 (-920 (-536)))) 47)) (-3502 (($ (-307 (-371))) 57) (($ (-307 (-536))) 62) (($ (-920 (-371))) 66) (($ (-920 (-536))) 70) (($ (-400 (-920 (-371)))) 52) (($ (-400 (-920 (-536)))) 44)) (-3734 (((-1235) $) 81)) (-4312 (((-838) $) 75) (($ (-620 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 31) (($ (-332 (-3879) (-3879 (QUOTE XC)) (-677))) 39))) +(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE XC)) (-677)))))) (-1147)) (T -65)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE XC)) (-677))) (-5 *1 (-65 *3)) (-14 *3 (-1147))))) +(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE XC)) (-677)))))) +((-3734 (((-1235) $) 63)) (-4312 (((-838) $) 57) (($ (-667 (-677))) 49) (($ (-620 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 53))) +(((-66 |#1|) (-376) (-1147)) (T -66)) NIL (-376) -((-1316 (((-1233) $) 64)) (-2233 (((-837) $) 58) (($ (-667 (-677))) 50) (($ (-623 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 55))) -(((-67 |#1|) (-376) (-1145)) (T -67)) +((-3734 (((-1235) $) 64)) (-4312 (((-838) $) 58) (($ (-667 (-677))) 50) (($ (-620 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 55))) +(((-67 |#1|) (-376) (-1147)) (T -67)) NIL (-376) -((-1316 (((-1233) $) NIL) (((-1233)) 32)) (-2233 (((-837) $) NIL))) -(((-68 |#1|) (-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) (-1145)) (T -68)) -((-1316 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-68 *3)) (-14 *3 (-1145))))) -(-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) -((-1316 (((-1233) $) 73)) (-2233 (((-837) $) 67) (($ (-667 (-677))) 59) (($ (-623 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 58))) -(((-69 |#1|) (-376) (-1145)) (T -69)) +((-3734 (((-1235) $) NIL) (((-1235)) 32)) (-4312 (((-838) $) NIL))) +(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -68)) +((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-68 *3)) (-14 *3 (-1147))))) +(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) +((-3734 (((-1235) $) 73)) (-4312 (((-838) $) 67) (($ (-667 (-677))) 59) (($ (-620 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 58))) +(((-69 |#1|) (-376) (-1147)) (T -69)) NIL (-376) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 103) (((-3 $ "failed") (-1228 (-309 (-550)))) 92) (((-3 $ "failed") (-1228 (-926 (-372)))) 123) (((-3 $ "failed") (-1228 (-926 (-550)))) 113) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 81) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 68)) (-2202 (($ (-1228 (-309 (-372)))) 99) (($ (-1228 (-309 (-550)))) 88) (($ (-1228 (-926 (-372)))) 119) (($ (-1228 (-926 (-550)))) 109) (($ (-1228 (-400 (-926 (-372))))) 77) (($ (-1228 (-400 (-926 (-550))))) 61)) (-1316 (((-1233) $) 136)) (-2233 (((-837) $) 130) (($ (-623 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 53) (($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))) 54))) -(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))))))) (-1145)) (T -70)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))) (-5 *1 (-70 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))))))) -((-1316 (((-1233) $) 32) (((-1233)) 31)) (-2233 (((-837) $) 35))) -(((-71 |#1|) (-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) (-1145)) (T -71)) -((-1316 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-71 *3)) (-14 *3 (-1145))))) -(-13 (-388) (-10 -7 (-15 -1316 ((-1233))))) -((-1316 (((-1233) $) 63)) (-2233 (((-837) $) 57) (($ (-667 (-677))) 49) (($ (-623 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 48))) -(((-72 |#1|) (-376) (-1145)) (T -72)) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 103) (((-3 $ #1#) (-1229 (-307 (-536)))) 92) (((-3 $ #1#) (-1229 (-920 (-371)))) 123) (((-3 $ #1#) (-1229 (-920 (-536)))) 113) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 81) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 68)) (-3502 (($ (-1229 (-307 (-371)))) 99) (($ (-1229 (-307 (-536)))) 88) (($ (-1229 (-920 (-371)))) 119) (($ (-1229 (-920 (-536)))) 109) (($ (-1229 (-400 (-920 (-371))))) 77) (($ (-1229 (-400 (-920 (-536))))) 61)) (-3734 (((-1235) $) 136)) (-4312 (((-838) $) 130) (($ (-620 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 53) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) 54))) +(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) (-1147)) (T -70)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-70 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) +((-3734 (((-1235) $) 32) (((-1235)) 31)) (-4312 (((-838) $) 35))) +(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -71)) +((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-71 *3)) (-14 *3 (-1147))))) +(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) +((-3734 (((-1235) $) 63)) (-4312 (((-838) $) 57) (($ (-667 (-677))) 49) (($ (-620 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 48))) +(((-72 |#1|) (-376) (-1147)) (T -72)) NIL (-376) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 125) (((-3 $ "failed") (-1228 (-309 (-550)))) 115) (((-3 $ "failed") (-1228 (-926 (-372)))) 145) (((-3 $ "failed") (-1228 (-926 (-550)))) 135) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 105) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 93)) (-2202 (($ (-1228 (-309 (-372)))) 121) (($ (-1228 (-309 (-550)))) 111) (($ (-1228 (-926 (-372)))) 141) (($ (-1228 (-926 (-550)))) 131) (($ (-1228 (-400 (-926 (-372))))) 101) (($ (-1228 (-400 (-926 (-550))))) 86)) (-1316 (((-1233) $) 78)) (-2233 (((-837) $) 27) (($ (-623 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 71) (($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) 65))) -(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) (-1145)) (T -73)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) (-5 *1 (-73 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 130) (((-3 $ "failed") (-1228 (-309 (-550)))) 119) (((-3 $ "failed") (-1228 (-926 (-372)))) 150) (((-3 $ "failed") (-1228 (-926 (-550)))) 140) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 108) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 95)) (-2202 (($ (-1228 (-309 (-372)))) 126) (($ (-1228 (-309 (-550)))) 115) (($ (-1228 (-926 (-372)))) 146) (($ (-1228 (-926 (-550)))) 136) (($ (-1228 (-400 (-926 (-372))))) 104) (($ (-1228 (-400 (-926 (-550))))) 88)) (-1316 (((-1233) $) 79)) (-2233 (((-837) $) 71) (($ (-623 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) NIL) (($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE EPS)) (-2245 (QUOTE -1932)) (-677)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE EPS)) (-2245 (QUOTE -1932)) (-677))))))) (-1145) (-1145) (-1145)) (T -74)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE X) (QUOTE EPS)) (-2245 (QUOTE -1932)) (-677)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1145)) (-14 *4 (-1145)) (-14 *5 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE EPS)) (-2245 (QUOTE -1932)) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 134) (((-3 $ "failed") (-1228 (-309 (-550)))) 123) (((-3 $ "failed") (-1228 (-926 (-372)))) 154) (((-3 $ "failed") (-1228 (-926 (-550)))) 144) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 112) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 99)) (-2202 (($ (-1228 (-309 (-372)))) 130) (($ (-1228 (-309 (-550)))) 119) (($ (-1228 (-926 (-372)))) 150) (($ (-1228 (-926 (-550)))) 140) (($ (-1228 (-400 (-926 (-372))))) 108) (($ (-1228 (-400 (-926 (-550))))) 92)) (-1316 (((-1233) $) 83)) (-2233 (((-837) $) 75) (($ (-623 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) NIL) (($ (-1228 (-332 (-2245 (QUOTE EPS)) (-2245 (QUOTE YA) (QUOTE YB)) (-677)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE EPS)) (-2245 (QUOTE YA) (QUOTE YB)) (-677))))))) (-1145) (-1145) (-1145)) (T -75)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE EPS)) (-2245 (QUOTE YA) (QUOTE YB)) (-677)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1145)) (-14 *4 (-1145)) (-14 *5 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE EPS)) (-2245 (QUOTE YA) (QUOTE YB)) (-677))))))) -((-2288 (((-3 $ "failed") (-309 (-372))) 82) (((-3 $ "failed") (-309 (-550))) 87) (((-3 $ "failed") (-926 (-372))) 91) (((-3 $ "failed") (-926 (-550))) 95) (((-3 $ "failed") (-400 (-926 (-372)))) 77) (((-3 $ "failed") (-400 (-926 (-550)))) 70)) (-2202 (($ (-309 (-372))) 80) (($ (-309 (-550))) 85) (($ (-926 (-372))) 89) (($ (-926 (-550))) 93) (($ (-400 (-926 (-372)))) 75) (($ (-400 (-926 (-550)))) 67)) (-1316 (((-1233) $) 62)) (-2233 (((-837) $) 50) (($ (-623 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 54) (($ (-332 (-2245) (-2245 (QUOTE X)) (-677))) 47))) -(((-76 |#1|) (-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE X)) (-677)))))) (-1145)) (T -76)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-332 (-2245) (-2245 (QUOTE X)) (-677))) (-5 *1 (-76 *3)) (-14 *3 (-1145))))) -(-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE X)) (-677)))))) -((-2288 (((-3 $ "failed") (-309 (-372))) 46) (((-3 $ "failed") (-309 (-550))) 51) (((-3 $ "failed") (-926 (-372))) 55) (((-3 $ "failed") (-926 (-550))) 59) (((-3 $ "failed") (-400 (-926 (-372)))) 41) (((-3 $ "failed") (-400 (-926 (-550)))) 34)) (-2202 (($ (-309 (-372))) 44) (($ (-309 (-550))) 49) (($ (-926 (-372))) 53) (($ (-926 (-550))) 57) (($ (-400 (-926 (-372)))) 39) (($ (-400 (-926 (-550)))) 31)) (-1316 (((-1233) $) 80)) (-2233 (((-837) $) 74) (($ (-623 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 69) (($ (-332 (-2245) (-2245 (QUOTE X)) (-677))) 30))) -(((-77 |#1|) (-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE X)) (-677)))))) (-1145)) (T -77)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-332 (-2245) (-2245 (QUOTE X)) (-677))) (-5 *1 (-77 *3)) (-14 *3 (-1145))))) -(-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245) (-2245 (QUOTE X)) (-677)))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 89) (((-3 $ "failed") (-1228 (-309 (-550)))) 78) (((-3 $ "failed") (-1228 (-926 (-372)))) 109) (((-3 $ "failed") (-1228 (-926 (-550)))) 99) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 67) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 54)) (-2202 (($ (-1228 (-309 (-372)))) 85) (($ (-1228 (-309 (-550)))) 74) (($ (-1228 (-926 (-372)))) 105) (($ (-1228 (-926 (-550)))) 95) (($ (-1228 (-400 (-926 (-372))))) 63) (($ (-1228 (-400 (-926 (-550))))) 47)) (-1316 (((-1233) $) 125)) (-2233 (((-837) $) 119) (($ (-623 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 115) (($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677)))) 38))) -(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677))))))) (-1145)) (T -78)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677)))) (-5 *1 (-78 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE XC)) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 142) (((-3 $ "failed") (-1228 (-309 (-550)))) 132) (((-3 $ "failed") (-1228 (-926 (-372)))) 162) (((-3 $ "failed") (-1228 (-926 (-550)))) 152) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 122) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 110)) (-2202 (($ (-1228 (-309 (-372)))) 138) (($ (-1228 (-309 (-550)))) 128) (($ (-1228 (-926 (-372)))) 158) (($ (-1228 (-926 (-550)))) 148) (($ (-1228 (-400 (-926 (-372))))) 118) (($ (-1228 (-400 (-926 (-550))))) 103)) (-1316 (((-1233) $) 96)) (-2233 (((-837) $) 90) (($ (-623 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 86) (($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) 82))) -(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) (-1145)) (T -79)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) (-5 *1 (-79 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 78) (((-3 $ "failed") (-1228 (-309 (-550)))) 67) (((-3 $ "failed") (-1228 (-926 (-372)))) 98) (((-3 $ "failed") (-1228 (-926 (-550)))) 88) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 56) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 43)) (-2202 (($ (-1228 (-309 (-372)))) 74) (($ (-1228 (-309 (-550)))) 63) (($ (-1228 (-926 (-372)))) 94) (($ (-1228 (-926 (-550)))) 84) (($ (-1228 (-400 (-926 (-372))))) 52) (($ (-1228 (-400 (-926 (-550))))) 36)) (-1316 (((-1233) $) 124)) (-2233 (((-837) $) 118) (($ (-623 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 113) (($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) 35))) -(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) (-1145)) (T -80)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677)))) (-5 *1 (-80 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245) (-2245 (QUOTE X)) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 95) (((-3 $ "failed") (-1228 (-309 (-550)))) 84) (((-3 $ "failed") (-1228 (-926 (-372)))) 115) (((-3 $ "failed") (-1228 (-926 (-550)))) 105) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 73) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 60)) (-2202 (($ (-1228 (-309 (-372)))) 91) (($ (-1228 (-309 (-550)))) 80) (($ (-1228 (-926 (-372)))) 111) (($ (-1228 (-926 (-550)))) 101) (($ (-1228 (-400 (-926 (-372))))) 69) (($ (-1228 (-400 (-926 (-550))))) 53)) (-1316 (((-1233) $) 45)) (-2233 (((-837) $) 39) (($ (-623 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 35) (($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677)))) 30))) -(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677))))))) (-1145)) (T -81)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677)))) (-5 *1 (-81 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677))))))) -((-2288 (((-3 $ "failed") (-667 (-309 (-372)))) 115) (((-3 $ "failed") (-667 (-309 (-550)))) 104) (((-3 $ "failed") (-667 (-926 (-372)))) 137) (((-3 $ "failed") (-667 (-926 (-550)))) 126) (((-3 $ "failed") (-667 (-400 (-926 (-372))))) 93) (((-3 $ "failed") (-667 (-400 (-926 (-550))))) 80)) (-2202 (($ (-667 (-309 (-372)))) 111) (($ (-667 (-309 (-550)))) 100) (($ (-667 (-926 (-372)))) 133) (($ (-667 (-926 (-550)))) 122) (($ (-667 (-400 (-926 (-372))))) 89) (($ (-667 (-400 (-926 (-550))))) 73)) (-1316 (((-1233) $) 63)) (-2233 (((-837) $) 50) (($ (-623 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 55) (($ (-667 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677)))) 47))) -(((-82 |#1|) (-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677))))))) (-1145)) (T -82)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677)))) (-5 *1 (-82 *3)) (-14 *3 (-1145))))) -(-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE X) (QUOTE -1932)) (-2245) (-677))))))) -((-2288 (((-3 $ "failed") (-667 (-309 (-372)))) 112) (((-3 $ "failed") (-667 (-309 (-550)))) 100) (((-3 $ "failed") (-667 (-926 (-372)))) 134) (((-3 $ "failed") (-667 (-926 (-550)))) 123) (((-3 $ "failed") (-667 (-400 (-926 (-372))))) 88) (((-3 $ "failed") (-667 (-400 (-926 (-550))))) 74)) (-2202 (($ (-667 (-309 (-372)))) 108) (($ (-667 (-309 (-550)))) 96) (($ (-667 (-926 (-372)))) 130) (($ (-667 (-926 (-550)))) 119) (($ (-667 (-400 (-926 (-372))))) 84) (($ (-667 (-400 (-926 (-550))))) 67)) (-1316 (((-1233) $) 59)) (-2233 (((-837) $) 53) (($ (-623 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 44) (($ (-667 (-332 (-2245 (QUOTE X)) (-2245) (-677)))) 45))) -(((-83 |#1|) (-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE X)) (-2245) (-677))))))) (-1145)) (T -83)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-2245 (QUOTE X)) (-2245) (-677)))) (-5 *1 (-83 *3)) (-14 *3 (-1145))))) -(-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE X)) (-2245) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 104) (((-3 $ "failed") (-1228 (-309 (-550)))) 93) (((-3 $ "failed") (-1228 (-926 (-372)))) 124) (((-3 $ "failed") (-1228 (-926 (-550)))) 114) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 82) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 69)) (-2202 (($ (-1228 (-309 (-372)))) 100) (($ (-1228 (-309 (-550)))) 89) (($ (-1228 (-926 (-372)))) 120) (($ (-1228 (-926 (-550)))) 110) (($ (-1228 (-400 (-926 (-372))))) 78) (($ (-1228 (-400 (-926 (-550))))) 62)) (-1316 (((-1233) $) 46)) (-2233 (((-837) $) 40) (($ (-623 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 52) (($ (-1228 (-332 (-2245 (QUOTE X)) (-2245) (-677)))) 37))) -(((-84 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245) (-677))))))) (-1145)) (T -84)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE X)) (-2245) (-677)))) (-5 *1 (-84 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245) (-677))))))) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 79) (((-3 $ "failed") (-1228 (-309 (-550)))) 68) (((-3 $ "failed") (-1228 (-926 (-372)))) 99) (((-3 $ "failed") (-1228 (-926 (-550)))) 89) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 57) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 44)) (-2202 (($ (-1228 (-309 (-372)))) 75) (($ (-1228 (-309 (-550)))) 64) (($ (-1228 (-926 (-372)))) 95) (($ (-1228 (-926 (-550)))) 85) (($ (-1228 (-400 (-926 (-372))))) 53) (($ (-1228 (-400 (-926 (-550))))) 37)) (-1316 (((-1233) $) 125)) (-2233 (((-837) $) 119) (($ (-623 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 114) (($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))) 36))) -(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))))))) (-1145)) (T -85)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))) (-5 *1 (-85 *3)) (-14 *3 (-1145))))) -(-13 (-433) (-10 -8 (-15 -2233 ($ (-1228 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))))))) -((-2288 (((-3 $ "failed") (-667 (-309 (-372)))) 113) (((-3 $ "failed") (-667 (-309 (-550)))) 101) (((-3 $ "failed") (-667 (-926 (-372)))) 135) (((-3 $ "failed") (-667 (-926 (-550)))) 124) (((-3 $ "failed") (-667 (-400 (-926 (-372))))) 89) (((-3 $ "failed") (-667 (-400 (-926 (-550))))) 75)) (-2202 (($ (-667 (-309 (-372)))) 109) (($ (-667 (-309 (-550)))) 97) (($ (-667 (-926 (-372)))) 131) (($ (-667 (-926 (-550)))) 120) (($ (-667 (-400 (-926 (-372))))) 85) (($ (-667 (-400 (-926 (-550))))) 68)) (-1316 (((-1233) $) 59)) (-2233 (((-837) $) 53) (($ (-623 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 48) (($ (-667 (-332 (-2245 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2245) (-677)))) 44))) -(((-86 |#1|) (-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2245) (-677))))))) (-1145)) (T -86)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-2245 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2245) (-677)))) (-5 *1 (-86 *3)) (-14 *3 (-1145))))) -(-13 (-377) (-10 -8 (-15 -2233 ($ (-667 (-332 (-2245 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2245) (-677))))))) -((-1316 (((-1233) $) 44)) (-2233 (((-837) $) 38) (($ (-1228 (-677))) 92) (($ (-623 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 33))) -(((-87 |#1|) (-432) (-1145)) (T -87)) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 125) (((-3 $ #1#) (-1229 (-307 (-536)))) 115) (((-3 $ #1#) (-1229 (-920 (-371)))) 145) (((-3 $ #1#) (-1229 (-920 (-536)))) 135) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 105) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 93)) (-3502 (($ (-1229 (-307 (-371)))) 121) (($ (-1229 (-307 (-536)))) 111) (($ (-1229 (-920 (-371)))) 141) (($ (-1229 (-920 (-536)))) 131) (($ (-1229 (-400 (-920 (-371))))) 101) (($ (-1229 (-400 (-920 (-536))))) 86)) (-3734 (((-1235) $) 78)) (-4312 (((-838) $) 27) (($ (-620 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 71) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 65))) +(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -73)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-73 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-307 (-371))) 46) (((-3 $ #1#) (-307 (-536))) 51) (((-3 $ #1#) (-920 (-371))) 55) (((-3 $ #1#) (-920 (-536))) 59) (((-3 $ #1#) (-400 (-920 (-371)))) 41) (((-3 $ #1#) (-400 (-920 (-536)))) 34)) (-3502 (($ (-307 (-371))) 44) (($ (-307 (-536))) 49) (($ (-920 (-371))) 53) (($ (-920 (-536))) 57) (($ (-400 (-920 (-371)))) 39) (($ (-400 (-920 (-536)))) 31)) (-3734 (((-1235) $) 80)) (-4312 (((-838) $) 74) (($ (-620 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 69) (($ (-332 (-3879) (-3879 (QUOTE X)) (-677))) 30))) +(((-74 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) (-1147)) (T -74)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE X)) (-677))) (-5 *1 (-74 *3)) (-14 *3 (-1147))))) +(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 130) (((-3 $ #1#) (-1229 (-307 (-536)))) 119) (((-3 $ #1#) (-1229 (-920 (-371)))) 150) (((-3 $ #1#) (-1229 (-920 (-536)))) 140) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 108) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 95)) (-3502 (($ (-1229 (-307 (-371)))) 126) (($ (-1229 (-307 (-536)))) 115) (($ (-1229 (-920 (-371)))) 146) (($ (-1229 (-920 (-536)))) 136) (($ (-1229 (-400 (-920 (-371))))) 104) (($ (-1229 (-400 (-920 (-536))))) 88)) (-3734 (((-1235) $) 79)) (-4312 (((-838) $) 71) (($ (-620 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) NIL) (($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677)))) 66))) +(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677))))))) (-1147) (-1147) (-1147)) (T -75)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 134) (((-3 $ #1#) (-1229 (-307 (-536)))) 123) (((-3 $ #1#) (-1229 (-920 (-371)))) 154) (((-3 $ #1#) (-1229 (-920 (-536)))) 144) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 112) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 99)) (-3502 (($ (-1229 (-307 (-371)))) 130) (($ (-1229 (-307 (-536)))) 119) (($ (-1229 (-920 (-371)))) 150) (($ (-1229 (-920 (-536)))) 140) (($ (-1229 (-400 (-920 (-371))))) 108) (($ (-1229 (-400 (-920 (-536))))) 92)) (-3734 (((-1235) $) 83)) (-4312 (((-838) $) 75) (($ (-620 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) NIL) (($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677)))) 70))) +(((-76 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677))))))) (-1147) (-1147) (-1147)) (T -76)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-307 (-371))) 82) (((-3 $ #1#) (-307 (-536))) 87) (((-3 $ #1#) (-920 (-371))) 91) (((-3 $ #1#) (-920 (-536))) 95) (((-3 $ #1#) (-400 (-920 (-371)))) 77) (((-3 $ #1#) (-400 (-920 (-536)))) 70)) (-3502 (($ (-307 (-371))) 80) (($ (-307 (-536))) 85) (($ (-920 (-371))) 89) (($ (-920 (-536))) 93) (($ (-400 (-920 (-371)))) 75) (($ (-400 (-920 (-536)))) 67)) (-3734 (((-1235) $) 62)) (-4312 (((-838) $) 50) (($ (-620 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 54) (($ (-332 (-3879) (-3879 (QUOTE X)) (-677))) 47))) +(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) (-1147)) (T -77)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE X)) (-677))) (-5 *1 (-77 *3)) (-14 *3 (-1147))))) +(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 89) (((-3 $ #1#) (-1229 (-307 (-536)))) 78) (((-3 $ #1#) (-1229 (-920 (-371)))) 109) (((-3 $ #1#) (-1229 (-920 (-536)))) 99) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 67) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 54)) (-3502 (($ (-1229 (-307 (-371)))) 85) (($ (-1229 (-307 (-536)))) 74) (($ (-1229 (-920 (-371)))) 105) (($ (-1229 (-920 (-536)))) 95) (($ (-1229 (-400 (-920 (-371))))) 63) (($ (-1229 (-400 (-920 (-536))))) 47)) (-3734 (((-1235) $) 125)) (-4312 (((-838) $) 119) (($ (-620 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 115) (($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) 38))) +(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) (-1147)) (T -78)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) (-5 *1 (-78 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 142) (((-3 $ #1#) (-1229 (-307 (-536)))) 132) (((-3 $ #1#) (-1229 (-920 (-371)))) 162) (((-3 $ #1#) (-1229 (-920 (-536)))) 152) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 122) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 110)) (-3502 (($ (-1229 (-307 (-371)))) 138) (($ (-1229 (-307 (-536)))) 128) (($ (-1229 (-920 (-371)))) 158) (($ (-1229 (-920 (-536)))) 148) (($ (-1229 (-400 (-920 (-371))))) 118) (($ (-1229 (-400 (-920 (-536))))) 103)) (-3734 (((-1235) $) 96)) (-4312 (((-838) $) 90) (($ (-620 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 86) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 82))) +(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -79)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-79 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 78) (((-3 $ #1#) (-1229 (-307 (-536)))) 67) (((-3 $ #1#) (-1229 (-920 (-371)))) 98) (((-3 $ #1#) (-1229 (-920 (-536)))) 88) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 56) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 43)) (-3502 (($ (-1229 (-307 (-371)))) 74) (($ (-1229 (-307 (-536)))) 63) (($ (-1229 (-920 (-371)))) 94) (($ (-1229 (-920 (-536)))) 84) (($ (-1229 (-400 (-920 (-371))))) 52) (($ (-1229 (-400 (-920 (-536))))) 36)) (-3734 (((-1235) $) 124)) (-4312 (((-838) $) 118) (($ (-620 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 113) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 35))) +(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -80)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-80 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 79) (((-3 $ #1#) (-1229 (-307 (-536)))) 68) (((-3 $ #1#) (-1229 (-920 (-371)))) 99) (((-3 $ #1#) (-1229 (-920 (-536)))) 89) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 57) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 44)) (-3502 (($ (-1229 (-307 (-371)))) 75) (($ (-1229 (-307 (-536)))) 64) (($ (-1229 (-920 (-371)))) 95) (($ (-1229 (-920 (-536)))) 85) (($ (-1229 (-400 (-920 (-371))))) 53) (($ (-1229 (-400 (-920 (-536))))) 37)) (-3734 (((-1235) $) 125)) (-4312 (((-838) $) 119) (($ (-620 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 114) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) 36))) +(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) (-1147)) (T -81)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-81 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 95) (((-3 $ #1#) (-1229 (-307 (-536)))) 84) (((-3 $ #1#) (-1229 (-920 (-371)))) 115) (((-3 $ #1#) (-1229 (-920 (-536)))) 105) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 73) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 60)) (-3502 (($ (-1229 (-307 (-371)))) 91) (($ (-1229 (-307 (-536)))) 80) (($ (-1229 (-920 (-371)))) 111) (($ (-1229 (-920 (-536)))) 101) (($ (-1229 (-400 (-920 (-371))))) 69) (($ (-1229 (-400 (-920 (-536))))) 53)) (-3734 (((-1235) $) 45)) (-4312 (((-838) $) 39) (($ (-620 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 35) (($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) 30))) +(((-82 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) (-1147)) (T -82)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) (-5 *1 (-82 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) +((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 115) (((-3 $ #1#) (-667 (-307 (-536)))) 104) (((-3 $ #1#) (-667 (-920 (-371)))) 137) (((-3 $ #1#) (-667 (-920 (-536)))) 126) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 93) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 80)) (-3502 (($ (-667 (-307 (-371)))) 111) (($ (-667 (-307 (-536)))) 100) (($ (-667 (-920 (-371)))) 133) (($ (-667 (-920 (-536)))) 122) (($ (-667 (-400 (-920 (-371))))) 89) (($ (-667 (-400 (-920 (-536))))) 73)) (-3734 (((-1235) $) 63)) (-4312 (((-838) $) 50) (($ (-620 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 55) (($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) 47))) +(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) (-1147)) (T -83)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) (-5 *1 (-83 *3)) (-14 *3 (-1147))))) +(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) +((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 112) (((-3 $ #1#) (-667 (-307 (-536)))) 100) (((-3 $ #1#) (-667 (-920 (-371)))) 134) (((-3 $ #1#) (-667 (-920 (-536)))) 123) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 88) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 74)) (-3502 (($ (-667 (-307 (-371)))) 108) (($ (-667 (-307 (-536)))) 96) (($ (-667 (-920 (-371)))) 130) (($ (-667 (-920 (-536)))) 119) (($ (-667 (-400 (-920 (-371))))) 84) (($ (-667 (-400 (-920 (-536))))) 67)) (-3734 (((-1235) $) 59)) (-4312 (((-838) $) 53) (($ (-620 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 44) (($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) 45))) +(((-84 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) (-1147)) (T -84)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) (-5 *1 (-84 *3)) (-14 *3 (-1147))))) +(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) +((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 104) (((-3 $ #1#) (-1229 (-307 (-536)))) 93) (((-3 $ #1#) (-1229 (-920 (-371)))) 124) (((-3 $ #1#) (-1229 (-920 (-536)))) 114) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 82) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 69)) (-3502 (($ (-1229 (-307 (-371)))) 100) (($ (-1229 (-307 (-536)))) 89) (($ (-1229 (-920 (-371)))) 120) (($ (-1229 (-920 (-536)))) 110) (($ (-1229 (-400 (-920 (-371))))) 78) (($ (-1229 (-400 (-920 (-536))))) 62)) (-3734 (((-1235) $) 46)) (-4312 (((-838) $) 40) (($ (-620 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 52) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) 37))) +(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) (-1147)) (T -85)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) (-5 *1 (-85 *3)) (-14 *3 (-1147))))) +(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) +((-3734 (((-1235) $) 44)) (-4312 (((-838) $) 38) (($ (-1229 (-677))) 92) (($ (-620 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 33))) +(((-86 |#1|) (-432) (-1147)) (T -86)) NIL (-432) -((-2288 (((-3 $ "failed") (-309 (-372))) 47) (((-3 $ "failed") (-309 (-550))) 52) (((-3 $ "failed") (-926 (-372))) 56) (((-3 $ "failed") (-926 (-550))) 60) (((-3 $ "failed") (-400 (-926 (-372)))) 42) (((-3 $ "failed") (-400 (-926 (-550)))) 35)) (-2202 (($ (-309 (-372))) 45) (($ (-309 (-550))) 50) (($ (-926 (-372))) 54) (($ (-926 (-550))) 58) (($ (-400 (-926 (-372)))) 40) (($ (-400 (-926 (-550)))) 32)) (-1316 (((-1233) $) 90)) (-2233 (((-837) $) 84) (($ (-623 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 76) (($ (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))) 31))) -(((-88 |#1|) (-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))))) (-1145)) (T -88)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677))) (-5 *1 (-88 *3)) (-14 *3 (-1145))))) -(-13 (-389) (-10 -8 (-15 -2233 ($ (-332 (-2245 (QUOTE X)) (-2245 (QUOTE -1932)) (-677)))))) -((-3109 (((-1228 (-667 |#1|)) (-667 |#1|)) 54)) (-3620 (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 (-623 (-895))))) |#2| (-895)) 44)) (-2096 (((-2 (|:| |minor| (-623 (-895))) (|:| -1309 |#2|) (|:| |minors| (-623 (-623 (-895)))) (|:| |ops| (-623 |#2|))) |#2| (-895)) 65 (|has| |#1| (-356))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -3620 ((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 (-623 (-895))))) |#2| (-895))) (-15 -3109 ((-1228 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -2096 ((-2 (|:| |minor| (-623 (-895))) (|:| -1309 |#2|) (|:| |minors| (-623 (-623 (-895)))) (|:| |ops| (-623 |#2|))) |#2| (-895))) |%noBranch|)) (-542) (-634 |#1|)) (T -89)) -((-2096 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |minor| (-623 (-895))) (|:| -1309 *3) (|:| |minors| (-623 (-623 (-895)))) (|:| |ops| (-623 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-634 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1228 (-667 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-667 *4)) (-4 *5 (-634 *4)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *5 (-542)) (-5 *2 (-2 (|:| -3121 (-667 *5)) (|:| |vec| (-1228 (-623 (-895)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-634 *5))))) -(-10 -7 (-15 -3620 ((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 (-623 (-895))))) |#2| (-895))) (-15 -3109 ((-1228 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -2096 ((-2 (|:| |minor| (-623 (-895))) (|:| -1309 |#2|) (|:| |minors| (-623 (-623 (-895)))) (|:| |ops| (-623 |#2|))) |#2| (-895))) |%noBranch|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3940 ((|#1| $) 35)) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-3219 ((|#1| |#1| $) 30)) (-3540 ((|#1| $) 28)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) NIL)) (-1715 (($ |#1| $) 31)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3576 ((|#1| $) 29)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 16)) (-2819 (($) 39)) (-3072 (((-749) $) 26)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 15)) (-2233 (((-837) $) 25 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) NIL)) (-4166 (($ (-623 |#1|)) 37)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 13 (|has| |#1| (-1069)))) (-3307 (((-749) $) 10 (|has| $ (-6 -4344))))) -(((-90 |#1|) (-13 (-1090 |#1|) (-10 -8 (-15 -4166 ($ (-623 |#1|))))) (-1069)) (T -90)) -((-4166 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-90 *3))))) -(-13 (-1090 |#1|) (-10 -8 (-15 -4166 ($ (-623 |#1|))))) -((-2233 (((-837) $) 13) (((-1150) $) 8) (($ (-1150)) 9))) -(((-91 |#1|) (-10 -8 (-15 -2233 (|#1| (-1150))) (-15 -2233 ((-1150) |#1|)) (-15 -2233 ((-837) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -2233 (|#1| (-1150))) (-15 -2233 ((-1150) |#1|)) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (((-1150) $) 15) (($ (-1150)) 14)) (-2264 (((-112) $ $) 6))) +((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 113) (((-3 $ #1#) (-667 (-307 (-536)))) 101) (((-3 $ #1#) (-667 (-920 (-371)))) 135) (((-3 $ #1#) (-667 (-920 (-536)))) 124) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 89) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 75)) (-3502 (($ (-667 (-307 (-371)))) 109) (($ (-667 (-307 (-536)))) 97) (($ (-667 (-920 (-371)))) 131) (($ (-667 (-920 (-536)))) 120) (($ (-667 (-400 (-920 (-371))))) 85) (($ (-667 (-400 (-920 (-536))))) 68)) (-3734 (((-1235) $) 59)) (-4312 (((-838) $) 53) (($ (-620 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 48) (($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677)))) 44))) +(((-87 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677))))))) (-1147)) (T -87)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677)))) (-5 *1 (-87 *3)) (-14 *3 (-1147))))) +(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677))))))) +((-3503 (((-3 $ #1="failed") (-307 (-371))) 47) (((-3 $ #1#) (-307 (-536))) 52) (((-3 $ #1#) (-920 (-371))) 56) (((-3 $ #1#) (-920 (-536))) 60) (((-3 $ #1#) (-400 (-920 (-371)))) 42) (((-3 $ #1#) (-400 (-920 (-536)))) 35)) (-3502 (($ (-307 (-371))) 45) (($ (-307 (-536))) 50) (($ (-920 (-371))) 54) (($ (-920 (-536))) 58) (($ (-400 (-920 (-371)))) 40) (($ (-400 (-920 (-536)))) 32)) (-3734 (((-1235) $) 90)) (-4312 (((-838) $) 84) (($ (-620 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 76) (($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))) 31))) +(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))))) (-1147)) (T -88)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))) (-5 *1 (-88 *3)) (-14 *3 (-1147))))) +(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))))) +((-1310 (((-1229 (-667 |#1|)) (-667 |#1|)) 54)) (-1309 (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893)) 44)) (-1311 (((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893)) 65 (|has| |#1| (-356))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -1309 ((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893))) (-15 -1310 ((-1229 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1311 ((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893))) |%noBranch|)) (-543) (-636 |#1|)) (T -89)) +((-1311 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |minor| (-620 (-893))) (|:| -3612 *3) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5)))) (-1310 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-667 *4)) (-4 *5 (-636 *4)))) (-1309 (*1 *2 *3 *4) (-12 (-4 *5 (-543)) (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 (-620 (-893)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) +(-10 -7 (-15 -1309 ((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893))) (-15 -1310 ((-1229 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1311 ((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893))) |%noBranch|)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3678 ((|#1| $) 35)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3680 ((|#1| |#1| $) 30)) (-3679 ((|#1| $) 28)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) NIL)) (-3965 (($ |#1| $) 31)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 29)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 16)) (-3923 (($) 39)) (-3677 (((-749) $) 26)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 15)) (-4312 (((-838) $) 25 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-1312 (($ (-620 |#1|)) 37)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 13 (|has| |#1| (-1072)))) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) +(((-90 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -1312 ($ (-620 |#1|))))) (-1072)) (T -90)) +((-1312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-90 *3))))) +(-13 (-1092 |#1|) (-10 -8 (-15 -1312 ($ (-620 |#1|))))) +((-4312 (((-838) $) 13) (((-1152) $) 8) (($ (-1152)) 9))) +(((-91 |#1|) (-10 -8 (-15 -4312 (|#1| (-1152))) (-15 -4312 ((-1152) |#1|)) (-15 -4312 ((-838) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -4312 (|#1| (-1152))) (-15 -4312 ((-1152) |#1|)) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3382 (((-112) $ $) 6))) (((-92) (-138)) (T -92)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-92))))) -(-13 (-1069) (-595 (-1150)) (-10 -8 (-15 -2233 ($ (-1150))))) -(((-101) . T) ((-595 (-837)) . T) ((-595 (-1150)) . T) ((-1069) . T)) -((-4117 (($ $) 10)) (-4127 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -4117 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -4127 (|#1| |#1|)) (-15 -4117 (|#1| |#1|))) -((-2893 (($ $) 11)) (-2869 (($ $) 10)) (-4117 (($ $) 9)) (-4127 (($ $) 8)) (-2905 (($ $) 7)) (-2880 (($ $) 6))) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-92))))) +(-13 (-1072) (-595 (-1152)) (-10 -8 (-15 -4312 ($ (-1152))))) +(((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T)) +((-3837 (($ $) 10)) (-3838 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) +((-3835 (($ $) 11)) (-3833 (($ $) 10)) (-3837 (($ $) 9)) (-3838 (($ $) 8)) (-3836 (($ $) 7)) (-3834 (($ $) 6))) (((-94) (-138)) (T -94)) -((-2893 (*1 *1 *1) (-4 *1 (-94))) (-2869 (*1 *1 *1) (-4 *1 (-94))) (-4117 (*1 *1 *1) (-4 *1 (-94))) (-4127 (*1 *1 *1) (-4 *1 (-94))) (-2905 (*1 *1 *1) (-4 *1 (-94))) (-2880 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -2880 ($ $)) (-15 -2905 ($ $)) (-15 -4127 ($ $)) (-15 -4117 ($ $)) (-15 -2869 ($ $)) (-15 -2893 ($ $)))) -((-2221 (((-112) $ $) NIL)) (-1856 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-95) (-13 (-1052) (-10 -8 (-15 -1856 ((-1104) $))))) (T -95)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-95))))) -(-13 (-1052) (-10 -8 (-15 -1856 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-1967 (((-372) (-1127) (-372)) 42) (((-372) (-1127) (-1127) (-372)) 41)) (-4016 (((-372) (-372)) 33)) (-2862 (((-1233)) 36)) (-2369 (((-1127) $) NIL)) (-2361 (((-372) (-1127) (-1127)) 46) (((-372) (-1127)) 48)) (-3445 (((-1089) $) NIL)) (-1459 (((-372) (-1127) (-1127)) 47)) (-3494 (((-372) (-1127) (-1127)) 49) (((-372) (-1127)) 50)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) -(((-96) (-13 (-1069) (-10 -7 (-15 -2361 ((-372) (-1127) (-1127))) (-15 -2361 ((-372) (-1127))) (-15 -3494 ((-372) (-1127) (-1127))) (-15 -3494 ((-372) (-1127))) (-15 -1459 ((-372) (-1127) (-1127))) (-15 -2862 ((-1233))) (-15 -4016 ((-372) (-372))) (-15 -1967 ((-372) (-1127) (-372))) (-15 -1967 ((-372) (-1127) (-1127) (-372))) (-6 -4344)))) (T -96)) -((-2361 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3494 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) (-1459 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) (-2862 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-96)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))) (-1967 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1127)) (-5 *1 (-96)))) (-1967 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1127)) (-5 *1 (-96))))) -(-13 (-1069) (-10 -7 (-15 -2361 ((-372) (-1127) (-1127))) (-15 -2361 ((-372) (-1127))) (-15 -3494 ((-372) (-1127) (-1127))) (-15 -3494 ((-372) (-1127))) (-15 -1459 ((-372) (-1127) (-1127))) (-15 -2862 ((-1233))) (-15 -4016 ((-372) (-372))) (-15 -1967 ((-372) (-1127) (-372))) (-15 -1967 ((-372) (-1127) (-1127) (-372))) (-6 -4344))) +((-3835 (*1 *1 *1) (-4 *1 (-94))) (-3833 (*1 *1 *1) (-4 *1 (-94))) (-3837 (*1 *1 *1) (-4 *1 (-94))) (-3838 (*1 *1 *1) (-4 *1 (-94))) (-3836 (*1 *1 *1) (-4 *1 (-94))) (-3834 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -3834 ($ $)) (-15 -3836 ($ $)) (-15 -3838 ($ $)) (-15 -3837 ($ $)) (-15 -3833 ($ $)) (-15 -3835 ($ $)))) +((-2893 (((-112) $ $) NIL)) (-3900 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-95) (-13 (-1054) (-10 -8 (-15 -3900 ((-1106) $))))) (T -95)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-95))))) +(-13 (-1054) (-10 -8 (-15 -3900 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-1313 (((-371) (-1129) (-371)) 42) (((-371) (-1129) (-1129) (-371)) 41)) (-1314 (((-371) (-371)) 33)) (-1315 (((-1235)) 36)) (-3588 (((-1129) $) NIL)) (-1318 (((-371) (-1129) (-1129)) 46) (((-371) (-1129)) 48)) (-3589 (((-1091) $) NIL)) (-1316 (((-371) (-1129) (-1129)) 47)) (-1317 (((-371) (-1129) (-1129)) 49) (((-371) (-1129)) 50)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) +(((-96) (-13 (-1072) (-10 -7 (-15 -1318 ((-371) (-1129) (-1129))) (-15 -1318 ((-371) (-1129))) (-15 -1317 ((-371) (-1129) (-1129))) (-15 -1317 ((-371) (-1129))) (-15 -1316 ((-371) (-1129) (-1129))) (-15 -1315 ((-1235))) (-15 -1314 ((-371) (-371))) (-15 -1313 ((-371) (-1129) (-371))) (-15 -1313 ((-371) (-1129) (-1129) (-371))) (-6 -4348)))) (T -96)) +((-1318 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1316 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1315 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-96)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-1313 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96)))) (-1313 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96))))) +(-13 (-1072) (-10 -7 (-15 -1318 ((-371) (-1129) (-1129))) (-15 -1318 ((-371) (-1129))) (-15 -1317 ((-371) (-1129) (-1129))) (-15 -1317 ((-371) (-1129))) (-15 -1316 ((-371) (-1129) (-1129))) (-15 -1315 ((-1235))) (-15 -1314 ((-371) (-371))) (-15 -1313 ((-371) (-1129) (-371))) (-15 -1313 ((-371) (-1129) (-1129) (-371))) (-6 -4348))) NIL (((-97) (-138)) (T -97)) NIL -(-13 (-10 -7 (-6 -4344) (-6 (-4346 "*")) (-6 -4345) (-6 -4341) (-6 -4339) (-6 -4338) (-6 -4337) (-6 -4342) (-6 -4336) (-6 -4335) (-6 -4334) (-6 -4333) (-6 -4332) (-6 -4340) (-6 -4343) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4331))) -((-2221 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2024 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-550))) 22)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 14)) (-3445 (((-1089) $) NIL)) (-2757 ((|#1| $ |#1|) 11)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) 20)) (-2700 (($) 8 T CONST)) (-2264 (((-112) $ $) 10)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) 27) (($ $ (-749)) NIL) (($ $ (-550)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -2024 ($ (-1 |#1| |#1|))) (-15 -2024 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2024 ($ (-1 |#1| |#1| (-550)))))) (-1021)) (T -98)) -((-2024 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-98 *3)))) (-2024 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-98 *3)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1021)) (-5 *1 (-98 *3))))) -(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -2024 ($ (-1 |#1| |#1|))) (-15 -2024 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2024 ($ (-1 |#1| |#1| (-550)))))) -((-2196 (((-411 |#2|) |#2| (-623 |#2|)) 10) (((-411 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -2196 ((-411 |#2|) |#2| |#2|)) (-15 -2196 ((-411 |#2|) |#2| (-623 |#2|)))) (-13 (-444) (-145)) (-1204 |#1|)) (T -99)) -((-2196 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -2196 ((-411 |#2|) |#2| |#2|)) (-15 -2196 ((-411 |#2|) |#2| (-623 |#2|)))) -((-2221 (((-112) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -2221 ((-112) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -2221 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-2264 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4348) (-6 (-4350 "*")) (-6 -4349) (-6 -4345) (-6 -4343) (-6 -4342) (-6 -4341) (-6 -4346) (-6 -4340) (-6 -4339) (-6 -4338) (-6 -4337) (-6 -4336) (-6 -4344) (-6 -4347) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4335))) +((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-1319 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-536))) 22)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 14)) (-3589 (((-1091) $) NIL)) (-4154 ((|#1| $ |#1|) 11)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 20)) (-2992 (($) 8 T CONST)) (-3382 (((-112) $ $) 10)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) 27) (($ $ (-749)) NIL) (($ $ (-536)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-536)))))) (-1023)) (T -98)) +((-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) (-1319 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-98 *3))))) +(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-536)))))) +((-1320 (((-398 |#2|) |#2| (-620 |#2|)) 10) (((-398 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -1320 ((-398 |#2|) |#2| |#2|)) (-15 -1320 ((-398 |#2|) |#2| (-620 |#2|)))) (-13 (-444) (-145)) (-1205 |#1|)) (T -99)) +((-1320 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -1320 ((-398 |#2|) |#2| |#2|)) (-15 -1320 ((-398 |#2|) |#2| (-620 |#2|)))) +((-2893 (((-112) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -2893 ((-112) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -2893 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3382 (((-112) $ $) 6))) (((-101) (-138)) (T -101)) -((-2221 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2264 ((-112) $ $)) (-15 -2221 ((-112) $ $)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) 13 (|has| $ (-6 -4345)))) (-1419 (($ $ $) NIL (|has| $ (-6 -4345)))) (-4081 (($ $ $) NIL (|has| $ (-6 -4345)))) (-1685 (($ $ (-623 |#1|)) 15)) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "left" $) NIL (|has| $ (-6 -4345))) (($ $ "right" $) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3490 (($ $) 11)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2429 (($ $ |#1| $) 17)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2901 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3981 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|)) 35)) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3480 (($ $) 10)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) 12)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 9)) (-2819 (($) 16)) (-2757 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3615 (($ (-749) |#1|) 19)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -3615 ($ (-749) |#1|)) (-15 -1685 ($ $ (-623 |#1|))) (-15 -2901 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2901 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3981 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3981 ($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|))))) (-1069)) (T -102)) -((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1069)))) (-1685 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-102 *3)))) (-2901 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1069)))) (-2901 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-102 *3)))) (-3981 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-102 *2)))) (-3981 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-623 *2) *2 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-102 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -3615 ($ (-749) |#1|)) (-15 -1685 ($ $ (-623 |#1|))) (-15 -2901 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2901 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3981 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3981 ($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|))))) -((-2006 ((|#3| |#2| |#2|) 29)) (-1703 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4346 "*"))))) (-3228 ((|#3| |#2| |#2|) 30)) (-1698 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4346 "*")))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2006 (|#3| |#2| |#2|)) (-15 -3228 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4346 "*"))) (PROGN (-15 -1703 (|#1| |#2| |#2|)) (-15 -1698 (|#1| |#2|))) |%noBranch|)) (-1021) (-1204 |#1|) (-665 |#1| |#4| |#5|) (-366 |#1|) (-366 |#1|)) (T -103)) -((-1698 (*1 *2 *3) (-12 (|has| *2 (-6 (-4346 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1021)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1204 *2)) (-4 *4 (-665 *2 *5 *6)))) (-1703 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4346 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1021)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1204 *2)) (-4 *4 (-665 *2 *5 *6)))) (-3228 (*1 *2 *3 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-665 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1204 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))) (-2006 (*1 *2 *3 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-665 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1204 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))))) -(-10 -7 (-15 -2006 (|#3| |#2| |#2|)) (-15 -3228 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4346 "*"))) (PROGN (-15 -1703 (|#1| |#2| |#2|)) (-15 -1698 (|#1| |#2|))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3322 (((-623 (-1145))) 33)) (-1460 (((-2 (|:| |zeros| (-1125 (-219))) (|:| |ones| (-1125 (-219))) (|:| |singularities| (-1125 (-219)))) (-1145)) 35)) (-2264 (((-112) $ $) NIL))) -(((-104) (-13 (-1069) (-10 -7 (-15 -3322 ((-623 (-1145)))) (-15 -1460 ((-2 (|:| |zeros| (-1125 (-219))) (|:| |ones| (-1125 (-219))) (|:| |singularities| (-1125 (-219)))) (-1145))) (-6 -4344)))) (T -104)) -((-3322 (*1 *2) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-104)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-2 (|:| |zeros| (-1125 (-219))) (|:| |ones| (-1125 (-219))) (|:| |singularities| (-1125 (-219))))) (-5 *1 (-104))))) -(-13 (-1069) (-10 -7 (-15 -3322 ((-623 (-1145)))) (-15 -1460 ((-2 (|:| |zeros| (-1125 (-219))) (|:| |ones| (-1125 (-219))) (|:| |singularities| (-1125 (-219)))) (-1145))) (-6 -4344))) -((-4017 (($ (-623 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -4017 (|#1| (-623 |#2|)))) (-106 |#2|) (-1182)) (T -105)) -NIL -(-10 -8 (-15 -4017 (|#1| (-623 |#2|)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-106 |#1|) (-138) (-1182)) (T -106)) -((-4017 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-106 *3)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182)))) (-1715 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4345) (-15 -4017 ($ (-623 |t#1|))) (-15 -3576 (|t#1| $)) (-15 -1715 ($ |t#1| $)) (-15 -1696 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-550) $) NIL (|has| (-550) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-550) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-550) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1012 (-550))))) (-2202 (((-550) $) NIL) (((-1145) $) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-550) (-1012 (-550)))) (((-550) $) NIL (|has| (-550) (-1012 (-550))))) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-550) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-550) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-550) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-550) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-550) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-550) (-1120)))) (-1712 (((-112) $) NIL (|has| (-550) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-550) (-825)))) (-2392 (($ (-1 (-550) (-550)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-550) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-3925 (((-550) $) NIL (|has| (-550) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1145)) (-623 (-550))) NIL (|has| (-550) (-505 (-1145) (-550)))) (($ $ (-1145) (-550)) NIL (|has| (-550) (-505 (-1145) (-550))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-550) $) NIL)) (-2451 (((-866 (-550)) $) NIL (|has| (-550) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-550) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-996))) (((-219) $) NIL (|has| (-550) (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1145)) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL) (((-978 2) $) 10)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-550) (-883))) (|has| (-550) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-550) $) NIL (|has| (-550) (-535)))) (-1876 (($ (-400 (-550))) 9)) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| (-550) (-798)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2382 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) -(((-107) (-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 2) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -1876 ($ (-400 (-550))))))) (T -107)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) (-1876 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107))))) -(-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 2) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -1876 ($ (-400 (-550)))))) -((-3722 (((-623 (-939)) $) 14)) (-1856 (((-1145) $) 10)) (-2233 (((-837) $) 23)) (-2538 (($ (-1145) (-623 (-939))) 15))) -(((-108) (-13 (-595 (-837)) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -3722 ((-623 (-939)) $)) (-15 -2538 ($ (-1145) (-623 (-939))))))) (T -108)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-108)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-623 (-939))) (-5 *1 (-108)))) (-2538 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-939))) (-5 *1 (-108))))) -(-13 (-595 (-837)) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -3722 ((-623 (-939)) $)) (-15 -2538 ($ (-1145) (-623 (-939)))))) -((-2221 (((-112) $ $) NIL)) (-2363 (((-1089) $ (-1089)) 24)) (-3053 (($ $ (-1127)) 17)) (-1581 (((-3 (-1089) "failed") $) 23)) (-3258 (((-1089) $) 21)) (-2087 (((-1089) $ (-1089)) 26)) (-3088 (((-1089) $) 25)) (-4046 (($ (-381)) NIL) (($ (-381) (-1127)) 16)) (-1856 (((-381) $) NIL)) (-2369 (((-1127) $) NIL)) (-2216 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-4231 (($ $) 18)) (-2264 (((-112) $ $) NIL))) -(((-109) (-13 (-357 (-381) (-1089)) (-10 -8 (-15 -1581 ((-3 (-1089) "failed") $)) (-15 -3088 ((-1089) $)) (-15 -2087 ((-1089) $ (-1089)))))) (T -109)) -((-1581 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-109)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-109)))) (-2087 (*1 *2 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-109))))) -(-13 (-357 (-381) (-1089)) (-10 -8 (-15 -1581 ((-3 (-1089) "failed") $)) (-15 -3088 ((-1089) $)) (-15 -2087 ((-1089) $ (-1089))))) -((-2221 (((-112) $ $) NIL)) (-4026 (($ $) NIL)) (-3875 (($ $ $) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2734 (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4345)))) (-1814 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-112) $ (-1195 (-550)) (-112)) NIL (|has| $ (-6 -4345))) (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-1979 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-2924 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-3317 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4345)))) (-3263 (((-112) $ (-550)) NIL)) (-3088 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1069))) (((-550) (-112) $) NIL (|has| (-112) (-1069))) (((-550) (-1 (-112) (-112)) $) NIL)) (-2971 (((-623 (-112)) $) NIL (|has| $ (-6 -4344)))) (-3741 (($ $ $) NIL)) (-3548 (($ $) NIL)) (-2595 (($ $ $) NIL)) (-3375 (($ (-749) (-112)) 8)) (-4157 (($ $ $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL)) (-2441 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2876 (((-623 (-112)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL)) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-112) $) NIL (|has| (-550) (-825)))) (-1614 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2491 (($ $ (-112)) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-112)) (-623 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-623 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-1375 (((-623 (-112)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (($ $ (-1195 (-550))) NIL) (((-112) $ (-550)) NIL) (((-112) $ (-550) (-112)) NIL)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-3457 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-112) (-596 (-526))))) (-2245 (($ (-623 (-112))) NIL)) (-4006 (($ (-623 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2233 (((-837) $) NIL)) (-4319 (($ (-749) (-112)) 9)) (-3404 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-1304 (($ $ $) NIL)) (-2300 (($ $ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2287 (($ $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-110) (-13 (-123) (-10 -8 (-15 -4319 ($ (-749) (-112)))))) (T -110)) -((-4319 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -4319 ($ (-749) (-112))))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-138) (-1021) (-1021)) (T -111)) -NIL -(-13 (-626 |t#1|) (-1027 |t#2|) (-10 -7 (-6 -4339) (-6 -4338))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-1027 |#2|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-4026 (($ $) 10)) (-3875 (($ $ $) 15)) (-1292 (($) 7 T CONST)) (-3591 (($ $) 6)) (-3828 (((-749)) 24)) (-1864 (($) 30)) (-3741 (($ $ $) 13)) (-3548 (($ $) 9)) (-2595 (($ $ $) 16)) (-4157 (($ $ $) 17)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-4073 (((-895) $) 29)) (-2369 (((-1127) $) NIL)) (-3690 (($ (-895)) 28)) (-3852 (($ $ $) 20)) (-3445 (((-1089) $) NIL)) (-3271 (($) 8 T CONST)) (-2660 (($ $ $) 21)) (-2451 (((-526) $) 36)) (-2233 (((-837) $) 39)) (-1304 (($ $ $) 11)) (-2300 (($ $ $) 14)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 19)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 22)) (-2287 (($ $ $) 12))) -(((-112) (-13 (-819) (-639) (-941) (-596 (-526)) (-10 -8 (-15 -1292 ($) -4165) (-15 -3271 ($) -4165) (-15 -3875 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -3591 ($ $))))) (T -112)) -((-1292 (*1 *1) (-5 *1 (-112))) (-3271 (*1 *1) (-5 *1 (-112))) (-3875 (*1 *1 *1 *1) (-5 *1 (-112))) (-4157 (*1 *1 *1 *1) (-5 *1 (-112))) (-2595 (*1 *1 *1 *1) (-5 *1 (-112))) (-3591 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-819) (-639) (-941) (-596 (-526)) (-10 -8 (-15 -1292 ($) -4165) (-15 -3271 ($) -4165) (-15 -3875 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -3591 ($ $)))) -((-2322 (((-3 (-1 |#1| (-623 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-623 |#1|))) 11) (((-3 |#1| "failed") (-114) (-623 |#1|)) 21)) (-3092 (((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-623 (-1 |#1| (-623 |#1|)))) 26)) (-2670 (((-114) |#1|) 56 (|has| |#1| (-825)))) (-2314 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-825))))) -(((-113 |#1|) (-10 -7 (-15 -2322 ((-3 |#1| "failed") (-114) (-623 |#1|))) (-15 -2322 ((-114) (-114) (-1 |#1| (-623 |#1|)))) (-15 -2322 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2322 ((-3 (-1 |#1| (-623 |#1|)) "failed") (-114))) (-15 -3092 ((-114) (-114) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3092 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3092 ((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114))) (IF (|has| |#1| (-825)) (PROGN (-15 -2670 ((-114) |#1|)) (-15 -2314 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1069)) (T -113)) -((-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1069)) (-4 *2 (-825)) (-5 *1 (-113 *2)))) (-2670 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-825)) (-4 *3 (-1069)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-1 *4 (-623 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1069)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1069)) (-5 *1 (-113 *4)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 (-1 *4 (-623 *4)))) (-4 *4 (-1069)) (-5 *1 (-113 *4)))) (-2322 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-623 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1069)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1069)) (-5 *1 (-113 *4)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-623 *4))) (-4 *4 (-1069)) (-5 *1 (-113 *4)))) (-2322 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-623 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1069))))) -(-10 -7 (-15 -2322 ((-3 |#1| "failed") (-114) (-623 |#1|))) (-15 -2322 ((-114) (-114) (-1 |#1| (-623 |#1|)))) (-15 -2322 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2322 ((-3 (-1 |#1| (-623 |#1|)) "failed") (-114))) (-15 -3092 ((-114) (-114) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3092 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3092 ((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114))) (IF (|has| |#1| (-825)) (PROGN (-15 -2670 ((-114) |#1|)) (-15 -2314 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-3609 (((-749) $) 72) (($ $ (-749)) 30)) (-3443 (((-112) $) 32)) (-1543 (($ $ (-1127) (-752)) 26)) (-2014 (($ $ (-45 (-1127) (-752))) 15)) (-2184 (((-3 (-752) "failed") $ (-1127)) 25)) (-3722 (((-45 (-1127) (-752)) $) 14)) (-1355 (($ (-1145)) 17) (($ (-1145) (-749)) 22)) (-2123 (((-112) $) 31)) (-1495 (((-112) $) 33)) (-1856 (((-1145) $) 8)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2366 (((-112) $ (-1145)) 10)) (-2025 (($ $ (-1 (-526) (-623 (-526)))) 52) (((-3 (-1 (-526) (-623 (-526))) "failed") $) 56)) (-3445 (((-1089) $) NIL)) (-2437 (((-112) $ (-1127)) 29)) (-2276 (($ $ (-1 (-112) $ $)) 35)) (-1970 (((-3 (-1 (-837) (-623 (-837))) "failed") $) 54) (($ $ (-1 (-837) (-623 (-837)))) 41) (($ $ (-1 (-837) (-837))) 43)) (-3442 (($ $ (-1127)) 45)) (-2435 (($ $) 63)) (-2748 (($ $ (-1 (-112) $ $)) 36)) (-2233 (((-837) $) 48)) (-2527 (($ $ (-1127)) 27)) (-4008 (((-3 (-749) "failed") $) 58)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 71)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 79))) -(((-114) (-13 (-825) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -3722 ((-45 (-1127) (-752)) $)) (-15 -2435 ($ $)) (-15 -1355 ($ (-1145))) (-15 -1355 ($ (-1145) (-749))) (-15 -4008 ((-3 (-749) "failed") $)) (-15 -2123 ((-112) $)) (-15 -3443 ((-112) $)) (-15 -1495 ((-112) $)) (-15 -3609 ((-749) $)) (-15 -3609 ($ $ (-749))) (-15 -2276 ($ $ (-1 (-112) $ $))) (-15 -2748 ($ $ (-1 (-112) $ $))) (-15 -1970 ((-3 (-1 (-837) (-623 (-837))) "failed") $)) (-15 -1970 ($ $ (-1 (-837) (-623 (-837))))) (-15 -1970 ($ $ (-1 (-837) (-837)))) (-15 -2025 ($ $ (-1 (-526) (-623 (-526))))) (-15 -2025 ((-3 (-1 (-526) (-623 (-526))) "failed") $)) (-15 -2366 ((-112) $ (-1145))) (-15 -2437 ((-112) $ (-1127))) (-15 -2527 ($ $ (-1127))) (-15 -3442 ($ $ (-1127))) (-15 -2184 ((-3 (-752) "failed") $ (-1127))) (-15 -1543 ($ $ (-1127) (-752))) (-15 -2014 ($ $ (-45 (-1127) (-752))))))) (T -114)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-45 (-1127) (-752))) (-5 *1 (-114)))) (-2435 (*1 *1 *1) (-5 *1 (-114))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-1355 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *1 (-114)))) (-4008 (*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-114)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2748 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1970 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-837) (-623 (-837)))) (-5 *1 (-114)))) (-1970 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-837) (-623 (-837)))) (-5 *1 (-114)))) (-1970 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-837) (-837))) (-5 *1 (-114)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) (-2025 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) (-2366 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2437 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2527 (*1 *1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-114)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-114)))) (-2184 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1127)) (-5 *2 (-752)) (-5 *1 (-114)))) (-1543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-752)) (-5 *1 (-114)))) (-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1127) (-752))) (-5 *1 (-114))))) -(-13 (-825) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -3722 ((-45 (-1127) (-752)) $)) (-15 -2435 ($ $)) (-15 -1355 ($ (-1145))) (-15 -1355 ($ (-1145) (-749))) (-15 -4008 ((-3 (-749) "failed") $)) (-15 -2123 ((-112) $)) (-15 -3443 ((-112) $)) (-15 -1495 ((-112) $)) (-15 -3609 ((-749) $)) (-15 -3609 ($ $ (-749))) (-15 -2276 ($ $ (-1 (-112) $ $))) (-15 -2748 ($ $ (-1 (-112) $ $))) (-15 -1970 ((-3 (-1 (-837) (-623 (-837))) "failed") $)) (-15 -1970 ($ $ (-1 (-837) (-623 (-837))))) (-15 -1970 ($ $ (-1 (-837) (-837)))) (-15 -2025 ($ $ (-1 (-526) (-623 (-526))))) (-15 -2025 ((-3 (-1 (-526) (-623 (-526))) "failed") $)) (-15 -2366 ((-112) $ (-1145))) (-15 -2437 ((-112) $ (-1127))) (-15 -2527 ($ $ (-1127))) (-15 -3442 ($ $ (-1127))) (-15 -2184 ((-3 (-752) "failed") $ (-1127))) (-15 -1543 ($ $ (-1127) (-752))) (-15 -2014 ($ $ (-45 (-1127) (-752)))))) -((-4173 (((-550) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -4173 ((-550) |#2|))) (-13 (-356) (-1012 (-400 (-550)))) (-1204 |#1|)) (T -115)) -((-4173 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-550)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -4173 ((-550) |#2|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $ (-550)) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1451 (($ (-1141 (-550)) (-550)) NIL)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-4004 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2603 (((-749) $) NIL)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2351 (((-550)) NIL)) (-3761 (((-550) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4268 (($ $ (-550)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-4051 (((-1125 (-550)) $) NIL)) (-4012 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2154 (((-550) $ (-550)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-843 |#1|) (-550)) (T -116)) -NIL -(-843 |#1|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-116 |#1|) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-116 |#1|) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-116 |#1|) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-116 |#1|) (-1012 (-550))))) (-2202 (((-116 |#1|) $) NIL) (((-1145) $) NIL (|has| (-116 |#1|) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-116 |#1|) (-1012 (-550)))) (((-550) $) NIL (|has| (-116 |#1|) (-1012 (-550))))) (-2468 (($ $) NIL) (($ (-550) $) NIL)) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-116 |#1|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-116 |#1|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-116 |#1|))) (|:| |vec| (-1228 (-116 |#1|)))) (-667 $) (-1228 $)) NIL) (((-667 (-116 |#1|)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-116 |#1|) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-116 |#1|) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-116 |#1|) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-116 |#1|) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1120)))) (-1712 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-2173 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-2392 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-116 |#1|) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3925 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-116 |#1|)) (-623 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-287 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-623 (-287 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-623 (-1145)) (-623 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1145) (-116 |#1|)))) (($ $ (-1145) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1145) (-116 |#1|))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1145)) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-116 |#1|) $) NIL)) (-2451 (((-866 (-550)) $) NIL (|has| (-116 |#1|) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-116 |#1|) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-116 |#1|) (-596 (-526)))) (((-372) $) NIL (|has| (-116 |#1|) (-996))) (((-219) $) NIL (|has| (-116 |#1|) (-996)))) (-3470 (((-172 (-400 (-550))) $) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-116 |#1|)) NIL) (($ (-1145)) NIL (|has| (-116 |#1|) (-1012 (-1145))))) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-883))) (|has| (-116 |#1|) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-1819 (((-112) $ $) NIL)) (-2154 (((-400 (-550)) $ (-550)) NIL)) (-4188 (($ $) NIL (|has| (-116 |#1|) (-798)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1145)) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-116 |#1|) (-874 (-1145)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2382 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-966 (-116 |#1|)) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) (-550)) (T -117)) -((-2154 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-966 (-116 |#1|)) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) -((-2409 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4079 (((-623 $) $) 27)) (-3687 (((-112) $ $) 32)) (-3922 (((-112) |#2| $) 36)) (-2951 (((-623 |#2|) $) 22)) (-1515 (((-112) $) 16)) (-2757 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2320 (((-112) $) 45)) (-2233 (((-837) $) 41)) (-4075 (((-623 $) $) 28)) (-2264 (((-112) $ $) 34)) (-3307 (((-749) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2409 (|#1| |#1| "right" |#1|)) (-15 -2409 (|#1| |#1| "left" |#1|)) (-15 -2757 (|#1| |#1| "right")) (-15 -2757 (|#1| |#1| "left")) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -3687 ((-112) |#1| |#1|)) (-15 -2951 ((-623 |#2|) |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3307 ((-749) |#1|))) (-119 |#2|) (-1182)) (T -118)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2409 (|#1| |#1| "right" |#1|)) (-15 -2409 (|#1| |#1| "left" |#1|)) (-15 -2757 (|#1| |#1| "right")) (-15 -2757 (|#1| |#1| "left")) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -3687 ((-112) |#1| |#1|)) (-15 -2951 ((-623 |#2|) |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3307 ((-749) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-1419 (($ $ $) 52 (|has| $ (-6 -4345)))) (-4081 (($ $ $) 54 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) (($ $ "left" $) 55 (|has| $ (-6 -4345))) (($ $ "right" $) 53 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-3490 (($ $) 57)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-3480 (($ $) 59)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1456 (((-550) $ $) 44)) (-2320 (((-112) $) 46)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-119 |#1|) (-138) (-1182)) (T -119)) -((-3480 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1182)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1182)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1182)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1182)))) (-2409 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4345)) (-4 *1 (-119 *3)) (-4 *3 (-1182)))) (-4081 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-119 *2)) (-4 *2 (-1182)))) (-2409 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4345)) (-4 *1 (-119 *3)) (-4 *3 (-1182)))) (-1419 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-119 *2)) (-4 *2 (-1182))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -3480 ($ $)) (-15 -2757 ($ $ "left")) (-15 -3490 ($ $)) (-15 -2757 ($ $ "right")) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2409 ($ $ "left" $)) (-15 -4081 ($ $ $)) (-15 -2409 ($ $ "right" $)) (-15 -1419 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-1733 (((-112) |#1|) 24)) (-3196 (((-749) (-749)) 23) (((-749)) 22)) (-3385 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -3385 ((-112) |#1|)) (-15 -3385 ((-112) |#1| (-112))) (-15 -3196 ((-749))) (-15 -3196 ((-749) (-749))) (-15 -1733 ((-112) |#1|))) (-1204 (-550))) (T -120)) -((-1733 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) (-3196 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) (-3385 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550)))))) -(-10 -7 (-15 -3385 ((-112) |#1|)) (-15 -3385 ((-112) |#1| (-112))) (-15 -3196 ((-749))) (-15 -3196 ((-749) (-749))) (-15 -1733 ((-112) |#1|))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) 15)) (-2590 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-1419 (($ $ $) 18 (|has| $ (-6 -4345)))) (-4081 (($ $ $) 20 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "left" $) NIL (|has| $ (-6 -4345))) (($ $ "right" $) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3490 (($ $) 17)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2429 (($ $ |#1| $) 23)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3480 (($ $) 19)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3495 (($ |#1| $) 24)) (-1715 (($ |#1| $) 10)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 14)) (-2819 (($) 8)) (-2757 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-4221 (($ (-623 |#1|)) 12)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4345) (-6 -4344) (-15 -4221 ($ (-623 |#1|))) (-15 -1715 ($ |#1| $)) (-15 -3495 ($ |#1| $)) (-15 -2590 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-825)) (T -121)) -((-4221 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3)))) (-1715 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-3495 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-2590 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-825))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4345) (-6 -4344) (-15 -4221 ($ (-623 |#1|))) (-15 -1715 ($ |#1| $)) (-15 -3495 ($ |#1| $)) (-15 -2590 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-4026 (($ $) 13)) (-3548 (($ $) 11)) (-2595 (($ $ $) 23)) (-4157 (($ $ $) 21)) (-2300 (($ $ $) 19)) (-2287 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -2595 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -2595 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-4026 (($ $) 103)) (-3875 (($ $ $) 25)) (-3037 (((-1233) $ (-550) (-550)) 66 (|has| $ (-6 -4345)))) (-1837 (((-112) $) 98 (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2734 (($ $) 102 (-12 (|has| (-112) (-825)) (|has| $ (-6 -4345)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4345)))) (-1814 (($ $) 97 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3368 (((-112) $ (-749)) 37)) (-2409 (((-112) $ (-1195 (-550)) (-112)) 88 (|has| $ (-6 -4345))) (((-112) $ (-550) (-112)) 54 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4344)))) (-2991 (($) 38 T CONST)) (-3770 (($ $) 100 (|has| $ (-6 -4345)))) (-1999 (($ $) 90)) (-2708 (($ $) 68 (-12 (|has| (-112) (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4344))) (($ (-112) $) 69 (-12 (|has| (-112) (-1069)) (|has| $ (-6 -4344))))) (-2924 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1069)) (|has| $ (-6 -4344))))) (-3317 (((-112) $ (-550) (-112)) 53 (|has| $ (-6 -4345)))) (-3263 (((-112) $ (-550)) 55)) (-3088 (((-550) (-112) $ (-550)) 95 (|has| (-112) (-1069))) (((-550) (-112) $) 94 (|has| (-112) (-1069))) (((-550) (-1 (-112) (-112)) $) 93)) (-2971 (((-623 (-112)) $) 45 (|has| $ (-6 -4344)))) (-3741 (($ $ $) 26)) (-3548 (($ $) 30)) (-2595 (($ $ $) 28)) (-3375 (($ (-749) (-112)) 77)) (-4157 (($ $ $) 29)) (-1445 (((-112) $ (-749)) 36)) (-3096 (((-550) $) 63 (|has| (-550) (-825)))) (-2793 (($ $ $) 13)) (-2441 (($ $ $) 96 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2876 (((-623 (-112)) $) 46 (|has| $ (-6 -4344)))) (-3922 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 62 (|has| (-550) (-825)))) (-2173 (($ $ $) 14)) (-3311 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1700 (((-112) $ (-749)) 35)) (-2369 (((-1127) $) 9)) (-1476 (($ $ $ (-550)) 87) (($ (-112) $ (-550)) 86)) (-3611 (((-623 (-550)) $) 60)) (-3166 (((-112) (-550) $) 59)) (-3445 (((-1089) $) 10)) (-3858 (((-112) $) 64 (|has| (-550) (-825)))) (-1614 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2491 (($ $ (-112)) 65 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-112)) (-623 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-287 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-623 (-287 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069))))) (-3155 (((-112) $ $) 31)) (-4100 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-1375 (((-623 (-112)) $) 58)) (-4217 (((-112) $) 34)) (-2819 (($) 33)) (-2757 (($ $ (-1195 (-550))) 83) (((-112) $ (-550)) 57) (((-112) $ (-550) (-112)) 56)) (-1512 (($ $ (-1195 (-550))) 85) (($ $ (-550)) 84)) (-3457 (((-749) (-112) $) 47 (-12 (|has| (-112) (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4344)))) (-2502 (($ $ $ (-550)) 99 (|has| $ (-6 -4345)))) (-2435 (($ $) 32)) (-2451 (((-526) $) 67 (|has| (-112) (-596 (-526))))) (-2245 (($ (-623 (-112))) 76)) (-4006 (($ (-623 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-2233 (((-837) $) 11)) (-3404 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4344)))) (-1304 (($ $ $) 27)) (-2300 (($ $ $) 105)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2287 (($ $ $) 104)) (-3307 (((-749) $) 39 (|has| $ (-6 -4344))))) +((-2893 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3382 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -3382 ((-112) $ $)) (-15 -2893 ((-112) $ $)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 13 (|has| $ (-6 -4349)))) (-1352 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1323 (($ $ (-620 |#1|)) 15)) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 11)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 17)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1322 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1321 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|)) 35)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 10)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 9)) (-3923 (($) 16)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1324 (($ (-749) |#1|) 19)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -1324 ($ (-749) |#1|)) (-15 -1323 ($ $ (-620 |#1|))) (-15 -1322 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1322 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|))))) (-1072)) (T -102)) +((-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1072)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1072)))) (-1322 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) (-1321 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2)))) (-1321 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-620 *2) *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -1324 ($ (-749) |#1|)) (-15 -1323 ($ $ (-620 |#1|))) (-15 -1322 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1322 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|))))) +((-1325 ((|#3| |#2| |#2|) 29)) (-1327 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4350 #1="*"))))) (-1326 ((|#3| |#2| |#2|) 30)) (-1328 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4350 #1#)))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1325 (|#3| |#2| |#2|)) (-15 -1326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4350 "*"))) (PROGN (-15 -1327 (|#1| |#2| |#2|)) (-15 -1328 (|#1| |#2|))) |%noBranch|)) (-1023) (-1205 |#1|) (-664 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103)) +((-1328 (*1 *2 *3) (-12 (|has| *2 (-6 (-4350 #1="*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) (-4 *4 (-664 *2 *5 *6)))) (-1327 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4350 #1#))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) (-4 *4 (-664 *2 *5 *6)))) (-1326 (*1 *2 *3 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1325 (*1 *2 *3 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) +(-10 -7 (-15 -1325 (|#3| |#2| |#2|)) (-15 -1326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4350 "*"))) (PROGN (-15 -1327 (|#1| |#2| |#2|)) (-15 -1328 (|#1| |#2|))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-1330 (((-620 (-1147))) 33)) (-1329 (((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147)) 35)) (-3382 (((-112) $ $) NIL))) +(((-104) (-13 (-1072) (-10 -7 (-15 -1330 ((-620 (-1147)))) (-15 -1329 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147))) (-6 -4348)))) (T -104)) +((-1330 (*1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-104)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219))))) (-5 *1 (-104))))) +(-13 (-1072) (-10 -7 (-15 -1330 ((-620 (-1147)))) (-15 -1329 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147))) (-6 -4348))) +((-1333 (($ (-620 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -1333 (|#1| (-620 |#2|)))) (-106 |#2|) (-1183)) (T -105)) +NIL +(-10 -8 (-15 -1333 (|#1| (-620 |#2|)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-106 |#1|) (-138) (-1183)) (T -106)) +((-1333 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-106 *3)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) (-3965 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) +(-13 (-481 |t#1|) (-10 -8 (-6 -4349) (-15 -1333 ($ (-620 |t#1|))) (-15 -1332 (|t#1| $)) (-15 -3965 ($ |t#1| $)) (-15 -1331 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 2) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2139 (($ (-400 (-536))) 9)) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) +(((-107) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 2) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2139 ($ (-400 (-536))))))) (T -107)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107))))) +(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 2) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2139 ($ (-400 (-536)))))) +((-1347 (((-620 (-939)) $) 14)) (-3900 (((-1147) $) 10)) (-4312 (((-838) $) 23)) (-1334 (($ (-1147) (-620 (-939))) 15))) +(((-108) (-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-620 (-939)) $)) (-15 -1334 ($ (-1147) (-620 (-939))))))) (T -108)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-108)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-620 (-939))) (-5 *1 (-108)))) (-1334 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-108))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-620 (-939)) $)) (-15 -1334 ($ (-1147) (-620 (-939)))))) +((-2893 (((-112) $ $) NIL)) (-1808 (((-1091) $ (-1091)) 24)) (-1812 (($ $ (-1129)) 17)) (-3977 (((-3 (-1091) "failed") $) 23)) (-1809 (((-1091) $) 21)) (-1335 (((-1091) $ (-1091)) 26)) (-3773 (((-1091) $) 25)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) 16)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-1811 (($ $) 18)) (-3382 (((-112) $ $) NIL))) +(((-109) (-13 (-358 (-381) (-1091)) (-10 -8 (-15 -3977 ((-3 (-1091) "failed") $)) (-15 -3773 ((-1091) $)) (-15 -1335 ((-1091) $ (-1091)))))) (T -109)) +((-3977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-109)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-109)))) (-1335 (*1 *2 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-109))))) +(-13 (-358 (-381) (-1091)) (-10 -8 (-15 -3977 ((-3 (-1091) "failed") $)) (-15 -3773 ((-1091) $)) (-15 -1335 ((-1091) $ (-1091))))) +((-2893 (((-112) $ $) NIL)) (-3674 (($ $) NIL)) (-3670 (($ $ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-112) $ (-1196 (-536)) (-112)) NIL (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-3760 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-1632 (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) NIL)) (-3773 (((-536) (-112) $ (-536)) NIL (|has| (-112) (-1072))) (((-536) (-112) $) NIL (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) NIL)) (-2063 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3185 (($ $ $) NIL)) (-3671 (($ $) NIL)) (-1359 (($ $ $) NIL)) (-3972 (($ (-749) (-112)) 8)) (-1360 (($ $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL)) (-3867 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2506 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ (-112) $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-112) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2301 (($ $ (-112)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (($ $ (-1196 (-536))) NIL) (((-112) $ (-536)) NIL) (((-112) $ (-536) (-112)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2064 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) NIL)) (-4156 (($ (-620 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4312 (((-838) $) NIL)) (-1885 (($ (-749) (-112)) 9)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3186 (($ $ $) NIL)) (-3676 (($ $ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-3675 (($ $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-110) (-13 (-123) (-10 -8 (-15 -1885 ($ (-749) (-112)))))) (T -110)) +((-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -1885 ($ (-749) (-112))))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-138) (-1023) (-1023)) (T -111)) +NIL +(-13 (-626 |t#1|) (-1029 |t#2|) (-10 -7 (-6 -4343) (-6 -4342))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-1029 |#2|) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3674 (($ $) 10)) (-3670 (($ $ $) 15)) (-2317 (($) 7 T CONST)) (-1336 (($ $) 6)) (-3466 (((-749)) 24)) (-3322 (($) 30)) (-3185 (($ $ $) 13)) (-3671 (($ $) 9)) (-1359 (($ $ $) 16)) (-1360 (($ $ $) 17)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2121 (((-893) $) 29)) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 28)) (-3184 (($ $ $) 20)) (-3589 (((-1091) $) NIL)) (-2319 (($) 8 T CONST)) (-3183 (($ $ $) 21)) (-4325 (((-525) $) 36)) (-4312 (((-838) $) 39)) (-3186 (($ $ $) 11)) (-3676 (($ $ $) 14)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 19)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22)) (-3675 (($ $ $) 12))) +(((-112) (-13 (-819) (-640) (-941) (-596 (-525)) (-10 -8 (-15 -2317 ($) -4306) (-15 -2319 ($) -4306) (-15 -3670 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -1336 ($ $))))) (T -112)) +((-2317 (*1 *1) (-5 *1 (-112))) (-2319 (*1 *1) (-5 *1 (-112))) (-3670 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1 *1) (-5 *1 (-112))) (-1359 (*1 *1 *1 *1) (-5 *1 (-112))) (-1336 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-819) (-640) (-941) (-596 (-525)) (-10 -8 (-15 -2317 ($) -4306) (-15 -2319 ($) -4306) (-15 -3670 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -1336 ($ $)))) +((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) 72) (($ $ (-749)) 30)) (-1344 (((-112) $) 32)) (-1338 (($ $ (-1129) (-751)) 26)) (-1337 (($ $ (-45 (-1129) (-751))) 15)) (-3169 (((-3 (-751) "failed") $ (-1129)) 25)) (-1347 (((-45 (-1129) (-751)) $) 14)) (-3375 (($ (-1147)) 17) (($ (-1147) (-749)) 22)) (-1345 (((-112) $) 31)) (-1343 (((-112) $) 33)) (-3900 (((-1147) $) 8)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2959 (((-112) $ (-1147)) 10)) (-2241 (($ $ (-1 (-525) (-620 (-525)))) 52) (((-3 (-1 (-525) (-620 (-525))) "failed") $) 56)) (-3589 (((-1091) $) NIL)) (-1340 (((-112) $ (-1129)) 29)) (-1342 (($ $ (-1 (-112) $ $)) 35)) (-3975 (((-3 (-1 (-838) (-620 (-838))) "failed") $) 54) (($ $ (-1 (-838) (-620 (-838)))) 41) (($ $ (-1 (-838) (-838))) 43)) (-1339 (($ $ (-1129)) 45)) (-3754 (($ $) 63)) (-1341 (($ $ (-1 (-112) $ $)) 36)) (-4312 (((-838) $) 48)) (-3120 (($ $ (-1129)) 27)) (-1346 (((-3 (-749) "failed") $) 58)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 71)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 79))) +(((-113) (-13 (-825) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-45 (-1129) (-751)) $)) (-15 -3754 ($ $)) (-15 -3375 ($ (-1147))) (-15 -3375 ($ (-1147) (-749))) (-15 -1346 ((-3 (-749) "failed") $)) (-15 -1345 ((-112) $)) (-15 -1344 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1572 ((-749) $)) (-15 -1572 ($ $ (-749))) (-15 -1342 ($ $ (-1 (-112) $ $))) (-15 -1341 ($ $ (-1 (-112) $ $))) (-15 -3975 ((-3 (-1 (-838) (-620 (-838))) "failed") $)) (-15 -3975 ($ $ (-1 (-838) (-620 (-838))))) (-15 -3975 ($ $ (-1 (-838) (-838)))) (-15 -2241 ($ $ (-1 (-525) (-620 (-525))))) (-15 -2241 ((-3 (-1 (-525) (-620 (-525))) "failed") $)) (-15 -2959 ((-112) $ (-1147))) (-15 -1340 ((-112) $ (-1129))) (-15 -3120 ($ $ (-1129))) (-15 -1339 ($ $ (-1129))) (-15 -3169 ((-3 (-751) "failed") $ (-1129))) (-15 -1338 ($ $ (-1129) (-751))) (-15 -1337 ($ $ (-45 (-1129) (-751))))))) (T -113)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113)))) (-3754 (*1 *1 *1) (-5 *1 (-113))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *1 (-113)))) (-1346 (*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1342 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3975 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-838))) (-5 *1 (-113)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) (-2241 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1340 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3120 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) (-3169 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-751)) (-5 *1 (-113)))) (-1338 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-751)) (-5 *1 (-113)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) +(-13 (-825) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-45 (-1129) (-751)) $)) (-15 -3754 ($ $)) (-15 -3375 ($ (-1147))) (-15 -3375 ($ (-1147) (-749))) (-15 -1346 ((-3 (-749) "failed") $)) (-15 -1345 ((-112) $)) (-15 -1344 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1572 ((-749) $)) (-15 -1572 ($ $ (-749))) (-15 -1342 ($ $ (-1 (-112) $ $))) (-15 -1341 ($ $ (-1 (-112) $ $))) (-15 -3975 ((-3 (-1 (-838) (-620 (-838))) "failed") $)) (-15 -3975 ($ $ (-1 (-838) (-620 (-838))))) (-15 -3975 ($ $ (-1 (-838) (-838)))) (-15 -2241 ($ $ (-1 (-525) (-620 (-525))))) (-15 -2241 ((-3 (-1 (-525) (-620 (-525))) "failed") $)) (-15 -2959 ((-112) $ (-1147))) (-15 -1340 ((-112) $ (-1129))) (-15 -3120 ($ $ (-1129))) (-15 -1339 ($ $ (-1129))) (-15 -3169 ((-3 (-751) "failed") $ (-1129))) (-15 -1338 ($ $ (-1129) (-751))) (-15 -1337 ($ $ (-45 (-1129) (-751)))))) +((-2847 (((-3 (-1 |#1| (-620 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-620 |#1|))) 11) (((-3 |#1| "failed") (-113) (-620 |#1|)) 21)) (-1348 (((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-620 (-1 |#1| (-620 |#1|)))) 26)) (-1349 (((-113) |#1|) 56 (|has| |#1| (-825)))) (-1350 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-825))))) +(((-114 |#1|) (-10 -7 (-15 -2847 ((-3 |#1| "failed") (-113) (-620 |#1|))) (-15 -2847 ((-113) (-113) (-1 |#1| (-620 |#1|)))) (-15 -2847 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2847 ((-3 (-1 |#1| (-620 |#1|)) "failed") (-113))) (-15 -1348 ((-113) (-113) (-620 (-1 |#1| (-620 |#1|))))) (-15 -1348 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1348 ((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113))) (IF (|has| |#1| (-825)) (PROGN (-15 -1349 ((-113) |#1|)) (-15 -1350 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1072)) (T -114)) +((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-114 *2)))) (-1349 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-825)) (-4 *3 (-1072)))) (-1348 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-1 *4 (-620 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1072)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 (-1 *4 (-620 *4)))) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-620 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1072)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-620 *4))) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-620 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1072))))) +(-10 -7 (-15 -2847 ((-3 |#1| "failed") (-113) (-620 |#1|))) (-15 -2847 ((-113) (-113) (-1 |#1| (-620 |#1|)))) (-15 -2847 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2847 ((-3 (-1 |#1| (-620 |#1|)) "failed") (-113))) (-15 -1348 ((-113) (-113) (-620 (-1 |#1| (-620 |#1|))))) (-15 -1348 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1348 ((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113))) (IF (|has| |#1| (-825)) (PROGN (-15 -1349 ((-113) |#1|)) (-15 -1350 ((-3 |#1| "failed") (-113)))) |%noBranch|)) +((-1351 (((-536) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1351 ((-536) |#2|))) (-13 (-356) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -115)) +((-1351 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-536)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -1351 ((-536) |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2936 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) NIL)) (-2937 (((-536) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-1124 (-536)) $) NIL)) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-844 |#1|) (-536)) (T -116)) +NIL +(-844 |#1|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-116 |#1|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-536))))) (-3502 (((-116 |#1|) $) NIL) (((-1147) $) NIL (|has| (-116 |#1|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-116 |#1|) (-1012 (-536)))) (((-536) $) NIL (|has| (-116 |#1|) (-1012 (-536))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-116 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-116 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-116 |#1|))) (|:| |vec| (-1229 (-116 |#1|)))) (-667 $) (-1229 $)) NIL) (((-667 (-116 |#1|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-116 |#1|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-116 |#1|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-116 |#1|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-116 |#1|) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-3673 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-4313 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-116 |#1|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3460 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-116 |#1|)) (-620 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-620 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-620 (-1147)) (-620 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1147) (-116 |#1|)))) (($ $ (-1147) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1147) (-116 |#1|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-116 |#1|) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-116 |#1|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-116 |#1|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-116 |#1|) (-596 (-525)))) (((-371) $) NIL (|has| (-116 |#1|) (-994))) (((-219) $) NIL (|has| (-116 |#1|) (-994)))) (-2940 (((-172 (-400 (-536))) $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-116 |#1|)) NIL) (($ (-1147)) NIL (|has| (-116 |#1|) (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-884))) (|has| (-116 |#1|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) NIL)) (-3737 (($ $) NIL (|has| (-116 |#1|) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-4303 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-965 (-116 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536)) (T -117)) +((-4124 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-536)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-117 *3)) (-14 *3 (-536)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-536)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-965 (-116 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) +((-4142 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3359 (((-620 $) $) 27)) (-3355 (((-112) $ $) 32)) (-3591 (((-112) |#2| $) 36)) (-3358 (((-620 |#2|) $) 22)) (-3876 (((-112) $) 16)) (-4154 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3991 (((-112) $) 45)) (-4312 (((-838) $) 41)) (-3871 (((-620 $) $) 28)) (-3382 (((-112) $ $) 34)) (-4311 (((-749) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4142 (|#1| |#1| "right" |#1|)) (-15 -4142 (|#1| |#1| "left" |#1|)) (-15 -4154 (|#1| |#1| "right")) (-15 -4154 (|#1| |#1| "left")) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3358 ((-620 |#2|) |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -4311 ((-749) |#1|))) (-119 |#2|) (-1183)) (T -118)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4142 (|#1| |#1| "right" |#1|)) (-15 -4142 (|#1| |#1| "left" |#1|)) (-15 -4154 (|#1| |#1| "right")) (-15 -4154 (|#1| |#1| "left")) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3358 ((-620 |#2|) |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -4311 ((-749) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 52 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) (($ $ "left" $) 55 (|has| $ (-6 -4349))) (($ $ "right" $) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3467 (($ $) 57)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3468 (($ $) 59)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-119 |#1|) (-138) (-1183)) (T -119)) +((-3468 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-3467 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-1353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-1352 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) +(-13 (-984 |t#1|) (-10 -8 (-15 -3468 ($ $)) (-15 -4154 ($ $ "left")) (-15 -3467 ($ $)) (-15 -4154 ($ $ "right")) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4142 ($ $ "left" $)) (-15 -1353 ($ $ $)) (-15 -4142 ($ $ "right" $)) (-15 -1352 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-1356 (((-112) |#1|) 24)) (-1355 (((-749) (-749)) 23) (((-749)) 22)) (-1354 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -1354 ((-112) |#1|)) (-15 -1354 ((-112) |#1| (-112))) (-15 -1355 ((-749))) (-15 -1355 ((-749) (-749))) (-15 -1356 ((-112) |#1|))) (-1205 (-536))) (T -120)) +((-1356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1355 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1354 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1354 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) +(-10 -7 (-15 -1354 ((-112) |#1|)) (-15 -1354 ((-112) |#1| (-112))) (-15 -1355 ((-749))) (-15 -1355 ((-749) (-749))) (-15 -1356 ((-112) |#1|))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 15)) (-3772 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-1352 (($ $ $) 18 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 20 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 17)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 23)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 19)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1357 (($ |#1| $) 24)) (-3965 (($ |#1| $) 10)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 8)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1358 (($ (-620 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1358 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)) (-15 -1357 ($ |#1| $)) (-15 -3772 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-825)) (T -121)) +((-1358 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-1357 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-825))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1358 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)) (-15 -1357 ($ |#1| $)) (-15 -3772 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3674 (($ $) 13)) (-3671 (($ $) 11)) (-1359 (($ $ $) 23)) (-1360 (($ $ $) 21)) (-3676 (($ $ $) 19)) (-3675 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -1359 (|#1| |#1| |#1|)) (-15 -1360 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1359 (|#1| |#1| |#1|)) (-15 -1360 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3674 (($ $) 103)) (-3670 (($ $ $) 25)) (-2300 (((-1235) $ (-536) (-536)) 66 (|has| $ (-6 -4349)))) (-1843 (((-112) $) 98 (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1841 (($ $) 102 (-12 (|has| (-112) (-825)) (|has| $ (-6 -4349)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4349)))) (-3237 (($ $) 97 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1269 (((-112) $ (-749)) 37)) (-4142 (((-112) $ (-1196 (-536)) (-112)) 88 (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) 54 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4348)))) (-3891 (($) 38 T CONST)) (-2372 (($ $) 100 (|has| $ (-6 -4349)))) (-2373 (($ $) 90)) (-1398 (($ $) 68 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4348))) (($ (-112) $) 69 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-1632 (((-112) $ (-536) (-112)) 53 (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) 55)) (-3773 (((-536) (-112) $ (-536)) 95 (|has| (-112) (-1072))) (((-536) (-112) $) 94 (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) 93)) (-2063 (((-620 (-112)) $) 45 (|has| $ (-6 -4348)))) (-3185 (($ $ $) 26)) (-3671 (($ $) 30)) (-1359 (($ $ $) 28)) (-3972 (($ (-749) (-112)) 77)) (-1360 (($ $ $) 29)) (-4077 (((-112) $ (-749)) 36)) (-2302 (((-536) $) 63 (|has| (-536) (-825)))) (-3672 (($ $ $) 13)) (-3867 (($ $ $) 96 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2506 (((-620 (-112)) $) 46 (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 62 (|has| (-536) (-825)))) (-3673 (($ $ $) 14)) (-2067 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4074 (((-112) $ (-749)) 35)) (-3588 (((-1129) $) 9)) (-2377 (($ $ $ (-536)) 87) (($ (-112) $ (-536)) 86)) (-2305 (((-620 (-536)) $) 60)) (-2306 (((-112) (-536) $) 59)) (-3589 (((-1091) $) 10)) (-4155 (((-112) $) 64 (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2301 (($ $ (-112)) 65 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) 31)) (-2304 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) 58)) (-3757 (((-112) $) 34)) (-3923 (($) 33)) (-4154 (($ $ (-1196 (-536))) 83) (((-112) $ (-536)) 57) (((-112) $ (-536) (-112)) 56)) (-2378 (($ $ (-1196 (-536))) 85) (($ $ (-536)) 84)) (-2064 (((-749) (-112) $) 47 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) 99 (|has| $ (-6 -4349)))) (-3754 (($ $) 32)) (-4325 (((-525) $) 67 (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) 76)) (-4156 (($ (-620 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4312 (((-838) $) 11)) (-2066 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4348)))) (-3186 (($ $ $) 27)) (-3676 (($ $ $) 105)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-3675 (($ $ $) 104)) (-4311 (((-749) $) 39 (|has| $ (-6 -4348))))) (((-123) (-138)) (T -123)) -((-3548 (*1 *1 *1) (-4 *1 (-123))) (-4157 (*1 *1 *1 *1) (-4 *1 (-123))) (-2595 (*1 *1 *1 *1) (-4 *1 (-123))) (-1304 (*1 *1 *1 *1) (-4 *1 (-123))) (-3741 (*1 *1 *1 *1) (-4 *1 (-123))) (-3875 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-825) (-639) (-19 (-112)) (-10 -8 (-15 -3548 ($ $)) (-15 -4157 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -1304 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3875 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 #0=(-112)) . T) ((-596 (-526)) |has| (-112) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069))) ((-629 #0#) . T) ((-639) . T) ((-19 #0#) . T) ((-825) . T) ((-1069) . T) ((-1182) . T)) -((-3311 (($ (-1 |#2| |#2|) $) 22)) (-2435 (($ $) 16)) (-3307 (((-749) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -2435 (|#1| |#1|))) (-125 |#2|) (-1069)) (T -124)) -NIL -(-10 -8 (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -2435 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-1419 (($ $ $) 52 (|has| $ (-6 -4345)))) (-4081 (($ $ $) 54 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) (($ $ "left" $) 55 (|has| $ (-6 -4345))) (($ $ "right" $) 53 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-3490 (($ $) 57)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-2429 (($ $ |#1| $) 60)) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-3480 (($ $) 59)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1456 (((-550) $ $) 44)) (-2320 (((-112) $) 46)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-125 |#1|) (-138) (-1069)) (T -125)) -((-2429 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1069))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4345) (-6 -4344) (-15 -2429 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-119 |#1|) . T) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) 15)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) 19 (|has| $ (-6 -4345)))) (-1419 (($ $ $) 20 (|has| $ (-6 -4345)))) (-4081 (($ $ $) 18 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "left" $) NIL (|has| $ (-6 -4345))) (($ $ "right" $) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3490 (($ $) 21)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2429 (($ $ |#1| $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3480 (($ $) NIL)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1715 (($ |#1| $) 10)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 14)) (-2819 (($) 8)) (-2757 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 17)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3184 (($ (-623 |#1|)) 12)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4345) (-15 -3184 ($ (-623 |#1|))) (-15 -1715 ($ |#1| $)))) (-825)) (T -126)) -((-3184 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3)))) (-1715 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4345) (-15 -3184 ($ (-623 |#1|))) (-15 -1715 ($ |#1| $)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) 24)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) 26 (|has| $ (-6 -4345)))) (-1419 (($ $ $) 30 (|has| $ (-6 -4345)))) (-4081 (($ $ $) 28 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "left" $) NIL (|has| $ (-6 -4345))) (($ $ "right" $) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3490 (($ $) 20)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2429 (($ $ |#1| $) 15)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3480 (($ $) 19)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) 21)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 18)) (-2819 (($) 11)) (-2757 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2774 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 10 (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2774 ($ |#1|)) (-15 -2774 ($ $ |#1| $)))) (-1069)) (T -127)) -((-2774 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1069)))) (-2774 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1069))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2774 ($ |#1|)) (-15 -2774 ($ $ |#1| $)))) -((-2221 (((-112) $ $) NIL (|has| (-129) (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-825)))) (-2734 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-129) (-825))))) (-1814 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-129) $ (-550) (-129)) NIL (|has| $ (-6 -4345))) (((-129) $ (-1195 (-550)) (-129)) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069))))) (-1979 (($ (-129) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4344))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4344)))) (-3317 (((-129) $ (-550) (-129)) NIL (|has| $ (-6 -4345)))) (-3263 (((-129) $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) (-129)) $) NIL) (((-550) (-129) $) NIL (|has| (-129) (-1069))) (((-550) (-129) $ (-550)) NIL (|has| (-129) (-1069)))) (-2971 (((-623 (-129)) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) (-129)) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| (-129) (-825)))) (-2441 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-825)))) (-2876 (((-623 (-129)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-129) (-825)))) (-3311 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| (-129) (-1069)))) (-1476 (($ (-129) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| (-129) (-1069)))) (-3858 (((-129) $) NIL (|has| (-550) (-825)))) (-1614 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2491 (($ $ (-129)) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-129)))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1069)))) (($ $ (-287 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1069)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1069)))) (($ $ (-623 (-129)) (-623 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069))))) (-1375 (((-623 (-129)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (((-129) $ (-550) (-129)) NIL) (((-129) $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4344))) (((-749) (-129) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-129) (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-129) (-596 (-526))))) (-2245 (($ (-623 (-129))) NIL)) (-4006 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| (-129) (-595 (-837))))) (-3404 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2264 (((-112) $ $) NIL (|has| (-129) (-1069)))) (-2313 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-129) (-825)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-128) (-19 (-129))) (T -128)) -NIL -(-19 (-129)) -((-2221 (((-112) $ $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) 9)) (-2233 (((-837) $) 14) (((-749) $) 11) (($ (-749)) 10)) (-2433 (($ (-749)) 7)) (-1664 (($ $ $) 19)) (-1649 (($ $ $) 18)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 16)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 17))) -(((-129) (-13 (-825) (-595 (-749)) (-10 -8 (-15 -2433 ($ (-749))) (-15 -2233 ($ (-749))) (-15 -1649 ($ $ $)) (-15 -1664 ($ $ $))))) (T -129)) -((-2433 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) (-1649 (*1 *1 *1 *1) (-5 *1 (-129))) (-1664 (*1 *1 *1 *1) (-5 *1 (-129)))) -(-13 (-825) (-595 (-749)) (-10 -8 (-15 -2433 ($ (-749))) (-15 -2233 ($ (-749))) (-15 -1649 ($ $ $)) (-15 -1664 ($ $ $)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15))) +((-3671 (*1 *1 *1) (-4 *1 (-123))) (-1360 (*1 *1 *1 *1) (-4 *1 (-123))) (-1359 (*1 *1 *1 *1) (-4 *1 (-123))) (-3186 (*1 *1 *1 *1) (-4 *1 (-123))) (-3185 (*1 *1 *1 *1) (-4 *1 (-123))) (-3670 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-825) (-640) (-19 (-112)) (-10 -8 (-15 -3671 ($ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3670 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 #1=(-112)) . T) ((-596 (-525)) |has| (-112) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))) ((-629 #1#) . T) ((-640) . T) ((-19 #1#) . T) ((-825) . T) ((-1072) . T) ((-1183) . T)) +((-2067 (($ (-1 |#2| |#2|) $) 22)) (-3754 (($ $) 16)) (-4311 (((-749) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -3754 (|#1| |#1|))) (-125 |#2|) (-1072)) (T -124)) +NIL +(-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -3754 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 52 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) (($ $ #2="left" $) 55 (|has| $ (-6 -4349))) (($ $ #3="right" $) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3467 (($ $) 57)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 60)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3468 (($ $) 59)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-125 |#1|) (-138) (-1072)) (T -125)) +((-1361 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1072))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1361 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-119 |#1|) . T) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 15)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 19 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 20 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 18 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 21)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ |#1| $) 10)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 8)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 17)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1362 (($ (-620 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4349) (-15 -1362 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)))) (-825)) (T -126)) +((-1362 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4349) (-15 -1362 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 24)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 26 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 30 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 28 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 20)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 15)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 19)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 21)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 18)) (-3923 (($) 11)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1363 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 10 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1363 ($ |#1|)) (-15 -1363 ($ $ |#1| $)))) (-1072)) (T -127)) +((-1363 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072)))) (-1363 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072))))) +(-13 (-125 |#1|) (-10 -8 (-15 -1363 ($ |#1|)) (-15 -1363 ($ $ |#1| $)))) +((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) 9)) (-4312 (((-838) $) 19) (((-749) $) 11) (((-142) $) 16) (($ (-749)) 10) (($ (-142)) 14)) (-1366 (($ (-749)) 7)) (-1364 (($ $ $) 24)) (-1365 (($ $ $) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 21)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22))) +(((-128) (-13 (-825) (-595 (-749)) (-595 (-142)) (-10 -8 (-15 -1366 ($ (-749))) (-15 -4312 ($ (-749))) (-15 -4312 ($ (-142))) (-15 -1365 ($ $ $)) (-15 -1364 ($ $ $)) (-15 -3891 ($))))) (T -128)) +((-1366 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) (-1365 (*1 *1 *1 *1) (-5 *1 (-128))) (-1364 (*1 *1 *1 *1) (-5 *1 (-128))) (-3891 (*1 *1) (-5 *1 (-128)))) +(-13 (-825) (-595 (-749)) (-595 (-142)) (-10 -8 (-15 -1366 ($ (-749))) (-15 -4312 ($ (-749))) (-15 -4312 ($ (-142))) (-15 -1365 ($ $ $)) (-15 -1364 ($ $ $)) (-15 -3891 ($)))) +((-2893 (((-112) $ $) NIL (|has| (-128) (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-825)))) (-1841 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-128) (-825))))) (-3237 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-128) $ (-536) (-128)) NIL (|has| $ (-6 -4349))) (((-128) $ (-1196 (-536)) (-128)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-3760 (($ (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4348))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-128) $ (-536) (-128)) NIL (|has| $ (-6 -4349)))) (-3443 (((-128) $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) (-128)) $) NIL) (((-536) (-128) $) NIL (|has| (-128) (-1072))) (((-536) (-128) $ (-536)) NIL (|has| (-128) (-1072)))) (-2063 (((-620 (-128)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-128)) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-128) (-825)))) (-3867 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-825)))) (-2506 (((-620 (-128)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-128) (-825)))) (-2067 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| (-128) (-1072)))) (-2377 (($ (-128) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| (-128) (-1072)))) (-4155 (((-128) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2301 (($ $ (-128)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-128)))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-286 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-620 (-128)) (-620 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-2307 (((-620 (-128)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-128) $ (-536) (-128)) NIL) (((-128) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348))) (((-749) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-128) (-596 (-525))))) (-3879 (($ (-620 (-128))) NIL)) (-4156 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| (-128) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-128) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-128) (-825)))) (-3382 (((-112) $ $) NIL (|has| (-128) (-1072)))) (-3012 (((-112) $ $) NIL (|has| (-128) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-128) (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-129) (-19 (-128))) (T -129)) +NIL +(-19 (-128)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) (((-130) (-138)) (T -130)) -((-1993 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -1993 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-4195 (((-1233) $ (-749)) 19)) (-3088 (((-749) $) 20)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18))) +((-1367 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -1367 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-1368 (((-1235) $ (-749)) 19)) (-3773 (((-749) $) 20)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) (((-131) (-138)) (T -131)) -((-3088 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) (-4195 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1233))))) -(-13 (-825) (-10 -8 (-15 -3088 ((-749) $)) (-15 -4195 ((-1233) $ (-749))))) -(((-101) . T) ((-595 (-837)) . T) ((-825) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 18) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-623 (-1104)) $) 10)) (-2264 (((-112) $ $) NIL))) -(((-132) (-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $))))) (T -132)) -((-1865 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-132))))) -(-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $)))) -((-2221 (((-112) $ $) 34)) (-3378 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-749) "failed") $) 40)) (-2202 (((-749) $) 38)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) 27)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2723 (((-112)) 41)) (-2789 (((-112) (-112)) 43)) (-4053 (((-112) $) 24)) (-3983 (((-112) $) 37)) (-2233 (((-837) $) 22) (($ (-749)) 14)) (-2688 (($) 11 T CONST)) (-2700 (($) 12 T CONST)) (-3641 (($ (-749)) 15)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 25)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 26)) (-2370 (((-3 $ "failed") $ $) 30)) (-2358 (($ $ $) 28)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL) (($ $ $) 36)) (* (($ (-749) $) 33) (($ (-895) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4346 "*")) (-15 -2370 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3641 ($ (-749))) (-15 -4053 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -2723 ((-112))) (-15 -2789 ((-112) (-112)))))) (T -133)) -((-2370 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2723 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4346 "*")) (-15 -2370 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3641 ($ (-749))) (-15 -4053 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -2723 ((-112))) (-15 -2789 ((-112) (-112))))) -((-2965 (((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2392 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) -(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2965 ((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2392 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-550) (-749) (-170) (-170)) (T -134)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) -(-10 -7 (-15 -2965 ((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2392 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) -((-2221 (((-112) $ $) NIL)) (-3259 (($ (-623 |#3|)) 40)) (-3569 (($ $) 99) (($ $ (-550) (-550)) 98)) (-2991 (($) 17)) (-2288 (((-3 |#3| "failed") $) 60)) (-2202 ((|#3| $) NIL)) (-3564 (($ $ (-623 (-550))) 100)) (-2952 (((-623 |#3|) $) 36)) (-3398 (((-749) $) 44)) (-3141 (($ $ $) 93)) (-2681 (($) 43)) (-2369 (((-1127) $) NIL)) (-2007 (($) 16)) (-3445 (((-1089) $) NIL)) (-2757 ((|#3| $) 46) ((|#3| $ (-550)) 47) ((|#3| $ (-550) (-550)) 48) ((|#3| $ (-550) (-550) (-550)) 49) ((|#3| $ (-550) (-550) (-550) (-550)) 50) ((|#3| $ (-623 (-550))) 52)) (-3661 (((-749) $) 45)) (-2909 (($ $ (-550) $ (-550)) 94) (($ $ (-550) (-550)) 96)) (-2233 (((-837) $) 67) (($ |#3|) 68) (($ (-234 |#2| |#3|)) 75) (($ (-1111 |#2| |#3|)) 78) (($ (-623 |#3|)) 53) (($ (-623 $)) 58)) (-2688 (($) 69 T CONST)) (-2700 (($) 70 T CONST)) (-2264 (((-112) $ $) 80)) (-2370 (($ $) 86) (($ $ $) 84)) (-2358 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-550)) 89) (($ (-550) $) 88) (($ $ $) 95))) -(((-135 |#1| |#2| |#3|) (-13 (-457 |#3| (-749)) (-462 (-550) (-749)) (-10 -8 (-15 -2233 ($ (-234 |#2| |#3|))) (-15 -2233 ($ (-1111 |#2| |#3|))) (-15 -2233 ($ (-623 |#3|))) (-15 -2233 ($ (-623 $))) (-15 -3398 ((-749) $)) (-15 -2757 (|#3| $)) (-15 -2757 (|#3| $ (-550))) (-15 -2757 (|#3| $ (-550) (-550))) (-15 -2757 (|#3| $ (-550) (-550) (-550))) (-15 -2757 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -2757 (|#3| $ (-623 (-550)))) (-15 -3141 ($ $ $)) (-15 * ($ $ $)) (-15 -2909 ($ $ (-550) $ (-550))) (-15 -2909 ($ $ (-550) (-550))) (-15 -3569 ($ $)) (-15 -3569 ($ $ (-550) (-550))) (-15 -3564 ($ $ (-623 (-550)))) (-15 -2007 ($)) (-15 -2681 ($)) (-15 -2952 ((-623 |#3|) $)) (-15 -3259 ($ (-623 |#3|))) (-15 -2991 ($)))) (-550) (-749) (-170)) (T -135)) -((-3141 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1111 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 *2) (-4 *5 (-170)))) (-2757 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) (-14 *4 (-749)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2757 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2757 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-550))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-550)) (-14 *5 (-749)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2909 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-2909 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-3569 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2007 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2681 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)))) (-2991 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170))))) -(-13 (-457 |#3| (-749)) (-462 (-550) (-749)) (-10 -8 (-15 -2233 ($ (-234 |#2| |#3|))) (-15 -2233 ($ (-1111 |#2| |#3|))) (-15 -2233 ($ (-623 |#3|))) (-15 -2233 ($ (-623 $))) (-15 -3398 ((-749) $)) (-15 -2757 (|#3| $)) (-15 -2757 (|#3| $ (-550))) (-15 -2757 (|#3| $ (-550) (-550))) (-15 -2757 (|#3| $ (-550) (-550) (-550))) (-15 -2757 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -2757 (|#3| $ (-623 (-550)))) (-15 -3141 ($ $ $)) (-15 * ($ $ $)) (-15 -2909 ($ $ (-550) $ (-550))) (-15 -2909 ($ $ (-550) (-550))) (-15 -3569 ($ $)) (-15 -3569 ($ $ (-550) (-550))) (-15 -3564 ($ $ (-623 (-550)))) (-15 -2007 ($)) (-15 -2681 ($)) (-15 -2952 ((-623 |#3|) $)) (-15 -3259 ($ (-623 |#3|))) (-15 -2991 ($)))) -((-2221 (((-112) $ $) NIL)) (-2386 (((-1104) $) 11)) (-2374 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-136) (-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $))))) (T -136)) -((-2374 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-136)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-136))))) -(-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3960 (((-1145) $) 10)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-623 (-1104)) $) 12)) (-2264 (((-112) $ $) NIL))) -(((-137) (-13 (-1052) (-10 -8 (-15 -3960 ((-1145) $)) (-15 -1865 ((-623 (-1104)) $))))) (T -137)) -((-3960 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-137)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-137))))) -(-13 (-1052) (-10 -8 (-15 -3960 ((-1145) $)) (-15 -1865 ((-623 (-1104)) $)))) -((-2233 (((-837) $) 7))) -(((-138) (-595 (-837))) (T -138)) -NIL -(-595 (-837)) -((-2221 (((-112) $ $) NIL)) (-3567 (($) 15 T CONST)) (-3823 (($) NIL (|has| (-142) (-361)))) (-4045 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3029 (($ $ $) NIL)) (-1952 (((-112) $ $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| (-142) (-361)))) (-2085 (($) NIL) (($ (-623 (-142))) NIL)) (-3994 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2505 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344))) (($ (-142) $) 51 (|has| $ (-6 -4344)))) (-1979 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2924 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1864 (($) NIL (|has| (-142) (-361)))) (-2971 (((-623 (-142)) $) 60 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-2793 (((-142) $) NIL (|has| (-142) (-825)))) (-2876 (((-623 (-142)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2173 (((-142) $) NIL (|has| (-142) (-825)))) (-3311 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-142) (-142)) $) 55)) (-1898 (($) 16 T CONST)) (-4073 (((-895) $) NIL (|has| (-142) (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-4072 (($ $ $) 29)) (-1696 (((-142) $) 52)) (-1715 (($ (-142) $) 50)) (-3690 (($ (-895)) NIL (|has| (-142) (-361)))) (-2612 (($) 14 T CONST)) (-3445 (((-1089) $) NIL)) (-1614 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3576 (((-142) $) 53)) (-1410 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 48)) (-2061 (($) 13 T CONST)) (-1287 (($ $ $) 31) (($ $ (-142)) NIL)) (-3246 (($ (-623 (-142))) NIL) (($) NIL)) (-3457 (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069)))) (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-1127) $) 36) (((-526) $) NIL (|has| (-142) (-596 (-526)))) (((-623 (-142)) $) 34)) (-2245 (($ (-623 (-142))) NIL)) (-3580 (($ $) 32 (|has| (-142) (-361)))) (-2233 (((-837) $) 46)) (-4277 (($ (-1127)) 12) (($ (-623 (-142))) 43)) (-2102 (((-749) $) NIL)) (-1299 (($) 49) (($ (-623 (-142))) NIL)) (-4017 (($ (-623 (-142))) NIL)) (-3404 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2208 (($) 19 T CONST)) (-4039 (($) 18 T CONST)) (-2264 (((-112) $ $) 22)) (-3307 (((-749) $) 47 (|has| $ (-6 -4344))))) -(((-139) (-13 (-1069) (-596 (-1127)) (-418 (-142)) (-596 (-623 (-142))) (-10 -8 (-15 -4277 ($ (-1127))) (-15 -4277 ($ (-623 (-142)))) (-15 -2061 ($) -4165) (-15 -2612 ($) -4165) (-15 -3567 ($) -4165) (-15 -1898 ($) -4165) (-15 -4039 ($) -4165) (-15 -2208 ($) -4165)))) (T -139)) -((-4277 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-139)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-623 (-142))) (-5 *1 (-139)))) (-2061 (*1 *1) (-5 *1 (-139))) (-2612 (*1 *1) (-5 *1 (-139))) (-3567 (*1 *1) (-5 *1 (-139))) (-1898 (*1 *1) (-5 *1 (-139))) (-4039 (*1 *1) (-5 *1 (-139))) (-2208 (*1 *1) (-5 *1 (-139)))) -(-13 (-1069) (-596 (-1127)) (-418 (-142)) (-596 (-623 (-142))) (-10 -8 (-15 -4277 ($ (-1127))) (-15 -4277 ($ (-623 (-142)))) (-15 -2061 ($) -4165) (-15 -2612 ($) -4165) (-15 -3567 ($) -4165) (-15 -1898 ($) -4165) (-15 -4039 ($) -4165) (-15 -2208 ($) -4165))) -((-3805 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2543 ((|#1| |#3|) 9)) (-4054 ((|#3| |#3|) 15))) -(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2543 (|#1| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-966 |#1|) (-366 |#2|)) (T -140)) -((-3805 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-366 *5)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-966 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-366 *4)))) (-2543 (*1 *2 *3) (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-366 *4))))) -(-10 -7 (-15 -2543 (|#1| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4083 (($ $ $) 8)) (-3643 (($ $) 7)) (-1437 (($ $ $) 6))) +((-3773 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) (-1368 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1235))))) +(-13 (-825) (-10 -8 (-15 -3773 ((-749) $)) (-15 -1368 ((-1235) $ (-749))))) +(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 10)) (-3382 (((-112) $ $) NIL))) +(((-132) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $))))) (T -132)) +((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-132))))) +(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)))) +((-2893 (((-112) $ $) 34)) (-3534 (((-112) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-749) "failed") $) 40)) (-3502 (((-749) $) 38)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1370 (((-112)) 41)) (-1369 (((-112) (-112)) 43)) (-2856 (((-112) $) 24)) (-1371 (((-112) $) 37)) (-4312 (((-838) $) 22) (($ (-749)) 14)) (-2986 (($) 11 T CONST)) (-2992 (($) 12 T CONST)) (-1372 (($ (-749)) 15)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 25)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 26)) (-4192 (((-3 $ "failed") $ $) 30)) (-4194 (($ $ $) 28)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL) (($ $ $) 36)) (* (($ (-749) $) 33) (($ (-893) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4350 "*")) (-15 -4192 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1372 ($ (-749))) (-15 -2856 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112))) (-15 -1369 ((-112) (-112)))))) (T -133)) +((-4192 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1370 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4350 "*")) (-15 -4192 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1372 ($ (-749))) (-15 -2856 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112))) (-15 -1369 ((-112) (-112))))) +((-2893 (((-112) $ $) NIL)) (-1373 (($ (-620 |#3|)) 40)) (-3768 (($ $) 99) (($ $ (-536) (-536)) 98)) (-3891 (($) 17)) (-3503 (((-3 |#3| "failed") $) 60)) (-3502 ((|#3| $) NIL)) (-1377 (($ $ (-620 (-536))) 100)) (-1374 (((-620 |#3|) $) 36)) (-3439 (((-749) $) 44)) (-4299 (($ $ $) 93)) (-1375 (($) 43)) (-3588 (((-1129) $) NIL)) (-1376 (($) 16)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $) 46) ((|#3| $ (-536)) 47) ((|#3| $ (-536) (-536)) 48) ((|#3| $ (-536) (-536) (-536)) 49) ((|#3| $ (-536) (-536) (-536) (-536)) 50) ((|#3| $ (-620 (-536))) 52)) (-4302 (((-749) $) 45)) (-2100 (($ $ (-536) $ (-536)) 94) (($ $ (-536) (-536)) 96)) (-4312 (((-838) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1113 |#2| |#3|)) 78) (($ (-620 |#3|)) 53) (($ (-620 $)) 58)) (-2986 (($) 69 T CONST)) (-2992 (($) 70 T CONST)) (-3382 (((-112) $ $) 80)) (-4192 (($ $) 86) (($ $ $) 84)) (-4194 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-536)) 89) (($ (-536) $) 88) (($ $ $) 95))) +(((-134 |#1| |#2| |#3|) (-13 (-457 |#3| (-749)) (-462 (-536) (-749)) (-10 -8 (-15 -4312 ($ (-233 |#2| |#3|))) (-15 -4312 ($ (-1113 |#2| |#3|))) (-15 -4312 ($ (-620 |#3|))) (-15 -4312 ($ (-620 $))) (-15 -3439 ((-749) $)) (-15 -4154 (|#3| $)) (-15 -4154 (|#3| $ (-536))) (-15 -4154 (|#3| $ (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-620 (-536)))) (-15 -4299 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-536) $ (-536))) (-15 -2100 ($ $ (-536) (-536))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-536) (-536))) (-15 -1377 ($ $ (-620 (-536)))) (-15 -1376 ($)) (-15 -1375 ($)) (-15 -1374 ((-620 |#3|) $)) (-15 -1373 ($ (-620 |#3|))) (-15 -3891 ($)))) (-536) (-749) (-170)) (T -134)) +((-4299 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1113 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 *2) (-4 *5 (-170)))) (-4154 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-536)) (-14 *4 (-749)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-536))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-536)) (-14 *5 (-749)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2100 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-2100 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-3768 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-1377 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1376 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1375 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-620 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)))) (-3891 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) +(-13 (-457 |#3| (-749)) (-462 (-536) (-749)) (-10 -8 (-15 -4312 ($ (-233 |#2| |#3|))) (-15 -4312 ($ (-1113 |#2| |#3|))) (-15 -4312 ($ (-620 |#3|))) (-15 -4312 ($ (-620 $))) (-15 -3439 ((-749) $)) (-15 -4154 (|#3| $)) (-15 -4154 (|#3| $ (-536))) (-15 -4154 (|#3| $ (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-620 (-536)))) (-15 -4299 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-536) $ (-536))) (-15 -2100 ($ $ (-536) (-536))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-536) (-536))) (-15 -1377 ($ $ (-620 (-536)))) (-15 -1376 ($)) (-15 -1375 ($)) (-15 -1374 ((-620 |#3|) $)) (-15 -1373 ($ (-620 |#3|))) (-15 -3891 ($)))) +((-2500 (((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4313 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4313 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-536) (-749) (-170) (-170)) (T -135)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -2500 ((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4313 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) +((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-136) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -136)) +((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136))))) +(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1378 (((-1147) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 12)) (-3382 (((-112) $ $) NIL))) +(((-137) (-13 (-1054) (-10 -8 (-15 -1378 ((-1147) $)) (-15 -3579 ((-620 (-1106)) $))))) (T -137)) +((-1378 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-137)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-137))))) +(-13 (-1054) (-10 -8 (-15 -1378 ((-1147) $)) (-15 -3579 ((-620 (-1106)) $)))) +((-4312 (((-838) $) 7))) +(((-138) (-595 (-838))) (T -138)) +NIL +(-595 (-838)) +((-2893 (((-112) $ $) NIL)) (-3781 (($) 15 T CONST)) (-1916 (($) NIL (|has| (-142) (-361)))) (-3580 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3582 (($ $ $) NIL)) (-3581 (((-112) $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| (-142) (-361)))) (-3585 (($) NIL) (($ (-620 (-142))) NIL)) (-1626 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3759 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (($ (-142) $) 51 (|has| $ (-6 -4348)))) (-3760 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3322 (($) NIL (|has| (-142) (-361)))) (-2063 (((-620 (-142)) $) 60 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3672 (((-142) $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3673 (((-142) $) NIL (|has| (-142) (-825)))) (-2067 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 55)) (-3783 (($) 16 T CONST)) (-2121 (((-893) $) NIL (|has| (-142) (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 29)) (-1331 (((-142) $) 52)) (-3965 (($ (-142) $) 50)) (-2487 (($ (-893)) NIL (|has| (-142) (-361)))) (-1381 (($) 14 T CONST)) (-3589 (((-1091) $) NIL)) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1332 (((-142) $) 53)) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 48)) (-1382 (($) 13 T CONST)) (-3583 (($ $ $) 31) (($ $ (-142)) NIL)) (-1518 (($ (-620 (-142))) NIL) (($) NIL)) (-2064 (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-1129) $) 36) (((-525) $) NIL (|has| (-142) (-596 (-525)))) (((-620 (-142)) $) 34)) (-3879 (($ (-620 (-142))) NIL)) (-1917 (($ $) 32 (|has| (-142) (-361)))) (-4312 (((-838) $) 46)) (-1383 (($ (-1129)) 12) (($ (-620 (-142))) 43)) (-1918 (((-749) $) NIL)) (-3586 (($) 49) (($ (-620 (-142))) NIL)) (-1333 (($ (-620 (-142))) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1379 (($) 19 T CONST)) (-1380 (($) 18 T CONST)) (-3382 (((-112) $ $) 22)) (-4311 (((-749) $) 47 (|has| $ (-6 -4348))))) +(((-139) (-13 (-1072) (-596 (-1129)) (-419 (-142)) (-596 (-620 (-142))) (-10 -8 (-15 -1383 ($ (-1129))) (-15 -1383 ($ (-620 (-142)))) (-15 -1382 ($) -4306) (-15 -1381 ($) -4306) (-15 -3781 ($) -4306) (-15 -3783 ($) -4306) (-15 -1380 ($) -4306) (-15 -1379 ($) -4306)))) (T -139)) +((-1383 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-139)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-620 (-142))) (-5 *1 (-139)))) (-1382 (*1 *1) (-5 *1 (-139))) (-1381 (*1 *1) (-5 *1 (-139))) (-3781 (*1 *1) (-5 *1 (-139))) (-3783 (*1 *1) (-5 *1 (-139))) (-1380 (*1 *1) (-5 *1 (-139))) (-1379 (*1 *1) (-5 *1 (-139)))) +(-13 (-1072) (-596 (-1129)) (-419 (-142)) (-596 (-620 (-142))) (-10 -8 (-15 -1383 ($ (-1129))) (-15 -1383 ($ (-620 (-142)))) (-15 -1382 ($) -4306) (-15 -1381 ($) -4306) (-15 -3781 ($) -4306) (-15 -3783 ($) -4306) (-15 -1380 ($) -4306) (-15 -1379 ($) -4306))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4094 ((|#1| |#3|) 9)) (-4095 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-543) (-965 |#1|) (-365 |#2|)) (T -140)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4))))) +(-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1414 (($ $ $) 8)) (-1412 (($ $) 7)) (-3432 (($ $ $) 6))) (((-141) (-138)) (T -141)) -((-4083 (*1 *1 *1 *1) (-4 *1 (-141))) (-3643 (*1 *1 *1) (-4 *1 (-141))) (-1437 (*1 *1 *1 *1) (-4 *1 (-141)))) -(-13 (-10 -8 (-15 -1437 ($ $ $)) (-15 -3643 ($ $)) (-15 -4083 ($ $ $)))) -((-2221 (((-112) $ $) NIL)) (-3308 (((-112) $) 30)) (-3567 (($ $) 43)) (-2739 (($) 17)) (-3828 (((-749)) 10)) (-1864 (($) 16)) (-3433 (($) 18)) (-3573 (((-749) $) 14)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-1562 (((-112) $) 32)) (-1898 (($ $) 44)) (-4073 (((-895) $) 15)) (-2369 (((-1127) $) 38)) (-3690 (($ (-895)) 13)) (-2521 (((-112) $) 28)) (-3445 (((-1089) $) NIL)) (-1824 (($) 19)) (-4047 (((-112) $) 26)) (-2233 (((-837) $) 21)) (-2732 (($ (-749)) 11) (($ (-1127)) 42)) (-2979 (((-112) $) 36)) (-3042 (((-112) $) 34)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 7)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 8))) -(((-142) (-13 (-819) (-10 -8 (-15 -3573 ((-749) $)) (-15 -2732 ($ (-749))) (-15 -2732 ($ (-1127))) (-15 -2739 ($)) (-15 -3433 ($)) (-15 -1824 ($)) (-15 -3567 ($ $)) (-15 -1898 ($ $)) (-15 -4047 ((-112) $)) (-15 -2521 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -3308 ((-112) $)) (-15 -1562 ((-112) $)) (-15 -2979 ((-112) $))))) (T -142)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-142)))) (-2739 (*1 *1) (-5 *1 (-142))) (-3433 (*1 *1) (-5 *1 (-142))) (-1824 (*1 *1) (-5 *1 (-142))) (-3567 (*1 *1 *1) (-5 *1 (-142))) (-1898 (*1 *1 *1) (-5 *1 (-142))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(-13 (-819) (-10 -8 (-15 -3573 ((-749) $)) (-15 -2732 ($ (-749))) (-15 -2732 ($ (-1127))) (-15 -2739 ($)) (-15 -3433 ($)) (-15 -1824 ($)) (-15 -3567 ($ $)) (-15 -1898 ($ $)) (-15 -4047 ((-112) $)) (-15 -2521 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -3308 ((-112) $)) (-15 -1562 ((-112) $)) (-15 -2979 ((-112) $)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-1613 (((-3 $ "failed") $) 33)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-1414 (*1 *1 *1 *1) (-4 *1 (-141))) (-1412 (*1 *1 *1) (-4 *1 (-141))) (-3432 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -3432 ($ $ $)) (-15 -1412 ($ $)) (-15 -1414 ($ $ $)))) +((-2893 (((-112) $ $) NIL)) (-1386 (((-112) $) 30)) (-3781 (($ $) 43)) (-1568 (($) 17)) (-3466 (((-749)) 10)) (-3322 (($) 16)) (-2904 (($) 18)) (-1392 (((-749) $) 14)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1385 (((-112) $) 32)) (-3783 (($ $) 44)) (-2121 (((-893) $) 15)) (-3588 (((-1129) $) 38)) (-2487 (($ (-893)) 13)) (-1388 (((-112) $) 28)) (-3589 (((-1091) $) NIL)) (-1390 (($) 19)) (-1389 (((-112) $) 26)) (-4312 (((-838) $) 21)) (-1391 (($ (-749)) 11) (($ (-1129)) 42)) (-1384 (((-112) $) 36)) (-1387 (((-112) $) 34)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 7)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) +(((-142) (-13 (-819) (-10 -8 (-15 -1392 ((-749) $)) (-15 -1391 ($ (-749))) (-15 -1391 ($ (-1129))) (-15 -1568 ($)) (-15 -2904 ($)) (-15 -1390 ($)) (-15 -3781 ($ $)) (-15 -3783 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $))))) (T -142)) +((-1392 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-142)))) (-1568 (*1 *1) (-5 *1 (-142))) (-2904 (*1 *1) (-5 *1 (-142))) (-1390 (*1 *1) (-5 *1 (-142))) (-3781 (*1 *1 *1) (-5 *1 (-142))) (-3783 (*1 *1 *1) (-5 *1 (-142))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-819) (-10 -8 (-15 -1392 ((-749) $)) (-15 -1391 ($ (-749))) (-15 -1391 ($ (-1129))) (-15 -1568 ($)) (-15 -2904 ($)) (-15 -1390 ($)) (-15 -3781 ($ $)) (-15 -3783 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3030 (((-3 $ "failed") $) 33)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-143) (-138)) (T -143)) -((-1613 (*1 *1 *1) (|partial| -4 *1 (-143)))) -(-13 (-1021) (-10 -8 (-15 -1613 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-3359 ((|#1| (-667 |#1|) |#1|) 19))) -(((-144 |#1|) (-10 -7 (-15 -3359 (|#1| (-667 |#1|) |#1|))) (-170)) (T -144)) -((-3359 (*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) -(-10 -7 (-15 -3359 (|#1| (-667 |#1|) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-3030 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1023) (-10 -8 (-15 -3030 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2693 ((|#1| (-667 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -2693 (|#1| (-667 |#1|) |#1|))) (-170)) (T -144)) +((-2693 (*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -2693 (|#1| (-667 |#1|) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-145) (-138)) (T -145)) NIL -(-13 (-1021)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2127 (((-2 (|:| -3068 (-749)) (|:| -4304 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749)) 70)) (-4175 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|) 52)) (-3764 (((-2 (|:| -4304 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3501 ((|#1| |#3| |#3|) 40)) (-1553 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-2394 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|) 49))) -(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -3764 ((-2 (|:| -4304 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4175 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -2127 ((-2 (|:| -3068 (-749)) (|:| -4304 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -3501 (|#1| |#3| |#3|)) (-15 -1553 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -2394 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) (-1186) (-1204 |#1|) (-1204 (-400 |#2|))) (T -146)) -((-2394 (*1 *2 *3 *3) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5))))) (-1553 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1204 *3)))) (-3501 (*1 *2 *3 *3) (-12 (-4 *4 (-1204 *2)) (-4 *2 (-1186)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1204 (-400 *4))))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1186)) (-4 *6 (-1204 *5)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1204 *3)))) (-4175 (*1 *2 *3) (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5))))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| -4304 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5)))))) -(-10 -7 (-15 -3764 ((-2 (|:| -4304 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4175 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -2127 ((-2 (|:| -3068 (-749)) (|:| -4304 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -3501 (|#1| |#3| |#3|)) (-15 -1553 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -2394 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) -((-1370 (((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|)) 32))) -(((-147 |#1| |#2|) (-10 -7 (-15 -1370 ((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|)))) (-535) (-164 |#1|)) (T -147)) -((-1370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5))))) -(-10 -7 (-15 -1370 ((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|)))) -((-2097 (($ (-1 (-112) |#2|) $) 29)) (-2708 (($ $) 36)) (-1979 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2924 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1614 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1410 (((-112) (-1 (-112) |#2|) $) 16)) (-3457 (((-749) (-1 (-112) |#2|) $) 14) (((-749) |#2| $) NIL)) (-3404 (((-112) (-1 (-112) |#2|) $) 15)) (-3307 (((-749) $) 11))) -(((-148 |#1| |#2|) (-10 -8 (-15 -2708 (|#1| |#1|)) (-15 -1979 (|#1| |#2| |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2097 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1979 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|))) (-149 |#2|) (-1182)) (T -148)) -NIL -(-10 -8 (-15 -2708 (|#1| |#1|)) (-15 -1979 (|#1| |#2| |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2097 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1979 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2097 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2708 (($ $) 41 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344))) (($ |#1| $) 42 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 40 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 49)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-149 |#1|) (-138) (-1182)) (T -149)) -((-2245 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-149 *3)))) (-1614 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1182)))) (-2924 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)))) (-2924 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)))) (-1979 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *3)) (-4 *3 (-1182)))) (-2097 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *3)) (-4 *3 (-1182)))) (-2924 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1069)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)))) (-1979 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)) (-4 *2 (-1069)))) (-2708 (*1 *1 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)) (-4 *2 (-1069))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -2245 ($ (-623 |t#1|))) (-15 -1614 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4344)) (PROGN (-15 -2924 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2924 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1979 ($ (-1 (-112) |t#1|) $)) (-15 -2097 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -2924 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1979 ($ |t#1| $)) (-15 -2708 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) 86)) (-2419 (((-112) $) NIL)) (-1488 (($ |#2| (-623 (-895))) 56)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1840 (($ (-895)) 47)) (-1877 (((-133)) 23)) (-2233 (((-837) $) 69) (($ (-550)) 45) (($ |#2|) 46)) (-1708 ((|#2| $ (-623 (-895))) 59)) (-3091 (((-749)) 20)) (-2688 (($) 40 T CONST)) (-2700 (($) 43 T CONST)) (-2264 (((-112) $ $) 26)) (-2382 (($ $ |#2|) NIL)) (-2370 (($ $) 34) (($ $ $) 32)) (-2358 (($ $ $) 30)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-150 |#1| |#2| |#3|) (-13 (-1021) (-38 |#2|) (-1235 |#2|) (-10 -8 (-15 -1840 ($ (-895))) (-15 -1488 ($ |#2| (-623 (-895)))) (-15 -1708 (|#2| $ (-623 (-895)))) (-15 -1537 ((-3 $ "failed") $)))) (-895) (-356) (-967 |#1| |#2|)) (T -150)) -((-1537 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-356)) (-14 *4 (-967 *2 *3)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-967 *3 *4)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-895))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-14 *5 (-967 *4 *2))))) -(-13 (-1021) (-38 |#2|) (-1235 |#2|) (-10 -8 (-15 -1840 ($ (-895))) (-15 -1488 ($ |#2| (-623 (-895)))) (-15 -1708 (|#2| $ (-623 (-895)))) (-15 -1537 ((-3 $ "failed") $)))) -((-4150 (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1565 (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550))) 63) (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901)) 64)) (-2092 (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219))))) 67) (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-917 (-219)))) 66) (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550))) 58) (((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901)) 59))) -(((-151) (-10 -7 (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550)))) (-15 -1565 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550)))) (-15 -4150 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-917 (-219))))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219)))))))) (T -151)) -((-2092 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151)) (-5 *3 (-623 (-623 (-917 (-219))))))) (-2092 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151)) (-5 *3 (-623 (-917 (-219)))))) (-4150 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 *4)))) (|:| |xValues| (-1063 *4)) (|:| |yValues| (-1063 *4)))) (-5 *1 (-151)) (-5 *3 (-623 (-623 (-917 *4)))))) (-1565 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-400 (-550))) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151)))) (-2092 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-400 (-550))) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) (-5 *1 (-151))))) -(-10 -7 (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550)))) (-15 -1565 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-901) (-400 (-550)) (-400 (-550)))) (-15 -4150 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-917 (-219))))) (-15 -2092 ((-2 (|:| |brans| (-623 (-623 (-917 (-219))))) (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219)))) (-623 (-623 (-917 (-219))))))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2576 (((-623 (-1104)) $) 15)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 24) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 9)) (-2264 (((-112) $ $) NIL))) -(((-152) (-13 (-1052) (-10 -8 (-15 -2576 ((-623 (-1104)) $)) (-15 -1865 ((-1104) $))))) (T -152)) -((-2576 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-152)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-152))))) -(-13 (-1052) (-10 -8 (-15 -2576 ((-623 (-1104)) $)) (-15 -1865 ((-1104) $)))) -((-3774 (((-623 (-167 |#2|)) |#1| |#2|) 45))) -(((-153 |#1| |#2|) (-10 -7 (-15 -3774 ((-623 (-167 |#2|)) |#1| |#2|))) (-1204 (-167 (-550))) (-13 (-356) (-823))) (T -153)) -((-3774 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1204 (-167 (-550)))) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -3774 ((-623 (-167 |#2|)) |#1| |#2|))) -((-2221 (((-112) $ $) NIL)) (-2386 (((-1181) $) 12)) (-2374 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-154) (-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1181) $))))) (T -154)) -((-2374 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-154)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-154))))) -(-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1181) $)))) -((-2221 (((-112) $ $) NIL)) (-2190 (($) 15)) (-2222 (($) 14)) (-2717 (((-895)) 22)) (-2369 (((-1127) $) NIL)) (-3181 (((-550) $) 19)) (-3445 (((-1089) $) NIL)) (-2557 (($) 16)) (-2585 (($ (-550)) 23)) (-2233 (((-837) $) 29)) (-1636 (($) 17)) (-2264 (((-112) $ $) 13)) (-2358 (($ $ $) 11)) (* (($ (-895) $) 21) (($ (-219) $) 8))) -(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-219) $)) (-15 -2358 ($ $ $)) (-15 -2222 ($)) (-15 -2190 ($)) (-15 -2557 ($)) (-15 -1636 ($)) (-15 -3181 ((-550) $)) (-15 -2717 ((-895))) (-15 -2585 ($ (-550)))))) (T -155)) -((-2358 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-2222 (*1 *1) (-5 *1 (-155))) (-2190 (*1 *1) (-5 *1 (-155))) (-2557 (*1 *1) (-5 *1 (-155))) (-1636 (*1 *1) (-5 *1 (-155))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) (-2717 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-155))))) -(-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-219) $)) (-15 -2358 ($ $ $)) (-15 -2222 ($)) (-15 -2190 ($)) (-15 -2557 ($)) (-15 -1636 ($)) (-15 -3181 ((-550) $)) (-15 -2717 ((-895))) (-15 -2585 ($ (-550))))) -((-1846 ((|#2| |#2| (-1061 |#2|)) 88) ((|#2| |#2| (-1145)) 68)) (-3141 ((|#2| |#2| (-1061 |#2|)) 87) ((|#2| |#2| (-1145)) 67)) (-4083 ((|#2| |#2| |#2|) 27)) (-1355 (((-114) (-114)) 99)) (-2479 ((|#2| (-623 |#2|)) 117)) (-2976 ((|#2| (-623 |#2|)) 135)) (-4116 ((|#2| (-623 |#2|)) 125)) (-4286 ((|#2| |#2|) 123)) (-1577 ((|#2| (-623 |#2|)) 111)) (-3583 ((|#2| (-623 |#2|)) 112)) (-2091 ((|#2| (-623 |#2|)) 133)) (-3634 ((|#2| |#2| (-1145)) 56) ((|#2| |#2|) 55)) (-3643 ((|#2| |#2|) 23)) (-1437 ((|#2| |#2| |#2|) 26)) (-1905 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -4083 (|#2| |#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1145))) (-15 -1846 (|#2| |#2| (-1145))) (-15 -1846 (|#2| |#2| (-1061 |#2|))) (-15 -3141 (|#2| |#2| (-1145))) (-15 -3141 (|#2| |#2| (-1061 |#2|))) (-15 -4286 (|#2| |#2|)) (-15 -2091 (|#2| (-623 |#2|))) (-15 -4116 (|#2| (-623 |#2|))) (-15 -2976 (|#2| (-623 |#2|))) (-15 -1577 (|#2| (-623 |#2|))) (-15 -3583 (|#2| (-623 |#2|))) (-15 -2479 (|#2| (-623 |#2|)))) (-13 (-825) (-542)) (-423 |#1|)) (T -156)) -((-2479 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *3 (-1061 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-1846 (*1 *2 *2 *3) (-12 (-5 *3 (-1061 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)))) (-1846 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-4083 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1437 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *4)) (-4 *4 (-423 *3)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4))))) -(-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -4083 (|#2| |#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1145))) (-15 -1846 (|#2| |#2| (-1145))) (-15 -1846 (|#2| |#2| (-1061 |#2|))) (-15 -3141 (|#2| |#2| (-1145))) (-15 -3141 (|#2| |#2| (-1061 |#2|))) (-15 -4286 (|#2| |#2|)) (-15 -2091 (|#2| (-623 |#2|))) (-15 -4116 (|#2| (-623 |#2|))) (-15 -2976 (|#2| (-623 |#2|))) (-15 -1577 (|#2| (-623 |#2|))) (-15 -3583 (|#2| (-623 |#2|))) (-15 -2479 (|#2| (-623 |#2|)))) -((-1778 ((|#1| |#1| |#1|) 53)) (-3035 ((|#1| |#1| |#1|) 50)) (-4083 ((|#1| |#1| |#1|) 44)) (-1882 ((|#1| |#1|) 35)) (-2271 ((|#1| |#1| (-623 |#1|)) 43)) (-3643 ((|#1| |#1|) 37)) (-1437 ((|#1| |#1| |#1|) 40))) -(((-157 |#1|) (-10 -7 (-15 -1437 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2271 (|#1| |#1| (-623 |#1|))) (-15 -1882 (|#1| |#1|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -3035 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|))) (-535)) (T -157)) -((-1778 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-4083 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1882 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-2271 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2)))) (-3643 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(-10 -7 (-15 -1437 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2271 (|#1| |#1| (-623 |#1|))) (-15 -1882 (|#1| |#1|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -3035 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|))) -((-1846 (($ $ (-1145)) 12) (($ $ (-1061 $)) 11)) (-3141 (($ $ (-1145)) 10) (($ $ (-1061 $)) 9)) (-4083 (($ $ $) 8)) (-3634 (($ $) 14) (($ $ (-1145)) 13)) (-3643 (($ $) 7)) (-1437 (($ $ $) 6))) +(-13 (-1023)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-1395 (((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749)) 70)) (-1394 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|) 52)) (-1393 (((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1396 ((|#1| |#3| |#3|) 40)) (-4122 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-1397 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4122 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) (-1188) (-1205 |#1|) (-1205 (-400 |#2|))) (T -146)) +((-1397 (*1 *2 *3 *3) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5))))) (-4122 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1205 *3)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-1188)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1205 *3)))) (-1394 (*1 *2 *3) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5))))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -4308 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) +(-10 -7 (-15 -1393 ((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4122 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) +((-3032 (((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -3032 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)))) (-535) (-164 |#1|)) (T -147)) +((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -3032 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)))) +((-4068 (($ (-1 (-112) |#2|) $) 29)) (-1398 (($ $) 36)) (-3760 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2065 (((-112) (-1 (-112) |#2|) $) 16)) (-2064 (((-749) (-1 (-112) |#2|) $) 14) (((-749) |#2| $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) 15)) (-4311 (((-749) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) (-149 |#2|) (-1183)) (T -148)) +NIL +(-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-4068 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 41 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348))) (($ |#1| $) 42 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 40 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 49)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-149 |#1|) (-138) (-1183)) (T -149)) +((-3879 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-149 *3)))) (-1399 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-4197 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) (-4 *3 (-1183)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) (-4 *3 (-1183)))) (-4197 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-3760 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-1398 (*1 *1 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) (-4 *2 (-1072))))) +(-13 (-481 |t#1|) (-10 -8 (-15 -3879 ($ (-620 |t#1|))) (-15 -1399 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4348)) (PROGN (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3760 ($ (-1 (-112) |t#1|) $)) (-15 -4068 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3760 ($ |t#1| $)) (-15 -1398 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 86)) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-620 (-893))) 56)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1400 (($ (-893)) 47)) (-4266 (((-133)) 23)) (-4312 (((-838) $) 69) (($ (-536)) 45) (($ |#2|) 46)) (-4035 ((|#2| $ (-620 (-893))) 59)) (-3456 (((-749)) 20)) (-2986 (($) 40 T CONST)) (-2992 (($) 43 T CONST)) (-3382 (((-112) $ $) 26)) (-4303 (($ $ |#2|) NIL)) (-4192 (($ $) 34) (($ $ $) 32)) (-4194 (($ $ $) 30)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1023) (-38 |#2|) (-1237 |#2|) (-10 -8 (-15 -1400 ($ (-893))) (-15 -3221 ($ |#2| (-620 (-893)))) (-15 -4035 (|#2| $ (-620 (-893)))) (-15 -3816 ((-3 $ "failed") $)))) (-893) (-356) (-967 |#1| |#2|)) (T -150)) +((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-893)) (-4 *3 (-356)) (-14 *4 (-967 *2 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-967 *3 *4)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-893))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) (-14 *5 (-967 *4 *2))))) +(-13 (-1023) (-38 |#2|) (-1237 |#2|) (-10 -8 (-15 -1400 ($ (-893))) (-15 -3221 ($ |#2| (-620 (-893)))) (-15 -4035 (|#2| $ (-620 (-893)))) (-15 -3816 ((-3 $ "failed") $)))) +((-1402 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1401 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536))) 63) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899)) 64)) (-1560 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219))))) 67) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219)))) 66) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536))) 58) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899)) 59))) +(((-151) (-10 -7 (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1402 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))))))) (T -151)) +((-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 (-219))))))) (-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-620 (-917 (-219)))))) (-1402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 *4)))) (|:| |xValues| (-1060 *4)) (|:| |yValues| (-1060 *4)))) (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 *4)))))) (-1401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151))))) +(-10 -7 (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1402 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219))))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3527 (((-620 (-1106)) $) 15)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 24) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 9)) (-3382 (((-112) $ $) NIL))) +(((-152) (-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $))))) (T -152)) +((-3527 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-152)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-152))))) +(-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $)))) +((-1452 (((-620 (-166 |#2|)) |#1| |#2|) 45))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1452 ((-620 (-166 |#2|)) |#1| |#2|))) (-1205 (-166 (-536))) (-13 (-356) (-823))) (T -153)) +((-1452 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1205 (-166 (-536)))) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -1452 ((-620 (-166 |#2|)) |#1| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3877 (((-1184) $) 12)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-154) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1184) $))))) (T -154)) +((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-154)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-154))))) +(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1184) $)))) +((-2893 (((-112) $ $) NIL)) (-1404 (($) 15)) (-3429 (($) 14)) (-1403 (((-893)) 22)) (-3588 (((-1129) $) NIL)) (-3284 (((-536) $) 19)) (-3589 (((-1091) $) NIL)) (-3428 (($) 16)) (-3283 (($ (-536)) 23)) (-4312 (((-838) $) 29)) (-3427 (($) 17)) (-3382 (((-112) $ $) 13)) (-4194 (($ $ $) 11)) (* (($ (-893) $) 21) (($ (-219) $) 8))) +(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-893) $)) (-15 * ($ (-219) $)) (-15 -4194 ($ $ $)) (-15 -3429 ($)) (-15 -1404 ($)) (-15 -3428 ($)) (-15 -3427 ($)) (-15 -3284 ((-536) $)) (-15 -1403 ((-893))) (-15 -3283 ($ (-536)))))) (T -155)) +((-4194 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-3429 (*1 *1) (-5 *1 (-155))) (-1404 (*1 *1) (-5 *1 (-155))) (-3428 (*1 *1) (-5 *1 (-155))) (-3427 (*1 *1) (-5 *1 (-155))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) (-1403 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-155))))) +(-13 (-25) (-10 -8 (-15 * ($ (-893) $)) (-15 * ($ (-219) $)) (-15 -4194 ($ $ $)) (-15 -3429 ($)) (-15 -1404 ($)) (-15 -3428 ($)) (-15 -3427 ($)) (-15 -3284 ((-536) $)) (-15 -1403 ((-893))) (-15 -3283 ($ (-536))))) +((-1417 ((|#2| |#2| (-1063 |#2|)) 88) ((|#2| |#2| (-1147)) 68)) (-4299 ((|#2| |#2| (-1063 |#2|)) 87) ((|#2| |#2| (-1147)) 67)) (-1414 ((|#2| |#2| |#2|) 27)) (-3375 (((-113) (-113)) 99)) (-1411 ((|#2| (-620 |#2|)) 117)) (-1408 ((|#2| (-620 |#2|)) 135)) (-1407 ((|#2| (-620 |#2|)) 125)) (-1405 ((|#2| |#2|) 123)) (-1409 ((|#2| (-620 |#2|)) 111)) (-1410 ((|#2| (-620 |#2|)) 112)) (-1406 ((|#2| (-620 |#2|)) 133)) (-1418 ((|#2| |#2| (-1147)) 56) ((|#2| |#2|) 55)) (-1412 ((|#2| |#2|) 23)) (-3432 ((|#2| |#2| |#2|) 26)) (-2333 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3432 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1063 |#2|))) (-15 -4299 (|#2| |#2| (-1147))) (-15 -4299 (|#2| |#2| (-1063 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-620 |#2|))) (-15 -1407 (|#2| (-620 |#2|))) (-15 -1408 (|#2| (-620 |#2|))) (-15 -1409 (|#2| (-620 |#2|))) (-15 -1410 (|#2| (-620 |#2|))) (-15 -1411 (|#2| (-620 |#2|)))) (-13 (-825) (-543)) (-414 |#1|)) (T -156)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-4299 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)))) (-4299 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1418 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3432 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *4)) (-4 *4 (-414 *3)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4))))) +(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3432 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1063 |#2|))) (-15 -4299 (|#2| |#2| (-1147))) (-15 -4299 (|#2| |#2| (-1063 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-620 |#2|))) (-15 -1407 (|#2| (-620 |#2|))) (-15 -1408 (|#2| (-620 |#2|))) (-15 -1409 (|#2| (-620 |#2|))) (-15 -1410 (|#2| (-620 |#2|))) (-15 -1411 (|#2| (-620 |#2|)))) +((-1416 ((|#1| |#1| |#1|) 53)) (-1415 ((|#1| |#1| |#1|) 50)) (-1414 ((|#1| |#1| |#1|) 44)) (-3218 ((|#1| |#1|) 35)) (-1413 ((|#1| |#1| (-620 |#1|)) 43)) (-1412 ((|#1| |#1|) 37)) (-3432 ((|#1| |#1| |#1|) 40))) +(((-157 |#1|) (-10 -7 (-15 -3432 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-620 |#1|))) (-15 -3218 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) (-535)) (T -157)) +((-1416 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3218 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2)))) (-1412 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3432 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(-10 -7 (-15 -3432 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-620 |#1|))) (-15 -3218 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) +((-1417 (($ $ (-1147)) 12) (($ $ (-1063 $)) 11)) (-4299 (($ $ (-1147)) 10) (($ $ (-1063 $)) 9)) (-1414 (($ $ $) 8)) (-1418 (($ $) 14) (($ $ (-1147)) 13)) (-1412 (($ $) 7)) (-3432 (($ $ $) 6))) (((-158) (-138)) (T -158)) -((-3634 (*1 *1 *1) (-4 *1 (-158))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-158)))) (-3141 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145)))) (-3141 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-158))))) -(-13 (-141) (-10 -8 (-15 -3634 ($ $)) (-15 -3634 ($ $ (-1145))) (-15 -1846 ($ $ (-1145))) (-15 -1846 ($ $ (-1061 $))) (-15 -3141 ($ $ (-1145))) (-15 -3141 ($ $ (-1061 $))))) +((-1418 (*1 *1 *1) (-4 *1 (-158))) (-1418 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) (-4299 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158))))) +(-13 (-141) (-10 -8 (-15 -1418 ($ $)) (-15 -1418 ($ $ (-1147))) (-15 -1417 ($ $ (-1147))) (-15 -1417 ($ $ (-1063 $))) (-15 -4299 ($ $ (-1147))) (-15 -4299 ($ $ (-1063 $))))) (((-141) . T)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-623 (-1104)) $) 9)) (-2264 (((-112) $ $) NIL))) -(((-159) (-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $))))) (T -159)) -((-1865 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-159))))) -(-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $)))) -((-2221 (((-112) $ $) NIL)) (-2089 (($ (-550)) 13) (($ $ $) 14)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 17)) (-2264 (((-112) $ $) 9))) -(((-160) (-13 (-1069) (-10 -8 (-15 -2089 ($ (-550))) (-15 -2089 ($ $ $))))) (T -160)) -((-2089 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-160)))) (-2089 (*1 *1 *1 *1) (-5 *1 (-160)))) -(-13 (-1069) (-10 -8 (-15 -2089 ($ (-550))) (-15 -2089 ($ $ $)))) -((-1355 (((-114) (-1145)) 97))) -(((-161) (-10 -7 (-15 -1355 ((-114) (-1145))))) (T -161)) -((-1355 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-114)) (-5 *1 (-161))))) -(-10 -7 (-15 -1355 ((-114) (-1145)))) -((-2816 ((|#3| |#3|) 19))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -2816 (|#3| |#3|))) (-1021) (-1204 |#1|) (-1204 |#2|)) (T -162)) -((-2816 (*1 *2 *2) (-12 (-4 *3 (-1021)) (-4 *4 (-1204 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1204 *4))))) -(-10 -7 (-15 -2816 (|#3| |#3|))) -((-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 217)) (-2223 ((|#2| $) 96)) (-4160 (($ $) 247)) (-2820 (($ $) 241)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 40)) (-4137 (($ $) 245)) (-2796 (($ $) 239)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 139)) (-3455 (($ $ $) 222)) (-3756 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 155) (((-667 |#2|) (-667 $)) 149)) (-2924 (($ (-1141 |#2|)) 119) (((-3 $ "failed") (-400 (-1141 |#2|))) NIL)) (-1537 (((-3 $ "failed") $) 209)) (-3192 (((-3 (-400 (-550)) "failed") $) 199)) (-2593 (((-112) $) 194)) (-3169 (((-400 (-550)) $) 197)) (-3398 (((-895)) 89)) (-3429 (($ $ $) 224)) (-1771 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-4187 (($) 236)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 186) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 191)) (-1571 ((|#2| $) 94)) (-2835 (((-1141 |#2|) $) 121)) (-2392 (($ (-1 |#2| |#2|) $) 102)) (-3080 (($ $) 238)) (-2910 (((-1141 |#2|) $) 120)) (-1619 (($ $) 202)) (-3538 (($) 97)) (-3348 (((-411 (-1141 $)) (-1141 $)) 88)) (-2182 (((-411 (-1141 $)) (-1141 $)) 57)) (-3409 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1644 (($ $) 237)) (-1988 (((-749) $) 219)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 229)) (-3563 ((|#2| (-1228 $)) NIL) ((|#2|) 91)) (-2798 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3832 (((-1141 |#2|)) 114)) (-4149 (($ $) 246)) (-2807 (($ $) 240)) (-2999 (((-1228 |#2|) $ (-1228 $)) 128) (((-667 |#2|) (-1228 $) (-1228 $)) NIL) (((-1228 |#2|) $) 110) (((-667 |#2|) (-1228 $)) NIL)) (-2451 (((-1228 |#2|) $) NIL) (($ (-1228 |#2|)) NIL) (((-1141 |#2|) $) NIL) (($ (-1141 |#2|)) NIL) (((-866 (-550)) $) 177) (((-866 (-372)) $) 181) (((-167 (-372)) $) 167) (((-167 (-219)) $) 162) (((-526) $) 173)) (-3018 (($ $) 98)) (-2233 (((-837) $) 138) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-400 (-550))) NIL) (($ $) NIL)) (-3359 (((-1141 |#2|) $) 23)) (-3091 (((-749)) 100)) (-4233 (($ $) 250)) (-2893 (($ $) 244)) (-4206 (($ $) 248)) (-2869 (($ $) 242)) (-2963 ((|#2| $) 233)) (-4218 (($ $) 249)) (-2880 (($ $) 243)) (-4188 (($ $) 157)) (-2264 (((-112) $ $) 104)) (-2290 (((-112) $ $) 193)) (-2370 (($ $) 106) (($ $ $) NIL)) (-2358 (($ $ $) 105)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-550))) 267) (($ $ $) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL))) -(((-163 |#1| |#2|) (-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2233 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1988 ((-749) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-167 (-219)) |#1|)) (-15 -2451 ((-167 (-372)) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4187 (|#1|)) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -1771 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3018 (|#1| |#1|)) (-15 -3538 (|#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2924 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -2910 ((-1141 |#2|) |#1|)) (-15 -2451 (|#1| (-1141 |#2|))) (-15 -2924 (|#1| (-1141 |#2|))) (-15 -3832 ((-1141 |#2|))) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 ((-1141 |#2|) |#1|)) (-15 -3563 (|#2|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2835 ((-1141 |#2|) |#1|)) (-15 -3359 ((-1141 |#2|) |#1|)) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -1571 (|#2| |#1|)) (-15 -2223 (|#2| |#1|)) (-15 -3398 ((-895))) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) -((-3091 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3398 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3563 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) -(-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2233 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1988 ((-749) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-167 (-219)) |#1|)) (-15 -2451 ((-167 (-372)) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4187 (|#1|)) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -1771 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3018 (|#1| |#1|)) (-15 -3538 (|#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2924 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -2910 ((-1141 |#2|) |#1|)) (-15 -2451 (|#1| (-1141 |#2|))) (-15 -2924 (|#1| (-1141 |#2|))) (-15 -3832 ((-1141 |#2|))) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 ((-1141 |#2|) |#1|)) (-15 -3563 (|#2|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2835 ((-1141 |#2|) |#1|)) (-15 -3359 ((-1141 |#2|) |#1|)) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -1571 (|#2| |#1|)) (-15 -2223 (|#2| |#1|)) (-15 -3398 ((-895))) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 91 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-3050 (($ $) 92 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-3953 (((-112) $) 94 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-3992 (((-667 |#1|) (-1228 $)) 44) (((-667 |#1|)) 59)) (-2223 ((|#1| $) 50)) (-4160 (($ $) 225 (|has| |#1| (-1167)))) (-2820 (($ $) 208 (|has| |#1| (-1167)))) (-3435 (((-1155 (-895) (-749)) (-550)) 144 (|has| |#1| (-342)))) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-2318 (($ $) 111 (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-2207 (((-411 $) $) 112 (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-1745 (($ $) 238 (-12 (|has| |#1| (-976)) (|has| |#1| (-1167))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-1611 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3828 (((-749)) 85 (|has| |#1| (-361)))) (-4137 (($ $) 224 (|has| |#1| (-1167)))) (-2796 (($ $) 209 (|has| |#1| (-1167)))) (-4183 (($ $) 223 (|has| |#1| (-1167)))) (-2844 (($ $) 210 (|has| |#1| (-1167)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 166 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 163)) (-2202 (((-550) $) 167 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 165 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 162)) (-2821 (($ (-1228 |#1|) (-1228 $)) 46) (($ (-1228 |#1|)) 62)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-3455 (($ $ $) 106 (|has| |#1| (-300)))) (-2766 (((-667 |#1|) $ (-1228 $)) 51) (((-667 |#1|) $) 57)) (-3756 (((-667 (-550)) (-667 $)) 161 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 160 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-2924 (($ (-1141 |#1|)) 155) (((-3 $ "failed") (-400 (-1141 |#1|))) 152 (|has| |#1| (-356)))) (-1537 (((-3 $ "failed") $) 32)) (-1406 ((|#1| $) 250)) (-3192 (((-3 (-400 (-550)) "failed") $) 243 (|has| |#1| (-535)))) (-2593 (((-112) $) 245 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 244 (|has| |#1| (-535)))) (-3398 (((-895)) 52)) (-1864 (($) 88 (|has| |#1| (-361)))) (-3429 (($ $ $) 105 (|has| |#1| (-300)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 100 (|has| |#1| (-300)))) (-2664 (($) 146 (|has| |#1| (-342)))) (-4139 (((-112) $) 147 (|has| |#1| (-342)))) (-4322 (($ $ (-749)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-1568 (((-112) $) 113 (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-1771 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1030)) (|has| |#1| (-1167))))) (-4187 (($) 235 (|has| |#1| (-1167)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 258 (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 257 (|has| |#1| (-860 (-372))))) (-2603 (((-895) $) 149 (|has| |#1| (-342))) (((-811 (-895)) $) 135 (|has| |#1| (-342)))) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 237 (-12 (|has| |#1| (-976)) (|has| |#1| (-1167))))) (-1571 ((|#1| $) 49)) (-1620 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| |#1| (-300)))) (-2835 (((-1141 |#1|) $) 42 (|has| |#1| (-356)))) (-2793 (($ $ $) 204 (|has| |#1| (-825)))) (-2173 (($ $ $) 203 (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) 259)) (-4073 (((-895) $) 87 (|has| |#1| (-361)))) (-3080 (($ $) 232 (|has| |#1| (-1167)))) (-2910 (((-1141 |#1|) $) 153)) (-3231 (($ (-623 $)) 98 (-1489 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (($ $ $) 97 (-1489 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 114 (|has| |#1| (-356)))) (-2463 (($) 140 (|has| |#1| (-342)) CONST)) (-3690 (($ (-895)) 86 (|has| |#1| (-361)))) (-3538 (($) 254)) (-1415 ((|#1| $) 251)) (-3445 (((-1089) $) 10)) (-2256 (($) 157)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 99 (-1489 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-3260 (($ (-623 $)) 96 (-1489 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (($ $ $) 95 (-1489 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 143 (|has| |#1| (-342)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-2182 (((-411 (-1141 $)) (-1141 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-1735 (((-411 $) $) 110 (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 107 (|has| |#1| (-300)))) (-3409 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 90 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| |#1| (-300)))) (-1644 (($ $) 233 (|has| |#1| (-1167)))) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 261 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) 260 (|has| |#1| (-505 (-1145) |#1|)))) (-1988 (((-749) $) 103 (|has| |#1| (-300)))) (-2757 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 104 (|has| |#1| (-300)))) (-3563 ((|#1| (-1228 $)) 45) ((|#1|) 58)) (-2899 (((-749) $) 148 (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-342)))) (-2798 (($ $ (-1 |#1| |#1|) (-749)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-623 (-1145)) (-623 (-749))) 127 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 128 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 129 (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) 130 (|has| |#1| (-874 (-1145)))) (($ $ (-749)) 132 (-1489 (-1304 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-1489 (-1304 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1304 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2871 (((-667 |#1|) (-1228 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3832 (((-1141 |#1|)) 156)) (-4194 (($ $) 222 (|has| |#1| (-1167)))) (-2856 (($ $) 211 (|has| |#1| (-1167)))) (-2038 (($) 145 (|has| |#1| (-342)))) (-4171 (($ $) 221 (|has| |#1| (-1167)))) (-2832 (($ $) 212 (|has| |#1| (-1167)))) (-4149 (($ $) 220 (|has| |#1| (-1167)))) (-2807 (($ $) 213 (|has| |#1| (-1167)))) (-2999 (((-1228 |#1|) $ (-1228 $)) 48) (((-667 |#1|) (-1228 $) (-1228 $)) 47) (((-1228 |#1|) $) 64) (((-667 |#1|) (-1228 $)) 63)) (-2451 (((-1228 |#1|) $) 61) (($ (-1228 |#1|)) 60) (((-1141 |#1|) $) 168) (($ (-1141 |#1|)) 154) (((-866 (-550)) $) 256 (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) 255 (|has| |#1| (-596 (-866 (-372))))) (((-167 (-372)) $) 207 (|has| |#1| (-996))) (((-167 (-219)) $) 206 (|has| |#1| (-996))) (((-526) $) 205 (|has| |#1| (-596 (-526))))) (-3018 (($ $) 253)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 142 (-1489 (-1304 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))) (|has| |#1| (-342))))) (-2167 (($ |#1| |#1|) 252)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 84 (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) 89 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-1613 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (-1489 (-1304 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))) (|has| |#1| (-143))))) (-3359 (((-1141 |#1|) $) 43)) (-3091 (((-749)) 28)) (-2206 (((-1228 $)) 65)) (-4233 (($ $) 231 (|has| |#1| (-1167)))) (-2893 (($ $) 219 (|has| |#1| (-1167)))) (-1819 (((-112) $ $) 93 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883)))))) (-4206 (($ $) 230 (|has| |#1| (-1167)))) (-2869 (($ $) 218 (|has| |#1| (-1167)))) (-4255 (($ $) 229 (|has| |#1| (-1167)))) (-4117 (($ $) 217 (|has| |#1| (-1167)))) (-2963 ((|#1| $) 247 (|has| |#1| (-1167)))) (-3363 (($ $) 228 (|has| |#1| (-1167)))) (-4127 (($ $) 216 (|has| |#1| (-1167)))) (-4244 (($ $) 227 (|has| |#1| (-1167)))) (-2905 (($ $) 215 (|has| |#1| (-1167)))) (-4218 (($ $) 226 (|has| |#1| (-1167)))) (-2880 (($ $) 214 (|has| |#1| (-1167)))) (-4188 (($ $) 248 (|has| |#1| (-1030)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1 |#1| |#1|) (-749)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-623 (-1145)) (-623 (-749))) 123 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 124 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 125 (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) 126 (|has| |#1| (-874 (-1145)))) (($ $ (-749)) 131 (-1489 (-1304 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-1489 (-1304 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1304 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2324 (((-112) $ $) 201 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 200 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 202 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 199 (|has| |#1| (-825)))) (-2382 (($ $ $) 118 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-400 (-550))) 236 (-12 (|has| |#1| (-976)) (|has| |#1| (-1167)))) (($ $ $) 234 (|has| |#1| (-1167))) (($ $ (-550)) 115 (|has| |#1| (-356)))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-550)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-550))) 116 (|has| |#1| (-356))))) +((-2893 (((-112) $ $) NIL)) (-1419 (($ (-536)) 13) (($ $ $) 14)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17)) (-3382 (((-112) $ $) 9))) +(((-159) (-13 (-1072) (-10 -8 (-15 -1419 ($ (-536))) (-15 -1419 ($ $ $))))) (T -159)) +((-1419 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-159)))) (-1419 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1072) (-10 -8 (-15 -1419 ($ (-536))) (-15 -1419 ($ $ $)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 9)) (-3382 (((-112) $ $) NIL))) +(((-160) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $))))) (T -160)) +((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-160))))) +(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)))) +((-3375 (((-113) (-1147)) 97))) +(((-161) (-10 -7 (-15 -3375 ((-113) (-1147))))) (T -161)) +((-3375 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-113)) (-5 *1 (-161))))) +(-10 -7 (-15 -3375 ((-113) (-1147)))) +((-1650 ((|#3| |#3|) 19))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1650 (|#3| |#3|))) (-1023) (-1205 |#1|) (-1205 |#2|)) (T -162)) +((-1650 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-1205 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1205 *4))))) +(-10 -7 (-15 -1650 (|#3| |#3|))) +((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 217)) (-3684 ((|#2| $) 96)) (-3841 (($ $) 247)) (-3997 (($ $) 241)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 40)) (-3839 (($ $) 245)) (-3996 (($ $) 239)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 139)) (-2889 (($ $ $) 222)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 155) (((-667 |#2|) (-667 $)) 149)) (-4197 (($ (-1141 |#2|)) 119) (((-3 $ "failed") (-400 (-1141 |#2|))) NIL)) (-3816 (((-3 $ "failed") $) 209)) (-3352 (((-3 (-400 (-536)) "failed") $) 199)) (-3351 (((-112) $) 194)) (-3350 (((-400 (-536)) $) 197)) (-3439 (((-893)) 89)) (-2888 (($ $ $) 224)) (-1420 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3985 (($) 236)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 186) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 191)) (-3462 ((|#2| $) 94)) (-2125 (((-1141 |#2|) $) 121)) (-4313 (($ (-1 |#2| |#2|) $) 102)) (-4297 (($ $) 238)) (-3408 (((-1141 |#2|) $) 120)) (-2729 (($ $) 202)) (-1422 (($) 97)) (-3033 (((-398 (-1141 $)) (-1141 $)) 88)) (-3034 (((-398 (-1141 $)) (-1141 $)) 57)) (-3815 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4298 (($ $) 237)) (-1699 (((-749) $) 219)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 229)) (-4112 ((|#2| (-1229 $)) NIL) ((|#2|) 91)) (-4165 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3531 (((-1141 |#2|)) 114)) (-3840 (($ $) 246)) (-3992 (($ $) 240)) (-3570 (((-1229 |#2|) $ (-1229 $)) 128) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 110) (((-667 |#2|) (-1229 $)) NIL)) (-4325 (((-1229 |#2|) $) NIL) (($ (-1229 |#2|)) NIL) (((-1141 |#2|) $) NIL) (($ (-1141 |#2|)) NIL) (((-864 (-536)) $) 177) (((-864 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-219)) $) 162) (((-525) $) 173)) (-3337 (($ $) 98)) (-4312 (((-838) $) 138) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-400 (-536))) NIL) (($ $) NIL)) (-2693 (((-1141 |#2|) $) 23)) (-3456 (((-749)) 100)) (-3847 (($ $) 250)) (-3835 (($ $) 244)) (-3845 (($ $) 248)) (-3833 (($ $) 242)) (-2313 ((|#2| $) 233)) (-3846 (($ $) 249)) (-3834 (($ $) 243)) (-3737 (($ $) 157)) (-3382 (((-112) $ $) 104)) (-3013 (((-112) $ $) 193)) (-4192 (($ $) 106) (($ $ $) NIL)) (-4194 (($ $ $) 105)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-536))) 267) (($ $ $) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL))) +(((-163 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4312 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-166 (-219)) |#1|)) (-15 -4325 ((-166 (-371)) |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3985 (|#1|)) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2313 (|#2| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3337 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4197 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -3408 ((-1141 |#2|) |#1|)) (-15 -4325 (|#1| (-1141 |#2|))) (-15 -4197 (|#1| (-1141 |#2|))) (-15 -3531 ((-1141 |#2|))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -2693 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -3462 (|#2| |#1|)) (-15 -3684 (|#2| |#1|)) (-15 -3439 ((-893))) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) +((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3439 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-893)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4112 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3531 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) +(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4312 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-166 (-219)) |#1|)) (-15 -4325 ((-166 (-371)) |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3985 (|#1|)) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2313 (|#2| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3337 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4197 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -3408 ((-1141 |#2|) |#1|)) (-15 -4325 (|#1| (-1141 |#2|))) (-15 -4197 (|#1| (-1141 |#2|))) (-15 -3531 ((-1141 |#2|))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -2693 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -3462 (|#2| |#1|)) (-15 -3684 (|#2| |#1|)) (-15 -3439 ((-893))) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-2173 (($ $) 92 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-2171 (((-112) $) 94 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-3841 (($ $) 225 (|has| |#1| (-1169)))) (-3997 (($ $) 208 (|has| |#1| (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4129 (($ $) 111 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-4324 (((-398 $) $) 112 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-3365 (($ $) 238 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-1700 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3466 (((-749)) 85 (|has| |#1| (-361)))) (-3839 (($ $) 224 (|has| |#1| (-1169)))) (-3996 (($ $) 209 (|has| |#1| (-1169)))) (-3843 (($ $) 223 (|has| |#1| (-1169)))) (-3995 (($ $) 210 (|has| |#1| (-1169)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 163)) (-3502 (((-536) $) 167 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 162)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2889 (($ $ $) 106 (|has| |#1| (-300)))) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-4197 (($ (-1141 |#1|)) 155) (((-3 $ "failed") (-400 (-1141 |#1|))) 152 (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 250)) (-3352 (((-3 (-400 (-536)) "failed") $) 243 (|has| |#1| (-535)))) (-3351 (((-112) $) 245 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 244 (|has| |#1| (-535)))) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| |#1| (-361)))) (-2888 (($ $ $) 105 (|has| |#1| (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| |#1| (-300)))) (-3161 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-749)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4081 (((-112) $) 113 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1169))))) (-3985 (($) 235 (|has| |#1| (-1169)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 258 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 257 (|has| |#1| (-860 (-371))))) (-4126 (((-893) $) 149 (|has| |#1| (-343))) (((-810 (-893)) $) 135 (|has| |#1| (-343)))) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 237 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3462 ((|#1| $) 49)) (-3798 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| |#1| (-300)))) (-2125 (((-1141 |#1|) $) 42 (|has| |#1| (-356)))) (-3672 (($ $ $) 204 (|has| |#1| (-825)))) (-3673 (($ $ $) 203 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 259)) (-2121 (((-893) $) 87 (|has| |#1| (-361)))) (-4297 (($ $) 232 (|has| |#1| (-1169)))) (-3408 (((-1141 |#1|) $) 153)) (-2008 (($ (-620 $)) 98 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (($ $ $) 97 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 114 (|has| |#1| (-356)))) (-3799 (($) 140 (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| |#1| (-361)))) (-1422 (($) 254)) (-4002 ((|#1| $) 251)) (-3589 (((-1091) $) 10)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3490 (($ (-620 $)) 96 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (($ $ $) 95 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4087 (((-398 $) $) 110 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| |#1| (-300)))) (-3815 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 90 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| |#1| (-300)))) (-4298 (($ $) 233 (|has| |#1| (-1169)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 261 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 260 (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) 103 (|has| |#1| (-300)))) (-4154 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| |#1| (-300)))) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-1882 (((-749) $) 148 (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-343)))) (-4165 (($ $ (-1 |#1| |#1|) (-749)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-620 (-1147)) (-620 (-749))) 127 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 128 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 129 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 130 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 132 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3531 (((-1141 |#1|)) 156)) (-3844 (($ $) 222 (|has| |#1| (-1169)))) (-3994 (($ $) 211 (|has| |#1| (-1169)))) (-1785 (($) 145 (|has| |#1| (-343)))) (-3842 (($ $) 221 (|has| |#1| (-1169)))) (-3993 (($ $) 212 (|has| |#1| (-1169)))) (-3840 (($ $) 220 (|has| |#1| (-1169)))) (-3992 (($ $) 213 (|has| |#1| (-1169)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60) (((-1141 |#1|) $) 168) (($ (-1141 |#1|)) 154) (((-864 (-536)) $) 256 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 255 (|has| |#1| (-596 (-864 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-994))) (((-166 (-219)) $) 206 (|has| |#1| (-994))) (((-525) $) 205 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 253)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (-3886 (-3186 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (|has| |#1| (-343))))) (-1421 (($ |#1| |#1|) 252)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 84 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) 89 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3030 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-3886 (-3186 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (|has| |#1| (-143))))) (-2693 (((-1141 |#1|) $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-3847 (($ $) 231 (|has| |#1| (-1169)))) (-3835 (($ $) 219 (|has| |#1| (-1169)))) (-2172 (((-112) $ $) 93 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3845 (($ $) 230 (|has| |#1| (-1169)))) (-3833 (($ $) 218 (|has| |#1| (-1169)))) (-3849 (($ $) 229 (|has| |#1| (-1169)))) (-3837 (($ $) 217 (|has| |#1| (-1169)))) (-2313 ((|#1| $) 247 (|has| |#1| (-1169)))) (-3850 (($ $) 228 (|has| |#1| (-1169)))) (-3838 (($ $) 216 (|has| |#1| (-1169)))) (-3848 (($ $) 227 (|has| |#1| (-1169)))) (-3836 (($ $) 215 (|has| |#1| (-1169)))) (-3846 (($ $) 226 (|has| |#1| (-1169)))) (-3834 (($ $) 214 (|has| |#1| (-1169)))) (-3737 (($ $) 248 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#1| |#1|) (-749)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-620 (-1147)) (-620 (-749))) 123 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 124 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 125 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 126 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 131 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2891 (((-112) $ $) 201 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 200 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 202 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 199 (|has| |#1| (-825)))) (-4303 (($ $ $) 118 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-400 (-536))) 236 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169)))) (($ $ $) 234 (|has| |#1| (-1169))) (($ $ (-536)) 115 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-536)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-536))) 116 (|has| |#1| (-356))))) (((-164 |#1|) (-138) (-170)) (T -164)) -((-1571 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3538 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3018 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2167 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-4188 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1167)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1030)) (-4 *3 (-1167)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3192 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550)))))) -(-13 (-703 |t#1| (-1141 |t#1|)) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-858 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -2167) (-15 -3538 ($)) (-15 -3018 ($ $)) (-15 -2167 ($ |t#1| |t#1|)) (-15 -1415 (|t#1| $)) (-15 -1406 (|t#1| $)) (-15 -1571 (|t#1| $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-542)) (-15 -3409 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4343)) (-6 -4343) |%noBranch|) (IF (|has| |t#1| (-6 -4340)) (-6 -4340) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-996)) (PROGN (-6 (-596 (-167 (-219)))) (-6 (-596 (-167 (-372))))) |%noBranch|) (IF (|has| |t#1| (-1030)) (-15 -4188 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1167)) (PROGN (-6 (-1167)) (-15 -2963 (|t#1| $)) (IF (|has| |t#1| (-976)) (-6 (-976)) |%noBranch|) (IF (|has| |t#1| (-1030)) (-15 -1771 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-883)) (IF (|has| |t#1| (-300)) (-6 (-883)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1167)) ((-94) |has| |#1| (-1167)) ((-101) . T) ((-111 #0# #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1489 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-596 (-167 (-219))) |has| |#1| (-996)) ((-596 (-167 (-372))) |has| |#1| (-996)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-866 (-372))) |has| |#1| (-596 (-866 (-372)))) ((-596 (-866 (-550))) |has| |#1| (-596 (-866 (-550)))) ((-596 #1=(-1141 |#1|)) . T) ((-225 |#1|) . T) ((-227) -1489 (|has| |#1| (-342)) (|has| |#1| (-227))) ((-237) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1167)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1489 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -1489 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1489 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| #1#) . T) ((-402 |#1| #1#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1167)) ((-505 (-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) -1489 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-626 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-703 |#1| #1#) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-860 (-372)) |has| |#1| (-860 (-372))) ((-860 (-550)) |has| |#1| (-860 (-550))) ((-858 |#1|) . T) ((-883) -12 (|has| |#1| (-300)) (|has| |#1| (-883))) ((-894) -1489 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-976) -12 (|has| |#1| (-976)) (|has| |#1| (-1167))) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1027 |#1|) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| |#1| (-342)) ((-1167) |has| |#1| (-1167)) ((-1170) |has| |#1| (-1167)) ((-1182) . T) ((-1186) -1489 (|has| |#1| (-342)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) -((-1735 (((-411 |#2|) |#2|) 63))) -(((-165 |#1| |#2|) (-10 -7 (-15 -1735 ((-411 |#2|) |#2|))) (-300) (-1204 (-167 |#1|))) (T -165)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) -(-10 -7 (-15 -1735 ((-411 |#2|) |#2|))) -((-2392 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) -(((-166 |#1| |#2|) (-10 -7 (-15 -2392 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))) -(-10 -7 (-15 -2392 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 33)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-3050 (($ $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-3953 (((-112) $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-3992 (((-667 |#1|) (-1228 $)) NIL) (((-667 |#1|)) NIL)) (-2223 ((|#1| $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-1167)))) (-2820 (($ $) NIL (|has| |#1| (-1167)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| |#1| (-342)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-2318 (($ $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-2207 (((-411 $) $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-1745 (($ $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1167))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-4137 (($ $) NIL (|has| |#1| (-1167)))) (-2796 (($ $) NIL (|has| |#1| (-1167)))) (-4183 (($ $) NIL (|has| |#1| (-1167)))) (-2844 (($ $) NIL (|has| |#1| (-1167)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-2821 (($ (-1228 |#1|) (-1228 $)) NIL) (($ (-1228 |#1|)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-3455 (($ $ $) NIL (|has| |#1| (-300)))) (-2766 (((-667 |#1|) $ (-1228 $)) NIL) (((-667 |#1|) $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-2924 (($ (-1141 |#1|)) NIL) (((-3 $ "failed") (-400 (-1141 |#1|))) NIL (|has| |#1| (-356)))) (-1537 (((-3 $ "failed") $) NIL)) (-1406 ((|#1| $) 13)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-2593 (((-112) $) NIL (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-3398 (((-895)) NIL)) (-1864 (($) NIL (|has| |#1| (-361)))) (-3429 (($ $ $) NIL (|has| |#1| (-300)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-300)))) (-2664 (($) NIL (|has| |#1| (-342)))) (-4139 (((-112) $) NIL (|has| |#1| (-342)))) (-4322 (($ $ (-749)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-1568 (((-112) $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-1771 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1030)) (|has| |#1| (-1167))))) (-4187 (($) NIL (|has| |#1| (-1167)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| |#1| (-860 (-372))))) (-2603 (((-895) $) NIL (|has| |#1| (-342))) (((-811 (-895)) $) NIL (|has| |#1| (-342)))) (-2419 (((-112) $) 35)) (-1893 (($ $ (-550)) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1167))))) (-1571 ((|#1| $) 46)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-300)))) (-2835 (((-1141 |#1|) $) NIL (|has| |#1| (-356)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-3080 (($ $) NIL (|has| |#1| (-1167)))) (-2910 (((-1141 |#1|) $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2463 (($) NIL (|has| |#1| (-342)) CONST)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3538 (($) NIL)) (-1415 ((|#1| $) 15)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-300)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| |#1| (-342)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-883))))) (-1735 (((-411 $) $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-356))))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-300)))) (-3409 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 47 (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-300)))) (-1644 (($ $) NIL (|has| |#1| (-1167)))) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-505 (-1145) |#1|)))) (-1988 (((-749) $) NIL (|has| |#1| (-300)))) (-2757 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-300)))) (-3563 ((|#1| (-1228 $)) NIL) ((|#1|) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-342)))) (-2798 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2871 (((-667 |#1|) (-1228 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3832 (((-1141 |#1|)) NIL)) (-4194 (($ $) NIL (|has| |#1| (-1167)))) (-2856 (($ $) NIL (|has| |#1| (-1167)))) (-2038 (($) NIL (|has| |#1| (-342)))) (-4171 (($ $) NIL (|has| |#1| (-1167)))) (-2832 (($ $) NIL (|has| |#1| (-1167)))) (-4149 (($ $) NIL (|has| |#1| (-1167)))) (-2807 (($ $) NIL (|has| |#1| (-1167)))) (-2999 (((-1228 |#1|) $ (-1228 $)) NIL) (((-667 |#1|) (-1228 $) (-1228 $)) NIL) (((-1228 |#1|) $) NIL) (((-667 |#1|) (-1228 $)) NIL)) (-2451 (((-1228 |#1|) $) NIL) (($ (-1228 |#1|)) NIL) (((-1141 |#1|) $) NIL) (($ (-1141 |#1|)) NIL) (((-866 (-550)) $) NIL (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| |#1| (-596 (-866 (-372))))) (((-167 (-372)) $) NIL (|has| |#1| (-996))) (((-167 (-219)) $) NIL (|has| |#1| (-996))) (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-3018 (($ $) 45)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-342))))) (-2167 (($ |#1| |#1|) 37)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) 36) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-1613 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3359 (((-1141 |#1|) $) NIL)) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL)) (-4233 (($ $) NIL (|has| |#1| (-1167)))) (-2893 (($ $) NIL (|has| |#1| (-1167)))) (-1819 (((-112) $ $) NIL (-1489 (-12 (|has| |#1| (-300)) (|has| |#1| (-883))) (|has| |#1| (-542))))) (-4206 (($ $) NIL (|has| |#1| (-1167)))) (-2869 (($ $) NIL (|has| |#1| (-1167)))) (-4255 (($ $) NIL (|has| |#1| (-1167)))) (-4117 (($ $) NIL (|has| |#1| (-1167)))) (-2963 ((|#1| $) NIL (|has| |#1| (-1167)))) (-3363 (($ $) NIL (|has| |#1| (-1167)))) (-4127 (($ $) NIL (|has| |#1| (-1167)))) (-4244 (($ $) NIL (|has| |#1| (-1167)))) (-2905 (($ $) NIL (|has| |#1| (-1167)))) (-4218 (($ $) NIL (|has| |#1| (-1167)))) (-2880 (($ $) NIL (|has| |#1| (-1167)))) (-4188 (($ $) NIL (|has| |#1| (-1030)))) (-2688 (($) 28 T CONST)) (-2700 (($) 30 T CONST)) (-3145 (((-1127) $) 23 (|has| |#1| (-806))) (((-1127) $ (-112)) 25 (|has| |#1| (-806))) (((-1233) (-800) $) 26 (|has| |#1| (-806))) (((-1233) (-800) $ (-112)) 27 (|has| |#1| (-806)))) (-1901 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 39)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-550))) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1167)))) (($ $ $) NIL (|has| |#1| (-1167))) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))))) -(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) (-170)) (T -167)) -NIL -(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) -((-2451 (((-866 |#1|) |#3|) 22))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2451 ((-866 |#1|) |#3|))) (-1069) (-13 (-596 (-866 |#1|)) (-170)) (-164 |#2|)) (T -168)) -((-2451 (*1 *2 *3) (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-866 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1069)) (-4 *3 (-164 *5))))) -(-10 -7 (-15 -2451 ((-866 |#1|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-4010 (((-112) $) 9)) (-2158 (((-112) $ (-112)) 11)) (-3375 (($) 12)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2435 (($ $) 13)) (-2233 (((-837) $) 17)) (-4242 (((-112) $) 8)) (-1953 (((-112) $ (-112)) 10)) (-2264 (((-112) $ $) NIL))) -(((-169) (-13 (-1069) (-10 -8 (-15 -3375 ($)) (-15 -4242 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -1953 ((-112) $ (-112))) (-15 -2158 ((-112) $ (-112))) (-15 -2435 ($ $))))) (T -169)) -((-3375 (*1 *1) (-5 *1 (-169))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1953 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2158 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2435 (*1 *1 *1) (-5 *1 (-169)))) -(-13 (-1069) (-10 -8 (-15 -3375 ($)) (-15 -4242 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -1953 ((-112) $ (-112))) (-15 -2158 ((-112) $ (-112))) (-15 -2435 ($ $)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-3462 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1422 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3337 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1169)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1032)) (-4 *3 (-1169)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536)))))) +(-13 (-703 |t#1| (-1141 |t#1|)) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-858 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -1421) (-15 -1422 ($)) (-15 -3337 ($ $)) (-15 -1421 ($ |t#1| |t#1|)) (-15 -4002 (|t#1| $)) (-15 -4001 (|t#1| $)) (-15 -3462 (|t#1| $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4347)) (-6 -4347) |%noBranch|) (IF (|has| |t#1| (-6 -4344)) (-6 -4344) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-994)) (PROGN (-6 (-596 (-166 (-219)))) (-6 (-596 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1169)) (PROGN (-6 (-1169)) (-15 -2313 (|t#1| $)) (IF (|has| |t#1| (-976)) (-6 (-976)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -1420 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-884)) (IF (|has| |t#1| (-300)) (-6 (-884)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1169)) ((-94) |has| |#1| (-1169)) ((-101) . T) ((-111 #1# #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-166 (-219))) |has| |#1| (-994)) ((-596 (-166 (-371))) |has| |#1| (-994)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-596 #2=(-1141 |#1|)) . T) ((-225 |#1|) . T) ((-227) -3886 (|has| |#1| (-343)) (|has| |#1| (-227))) ((-237) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1169)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3886 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| #2#) . T) ((-403 |#1| #2#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1169)) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-626 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-703 |#1| #2#) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-884) -12 (|has| |#1| (-300)) (|has| |#1| (-884))) ((-895) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-976) -12 (|has| |#1| (-976)) (|has| |#1| (-1169))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-343)) ((-1169) |has| |#1| (-1169)) ((-1172) |has| |#1| (-1169)) ((-1183) . T) ((-1188) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) +((-4087 (((-398 |#2|) |#2|) 63))) +(((-165 |#1| |#2|) (-10 -7 (-15 -4087 ((-398 |#2|) |#2|))) (-300) (-1205 (-166 |#1|))) (T -165)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) +(-10 -7 (-15 -4087 ((-398 |#2|) |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-1896 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-3684 ((|#1| $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-1169)))) (-3997 (($ $) NIL (|has| |#1| (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4129 (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-4324 (((-398 $) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-3365 (($ $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3839 (($ $) NIL (|has| |#1| (-1169)))) (-3996 (($ $) NIL (|has| |#1| (-1169)))) (-3843 (($ $) NIL (|has| |#1| (-1169)))) (-3995 (($ $) NIL (|has| |#1| (-1169)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2889 (($ $ $) NIL (|has| |#1| (-300)))) (-1895 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4197 (($ (-1141 |#1|)) NIL) (((-3 $ "failed") (-400 (-1141 |#1|))) NIL (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 13)) (-3352 (((-3 (-400 (-536)) #3="failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-300)))) (-3161 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-749)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4081 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1169))))) (-3985 (($) NIL (|has| |#1| (-1169)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#1| (-860 (-371))))) (-4126 (((-893) $) NIL (|has| |#1| (-343))) (((-810 (-893)) $) NIL (|has| |#1| (-343)))) (-2497 (((-112) $) 35)) (-3339 (($ $ (-536)) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3462 ((|#1| $) 46)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #4="failed") (-620 $) $) NIL (|has| |#1| (-300)))) (-2125 (((-1141 |#1|) $) NIL (|has| |#1| (-356)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-4297 (($ $) NIL (|has| |#1| (-1169)))) (-3408 (((-1141 |#1|) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3799 (($) NIL (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-1422 (($) NIL)) (-4002 ((|#1| $) 15)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-300)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4087 (((-398 $) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-300)))) (-3815 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 47 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-300)))) (-4298 (($ $) NIL (|has| |#1| (-1169)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) NIL (|has| |#1| (-300)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-300)))) (-4112 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-343)))) (-4165 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3531 (((-1141 |#1|)) NIL)) (-3844 (($ $) NIL (|has| |#1| (-1169)))) (-3994 (($ $) NIL (|has| |#1| (-1169)))) (-1785 (($) NIL (|has| |#1| (-343)))) (-3842 (($ $) NIL (|has| |#1| (-1169)))) (-3993 (($ $) NIL (|has| |#1| (-1169)))) (-3840 (($ $) NIL (|has| |#1| (-1169)))) (-3992 (($ $) NIL (|has| |#1| (-1169)))) (-3570 (((-1229 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL) (((-1141 |#1|) $) NIL) (($ (-1141 |#1|)) NIL) (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-994))) (((-166 (-219)) $) NIL (|has| |#1| (-994))) (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) 45)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-343))))) (-1421 (($ |#1| |#1|) 37)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) 36) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3030 (($ $) NIL (|has| |#1| (-343))) (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-2693 (((-1141 |#1|) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL)) (-3847 (($ $) NIL (|has| |#1| (-1169)))) (-3835 (($ $) NIL (|has| |#1| (-1169)))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3845 (($ $) NIL (|has| |#1| (-1169)))) (-3833 (($ $) NIL (|has| |#1| (-1169)))) (-3849 (($ $) NIL (|has| |#1| (-1169)))) (-3837 (($ $) NIL (|has| |#1| (-1169)))) (-2313 ((|#1| $) NIL (|has| |#1| (-1169)))) (-3850 (($ $) NIL (|has| |#1| (-1169)))) (-3838 (($ $) NIL (|has| |#1| (-1169)))) (-3848 (($ $) NIL (|has| |#1| (-1169)))) (-3836 (($ $) NIL (|has| |#1| (-1169)))) (-3846 (($ $) NIL (|has| |#1| (-1169)))) (-3834 (($ $) NIL (|has| |#1| (-1169)))) (-3737 (($ $) NIL (|has| |#1| (-1032)))) (-2986 (($) 28 T CONST)) (-2992 (($) 30 T CONST)) (-2829 (((-1129) $) 23 (|has| |#1| (-799))) (((-1129) $ (-112)) 25 (|has| |#1| (-799))) (((-1235) (-801) $) 26 (|has| |#1| (-799))) (((-1235) (-801) $ (-112)) 27 (|has| |#1| (-799)))) (-2997 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 39)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-536))) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169)))) (($ $ $) NIL (|has| |#1| (-1169))) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))))) +(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) (-170)) (T -166)) +NIL +(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) +((-4313 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4313 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))) +(-10 -7 (-15 -4313 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-4325 (((-864 |#1|) |#3|) 22))) +(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-864 |#1|) |#3|))) (-1072) (-13 (-596 (-864 |#1|)) (-170)) (-164 |#2|)) (T -168)) +((-4325 (*1 *2 *3) (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-864 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1072)) (-4 *3 (-164 *5))))) +(-10 -7 (-15 -4325 ((-864 |#1|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-1424 (((-112) $) 9)) (-1423 (((-112) $ (-112)) 11)) (-3972 (($) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3754 (($ $) 13)) (-4312 (((-838) $) 17)) (-4060 (((-112) $) 8)) (-4216 (((-112) $ (-112)) 10)) (-3382 (((-112) $ $) NIL))) +(((-169) (-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4060 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4216 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3754 ($ $))))) (T -169)) +((-3972 (*1 *1) (-5 *1 (-169))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3754 (*1 *1 *1) (-5 *1 (-169)))) +(-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4060 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4216 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3754 ($ $)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-170) (-138)) (T -170)) NIL -(-13 (-1021) (-111 $ $) (-10 -7 (-6 (-4346 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-4231 (($ $) 6))) +(-13 (-1023) (-111 $ $) (-10 -7 (-6 (-4350 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-1811 (($ $) 6))) (((-171) (-138)) (T -171)) -((-4231 (*1 *1 *1) (-4 *1 (-171)))) -(-13 (-10 -8 (-15 -4231 ($ $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 ((|#1| $) 75)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL)) (-2477 (($ $) 19)) (-1886 (($ |#1| (-1125 |#1|)) 48)) (-1537 (((-3 $ "failed") $) 117)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1266 (((-1125 |#1|) $) 82)) (-2110 (((-1125 |#1|) $) 79)) (-3723 (((-1125 |#1|) $) 80)) (-2419 (((-112) $) NIL)) (-2424 (((-1125 |#1|) $) 88)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3231 (($ (-623 $)) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-4268 (($ $ (-550)) 91)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-3967 (((-1125 |#1|) $) 89)) (-4032 (((-1125 (-400 |#1|)) $) 14)) (-3470 (($ (-400 |#1|)) 17) (($ |#1| (-1125 |#1|) (-1125 |#1|)) 38)) (-4012 (($ $) 93)) (-2233 (((-837) $) 127) (($ (-550)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-550))) NIL) (($ $) NIL)) (-3091 (((-749)) 64)) (-1819 (((-112) $ $) NIL)) (-3686 (((-1125 (-400 |#1|)) $) 18)) (-2688 (($) 25 T CONST)) (-2700 (($) 28 T CONST)) (-2264 (((-112) $ $) 35)) (-2382 (($ $ $) 115)) (-2370 (($ $) 106) (($ $ $) 103)) (-2358 (($ $ $) 101)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL))) -(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -3470 ($ (-400 |#1|))) (-15 -3470 ($ |#1| (-1125 |#1|) (-1125 |#1|))) (-15 -1886 ($ |#1| (-1125 |#1|))) (-15 -2110 ((-1125 |#1|) $)) (-15 -3723 ((-1125 |#1|) $)) (-15 -1266 ((-1125 |#1|) $)) (-15 -3104 (|#1| $)) (-15 -2477 ($ $)) (-15 -3686 ((-1125 (-400 |#1|)) $)) (-15 -4032 ((-1125 (-400 |#1|)) $)) (-15 -2424 ((-1125 |#1|) $)) (-15 -3967 ((-1125 |#1|) $)) (-15 -4268 ($ $ (-550))) (-15 -4012 ($ $)))) (-300)) (T -172)) -((-3470 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-3470 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1125 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1886 (*1 *1 *2 *3) (-12 (-5 *3 (-1125 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1266 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3104 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-2477 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1125 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1125 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -3470 ($ (-400 |#1|))) (-15 -3470 ($ |#1| (-1125 |#1|) (-1125 |#1|))) (-15 -1886 ($ |#1| (-1125 |#1|))) (-15 -2110 ((-1125 |#1|) $)) (-15 -3723 ((-1125 |#1|) $)) (-15 -1266 ((-1125 |#1|) $)) (-15 -3104 (|#1| $)) (-15 -2477 ($ $)) (-15 -3686 ((-1125 (-400 |#1|)) $)) (-15 -4032 ((-1125 (-400 |#1|)) $)) (-15 -2424 ((-1125 |#1|) $)) (-15 -3967 ((-1125 |#1|) $)) (-15 -4268 ($ $ (-550))) (-15 -4012 ($ $)))) -((-3546 (($ (-108) $) 13)) (-3773 (((-3 (-108) "failed") (-1145) $) 12)) (-2233 (((-837) $) 16)) (-3177 (((-623 (-108)) $) 8))) -(((-173) (-13 (-595 (-837)) (-10 -8 (-15 -3177 ((-623 (-108)) $)) (-15 -3546 ($ (-108) $)) (-15 -3773 ((-3 (-108) "failed") (-1145) $))))) (T -173)) -((-3177 (*1 *2 *1) (-12 (-5 *2 (-623 (-108))) (-5 *1 (-173)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3773 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-108)) (-5 *1 (-173))))) -(-13 (-595 (-837)) (-10 -8 (-15 -3177 ((-623 (-108)) $)) (-15 -3546 ($ (-108) $)) (-15 -3773 ((-3 (-108) "failed") (-1145) $)))) -((-2533 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 40)) (-2709 (((-917 |#1|) (-917 |#1|)) 19)) (-3697 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 36)) (-1387 (((-917 |#1|) (-917 |#1|)) 17)) (-3149 (((-917 |#1|) (-917 |#1|)) 25)) (-4009 (((-917 |#1|) (-917 |#1|)) 24)) (-2453 (((-917 |#1|) (-917 |#1|)) 23)) (-2510 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 37)) (-1831 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 35)) (-1834 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 34)) (-4122 (((-917 |#1|) (-917 |#1|)) 18)) (-4253 (((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|) 43)) (-2764 (((-917 |#1|) (-917 |#1|)) 8)) (-2920 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 39)) (-4243 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 38))) -(((-174 |#1|) (-10 -7 (-15 -2764 ((-917 |#1|) (-917 |#1|))) (-15 -1387 ((-917 |#1|) (-917 |#1|))) (-15 -4122 ((-917 |#1|) (-917 |#1|))) (-15 -2709 ((-917 |#1|) (-917 |#1|))) (-15 -2453 ((-917 |#1|) (-917 |#1|))) (-15 -4009 ((-917 |#1|) (-917 |#1|))) (-15 -3149 ((-917 |#1|) (-917 |#1|))) (-15 -1834 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1831 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -3697 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2510 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -4243 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2920 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2533 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -4253 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) (-13 (-356) (-1167) (-976))) (T -174)) -((-4253 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-2533 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-2920 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-4243 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-2510 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-3697 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-1834 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1167) (-976))))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) (-5 *1 (-174 *3))))) -(-10 -7 (-15 -2764 ((-917 |#1|) (-917 |#1|))) (-15 -1387 ((-917 |#1|) (-917 |#1|))) (-15 -4122 ((-917 |#1|) (-917 |#1|))) (-15 -2709 ((-917 |#1|) (-917 |#1|))) (-15 -2453 ((-917 |#1|) (-917 |#1|))) (-15 -4009 ((-917 |#1|) (-917 |#1|))) (-15 -3149 ((-917 |#1|) (-917 |#1|))) (-15 -1834 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1831 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -3697 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2510 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -4243 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2920 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -2533 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -4253 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) -((-3359 ((|#2| |#3|) 27))) -(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -3359 (|#2| |#3|))) (-170) (-1204 |#1|) (-703 |#1| |#2|)) (T -175)) -((-3359 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1204 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-703 *4 *2))))) -(-10 -7 (-15 -3359 (|#2| |#3|))) -((-4141 (((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)) 47 (|has| (-926 |#2|) (-860 |#1|))))) -(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-926 |#2|) (-860 |#1|)) (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))) |%noBranch|)) (-1069) (-13 (-860 |#1|) (-170)) (-164 |#2|)) (T -176)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-4 *3 (-164 *6)) (-4 (-926 *6) (-860 *5)) (-4 *6 (-13 (-860 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) -(-10 -7 (IF (|has| (-926 |#2|) (-860 |#1|)) (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))) |%noBranch|)) -((-1624 (((-623 |#1|) (-623 |#1|) |#1|) 38)) (-2981 (((-623 |#1|) |#1| (-623 |#1|)) 19)) (-4068 (((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|)) 33) ((|#1| (-623 |#1|) (-623 |#1|)) 31))) -(((-177 |#1|) (-10 -7 (-15 -2981 ((-623 |#1|) |#1| (-623 |#1|))) (-15 -4068 (|#1| (-623 |#1|) (-623 |#1|))) (-15 -4068 ((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|))) (-15 -1624 ((-623 |#1|) (-623 |#1|) |#1|))) (-300)) (T -177)) -((-1624 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-4068 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-4068 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-2981 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(-10 -7 (-15 -2981 ((-623 |#1|) |#1| (-623 |#1|))) (-15 -4068 (|#1| (-623 |#1|) (-623 |#1|))) (-15 -4068 ((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|))) (-15 -1624 ((-623 |#1|) (-623 |#1|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-2263 (((-1181) $) 13)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 10)) (-2233 (((-837) $) 22) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-178) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $))))) (T -178)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-178)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-178))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $)))) -((-1927 (((-2 (|:| |start| |#2|) (|:| -1610 (-411 |#2|))) |#2|) 61)) (-2066 ((|#1| |#1|) 54)) (-3680 (((-167 |#1|) |#2|) 84)) (-4294 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2431 ((|#2| |#2|) 83)) (-3648 (((-411 |#2|) |#2| |#1|) 113) (((-411 |#2|) |#2| |#1| (-112)) 81)) (-1571 ((|#1| |#2|) 112)) (-1822 ((|#2| |#2|) 119)) (-1735 (((-411 |#2|) |#2|) 134) (((-411 |#2|) |#2| |#1|) 32) (((-411 |#2|) |#2| |#1| (-112)) 133)) (-2211 (((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2|) 132) (((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2| (-112)) 76)) (-3774 (((-623 (-167 |#1|)) |#2| |#1|) 40) (((-623 (-167 |#1|)) |#2|) 41))) -(((-179 |#1| |#2|) (-10 -7 (-15 -3774 ((-623 (-167 |#1|)) |#2|)) (-15 -3774 ((-623 (-167 |#1|)) |#2| |#1|)) (-15 -2211 ((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2| (-112))) (-15 -2211 ((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2|)) (-15 -1735 ((-411 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-411 |#2|) |#2| |#1|)) (-15 -1735 ((-411 |#2|) |#2|)) (-15 -1822 (|#2| |#2|)) (-15 -1571 (|#1| |#2|)) (-15 -3648 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3648 ((-411 |#2|) |#2| |#1|)) (-15 -2431 (|#2| |#2|)) (-15 -4294 (|#1| |#2| |#1|)) (-15 -4294 (|#1| |#2|)) (-15 -3680 ((-167 |#1|) |#2|)) (-15 -2066 (|#1| |#1|)) (-15 -1927 ((-2 (|:| |start| |#2|) (|:| -1610 (-411 |#2|))) |#2|))) (-13 (-356) (-823)) (-1204 (-167 |#1|))) (T -179)) -((-1927 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-2 (|:| |start| *3) (|:| -1610 (-411 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-2066 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1204 (-167 *2))))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1204 *2)))) (-4294 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1204 (-167 *2))))) (-4294 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1204 (-167 *2))))) (-2431 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1204 (-167 *3))))) (-3648 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-3648 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-1571 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1204 (-167 *2))))) (-1822 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1204 (-167 *3))))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-1735 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-2211 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-2 (|:| -1610 (-623 *3)) (|:| -2511 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-2211 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) (-5 *2 (-623 (-2 (|:| -1610 (-623 *3)) (|:| -2511 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1204 (-167 *5))))) (-3774 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) -(-10 -7 (-15 -3774 ((-623 (-167 |#1|)) |#2|)) (-15 -3774 ((-623 (-167 |#1|)) |#2| |#1|)) (-15 -2211 ((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2| (-112))) (-15 -2211 ((-623 (-2 (|:| -1610 (-623 |#2|)) (|:| -2511 |#1|))) |#2| |#2|)) (-15 -1735 ((-411 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-411 |#2|) |#2| |#1|)) (-15 -1735 ((-411 |#2|) |#2|)) (-15 -1822 (|#2| |#2|)) (-15 -1571 (|#1| |#2|)) (-15 -3648 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3648 ((-411 |#2|) |#2| |#1|)) (-15 -2431 (|#2| |#2|)) (-15 -4294 (|#1| |#2| |#1|)) (-15 -4294 (|#1| |#2|)) (-15 -3680 ((-167 |#1|) |#2|)) (-15 -2066 (|#1| |#1|)) (-15 -1927 ((-2 (|:| |start| |#2|) (|:| -1610 (-411 |#2|))) |#2|))) -((-3669 (((-3 |#2| "failed") |#2|) 14)) (-2094 (((-749) |#2|) 16)) (-2908 ((|#2| |#2| |#2|) 18))) -(((-180 |#1| |#2|) (-10 -7 (-15 -3669 ((-3 |#2| "failed") |#2|)) (-15 -2094 ((-749) |#2|)) (-15 -2908 (|#2| |#2| |#2|))) (-1182) (-652 |#1|)) (T -180)) -((-2908 (*1 *2 *2 *2) (-12 (-4 *3 (-1182)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3)))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-1182)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4)))) (-3669 (*1 *2 *2) (|partial| -12 (-4 *3 (-1182)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) -(-10 -7 (-15 -3669 ((-3 |#2| "failed") |#2|)) (-15 -2094 ((-749) |#2|)) (-15 -2908 (|#2| |#2| |#2|))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1391 (((-1145) $) 10)) (-2233 (((-837) $) 17)) (-2642 (((-623 (-1150)) $) 12)) (-2264 (((-112) $ $) 15))) -(((-181) (-13 (-1069) (-10 -8 (-15 -1391 ((-1145) $)) (-15 -2642 ((-623 (-1150)) $))))) (T -181)) -((-1391 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-181)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-181))))) -(-13 (-1069) (-10 -8 (-15 -1391 ((-1145) $)) (-15 -2642 ((-623 (-1150)) $)))) -((-2868 ((|#2| |#2|) 28)) (-2326 (((-112) |#2|) 19)) (-1406 (((-309 |#1|) |#2|) 12)) (-1415 (((-309 |#1|) |#2|) 14)) (-1875 ((|#2| |#2| (-1145)) 68) ((|#2| |#2|) 69)) (-1828 (((-167 (-309 |#1|)) |#2|) 10)) (-3356 ((|#2| |#2| (-1145)) 65) ((|#2| |#2|) 59))) -(((-182 |#1| |#2|) (-10 -7 (-15 -1875 (|#2| |#2|)) (-15 -1875 (|#2| |#2| (-1145))) (-15 -3356 (|#2| |#2|)) (-15 -3356 (|#2| |#2| (-1145))) (-15 -1406 ((-309 |#1|) |#2|)) (-15 -1415 ((-309 |#1|) |#2|)) (-15 -2326 ((-112) |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -1828 ((-167 (-309 |#1|)) |#2|))) (-13 (-542) (-825) (-1012 (-550))) (-13 (-27) (-1167) (-423 (-167 |#1|)))) (T -182)) -((-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3)))))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-1415 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-1406 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3)))))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *4)))))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3))))))) -(-10 -7 (-15 -1875 (|#2| |#2|)) (-15 -1875 (|#2| |#2| (-1145))) (-15 -3356 (|#2| |#2|)) (-15 -3356 (|#2| |#2| (-1145))) (-15 -1406 ((-309 |#1|) |#2|)) (-15 -1415 ((-309 |#1|) |#2|)) (-15 -2326 ((-112) |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -1828 ((-167 (-309 |#1|)) |#2|))) -((-1589 (((-1228 (-667 (-926 |#1|))) (-1228 (-667 |#1|))) 24)) (-2233 (((-1228 (-667 (-400 (-926 |#1|)))) (-1228 (-667 |#1|))) 33))) -(((-183 |#1|) (-10 -7 (-15 -1589 ((-1228 (-667 (-926 |#1|))) (-1228 (-667 |#1|)))) (-15 -2233 ((-1228 (-667 (-400 (-926 |#1|)))) (-1228 (-667 |#1|))))) (-170)) (T -183)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-1228 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1228 (-667 (-400 (-926 *4))))) (-5 *1 (-183 *4)))) (-1589 (*1 *2 *3) (-12 (-5 *3 (-1228 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1228 (-667 (-926 *4)))) (-5 *1 (-183 *4))))) -(-10 -7 (-15 -1589 ((-1228 (-667 (-926 |#1|))) (-1228 (-667 |#1|)))) (-15 -2233 ((-1228 (-667 (-400 (-926 |#1|)))) (-1228 (-667 |#1|))))) -((-4292 (((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550)))) 66)) (-3371 (((-1147 (-400 (-550))) (-623 (-550)) (-623 (-550))) 75)) (-3277 (((-1147 (-400 (-550))) (-550)) 40)) (-3919 (((-1147 (-400 (-550))) (-550)) 52)) (-1553 (((-400 (-550)) (-1147 (-400 (-550)))) 62)) (-3045 (((-1147 (-400 (-550))) (-550)) 32)) (-1318 (((-1147 (-400 (-550))) (-550)) 48)) (-1305 (((-1147 (-400 (-550))) (-550)) 46)) (-2289 (((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550)))) 60)) (-4012 (((-1147 (-400 (-550))) (-550)) 25)) (-3302 (((-400 (-550)) (-1147 (-400 (-550))) (-1147 (-400 (-550)))) 64)) (-1530 (((-1147 (-400 (-550))) (-550)) 30)) (-3084 (((-1147 (-400 (-550))) (-623 (-550))) 72))) -(((-184) (-10 -7 (-15 -4012 ((-1147 (-400 (-550))) (-550))) (-15 -3277 ((-1147 (-400 (-550))) (-550))) (-15 -3045 ((-1147 (-400 (-550))) (-550))) (-15 -1530 ((-1147 (-400 (-550))) (-550))) (-15 -1305 ((-1147 (-400 (-550))) (-550))) (-15 -1318 ((-1147 (-400 (-550))) (-550))) (-15 -3919 ((-1147 (-400 (-550))) (-550))) (-15 -3302 ((-400 (-550)) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -2289 ((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -1553 ((-400 (-550)) (-1147 (-400 (-550))))) (-15 -4292 ((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -3084 ((-1147 (-400 (-550))) (-623 (-550)))) (-15 -3371 ((-1147 (-400 (-550))) (-623 (-550)) (-623 (-550)))))) (T -184)) -((-3371 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)))) (-4292 (*1 *2 *2 *2) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-1147 (-400 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-184)))) (-2289 (*1 *2 *2 *2) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)))) (-3302 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 (-400 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-184)))) (-3919 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-1318 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-1305 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-3277 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(-10 -7 (-15 -4012 ((-1147 (-400 (-550))) (-550))) (-15 -3277 ((-1147 (-400 (-550))) (-550))) (-15 -3045 ((-1147 (-400 (-550))) (-550))) (-15 -1530 ((-1147 (-400 (-550))) (-550))) (-15 -1305 ((-1147 (-400 (-550))) (-550))) (-15 -1318 ((-1147 (-400 (-550))) (-550))) (-15 -3919 ((-1147 (-400 (-550))) (-550))) (-15 -3302 ((-400 (-550)) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -2289 ((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -1553 ((-400 (-550)) (-1147 (-400 (-550))))) (-15 -4292 ((-1147 (-400 (-550))) (-1147 (-400 (-550))) (-1147 (-400 (-550))))) (-15 -3084 ((-1147 (-400 (-550))) (-623 (-550)))) (-15 -3371 ((-1147 (-400 (-550))) (-623 (-550)) (-623 (-550))))) -((-1369 (((-411 (-1141 (-550))) (-550)) 28)) (-3105 (((-623 (-1141 (-550))) (-550)) 23)) (-3855 (((-1141 (-550)) (-550)) 21))) -(((-185) (-10 -7 (-15 -3105 ((-623 (-1141 (-550))) (-550))) (-15 -3855 ((-1141 (-550)) (-550))) (-15 -1369 ((-411 (-1141 (-550))) (-550))))) (T -185)) -((-1369 (*1 *2 *3) (-12 (-5 *2 (-411 (-1141 (-550)))) (-5 *1 (-185)) (-5 *3 (-550)))) (-3855 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-185)) (-5 *3 (-550)))) (-3105 (*1 *2 *3) (-12 (-5 *2 (-623 (-1141 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) -(-10 -7 (-15 -3105 ((-623 (-1141 (-550))) (-550))) (-15 -3855 ((-1141 (-550)) (-550))) (-15 -1369 ((-411 (-1141 (-550))) (-550)))) -((-1637 (((-1125 (-219)) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-4082 (((-623 (-1127)) (-1125 (-219))) NIL)) (-4104 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-2902 (((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219)))) NIL)) (-1298 (((-623 (-1127)) (-623 (-219))) NIL)) (-2674 (((-219) (-1063 (-818 (-219)))) 24)) (-2393 (((-219) (-1063 (-818 (-219)))) 25)) (-1448 (((-372) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-2808 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-3923 (((-1127) (-219)) NIL)) (-1650 (((-1127) (-623 (-1127))) 20)) (-3744 (((-1009) (-1145) (-1145) (-1009)) 13))) -(((-186) (-10 -7 (-15 -4104 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2808 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -1448 ((-372) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2902 ((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219)))) (-15 -1650 ((-1127) (-623 (-1127)))) (-15 -3744 ((-1009) (-1145) (-1145) (-1009))))) (T -186)) -((-3744 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1145)) (-5 *1 (-186)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-186)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-186)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-186)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-186)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-186)))) (-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1145)) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-186)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-186)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186))))) -(-10 -7 (-15 -4104 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2808 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -1448 ((-372) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2902 ((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219)))) (-15 -1650 ((-1127) (-623 (-1127)))) (-15 -3744 ((-1009) (-1145) (-1145) (-1009)))) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 55) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-1811 (*1 *1 *1) (-4 *1 (-171)))) +(-13 (-10 -8 (-15 -1811 ($ $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#1| $) 75)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-1429 (($ $) 19)) (-1433 (($ |#1| (-1124 |#1|)) 48)) (-3816 (((-3 $ "failed") $) 117)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-1430 (((-1124 |#1|) $) 82)) (-1432 (((-1124 |#1|) $) 79)) (-1431 (((-1124 |#1|) $) 80)) (-2497 (((-112) $) NIL)) (-1426 (((-1124 |#1|) $) 88)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-4123 (($ $ (-536)) 91)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1425 (((-1124 |#1|) $) 89)) (-1427 (((-1124 (-400 |#1|)) $) 14)) (-2940 (($ (-400 |#1|)) 17) (($ |#1| (-1124 |#1|) (-1124 |#1|)) 38)) (-3219 (($ $) 93)) (-4312 (((-838) $) 127) (($ (-536)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-536))) NIL) (($ $) NIL)) (-3456 (((-749)) 64)) (-2172 (((-112) $ $) NIL)) (-1428 (((-1124 (-400 |#1|)) $) 18)) (-2986 (($) 25 T CONST)) (-2992 (($) 28 T CONST)) (-3382 (((-112) $ $) 35)) (-4303 (($ $ $) 115)) (-4192 (($ $) 106) (($ $ $) 103)) (-4194 (($ $ $) 101)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL))) +(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2940 ($ (-400 |#1|))) (-15 -2940 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -1433 ($ |#1| (-1124 |#1|))) (-15 -1432 ((-1124 |#1|) $)) (-15 -1431 ((-1124 |#1|) $)) (-15 -1430 ((-1124 |#1|) $)) (-15 -3459 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1124 (-400 |#1|)) $)) (-15 -1427 ((-1124 (-400 |#1|)) $)) (-15 -1426 ((-1124 |#1|) $)) (-15 -1425 ((-1124 |#1|) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) (-300)) (T -172)) +((-2940 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-2940 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1433 (*1 *1 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3459 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3219 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) +(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2940 ($ (-400 |#1|))) (-15 -2940 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -1433 ($ |#1| (-1124 |#1|))) (-15 -1432 ((-1124 |#1|) $)) (-15 -1431 ((-1124 |#1|) $)) (-15 -1430 ((-1124 |#1|) $)) (-15 -3459 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1124 (-400 |#1|)) $)) (-15 -1427 ((-1124 (-400 |#1|)) $)) (-15 -1426 ((-1124 |#1|) $)) (-15 -1425 ((-1124 |#1|) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) +((-1434 (($ (-108) $) 13)) (-3567 (((-3 (-108) "failed") (-1147) $) 12)) (-4312 (((-838) $) 16)) (-1435 (((-620 (-108)) $) 8))) +(((-173) (-13 (-595 (-838)) (-10 -8 (-15 -1435 ((-620 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $))))) (T -173)) +((-1435 (*1 *2 *1) (-12 (-5 *2 (-620 (-108))) (-5 *1 (-173)))) (-1434 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-173))))) +(-13 (-595 (-838)) (-10 -8 (-15 -1435 ((-620 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)))) +((-1448 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 40)) (-1439 (((-917 |#1|) (-917 |#1|)) 19)) (-1444 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 36)) (-1437 (((-917 |#1|) (-917 |#1|)) 17)) (-1442 (((-917 |#1|) (-917 |#1|)) 25)) (-1441 (((-917 |#1|) (-917 |#1|)) 24)) (-1440 (((-917 |#1|) (-917 |#1|)) 23)) (-1445 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 37)) (-1443 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 35)) (-1754 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 34)) (-1438 (((-917 |#1|) (-917 |#1|)) 18)) (-1449 (((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|) 43)) (-1436 (((-917 |#1|) (-917 |#1|)) 8)) (-1447 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 39)) (-1446 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 38))) +(((-174 |#1|) (-10 -7 (-15 -1436 ((-917 |#1|) (-917 |#1|))) (-15 -1437 ((-917 |#1|) (-917 |#1|))) (-15 -1438 ((-917 |#1|) (-917 |#1|))) (-15 -1439 ((-917 |#1|) (-917 |#1|))) (-15 -1440 ((-917 |#1|) (-917 |#1|))) (-15 -1441 ((-917 |#1|) (-917 |#1|))) (-15 -1442 ((-917 |#1|) (-917 |#1|))) (-15 -1754 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1443 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1444 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1445 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1446 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1447 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1448 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1449 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) (-13 (-356) (-1169) (-976))) (T -174)) +((-1449 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3))))) +(-10 -7 (-15 -1436 ((-917 |#1|) (-917 |#1|))) (-15 -1437 ((-917 |#1|) (-917 |#1|))) (-15 -1438 ((-917 |#1|) (-917 |#1|))) (-15 -1439 ((-917 |#1|) (-917 |#1|))) (-15 -1440 ((-917 |#1|) (-917 |#1|))) (-15 -1441 ((-917 |#1|) (-917 |#1|))) (-15 -1442 ((-917 |#1|) (-917 |#1|))) (-15 -1754 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1443 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1444 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1445 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1446 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1447 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1448 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1449 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) +((-2693 ((|#2| |#3|) 27))) +(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#2| |#3|))) (-170) (-1205 |#1|) (-703 |#1| |#2|)) (T -175)) +((-2693 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1205 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-703 *4 *2))))) +(-10 -7 (-15 -2693 (|#2| |#3|))) +((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 47 (|has| (-920 |#2|) (-860 |#1|))))) +(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-920 |#2|) (-860 |#1|)) (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) |%noBranch|)) (-1072) (-13 (-860 |#1|) (-170)) (-164 |#2|)) (T -176)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *3 (-164 *6)) (-4 (-920 *6) (-860 *5)) (-4 *6 (-13 (-860 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) +(-10 -7 (IF (|has| (-920 |#2|) (-860 |#1|)) (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) |%noBranch|)) +((-1451 (((-620 |#1|) (-620 |#1|) |#1|) 38)) (-1450 (((-620 |#1|) |#1| (-620 |#1|)) 19)) (-2192 (((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|)) 33) ((|#1| (-620 |#1|) (-620 |#1|)) 31))) +(((-177 |#1|) (-10 -7 (-15 -1450 ((-620 |#1|) |#1| (-620 |#1|))) (-15 -2192 (|#1| (-620 |#1|) (-620 |#1|))) (-15 -2192 ((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|))) (-15 -1451 ((-620 |#1|) (-620 |#1|) |#1|))) (-300)) (T -177)) +((-1451 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2192 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-620 *4))) (-5 *2 (-620 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2192 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-1450 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -1450 ((-620 |#1|) |#1| (-620 |#1|))) (-15 -2192 (|#1| (-620 |#1|) (-620 |#1|))) (-15 -2192 ((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|))) (-15 -1451 ((-620 |#1|) (-620 |#1|) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-178) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -178)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-178)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-178))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) +((-1460 (((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|) 61)) (-1459 ((|#1| |#1|) 54)) (-1458 (((-166 |#1|) |#2|) 84)) (-1457 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1456 ((|#2| |#2|) 83)) (-1455 (((-398 |#2|) |#2| |#1|) 113) (((-398 |#2|) |#2| |#1| (-112)) 81)) (-3462 ((|#1| |#2|) 112)) (-1454 ((|#2| |#2|) 119)) (-4087 (((-398 |#2|) |#2|) 134) (((-398 |#2|) |#2| |#1|) 32) (((-398 |#2|) |#2| |#1| (-112)) 133)) (-1453 (((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|) 132) (((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112)) 76)) (-1452 (((-620 (-166 |#1|)) |#2| |#1|) 40) (((-620 (-166 |#1|)) |#2|) 41))) +(((-179 |#1| |#2|) (-10 -7 (-15 -1452 ((-620 (-166 |#1|)) |#2|)) (-15 -1452 ((-620 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4087 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4087 ((-398 |#2|) |#2| |#1|)) (-15 -4087 ((-398 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3462 (|#1| |#2|)) (-15 -1455 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-398 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|))) (-13 (-356) (-823)) (-1205 (-166 |#1|))) (T -179)) +((-1460 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-398 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1459 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1205 *2)))) (-1457 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1457 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1205 (-166 *3))))) (-1455 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-3462 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1205 (-166 *3))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-4087 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1205 (-166 *5))))) (-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) +(-10 -7 (-15 -1452 ((-620 (-166 |#1|)) |#2|)) (-15 -1452 ((-620 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4087 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4087 ((-398 |#2|) |#2| |#1|)) (-15 -4087 ((-398 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3462 (|#1| |#2|)) (-15 -1455 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-398 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|))) +((-1461 (((-3 |#2| "failed") |#2|) 14)) (-1462 (((-749) |#2|) 16)) (-1463 ((|#2| |#2| |#2|) 18))) +(((-180 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-749) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) (-1183) (-652 |#1|)) (T -180)) +((-1463 (*1 *2 *2 *2) (-12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1183)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4)))) (-1461 (*1 *2 *2) (|partial| -12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) +(-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-749) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1465 (((-1147) $) 10)) (-4312 (((-838) $) 17)) (-1464 (((-620 (-1152)) $) 12)) (-3382 (((-112) $ $) 15))) +(((-181) (-13 (-1072) (-10 -8 (-15 -1465 ((-1147) $)) (-15 -1464 ((-620 (-1152)) $))))) (T -181)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-181)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-181))))) +(-13 (-1072) (-10 -8 (-15 -1465 ((-1147) $)) (-15 -1464 ((-620 (-1152)) $)))) +((-4000 ((|#2| |#2|) 28)) (-4003 (((-112) |#2|) 19)) (-4001 (((-307 |#1|) |#2|) 12)) (-4002 (((-307 |#1|) |#2|) 14)) (-3998 ((|#2| |#2| (-1147)) 68) ((|#2| |#2|) 69)) (-4004 (((-166 (-307 |#1|)) |#2|) 10)) (-3999 ((|#2| |#2| (-1147)) 65) ((|#2| |#2|) 59))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4001 ((-307 |#1|) |#2|)) (-15 -4002 ((-307 |#1|) |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4004 ((-166 (-307 |#1|)) |#2|))) (-13 (-543) (-825) (-1012 (-536))) (-13 (-27) (-1169) (-414 (-166 |#1|)))) (T -182)) +((-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3999 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) (-3998 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3))))))) +(-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4001 ((-307 |#1|) |#2|)) (-15 -4002 ((-307 |#1|) |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4004 ((-166 (-307 |#1|)) |#2|))) +((-1466 (((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|))) 24)) (-4312 (((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))) 33))) +(((-183 |#1|) (-10 -7 (-15 -1466 ((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|)))) (-15 -4312 ((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))))) (-170)) (T -183)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1229 (-667 (-400 (-920 *4))))) (-5 *1 (-183 *4)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1229 (-667 (-920 *4)))) (-5 *1 (-183 *4))))) +(-10 -7 (-15 -1466 ((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|)))) (-15 -4312 ((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))))) +((-1474 (((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 66)) (-1476 (((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536))) 75)) (-1467 (((-1149 (-400 (-536))) (-536)) 40)) (-4209 (((-1149 (-400 (-536))) (-536)) 52)) (-4122 (((-400 (-536)) (-1149 (-400 (-536)))) 62)) (-1468 (((-1149 (-400 (-536))) (-536)) 32)) (-1471 (((-1149 (-400 (-536))) (-536)) 48)) (-1470 (((-1149 (-400 (-536))) (-536)) 46)) (-1473 (((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 60)) (-3219 (((-1149 (-400 (-536))) (-536)) 25)) (-1472 (((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 64)) (-1469 (((-1149 (-400 (-536))) (-536)) 30)) (-1475 (((-1149 (-400 (-536))) (-620 (-536))) 72))) +(((-184) (-10 -7 (-15 -3219 ((-1149 (-400 (-536))) (-536))) (-15 -1467 ((-1149 (-400 (-536))) (-536))) (-15 -1468 ((-1149 (-400 (-536))) (-536))) (-15 -1469 ((-1149 (-400 (-536))) (-536))) (-15 -1470 ((-1149 (-400 (-536))) (-536))) (-15 -1471 ((-1149 (-400 (-536))) (-536))) (-15 -4209 ((-1149 (-400 (-536))) (-536))) (-15 -1472 ((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1473 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -4122 ((-400 (-536)) (-1149 (-400 (-536))))) (-15 -1474 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1475 ((-1149 (-400 (-536))) (-620 (-536)))) (-15 -1476 ((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536)))))) (T -184)) +((-1476 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) (-1473 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1472 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) (-4209 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1471 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1468 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1467 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(-10 -7 (-15 -3219 ((-1149 (-400 (-536))) (-536))) (-15 -1467 ((-1149 (-400 (-536))) (-536))) (-15 -1468 ((-1149 (-400 (-536))) (-536))) (-15 -1469 ((-1149 (-400 (-536))) (-536))) (-15 -1470 ((-1149 (-400 (-536))) (-536))) (-15 -1471 ((-1149 (-400 (-536))) (-536))) (-15 -4209 ((-1149 (-400 (-536))) (-536))) (-15 -1472 ((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1473 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -4122 ((-400 (-536)) (-1149 (-400 (-536))))) (-15 -1474 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1475 ((-1149 (-400 (-536))) (-620 (-536)))) (-15 -1476 ((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536))))) +((-1478 (((-398 (-1141 (-536))) (-536)) 28)) (-1477 (((-620 (-1141 (-536))) (-536)) 23)) (-3129 (((-1141 (-536)) (-536)) 21))) +(((-185) (-10 -7 (-15 -1477 ((-620 (-1141 (-536))) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -1478 ((-398 (-1141 (-536))) (-536))))) (T -185)) +((-1478 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-185)) (-5 *3 (-536)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-620 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) +(-10 -7 (-15 -1477 ((-620 (-1141 (-536))) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -1478 ((-398 (-1141 (-536))) (-536)))) +((-1663 (((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1684 (((-620 (-1129)) (-1124 (-219))) NIL)) (-1479 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-1661 (((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219)))) NIL)) (-1683 (((-620 (-1129)) (-620 (-219))) NIL)) (-1685 (((-219) (-1060 (-817 (-219)))) 24)) (-1686 (((-219) (-1060 (-817 (-219)))) 25)) (-1481 (((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-1480 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1681 (((-1129) (-219)) NIL)) (-2896 (((-1129) (-620 (-1129))) 20)) (-1482 (((-1009) (-1147) (-1147) (-1009)) 13))) +(((-186) (-10 -7 (-15 -1479 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1480 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1481 ((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -2896 ((-1129) (-620 (-1129)))) (-15 -1482 ((-1009) (-1147) (-1147) (-1009))))) (T -186)) +((-1482 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-186)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-186)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-186)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-186)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-186)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186))))) +(-10 -7 (-15 -1479 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1480 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1481 ((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -2896 ((-1129) (-620 (-1129)))) (-15 -1482 ((-1009) (-1147) (-1147) (-1009)))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 55) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-187) (-765)) (T -187)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 60) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 60) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-188) (-765)) (T -188)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 69) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 69) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-189) (-765)) (T -189)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 56) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 56) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-190) (-765)) (T -190)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 67) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 67) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-191) (-765)) (T -191)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 73) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 73) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-192) (-765)) (T -192)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 80) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 80) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-193) (-765)) (T -193)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 70) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 70) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-194) (-765)) (T -194)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 66)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 66)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-195) (-765)) (T -195)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 63)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 63)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-196) (-765)) (T -196)) NIL (-765) -((-2221 (((-112) $ $) NIL)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 90) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 90) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-197) (-765)) (T -197)) NIL (-765) -((-2627 (((-3 (-2 (|:| -3985 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-3536 (((-550) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1761 (((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73))) -(((-198) (-10 -7 (-15 -2627 ((-3 (-2 (|:| -3985 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1761 ((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3536 ((-550) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198)) -((-3536 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-550)) (-5 *1 (-198)))) (-1761 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-198)))) (-2627 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3985 (-114)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(-10 -7 (-15 -2627 ((-3 (-2 (|:| -3985 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1761 ((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3536 ((-550) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-2141 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-3229 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-3486 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219)))) 89)) (-1768 (((-372) (-667 (-309 (-219)))) 113)) (-1407 (((-667 (-309 (-219))) (-1228 (-309 (-219))) (-623 (-1145))) 110)) (-1718 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-3902 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-1553 (((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1145)) (-1228 (-309 (-219)))) 102)) (-3223 (((-372) (-372) (-623 (-372))) 107) (((-372) (-372) (-372)) 105)) (-2554 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36))) -(((-199) (-10 -7 (-15 -3223 ((-372) (-372) (-372))) (-15 -3223 ((-372) (-372) (-623 (-372)))) (-15 -1768 ((-372) (-667 (-309 (-219))))) (-15 -1407 ((-667 (-309 (-219))) (-1228 (-309 (-219))) (-623 (-1145)))) (-15 -1553 ((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1145)) (-1228 (-309 (-219))))) (-15 -3486 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219))))) (-15 -3229 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2141 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3902 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2554 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1718 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199)) -((-1718 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-1553 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-667 (-309 (-219)))) (-5 *3 (-623 (-1145))) (-5 *4 (-1228 (-309 (-219)))) (-5 *1 (-199)))) (-1407 (*1 *2 *3 *4) (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *4 (-623 (-1145))) (-5 *2 (-667 (-309 (-219)))) (-5 *1 (-199)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199))))) -(-10 -7 (-15 -3223 ((-372) (-372) (-372))) (-15 -3223 ((-372) (-372) (-623 (-372)))) (-15 -1768 ((-372) (-667 (-309 (-219))))) (-15 -1407 ((-667 (-309 (-219))) (-1228 (-309 (-219))) (-623 (-1145)))) (-15 -1553 ((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1145)) (-1228 (-309 (-219))))) (-15 -3486 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219))))) (-15 -3229 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2141 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3902 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2554 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1718 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3647 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-2264 (((-112) $ $) NIL))) +((-1483 (((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-1485 (((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1484 (((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73))) +(((-198) (-10 -7 (-15 -1483 ((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1485 ((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198)) +((-1485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-536)) (-5 *1 (-198)))) (-1484 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-198)))) (-1483 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2831 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) +(-10 -7 (-15 -1483 ((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1485 ((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-1490 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1489 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-1488 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219)))) 89)) (-1487 (((-371) (-667 (-307 (-219)))) 113)) (-2447 (((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147))) 110)) (-1493 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-1491 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-4122 (((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219)))) 102)) (-1486 (((-371) (-371) (-620 (-371))) 107) (((-371) (-371) (-371)) 105)) (-1492 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36))) +(((-199) (-10 -7 (-15 -1486 ((-371) (-371) (-371))) (-15 -1486 ((-371) (-371) (-620 (-371)))) (-15 -1487 ((-371) (-667 (-307 (-219))))) (-15 -2447 ((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147)))) (-15 -4122 ((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219))))) (-15 -1489 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1493 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199)) +((-1493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-4122 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-667 (-307 (-219)))) (-5 *3 (-620 (-1147))) (-5 *4 (-1229 (-307 (-219)))) (-5 *1 (-199)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) (-5 *2 (-667 (-307 (-219)))) (-5 *1 (-199)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1486 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-371))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1486 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199))))) +(-10 -7 (-15 -1486 ((-371) (-371) (-371))) (-15 -1486 ((-371) (-371) (-620 (-371)))) (-15 -1487 ((-371) (-667 (-307 (-219))))) (-15 -2447 ((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147)))) (-15 -4122 ((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219))))) (-15 -1489 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1493 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-3382 (((-112) $ $) NIL))) (((-200) (-778)) (T -200)) NIL (-778) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3647 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-3382 (((-112) $ $) NIL))) (((-201) (-778)) (T -201)) NIL (-778) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3647 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-3382 (((-112) $ $) NIL))) (((-202) (-778)) (T -202)) NIL (-778) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3647 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-3382 (((-112) $ $) NIL))) (((-203) (-778)) (T -203)) NIL (-778) -((-3016 (((-623 (-1145)) (-1145) (-749)) 23)) (-3496 (((-309 (-219)) (-309 (-219))) 31)) (-3025 (((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 74)) (-4062 (((-112) (-219) (-219) (-623 (-309 (-219)))) 45))) -(((-204) (-10 -7 (-15 -3016 ((-623 (-1145)) (-1145) (-749))) (-15 -3496 ((-309 (-219)) (-309 (-219)))) (-15 -4062 ((-112) (-219) (-219) (-623 (-309 (-219))))) (-15 -3025 ((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))))))) (T -204)) -((-3025 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-4062 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-623 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-623 (-1145))) (-5 *1 (-204)) (-5 *3 (-1145))))) -(-10 -7 (-15 -3016 ((-623 (-1145)) (-1145) (-749))) (-15 -3496 ((-309 (-219)) (-309 (-219)))) (-15 -4062 ((-112) (-219) (-219) (-623 (-309 (-219))))) (-15 -3025 ((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))))) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 26)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3607 (((-1009) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 57)) (-2264 (((-112) $ $) NIL))) +((-4289 (((-620 (-1147)) (-1147) (-749)) 23)) (-1494 (((-307 (-219)) (-307 (-219))) 31)) (-1496 (((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 74)) (-1495 (((-112) (-219) (-219) (-620 (-307 (-219)))) 45))) +(((-204) (-10 -7 (-15 -4289 ((-620 (-1147)) (-1147) (-749))) (-15 -1494 ((-307 (-219)) (-307 (-219)))) (-15 -1495 ((-112) (-219) (-219) (-620 (-307 (-219))))) (-15 -1496 ((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))))) (T -204)) +((-1496 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-1495 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-620 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-204)) (-5 *3 (-1147))))) +(-10 -7 (-15 -4289 ((-620 (-1147)) (-1147) (-749))) (-15 -1494 ((-307 (-219)) (-307 (-219)))) (-15 -1495 ((-112) (-219) (-219) (-620 (-307 (-219))))) (-15 -1496 ((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 26)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 57)) (-3382 (((-112) $ $) NIL))) (((-205) (-869)) (T -205)) NIL (-869) -((-2221 (((-112) $ $) NIL)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 21)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-3607 (((-1009) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) NIL)) (-3382 (((-112) $ $) NIL))) (((-206) (-869)) (T -206)) NIL (-869) -((-2221 (((-112) $ $) NIL)) (-2409 ((|#2| $ (-749) |#2|) 11)) (-3375 (($) 8)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2757 ((|#2| $ (-749)) 10)) (-2233 (((-837) $) 18)) (-2264 (((-112) $ $) 13))) -(((-207 |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -3375 ($)) (-15 -2757 (|#2| $ (-749))) (-15 -2409 (|#2| $ (-749) |#2|)))) (-895) (-1069)) (T -207)) -((-3375 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1069)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-1069)) (-5 *1 (-207 *4 *2)) (-14 *4 (-895)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-895)) (-4 *2 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -3375 ($)) (-15 -2757 (|#2| $ (-749))) (-15 -2409 (|#2| $ (-749) |#2|)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1858 (((-1233) $) 36) (((-1233) $ (-895) (-895)) 38)) (-2757 (($ $ (-963)) 19) (((-239 (-1127)) $ (-1145)) 15)) (-1970 (((-1233) $) 34)) (-2233 (((-837) $) 31) (($ (-623 |#1|)) 8)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $ $) 27)) (-2358 (($ $ $) 22))) -(((-208 |#1|) (-13 (-1069) (-10 -8 (-15 -2757 ($ $ (-963))) (-15 -2757 ((-239 (-1127)) $ (-1145))) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2233 ($ (-623 |#1|))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $)) (-15 -1858 ((-1233) $ (-895) (-895))))) (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))) (T -208)) -((-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-239 (-1127))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ *3)) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))))) (-2358 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))))) (-2370 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $))))) (-5 *1 (-208 *3)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) (-15 -1858 (*2 $))))))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) (-15 -1858 (*2 $))))))) (-1858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) (-15 -1858 (*2 $)))))))) -(-13 (-1069) (-10 -8 (-15 -2757 ($ $ (-963))) (-15 -2757 ((-239 (-1127)) $ (-1145))) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2233 ($ (-623 |#1|))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $)) (-15 -1858 ((-1233) $ (-895) (-895))))) -((-2472 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2472 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209)) -((-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1204 (-400 *2))) (-4 *2 (-1204 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) -(-10 -7 (-15 -2472 (|#2| |#4| (-1 |#2| |#2|)))) -((-2185 ((|#2| |#2| (-749) |#2|) 42)) (-1408 ((|#2| |#2| (-749) |#2|) 38)) (-1663 (((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|)))) 57)) (-4247 (((-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|))) |#2|) 53)) (-4225 (((-112) |#2|) 50)) (-3452 (((-411 |#2|) |#2|) 77)) (-1735 (((-411 |#2|) |#2|) 76)) (-3159 ((|#2| |#2| (-749) |#2|) 36)) (-1665 (((-2 (|:| |cont| |#1|) (|:| -1610 (-623 (-2 (|:| |irr| |#2|) (|:| -1635 (-550)))))) |#2| (-112)) 69))) -(((-210 |#1| |#2|) (-10 -7 (-15 -1735 ((-411 |#2|) |#2|)) (-15 -3452 ((-411 |#2|) |#2|)) (-15 -1665 ((-2 (|:| |cont| |#1|) (|:| -1610 (-623 (-2 (|:| |irr| |#2|) (|:| -1635 (-550)))))) |#2| (-112))) (-15 -4247 ((-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|))) |#2|)) (-15 -1663 ((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|))))) (-15 -3159 (|#2| |#2| (-749) |#2|)) (-15 -1408 (|#2| |#2| (-749) |#2|)) (-15 -2185 (|#2| |#2| (-749) |#2|)) (-15 -4225 ((-112) |#2|))) (-342) (-1204 |#1|)) (T -210)) -((-4225 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1204 *4)))) (-2185 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1204 *4)))) (-1408 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1204 *4)))) (-3159 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1204 *4)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |deg| (-749)) (|:| -4123 *5)))) (-4 *5 (-1204 *4)) (-4 *4 (-342)) (-5 *2 (-623 *5)) (-5 *1 (-210 *4 *5)))) (-4247 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -4123 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1204 *4)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-342)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1204 *5)))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1204 *4)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -1735 ((-411 |#2|) |#2|)) (-15 -3452 ((-411 |#2|) |#2|)) (-15 -1665 ((-2 (|:| |cont| |#1|) (|:| -1610 (-623 (-2 (|:| |irr| |#2|) (|:| -1635 (-550)))))) |#2| (-112))) (-15 -4247 ((-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|))) |#2|)) (-15 -1663 ((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -4123 |#2|))))) (-15 -3159 (|#2| |#2| (-749) |#2|)) (-15 -1408 (|#2| |#2| (-749) |#2|)) (-15 -2185 (|#2| |#2| (-749) |#2|)) (-15 -4225 ((-112) |#2|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-550) $) NIL (|has| (-550) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-550) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-550) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1012 (-550))))) (-2202 (((-550) $) NIL) (((-1145) $) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-550) (-1012 (-550)))) (((-550) $) NIL (|has| (-550) (-1012 (-550))))) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-550) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-550) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-550) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-550) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-550) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-550) (-1120)))) (-1712 (((-112) $) NIL (|has| (-550) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-550) (-825)))) (-2392 (($ (-1 (-550) (-550)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-550) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-3925 (((-550) $) NIL (|has| (-550) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1145)) (-623 (-550))) NIL (|has| (-550) (-505 (-1145) (-550)))) (($ $ (-1145) (-550)) NIL (|has| (-550) (-505 (-1145) (-550))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-550) $) NIL)) (-2045 (($ (-400 (-550))) 9)) (-2451 (((-866 (-550)) $) NIL (|has| (-550) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-550) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-996))) (((-219) $) NIL (|has| (-550) (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1145)) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL) (((-978 10) $) 10)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-550) (-883))) (|has| (-550) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-550) $) NIL (|has| (-550) (-535)))) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| (-550) (-798)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2382 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) -(((-211) (-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 10) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -2045 ($ (-400 (-550))))))) (T -211)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211))))) -(-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 10) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -2045 ($ (-400 (-550)))))) -((-2221 (((-112) $ $) NIL)) (-3619 (((-1087) $) 13)) (-2369 (((-1127) $) NIL)) (-3724 (((-475) $) 10)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 25) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 15)) (-2264 (((-112) $ $) NIL))) -(((-212) (-13 (-1052) (-10 -8 (-15 -3724 ((-475) $)) (-15 -3619 ((-1087) $)) (-15 -1865 ((-1104) $))))) (T -212)) -((-3724 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-212)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-212))))) -(-13 (-1052) (-10 -8 (-15 -3724 ((-475) $)) (-15 -3619 ((-1087) $)) (-15 -1865 ((-1104) $)))) -((-2149 (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|)) (-1127)) 28) (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|))) 24)) (-2773 (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1145) (-818 |#2|) (-818 |#2|) (-112)) 17))) -(((-213 |#1| |#2|) (-10 -7 (-15 -2149 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|)))) (-15 -2149 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|)) (-1127))) (-15 -2773 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1145) (-818 |#2|) (-818 |#2|) (-112)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-933) (-29 |#1|))) (T -213)) -((-2773 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1145)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-4 *3 (-13 (-1167) (-933) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-818 *3)))) (-2149 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1061 (-818 *3))) (-5 *5 (-1127)) (-4 *3 (-13 (-1167) (-933) (-29 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6 *3)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-818 *3))) (-4 *3 (-13 (-1167) (-933) (-29 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5 *3))))) -(-10 -7 (-15 -2149 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|)))) (-15 -2149 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1061 (-818 |#2|)) (-1127))) (-15 -2773 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1145) (-818 |#2|) (-818 |#2|) (-112)))) -((-2149 (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|)))) (-1127)) 46) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|))))) 43) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|))) (-1127)) 47) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|)))) 20))) -(((-214 |#1|) (-10 -7 (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|))))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|))) (-1127))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|)))))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|)))) (-1127)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (T -214)) -((-2149 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1061 (-818 (-400 (-926 *6))))) (-5 *5 (-1127)) (-5 *3 (-400 (-926 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-818 (-400 (-926 *5))))) (-5 *3 (-400 (-926 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))) (-2149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-926 *6))) (-5 *4 (-1061 (-818 (-309 *6)))) (-5 *5 (-1127)) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1061 (-818 (-309 *5)))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5))))) -(-10 -7 (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|))))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-309 |#1|))) (-1127))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|)))))) (-15 -2149 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-926 |#1|)) (-1061 (-818 (-400 (-926 |#1|)))) (-1127)))) -((-2924 (((-2 (|:| -2054 (-1141 |#1|)) (|:| |deg| (-895))) (-1141 |#1|)) 21)) (-2062 (((-623 (-309 |#2|)) (-309 |#2|) (-895)) 42))) -(((-215 |#1| |#2|) (-10 -7 (-15 -2924 ((-2 (|:| -2054 (-1141 |#1|)) (|:| |deg| (-895))) (-1141 |#1|))) (-15 -2062 ((-623 (-309 |#2|)) (-309 |#2|) (-895)))) (-1021) (-13 (-542) (-825))) (T -215)) -((-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *6 (-13 (-542) (-825))) (-5 *2 (-623 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1021)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-5 *2 (-2 (|:| -2054 (-1141 *4)) (|:| |deg| (-895)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-542) (-825)))))) -(-10 -7 (-15 -2924 ((-2 (|:| -2054 (-1141 |#1|)) (|:| |deg| (-895))) (-1141 |#1|))) (-15 -2062 ((-623 (-309 |#2|)) (-309 |#2|) (-895)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1540 ((|#1| $) NIL)) (-3940 ((|#1| $) 25)) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-4161 (($ $) NIL)) (-3770 (($ $) 31)) (-3219 ((|#1| |#1| $) NIL)) (-3540 ((|#1| $) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3839 (((-749) $) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) NIL)) (-3403 ((|#1| |#1| $) 28)) (-1832 ((|#1| |#1| $) 30)) (-1715 (($ |#1| $) NIL)) (-1293 (((-749) $) 27)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1398 ((|#1| $) NIL)) (-2353 ((|#1| $) 26)) (-3441 ((|#1| $) 24)) (-3576 ((|#1| $) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-2272 ((|#1| |#1| $) NIL)) (-4217 (((-112) $) 9)) (-2819 (($) NIL)) (-2752 ((|#1| $) NIL)) (-4028 (($) NIL) (($ (-623 |#1|)) 16)) (-3072 (((-749) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3100 ((|#1| $) 13)) (-4017 (($ (-623 |#1|)) NIL)) (-2940 ((|#1| $) NIL)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -4028 ($ (-623 |#1|))))) (-1069)) (T -216)) -((-4028 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-216 *3))))) -(-13 (-247 |#1|) (-10 -8 (-15 -4028 ($ (-623 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2632 (($ (-309 |#1|)) 23)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2918 (((-112) $) NIL)) (-2288 (((-3 (-309 |#1|) "failed") $) NIL)) (-2202 (((-309 |#1|) $) NIL)) (-1693 (($ $) 31)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2392 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-1670 (((-309 |#1|) $) NIL)) (-3568 (($ $) 30)) (-2369 (((-1127) $) NIL)) (-1572 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($ (-749)) NIL)) (-1710 (($ $) 32)) (-3661 (((-550) $) NIL)) (-2233 (((-837) $) 57) (($ (-550)) NIL) (($ (-309 |#1|)) NIL)) (-1708 (((-309 |#1|) $ $) NIL)) (-3091 (((-749)) NIL)) (-2688 (($) 25 T CONST)) (-2700 (($) 50 T CONST)) (-2264 (((-112) $ $) 28)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18))) -(((-217 |#1| |#2|) (-13 (-600 (-309 |#1|)) (-1012 (-309 |#1|)) (-10 -8 (-15 -1670 ((-309 |#1|) $)) (-15 -3568 ($ $)) (-15 -1693 ($ $)) (-15 -1708 ((-309 |#1|) $ $)) (-15 -2256 ($ (-749))) (-15 -1572 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3661 ((-550) $)) (-15 -2392 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2632 ($ (-309 |#1|))) (-15 -1710 ($ $)))) (-13 (-1021) (-825)) (-623 (-1145))) (T -217)) -((-1670 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) (-14 *3 (-623 (-1145))))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) (-14 *3 (-623 (-1145))))) (-1708 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1021) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1145))))) (-2632 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1021) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1145))))) (-1710 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) (-14 *3 (-623 (-1145)))))) -(-13 (-600 (-309 |#1|)) (-1012 (-309 |#1|)) (-10 -8 (-15 -1670 ((-309 |#1|) $)) (-15 -3568 ($ $)) (-15 -1693 ($ $)) (-15 -1708 ((-309 |#1|) $ $)) (-15 -2256 ($ (-749))) (-15 -1572 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3661 ((-550) $)) (-15 -2392 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2632 ($ (-309 |#1|))) (-15 -1710 ($ $)))) -((-2237 (((-112) (-1127)) 22)) (-4124 (((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112)) 32)) (-3069 (((-3 (-112) "failed") (-1141 |#2|) (-818 |#2|) (-818 |#2|) (-112)) 73) (((-3 (-112) "failed") (-926 |#1|) (-1145) (-818 |#2|) (-818 |#2|) (-112)) 74))) -(((-218 |#1| |#2|) (-10 -7 (-15 -2237 ((-112) (-1127))) (-15 -4124 ((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112))) (-15 -3069 ((-3 (-112) "failed") (-926 |#1|) (-1145) (-818 |#2|) (-818 |#2|) (-112))) (-15 -3069 ((-3 (-112) "failed") (-1141 |#2|) (-818 |#2|) (-818 |#2|) (-112)))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-29 |#1|))) (T -218)) -((-3069 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-818 *6)) (-4 *6 (-13 (-1167) (-29 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-218 *5 *6)))) (-3069 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-926 *6)) (-5 *4 (-1145)) (-5 *5 (-818 *7)) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-4 *7 (-13 (-1167) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-4124 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-818 *4)) (-5 *3 (-594 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1167) (-29 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-218 *6 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1167) (-29 *4)))))) -(-10 -7 (-15 -2237 ((-112) (-1127))) (-15 -4124 ((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112))) (-15 -3069 ((-3 (-112) "failed") (-926 |#1|) (-1145) (-818 |#2|) (-818 |#2|) (-112))) (-15 -3069 ((-3 (-112) "failed") (-1141 |#2|) (-818 |#2|) (-818 |#2|) (-112)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 87)) (-3104 (((-550) $) 98)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2879 (($ $) NIL)) (-4160 (($ $) 75)) (-2820 (($ $) 63)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) 54)) (-1611 (((-112) $ $) NIL)) (-4137 (($ $) 73)) (-2796 (($ $) 61)) (-4303 (((-550) $) 115)) (-4183 (($ $) 78)) (-2844 (($ $) 65)) (-2991 (($) NIL T CONST)) (-3878 (($ $) NIL)) (-2288 (((-3 (-550) "failed") $) 114) (((-3 (-400 (-550)) "failed") $) 111)) (-2202 (((-550) $) 112) (((-400 (-550)) $) 109)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) 91)) (-3395 (((-400 (-550)) $ (-749)) 107) (((-400 (-550)) $ (-749) (-749)) 106)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1578 (((-895)) 27) (((-895) (-895)) NIL (|has| $ (-6 -4335)))) (-2694 (((-112) $) NIL)) (-4187 (($) 37)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL)) (-2603 (((-550) $) 33)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL)) (-1571 (($ $) NIL)) (-1712 (((-112) $) 86)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) 51) (($) 32 (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-2173 (($ $ $) 50) (($) 31 (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-4136 (((-550) $) 25)) (-1916 (($ $) 28)) (-1638 (($ $) 55)) (-3080 (($ $) 60)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-1566 (((-895) (-550)) NIL (|has| $ (-6 -4335)))) (-3445 (((-1089) $) 89)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL)) (-3925 (($ $) NIL)) (-2795 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-895)) 99)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3068 (((-550) $) 26)) (-2175 (($) 36)) (-1644 (($ $) 59)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-4051 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4335)))) (-2798 (($ $ (-749)) NIL) (($ $) 92)) (-3202 (((-895) (-550)) NIL (|has| $ (-6 -4335)))) (-4194 (($ $) 76)) (-2856 (($ $) 66)) (-4171 (($ $) 77)) (-2832 (($ $) 64)) (-4149 (($ $) 74)) (-2807 (($ $) 62)) (-2451 (((-372) $) 103) (((-219) $) 100) (((-866 (-372)) $) NIL) (((-526) $) 43)) (-2233 (((-837) $) 40) (($ (-550)) 58) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-550)) 58) (($ (-400 (-550))) NIL)) (-3091 (((-749)) NIL)) (-2967 (($ $) NIL)) (-4319 (((-895)) 30) (((-895) (-895)) NIL (|has| $ (-6 -4335)))) (-4300 (((-895)) 23)) (-4233 (($ $) 81)) (-2893 (($ $) 69) (($ $ $) 108)) (-1819 (((-112) $ $) NIL)) (-4206 (($ $) 79)) (-2869 (($ $) 67)) (-4255 (($ $) 84)) (-4117 (($ $) 72)) (-3363 (($ $) 82)) (-4127 (($ $) 70)) (-4244 (($ $) 83)) (-2905 (($ $) 71)) (-4218 (($ $) 80)) (-2880 (($ $) 68)) (-4188 (($ $) 116)) (-2688 (($) 34 T CONST)) (-2700 (($) 35 T CONST)) (-3145 (((-1127) $) 17) (((-1127) $ (-112)) 19) (((-1233) (-800) $) 20) (((-1233) (-800) $ (-112)) 21)) (-3257 (($ $) 95)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-3044 (($ $ $) 97)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 52)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 44)) (-2382 (($ $ $) 85) (($ $ (-550)) 53)) (-2370 (($ $) 45) (($ $ $) 47)) (-2358 (($ $ $) 46)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 56) (($ $ (-400 (-550))) 128) (($ $ $) 57)) (* (($ (-895) $) 29) (($ (-749) $) NIL) (($ (-550) $) 49) (($ $ $) 48) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-219) (-13 (-397) (-227) (-806) (-1167) (-596 (-526)) (-10 -8 (-15 -2382 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -2175 ($)) (-15 -1916 ($ $)) (-15 -1638 ($ $)) (-15 -2893 ($ $ $)) (-15 -3257 ($ $)) (-15 -3044 ($ $ $)) (-15 -3395 ((-400 (-550)) $ (-749))) (-15 -3395 ((-400 (-550)) $ (-749) (-749)))))) (T -219)) -((** (*1 *1 *1 *1) (-5 *1 (-219))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-219)))) (-2175 (*1 *1) (-5 *1 (-219))) (-1916 (*1 *1 *1) (-5 *1 (-219))) (-1638 (*1 *1 *1) (-5 *1 (-219))) (-2893 (*1 *1 *1 *1) (-5 *1 (-219))) (-3257 (*1 *1 *1) (-5 *1 (-219))) (-3044 (*1 *1 *1 *1) (-5 *1 (-219))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) (-3395 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219))))) -(-13 (-397) (-227) (-806) (-1167) (-596 (-526)) (-10 -8 (-15 -2382 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -2175 ($)) (-15 -1916 ($ $)) (-15 -1638 ($ $)) (-15 -2893 ($ $ $)) (-15 -3257 ($ $)) (-15 -3044 ($ $ $)) (-15 -3395 ((-400 (-550)) $ (-749))) (-15 -3395 ((-400 (-550)) $ (-749) (-749))))) -((-3532 (((-167 (-219)) (-749) (-167 (-219))) 11) (((-219) (-749) (-219)) 12)) (-3073 (((-167 (-219)) (-167 (-219))) 13) (((-219) (-219)) 14)) (-1554 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 19) (((-219) (-219) (-219)) 22)) (-1706 (((-167 (-219)) (-167 (-219))) 25) (((-219) (-219)) 24)) (-3504 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 43) (((-219) (-219) (-219)) 35)) (-3966 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 48) (((-219) (-219) (-219)) 45)) (-1744 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 15) (((-219) (-219) (-219)) 16)) (-2116 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 17) (((-219) (-219) (-219)) 18)) (-2577 (((-167 (-219)) (-167 (-219))) 60) (((-219) (-219)) 59)) (-1850 (((-219) (-219)) 54) (((-167 (-219)) (-167 (-219))) 58)) (-3257 (((-167 (-219)) (-167 (-219))) 8) (((-219) (-219)) 9)) (-3044 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 30) (((-219) (-219) (-219)) 26))) -(((-220) (-10 -7 (-15 -3257 ((-219) (-219))) (-15 -3257 ((-167 (-219)) (-167 (-219)))) (-15 -3044 ((-219) (-219) (-219))) (-15 -3044 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3073 ((-219) (-219))) (-15 -3073 ((-167 (-219)) (-167 (-219)))) (-15 -1706 ((-219) (-219))) (-15 -1706 ((-167 (-219)) (-167 (-219)))) (-15 -3532 ((-219) (-749) (-219))) (-15 -3532 ((-167 (-219)) (-749) (-167 (-219)))) (-15 -1744 ((-219) (-219) (-219))) (-15 -1744 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3504 ((-219) (-219) (-219))) (-15 -3504 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2116 ((-219) (-219) (-219))) (-15 -2116 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3966 ((-219) (-219) (-219))) (-15 -3966 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1850 ((-167 (-219)) (-167 (-219)))) (-15 -1850 ((-219) (-219))) (-15 -2577 ((-219) (-219))) (-15 -2577 ((-167 (-219)) (-167 (-219)))) (-15 -1554 ((-219) (-219) (-219))) (-15 -1554 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))) (T -220)) -((-1554 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1554 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3504 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3504 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3532 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) (-3532 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3044 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3044 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))) -(-10 -7 (-15 -3257 ((-219) (-219))) (-15 -3257 ((-167 (-219)) (-167 (-219)))) (-15 -3044 ((-219) (-219) (-219))) (-15 -3044 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3073 ((-219) (-219))) (-15 -3073 ((-167 (-219)) (-167 (-219)))) (-15 -1706 ((-219) (-219))) (-15 -1706 ((-167 (-219)) (-167 (-219)))) (-15 -3532 ((-219) (-749) (-219))) (-15 -3532 ((-167 (-219)) (-749) (-167 (-219)))) (-15 -1744 ((-219) (-219) (-219))) (-15 -1744 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3504 ((-219) (-219) (-219))) (-15 -3504 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2116 ((-219) (-219) (-219))) (-15 -2116 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3966 ((-219) (-219) (-219))) (-15 -3966 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1850 ((-167 (-219)) (-167 (-219)))) (-15 -1850 ((-219) (-219))) (-15 -2577 ((-219) (-219))) (-15 -2577 ((-167 (-219)) (-167 (-219)))) (-15 -1554 ((-219) (-219) (-219))) (-15 -1554 ((-167 (-219)) (-167 (-219)) (-167 (-219))))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749) (-749)) NIL)) (-2705 (($ $ $) NIL)) (-3569 (($ (-1228 |#1|)) NIL) (($ $) NIL)) (-3734 (($ |#1| |#1| |#1|) 32)) (-3684 (((-112) $) NIL)) (-1481 (($ $ (-550) (-550)) NIL)) (-3781 (($ $ (-550) (-550)) NIL)) (-1825 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-4296 (($ $) NIL)) (-2644 (((-112) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3154 (($ $ (-550) (-550) $) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1645 (($ $ (-550) (-1228 |#1|)) NIL)) (-4097 (($ $ (-550) (-1228 |#1|)) NIL)) (-3173 (($ |#1| |#1| |#1|) 31)) (-3955 (($ (-749) |#1|) NIL)) (-2991 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| |#1| (-300)))) (-1297 (((-1228 |#1|) $ (-550)) NIL)) (-3544 (($ |#1|) 30)) (-2416 (($ |#1|) 29)) (-4283 (($ |#1|) 28)) (-3398 (((-749) $) NIL (|has| |#1| (-542)))) (-3317 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3263 ((|#1| $ (-550) (-550)) NIL)) (-2971 (((-623 |#1|) $) NIL)) (-1436 (((-749) $) NIL (|has| |#1| (-542)))) (-3113 (((-623 (-1228 |#1|)) $) NIL (|has| |#1| (-542)))) (-2050 (((-749) $) NIL)) (-3375 (($ (-749) (-749) |#1|) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-1517 ((|#1| $) NIL (|has| |#1| (-6 (-4346 "*"))))) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-4224 (($ (-623 (-623 |#1|))) 11)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3380 (((-623 (-623 |#1|)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3765 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-3616 (($) 12)) (-2458 (($ $ $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4000 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL)) (-2418 (((-112) $) NIL)) (-4270 ((|#1| $) NIL (|has| |#1| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-1457 (((-1228 |#1|) $ (-550)) NIL)) (-2233 (($ (-1228 |#1|)) NIL) (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1228 |#1|) $ (-1228 |#1|)) 15) (((-1228 |#1|) (-1228 |#1|) $) NIL) (((-917 |#1|) $ (-917 |#1|)) 20)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-221 |#1|) (-13 (-665 |#1| (-1228 |#1|) (-1228 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -3616 ($)) (-15 -4283 ($ |#1|)) (-15 -2416 ($ |#1|)) (-15 -3544 ($ |#1|)) (-15 -3173 ($ |#1| |#1| |#1|)) (-15 -3734 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1167))) (T -221)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167))) (-5 *1 (-221 *3)))) (-3616 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) (-4283 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) (-2416 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) (-3544 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) (-3173 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) (-3734 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167)))))) -(-13 (-665 |#1| (-1228 |#1|) (-1228 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -3616 ($)) (-15 -4283 ($ |#1|)) (-15 -2416 ($ |#1|)) (-15 -3544 ($ |#1|)) (-15 -3173 ($ |#1| |#1| |#1|)) (-15 -3734 ($ |#1| |#1| |#1|)))) -((-3994 (($ (-1 (-112) |#2|) $) 16)) (-2505 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-3246 (($) NIL) (($ (-623 |#2|)) 11)) (-2264 (((-112) $ $) 23))) -(((-222 |#1| |#2|) (-10 -8 (-15 -3994 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -3246 (|#1| (-623 |#2|))) (-15 -3246 (|#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-223 |#2|) (-1069)) (T -222)) -NIL -(-10 -8 (-15 -3994 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -3246 (|#1| (-623 |#2|))) (-15 -3246 (|#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-223 |#1|) (-138) (-1069)) (T -223)) +((-2893 (((-112) $ $) NIL)) (-4142 ((|#2| $ (-749) |#2|) 11)) (-3972 (($) 8)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#2| $ (-749)) 10)) (-4312 (((-838) $) 18)) (-3382 (((-112) $ $) 13))) +(((-207 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4154 (|#2| $ (-749))) (-15 -4142 (|#2| $ (-749) |#2|)))) (-893) (-1072)) (T -207)) +((-3972 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1072)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-1072)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)) (-4 *2 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4154 (|#2| $ (-749))) (-15 -4142 (|#2| $ (-749) |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2082 (((-1235) $) 36) (((-1235) $ (-893) (-893)) 38)) (-4154 (($ $ (-963)) 19) (((-239 (-1129)) $ (-1147)) 15)) (-3975 (((-1235) $) 34)) (-4312 (((-838) $) 31) (($ (-620 |#1|)) 8)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $ $) 27)) (-4194 (($ $ $) 22))) +(((-208 |#1|) (-13 (-1072) (-10 -8 (-15 -4154 ($ $ (-963))) (-15 -4154 ((-239 (-1129)) $ (-1147))) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4312 ($ (-620 |#1|))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -2082 ((-1235) $ (-893) (-893))))) (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))) (T -208)) +((-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-239 (-1129))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ *3)) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4194 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4192 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))) (-5 *1 (-208 *3)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $)))))))) +(-13 (-1072) (-10 -8 (-15 -4154 ($ $ (-963))) (-15 -4154 ((-239 (-1129)) $ (-1147))) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4312 ($ (-620 |#1|))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -2082 ((-1235) $ (-893) (-893))))) +((-1497 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1497 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209)) +((-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1205 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) +(-10 -7 (-15 -1497 (|#2| |#4| (-1 |#2| |#2|)))) +((-1501 ((|#2| |#2| (-749) |#2|) 42)) (-1500 ((|#2| |#2| (-749) |#2|) 38)) (-2453 (((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|)))) 57)) (-1499 (((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|) 53)) (-1502 (((-112) |#2|) 50)) (-4088 (((-398 |#2|) |#2|) 77)) (-4087 (((-398 |#2|) |#2|) 76)) (-2454 ((|#2| |#2| (-749) |#2|) 36)) (-1498 (((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112)) 69))) +(((-210 |#1| |#2|) (-10 -7 (-15 -4087 ((-398 |#2|) |#2|)) (-15 -4088 ((-398 |#2|) |#2|)) (-15 -1498 ((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112))) (-15 -1499 ((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|)) (-15 -2453 ((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))))) (-15 -2454 (|#2| |#2| (-749) |#2|)) (-15 -1500 (|#2| |#2| (-749) |#2|)) (-15 -1501 (|#2| |#2| (-749) |#2|)) (-15 -1502 ((-112) |#2|))) (-343) (-1205 |#1|)) (T -210)) +((-1502 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-1501 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-1500 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-2454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *5)))) (-4 *5 (-1205 *4)) (-4 *4 (-343)) (-5 *2 (-620 *5)) (-5 *1 (-210 *4 *5)))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1205 *5)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -4087 ((-398 |#2|) |#2|)) (-15 -4088 ((-398 |#2|) |#2|)) (-15 -1498 ((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112))) (-15 -1499 ((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|)) (-15 -2453 ((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))))) (-15 -2454 (|#2| |#2| (-749) |#2|)) (-15 -1500 (|#2| |#2| (-749) |#2|)) (-15 -1501 (|#2| |#2| (-749) |#2|)) (-15 -1502 ((-112) |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-1503 (($ (-400 (-536))) 9)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 10) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) +(((-211) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 10) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -1503 ($ (-400 (-536))))))) (T -211)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211))))) +(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 10) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -1503 ($ (-400 (-536)))))) +((-2893 (((-112) $ $) NIL)) (-3665 (((-1086) $) 13)) (-3588 (((-1129) $) NIL)) (-3524 (((-475) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 25) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 15)) (-3382 (((-112) $ $) NIL))) +(((-212) (-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3665 ((-1086) $)) (-15 -3579 ((-1106) $))))) (T -212)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-212))))) +(-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3665 ((-1086) $)) (-15 -3579 ((-1106) $)))) +((-4167 (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)) (-1129)) 28) (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|))) 24)) (-1504 (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)) 17))) +(((-213 |#1| |#2|) (-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)))) (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|)) (-1129))) (-15 -1504 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -213)) +((-1504 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1147)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-1169) (-934) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-817 *3)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-817 *3))) (-5 *5 (-1129)) (-4 *3 (-13 (-1169) (-934) (-29 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *6 *3)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-817 *3))) (-4 *3 (-13 (-1169) (-934) (-29 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *5 *3))))) +(-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)))) (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|)) (-1129))) (-15 -1504 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)))) +((-4167 (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)) 46) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|))))) 43) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129)) 47) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|)))) 20))) +(((-214 |#1|) (-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (T -214)) +((-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-817 (-400 (-920 *6))))) (-5 *5 (-1129)) (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-214 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-817 (-400 (-920 *5))))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1063 (-817 (-307 *6)))) (-5 *5 (-1129)) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1063 (-817 (-307 *5)))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5))))) +(-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)))) +((-4197 (((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|)) 21)) (-4318 (((-620 (-307 |#2|)) (-307 |#2|) (-893)) 42))) +(((-215 |#1| |#2|) (-10 -7 (-15 -4197 ((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|))) (-15 -4318 ((-620 (-307 |#2|)) (-307 |#2|) (-893)))) (-1023) (-13 (-543) (-825))) (T -215)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *6 (-13 (-543) (-825))) (-5 *2 (-620 (-307 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1023)))) (-4197 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2115 (-1141 *4)) (|:| |deg| (-893)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-543) (-825)))))) +(-10 -7 (-15 -4197 ((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|))) (-15 -4318 ((-620 (-307 |#2|)) (-307 |#2|) (-893)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1545 ((|#1| $) NIL)) (-3678 ((|#1| $) 25)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3330 (($ $) NIL)) (-2372 (($ $) 31)) (-3680 ((|#1| |#1| $) NIL)) (-3679 ((|#1| $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-4188 (((-749) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) NIL)) (-1543 ((|#1| |#1| $) 28)) (-1542 ((|#1| |#1| $) 30)) (-3965 (($ |#1| $) NIL)) (-2928 (((-749) $) 27)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3329 ((|#1| $) NIL)) (-1541 ((|#1| $) 26)) (-1540 ((|#1| $) 24)) (-1332 ((|#1| $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3332 ((|#1| |#1| $) NIL)) (-3757 (((-112) $) 9)) (-3923 (($) NIL)) (-3331 ((|#1| $) NIL)) (-1546 (($) NIL) (($ (-620 |#1|)) 16)) (-3677 (((-749) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1544 ((|#1| $) 13)) (-1333 (($ (-620 |#1|)) NIL)) (-3328 ((|#1| $) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-620 |#1|))))) (-1072)) (T -216)) +((-1546 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-216 *3))))) +(-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-620 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1506 (($ (-307 |#1|)) 23)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2990 (((-112) $) NIL)) (-3503 (((-3 (-307 |#1|) "failed") $) NIL)) (-3502 (((-307 |#1|) $) NIL)) (-4314 (($ $) 31)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4313 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-3520 (((-307 |#1|) $) NIL)) (-1508 (($ $) 30)) (-3588 (((-1129) $) NIL)) (-1507 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) NIL)) (-1505 (($ $) 32)) (-4302 (((-536) $) NIL)) (-4312 (((-838) $) 57) (($ (-536)) NIL) (($ (-307 |#1|)) NIL)) (-4035 (((-307 |#1|) $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 25 T CONST)) (-2992 (($) 50 T CONST)) (-3382 (((-112) $ $) 28)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 19)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18))) +(((-217 |#1| |#2|) (-13 (-601 (-307 |#1|)) (-1012 (-307 |#1|)) (-10 -8 (-15 -3520 ((-307 |#1|) $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 ((-307 |#1|) $ $)) (-15 -2496 ($ (-749))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4313 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1506 ($ (-307 |#1|))) (-15 -1505 ($ $)))) (-13 (-1023) (-825)) (-620 (-1147))) (T -217)) +((-3520 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147))))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147))))) (-4035 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147)))))) +(-13 (-601 (-307 |#1|)) (-1012 (-307 |#1|)) (-10 -8 (-15 -3520 ((-307 |#1|) $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 ((-307 |#1|) $ $)) (-15 -2496 ($ (-749))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4313 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1506 ($ (-307 |#1|))) (-15 -1505 ($ $)))) +((-1509 (((-112) (-1129)) 22)) (-1510 (((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112)) 32)) (-1511 (((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)) 73) (((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112)) 74))) +(((-218 |#1| |#2|) (-10 -7 (-15 -1509 ((-112) (-1129))) (-15 -1510 ((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-29 |#1|))) (T -218)) +((-1511 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-817 *6)) (-4 *6 (-13 (-1169) (-29 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-218 *5 *6)))) (-1511 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-920 *6)) (-5 *4 (-1147)) (-5 *5 (-817 *7)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *7 (-13 (-1169) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-1510 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-817 *4)) (-5 *3 (-593 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1169) (-29 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-218 *6 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1169) (-29 *4)))))) +(-10 -7 (-15 -1509 ((-112) (-1129))) (-15 -1510 ((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 87)) (-3459 (((-536) $) 98)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-3841 (($ $) 75)) (-3997 (($ $) 63)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) 54)) (-1700 (((-112) $ $) NIL)) (-3839 (($ $) 73)) (-3996 (($ $) 61)) (-3981 (((-536) $) 115)) (-3843 (($ $) 78)) (-3995 (($ $) 65)) (-3891 (($) NIL T CONST)) (-3457 (($ $) NIL)) (-3503 (((-3 (-536) #1="failed") $) 114) (((-3 (-400 (-536)) #1#) $) 111)) (-3502 (((-536) $) 112) (((-400 (-536)) $) 109)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 91)) (-1855 (((-400 (-536)) $ (-749)) 107) (((-400 (-536)) $ (-749) (-749)) 106)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 27) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3532 (((-112) $) NIL)) (-3985 (($) 37)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-4126 (((-536) $) 33)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (($ $) NIL)) (-3533 (((-112) $) 86)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-3672 (($ $ $) 51) (($) 32 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-3673 (($ $ $) 50) (($) 31 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 25)) (-1854 (($ $) 28)) (-1853 (($ $) 55)) (-4297 (($ $) 60)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-1884 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3589 (((-1091) $) 89)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL)) (-3460 (($ $) NIL)) (-3600 (($ (-536) (-536)) NIL) (($ (-536) (-536) (-893)) 99)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 26)) (-1852 (($) 36)) (-4298 (($ $) 59)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-4165 (($ $ (-749)) NIL) (($ $) 92)) (-1883 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3844 (($ $) 76)) (-3994 (($ $) 66)) (-3842 (($ $) 77)) (-3993 (($ $) 64)) (-3840 (($ $) 74)) (-3992 (($ $) 62)) (-4325 (((-371) $) 103) (((-219) $) 100) (((-864 (-371)) $) NIL) (((-525) $) 43)) (-4312 (((-838) $) 40) (($ (-536)) 58) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-536)) 58) (($ (-400 (-536))) NIL)) (-3456 (((-749)) NIL)) (-3461 (($ $) NIL)) (-1885 (((-893)) 30) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3022 (((-893)) 23)) (-3847 (($ $) 81)) (-3835 (($ $) 69) (($ $ $) 108)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 79)) (-3833 (($ $) 67)) (-3849 (($ $) 84)) (-3837 (($ $) 72)) (-3850 (($ $) 82)) (-3838 (($ $) 70)) (-3848 (($ $) 83)) (-3836 (($ $) 71)) (-3846 (($ $) 80)) (-3834 (($ $) 68)) (-3737 (($ $) 116)) (-2986 (($) 34 T CONST)) (-2992 (($) 35 T CONST)) (-2829 (((-1129) $) 17) (((-1129) $ (-112)) 19) (((-1235) (-801) $) 20) (((-1235) (-801) $ (-112)) 21)) (-3741 (($ $) 95)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3738 (($ $ $) 97)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 52)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 44)) (-4303 (($ $ $) 85) (($ $ (-536)) 53)) (-4192 (($ $) 45) (($ $ $) 47)) (-4194 (($ $ $) 46)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 56) (($ $ (-400 (-536))) 128) (($ $ $) 57)) (* (($ (-893) $) 29) (($ (-749) $) NIL) (($ (-536) $) 49) (($ $ $) 48) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-219) (-13 (-397) (-227) (-799) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3835 ($ $ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749)))))) (T -219)) +((** (*1 *1 *1 *1) (-5 *1 (-219))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-219)))) (-1852 (*1 *1) (-5 *1 (-219))) (-1854 (*1 *1 *1) (-5 *1 (-219))) (-1853 (*1 *1 *1) (-5 *1 (-219))) (-3835 (*1 *1 *1 *1) (-5 *1 (-219))) (-3741 (*1 *1 *1) (-5 *1 (-219))) (-3738 (*1 *1 *1 *1) (-5 *1 (-219))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219))))) +(-13 (-397) (-227) (-799) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3835 ($ $ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))))) +((-3740 (((-166 (-219)) (-749) (-166 (-219))) 11) (((-219) (-749) (-219)) 12)) (-1512 (((-166 (-219)) (-166 (-219))) 13) (((-219) (-219)) 14)) (-1513 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3739 (((-166 (-219)) (-166 (-219))) 25) (((-219) (-219)) 24)) (-3743 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 43) (((-219) (-219) (-219)) 35)) (-3745 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3742 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 15) (((-219) (-219) (-219)) 16)) (-3744 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3747 (((-166 (-219)) (-166 (-219))) 60) (((-219) (-219)) 59)) (-3746 (((-219) (-219)) 54) (((-166 (-219)) (-166 (-219))) 58)) (-3741 (((-166 (-219)) (-166 (-219))) 8) (((-219) (-219)) 9)) (-3738 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 30) (((-219) (-219) (-219)) 26))) +(((-220) (-10 -7 (-15 -3741 ((-219) (-219))) (-15 -3741 ((-166 (-219)) (-166 (-219)))) (-15 -3738 ((-219) (-219) (-219))) (-15 -3738 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3739 ((-219) (-219))) (-15 -3739 ((-166 (-219)) (-166 (-219)))) (-15 -3740 ((-219) (-749) (-219))) (-15 -3740 ((-166 (-219)) (-749) (-166 (-219)))) (-15 -3742 ((-219) (-219) (-219))) (-15 -3742 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3743 ((-219) (-219) (-219))) (-15 -3743 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3744 ((-219) (-219) (-219))) (-15 -3744 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3745 ((-219) (-219) (-219))) (-15 -3745 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3746 ((-166 (-219)) (-166 (-219)))) (-15 -3746 ((-219) (-219))) (-15 -3747 ((-219) (-219))) (-15 -3747 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219)))))) (T -220)) +((-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3742 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3742 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))) +(-10 -7 (-15 -3741 ((-219) (-219))) (-15 -3741 ((-166 (-219)) (-166 (-219)))) (-15 -3738 ((-219) (-219) (-219))) (-15 -3738 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3739 ((-219) (-219))) (-15 -3739 ((-166 (-219)) (-166 (-219)))) (-15 -3740 ((-219) (-749) (-219))) (-15 -3740 ((-166 (-219)) (-749) (-166 (-219)))) (-15 -3742 ((-219) (-219) (-219))) (-15 -3742 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3743 ((-219) (-219) (-219))) (-15 -3743 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3744 ((-219) (-219) (-219))) (-15 -3744 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3745 ((-219) (-219) (-219))) (-15 -3745 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3746 ((-166 (-219)) (-166 (-219)))) (-15 -3746 ((-219) (-219))) (-15 -3747 ((-219) (-219))) (-15 -3747 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219))))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) NIL)) (-2426 (($ $ $) NIL)) (-3768 (($ (-1229 |#1|)) NIL) (($ $) NIL)) (-4228 (($ |#1| |#1| |#1|) 32)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) NIL)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-1229 |#1|)) NIL)) (-1306 (($ $ (-536) (-1229 |#1|)) NIL)) (-4202 (($ |#1| |#1| |#1|) 31)) (-3687 (($ (-749) |#1|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) NIL (|has| |#1| (-300)))) (-3442 (((-1229 |#1|) $ (-536)) NIL)) (-1514 (($ |#1|) 30)) (-1515 (($ |#1|) 29)) (-1516 (($ |#1|) 28)) (-3439 (((-749) $) NIL (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) NIL (|has| |#1| (-543)))) (-3437 (((-620 (-1229 |#1|)) $) NIL (|has| |#1| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) NIL (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#1|))) 11)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) NIL (|has| |#1| (-356)))) (-1517 (($) 12)) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) NIL (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-1229 |#1|) $ (-536)) NIL)) (-4312 (($ (-1229 |#1|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-1229 |#1|) $ (-1229 |#1|)) 15) (((-1229 |#1|) (-1229 |#1|) $) NIL) (((-917 |#1|) $ (-917 |#1|)) 20)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-221 |#1|) (-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4202 ($ |#1| |#1| |#1|)) (-15 -4228 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1169))) (T -221)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169))) (-5 *1 (-221 *3)))) (-1517 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1516 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1515 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1514 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-4202 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-4228 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) +(-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4202 ($ |#1| |#1| |#1|)) (-15 -4228 ($ |#1| |#1| |#1|)))) +((-1626 (($ (-1 (-112) |#2|) $) 16)) (-3759 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1518 (($) NIL) (($ (-620 |#2|)) 11)) (-3382 (((-112) $ $) 23))) +(((-222 |#1| |#2|) (-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-223 |#2|) (-1072)) (T -222)) +NIL +(-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-223 |#1|) (-138) (-1072)) (T -223)) NIL (-13 (-229 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2798 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) 11) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) 19) (($ $ (-749)) NIL) (($ $) 16)) (-1901 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-749)) 14) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL))) -(((-224 |#1| |#2|) (-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -1901 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1901 (|#1| |#1| (-1145))) (-15 -1901 (|#1| |#1| (-623 (-1145)))) (-15 -1901 (|#1| |#1| (-1145) (-749))) (-15 -1901 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1901 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -1901 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1021)) (T -224)) -NIL -(-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -1901 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1901 (|#1| |#1| (-1145))) (-15 -1901 (|#1| |#1| (-623 (-1145)))) (-15 -1901 (|#1| |#1| (-1145) (-749))) (-15 -1901 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1901 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -1901 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2798 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-749)) 49) (($ $ (-623 (-1145)) (-623 (-749))) 42 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 41 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 40 (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) 39 (|has| |#1| (-874 (-1145)))) (($ $ (-749)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-749)) 47) (($ $ (-623 (-1145)) (-623 (-749))) 46 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 45 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 44 (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) 43 (|has| |#1| (-874 (-1145)))) (($ $ (-749)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-225 |#1|) (-138) (-1021)) (T -225)) -((-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1021)))) (-2798 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1021)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1021)))) (-1901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1021))))) -(-13 (-1021) (-10 -8 (-15 -2798 ($ $ (-1 |t#1| |t#1|))) (-15 -2798 ($ $ (-1 |t#1| |t#1|) (-749))) (-15 -1901 ($ $ (-1 |t#1| |t#1|))) (-15 -1901 ($ $ (-1 |t#1| |t#1|) (-749))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-874 (-1145))) (-6 (-874 (-1145))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-227) |has| |#1| (-227)) ((-626 $) . T) ((-705) . T) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2798 (($ $) NIL) (($ $ (-749)) 10)) (-1901 (($ $) 8) (($ $ (-749)) 12))) -(((-226 |#1|) (-10 -8 (-15 -1901 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-749))) (-15 -1901 (|#1| |#1|)) (-15 -2798 (|#1| |#1|))) (-227)) (T -226)) -NIL -(-10 -8 (-15 -1901 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-749))) (-15 -1901 (|#1| |#1|)) (-15 -2798 (|#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2798 (($ $) 36) (($ $ (-749)) 34)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $) 35) (($ $ (-749)) 33)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) 11) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) 19) (($ $ (-749)) NIL) (($ $) 16)) (-2997 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-749)) 14) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL))) +(((-224 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1147))) (-15 -2997 (|#1| |#1| (-620 (-1147)))) (-15 -2997 (|#1| |#1| (-1147) (-749))) (-15 -2997 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1023)) (T -224)) +NIL +(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1147))) (-15 -2997 (|#1| |#1| (-620 (-1147)))) (-15 -2997 (|#1| |#1| (-1147) (-749))) (-15 -2997 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-749)) 49) (($ $ (-620 (-1147)) (-620 (-749))) 42 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 41 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 40 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 39 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-749)) 47) (($ $ (-620 (-1147)) (-620 (-749))) 46 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 45 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 44 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 43 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-225 |#1|) (-138) (-1023)) (T -225)) +((-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023))))) +(-13 (-1023) (-10 -8 (-15 -4165 ($ $ (-1 |t#1| |t#1|))) (-15 -4165 ($ $ (-1 |t#1| |t#1|) (-749))) (-15 -2997 ($ $ (-1 |t#1| |t#1|))) (-15 -2997 ($ $ (-1 |t#1| |t#1|) (-749))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-227) |has| |#1| (-227)) ((-626 $) . T) ((-705) . T) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-4165 (($ $) NIL) (($ $ (-749)) 10)) (-2997 (($ $) 8) (($ $ (-749)) 12))) +(((-226 |#1|) (-10 -8 (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1|))) (-227)) (T -226)) +NIL +(-10 -8 (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $) 36) (($ $ (-749)) 34)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 35) (($ $ (-749)) 33)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-227) (-138)) (T -227)) -((-2798 (*1 *1 *1) (-4 *1 (-227))) (-1901 (*1 *1 *1) (-4 *1 (-227))) (-2798 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) (-1901 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749))))) -(-13 (-1021) (-10 -8 (-15 -2798 ($ $)) (-15 -1901 ($ $)) (-15 -2798 ($ $ (-749))) (-15 -1901 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-3246 (($) 12) (($ (-623 |#2|)) NIL)) (-2435 (($ $) 14)) (-2245 (($ (-623 |#2|)) 10)) (-2233 (((-837) $) 21))) -(((-228 |#1| |#2|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -3246 (|#1| (-623 |#2|))) (-15 -3246 (|#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -2435 (|#1| |#1|))) (-229 |#2|) (-1069)) (T -228)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -3246 (|#1| (-623 |#2|))) (-15 -3246 (|#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -2435 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-229 |#1|) (-138) (-1069)) (T -229)) -((-3246 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1069)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-229 *3)))) (-2505 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-229 *2)) (-4 *2 (-1069)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-229 *3)) (-4 *3 (-1069)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-229 *3)) (-4 *3 (-1069))))) -(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -3246 ($)) (-15 -3246 ($ (-623 |t#1|))) (IF (|has| $ (-6 -4344)) (PROGN (-15 -2505 ($ |t#1| $)) (-15 -2505 ($ (-1 (-112) |t#1|) $)) (-15 -3994 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-1743 (((-2 (|:| |varOrder| (-623 (-1145))) (|:| |inhom| (-3 (-623 (-1228 (-749))) "failed")) (|:| |hom| (-623 (-1228 (-749))))) (-287 (-926 (-550)))) 27))) -(((-230) (-10 -7 (-15 -1743 ((-2 (|:| |varOrder| (-623 (-1145))) (|:| |inhom| (-3 (-623 (-1228 (-749))) "failed")) (|:| |hom| (-623 (-1228 (-749))))) (-287 (-926 (-550))))))) (T -230)) -((-1743 (*1 *2 *3) (-12 (-5 *3 (-287 (-926 (-550)))) (-5 *2 (-2 (|:| |varOrder| (-623 (-1145))) (|:| |inhom| (-3 (-623 (-1228 (-749))) "failed")) (|:| |hom| (-623 (-1228 (-749)))))) (-5 *1 (-230))))) -(-10 -7 (-15 -1743 ((-2 (|:| |varOrder| (-623 (-1145))) (|:| |inhom| (-3 (-623 (-1228 (-749))) "failed")) (|:| |hom| (-623 (-1228 (-749))))) (-287 (-926 (-550)))))) -((-3828 (((-749)) 51)) (-3756 (((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 $) (-1228 $)) 49) (((-667 |#3|) (-667 $)) 41) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1877 (((-133)) 57)) (-2798 (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2233 (((-1228 |#3|) $) NIL) (($ |#3|) NIL) (((-837) $) NIL) (($ (-550)) 12) (($ (-400 (-550))) NIL)) (-3091 (((-749)) 15)) (-2382 (($ $ |#3|) 54))) -(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|)) (-15 -3091 ((-749))) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -2233 (|#1| |#3|)) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -3756 ((-667 |#3|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 |#1|) (-1228 |#1|))) (-15 -3828 ((-749))) (-15 -2382 (|#1| |#1| |#3|)) (-15 -1877 ((-133))) (-15 -2233 ((-1228 |#3|) |#1|))) (-232 |#2| |#3|) (-749) (-1182)) (T -231)) -((-1877 (*1 *2) (-12 (-14 *4 (-749)) (-4 *5 (-1182)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3828 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1182)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3091 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1182)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))) -(-10 -8 (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|)) (-15 -3091 ((-749))) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -2233 (|#1| |#3|)) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -3756 ((-667 |#3|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 |#1|) (-1228 |#1|))) (-15 -3828 ((-749))) (-15 -2382 (|#1| |#1| |#3|)) (-15 -1877 ((-133))) (-15 -2233 ((-1228 |#3|) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#2| (-1069)))) (-3378 (((-112) $) 72 (|has| |#2| (-130)))) (-2065 (($ (-895)) 125 (|has| |#2| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-4250 (($ $ $) 121 (|has| |#2| (-771)))) (-1993 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3368 (((-112) $ (-749)) 8)) (-3828 (((-749)) 107 (|has| |#2| (-361)))) (-4303 (((-550) $) 119 (|has| |#2| (-823)))) (-2409 ((|#2| $ (-550) |#2|) 52 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-2288 (((-3 (-550) "failed") $) 67 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-3 (-400 (-550)) "failed") $) 64 (-1304 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1069)))) (-2202 (((-550) $) 68 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-400 (-550)) $) 65 (-1304 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) ((|#2| $) 60 (|has| |#2| (-1069)))) (-3756 (((-667 (-550)) (-667 $)) 106 (-1304 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 105 (-1304 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 104 (|has| |#2| (-1021))) (((-667 |#2|) (-667 $)) 103 (|has| |#2| (-1021)))) (-1537 (((-3 $ "failed") $) 79 (|has| |#2| (-705)))) (-1864 (($) 110 (|has| |#2| (-361)))) (-3317 ((|#2| $ (-550) |#2|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#2| $ (-550)) 51)) (-2694 (((-112) $) 117 (|has| |#2| (-823)))) (-2971 (((-623 |#2|) $) 30 (|has| $ (-6 -4344)))) (-2419 (((-112) $) 81 (|has| |#2| (-705)))) (-1712 (((-112) $) 118 (|has| |#2| (-823)))) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 116 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2876 (((-623 |#2|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 115 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3311 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2|) $) 35)) (-4073 (((-895) $) 109 (|has| |#2| (-361)))) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#2| (-1069)))) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3690 (($ (-895)) 108 (|has| |#2| (-361)))) (-3445 (((-1089) $) 21 (|has| |#2| (-1069)))) (-3858 ((|#2| $) 42 (|has| (-550) (-825)))) (-2491 (($ $ |#2|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#2| $ (-550) |#2|) 50) ((|#2| $ (-550)) 49)) (-3451 ((|#2| $ $) 124 (|has| |#2| (-1021)))) (-1422 (($ (-1228 |#2|)) 126)) (-1877 (((-133)) 123 (|has| |#2| (-356)))) (-2798 (($ $) 98 (-1304 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) 96 (-1304 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) 94 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) 93 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) 92 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) 91 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) 84 (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1021)))) (-3457 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4344))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-1228 |#2|) $) 127) (($ (-550)) 66 (-1489 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (|has| |#2| (-1021)))) (($ (-400 (-550))) 63 (-1304 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (($ |#2|) 62 (|has| |#2| (-1069))) (((-837) $) 18 (|has| |#2| (-595 (-837))))) (-3091 (((-749)) 102 (|has| |#2| (-1021)))) (-3404 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4344)))) (-4188 (($ $) 120 (|has| |#2| (-823)))) (-2688 (($) 71 (|has| |#2| (-130)) CONST)) (-2700 (($) 82 (|has| |#2| (-705)) CONST)) (-1901 (($ $) 97 (-1304 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) 95 (-1304 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) 90 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) 89 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) 88 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) 87 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) 86 (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1021)))) (-2324 (((-112) $ $) 113 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2302 (((-112) $ $) 112 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2264 (((-112) $ $) 20 (|has| |#2| (-1069)))) (-2313 (((-112) $ $) 114 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2290 (((-112) $ $) 111 (-1489 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2382 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-2370 (($ $ $) 100 (|has| |#2| (-1021))) (($ $) 99 (|has| |#2| (-1021)))) (-2358 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-749)) 80 (|has| |#2| (-705))) (($ $ (-895)) 77 (|has| |#2| (-705)))) (* (($ (-550) $) 101 (|has| |#2| (-1021))) (($ $ $) 78 (|has| |#2| (-705))) (($ $ |#2|) 76 (|has| |#2| (-705))) (($ |#2| $) 75 (|has| |#2| (-705))) (($ (-749) $) 73 (|has| |#2| (-130))) (($ (-895) $) 70 (|has| |#2| (-25)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-232 |#1| |#2|) (-138) (-749) (-1182)) (T -232)) -((-1422 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1182)) (-4 *1 (-232 *3 *4)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1021)) (-4 *4 (-1182)))) (-3451 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-1021)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-705))))) -(-13 (-586 (-550) |t#2|) (-595 (-1228 |t#2|)) (-10 -8 (-6 -4344) (-15 -1422 ($ (-1228 |t#2|))) (IF (|has| |t#2| (-1069)) (-6 (-404 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1021)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -2065 ($ (-895))) (-15 -3451 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-705)) (PROGN (-6 (-705)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |t#2| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#2| (-771)) (-6 (-771)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1235 |t#2|)) |%noBranch|))) -(((-21) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1489 (|has| |#2| (-1069)) (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1489 (|has| |#2| (-1021)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-595 (-837)) -1489 (|has| |#2| (-1069)) (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-595 (-837))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-595 (-1228 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1021)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1021))) ((-279 #0=(-550) |#2|) . T) ((-281 #0# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1021)) ((-404 |#2|) |has| |#2| (-1069)) ((-481 |#2|) . T) ((-586 #0# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-626 |#2|) -1489 (|has| |#2| (-1021)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-626 $) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-619 (-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021))) ((-619 |#2|) |has| |#2| (-1021)) ((-696 |#2|) -1489 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-705) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-769) |has| |#2| (-823)) ((-770) -1489 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-771) |has| |#2| (-771)) ((-772) -1489 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-773) -1489 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-823) |has| |#2| (-823)) ((-825) -1489 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-874 (-1145)) -12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021))) ((-1012 (-400 (-550))) -12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069))) ((-1012 (-550)) -12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) ((-1012 |#2|) |has| |#2| (-1069)) ((-1027 |#2|) -1489 (|has| |#2| (-1021)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1027 $) |has| |#2| (-170)) ((-1021) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1028) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1081) -1489 (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-1069) -1489 (|has| |#2| (-1069)) (|has| |#2| (-1021)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1182) . T) ((-1235 |#2|) |has| |#2| (-356))) -((-2304 (((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 21)) (-2924 ((|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 23)) (-2392 (((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)) 18))) -(((-233 |#1| |#2| |#3|) (-10 -7 (-15 -2304 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2924 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2392 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) (-749) (-1182) (-1182)) (T -233)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-5 *2 (-234 *5 *7)) (-5 *1 (-233 *5 *6 *7)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1182)) (-4 *2 (-1182)) (-5 *1 (-233 *5 *6 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-749)) (-4 *7 (-1182)) (-4 *5 (-1182)) (-5 *2 (-234 *6 *5)) (-5 *1 (-233 *6 *7 *5))))) -(-10 -7 (-15 -2304 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2924 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2392 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) -((-2221 (((-112) $ $) NIL (|has| |#2| (-1069)))) (-3378 (((-112) $) NIL (|has| |#2| (-130)))) (-2065 (($ (-895)) 56 (|has| |#2| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) 60 (|has| |#2| (-771)))) (-1993 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3368 (((-112) $ (-749)) 17)) (-3828 (((-749)) NIL (|has| |#2| (-361)))) (-4303 (((-550) $) NIL (|has| |#2| (-823)))) (-2409 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1069)))) (-2202 (((-550) $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) ((|#2| $) 27 (|has| |#2| (-1069)))) (-3756 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL (|has| |#2| (-1021))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1021)))) (-1537 (((-3 $ "failed") $) 53 (|has| |#2| (-705)))) (-1864 (($) NIL (|has| |#2| (-361)))) (-3317 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ (-550)) 51)) (-2694 (((-112) $) NIL (|has| |#2| (-823)))) (-2971 (((-623 |#2|) $) 15 (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (|has| |#2| (-705)))) (-1712 (((-112) $) NIL (|has| |#2| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 20 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2876 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 (((-550) $) 50 (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3311 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2|) $) 41)) (-4073 (((-895) $) NIL (|has| |#2| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#2| (-1069)))) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#2| (-361)))) (-3445 (((-1089) $) NIL (|has| |#2| (-1069)))) (-3858 ((|#2| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) 21)) (-3451 ((|#2| $ $) NIL (|has| |#2| (-1021)))) (-1422 (($ (-1228 |#2|)) 18)) (-1877 (((-133)) NIL (|has| |#2| (-356)))) (-2798 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-3457 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#2|) $) 10) (($ (-550)) NIL (-1489 (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (|has| |#2| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (($ |#2|) 13 (|has| |#2| (-1069))) (((-837) $) NIL (|has| |#2| (-595 (-837))))) (-3091 (((-749)) NIL (|has| |#2| (-1021)))) (-3404 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#2| (-823)))) (-2688 (($) 35 (|has| |#2| (-130)) CONST)) (-2700 (($) 38 (|has| |#2| (-705)) CONST)) (-1901 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2264 (((-112) $ $) 26 (|has| |#2| (-1069)))) (-2313 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2290 (((-112) $ $) 58 (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $ $) NIL (|has| |#2| (-1021))) (($ $) NIL (|has| |#2| (-1021)))) (-2358 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-895)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1021))) (($ $ $) 44 (|has| |#2| (-705))) (($ $ |#2|) 42 (|has| |#2| (-705))) (($ |#2| $) 43 (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-234 |#1| |#2|) (-232 |#1| |#2|) (-749) (-1182)) (T -234)) +((-4165 (*1 *1 *1) (-4 *1 (-227))) (-2997 (*1 *1 *1) (-4 *1 (-227))) (-4165 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) (-2997 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749))))) +(-13 (-1023) (-10 -8 (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-1518 (($) 12) (($ (-620 |#2|)) NIL)) (-3754 (($ $) 14)) (-3879 (($ (-620 |#2|)) 10)) (-4312 (((-838) $) 21))) +(((-228 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -3754 (|#1| |#1|))) (-229 |#2|) (-1072)) (T -228)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -3754 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-229 |#1|) (-138) (-1072)) (T -229)) +((-1518 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1072)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-229 *3)))) (-3759 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-229 *2)) (-4 *2 (-1072)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) (-4 *3 (-1072)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) (-4 *3 (-1072))))) +(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1518 ($)) (-15 -1518 ($ (-620 |t#1|))) (IF (|has| $ (-6 -4348)) (PROGN (-15 -3759 ($ |t#1| $)) (-15 -3759 ($ (-1 (-112) |t#1|) $)) (-15 -1626 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-1519 (((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536)))) 27))) +(((-230) (-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536))))))) (T -230)) +((-1519 (*1 *2 *3) (-12 (-5 *3 (-286 (-920 (-536)))) (-5 *2 (-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749)))))) (-5 *1 (-230))))) +(-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536)))))) +((-3466 (((-749)) 51)) (-2357 (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) 49) (((-667 |#3|) (-667 $)) 41) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-4266 (((-133)) 57)) (-4165 (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (($ |#3|) NIL) (((-838) $) NIL) (($ (-536)) 12) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 15)) (-4303 (($ $ |#3|) 54))) +(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|)) (-15 -3456 ((-749))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -3466 ((-749))) (-15 -4303 (|#1| |#1| |#3|)) (-15 -4266 ((-133))) (-15 -4312 ((-1229 |#3|) |#1|))) (-232 |#2| |#3|) (-749) (-1183)) (T -231)) +((-4266 (*1 *2) (-12 (-14 *4 (-749)) (-4 *5 (-1183)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3466 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3456 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))) +(-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|)) (-15 -3456 ((-749))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -3466 ((-749))) (-15 -4303 (|#1| |#1| |#3|)) (-15 -4266 ((-133))) (-15 -4312 ((-1229 |#3|) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#2| (-1072)))) (-3534 (((-112) $) 72 (|has| |#2| (-130)))) (-4065 (($ (-893)) 125 (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-2728 (($ $ $) 121 (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) 8)) (-3466 (((-749)) 107 (|has| |#2| (-361)))) (-3981 (((-536) $) 119 (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) 52 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 67 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) 64 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1072)))) (-3502 (((-536) $) 68 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) 65 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) 60 (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) 106 (-3186 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 105 (-3186 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 104 (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) 103 (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) 79 (|has| |#2| (-705)))) (-3322 (($) 110 (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 51)) (-3532 (((-112) $) 117 (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) 30 (|has| $ (-6 -4348)))) (-2497 (((-112) $) 81 (|has| |#2| (-705)))) (-3533 (((-112) $) 118 (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 116 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2506 (((-620 |#2|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 115 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 35)) (-2121 (((-893) $) 109 (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-2487 (($ (-893)) 108 (|has| |#2| (-361)))) (-3589 (((-1091) $) 21 (|has| |#2| (-1072)))) (-4155 ((|#2| $) 42 (|has| (-536) (-825)))) (-2301 (($ $ |#2|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ (-536) |#2|) 50) ((|#2| $ (-536)) 49)) (-4191 ((|#2| $ $) 124 (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) 126)) (-4266 (((-133)) 123 (|has| |#2| (-356)))) (-4165 (($ $) 98 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) 96 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) 94 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) 93 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) 92 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) 91 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) 84 (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4348))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-1229 |#2|) $) 127) (($ (-536)) 66 (-3886 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) 63 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) 62 (|has| |#2| (-1072))) (((-838) $) 18 (|has| |#2| (-595 (-838))))) (-3456 (((-749)) 102 (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4348)))) (-3737 (($ $) 120 (|has| |#2| (-823)))) (-2986 (($) 71 (|has| |#2| (-130)) CONST)) (-2992 (($) 82 (|has| |#2| (-705)) CONST)) (-2997 (($ $) 97 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) 95 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) 90 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) 89 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) 88 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) 87 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) 86 (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1023)))) (-2891 (((-112) $ $) 113 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2892 (((-112) $ $) 112 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3382 (((-112) $ $) 20 (|has| |#2| (-1072)))) (-3012 (((-112) $ $) 114 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3013 (((-112) $ $) 111 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-4303 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-4192 (($ $ $) 100 (|has| |#2| (-1023))) (($ $) 99 (|has| |#2| (-1023)))) (-4194 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-749)) 80 (|has| |#2| (-705))) (($ $ (-893)) 77 (|has| |#2| (-705)))) (* (($ (-536) $) 101 (|has| |#2| (-1023))) (($ $ $) 78 (|has| |#2| (-705))) (($ $ |#2|) 76 (|has| |#2| (-705))) (($ |#2| $) 75 (|has| |#2| (-705))) (($ (-749) $) 73 (|has| |#2| (-130))) (($ (-893) $) 70 (|has| |#2| (-25)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-232 |#1| |#2|) (-138) (-749) (-1183)) (T -232)) +((-1520 (*1 *1 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1183)) (-4 *1 (-232 *3 *4)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1023)) (-4 *4 (-1183)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705))))) +(-13 (-586 (-536) |t#2|) (-595 (-1229 |t#2|)) (-10 -8 (-6 -4348) (-15 -1520 ($ (-1229 |t#2|))) (IF (|has| |t#2| (-1072)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1023)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -4065 ($ (-893))) (-15 -4191 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-705)) (PROGN (-6 (-705)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |t#2| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#2| (-771)) (-6 (-771)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1237 |t#2|)) |%noBranch|))) +(((-21) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-595 (-838)) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-595 (-838))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-595 (-1229 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1023)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1023))) ((-279 #1=(-536) |#2|) . T) ((-281 #1# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1023)) ((-405 |#2|) |has| |#2| (-1072)) ((-481 |#2|) . T) ((-586 #1# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-626 |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-626 $) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-619 (-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023))) ((-619 |#2|) |has| |#2| (-1023)) ((-696 |#2|) -3886 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-705) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-769) |has| |#2| (-823)) ((-770) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-771) |has| |#2| (-771)) ((-772) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-775) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-823) |has| |#2| (-823)) ((-825) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-874 (-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023))) ((-1012 (-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072))) ((-1012 (-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) ((-1012 |#2|) |has| |#2| (-1072)) ((-1029 |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1029 $) |has| |#2| (-170)) ((-1023) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1030) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1083) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-1072) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1183) . T) ((-1237 |#2|) |has| |#2| (-356))) +((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) 56 (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) 60 (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) 17)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) 27 (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) 53 (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 51)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) 15 (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 20 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) 50 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 41)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) 21)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) 18)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) 10) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) 13 (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) 35 (|has| |#2| (-130)) CONST)) (-2992 (($) 38 (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) 26 (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 58 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) 44 (|has| |#2| (-705))) (($ $ |#2|) 42 (|has| |#2| (-705))) (($ |#2| $) 43 (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-233 |#1| |#2|) (-232 |#1| |#2|) (-749) (-1183)) (T -233)) NIL (-232 |#1| |#2|) -((-2860 (((-550) (-623 (-1127))) 24) (((-550) (-1127)) 19)) (-4020 (((-1233) (-623 (-1127))) 29) (((-1233) (-1127)) 28)) (-3407 (((-1127)) 14)) (-3125 (((-1127) (-550) (-1127)) 16)) (-1808 (((-623 (-1127)) (-623 (-1127)) (-550) (-1127)) 25) (((-1127) (-1127) (-550) (-1127)) 23)) (-1441 (((-623 (-1127)) (-623 (-1127))) 13) (((-623 (-1127)) (-1127)) 11))) -(((-235) (-10 -7 (-15 -1441 ((-623 (-1127)) (-1127))) (-15 -1441 ((-623 (-1127)) (-623 (-1127)))) (-15 -3407 ((-1127))) (-15 -3125 ((-1127) (-550) (-1127))) (-15 -1808 ((-1127) (-1127) (-550) (-1127))) (-15 -1808 ((-623 (-1127)) (-623 (-1127)) (-550) (-1127))) (-15 -4020 ((-1233) (-1127))) (-15 -4020 ((-1233) (-623 (-1127)))) (-15 -2860 ((-550) (-1127))) (-15 -2860 ((-550) (-623 (-1127)))))) (T -235)) -((-2860 (*1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-550)) (-5 *1 (-235)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-550)) (-5 *1 (-235)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1233)) (-5 *1 (-235)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-235)))) (-1808 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-1127))) (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *1 (-235)))) (-1808 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-235)))) (-3125 (*1 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-235)))) (-3407 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-235)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-235)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-235)) (-5 *3 (-1127))))) -(-10 -7 (-15 -1441 ((-623 (-1127)) (-1127))) (-15 -1441 ((-623 (-1127)) (-623 (-1127)))) (-15 -3407 ((-1127))) (-15 -3125 ((-1127) (-550) (-1127))) (-15 -1808 ((-1127) (-1127) (-550) (-1127))) (-15 -1808 ((-623 (-1127)) (-623 (-1127)) (-550) (-1127))) (-15 -4020 ((-1233) (-1127))) (-15 -4020 ((-1233) (-623 (-1127)))) (-15 -2860 ((-550) (-1127))) (-15 -2860 ((-550) (-623 (-1127))))) -((** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 16)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-400 (-550)) $) 23) (($ $ (-400 (-550))) NIL))) -(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 37)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 41)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 38)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ (-400 (-550)) $) 40) (($ $ (-400 (-550))) 39))) +((-4196 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-4197 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-4313 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18))) +(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4197 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4313 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-749) (-1183) (-1183)) (T -234)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) (-4 *2 (-1183)) (-5 *1 (-234 *5 *6 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-749)) (-4 *7 (-1183)) (-4 *5 (-1183)) (-5 *2 (-233 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) +(-10 -7 (-15 -4196 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4197 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4313 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) +((-1524 (((-536) (-620 (-1129))) 24) (((-536) (-1129)) 19)) (-1523 (((-1235) (-620 (-1129))) 29) (((-1235) (-1129)) 28)) (-1521 (((-1129)) 14)) (-1522 (((-1129) (-536) (-1129)) 16)) (-4127 (((-620 (-1129)) (-620 (-1129)) (-536) (-1129)) 25) (((-1129) (-1129) (-536) (-1129)) 23)) (-2944 (((-620 (-1129)) (-620 (-1129))) 13) (((-620 (-1129)) (-1129)) 11))) +(((-235) (-10 -7 (-15 -2944 ((-620 (-1129)) (-1129))) (-15 -2944 ((-620 (-1129)) (-620 (-1129)))) (-15 -1521 ((-1129))) (-15 -1522 ((-1129) (-536) (-1129))) (-15 -4127 ((-1129) (-1129) (-536) (-1129))) (-15 -4127 ((-620 (-1129)) (-620 (-1129)) (-536) (-1129))) (-15 -1523 ((-1235) (-1129))) (-15 -1523 ((-1235) (-620 (-1129)))) (-15 -1524 ((-536) (-1129))) (-15 -1524 ((-536) (-620 (-1129)))))) (T -235)) +((-1524 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-536)) (-5 *1 (-235)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1235)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-235)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-620 (-1129))) (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *1 (-235)))) (-4127 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) (-1521 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-235)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)))) (-2944 (*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)) (-5 *3 (-1129))))) +(-10 -7 (-15 -2944 ((-620 (-1129)) (-1129))) (-15 -2944 ((-620 (-1129)) (-620 (-1129)))) (-15 -1521 ((-1129))) (-15 -1522 ((-1129) (-536) (-1129))) (-15 -4127 ((-1129) (-1129) (-536) (-1129))) (-15 -4127 ((-620 (-1129)) (-620 (-1129)) (-536) (-1129))) (-15 -1523 ((-1235) (-1129))) (-15 -1523 ((-1235) (-620 (-1129)))) (-15 -1524 ((-536) (-1129))) (-15 -1524 ((-536) (-620 (-1129))))) +((** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 16)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ (-400 (-536)) $) 23) (($ $ (-400 (-536))) NIL))) +(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-237)) (T -236)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 37)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 41)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 38)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ (-400 (-536)) $) 40) (($ $ (-400 (-536))) 39))) (((-237) (-138)) (T -237)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-550)))) (-1619 (*1 *1 *1) (-4 *1 (-237)))) -(-13 (-283) (-38 (-400 (-550))) (-10 -8 (-15 ** ($ $ (-550))) (-15 -1619 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-283) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-705) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-2470 (($ $) 57)) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-3993 (($ $ $) 53 (|has| $ (-6 -4345)))) (-2482 (($ $ $) 52 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-1340 (($ $) 56)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-2601 (($ $) 55)) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-2001 ((|#1| $) 59)) (-3724 (($ $) 58)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47)) (-1456 (((-550) $ $) 44)) (-2320 (((-112) $) 46)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2037 (($ $ $) 54 (|has| $ (-6 -4345)))) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-238 |#1|) (-138) (-1182)) (T -238)) -((-2001 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-1340 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-2601 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-2037 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-3993 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182)))) (-2482 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -2001 (|t#1| $)) (-15 -3724 ($ $)) (-15 -2470 ($ $)) (-15 -1340 ($ $)) (-15 -2601 ($ $)) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2037 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -2482 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) NIL)) (-2422 ((|#1| $) NIL)) (-2470 (($ $) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-1814 (($ $) 10 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2872 (($ $ $) NIL (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "rest" $) NIL (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) NIL)) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2408 ((|#1| $) NIL)) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-3870 (($ $) NIL) (($ $ (-749)) NIL)) (-2599 (($ $) NIL (|has| |#1| (-1069)))) (-2708 (($ $) 7 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) NIL (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) NIL)) (-1979 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-2950 (((-112) $) NIL)) (-3088 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069))) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2299 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2441 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3743 (($ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-2001 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1715 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-3164 (((-112) $) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1195 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-749) $ "count") 16)) (-1456 (((-550) $ $) NIL)) (-3749 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-3887 (($ (-623 |#1|)) 22)) (-2320 (((-112) $) NIL)) (-1662 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4345)))) (-3300 (((-749) $) NIL)) (-3813 (($ $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-2037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4006 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-2233 (($ (-623 |#1|)) 17) (((-623 |#1|) $) 18) (((-837) $) 21 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) 14 (|has| $ (-6 -4344))))) -(((-239 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -2233 ($ (-623 |#1|))) (-15 -2233 ((-623 |#1|) $)) (-15 -3887 ($ (-623 |#1|))) (-15 -2757 ($ $ "unique")) (-15 -2757 ($ $ "sort")) (-15 -2757 ((-749) $ "count")))) (-825)) (T -239)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825))))) -(-13 (-644 |#1|) (-10 -8 (-15 -2233 ($ (-623 |#1|))) (-15 -2233 ((-623 |#1|) $)) (-15 -3887 ($ (-623 |#1|))) (-15 -2757 ($ $ "unique")) (-15 -2757 ($ $ "sort")) (-15 -2757 ((-749) $ "count")))) -((-3658 (((-3 (-749) "failed") |#1| |#1| (-749)) 27))) -(((-240 |#1|) (-10 -7 (-15 -3658 ((-3 (-749) "failed") |#1| |#1| (-749)))) (-13 (-705) (-361) (-10 -7 (-15 ** (|#1| |#1| (-550)))))) (T -240)) -((-3658 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-749)) (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-550)))))) (-5 *1 (-240 *3))))) -(-10 -7 (-15 -3658 ((-3 (-749) "failed") |#1| |#1| (-749)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-839 |#1|)) $) NIL)) (-1705 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-3050 (($ $) NIL (|has| |#2| (-542)))) (-3953 (((-112) $) NIL (|has| |#2| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-839 |#1|))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL (|has| |#2| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-839 |#1|) "failed") $) NIL)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-839 |#1|) $) NIL)) (-1792 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-3752 (($ $ (-623 (-550))) NIL)) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#2| (-883)))) (-3401 (($ $ |#2| (-234 (-3307 |#1|) (-749)) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#2| (-234 (-3307 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-839 |#1|)) NIL)) (-3346 (((-234 (-3307 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2863 (($ (-1 (-234 (-3307 |#1|) (-749)) (-234 (-3307 |#1|) (-749))) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4059 (((-3 (-839 |#1|) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#2| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -3068 (-749))) "failed") $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#2| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-883)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-623 (-839 |#1|)) (-623 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-623 (-839 |#1|)) (-623 $)) NIL)) (-3563 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2798 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-3661 (((-234 (-3307 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-839 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-234 (-3307 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-241 |#1| |#2|) (-13 (-923 |#2| (-234 (-3307 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) (-623 (-1145)) (-1021)) (T -241)) -((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-241 *3 *4)) (-14 *3 (-623 (-1145))) (-4 *4 (-1021))))) -(-13 (-923 |#2| (-234 (-3307 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) -((-2221 (((-112) $ $) NIL)) (-2933 (((-1233) $) 15)) (-1805 (((-181) $) 9)) (-2113 (($ (-181)) 10)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 7)) (-2264 (((-112) $ $) 13))) -(((-242) (-13 (-1069) (-10 -8 (-15 -1805 ((-181) $)) (-15 -2113 ($ (-181))) (-15 -2933 ((-1233) $))))) (T -242)) -((-1805 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-242))))) -(-13 (-1069) (-10 -8 (-15 -1805 ((-181) $)) (-15 -2113 ($ (-181))) (-15 -2933 ((-1233) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2065 (($ (-895)) NIL (|has| |#4| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) NIL (|has| |#4| (-771)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#4| (-361)))) (-4303 (((-550) $) NIL (|has| |#4| (-823)))) (-2409 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1069))) (((-3 (-550) "failed") $) NIL (-12 (|has| |#4| (-1012 (-550))) (|has| |#4| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#4| (-1012 (-400 (-550)))) (|has| |#4| (-1069))))) (-2202 ((|#4| $) NIL (|has| |#4| (-1069))) (((-550) $) NIL (-12 (|has| |#4| (-1012 (-550))) (|has| |#4| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#4| (-1012 (-400 (-550)))) (|has| |#4| (-1069))))) (-3756 (((-2 (|:| -3121 (-667 |#4|)) (|:| |vec| (-1228 |#4|))) (-667 $) (-1228 $)) NIL (|has| |#4| (-1021))) (((-667 |#4|) (-667 $)) NIL (|has| |#4| (-1021))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))))) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))))) (-1864 (($) NIL (|has| |#4| (-361)))) (-3317 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#4| $ (-550)) NIL)) (-2694 (((-112) $) NIL (|has| |#4| (-823)))) (-2971 (((-623 |#4|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))))) (-1712 (((-112) $) NIL (|has| |#4| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2876 (((-623 |#4|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3311 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#4| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#4| (-361)))) (-3445 (((-1089) $) NIL)) (-3858 ((|#4| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#4|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1375 (((-623 |#4|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#4| $ (-550) |#4|) NIL) ((|#4| $ (-550)) 12)) (-3451 ((|#4| $ $) NIL (|has| |#4| (-1021)))) (-1422 (($ (-1228 |#4|)) NIL)) (-1877 (((-133)) NIL (|has| |#4| (-356)))) (-2798 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1021))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1021)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))))) (-3457 (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344))) (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#4|) $) NIL) (((-837) $) NIL) (($ |#4|) NIL (|has| |#4| (-1069))) (($ (-550)) NIL (-1489 (-12 (|has| |#4| (-1012 (-550))) (|has| |#4| (-1069))) (|has| |#4| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#4| (-1012 (-400 (-550)))) (|has| |#4| (-1069))))) (-3091 (((-749)) NIL (|has| |#4| (-1021)))) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#4| (-823)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) CONST)) (-1901 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1021))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1021)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2290 (((-112) $ $) NIL (-1489 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2382 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021))))) (($ $ (-895)) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))))) (* (($ |#2| $) 14) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-705))) (($ |#4| $) NIL (|has| |#4| (-705))) (($ $ $) NIL (-1489 (-12 (|has| |#4| (-227)) (|has| |#4| (-1021))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1021))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1145))) (|has| |#4| (-1021)))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) (-895) (-1021) (-1092 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-626 |#2|)) (T -243)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-536)))) (-2729 (*1 *1 *1) (-4 *1 (-237)))) +(-13 (-283) (-38 (-400 (-536))) (-10 -8 (-15 ** ($ $ (-536))) (-15 -2729 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-283) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-705) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4151 (($ $) 57)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1526 (($ $ $) 53 (|has| $ (-6 -4349)))) (-1525 (($ $ $) 52 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-1528 (($ $) 56)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-1527 (($ $) 55)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 59)) (-3524 (($ $) 58)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4145 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-238 |#1|) (-138) (-1183)) (T -238)) +((-4152 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1526 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1525 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) +(-13 (-984 |t#1|) (-10 -8 (-15 -4152 (|t#1| $)) (-15 -3524 ($ $)) (-15 -4151 ($ $)) (-15 -1528 ($ $)) (-15 -1527 ($ $)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4145 ($ $ $)) (-15 -1526 ($ $ $)) (-15 -1525 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) 10 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $) NIL) (($ $ (-749)) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) 7 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) NIL) ((|#1| $ (-536) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-749) $ "count") 16)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-1529 (($ (-620 |#1|)) 22)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (($ (-620 |#1|)) 17) (((-620 |#1|) $) 18) (((-838) $) 21 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 14 (|has| $ (-6 -4348))))) +(((-239 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -4312 ($ (-620 |#1|))) (-15 -4312 ((-620 |#1|) $)) (-15 -1529 ($ (-620 |#1|))) (-15 -4154 ($ $ "unique")) (-15 -4154 ($ $ "sort")) (-15 -4154 ((-749) $ "count")))) (-825)) (T -239)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825))))) +(-13 (-644 |#1|) (-10 -8 (-15 -4312 ($ (-620 |#1|))) (-15 -4312 ((-620 |#1|) $)) (-15 -1529 ($ (-620 |#1|))) (-15 -4154 ($ $ "unique")) (-15 -4154 ($ $ "sort")) (-15 -4154 ((-749) $ "count")))) +((-1530 (((-3 (-749) "failed") |#1| |#1| (-749)) 27))) +(((-240 |#1|) (-10 -7 (-15 -1530 ((-3 (-749) "failed") |#1| |#1| (-749)))) (-13 (-705) (-361) (-10 -7 (-15 ** (|#1| |#1| (-536)))))) (T -240)) +((-1530 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-749)) (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-536)))))) (-5 *1 (-240 *3))))) +(-10 -7 (-15 -1530 ((-3 (-749) "failed") |#1| |#1| (-749)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) NIL)) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-233 (-4311 |#1|) (-749)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-233 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-233 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-233 (-4311 |#1|) (-749)) (-233 (-4311 |#1|) (-749))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-233 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-233 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-241 |#1| |#2|) (-13 (-924 |#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023)) (T -241)) +((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-241 *3 *4)) (-14 *3 (-620 (-1147))) (-4 *4 (-1023))))) +(-13 (-924 |#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) +((-2893 (((-112) $ $) NIL)) (-1531 (((-1235) $) 15)) (-1533 (((-181) $) 9)) (-1532 (($ (-181)) 10)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 13))) +(((-242) (-13 (-1072) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1235) $))))) (T -242)) +((-1533 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-242))))) +(-13 (-1072) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1235) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4065 (($ (-893)) NIL (|has| |#4| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#4| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#4| (-361)))) (-3981 (((-536) $) NIL (|has| |#4| (-823)))) (-4142 ((|#4| $ (-536) |#4|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1072))) (((-3 (-536) #1#) $) NIL (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-3502 ((|#4| $) NIL (|has| |#4| (-1072))) (((-536) $) NIL (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-2357 (((-2 (|:| -1695 (-667 |#4|)) (|:| |vec| (-1229 |#4|))) (-667 $) (-1229 $)) NIL (|has| |#4| (-1023))) (((-667 |#4|) (-667 $)) NIL (|has| |#4| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-3322 (($) NIL (|has| |#4| (-361)))) (-1632 ((|#4| $ (-536) |#4|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#4| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#4| (-823)))) (-2063 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-3533 (((-112) $) NIL (|has| |#4| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2506 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#4| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#4| (-361)))) (-3589 (((-1091) $) NIL)) (-4155 ((|#4| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#4|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2307 (((-620 |#4|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#4| $ (-536) |#4|) NIL) ((|#4| $ (-536)) 12)) (-4191 ((|#4| $ $) NIL (|has| |#4| (-1023)))) (-1520 (($ (-1229 |#4|)) NIL)) (-4266 (((-133)) NIL (|has| |#4| (-356)))) (-4165 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1023))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))))) (-2064 (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#4|) $) NIL) (((-838) $) NIL) (($ |#4|) NIL (|has| |#4| (-1072))) (($ (-536)) NIL (-3886 (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072))) (|has| |#4| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-3456 (((-749)) NIL (|has| |#4| (-1023)))) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#4| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) CONST)) (-2997 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1023))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3013 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-4303 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (* (($ |#2| $) 14) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-705))) (($ |#4| $) NIL (|has| |#4| (-705))) (($ $ $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) (-893) (-1023) (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-626 |#2|)) (T -243)) NIL (-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2065 (($ (-895)) NIL (|has| |#3| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) NIL (|has| |#3| (-771)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#3| (-361)))) (-4303 (((-550) $) NIL (|has| |#3| (-823)))) (-2409 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1069))) (((-3 (-550) "failed") $) NIL (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069))))) (-2202 ((|#3| $) NIL (|has| |#3| (-1069))) (((-550) $) NIL (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069))))) (-3756 (((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 $) (-1228 $)) NIL (|has| |#3| (-1021))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1021))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))))) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))))) (-1864 (($) NIL (|has| |#3| (-361)))) (-3317 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#3| $ (-550)) NIL)) (-2694 (((-112) $) NIL (|has| |#3| (-823)))) (-2971 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))))) (-1712 (((-112) $) NIL (|has| |#3| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2876 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3311 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#3| |#3|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#3| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#3| (-361)))) (-3445 (((-1089) $) NIL)) (-3858 ((|#3| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#3|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-1375 (((-623 |#3|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) 11)) (-3451 ((|#3| $ $) NIL (|has| |#3| (-1021)))) (-1422 (($ (-1228 |#3|)) NIL)) (-1877 (((-133)) NIL (|has| |#3| (-356)))) (-2798 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1021))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))))) (-3457 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#3|) $) NIL) (((-837) $) NIL) (($ |#3|) NIL (|has| |#3| (-1069))) (($ (-550)) NIL (-1489 (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069))) (|has| |#3| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069))))) (-3091 (((-749)) NIL (|has| |#3| (-1021)))) (-3404 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#3| (-823)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) CONST)) (-1901 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1021))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1021))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2290 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2382 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021))))) (($ $ (-895)) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))))) (* (($ |#2| $) 13) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ $ $) NIL (-1489 (-12 (|has| |#3| (-227)) (|has| |#3| (-1021))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-626 |#2|)) (-749) (-1021) (-626 |#2|)) (T -244)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4065 (($ (-893)) NIL (|has| |#3| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#3| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#3| (-361)))) (-3981 (((-536) $) NIL (|has| |#3| (-823)))) (-4142 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1072))) (((-3 (-536) #1#) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-3502 ((|#3| $) NIL (|has| |#3| (-1072))) (((-536) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-2357 (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) NIL (|has| |#3| (-1023))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-3322 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#3| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#3| (-823)))) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-3533 (((-112) $) NIL (|has| |#3| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#3| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#3| (-361)))) (-3589 (((-1091) $) NIL)) (-4155 ((|#3| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#3|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2307 (((-620 |#3|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) |#3|) NIL) ((|#3| $ (-536)) 11)) (-4191 ((|#3| $ $) NIL (|has| |#3| (-1023)))) (-1520 (($ (-1229 |#3|)) NIL)) (-4266 (((-133)) NIL (|has| |#3| (-356)))) (-4165 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))))) (-2064 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (((-838) $) NIL) (($ |#3|) NIL (|has| |#3| (-1072))) (($ (-536)) NIL (-3886 (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (|has| |#3| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-3456 (((-749)) NIL (|has| |#3| (-1023)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#3| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) CONST)) (-2997 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3013 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (* (($ |#2| $) 13) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ $ $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-626 |#2|)) (-749) (-1023) (-626 |#2|)) (T -244)) NIL (-13 (-232 |#1| |#3|) (-626 |#2|)) -((-3312 (((-623 (-749)) $) 47) (((-623 (-749)) $ |#3|) 50)) (-3609 (((-749) $) 49) (((-749) $ |#3|) 52)) (-2703 (($ $) 65)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2603 (((-749) $ |#3|) 39) (((-749) $) 36)) (-2136 (((-1 $ (-749)) |#3|) 15) (((-1 $ (-749)) $) 77)) (-3968 ((|#4| $) 58)) (-1395 (((-112) $) 56)) (-3888 (($ $) 64)) (-1553 (($ $ (-623 (-287 $))) 97) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-623 |#4|) (-623 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-623 |#4|) (-623 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-623 |#3|) (-623 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-623 |#3|) (-623 |#2|)) 84)) (-2798 (($ $ |#4|) NIL) (($ $ (-623 |#4|)) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-623 |#4|) (-623 (-749))) NIL) (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4019 (((-623 |#3|) $) 75)) (-3661 ((|#5| $) NIL) (((-749) $ |#4|) NIL) (((-623 (-749)) $ (-623 |#4|)) NIL) (((-749) $ |#3|) 44)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-550))) NIL) (($ $) NIL))) -(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -1553 (|#1| |#1| (-623 |#3|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#3| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#3|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#3| |#1|)) (-15 -2136 ((-1 |#1| (-749)) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3968 (|#4| |#1|)) (-15 -1395 ((-112) |#1|)) (-15 -3609 ((-749) |#1| |#3|)) (-15 -3312 ((-623 (-749)) |#1| |#3|)) (-15 -3609 ((-749) |#1|)) (-15 -3312 ((-623 (-749)) |#1|)) (-15 -3661 ((-749) |#1| |#3|)) (-15 -2603 ((-749) |#1|)) (-15 -2603 ((-749) |#1| |#3|)) (-15 -4019 ((-623 |#3|) |#1|)) (-15 -2136 ((-1 |#1| (-749)) |#3|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -2233 (|#1| |#3|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -3661 ((-623 (-749)) |#1| (-623 |#4|))) (-15 -3661 ((-749) |#1| |#4|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -2233 (|#1| |#4|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#4| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#4| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3661 (|#5| |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2798 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2798 (|#1| |#1| |#4| (-749))) (-15 -2798 (|#1| |#1| (-623 |#4|))) (-15 -2798 (|#1| |#1| |#4|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1021) (-825) (-259 |#3|) (-771)) (T -245)) -NIL -(-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -1553 (|#1| |#1| (-623 |#3|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#3| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#3|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#3| |#1|)) (-15 -2136 ((-1 |#1| (-749)) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3968 (|#4| |#1|)) (-15 -1395 ((-112) |#1|)) (-15 -3609 ((-749) |#1| |#3|)) (-15 -3312 ((-623 (-749)) |#1| |#3|)) (-15 -3609 ((-749) |#1|)) (-15 -3312 ((-623 (-749)) |#1|)) (-15 -3661 ((-749) |#1| |#3|)) (-15 -2603 ((-749) |#1|)) (-15 -2603 ((-749) |#1| |#3|)) (-15 -4019 ((-623 |#3|) |#1|)) (-15 -2136 ((-1 |#1| (-749)) |#3|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -2233 (|#1| |#3|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -3661 ((-623 (-749)) |#1| (-623 |#4|))) (-15 -3661 ((-749) |#1| |#4|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -2233 (|#1| |#4|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#4| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#4| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3661 (|#5| |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2798 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2798 (|#1| |#1| |#4| (-749))) (-15 -2798 (|#1| |#1| (-623 |#4|))) (-15 -2798 (|#1| |#1| |#4|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3312 (((-623 (-749)) $) 212) (((-623 (-749)) $ |#2|) 210)) (-3609 (((-749) $) 211) (((-749) $ |#2|) 209)) (-1516 (((-623 |#3|) $) 108)) (-1705 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-3050 (($ $) 86 (|has| |#1| (-542)))) (-3953 (((-112) $) 88 (|has| |#1| (-542)))) (-2457 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-883)))) (-2318 (($ $) 96 (|has| |#1| (-444)))) (-2207 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-883)))) (-2703 (($ $) 205)) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1012 (-550)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2202 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1012 (-550)))) ((|#3| $) 133) ((|#2| $) 218)) (-1792 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-1693 (($ $) 152)) (-3756 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1537 (((-3 $ "failed") $) 32)) (-2731 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-1683 (((-623 $) $) 107)) (-1568 (((-112) $) 94 (|has| |#1| (-883)))) (-3401 (($ $ |#1| |#4| $) 170)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 82 (-12 (|has| |#3| (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 81 (-12 (|has| |#3| (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ |#2|) 215) (((-749) $) 214)) (-2419 (((-112) $) 30)) (-3324 (((-749) $) 167)) (-1501 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-2336 (((-623 $) $) 124)) (-3438 (((-112) $) 150)) (-1488 (($ |#1| |#4|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#3|) 118)) (-3346 ((|#4| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2793 (($ $ $) 77 (|has| |#1| (-825)))) (-2173 (($ $ $) 76 (|has| |#1| (-825)))) (-2863 (($ (-1 |#4| |#4|) $) 169)) (-2392 (($ (-1 |#1| |#1|) $) 149)) (-2136 (((-1 $ (-749)) |#2|) 217) (((-1 $ (-749)) $) 204 (|has| |#1| (-227)))) (-4059 (((-3 |#3| "failed") $) 121)) (-1657 (($ $) 147)) (-1670 ((|#1| $) 146)) (-3968 ((|#3| $) 207)) (-3231 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2369 (((-1127) $) 9)) (-1395 (((-112) $) 208)) (-3833 (((-3 (-623 $) "failed") $) 112)) (-3017 (((-3 (-623 $) "failed") $) 113)) (-2891 (((-3 (-2 (|:| |var| |#3|) (|:| -3068 (-749))) "failed") $) 111)) (-3888 (($ $) 206)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 164)) (-1639 ((|#1| $) 165)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3260 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 97 (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 |#1|)) 200 (|has| |#1| (-227)))) (-3563 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2798 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-749)) 234 (|has| |#1| (-227))) (($ $ (-1145)) 232 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 231 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 230 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 229 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-4019 (((-623 |#2|) $) 216)) (-3661 ((|#4| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127) (((-749) $ |#2|) 213)) (-2451 (((-866 (-372)) $) 80 (-12 (|has| |#3| (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) 79 (-12 (|has| |#3| (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 102 (-1304 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-550))) 70 (-1489 (|has| |#1| (-1012 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) 166)) (-1708 ((|#1| $ |#4|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-1613 (((-3 $ "failed") $) 71 (-1489 (-1304 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 28)) (-3895 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-749)) 233 (|has| |#1| (-227))) (($ $ (-1145)) 228 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 227 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 226 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 225 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2324 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-246 |#1| |#2| |#3| |#4|) (-138) (-1021) (-825) (-259 |t#2|) (-771)) (T -246)) -((-2136 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 *4)))) (-2603 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-3312 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) (-3609 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-771)) (-4 *2 (-259 *4)))) (-3888 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1021)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-2703 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1021)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-2136 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6))))) -(-13 (-923 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -2136 ((-1 $ (-749)) |t#2|)) (-15 -4019 ((-623 |t#2|) $)) (-15 -2603 ((-749) $ |t#2|)) (-15 -2603 ((-749) $)) (-15 -3661 ((-749) $ |t#2|)) (-15 -3312 ((-623 (-749)) $)) (-15 -3609 ((-749) $)) (-15 -3312 ((-623 (-749)) $ |t#2|)) (-15 -3609 ((-749) $ |t#2|)) (-15 -1395 ((-112) $)) (-15 -3968 (|t#3| $)) (-15 -3888 ($ $)) (-15 -2703 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -2136 ((-1 $ (-749)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#3| (-596 (-866 (-372))))) ((-596 (-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#3| (-596 (-866 (-550))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-883)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-874 |#3|) . T) ((-860 (-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#3| (-860 (-372)))) ((-860 (-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#3| (-860 (-550)))) ((-923 |#1| |#4| |#3|) . T) ((-883) |has| |#1| (-883)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1012 |#2|) . T) ((-1012 |#3|) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) |has| |#1| (-883))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1540 ((|#1| $) 54)) (-3940 ((|#1| $) 44)) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-4161 (($ $) 60)) (-3770 (($ $) 48)) (-3219 ((|#1| |#1| $) 46)) (-3540 ((|#1| $) 45)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-3839 (((-749) $) 61)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-3403 ((|#1| |#1| $) 52)) (-1832 ((|#1| |#1| $) 51)) (-1715 (($ |#1| $) 40)) (-1293 (((-749) $) 55)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1398 ((|#1| $) 62)) (-2353 ((|#1| $) 50)) (-3441 ((|#1| $) 49)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-2272 ((|#1| |#1| $) 58)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2752 ((|#1| $) 59)) (-4028 (($) 57) (($ (-623 |#1|)) 56)) (-3072 (((-749) $) 43)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3100 ((|#1| $) 53)) (-4017 (($ (-623 |#1|)) 42)) (-2940 ((|#1| $) 63)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-247 |#1|) (-138) (-1182)) (T -247)) -((-4028 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-247 *3)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-3403 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-1832 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) (-3770 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(-13 (-1090 |t#1|) (-969 |t#1|) (-10 -8 (-15 -4028 ($)) (-15 -4028 ($ (-623 |t#1|))) (-15 -1293 ((-749) $)) (-15 -1540 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3403 (|t#1| |t#1| $)) (-15 -1832 (|t#1| |t#1| $)) (-15 -2353 (|t#1| $)) (-15 -3441 (|t#1| $)) (-15 -3770 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-969 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1090 |#1|) . T) ((-1182) . T)) -((-3625 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-4285 (((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372))) 160) (((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 158) (((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372))) 163) (((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 159) (((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372))) 150) (((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 149) (((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372))) 129) (((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256))) 127) (((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372))) 128) (((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256))) 125)) (-4248 (((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372))) 162) (((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 161) (((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372))) 165) (((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 164) (((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372))) 152) (((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256))) 151) (((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372))) 135) (((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256))) 134) (((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372))) 133) (((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256))) 132) (((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372))) 100) (((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256))) 99) (((-1229) (-1 (-219) (-219)) (-1063 (-372))) 96) (((-1229) (-1 (-219) (-219)) (-1063 (-372)) (-623 (-256))) 95))) -(((-248) (-10 -7 (-15 -4248 ((-1229) (-1 (-219) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-1 (-219) (-219)) (-1063 (-372)))) (-15 -4248 ((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4248 ((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4248 ((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)))) (-15 -3625 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -248)) -((-3625 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1063 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248))))) -(-10 -7 (-15 -4248 ((-1229) (-1 (-219) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-1 (-219) (-219)) (-1063 (-372)))) (-15 -4248 ((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-851 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4248 ((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-853 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-853 (-1 (-219) (-219))) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219)) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-372)) (-1063 (-372)))) (-15 -4248 ((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)))) (-15 -4285 ((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1063 (-372)) (-1063 (-372)))) (-15 -3625 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-4248 (((-1229) (-287 |#2|) (-1145) (-1145) (-623 (-256))) 96))) -(((-249 |#1| |#2|) (-10 -7 (-15 -4248 ((-1229) (-287 |#2|) (-1145) (-1145) (-623 (-256))))) (-13 (-542) (-825) (-1012 (-550))) (-423 |#1|)) (T -249)) -((-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-1145)) (-5 *5 (-623 (-256))) (-4 *7 (-423 *6)) (-4 *6 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-1229)) (-5 *1 (-249 *6 *7))))) -(-10 -7 (-15 -4248 ((-1229) (-287 |#2|) (-1145) (-1145) (-623 (-256))))) -((-1482 (((-550) (-550)) 50)) (-4269 (((-550) (-550)) 51)) (-3803 (((-219) (-219)) 52)) (-3237 (((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219))) 49)) (-3211 (((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219)) (-112)) 47))) -(((-250) (-10 -7 (-15 -3211 ((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219)) (-112))) (-15 -3237 ((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219)))) (-15 -1482 ((-550) (-550))) (-15 -4269 ((-550) (-550))) (-15 -3803 ((-219) (-219))))) (T -250)) -((-3803 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250)))) (-3237 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1063 (-219))) (-5 *2 (-1230)) (-5 *1 (-250)))) (-3211 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1063 (-219))) (-5 *5 (-112)) (-5 *2 (-1230)) (-5 *1 (-250))))) -(-10 -7 (-15 -3211 ((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219)) (-112))) (-15 -3237 ((-1230) (-1 (-167 (-219)) (-167 (-219))) (-1063 (-219)) (-1063 (-219)))) (-15 -1482 ((-550) (-550))) (-15 -4269 ((-550) (-550))) (-15 -3803 ((-219) (-219)))) -((-2233 (((-1061 (-372)) (-1061 (-309 |#1|))) 16))) -(((-251 |#1|) (-10 -7 (-15 -2233 ((-1061 (-372)) (-1061 (-309 |#1|))))) (-13 (-825) (-542) (-596 (-372)))) (T -251)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-1061 (-309 *4))) (-4 *4 (-13 (-825) (-542) (-596 (-372)))) (-5 *2 (-1061 (-372))) (-5 *1 (-251 *4))))) -(-10 -7 (-15 -2233 ((-1061 (-372)) (-1061 (-309 |#1|))))) -((-4285 (((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372))) 71) (((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256))) 70) (((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372))) 61) (((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256))) 60) (((-1102 (-219)) (-853 |#1|) (-1061 (-372))) 52) (((-1102 (-219)) (-853 |#1|) (-1061 (-372)) (-623 (-256))) 51)) (-4248 (((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372))) 74) (((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256))) 73) (((-1230) |#1| (-1061 (-372)) (-1061 (-372))) 64) (((-1230) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256))) 63) (((-1230) (-853 |#1|) (-1061 (-372))) 56) (((-1230) (-853 |#1|) (-1061 (-372)) (-623 (-256))) 55) (((-1229) (-851 |#1|) (-1061 (-372))) 43) (((-1229) (-851 |#1|) (-1061 (-372)) (-623 (-256))) 42) (((-1229) |#1| (-1061 (-372))) 35) (((-1229) |#1| (-1061 (-372)) (-623 (-256))) 34))) -(((-252 |#1|) (-10 -7 (-15 -4248 ((-1229) |#1| (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) |#1| (-1061 (-372)))) (-15 -4248 ((-1229) (-851 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-851 |#1|) (-1061 (-372)))) (-15 -4248 ((-1230) (-853 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-853 |#1|) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) (-853 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-853 |#1|) (-1061 (-372)))) (-15 -4248 ((-1230) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) |#1| (-1061 (-372)) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372)))) (-15 -4248 ((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372))))) (-13 (-596 (-526)) (-1069))) (T -252)) -((-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1061 (-372))) (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *5)))) (-4285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *6)))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1061 (-372))) (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) (-5 *1 (-252 *5)))) (-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) (-5 *1 (-252 *6)))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) (-4285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1230)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) (-4248 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1061 (-372))) (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *5)))) (-4285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *6)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1061 (-372))) (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) (-5 *1 (-252 *5)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) (-5 *1 (-252 *6)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1061 (-372))) (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1229)) (-5 *1 (-252 *5)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1229)) (-5 *1 (-252 *6)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069)))))) -(-10 -7 (-15 -4248 ((-1229) |#1| (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) |#1| (-1061 (-372)))) (-15 -4248 ((-1229) (-851 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1229) (-851 |#1|) (-1061 (-372)))) (-15 -4248 ((-1230) (-853 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-853 |#1|) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) (-853 |#1|) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-853 |#1|) (-1061 (-372)))) (-15 -4248 ((-1230) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) |#1| (-1061 (-372)) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) |#1| (-1061 (-372)) (-1061 (-372)))) (-15 -4248 ((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4248 ((-1230) (-856 |#1|) (-1061 (-372)) (-1061 (-372)))) (-15 -4285 ((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372)) (-623 (-256)))) (-15 -4285 ((-1102 (-219)) (-856 |#1|) (-1061 (-372)) (-1061 (-372))))) -((-4248 (((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256))) 23) (((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219))) 24) (((-1229) (-623 (-917 (-219))) (-623 (-256))) 16) (((-1229) (-623 (-917 (-219)))) 17) (((-1229) (-623 (-219)) (-623 (-219)) (-623 (-256))) 20) (((-1229) (-623 (-219)) (-623 (-219))) 21))) -(((-253) (-10 -7 (-15 -4248 ((-1229) (-623 (-219)) (-623 (-219)))) (-15 -4248 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-256)))) (-15 -4248 ((-1229) (-623 (-917 (-219))))) (-15 -4248 ((-1229) (-623 (-917 (-219))) (-623 (-256)))) (-15 -4248 ((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219)))) (-15 -4248 ((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256)))))) (T -253)) -((-4248 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-253)))) (-4248 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1230)) (-5 *1 (-253)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-253)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *2 (-1229)) (-5 *1 (-253)))) (-4248 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-253)))) (-4248 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1229)) (-5 *1 (-253))))) -(-10 -7 (-15 -4248 ((-1229) (-623 (-219)) (-623 (-219)))) (-15 -4248 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-256)))) (-15 -4248 ((-1229) (-623 (-917 (-219))))) (-15 -4248 ((-1229) (-623 (-917 (-219))) (-623 (-256)))) (-15 -4248 ((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219)))) (-15 -4248 ((-1230) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256))))) -((-3221 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-4147 (((-895) (-623 (-256)) (-895)) 53)) (-2535 (((-895) (-623 (-256)) (-895)) 52)) (-2220 (((-623 (-372)) (-623 (-256)) (-623 (-372))) 69)) (-1956 (((-372) (-623 (-256)) (-372)) 58)) (-2259 (((-895) (-623 (-256)) (-895)) 54)) (-2258 (((-112) (-623 (-256)) (-112)) 28)) (-1809 (((-1127) (-623 (-256)) (-1127)) 20)) (-1273 (((-1127) (-623 (-256)) (-1127)) 27)) (-2739 (((-1102 (-219)) (-623 (-256))) 47)) (-3965 (((-623 (-1063 (-372))) (-623 (-256)) (-623 (-1063 (-372)))) 41)) (-3934 (((-848) (-623 (-256)) (-848)) 33)) (-2662 (((-848) (-623 (-256)) (-848)) 34)) (-3691 (((-1 (-917 (-219)) (-917 (-219))) (-623 (-256)) (-1 (-917 (-219)) (-917 (-219)))) 64)) (-1697 (((-112) (-623 (-256)) (-112)) 16)) (-3031 (((-112) (-623 (-256)) (-112)) 15))) -(((-254) (-10 -7 (-15 -3031 ((-112) (-623 (-256)) (-112))) (-15 -1697 ((-112) (-623 (-256)) (-112))) (-15 -3221 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1809 ((-1127) (-623 (-256)) (-1127))) (-15 -1273 ((-1127) (-623 (-256)) (-1127))) (-15 -2258 ((-112) (-623 (-256)) (-112))) (-15 -3934 ((-848) (-623 (-256)) (-848))) (-15 -2662 ((-848) (-623 (-256)) (-848))) (-15 -3965 ((-623 (-1063 (-372))) (-623 (-256)) (-623 (-1063 (-372))))) (-15 -2535 ((-895) (-623 (-256)) (-895))) (-15 -4147 ((-895) (-623 (-256)) (-895))) (-15 -2739 ((-1102 (-219)) (-623 (-256)))) (-15 -2259 ((-895) (-623 (-256)) (-895))) (-15 -1956 ((-372) (-623 (-256)) (-372))) (-15 -3691 ((-1 (-917 (-219)) (-917 (-219))) (-623 (-256)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -2220 ((-623 (-372)) (-623 (-256)) (-623 (-372)))))) (T -254)) -((-2220 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-372))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3691 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1956 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2259 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-254)))) (-4147 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2535 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3965 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2662 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3934 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2258 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1273 (*1 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1809 (*1 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1697 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3031 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) -(-10 -7 (-15 -3031 ((-112) (-623 (-256)) (-112))) (-15 -1697 ((-112) (-623 (-256)) (-112))) (-15 -3221 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1809 ((-1127) (-623 (-256)) (-1127))) (-15 -1273 ((-1127) (-623 (-256)) (-1127))) (-15 -2258 ((-112) (-623 (-256)) (-112))) (-15 -3934 ((-848) (-623 (-256)) (-848))) (-15 -2662 ((-848) (-623 (-256)) (-848))) (-15 -3965 ((-623 (-1063 (-372))) (-623 (-256)) (-623 (-1063 (-372))))) (-15 -2535 ((-895) (-623 (-256)) (-895))) (-15 -4147 ((-895) (-623 (-256)) (-895))) (-15 -2739 ((-1102 (-219)) (-623 (-256)))) (-15 -2259 ((-895) (-623 (-256)) (-895))) (-15 -1956 ((-372) (-623 (-256)) (-372))) (-15 -3691 ((-1 (-917 (-219)) (-917 (-219))) (-623 (-256)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -2220 ((-623 (-372)) (-623 (-256)) (-623 (-372))))) -((-3706 (((-3 |#1| "failed") (-623 (-256)) (-1145)) 17))) -(((-255 |#1|) (-10 -7 (-15 -3706 ((-3 |#1| "failed") (-623 (-256)) (-1145)))) (-1182)) (T -255)) -((-3706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) (-5 *1 (-255 *2)) (-4 *2 (-1182))))) -(-10 -7 (-15 -3706 ((-3 |#1| "failed") (-623 (-256)) (-1145)))) -((-2221 (((-112) $ $) NIL)) (-3221 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-4147 (($ (-895)) 76)) (-2535 (($ (-895)) 75)) (-2305 (($ (-623 (-372))) 82)) (-1956 (($ (-372)) 58)) (-2259 (($ (-895)) 77)) (-2258 (($ (-112)) 23)) (-1809 (($ (-1127)) 18)) (-1273 (($ (-1127)) 19)) (-2739 (($ (-1102 (-219))) 71)) (-3965 (($ (-623 (-1063 (-372)))) 67)) (-2873 (($ (-623 (-1063 (-372)))) 59) (($ (-623 (-1063 (-400 (-550))))) 66)) (-3717 (($ (-372)) 29) (($ (-848)) 33)) (-3270 (((-112) (-623 $) (-1145)) 91)) (-3706 (((-3 (-52) "failed") (-623 $) (-1145)) 93)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-4040 (($ (-372)) 34) (($ (-848)) 35)) (-2999 (($ (-1 (-917 (-219)) (-917 (-219)))) 57)) (-3691 (($ (-1 (-917 (-219)) (-917 (-219)))) 78)) (-1470 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-2233 (((-837) $) 87)) (-2092 (($ (-112)) 24) (($ (-623 (-1063 (-372)))) 52)) (-3031 (($ (-112)) 25)) (-2264 (((-112) $ $) 89))) -(((-256) (-13 (-1069) (-10 -8 (-15 -3031 ($ (-112))) (-15 -2092 ($ (-112))) (-15 -3221 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1809 ($ (-1127))) (-15 -1273 ($ (-1127))) (-15 -2258 ($ (-112))) (-15 -2092 ($ (-623 (-1063 (-372))))) (-15 -2999 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -3717 ($ (-372))) (-15 -3717 ($ (-848))) (-15 -4040 ($ (-372))) (-15 -4040 ($ (-848))) (-15 -1470 ($ (-1 (-219) (-219)))) (-15 -1470 ($ (-1 (-219) (-219) (-219)))) (-15 -1470 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1956 ($ (-372))) (-15 -2873 ($ (-623 (-1063 (-372))))) (-15 -2873 ($ (-623 (-1063 (-400 (-550)))))) (-15 -3965 ($ (-623 (-1063 (-372))))) (-15 -2739 ($ (-1102 (-219)))) (-15 -2535 ($ (-895))) (-15 -4147 ($ (-895))) (-15 -2259 ($ (-895))) (-15 -3691 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -2305 ($ (-623 (-372)))) (-15 -3706 ((-3 (-52) "failed") (-623 $) (-1145))) (-15 -3270 ((-112) (-623 $) (-1145)))))) (T -256)) -((-3031 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-256)))) (-1809 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-256)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-256)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-256)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-256)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-256)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2873 (*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256)))) (-2873 (*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-400 (-550))))) (-5 *1 (-256)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-256)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-256)))) (-2305 (*1 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-256)))) (-3706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) (-5 *2 (-52)) (-5 *1 (-256)))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) (-5 *2 (-112)) (-5 *1 (-256))))) -(-13 (-1069) (-10 -8 (-15 -3031 ($ (-112))) (-15 -2092 ($ (-112))) (-15 -3221 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1809 ($ (-1127))) (-15 -1273 ($ (-1127))) (-15 -2258 ($ (-112))) (-15 -2092 ($ (-623 (-1063 (-372))))) (-15 -2999 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -3717 ($ (-372))) (-15 -3717 ($ (-848))) (-15 -4040 ($ (-372))) (-15 -4040 ($ (-848))) (-15 -1470 ($ (-1 (-219) (-219)))) (-15 -1470 ($ (-1 (-219) (-219) (-219)))) (-15 -1470 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1956 ($ (-372))) (-15 -2873 ($ (-623 (-1063 (-372))))) (-15 -2873 ($ (-623 (-1063 (-400 (-550)))))) (-15 -3965 ($ (-623 (-1063 (-372))))) (-15 -2739 ($ (-1102 (-219)))) (-15 -2535 ($ (-895))) (-15 -4147 ($ (-895))) (-15 -2259 ($ (-895))) (-15 -3691 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -2305 ($ (-623 (-372)))) (-15 -3706 ((-3 (-52) "failed") (-623 $) (-1145))) (-15 -3270 ((-112) (-623 $) (-1145))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3312 (((-623 (-749)) $) NIL) (((-623 (-749)) $ |#2|) NIL)) (-3609 (((-749) $) NIL) (((-749) $ |#2|) NIL)) (-1516 (((-623 |#3|) $) NIL)) (-1705 (((-1141 $) $ |#3|) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 |#3|)) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2703 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1094 |#1| |#2|) "failed") $) 21)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1094 |#1| |#2|) $) NIL)) (-1792 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-522 |#3|) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| |#1| (-860 (-372))) (|has| |#3| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| |#1| (-860 (-550))) (|has| |#3| (-860 (-550)))))) (-2603 (((-749) $ |#2|) NIL) (((-749) $) 10)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#1|) |#3|) NIL) (($ (-1141 $) |#3|) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#3|) NIL)) (-3346 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-623 (-749)) $ (-623 |#3|)) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 |#3|) (-522 |#3|)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2136 (((-1 $ (-749)) |#2|) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-4059 (((-3 |#3| "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3968 ((|#3| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-1395 (((-112) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| |#3|) (|:| -3068 (-749))) "failed") $) NIL)) (-3888 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-623 |#3|) (-623 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-623 |#3|) (-623 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3563 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-2798 (($ $ |#3|) NIL) (($ $ (-623 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4019 (((-623 |#2|) $) NIL)) (-3661 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-623 (-749)) $ (-623 |#3|)) NIL) (((-749) $ |#2|) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#3| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#3| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1094 |#1| |#2|)) 30) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ |#3|) NIL) (($ $ (-623 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1094 |#1| |#2|))) (-1021) (-825) (-259 |#2|)) (T -257)) -NIL -(-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1094 |#1| |#2|))) -((-3609 (((-749) $) 30)) (-2288 (((-3 |#2| "failed") $) 17)) (-2202 ((|#2| $) 27)) (-2798 (($ $) 12) (($ $ (-749)) 15)) (-2233 (((-837) $) 26) (($ |#2|) 10)) (-2264 (((-112) $ $) 20)) (-2290 (((-112) $ $) 29))) -(((-258 |#1| |#2|) (-10 -8 (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -3609 ((-749) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-259 |#2|) (-825)) (T -258)) -NIL -(-10 -8 (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -3609 ((-749) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3609 (((-749) $) 22)) (-2564 ((|#1| $) 23)) (-2288 (((-3 |#1| "failed") $) 27)) (-2202 ((|#1| $) 26)) (-2603 (((-749) $) 24)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2136 (($ |#1| (-749)) 25)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2798 (($ $) 21) (($ $ (-749)) 20)) (-2233 (((-837) $) 11) (($ |#1|) 28)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18))) +((-1538 (((-620 (-749)) $) 47) (((-620 (-749)) $ |#3|) 50)) (-1572 (((-749) $) 49) (((-749) $ |#3|) 52)) (-1534 (($ $) 65)) (-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4126 (((-749) $ |#3|) 39) (((-749) $) 36)) (-1573 (((-1 $ (-749)) |#3|) 15) (((-1 $ (-749)) $) 77)) (-1536 ((|#4| $) 58)) (-1537 (((-112) $) 56)) (-1535 (($ $) 64)) (-4122 (($ $ (-620 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-620 |#4|) (-620 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-620 |#4|) (-620 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-620 |#3|) (-620 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-620 |#3|) (-620 |#2|)) 84)) (-4165 (($ $ |#4|) NIL) (($ $ (-620 |#4|)) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-620 |#4|) (-620 (-749))) NIL) (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1539 (((-620 |#3|) $) 75)) (-4302 ((|#5| $) NIL) (((-749) $ |#4|) NIL) (((-620 (-749)) $ (-620 |#4|)) NIL) (((-749) $ |#3|) 44)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-536))) NIL) (($ $) NIL))) +(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#3| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-749) |#1| |#3|)) (-15 -1538 ((-620 (-749)) |#1| |#3|)) (-15 -1572 ((-749) |#1|)) (-15 -1538 ((-620 (-749)) |#1|)) (-15 -4302 ((-749) |#1| |#3|)) (-15 -4126 ((-749) |#1|)) (-15 -4126 ((-749) |#1| |#3|)) (-15 -1539 ((-620 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#3|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 |#4|))) (-15 -4302 ((-749) |#1| |#4|)) (-15 -3503 ((-3 |#4| #1#) |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 (|#5| |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4165 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#4| (-749))) (-15 -4165 (|#1| |#1| (-620 |#4|))) (-15 -4165 (|#1| |#1| |#4|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1023) (-825) (-259 |#3|) (-771)) (T -245)) +NIL +(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#3| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-749) |#1| |#3|)) (-15 -1538 ((-620 (-749)) |#1| |#3|)) (-15 -1572 ((-749) |#1|)) (-15 -1538 ((-620 (-749)) |#1|)) (-15 -4302 ((-749) |#1| |#3|)) (-15 -4126 ((-749) |#1|)) (-15 -4126 ((-749) |#1| |#3|)) (-15 -1539 ((-620 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#3|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 |#4|))) (-15 -4302 ((-749) |#1| |#4|)) (-15 -3503 ((-3 |#4| #1#) |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 (|#5| |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4165 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#4| (-749))) (-15 -4165 (|#1| |#1| (-620 |#4|))) (-15 -4165 (|#1| |#1| |#4|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1538 (((-620 (-749)) $) 212) (((-620 (-749)) $ |#2|) 210)) (-1572 (((-749) $) 211) (((-749) $ |#2|) 209)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-1534 (($ $) 205)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133) ((|#2| $) 218)) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| |#4| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ |#2|) 215) (((-749) $) 214)) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#4|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3148 ((|#4| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#4| |#4|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-1573 (((-1 $ (-749)) |#2|) 217) (((-1 $ (-749)) $) 204 (|has| |#1| (-227)))) (-3413 (((-3 |#3| #3="failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-1536 ((|#3| $) 207)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-1537 (((-112) $) 208)) (-3151 (((-3 (-620 $) #3#) $) 112)) (-3150 (((-3 (-620 $) #3#) $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) 111)) (-1535 (($ $) 206)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 |#1|)) 200 (|has| |#1| (-227)))) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-749)) 234 (|has| |#1| (-227))) (($ $ (-1147)) 232 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 231 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 230 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 229 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1539 (((-620 |#2|) $) 216)) (-4302 ((|#4| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127) (((-749) $ |#2|) 213)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#4|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-749)) 233 (|has| |#1| (-227))) (($ $ (-1147)) 228 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 227 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 226 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 225 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-246 |#1| |#2| |#3| |#4|) (-138) (-1023) (-825) (-259 |t#2|) (-771)) (T -246)) +((-1573 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 *4)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-4302 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) (-1572 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-4 *2 (-259 *4)))) (-1535 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-1573 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6))))) +(-13 (-924 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -1573 ((-1 $ (-749)) |t#2|)) (-15 -1539 ((-620 |t#2|) $)) (-15 -4126 ((-749) $ |t#2|)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $ |t#2|)) (-15 -1538 ((-620 (-749)) $)) (-15 -1572 ((-749) $)) (-15 -1538 ((-620 (-749)) $ |t#2|)) (-15 -1572 ((-749) $ |t#2|)) (-15 -1537 ((-112) $)) (-15 -1536 (|t#3| $)) (-15 -1535 ($ $)) (-15 -1534 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -1573 ((-1 $ (-749)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-924 |#1| |#4| |#3|) . T) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#2|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1545 ((|#1| $) 54)) (-3678 ((|#1| $) 44)) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3330 (($ $) 60)) (-2372 (($ $) 48)) (-3680 ((|#1| |#1| $) 46)) (-3679 ((|#1| $) 45)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-4188 (((-749) $) 61)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-1543 ((|#1| |#1| $) 52)) (-1542 ((|#1| |#1| $) 51)) (-3965 (($ |#1| $) 40)) (-2928 (((-749) $) 55)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-3329 ((|#1| $) 62)) (-1541 ((|#1| $) 50)) (-1540 ((|#1| $) 49)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3332 ((|#1| |#1| $) 58)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3331 ((|#1| $) 59)) (-1546 (($) 57) (($ (-620 |#1|)) 56)) (-3677 (((-749) $) 43)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1544 ((|#1| $) 53)) (-1333 (($ (-620 |#1|)) 42)) (-3328 ((|#1| $) 63)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-247 |#1|) (-138) (-1183)) (T -247)) +((-1546 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-247 *3)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1543 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1542 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-2372 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(-13 (-1092 |t#1|) (-969 |t#1|) (-10 -8 (-15 -1546 ($)) (-15 -1546 ($ (-620 |t#1|))) (-15 -2928 ((-749) $)) (-15 -1545 (|t#1| $)) (-15 -1544 (|t#1| $)) (-15 -1543 (|t#1| |t#1| $)) (-15 -1542 (|t#1| |t#1| $)) (-15 -1541 (|t#1| $)) (-15 -1540 (|t#1| $)) (-15 -2372 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-969 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1092 |#1|) . T) ((-1183) . T)) +((-1547 (((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))) 71) (((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 70) (((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371))) 61) (((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 60) (((-1104 (-219)) (-853 |#1|) (-1063 (-371))) 52) (((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254))) 51)) (-1554 (((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371))) 74) (((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 73) (((-1233) |#1| (-1063 (-371)) (-1063 (-371))) 64) (((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 63) (((-1233) (-853 |#1|) (-1063 (-371))) 56) (((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254))) 55) (((-1232) (-851 |#1|) (-1063 (-371))) 43) (((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254))) 42) (((-1232) |#1| (-1063 (-371))) 35) (((-1232) |#1| (-1063 (-371)) (-620 (-254))) 34))) +(((-248 |#1|) (-10 -7 (-15 -1554 ((-1232) |#1| (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) |#1| (-1063 (-371)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))))) (-13 (-596 (-525)) (-1072))) (T -248)) +((-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072)))))) +(-10 -7 (-15 -1554 ((-1232) |#1| (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) |#1| (-1063 (-371)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))))) +((-1548 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1547 (((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371))) 160) (((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 158) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 163) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 159) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 150) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 149) (((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371))) 129) (((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254))) 127) (((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371))) 128) (((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 125)) (-1554 (((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371))) 162) (((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 161) (((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 165) (((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 164) (((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 152) (((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 151) (((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371))) 135) (((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254))) 134) (((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371))) 133) (((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 132) (((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371))) 100) (((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 99) (((-1232) (-1 (-219) (-219)) (-1060 (-371))) 96) (((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254))) 95))) +(((-249) (-10 -7 (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1548 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -249)) +((-1548 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249))))) +(-10 -7 (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1548 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) +((-1554 (((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))) 96))) +(((-250 |#1| |#2|) (-10 -7 (-15 -1554 ((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))))) (-13 (-543) (-825) (-1012 (-536))) (-414 |#1|)) (T -250)) +((-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1147)) (-5 *5 (-620 (-254))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-1232)) (-5 *1 (-250 *6 *7))))) +(-10 -7 (-15 -1554 ((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))))) +((-1551 (((-536) (-536)) 50)) (-1552 (((-536) (-536)) 51)) (-1553 (((-219) (-219)) 52)) (-1550 (((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219))) 49)) (-1549 (((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112)) 47))) +(((-251) (-10 -7 (-15 -1549 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -1550 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1551 ((-536) (-536))) (-15 -1552 ((-536) (-536))) (-15 -1553 ((-219) (-219))))) (T -251)) +((-1553 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) (-5 *2 (-1233)) (-5 *1 (-251)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) (-5 *5 (-112)) (-5 *2 (-1233)) (-5 *1 (-251))))) +(-10 -7 (-15 -1549 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -1550 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1551 ((-536) (-536))) (-15 -1552 ((-536) (-536))) (-15 -1553 ((-219) (-219)))) +((-4312 (((-1063 (-371)) (-1063 (-307 |#1|))) 16))) +(((-252 |#1|) (-10 -7 (-15 -4312 ((-1063 (-371)) (-1063 (-307 |#1|))))) (-13 (-825) (-543) (-596 (-371)))) (T -252)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-1063 (-307 *4))) (-4 *4 (-13 (-825) (-543) (-596 (-371)))) (-5 *2 (-1063 (-371))) (-5 *1 (-252 *4))))) +(-10 -7 (-15 -4312 ((-1063 (-371)) (-1063 (-307 |#1|))))) +((-1554 (((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254))) 23) (((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219))) 24) (((-1232) (-620 (-917 (-219))) (-620 (-254))) 16) (((-1232) (-620 (-917 (-219)))) 17) (((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254))) 20) (((-1232) (-620 (-219)) (-620 (-219))) 21))) +(((-253) (-10 -7 (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254)))) (-15 -1554 ((-1232) (-620 (-917 (-219))))) (-15 -1554 ((-1232) (-620 (-917 (-219))) (-620 (-254)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254)))))) (T -253)) +((-1554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1233)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1232)) (-5 *1 (-253))))) +(-10 -7 (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254)))) (-15 -1554 ((-1232) (-620 (-917 (-219))))) (-15 -1554 ((-1232) (-620 (-917 (-219))) (-620 (-254)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254))))) +((-2893 (((-112) $ $) NIL)) (-4236 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-1567 (($ (-893)) 76)) (-1566 (($ (-893)) 75)) (-1887 (($ (-620 (-371))) 82)) (-1570 (($ (-371)) 58)) (-1569 (($ (-893)) 77)) (-1563 (($ (-112)) 23)) (-4238 (($ (-1129)) 18)) (-1562 (($ (-1129)) 19)) (-1568 (($ (-1104 (-219))) 71)) (-2045 (($ (-620 (-1060 (-371)))) 67)) (-1556 (($ (-620 (-1060 (-371)))) 59) (($ (-620 (-1060 (-400 (-536))))) 66)) (-1559 (($ (-371)) 29) (($ (-848)) 33)) (-1555 (((-112) (-620 $) (-1147)) 91)) (-1571 (((-3 (-51) "failed") (-620 $) (-1147)) 93)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1558 (($ (-371)) 34) (($ (-848)) 35)) (-3570 (($ (-1 (-917 (-219)) (-917 (-219)))) 57)) (-2345 (($ (-1 (-917 (-219)) (-917 (-219)))) 78)) (-1557 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-4312 (((-838) $) 87)) (-1560 (($ (-112)) 24) (($ (-620 (-1060 (-371)))) 52)) (-2040 (($ (-112)) 25)) (-3382 (((-112) $ $) 89))) +(((-254) (-13 (-1072) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4236 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ($ (-1129))) (-15 -1562 ($ (-1129))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-620 (-1060 (-371))))) (-15 -3570 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-848))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-848))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-620 (-1060 (-371))))) (-15 -1556 ($ (-620 (-1060 (-400 (-536)))))) (-15 -2045 ($ (-620 (-1060 (-371))))) (-15 -1568 ($ (-1104 (-219)))) (-15 -1566 ($ (-893))) (-15 -1567 ($ (-893))) (-15 -1569 ($ (-893))) (-15 -2345 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1887 ($ (-620 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-620 $) (-1147))) (-15 -1555 ((-112) (-620 $) (-1147)))))) (T -254)) +((-2040 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-254)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-400 (-536))))) (-5 *1 (-254)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-254)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-254)))) (-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-51)) (-5 *1 (-254)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-112)) (-5 *1 (-254))))) +(-13 (-1072) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4236 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ($ (-1129))) (-15 -1562 ($ (-1129))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-620 (-1060 (-371))))) (-15 -3570 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-848))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-848))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-620 (-1060 (-371))))) (-15 -1556 ($ (-620 (-1060 (-400 (-536)))))) (-15 -2045 ($ (-620 (-1060 (-371))))) (-15 -1568 ($ (-1104 (-219)))) (-15 -1566 ($ (-893))) (-15 -1567 ($ (-893))) (-15 -1569 ($ (-893))) (-15 -2345 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1887 ($ (-620 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-620 $) (-1147))) (-15 -1555 ((-112) (-620 $) (-1147))))) +((-4236 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-1567 (((-893) (-620 (-254)) (-893)) 53)) (-1566 (((-893) (-620 (-254)) (-893)) 52)) (-4206 (((-620 (-371)) (-620 (-254)) (-620 (-371))) 69)) (-1570 (((-371) (-620 (-254)) (-371)) 58)) (-1569 (((-893) (-620 (-254)) (-893)) 54)) (-1563 (((-112) (-620 (-254)) (-112)) 28)) (-4238 (((-1129) (-620 (-254)) (-1129)) 20)) (-1562 (((-1129) (-620 (-254)) (-1129)) 27)) (-1568 (((-1104 (-219)) (-620 (-254))) 47)) (-2045 (((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371)))) 41)) (-1564 (((-848) (-620 (-254)) (-848)) 33)) (-1565 (((-848) (-620 (-254)) (-848)) 34)) (-2345 (((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219)))) 64)) (-1561 (((-112) (-620 (-254)) (-112)) 16)) (-2040 (((-112) (-620 (-254)) (-112)) 15))) +(((-255) (-10 -7 (-15 -2040 ((-112) (-620 (-254)) (-112))) (-15 -1561 ((-112) (-620 (-254)) (-112))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ((-1129) (-620 (-254)) (-1129))) (-15 -1562 ((-1129) (-620 (-254)) (-1129))) (-15 -1563 ((-112) (-620 (-254)) (-112))) (-15 -1564 ((-848) (-620 (-254)) (-848))) (-15 -1565 ((-848) (-620 (-254)) (-848))) (-15 -2045 ((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371))))) (-15 -1566 ((-893) (-620 (-254)) (-893))) (-15 -1567 ((-893) (-620 (-254)) (-893))) (-15 -1568 ((-1104 (-219)) (-620 (-254)))) (-15 -1569 ((-893) (-620 (-254)) (-893))) (-15 -1570 ((-371) (-620 (-254)) (-371))) (-15 -2345 ((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -4206 ((-620 (-371)) (-620 (-254)) (-620 (-371)))))) (T -255)) +((-4206 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-371))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2345 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-255)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-4236 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(-10 -7 (-15 -2040 ((-112) (-620 (-254)) (-112))) (-15 -1561 ((-112) (-620 (-254)) (-112))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ((-1129) (-620 (-254)) (-1129))) (-15 -1562 ((-1129) (-620 (-254)) (-1129))) (-15 -1563 ((-112) (-620 (-254)) (-112))) (-15 -1564 ((-848) (-620 (-254)) (-848))) (-15 -1565 ((-848) (-620 (-254)) (-848))) (-15 -2045 ((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371))))) (-15 -1566 ((-893) (-620 (-254)) (-893))) (-15 -1567 ((-893) (-620 (-254)) (-893))) (-15 -1568 ((-1104 (-219)) (-620 (-254)))) (-15 -1569 ((-893) (-620 (-254)) (-893))) (-15 -1570 ((-371) (-620 (-254)) (-371))) (-15 -2345 ((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -4206 ((-620 (-371)) (-620 (-254)) (-620 (-371))))) +((-1571 (((-3 |#1| "failed") (-620 (-254)) (-1147)) 17))) +(((-256 |#1|) (-10 -7 (-15 -1571 ((-3 |#1| "failed") (-620 (-254)) (-1147)))) (-1183)) (T -256)) +((-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *1 (-256 *2)) (-4 *2 (-1183))))) +(-10 -7 (-15 -1571 ((-3 |#1| "failed") (-620 (-254)) (-1147)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ |#2|) NIL)) (-1572 (((-749) $) NIL) (((-749) $ |#2|) NIL)) (-3412 (((-620 |#3|) $) NIL)) (-3414 (((-1141 $) $ |#3|) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#3|)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1096 |#1| |#2|) #2#) $) 21)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1096 |#1| |#2|) $) NIL)) (-4111 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 |#3|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))))) (-4126 (((-749) $ |#2|) NIL) (((-749) $) 10)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) |#3|) NIL) (($ (-1141 $) |#3|) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) NIL)) (-3148 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-620 (-749)) $ (-620 |#3|)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#3|) (-522 |#3|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) |#2|) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 |#3| #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-620 |#3|) (-620 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-620 |#3|) (-620 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#3|) NIL) (($ $ (-620 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 |#2|) $) NIL)) (-4302 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-620 (-749)) $ (-620 |#3|)) NIL) (((-749) $ |#2|) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1096 |#1| |#2|)) 30) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ |#3|) NIL) (($ $ (-620 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1096 |#1| |#2|))) (-1023) (-825) (-259 |#2|)) (T -257)) +NIL +(-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1096 |#1| |#2|))) +((-1572 (((-749) $) 30)) (-3503 (((-3 |#2| "failed") $) 17)) (-3502 ((|#2| $) 27)) (-4165 (($ $) 12) (($ $ (-749)) 15)) (-4312 (((-838) $) 26) (($ |#2|) 10)) (-3382 (((-112) $ $) 20)) (-3013 (((-112) $ $) 29))) +(((-258 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -1572 ((-749) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| "failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-259 |#2|) (-825)) (T -258)) +NIL +(-10 -8 (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -1572 ((-749) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| "failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-1572 (((-749) $) 22)) (-4186 ((|#1| $) 23)) (-3503 (((-3 |#1| "failed") $) 27)) (-3502 ((|#1| $) 26)) (-4126 (((-749) $) 24)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-1573 (($ |#1| (-749)) 25)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $) 21) (($ $ (-749)) 20)) (-4312 (((-838) $) 11) (($ |#1|) 28)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) (((-259 |#1|) (-138) (-825)) (T -259)) -((-2233 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-2136 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 |t#1|) (-10 -8 (-15 -2136 ($ |t#1| (-749))) (-15 -2603 ((-749) $)) (-15 -2564 (|t#1| $)) (-15 -3609 ((-749) $)) (-15 -2798 ($ $)) (-15 -2798 ($ $ (-749))) (-15 -2233 ($ |t#1|)))) -(((-101) . T) ((-595 (-837)) . T) ((-825) . T) ((-1012 |#1|) . T) ((-1069) . T)) -((-1516 (((-623 (-1145)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 41)) (-3016 (((-623 (-1145)) (-309 (-219)) (-749)) 80)) (-2945 (((-3 (-309 (-219)) "failed") (-309 (-219))) 51)) (-1895 (((-309 (-219)) (-309 (-219))) 67)) (-3523 (((-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 26)) (-3571 (((-112) (-623 (-309 (-219)))) 84)) (-3265 (((-112) (-309 (-219))) 24)) (-1957 (((-623 (-1127)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))) 106)) (-3514 (((-623 (-309 (-219))) (-623 (-309 (-219)))) 88)) (-1806 (((-623 (-309 (-219))) (-623 (-309 (-219)))) 86)) (-2103 (((-667 (-219)) (-623 (-309 (-219))) (-749)) 95)) (-3933 (((-112) (-309 (-219))) 20) (((-112) (-623 (-309 (-219)))) 85)) (-1951 (((-623 (-219)) (-623 (-818 (-219))) (-219)) 14)) (-1282 (((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 101)) (-2321 (((-1009) (-1145) (-1009)) 34))) -(((-260) (-10 -7 (-15 -1951 ((-623 (-219)) (-623 (-818 (-219))) (-219))) (-15 -3523 ((-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -2945 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1895 ((-309 (-219)) (-309 (-219)))) (-15 -3571 ((-112) (-623 (-309 (-219))))) (-15 -3933 ((-112) (-623 (-309 (-219))))) (-15 -3933 ((-112) (-309 (-219)))) (-15 -2103 ((-667 (-219)) (-623 (-309 (-219))) (-749))) (-15 -1806 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3514 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3265 ((-112) (-309 (-219)))) (-15 -1516 ((-623 (-1145)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -3016 ((-623 (-1145)) (-309 (-219)) (-749))) (-15 -2321 ((-1009) (-1145) (-1009))) (-15 -1282 ((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -1957 ((-623 (-1127)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))))))) (T -260)) -((-1957 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))) (-5 *2 (-623 (-1127))) (-5 *1 (-260)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) (-5 *2 (-372)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1145)) (-5 *1 (-260)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-749)) (-5 *2 (-623 (-1145))) (-5 *1 (-260)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) (-5 *2 (-623 (-1145))) (-5 *1 (-260)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-260)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-2945 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *1 (-260)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-818 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 *4)) (-5 *1 (-260))))) -(-10 -7 (-15 -1951 ((-623 (-219)) (-623 (-818 (-219))) (-219))) (-15 -3523 ((-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -2945 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1895 ((-309 (-219)) (-309 (-219)))) (-15 -3571 ((-112) (-623 (-309 (-219))))) (-15 -3933 ((-112) (-623 (-309 (-219))))) (-15 -3933 ((-112) (-309 (-219)))) (-15 -2103 ((-667 (-219)) (-623 (-309 (-219))) (-749))) (-15 -1806 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3514 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3265 ((-112) (-309 (-219)))) (-15 -1516 ((-623 (-1145)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -3016 ((-623 (-1145)) (-309 (-219)) (-749))) (-15 -2321 ((-1009) (-1145) (-1009))) (-15 -1282 ((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -1957 ((-623 (-1127)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))))) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 44)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 26) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-4312 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-1573 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4165 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1012 |t#1|) (-10 -8 (-15 -1573 ($ |t#1| (-749))) (-15 -4126 ((-749) $)) (-15 -4186 (|t#1| $)) (-15 -1572 ((-749) $)) (-15 -4165 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -4312 ($ |t#1|)))) +(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1012 |#1|) . T) ((-1072) . T)) +((-3412 (((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 41)) (-4289 (((-620 (-1147)) (-307 (-219)) (-749)) 80)) (-1576 (((-3 (-307 (-219)) "failed") (-307 (-219))) 51)) (-1577 (((-307 (-219)) (-307 (-219))) 67)) (-1575 (((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 26)) (-1578 (((-112) (-620 (-307 (-219)))) 84)) (-1582 (((-112) (-307 (-219))) 24)) (-1584 (((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) 106)) (-1581 (((-620 (-307 (-219))) (-620 (-307 (-219)))) 88)) (-1580 (((-620 (-307 (-219))) (-620 (-307 (-219)))) 86)) (-1579 (((-667 (-219)) (-620 (-307 (-219))) (-749)) 95)) (-3255 (((-112) (-307 (-219))) 20) (((-112) (-620 (-307 (-219)))) 85)) (-1574 (((-620 (-219)) (-620 (-817 (-219))) (-219)) 14)) (-1672 (((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 101)) (-1583 (((-1009) (-1147) (-1009)) 34))) +(((-260) (-10 -7 (-15 -1574 ((-620 (-219)) (-620 (-817 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-307 (-219)))) (-15 -1579 ((-667 (-219)) (-620 (-307 (-219))) (-749))) (-15 -1580 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1581 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3412 ((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4289 ((-620 (-1147)) (-307 (-219)) (-749))) (-15 -1583 ((-1009) (-1147) (-1009))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -1584 ((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))))) (T -260)) +((-1584 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *2 (-620 (-1129))) (-5 *1 (-260)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-371)) (-5 *1 (-260)))) (-1583 (*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-260)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-260)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1576 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *1 (-260)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-817 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 *4)) (-5 *1 (-260))))) +(-10 -7 (-15 -1574 ((-620 (-219)) (-620 (-817 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-307 (-219)))) (-15 -1579 ((-667 (-219)) (-620 (-307 (-219))) (-749))) (-15 -1580 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1581 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3412 ((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4289 ((-620 (-1147)) (-307 (-219)) (-749))) (-15 -1583 ((-1009) (-1147) (-1009))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -1584 ((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 44)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 26) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-261) (-814)) (T -261)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 58) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 54)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 34) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 36)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 58) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 54)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 34) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 36)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-262) (-814)) (T -262)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 76) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 73)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 44) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 55)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 76) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 73)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 44) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 55)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-263) (-814)) (T -263)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 50)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 31) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 50)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 31) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-264) (-814)) (T -264)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 50)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 28) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 50)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 28) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-265) (-814)) (T -265)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 73)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 28) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 73)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 28) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-266) (-814)) (T -266)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 77)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 25) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2264 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 77)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 25) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) (((-267) (-814)) (T -267)) NIL (-814) -((-2221 (((-112) $ $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3136 (((-623 (-550)) $) 19)) (-3661 (((-749) $) 17)) (-2233 (((-837) $) 23) (($ (-623 (-550))) 15)) (-3530 (($ (-749)) 20)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 9)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 11))) -(((-268) (-13 (-825) (-10 -8 (-15 -2233 ($ (-623 (-550)))) (-15 -3661 ((-749) $)) (-15 -3136 ((-623 (-550)) $)) (-15 -3530 ($ (-749)))))) (T -268)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) -(-13 (-825) (-10 -8 (-15 -2233 ($ (-623 (-550)))) (-15 -3661 ((-749) $)) (-15 -3136 ((-623 (-550)) $)) (-15 -3530 ($ (-749))))) -((-4160 ((|#2| |#2|) 77)) (-2820 ((|#2| |#2|) 65)) (-2524 (((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4137 ((|#2| |#2|) 75)) (-2796 ((|#2| |#2|) 63)) (-4183 ((|#2| |#2|) 79)) (-2844 ((|#2| |#2|) 67)) (-4187 ((|#2|) 46)) (-1355 (((-114) (-114)) 95)) (-3080 ((|#2| |#2|) 61)) (-4126 (((-112) |#2|) 134)) (-3474 ((|#2| |#2|) 181)) (-3987 ((|#2| |#2|) 157)) (-2052 ((|#2|) 59)) (-2647 ((|#2|) 58)) (-2438 ((|#2| |#2|) 177)) (-2980 ((|#2| |#2|) 153)) (-1807 ((|#2| |#2|) 185)) (-1522 ((|#2| |#2|) 161)) (-3366 ((|#2| |#2|) 149)) (-1884 ((|#2| |#2|) 151)) (-3627 ((|#2| |#2|) 187)) (-3321 ((|#2| |#2|) 163)) (-3249 ((|#2| |#2|) 183)) (-3551 ((|#2| |#2|) 159)) (-3903 ((|#2| |#2|) 179)) (-2523 ((|#2| |#2|) 155)) (-1873 ((|#2| |#2|) 193)) (-2168 ((|#2| |#2|) 169)) (-1556 ((|#2| |#2|) 189)) (-1909 ((|#2| |#2|) 165)) (-4176 ((|#2| |#2|) 197)) (-3381 ((|#2| |#2|) 173)) (-2768 ((|#2| |#2|) 199)) (-3007 ((|#2| |#2|) 175)) (-1361 ((|#2| |#2|) 195)) (-1878 ((|#2| |#2|) 171)) (-2084 ((|#2| |#2|) 191)) (-3666 ((|#2| |#2|) 167)) (-1644 ((|#2| |#2|) 62)) (-4194 ((|#2| |#2|) 80)) (-2856 ((|#2| |#2|) 68)) (-4171 ((|#2| |#2|) 78)) (-2832 ((|#2| |#2|) 66)) (-4149 ((|#2| |#2|) 76)) (-2807 ((|#2| |#2|) 64)) (-1905 (((-112) (-114)) 93)) (-4233 ((|#2| |#2|) 83)) (-2893 ((|#2| |#2|) 71)) (-4206 ((|#2| |#2|) 81)) (-2869 ((|#2| |#2|) 69)) (-4255 ((|#2| |#2|) 85)) (-4117 ((|#2| |#2|) 73)) (-3363 ((|#2| |#2|) 86)) (-4127 ((|#2| |#2|) 74)) (-4244 ((|#2| |#2|) 84)) (-2905 ((|#2| |#2|) 72)) (-4218 ((|#2| |#2|) 82)) (-2880 ((|#2| |#2|) 70))) -(((-269 |#1| |#2|) (-10 -7 (-15 -1644 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2869 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -2905 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -4255 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -4187 (|#2|)) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -2647 (|#2|)) (-15 -2052 (|#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2980 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -3007 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3249 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2524 ((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4126 ((-112) |#2|))) (-13 (-825) (-542)) (-13 (-423 |#1|) (-976))) (T -269)) -((-4126 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-423 *4) (-976))))) (-2524 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-623 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-423 *4) (-976))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-269 *4 *2)))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3249 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3007 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3321 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2980 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1884 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2052 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-2647 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-423 *3) (-976))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-976))))) (-4187 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4255 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2905 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2893 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-976)))))) -(-10 -7 (-15 -1644 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2869 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -2905 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -4255 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -4187 (|#2|)) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -2647 (|#2|)) (-15 -2052 (|#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2980 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -3007 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3249 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2524 ((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4126 ((-112) |#2|))) -((-1928 (((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1145)) 135)) (-2231 ((|#2| (-400 (-550)) |#2|) 51)) (-3596 ((|#2| |#2| (-594 |#2|)) 128)) (-2718 (((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1145)) 127)) (-2250 ((|#2| |#2| (-1145)) 20) ((|#2| |#2|) 23)) (-3478 ((|#2| |#2| (-1145)) 141) ((|#2| |#2|) 139))) -(((-270 |#1| |#2|) (-10 -7 (-15 -3478 (|#2| |#2|)) (-15 -3478 (|#2| |#2| (-1145))) (-15 -2718 ((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1145))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1145))) (-15 -1928 ((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1145))) (-15 -3596 (|#2| |#2| (-594 |#2|))) (-15 -2231 (|#2| (-400 (-550)) |#2|))) (-13 (-542) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -270)) -((-2231 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-3596 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)))) (-1928 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-1145)) (-4 *2 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *5 *2)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) (-2718 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-623 (-594 *3))) (|:| |vals| (-623 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-3478 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3)))))) -(-10 -7 (-15 -3478 (|#2| |#2|)) (-15 -3478 (|#2| |#2| (-1145))) (-15 -2718 ((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1145))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1145))) (-15 -1928 ((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1145))) (-15 -3596 (|#2| |#2| (-594 |#2|))) (-15 -2231 (|#2| (-400 (-550)) |#2|))) -((-2922 (((-3 |#3| "failed") |#3|) 110)) (-4160 ((|#3| |#3|) 131)) (-1924 (((-3 |#3| "failed") |#3|) 82)) (-2820 ((|#3| |#3|) 121)) (-3147 (((-3 |#3| "failed") |#3|) 58)) (-4137 ((|#3| |#3|) 129)) (-1648 (((-3 |#3| "failed") |#3|) 46)) (-2796 ((|#3| |#3|) 119)) (-2542 (((-3 |#3| "failed") |#3|) 112)) (-4183 ((|#3| |#3|) 133)) (-3328 (((-3 |#3| "failed") |#3|) 84)) (-2844 ((|#3| |#3|) 123)) (-1281 (((-3 |#3| "failed") |#3| (-749)) 36)) (-2124 (((-3 |#3| "failed") |#3|) 74)) (-3080 ((|#3| |#3|) 118)) (-2665 (((-3 |#3| "failed") |#3|) 44)) (-1644 ((|#3| |#3|) 117)) (-3936 (((-3 |#3| "failed") |#3|) 113)) (-4194 ((|#3| |#3|) 134)) (-3111 (((-3 |#3| "failed") |#3|) 85)) (-2856 ((|#3| |#3|) 124)) (-1366 (((-3 |#3| "failed") |#3|) 111)) (-4171 ((|#3| |#3|) 132)) (-1679 (((-3 |#3| "failed") |#3|) 83)) (-2832 ((|#3| |#3|) 122)) (-2692 (((-3 |#3| "failed") |#3|) 60)) (-4149 ((|#3| |#3|) 130)) (-4208 (((-3 |#3| "failed") |#3|) 48)) (-2807 ((|#3| |#3|) 120)) (-3220 (((-3 |#3| "failed") |#3|) 66)) (-4233 ((|#3| |#3|) 137)) (-2775 (((-3 |#3| "failed") |#3|) 104)) (-2893 ((|#3| |#3|) 142)) (-3622 (((-3 |#3| "failed") |#3|) 62)) (-4206 ((|#3| |#3|) 135)) (-1528 (((-3 |#3| "failed") |#3|) 50)) (-2869 ((|#3| |#3|) 125)) (-1995 (((-3 |#3| "failed") |#3|) 70)) (-4255 ((|#3| |#3|) 139)) (-1793 (((-3 |#3| "failed") |#3|) 54)) (-4117 ((|#3| |#3|) 127)) (-3387 (((-3 |#3| "failed") |#3|) 72)) (-3363 ((|#3| |#3|) 140)) (-3464 (((-3 |#3| "failed") |#3|) 56)) (-4127 ((|#3| |#3|) 128)) (-2251 (((-3 |#3| "failed") |#3|) 68)) (-4244 ((|#3| |#3|) 138)) (-2213 (((-3 |#3| "failed") |#3|) 107)) (-2905 ((|#3| |#3|) 143)) (-2156 (((-3 |#3| "failed") |#3|) 64)) (-4218 ((|#3| |#3|) 136)) (-4301 (((-3 |#3| "failed") |#3|) 52)) (-2880 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-550))) 40 (|has| |#1| (-356))))) -(((-271 |#1| |#2| |#3|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1644 (|#3| |#3|)) (-15 -3080 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2807 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2893 (|#3| |#3|)) (-15 -2905 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4127 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4194 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -4233 (|#3| |#3|)) (-15 -4244 (|#3| |#3|)) (-15 -4255 (|#3| |#3|)) (-15 -3363 (|#3| |#3|)))) (-38 (-400 (-550))) (-1219 |#1|) (-1190 |#1| |#2|)) (T -271)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1190 *4 *5)))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2893 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-2905 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-4255 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4))))) -(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1644 (|#3| |#3|)) (-15 -3080 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2807 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2893 (|#3| |#3|)) (-15 -2905 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4127 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4194 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -4233 (|#3| |#3|)) (-15 -4244 (|#3| |#3|)) (-15 -4255 (|#3| |#3|)) (-15 -3363 (|#3| |#3|)))) -((-2922 (((-3 |#3| "failed") |#3|) 66)) (-4160 ((|#3| |#3|) 129)) (-1924 (((-3 |#3| "failed") |#3|) 50)) (-2820 ((|#3| |#3|) 117)) (-3147 (((-3 |#3| "failed") |#3|) 62)) (-4137 ((|#3| |#3|) 127)) (-1648 (((-3 |#3| "failed") |#3|) 46)) (-2796 ((|#3| |#3|) 115)) (-2542 (((-3 |#3| "failed") |#3|) 70)) (-4183 ((|#3| |#3|) 131)) (-3328 (((-3 |#3| "failed") |#3|) 54)) (-2844 ((|#3| |#3|) 119)) (-1281 (((-3 |#3| "failed") |#3| (-749)) 35)) (-2124 (((-3 |#3| "failed") |#3|) 44)) (-3080 ((|#3| |#3|) 104)) (-2665 (((-3 |#3| "failed") |#3|) 42)) (-1644 ((|#3| |#3|) 114)) (-3936 (((-3 |#3| "failed") |#3|) 72)) (-4194 ((|#3| |#3|) 132)) (-3111 (((-3 |#3| "failed") |#3|) 56)) (-2856 ((|#3| |#3|) 120)) (-1366 (((-3 |#3| "failed") |#3|) 68)) (-4171 ((|#3| |#3|) 130)) (-1679 (((-3 |#3| "failed") |#3|) 52)) (-2832 ((|#3| |#3|) 118)) (-2692 (((-3 |#3| "failed") |#3|) 64)) (-4149 ((|#3| |#3|) 128)) (-4208 (((-3 |#3| "failed") |#3|) 48)) (-2807 ((|#3| |#3|) 116)) (-3220 (((-3 |#3| "failed") |#3|) 74)) (-4233 ((|#3| |#3|) 135)) (-2775 (((-3 |#3| "failed") |#3|) 58)) (-2893 ((|#3| |#3|) 123)) (-3622 (((-3 |#3| "failed") |#3|) 105)) (-4206 ((|#3| |#3|) 133)) (-1528 (((-3 |#3| "failed") |#3|) 94)) (-2869 ((|#3| |#3|) 121)) (-1995 (((-3 |#3| "failed") |#3|) 109)) (-4255 ((|#3| |#3|) 137)) (-1793 (((-3 |#3| "failed") |#3|) 101)) (-4117 ((|#3| |#3|) 125)) (-3387 (((-3 |#3| "failed") |#3|) 110)) (-3363 ((|#3| |#3|) 138)) (-3464 (((-3 |#3| "failed") |#3|) 103)) (-4127 ((|#3| |#3|) 126)) (-2251 (((-3 |#3| "failed") |#3|) 76)) (-4244 ((|#3| |#3|) 136)) (-2213 (((-3 |#3| "failed") |#3|) 60)) (-2905 ((|#3| |#3|) 124)) (-2156 (((-3 |#3| "failed") |#3|) 106)) (-4218 ((|#3| |#3|) 134)) (-4301 (((-3 |#3| "failed") |#3|) 97)) (-2880 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-550))) 40 (|has| |#1| (-356))))) -(((-272 |#1| |#2| |#3| |#4|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1644 (|#3| |#3|)) (-15 -3080 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2807 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2893 (|#3| |#3|)) (-15 -2905 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4127 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4194 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -4233 (|#3| |#3|)) (-15 -4244 (|#3| |#3|)) (-15 -4255 (|#3| |#3|)) (-15 -3363 (|#3| |#3|)))) (-38 (-400 (-550))) (-1188 |#1|) (-1211 |#1| |#2|) (-957 |#2|)) (T -272)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1188 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1211 *4 *5)) (-4 *6 (-957 *5)))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2893 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-2905 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-4255 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4))))) -(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1644 (|#3| |#3|)) (-15 -3080 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2807 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2893 (|#3| |#3|)) (-15 -2905 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4127 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4194 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -4233 (|#3| |#3|)) (-15 -4244 (|#3| |#3|)) (-15 -4255 (|#3| |#3|)) (-15 -3363 (|#3| |#3|)))) -((-3527 (((-112) $) 19)) (-2493 (((-181) $) 7)) (-2698 (((-3 (-1145) "failed") $) 14)) (-4089 (((-3 (-623 $) "failed") $) NIL)) (-2204 (((-3 (-1145) "failed") $) 21)) (-2473 (((-3 (-1073) "failed") $) 17)) (-2153 (((-112) $) 15)) (-2233 (((-837) $) NIL)) (-4060 (((-112) $) 9))) -(((-273) (-13 (-595 (-837)) (-10 -8 (-15 -2493 ((-181) $)) (-15 -2153 ((-112) $)) (-15 -2473 ((-3 (-1073) "failed") $)) (-15 -3527 ((-112) $)) (-15 -2204 ((-3 (-1145) "failed") $)) (-15 -4060 ((-112) $)) (-15 -2698 ((-3 (-1145) "failed") $)) (-15 -4089 ((-3 (-623 $) "failed") $))))) (T -273)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-2473 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-273)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-2204 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-273)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-2698 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-273)))) (-4089 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-273))) (-5 *1 (-273))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2493 ((-181) $)) (-15 -2153 ((-112) $)) (-15 -2473 ((-3 (-1073) "failed") $)) (-15 -3527 ((-112) $)) (-15 -2204 ((-3 (-1145) "failed") $)) (-15 -4060 ((-112) $)) (-15 -2698 ((-3 (-1145) "failed") $)) (-15 -4089 ((-3 (-623 $) "failed") $)))) -((-2097 (($ (-1 (-112) |#2|) $) 24)) (-2708 (($ $) 36)) (-2505 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1979 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2299 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1476 (($ |#2| $ (-550)) 20) (($ $ $ (-550)) 22)) (-1512 (($ $ (-550)) 11) (($ $ (-1195 (-550))) 14)) (-2037 (($ $ |#2|) 30) (($ $ $) NIL)) (-4006 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-623 $)) NIL))) -(((-274 |#1| |#2|) (-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -2299 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2037 (|#1| |#1| |#2|)) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -1979 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2097 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1979 (|#1| |#2| |#1|)) (-15 -2708 (|#1| |#1|))) (-275 |#2|) (-1182)) (T -274)) -NIL -(-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -2299 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2037 (|#1| |#1| |#2|)) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -1979 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2097 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1979 (|#1| |#2| |#1|)) (-15 -2708 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) 85)) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2599 (($ $) 83 (|has| |#1| (-1069)))) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1069)))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2299 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1715 (($ |#1| $ (-550)) 88) (($ $ $ (-550)) 87)) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-3749 (($ $ (-550)) 91) (($ $ (-1195 (-550))) 90)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 70)) (-2037 (($ $ |#1|) 93) (($ $ $) 92)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-275 |#1|) (-138) (-1182)) (T -275)) -((-2037 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)))) (-2037 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)))) (-3749 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-3749 (*1 *1 *1 *2) (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-1715 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-275 *2)) (-4 *2 (-1182)))) (-1715 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-2299 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) (-2505 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-1069)))) (-2599 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-1069)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-825))))) -(-13 (-629 |t#1|) (-10 -8 (-6 -4345) (-15 -2037 ($ $ |t#1|)) (-15 -2037 ($ $ $)) (-15 -3749 ($ $ (-550))) (-15 -3749 ($ $ (-1195 (-550)))) (-15 -2505 ($ (-1 (-112) |t#1|) $)) (-15 -1715 ($ |t#1| $ (-550))) (-15 -1715 ($ $ $ (-550))) (-15 -2299 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3994 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -2505 ($ |t#1| $)) (-15 -2599 ($ $))) |%noBranch|) (IF (|has| |t#1| (-825)) (-15 -2299 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) +((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1586 (((-620 (-536)) $) 19)) (-4302 (((-749) $) 17)) (-4312 (((-838) $) 23) (($ (-620 (-536))) 15)) (-1585 (($ (-749)) 20)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 11))) +(((-268) (-13 (-825) (-10 -8 (-15 -4312 ($ (-620 (-536)))) (-15 -4302 ((-749) $)) (-15 -1586 ((-620 (-536)) $)) (-15 -1585 ($ (-749)))))) (T -268)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) +(-13 (-825) (-10 -8 (-15 -4312 ($ (-620 (-536)))) (-15 -4302 ((-749) $)) (-15 -1586 ((-620 (-536)) $)) (-15 -1585 ($ (-749))))) +((-3841 ((|#2| |#2|) 77)) (-3997 ((|#2| |#2|) 65)) (-1615 (((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3839 ((|#2| |#2|) 75)) (-3996 ((|#2| |#2|) 63)) (-3843 ((|#2| |#2|) 79)) (-3995 ((|#2| |#2|) 67)) (-3985 ((|#2|) 46)) (-3375 (((-113) (-113)) 95)) (-4297 ((|#2| |#2|) 61)) (-1616 (((-112) |#2|) 134)) (-1605 ((|#2| |#2|) 181)) (-1593 ((|#2| |#2|) 157)) (-1588 ((|#2|) 59)) (-1587 ((|#2|) 58)) (-1603 ((|#2| |#2|) 177)) (-1591 ((|#2| |#2|) 153)) (-1607 ((|#2| |#2|) 185)) (-1595 ((|#2| |#2|) 161)) (-1590 ((|#2| |#2|) 149)) (-1589 ((|#2| |#2|) 151)) (-1608 ((|#2| |#2|) 187)) (-1596 ((|#2| |#2|) 163)) (-1606 ((|#2| |#2|) 183)) (-1594 ((|#2| |#2|) 159)) (-1604 ((|#2| |#2|) 179)) (-1592 ((|#2| |#2|) 155)) (-1611 ((|#2| |#2|) 193)) (-1599 ((|#2| |#2|) 169)) (-1609 ((|#2| |#2|) 189)) (-1597 ((|#2| |#2|) 165)) (-1613 ((|#2| |#2|) 197)) (-1601 ((|#2| |#2|) 173)) (-1614 ((|#2| |#2|) 199)) (-1602 ((|#2| |#2|) 175)) (-1612 ((|#2| |#2|) 195)) (-1600 ((|#2| |#2|) 171)) (-1610 ((|#2| |#2|) 191)) (-1598 ((|#2| |#2|) 167)) (-4298 ((|#2| |#2|) 62)) (-3844 ((|#2| |#2|) 80)) (-3994 ((|#2| |#2|) 68)) (-3842 ((|#2| |#2|) 78)) (-3993 ((|#2| |#2|) 66)) (-3840 ((|#2| |#2|) 76)) (-3992 ((|#2| |#2|) 64)) (-2333 (((-112) (-113)) 93)) (-3847 ((|#2| |#2|) 83)) (-3835 ((|#2| |#2|) 71)) (-3845 ((|#2| |#2|) 81)) (-3833 ((|#2| |#2|) 69)) (-3849 ((|#2| |#2|) 85)) (-3837 ((|#2| |#2|) 73)) (-3850 ((|#2| |#2|) 86)) (-3838 ((|#2| |#2|) 74)) (-3848 ((|#2| |#2|) 84)) (-3836 ((|#2| |#2|) 72)) (-3846 ((|#2| |#2|) 82)) (-3834 ((|#2| |#2|) 70))) +(((-269 |#1| |#2|) (-10 -7 (-15 -4298 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3985 (|#2|)) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) (-13 (-825) (-543)) (-13 (-414 |#1|) (-976))) (T -269)) +((-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-414 *4) (-976))))) (-1615 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-620 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-414 *4) (-976))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-269 *4 *2)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1588 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-1587 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-414 *3) (-976))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-976))))) (-3985 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976)))))) +(-10 -7 (-15 -4298 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3985 (|#2|)) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) +((-1619 (((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147)) 135)) (-1621 ((|#2| (-400 (-536)) |#2|) 51)) (-1620 ((|#2| |#2| (-593 |#2|)) 128)) (-1617 (((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147)) 127)) (-1618 ((|#2| |#2| (-1147)) 20) ((|#2| |#2|) 23)) (-2687 ((|#2| |#2| (-1147)) 141) ((|#2| |#2|) 139))) +(((-270 |#1| |#2|) (-10 -7 (-15 -2687 (|#2| |#2|)) (-15 -2687 (|#2| |#2| (-1147))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1147))) (-15 -1619 ((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147))) (-15 -1620 (|#2| |#2| (-593 |#2|))) (-15 -1621 (|#2| (-400 (-536)) |#2|))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -270)) +((-1621 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-1620 (*1 *2 *2 *3) (-12 (-5 *3 (-593 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-1147)) (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-620 (-593 *3))) (|:| |vals| (-620 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2687 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) +(-10 -7 (-15 -2687 (|#2| |#2|)) (-15 -2687 (|#2| |#2| (-1147))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1147))) (-15 -1619 ((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147))) (-15 -1620 (|#2| |#2| (-593 |#2|))) (-15 -1621 (|#2| (-400 (-536)) |#2|))) +((-3303 (((-3 |#3| #1="failed") |#3|) 110)) (-3841 ((|#3| |#3|) 131)) (-3291 (((-3 |#3| #1#) |#3|) 82)) (-3997 ((|#3| |#3|) 121)) (-3301 (((-3 |#3| #1#) |#3|) 58)) (-3839 ((|#3| |#3|) 129)) (-3289 (((-3 |#3| #1#) |#3|) 46)) (-3996 ((|#3| |#3|) 119)) (-3305 (((-3 |#3| #1#) |#3|) 112)) (-3843 ((|#3| |#3|) 133)) (-3293 (((-3 |#3| #1#) |#3|) 84)) (-3995 ((|#3| |#3|) 123)) (-3286 (((-3 |#3| #1#) |#3| (-749)) 36)) (-3288 (((-3 |#3| #1#) |#3|) 74)) (-4297 ((|#3| |#3|) 118)) (-3287 (((-3 |#3| #1#) |#3|) 44)) (-4298 ((|#3| |#3|) 117)) (-3306 (((-3 |#3| #1#) |#3|) 113)) (-3844 ((|#3| |#3|) 134)) (-3294 (((-3 |#3| #1#) |#3|) 85)) (-3994 ((|#3| |#3|) 124)) (-3304 (((-3 |#3| #1#) |#3|) 111)) (-3842 ((|#3| |#3|) 132)) (-3292 (((-3 |#3| #1#) |#3|) 83)) (-3993 ((|#3| |#3|) 122)) (-3302 (((-3 |#3| #1#) |#3|) 60)) (-3840 ((|#3| |#3|) 130)) (-3290 (((-3 |#3| #1#) |#3|) 48)) (-3992 ((|#3| |#3|) 120)) (-3309 (((-3 |#3| #1#) |#3|) 66)) (-3847 ((|#3| |#3|) 137)) (-3297 (((-3 |#3| #1#) |#3|) 104)) (-3835 ((|#3| |#3|) 142)) (-3307 (((-3 |#3| #1#) |#3|) 62)) (-3845 ((|#3| |#3|) 135)) (-3295 (((-3 |#3| #1#) |#3|) 50)) (-3833 ((|#3| |#3|) 125)) (-3311 (((-3 |#3| #1#) |#3|) 70)) (-3849 ((|#3| |#3|) 139)) (-3299 (((-3 |#3| #1#) |#3|) 54)) (-3837 ((|#3| |#3|) 127)) (-3312 (((-3 |#3| #1#) |#3|) 72)) (-3850 ((|#3| |#3|) 140)) (-3300 (((-3 |#3| #1#) |#3|) 56)) (-3838 ((|#3| |#3|) 128)) (-3310 (((-3 |#3| #1#) |#3|) 68)) (-3848 ((|#3| |#3|) 138)) (-3298 (((-3 |#3| #1#) |#3|) 107)) (-3836 ((|#3| |#3|) 143)) (-3308 (((-3 |#3| #1#) |#3|) 64)) (-3846 ((|#3| |#3|) 136)) (-3296 (((-3 |#3| #1#) |#3|) 52)) (-3834 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-536))) 40 (|has| |#1| (-356))))) +(((-271 |#1| |#2| |#3|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) (-38 (-400 (-536))) (-1222 |#1|) (-1193 |#1| |#2|)) (T -271)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1193 *4 *5)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4))))) +(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) +((-3303 (((-3 |#3| #1="failed") |#3|) 66)) (-3841 ((|#3| |#3|) 129)) (-3291 (((-3 |#3| #1#) |#3|) 50)) (-3997 ((|#3| |#3|) 117)) (-3301 (((-3 |#3| #1#) |#3|) 62)) (-3839 ((|#3| |#3|) 127)) (-3289 (((-3 |#3| #1#) |#3|) 46)) (-3996 ((|#3| |#3|) 115)) (-3305 (((-3 |#3| #1#) |#3|) 70)) (-3843 ((|#3| |#3|) 131)) (-3293 (((-3 |#3| #1#) |#3|) 54)) (-3995 ((|#3| |#3|) 119)) (-3286 (((-3 |#3| #1#) |#3| (-749)) 35)) (-3288 (((-3 |#3| #1#) |#3|) 44)) (-4297 ((|#3| |#3|) 104)) (-3287 (((-3 |#3| #1#) |#3|) 42)) (-4298 ((|#3| |#3|) 114)) (-3306 (((-3 |#3| #1#) |#3|) 72)) (-3844 ((|#3| |#3|) 132)) (-3294 (((-3 |#3| #1#) |#3|) 56)) (-3994 ((|#3| |#3|) 120)) (-3304 (((-3 |#3| #1#) |#3|) 68)) (-3842 ((|#3| |#3|) 130)) (-3292 (((-3 |#3| #1#) |#3|) 52)) (-3993 ((|#3| |#3|) 118)) (-3302 (((-3 |#3| #1#) |#3|) 64)) (-3840 ((|#3| |#3|) 128)) (-3290 (((-3 |#3| #1#) |#3|) 48)) (-3992 ((|#3| |#3|) 116)) (-3309 (((-3 |#3| #1#) |#3|) 74)) (-3847 ((|#3| |#3|) 135)) (-3297 (((-3 |#3| #1#) |#3|) 58)) (-3835 ((|#3| |#3|) 123)) (-3307 (((-3 |#3| #1#) |#3|) 105)) (-3845 ((|#3| |#3|) 133)) (-3295 (((-3 |#3| #1#) |#3|) 94)) (-3833 ((|#3| |#3|) 121)) (-3311 (((-3 |#3| #1#) |#3|) 109)) (-3849 ((|#3| |#3|) 137)) (-3299 (((-3 |#3| #1#) |#3|) 101)) (-3837 ((|#3| |#3|) 125)) (-3312 (((-3 |#3| #1#) |#3|) 110)) (-3850 ((|#3| |#3|) 138)) (-3300 (((-3 |#3| #1#) |#3|) 103)) (-3838 ((|#3| |#3|) 126)) (-3310 (((-3 |#3| #1#) |#3|) 76)) (-3848 ((|#3| |#3|) 136)) (-3298 (((-3 |#3| #1#) |#3|) 60)) (-3836 ((|#3| |#3|) 124)) (-3308 (((-3 |#3| #1#) |#3|) 106)) (-3846 ((|#3| |#3|) 134)) (-3296 (((-3 |#3| #1#) |#3|) 97)) (-3834 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-536))) 40 (|has| |#1| (-356))))) +(((-272 |#1| |#2| |#3| |#4|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) (-38 (-400 (-536))) (-1191 |#1|) (-1214 |#1| |#2|) (-957 |#2|)) (T -272)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1191 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1214 *4 *5)) (-4 *6 (-957 *5)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4))))) +(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) +((-3180 (((-112) $) 19)) (-1625 (((-181) $) 7)) (-3927 (((-3 (-1147) "failed") $) 14)) (-3926 (((-3 (-620 $) "failed") $) NIL)) (-1623 (((-3 (-1147) "failed") $) 21)) (-1624 (((-3 (-1074) "failed") $) 17)) (-4307 (((-112) $) 15)) (-4312 (((-838) $) NIL)) (-1622 (((-112) $) 9))) +(((-273) (-13 (-595 (-838)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -1624 ((-3 (-1074) "failed") $)) (-15 -3180 ((-112) $)) (-15 -1623 ((-3 (-1147) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3927 ((-3 (-1147) "failed") $)) (-15 -3926 ((-3 (-620 $) "failed") $))))) (T -273)) +((-1625 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-273)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) (-3926 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-273))) (-5 *1 (-273))))) +(-13 (-595 (-838)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -1624 ((-3 (-1074) "failed") $)) (-15 -3180 ((-112) $)) (-15 -1623 ((-3 (-1147) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3927 ((-3 (-1147) "failed") $)) (-15 -3926 ((-3 (-620 $) "failed") $)))) +((-4068 (($ (-1 (-112) |#2|) $) 24)) (-1398 (($ $) 36)) (-3759 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3760 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3187 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2377 (($ |#2| $ (-536)) 20) (($ $ $ (-536)) 22)) (-2378 (($ $ (-536)) 11) (($ $ (-1196 (-536))) 14)) (-4145 (($ $ |#2|) 30) (($ $ $) NIL)) (-4156 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-620 $)) NIL))) +(((-274 |#1| |#2|) (-10 -8 (-15 -3187 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) (-275 |#2|) (-1183)) (T -274)) +NIL +(-10 -8 (-15 -3187 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 85)) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 83 (|has| |#1| (-1072)))) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1072)))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3187 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3965 (($ |#1| $ (-536)) 88) (($ $ $ (-536)) 87)) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-1627 (($ $ (-536)) 91) (($ $ (-1196 (-536))) 90)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4145 (($ $ |#1|) 93) (($ $ $) 92)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-275 |#1|) (-138) (-1183)) (T -275)) +((-4145 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3965 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-3965 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3759 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-2450 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-825))))) +(-13 (-629 |t#1|) (-10 -8 (-6 -4349) (-15 -4145 ($ $ |t#1|)) (-15 -4145 ($ $ $)) (-15 -1627 ($ $ (-536))) (-15 -1627 ($ $ (-1196 (-536)))) (-15 -3759 ($ (-1 (-112) |t#1|) $)) (-15 -3965 ($ |t#1| $ (-536))) (-15 -3965 ($ $ $ (-536))) (-15 -3187 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1626 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3759 ($ |t#1| $)) (-15 -2450 ($ $))) |%noBranch|) (IF (|has| |t#1| (-825)) (-15 -3187 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) ((** (($ $ $) 10))) (((-276 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-277)) (T -276)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3080 (($ $) 6)) (-1644 (($ $) 7)) (** (($ $ $) 8))) +((-4297 (($ $) 6)) (-4298 (($ $) 7)) (** (($ $ $) 8))) (((-277) (-138)) (T -277)) -((** (*1 *1 *1 *1) (-4 *1 (-277))) (-1644 (*1 *1 *1) (-4 *1 (-277))) (-3080 (*1 *1 *1) (-4 *1 (-277)))) -(-13 (-10 -8 (-15 -3080 ($ $)) (-15 -1644 ($ $)) (-15 ** ($ $ $)))) -((-3588 (((-623 (-1125 |#1|)) (-1125 |#1|) |#1|) 35)) (-2325 ((|#2| |#2| |#1|) 38)) (-3861 ((|#2| |#2| |#1|) 40)) (-3341 ((|#2| |#2| |#1|) 39))) -(((-278 |#1| |#2|) (-10 -7 (-15 -2325 (|#2| |#2| |#1|)) (-15 -3341 (|#2| |#2| |#1|)) (-15 -3861 (|#2| |#2| |#1|)) (-15 -3588 ((-623 (-1125 |#1|)) (-1125 |#1|) |#1|))) (-356) (-1219 |#1|)) (T -278)) -((-3588 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-623 (-1125 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1125 *4)) (-4 *5 (-1219 *4)))) (-3861 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3)))) (-3341 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3)))) (-2325 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3))))) -(-10 -7 (-15 -2325 (|#2| |#2| |#1|)) (-15 -3341 (|#2| |#2| |#1|)) (-15 -3861 (|#2| |#2| |#1|)) (-15 -3588 ((-623 (-1125 |#1|)) (-1125 |#1|) |#1|))) -((-2757 ((|#2| $ |#1|) 6))) -(((-279 |#1| |#2|) (-138) (-1069) (-1182)) (T -279)) -((-2757 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182))))) -(-13 (-10 -8 (-15 -2757 (|t#2| $ |t#1|)))) -((-3317 ((|#3| $ |#2| |#3|) 12)) (-3263 ((|#3| $ |#2|) 10))) -(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -3317 (|#3| |#1| |#2| |#3|)) (-15 -3263 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1069) (-1182)) (T -280)) -NIL -(-10 -8 (-15 -3317 (|#3| |#1| |#2| |#3|)) (-15 -3263 (|#3| |#1| |#2|))) -((-2409 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4345)))) (-3317 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) 11)) (-2757 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-281 |#1| |#2|) (-138) (-1069) (-1182)) (T -281)) -((-2757 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) (-3263 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) (-2409 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) (-3317 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182))))) -(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -2757 (|t#2| $ |t#1| |t#2|)) (-15 -3263 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2409 (|t#2| $ |t#1| |t#2|)) (-15 -3317 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-277))) (-4298 (*1 *1 *1) (-4 *1 (-277))) (-4297 (*1 *1 *1) (-4 *1 (-277)))) +(-13 (-10 -8 (-15 -4297 ($ $)) (-15 -4298 ($ $)) (-15 ** ($ $ $)))) +((-1631 (((-620 (-1124 |#1|)) (-1124 |#1|) |#1|) 35)) (-1628 ((|#2| |#2| |#1|) 38)) (-1630 ((|#2| |#2| |#1|) 40)) (-1629 ((|#2| |#2| |#1|) 39))) +(((-278 |#1| |#2|) (-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-620 (-1124 |#1|)) (-1124 |#1|) |#1|))) (-356) (-1222 |#1|)) (T -278)) +((-1631 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-620 (-1124 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1124 *4)) (-4 *5 (-1222 *4)))) (-1630 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3)))) (-1628 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) +(-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-620 (-1124 |#1|)) (-1124 |#1|) |#1|))) +((-4154 ((|#2| $ |#1|) 6))) +(((-279 |#1| |#2|) (-138) (-1072) (-1183)) (T -279)) +((-4154 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183))))) +(-13 (-10 -8 (-15 -4154 (|t#2| $ |t#1|)))) +((-1632 ((|#3| $ |#2| |#3|) 12)) (-3443 ((|#3| $ |#2|) 10))) +(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3443 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1072) (-1183)) (T -280)) +NIL +(-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3443 (|#3| |#1| |#2|))) +((-4142 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4349)))) (-1632 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 11)) (-4154 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-281 |#1| |#2|) (-138) (-1072) (-1183)) (T -281)) +((-4154 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-3443 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-1632 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183))))) +(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -4154 (|t#2| $ |t#1| |t#2|)) (-15 -3443 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -1632 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-279 |#1| |#2|) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 35)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 40)) (-3050 (($ $) 38)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) 33)) (-2924 (($ |#2| |#3|) 19)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2351 ((|#3| $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 20)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1507 (((-3 $ "failed") $ $) NIL)) (-1988 (((-749) $) 34)) (-2757 ((|#2| $ |#2|) 42)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 24)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 29 T CONST)) (-2700 (($) 36 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 37))) -(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2351 (|#3| $)) (-15 -2233 (|#2| $)) (-15 -2924 ($ |#2| |#3|)) (-15 -1507 ((-3 $ "failed") $ $)) (-15 -1537 ((-3 $ "failed") $)) (-15 -1619 ($ $)) (-15 -2757 (|#2| $ |#2|)))) (-170) (-1204 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282)) -((-1537 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2351 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1204 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-1204 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2924 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1204 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1507 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1619 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2757 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1204 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-300) (-10 -8 (-15 -2351 (|#3| $)) (-15 -2233 (|#2| $)) (-15 -2924 ($ |#2| |#3|)) (-15 -1507 ((-3 $ "failed") $ $)) (-15 -1537 ((-3 $ "failed") $)) (-15 -1619 ($ $)) (-15 -2757 (|#2| $ |#2|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 35)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 40)) (-2173 (($ $) 38)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) 33)) (-4197 (($ |#2| |#3|) 19)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 ((|#3| $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 20)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1699 (((-749) $) 34)) (-4154 ((|#2| $ |#2|) 42)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 24)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 29 T CONST)) (-2992 (($) 36 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 37))) +(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2938 (|#3| $)) (-15 -4312 (|#2| $)) (-15 -4197 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)) (-15 -4154 (|#2| $ |#2|)))) (-170) (-1205 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282)) +((-3816 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2938 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1205 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4197 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1205 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2729 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4154 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1205 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) +(-13 (-300) (-10 -8 (-15 -2938 (|#3| $)) (-15 -4312 (|#2| $)) (-15 -4197 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)) (-15 -4154 (|#2| $ |#2|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-283) (-138)) (T -283)) NIL -(-13 (-1021) (-111 $ $) (-10 -7 (-6 -4337))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-1312 (($ (-1145) (-1145) (-1073) $) 17)) (-2177 (($ (-1145) (-623 (-939)) $) 22)) (-2368 (((-623 (-1054)) $) 10)) (-2845 (((-3 (-1073) "failed") (-1145) (-1145) $) 16)) (-1750 (((-3 (-623 (-939)) "failed") (-1145) $) 21)) (-2819 (($) 7)) (-1278 (($) 23)) (-2233 (((-837) $) 27)) (-2741 (($) 24))) -(((-284) (-13 (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -2368 ((-623 (-1054)) $)) (-15 -2845 ((-3 (-1073) "failed") (-1145) (-1145) $)) (-15 -1312 ($ (-1145) (-1145) (-1073) $)) (-15 -1750 ((-3 (-623 (-939)) "failed") (-1145) $)) (-15 -2177 ($ (-1145) (-623 (-939)) $)) (-15 -1278 ($)) (-15 -2741 ($))))) (T -284)) -((-2819 (*1 *1) (-5 *1 (-284))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-623 (-1054))) (-5 *1 (-284)))) (-2845 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-1312 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1145)) (-5 *3 (-1073)) (-5 *1 (-284)))) (-1750 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-623 (-939))) (-5 *1 (-284)))) (-2177 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-939))) (-5 *1 (-284)))) (-1278 (*1 *1) (-5 *1 (-284))) (-2741 (*1 *1) (-5 *1 (-284)))) -(-13 (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -2368 ((-623 (-1054)) $)) (-15 -2845 ((-3 (-1073) "failed") (-1145) (-1145) $)) (-15 -1312 ($ (-1145) (-1145) (-1073) $)) (-15 -1750 ((-3 (-623 (-939)) "failed") (-1145) $)) (-15 -2177 ($ (-1145) (-623 (-939)) $)) (-15 -1278 ($)) (-15 -2741 ($)))) -((-3667 (((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|)))) 85)) (-4167 (((-623 (-667 (-400 (-926 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|)))))) (-667 (-400 (-926 |#1|)))) 80) (((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|))) (-749) (-749)) 38)) (-3224 (((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|)))) 82)) (-1523 (((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|)))) 62)) (-2995 (((-623 (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (-667 (-400 (-926 |#1|)))) 61)) (-3359 (((-926 |#1|) (-667 (-400 (-926 |#1|)))) 50) (((-926 |#1|) (-667 (-400 (-926 |#1|))) (-1145)) 51))) -(((-285 |#1|) (-10 -7 (-15 -3359 ((-926 |#1|) (-667 (-400 (-926 |#1|))) (-1145))) (-15 -3359 ((-926 |#1|) (-667 (-400 (-926 |#1|))))) (-15 -2995 ((-623 (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (-667 (-400 (-926 |#1|))))) (-15 -1523 ((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|))))) (-15 -4167 ((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|))) (-749) (-749))) (-15 -4167 ((-623 (-667 (-400 (-926 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|)))))) (-667 (-400 (-926 |#1|))))) (-15 -3667 ((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|))))) (-15 -3224 ((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|)))))) (-444)) (T -285)) -((-3224 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-623 (-2 (|:| |eigval| (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-926 *4)))))) (-3667 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-623 (-2 (|:| |eigval| (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4)))) (|:| |geneigvec| (-623 (-667 (-400 (-926 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-926 *4)))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-926 *5)) (-1134 (-1145) (-926 *5)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 *4)))) (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-926 *5)))))) (-4167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-926 *6)) (-1134 (-1145) (-926 *6)))) (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-926 *6)))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-926 *5)) (-1134 (-1145) (-926 *5)))) (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-926 *5)))))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-926 *4)))) (-4 *4 (-444)) (-5 *2 (-623 (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4))))) (-5 *1 (-285 *4)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-926 *4)))) (-5 *2 (-926 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-926 *5)))) (-5 *4 (-1145)) (-5 *2 (-926 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))) -(-10 -7 (-15 -3359 ((-926 |#1|) (-667 (-400 (-926 |#1|))) (-1145))) (-15 -3359 ((-926 |#1|) (-667 (-400 (-926 |#1|))))) (-15 -2995 ((-623 (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (-667 (-400 (-926 |#1|))))) (-15 -1523 ((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|))))) (-15 -4167 ((-623 (-667 (-400 (-926 |#1|)))) (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|))) (-667 (-400 (-926 |#1|))) (-749) (-749))) (-15 -4167 ((-623 (-667 (-400 (-926 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|)))))) (-667 (-400 (-926 |#1|))))) (-15 -3667 ((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|))))) (-15 -3224 ((-623 (-2 (|:| |eigval| (-3 (-400 (-926 |#1|)) (-1134 (-1145) (-926 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-926 |#1|))))))) (-667 (-400 (-926 |#1|)))))) -((-2392 (((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)) 14))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2392 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) (-1182) (-1182)) (T -286)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6))))) -(-10 -7 (-15 -2392 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3378 (((-112) $) NIL (|has| |#1| (-21)))) (-2816 (($ $) 12)) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4230 (($ $ $) 94 (|has| |#1| (-295)))) (-2991 (($) NIL (-1489 (|has| |#1| (-21)) (|has| |#1| (-705))) CONST)) (-1401 (($ $) 50 (|has| |#1| (-21)))) (-4049 (((-3 $ "failed") $) 61 (|has| |#1| (-705)))) (-2386 ((|#1| $) 11)) (-1537 (((-3 $ "failed") $) 59 (|has| |#1| (-705)))) (-2419 (((-112) $) NIL (|has| |#1| (-705)))) (-2392 (($ (-1 |#1| |#1|) $) 14)) (-2374 ((|#1| $) 10)) (-4249 (($ $) 49 (|has| |#1| (-21)))) (-3559 (((-3 $ "failed") $) 60 (|has| |#1| (-705)))) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1619 (($ $) 63 (-1489 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1435 (((-623 $) $) 84 (|has| |#1| (-542)))) (-1553 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-1145) |#1|) 17 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 21 (|has| |#1| (-505 (-1145) |#1|)))) (-2589 (($ |#1| |#1|) 9)) (-1877 (((-133)) 89 (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) 86 (|has| |#1| (-874 (-1145))))) (-3018 (($ $ $) NIL (|has| |#1| (-465)))) (-1353 (($ $ $) NIL (|has| |#1| (-465)))) (-2233 (($ (-550)) NIL (|has| |#1| (-1021))) (((-112) $) 36 (|has| |#1| (-1069))) (((-837) $) 35 (|has| |#1| (-1069)))) (-3091 (((-749)) 66 (|has| |#1| (-1021)))) (-2688 (($) 46 (|has| |#1| (-21)) CONST)) (-2700 (($) 56 (|has| |#1| (-705)) CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145))))) (-2264 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1069)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-1489 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-2370 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2358 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-550)) NIL (|has| |#1| (-465))) (($ $ (-749)) NIL (|has| |#1| (-705))) (($ $ (-895)) NIL (|has| |#1| (-1081)))) (* (($ $ |#1|) 54 (|has| |#1| (-1081))) (($ |#1| $) 53 (|has| |#1| (-1081))) (($ $ $) 52 (|has| |#1| (-1081))) (($ (-550) $) 69 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-25))))) -(((-287 |#1|) (-13 (-1182) (-10 -8 (-15 -2264 ($ |#1| |#1|)) (-15 -2589 ($ |#1| |#1|)) (-15 -2816 ($ $)) (-15 -2374 (|#1| $)) (-15 -2386 (|#1| $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1145) |#1|)) (-6 (-505 (-1145) |#1|)) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -1553 ($ $ $)) (-15 -1553 ($ $ (-623 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2358 ($ |#1| $)) (-15 -2358 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4249 ($ $)) (-15 -1401 ($ $)) (-15 -2370 ($ |#1| $)) (-15 -2370 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-6 (-1081)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -3559 ((-3 $ "failed") $)) (-15 -4049 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -3559 ((-3 $ "failed") $)) (-15 -4049 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-6 (-1021)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1435 ((-623 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1145))) (-6 (-874 (-1145))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1235 |#1|)) (-15 -2382 ($ $ $)) (-15 -1619 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -4230 ($ $ $)) |%noBranch|))) (-1182)) (T -287)) -((-2264 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) (-2589 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) (-2816 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) (-2374 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) (-2386 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-287 *3)))) (-1553 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1069)) (-4 *2 (-1182)) (-5 *1 (-287 *2)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1069)) (-4 *3 (-1182)) (-5 *1 (-287 *3)))) (-2358 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1182)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1182)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) (-2370 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) (-3559 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1182)))) (-4049 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1182)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-623 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-542)) (-4 *3 (-1182)))) (-4230 (*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1182)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1081)) (-4 *2 (-1182)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1081)) (-4 *2 (-1182)))) (-2382 (*1 *1 *1 *1) (-1489 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1182))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1182))))) (-1619 (*1 *1 *1) (-1489 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1182))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1182)))))) -(-13 (-1182) (-10 -8 (-15 -2264 ($ |#1| |#1|)) (-15 -2589 ($ |#1| |#1|)) (-15 -2816 ($ $)) (-15 -2374 (|#1| $)) (-15 -2386 (|#1| $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1145) |#1|)) (-6 (-505 (-1145) |#1|)) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -1553 ($ $ $)) (-15 -1553 ($ $ (-623 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2358 ($ |#1| $)) (-15 -2358 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4249 ($ $)) (-15 -1401 ($ $)) (-15 -2370 ($ |#1| $)) (-15 -2370 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-6 (-1081)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -3559 ((-3 $ "failed") $)) (-15 -4049 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -3559 ((-3 $ "failed") $)) (-15 -4049 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-6 (-1021)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1435 ((-623 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1145))) (-6 (-874 (-1145))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1235 |#1|)) (-15 -2382 ($ $ $)) (-15 -1619 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -4230 ($ $ $)) |%noBranch|))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) NIL)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) NIL)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-288 |#1| |#2|) (-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) (-1069) (-1069)) (T -288)) -NIL -(-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) -((-2511 (((-305) (-1127) (-623 (-1127))) 16) (((-305) (-1127) (-1127)) 15) (((-305) (-623 (-1127))) 14) (((-305) (-1127)) 12))) -(((-289) (-10 -7 (-15 -2511 ((-305) (-1127))) (-15 -2511 ((-305) (-623 (-1127)))) (-15 -2511 ((-305) (-1127) (-1127))) (-15 -2511 ((-305) (-1127) (-623 (-1127)))))) (T -289)) -((-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1127))) (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-289)))) (-2511 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-289)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-305)) (-5 *1 (-289)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-289))))) -(-10 -7 (-15 -2511 ((-305) (-1127))) (-15 -2511 ((-305) (-623 (-1127)))) (-15 -2511 ((-305) (-1127) (-1127))) (-15 -2511 ((-305) (-1127) (-623 (-1127))))) -((-2392 ((|#2| (-1 |#2| |#1|) (-1127) (-594 |#1|)) 18))) -(((-290 |#1| |#2|) (-10 -7 (-15 -2392 (|#2| (-1 |#2| |#1|) (-1127) (-594 |#1|)))) (-295) (-1182)) (T -290)) -((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1127)) (-5 *5 (-594 *6)) (-4 *6 (-295)) (-4 *2 (-1182)) (-5 *1 (-290 *6 *2))))) -(-10 -7 (-15 -2392 (|#2| (-1 |#2| |#1|) (-1127) (-594 |#1|)))) -((-2392 ((|#2| (-1 |#2| |#1|) (-594 |#1|)) 17))) -(((-291 |#1| |#2|) (-10 -7 (-15 -2392 (|#2| (-1 |#2| |#1|) (-594 |#1|)))) (-295) (-295)) (T -291)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-594 *5)) (-4 *5 (-295)) (-4 *2 (-295)) (-5 *1 (-291 *5 *2))))) -(-10 -7 (-15 -2392 (|#2| (-1 |#2| |#1|) (-594 |#1|)))) -((-3961 (((-112) (-219)) 10))) -(((-292 |#1| |#2|) (-10 -7 (-15 -3961 ((-112) (-219)))) (-219) (-219)) (T -292)) -((-3961 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3961 ((-112) (-219)))) -((-1510 (((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219)))) 93)) (-1637 (((-1125 (-219)) (-1228 (-309 (-219))) (-623 (-1145)) (-1063 (-818 (-219)))) 107) (((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219)))) 61)) (-4082 (((-623 (-1127)) (-1125 (-219))) NIL)) (-2902 (((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219)))) 58)) (-3313 (((-623 (-219)) (-926 (-400 (-550))) (-1145) (-1063 (-818 (-219)))) 49)) (-1298 (((-623 (-1127)) (-623 (-219))) NIL)) (-2674 (((-219) (-1063 (-818 (-219)))) 25)) (-2393 (((-219) (-1063 (-818 (-219)))) 26)) (-1338 (((-112) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-3923 (((-1127) (-219)) NIL))) -(((-293) (-10 -7 (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -1338 ((-112) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2902 ((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219))))) (-15 -1510 ((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-1228 (-309 (-219))) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -3313 ((-623 (-219)) (-926 (-400 (-550))) (-1145) (-1063 (-818 (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219)))))) (T -293)) -((-4082 (*1 *2 *3) (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-293)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-293)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-293)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *4 (-1145)) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *4 (-623 (-1145))) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1145))) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293)))) (-1510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1145))) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293)))) (-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1145)) (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-293)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))) -(-10 -7 (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -1338 ((-112) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2902 ((-623 (-219)) (-309 (-219)) (-1145) (-1063 (-818 (-219))))) (-15 -1510 ((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-309 (-219)) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -1637 ((-1125 (-219)) (-1228 (-309 (-219))) (-623 (-1145)) (-1063 (-818 (-219))))) (-15 -3313 ((-623 (-219)) (-926 (-400 (-550))) (-1145) (-1063 (-818 (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219))))) -((-1608 (((-623 (-594 $)) $) 30)) (-4230 (($ $ (-287 $)) 81) (($ $ (-623 (-287 $))) 123) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-2288 (((-3 (-594 $) "failed") $) 113)) (-2202 (((-594 $) $) 112)) (-1465 (($ $) 19) (($ (-623 $)) 56)) (-3745 (((-623 (-114)) $) 38)) (-1355 (((-114) (-114)) 91)) (-1286 (((-112) $) 131)) (-2392 (($ (-1 $ $) (-594 $)) 89)) (-2041 (((-3 (-594 $) "failed") $) 93)) (-4232 (($ (-114) $) 61) (($ (-114) (-623 $)) 100)) (-2366 (((-112) $ (-114)) 117) (((-112) $ (-1145)) 116)) (-1293 (((-749) $) 46)) (-4087 (((-112) $ $) 59) (((-112) $ (-1145)) 51)) (-3725 (((-112) $) 129)) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) 121) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) 84) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1145) (-1 $ (-623 $))) 69) (($ $ (-1145) (-1 $ $)) 75) (($ $ (-623 (-114)) (-623 (-1 $ $))) 83) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 85) (($ $ (-114) (-1 $ (-623 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2757 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-623 $)) 109)) (-1532 (($ $) 53) (($ $ $) 119)) (-3790 (($ $) 17) (($ (-623 $)) 55)) (-1905 (((-112) (-114)) 22))) -(((-294 |#1|) (-10 -8 (-15 -1286 ((-112) |#1|)) (-15 -3725 ((-112) |#1|)) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| |#1|)))) (-15 -4087 ((-112) |#1| (-1145))) (-15 -4087 ((-112) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#1| |#1|) (-594 |#1|))) (-15 -4232 (|#1| (-114) (-623 |#1|))) (-15 -4232 (|#1| (-114) |#1|)) (-15 -2366 ((-112) |#1| (-1145))) (-15 -2366 ((-112) |#1| (-114))) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -3745 ((-623 (-114)) |#1|)) (-15 -1608 ((-623 (-594 |#1|)) |#1|)) (-15 -2041 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1293 ((-749) |#1|)) (-15 -1532 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1465 (|#1| (-623 |#1|))) (-15 -1465 (|#1| |#1|)) (-15 -3790 (|#1| (-623 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -4230 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -4230 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -4230 (|#1| |#1| (-287 |#1|))) (-15 -2757 (|#1| (-114) (-623 |#1|))) (-15 -2757 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2202 ((-594 |#1|) |#1|)) (-15 -2288 ((-3 (-594 |#1|) "failed") |#1|))) (-295)) (T -294)) -((-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295))))) -(-10 -8 (-15 -1286 ((-112) |#1|)) (-15 -3725 ((-112) |#1|)) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| |#1|)))) (-15 -4087 ((-112) |#1| (-1145))) (-15 -4087 ((-112) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#1| |#1|) (-594 |#1|))) (-15 -4232 (|#1| (-114) (-623 |#1|))) (-15 -4232 (|#1| (-114) |#1|)) (-15 -2366 ((-112) |#1| (-1145))) (-15 -2366 ((-112) |#1| (-114))) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -3745 ((-623 (-114)) |#1|)) (-15 -1608 ((-623 (-594 |#1|)) |#1|)) (-15 -2041 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1293 ((-749) |#1|)) (-15 -1532 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1465 (|#1| (-623 |#1|))) (-15 -1465 (|#1| |#1|)) (-15 -3790 (|#1| (-623 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -4230 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -4230 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -4230 (|#1| |#1| (-287 |#1|))) (-15 -2757 (|#1| (-114) (-623 |#1|))) (-15 -2757 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2202 ((-594 |#1|) |#1|)) (-15 -2288 ((-3 (-594 |#1|) "failed") |#1|))) -((-2221 (((-112) $ $) 7)) (-1608 (((-623 (-594 $)) $) 44)) (-4230 (($ $ (-287 $)) 56) (($ $ (-623 (-287 $))) 55) (($ $ (-623 (-594 $)) (-623 $)) 54)) (-2288 (((-3 (-594 $) "failed") $) 69)) (-2202 (((-594 $) $) 68)) (-1465 (($ $) 51) (($ (-623 $)) 50)) (-3745 (((-623 (-114)) $) 43)) (-1355 (((-114) (-114)) 42)) (-1286 (((-112) $) 22 (|has| $ (-1012 (-550))))) (-1333 (((-1141 $) (-594 $)) 25 (|has| $ (-1021)))) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2392 (($ (-1 $ $) (-594 $)) 36)) (-2041 (((-3 (-594 $) "failed") $) 46)) (-2369 (((-1127) $) 9)) (-1694 (((-623 (-594 $)) $) 45)) (-4232 (($ (-114) $) 38) (($ (-114) (-623 $)) 37)) (-2366 (((-112) $ (-114)) 40) (((-112) $ (-1145)) 39)) (-1293 (((-749) $) 47)) (-3445 (((-1089) $) 10)) (-4087 (((-112) $ $) 35) (((-112) $ (-1145)) 34)) (-3725 (((-112) $) 23 (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) 67) (($ $ (-623 (-594 $)) (-623 $)) 66) (($ $ (-623 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-623 $) (-623 $)) 62) (($ $ (-623 (-1145)) (-623 (-1 $ $))) 33) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) 32) (($ $ (-1145) (-1 $ (-623 $))) 31) (($ $ (-1145) (-1 $ $)) 30) (($ $ (-623 (-114)) (-623 (-1 $ $))) 29) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 28) (($ $ (-114) (-1 $ (-623 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2757 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-623 $)) 57)) (-1532 (($ $) 49) (($ $ $) 48)) (-3832 (($ $) 24 (|has| $ (-1021)))) (-2233 (((-837) $) 11) (($ (-594 $)) 70)) (-3790 (($ $) 53) (($ (-623 $)) 52)) (-1905 (((-112) (-114)) 41)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18))) -(((-295) (-138)) (T -295)) -((-2757 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2757 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2757 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2757 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2757 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *1))) (-4 *1 (-295)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-594 *1))) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-3790 (*1 *1 *1) (-4 *1 (-295))) (-3790 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) (-1465 (*1 *1 *1) (-4 *1 (-295))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) (-1532 (*1 *1 *1) (-4 *1 (-295))) (-1532 (*1 *1 *1 *1) (-4 *1 (-295))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-749)))) (-2041 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-295)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-623 (-114))))) (-1355 (*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-1905 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2366 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2366 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1145)) (-5 *2 (-112)))) (-4232 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-594 *1)) (-4 *1 (-295)))) (-4087 (*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))) (-4087 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1145)) (-5 *2 (-112)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-1021)) (-4 *1 (-295)) (-5 *2 (-1141 *1)))) (-3832 (*1 *1 *1) (-12 (-4 *1 (-1021)) (-4 *1 (-295)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1012 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) (-1286 (*1 *2 *1) (-12 (-4 *1 (-1012 (-550))) (-4 *1 (-295)) (-5 *2 (-112))))) -(-13 (-825) (-1012 (-594 $)) (-505 (-594 $) $) (-302 $) (-10 -8 (-15 -2757 ($ (-114) $)) (-15 -2757 ($ (-114) $ $)) (-15 -2757 ($ (-114) $ $ $)) (-15 -2757 ($ (-114) $ $ $ $)) (-15 -2757 ($ (-114) (-623 $))) (-15 -4230 ($ $ (-287 $))) (-15 -4230 ($ $ (-623 (-287 $)))) (-15 -4230 ($ $ (-623 (-594 $)) (-623 $))) (-15 -3790 ($ $)) (-15 -3790 ($ (-623 $))) (-15 -1465 ($ $)) (-15 -1465 ($ (-623 $))) (-15 -1532 ($ $)) (-15 -1532 ($ $ $)) (-15 -1293 ((-749) $)) (-15 -2041 ((-3 (-594 $) "failed") $)) (-15 -1694 ((-623 (-594 $)) $)) (-15 -1608 ((-623 (-594 $)) $)) (-15 -3745 ((-623 (-114)) $)) (-15 -1355 ((-114) (-114))) (-15 -1905 ((-112) (-114))) (-15 -2366 ((-112) $ (-114))) (-15 -2366 ((-112) $ (-1145))) (-15 -4232 ($ (-114) $)) (-15 -4232 ($ (-114) (-623 $))) (-15 -2392 ($ (-1 $ $) (-594 $))) (-15 -4087 ((-112) $ $)) (-15 -4087 ((-112) $ (-1145))) (-15 -1553 ($ $ (-623 (-1145)) (-623 (-1 $ $)))) (-15 -1553 ($ $ (-623 (-1145)) (-623 (-1 $ (-623 $))))) (-15 -1553 ($ $ (-1145) (-1 $ (-623 $)))) (-15 -1553 ($ $ (-1145) (-1 $ $))) (-15 -1553 ($ $ (-623 (-114)) (-623 (-1 $ $)))) (-15 -1553 ($ $ (-623 (-114)) (-623 (-1 $ (-623 $))))) (-15 -1553 ($ $ (-114) (-1 $ (-623 $)))) (-15 -1553 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1021)) (PROGN (-15 -1333 ((-1141 $) (-594 $))) (-15 -3832 ($ $))) |%noBranch|) (IF (|has| $ (-1012 (-550))) (PROGN (-15 -3725 ((-112) $)) (-15 -1286 ((-112) $))) |%noBranch|))) -(((-101) . T) ((-595 (-837)) . T) ((-302 $) . T) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-825) . T) ((-1012 (-594 $)) . T) ((-1069) . T)) -((-2958 (((-623 |#1|) (-623 |#1|)) 10))) -(((-296 |#1|) (-10 -7 (-15 -2958 ((-623 |#1|) (-623 |#1|)))) (-823)) (T -296)) -((-2958 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-823)) (-5 *1 (-296 *3))))) -(-10 -7 (-15 -2958 ((-623 |#1|) (-623 |#1|)))) -((-2392 (((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)) 17))) -(((-297 |#1| |#2|) (-10 -7 (-15 -2392 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) (-1021) (-1021)) (T -297)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-5 *2 (-667 *6)) (-5 *1 (-297 *5 *6))))) -(-10 -7 (-15 -2392 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) -((-2558 (((-1228 (-309 (-372))) (-1228 (-309 (-219)))) 105)) (-3635 (((-1063 (-818 (-219))) (-1063 (-818 (-372)))) 40)) (-4082 (((-623 (-1127)) (-1125 (-219))) 87)) (-1300 (((-309 (-372)) (-926 (-219))) 50)) (-2870 (((-219) (-926 (-219))) 46)) (-3930 (((-1127) (-372)) 169)) (-3915 (((-818 (-219)) (-818 (-372))) 34)) (-2809 (((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1228 (-309 (-219)))) 143)) (-3712 (((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) 181) (((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) 179)) (-3121 (((-667 (-219)) (-623 (-219)) (-749)) 14)) (-3483 (((-1228 (-677)) (-623 (-219))) 94)) (-1298 (((-623 (-1127)) (-623 (-219))) 75)) (-4311 (((-3 (-309 (-219)) "failed") (-309 (-219))) 120)) (-3961 (((-112) (-219) (-1063 (-818 (-219)))) 109)) (-1625 (((-1009) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) 198)) (-2674 (((-219) (-1063 (-818 (-219)))) 107)) (-2393 (((-219) (-1063 (-818 (-219)))) 108)) (-4080 (((-219) (-400 (-550))) 27)) (-3430 (((-1127) (-372)) 73)) (-2852 (((-219) (-372)) 17)) (-1282 (((-372) (-1228 (-309 (-219)))) 154)) (-2489 (((-309 (-219)) (-309 (-372))) 23)) (-2032 (((-400 (-550)) (-309 (-219))) 53)) (-2350 (((-309 (-400 (-550))) (-309 (-219))) 69)) (-3110 (((-309 (-372)) (-309 (-219))) 98)) (-1802 (((-219) (-309 (-219))) 54)) (-1396 (((-623 (-219)) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) 64)) (-3049 (((-1063 (-818 (-219))) (-1063 (-818 (-219)))) 61)) (-3923 (((-1127) (-219)) 72)) (-3971 (((-677) (-219)) 90)) (-3021 (((-400 (-550)) (-219)) 55)) (-2514 (((-309 (-372)) (-219)) 49)) (-2451 (((-623 (-1063 (-818 (-219)))) (-623 (-1063 (-818 (-372))))) 43)) (-4006 (((-1009) (-623 (-1009))) 165) (((-1009) (-1009) (-1009)) 162)) (-2098 (((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-298) (-10 -7 (-15 -2852 ((-219) (-372))) (-15 -2489 ((-309 (-219)) (-309 (-372)))) (-15 -3915 ((-818 (-219)) (-818 (-372)))) (-15 -3635 ((-1063 (-818 (-219))) (-1063 (-818 (-372))))) (-15 -2451 ((-623 (-1063 (-818 (-219)))) (-623 (-1063 (-818 (-372)))))) (-15 -3021 ((-400 (-550)) (-219))) (-15 -2032 ((-400 (-550)) (-309 (-219)))) (-15 -1802 ((-219) (-309 (-219)))) (-15 -4311 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1282 ((-372) (-1228 (-309 (-219))))) (-15 -2809 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1228 (-309 (-219))))) (-15 -2350 ((-309 (-400 (-550))) (-309 (-219)))) (-15 -3049 ((-1063 (-818 (-219))) (-1063 (-818 (-219))))) (-15 -1396 ((-623 (-219)) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) (-15 -3971 ((-677) (-219))) (-15 -3483 ((-1228 (-677)) (-623 (-219)))) (-15 -3110 ((-309 (-372)) (-309 (-219)))) (-15 -2558 ((-1228 (-309 (-372))) (-1228 (-309 (-219))))) (-15 -3961 ((-112) (-219) (-1063 (-818 (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -3430 ((-1127) (-372))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219)))) (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -4006 ((-1009) (-1009) (-1009))) (-15 -4006 ((-1009) (-623 (-1009)))) (-15 -3930 ((-1127) (-372))) (-15 -3712 ((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))))) (-15 -3712 ((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))))) (-15 -2098 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1625 ((-1009) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -1300 ((-309 (-372)) (-926 (-219)))) (-15 -2870 ((-219) (-926 (-219)))) (-15 -2514 ((-309 (-372)) (-219))) (-15 -4080 ((-219) (-400 (-550)))) (-15 -3121 ((-667 (-219)) (-623 (-219)) (-749))))) (T -298)) -((-3121 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-298)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-400 (-550))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-926 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-926 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *2 (-1009)) (-5 *1 (-298)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1009)) (-5 *1 (-298)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) (-5 *2 (-1009)) (-5 *1 (-298)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *2 (-1009)) (-5 *1 (-298)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1127)) (-5 *1 (-298)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-623 (-1009))) (-5 *2 (-1009)) (-5 *1 (-298)))) (-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-298)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-298)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-298)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1127)) (-5 *1 (-298)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-298)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-818 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-298)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *2 (-1228 (-309 (-372)))) (-5 *1 (-298)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1228 (-677))) (-5 *1 (-298)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-298)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *2 (-623 (-219))) (-5 *1 (-298)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-1063 (-818 (-219)))) (-5 *1 (-298)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-550)))) (-5 *1 (-298)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *2 (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) (-5 *1 (-298)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))) (-4311 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-550))) (-5 *1 (-298)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-550))) (-5 *1 (-298)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-623 (-1063 (-818 (-372))))) (-5 *2 (-623 (-1063 (-818 (-219))))) (-5 *1 (-298)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-1063 (-818 (-372)))) (-5 *2 (-1063 (-818 (-219)))) (-5 *1 (-298)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-818 (-372))) (-5 *2 (-818 (-219))) (-5 *1 (-298)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298))))) -(-10 -7 (-15 -2852 ((-219) (-372))) (-15 -2489 ((-309 (-219)) (-309 (-372)))) (-15 -3915 ((-818 (-219)) (-818 (-372)))) (-15 -3635 ((-1063 (-818 (-219))) (-1063 (-818 (-372))))) (-15 -2451 ((-623 (-1063 (-818 (-219)))) (-623 (-1063 (-818 (-372)))))) (-15 -3021 ((-400 (-550)) (-219))) (-15 -2032 ((-400 (-550)) (-309 (-219)))) (-15 -1802 ((-219) (-309 (-219)))) (-15 -4311 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1282 ((-372) (-1228 (-309 (-219))))) (-15 -2809 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1228 (-309 (-219))))) (-15 -2350 ((-309 (-400 (-550))) (-309 (-219)))) (-15 -3049 ((-1063 (-818 (-219))) (-1063 (-818 (-219))))) (-15 -1396 ((-623 (-219)) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) (-15 -3971 ((-677) (-219))) (-15 -3483 ((-1228 (-677)) (-623 (-219)))) (-15 -3110 ((-309 (-372)) (-309 (-219)))) (-15 -2558 ((-1228 (-309 (-372))) (-1228 (-309 (-219))))) (-15 -3961 ((-112) (-219) (-1063 (-818 (-219))))) (-15 -3923 ((-1127) (-219))) (-15 -3430 ((-1127) (-372))) (-15 -1298 ((-623 (-1127)) (-623 (-219)))) (-15 -4082 ((-623 (-1127)) (-1125 (-219)))) (-15 -2674 ((-219) (-1063 (-818 (-219))))) (-15 -2393 ((-219) (-1063 (-818 (-219))))) (-15 -4006 ((-1009) (-1009) (-1009))) (-15 -4006 ((-1009) (-623 (-1009)))) (-15 -3930 ((-1127) (-372))) (-15 -3712 ((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))))) (-15 -3712 ((-1009) (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))))) (-15 -2098 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1625 ((-1009) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -1300 ((-309 (-372)) (-926 (-219)))) (-15 -2870 ((-219) (-926 (-219)))) (-15 -2514 ((-309 (-372)) (-219))) (-15 -4080 ((-219) (-400 (-550)))) (-15 -3121 ((-667 (-219)) (-623 (-219)) (-749)))) -((-1611 (((-112) $ $) 11)) (-3455 (($ $ $) 15)) (-3429 (($ $ $) 14)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 44)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 53)) (-3260 (($ $ $) 21) (($ (-623 $)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3409 (((-3 $ "failed") $ $) 17)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 46))) -(((-299 |#1|) (-10 -8 (-15 -1915 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3581 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3581 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -1611 ((-112) |#1| |#1|)) (-15 -3041 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -1346 ((-2 (|:| -4304 (-623 |#1|)) (|:| -2256 |#1|)) (-623 |#1|))) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299)) -NIL -(-10 -8 (-15 -1915 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3581 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3581 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -1611 ((-112) |#1| |#1|)) (-15 -3041 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -1346 ((-2 (|:| -4304 (-623 |#1|)) (|:| -2256 |#1|)) (-623 |#1|))) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-2419 (((-112) $) 30)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(-13 (-1023) (-111 $ $) (-10 -7 (-6 -4341))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-1637 (($ (-1147) (-1147) (-1074) $) 17)) (-1635 (($ (-1147) (-620 (-939)) $) 22)) (-1639 (((-620 (-1056)) $) 10)) (-1638 (((-3 (-1074) "failed") (-1147) (-1147) $) 16)) (-1636 (((-3 (-620 (-939)) "failed") (-1147) $) 21)) (-3923 (($) 7)) (-1634 (($) 23)) (-4312 (((-838) $) 27)) (-1633 (($) 24))) +(((-284) (-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -1639 ((-620 (-1056)) $)) (-15 -1638 ((-3 (-1074) "failed") (-1147) (-1147) $)) (-15 -1637 ($ (-1147) (-1147) (-1074) $)) (-15 -1636 ((-3 (-620 (-939)) "failed") (-1147) $)) (-15 -1635 ($ (-1147) (-620 (-939)) $)) (-15 -1634 ($)) (-15 -1633 ($))))) (T -284)) +((-3923 (*1 *1) (-5 *1 (-284))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-620 (-1056))) (-5 *1 (-284)))) (-1638 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-284)))) (-1637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-284)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-620 (-939))) (-5 *1 (-284)))) (-1635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-284)))) (-1634 (*1 *1) (-5 *1 (-284))) (-1633 (*1 *1) (-5 *1 (-284)))) +(-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -1639 ((-620 (-1056)) $)) (-15 -1638 ((-3 (-1074) "failed") (-1147) (-1147) $)) (-15 -1637 ($ (-1147) (-1147) (-1074) $)) (-15 -1636 ((-3 (-620 (-939)) "failed") (-1147) $)) (-15 -1635 ($ (-1147) (-620 (-939)) $)) (-15 -1634 ($)) (-15 -1633 ($)))) +((-1643 (((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))) 85)) (-1642 (((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|)))) 80) (((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749)) 38)) (-1644 (((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))) 82)) (-1641 (((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|)))) 62)) (-1640 (((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|)))) 61)) (-2693 (((-920 |#1|) (-667 (-400 (-920 |#1|)))) 50) (((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147)) 51))) +(((-285 |#1|) (-10 -7 (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147))) (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))))) (-15 -1640 ((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|))))) (-15 -1641 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|))))) (-15 -1643 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|))))) (-15 -1644 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))))) (-444)) (T -285)) +((-1644 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-620 (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4)))))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-620 (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4)))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 *4)))) (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-920 *5)))))) (-1642 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-920 *6)) (-1136 (-1147) (-920 *6)))) (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-920 *6)))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-920 *5)))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-4 *4 (-444)) (-5 *2 (-620 (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4))))) (-5 *1 (-285 *4)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-5 *2 (-920 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-920 *5)))) (-5 *4 (-1147)) (-5 *2 (-920 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))) +(-10 -7 (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147))) (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))))) (-15 -1640 ((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|))))) (-15 -1641 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|))))) (-15 -1643 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|))))) (-15 -1644 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-1650 (($ $) 12)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (($ $ $) 94 (|has| |#1| (-291)))) (-3891 (($) NIL (-3886 (|has| |#1| (-21)) (|has| |#1| (-705))) CONST)) (-1648 (($ $) 50 (|has| |#1| (-21)))) (-1646 (((-3 $ "failed") $) 61 (|has| |#1| (-705)))) (-3877 ((|#1| $) 11)) (-3816 (((-3 $ "failed") $) 59 (|has| |#1| (-705)))) (-2497 (((-112) $) NIL (|has| |#1| (-705)))) (-4313 (($ (-1 |#1| |#1|) $) 14)) (-3878 ((|#1| $) 10)) (-1649 (($ $) 49 (|has| |#1| (-21)))) (-1647 (((-3 $ "failed") $) 60 (|has| |#1| (-705)))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2729 (($ $) 63 (-3886 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1645 (((-620 $) $) 84 (|has| |#1| (-543)))) (-4122 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-1147) |#1|) 17 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 21 (|has| |#1| (-505 (-1147) |#1|)))) (-3572 (($ |#1| |#1|) 9)) (-4266 (((-133)) 89 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 86 (|has| |#1| (-874 (-1147))))) (-3337 (($ $ $) NIL (|has| |#1| (-465)))) (-2681 (($ $ $) NIL (|has| |#1| (-465)))) (-4312 (($ (-536)) NIL (|has| |#1| (-1023))) (((-112) $) 36 (|has| |#1| (-1072))) (((-838) $) 35 (|has| |#1| (-1072)))) (-3456 (((-749)) 66 (|has| |#1| (-1023)))) (-2986 (($) 46 (|has| |#1| (-21)) CONST)) (-2992 (($) 56 (|has| |#1| (-705)) CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147))))) (-3382 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-3886 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-4192 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4194 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-536)) NIL (|has| |#1| (-465))) (($ $ (-749)) NIL (|has| |#1| (-705))) (($ $ (-893)) NIL (|has| |#1| (-1083)))) (* (($ $ |#1|) 54 (|has| |#1| (-1083))) (($ |#1| $) 53 (|has| |#1| (-1083))) (($ $ $) 52 (|has| |#1| (-1083))) (($ (-536) $) 69 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-25))))) +(((-286 |#1|) (-13 (-1183) (-10 -8 (-15 -3382 ($ |#1| |#1|)) (-15 -3572 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3878 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1147) |#1|)) (-6 (-505 (-1147) |#1|)) |%noBranch|) (IF (|has| |#1| (-1072)) (PROGN (-6 (-1072)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4122 ($ $ $)) (-15 -4122 ($ $ (-620 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4194 ($ |#1| $)) (-15 -4194 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4192 ($ |#1| $)) (-15 -4192 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1083)) (PROGN (-6 (-1083)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1645 ((-620 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1237 |#1|)) (-15 -4303 ($ $ $)) (-15 -2729 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) (-1183)) (T -286)) +((-3382 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3572 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3878 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3877 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) (-4122 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)) (-5 *1 (-286 *2)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) (-4194 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) (-4194 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-4192 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-1647 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183)))) (-1646 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-620 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-543)) (-4 *3 (-1183)))) (-1659 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1183)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) (-4303 (*1 *1 *1 *1) (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) (-2729 (*1 *1 *1) (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183)))))) +(-13 (-1183) (-10 -8 (-15 -3382 ($ |#1| |#1|)) (-15 -3572 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3878 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1147) |#1|)) (-6 (-505 (-1147) |#1|)) |%noBranch|) (IF (|has| |#1| (-1072)) (PROGN (-6 (-1072)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4122 ($ $ $)) (-15 -4122 ($ $ (-620 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4194 ($ |#1| $)) (-15 -4194 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4192 ($ |#1| $)) (-15 -4192 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1083)) (PROGN (-6 (-1083)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1645 ((-620 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1237 |#1|)) (-15 -4303 ($ $ $)) (-15 -2729 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) +((-4313 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14))) +(((-287 |#1| |#2|) (-10 -7 (-15 -4313 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1183) (-1183)) (T -287)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6))))) +(-10 -7 (-15 -4313 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-288 |#1| |#2|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072)) (T -288)) +NIL +(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) +((-1651 (((-304) (-1129) (-620 (-1129))) 16) (((-304) (-1129) (-1129)) 15) (((-304) (-620 (-1129))) 14) (((-304) (-1129)) 12))) +(((-289) (-10 -7 (-15 -1651 ((-304) (-1129))) (-15 -1651 ((-304) (-620 (-1129)))) (-15 -1651 ((-304) (-1129) (-1129))) (-15 -1651 ((-304) (-1129) (-620 (-1129)))))) (T -289)) +((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1129))) (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289))))) +(-10 -7 (-15 -1651 ((-304) (-1129))) (-15 -1651 ((-304) (-620 (-1129)))) (-15 -1651 ((-304) (-1129) (-1129))) (-15 -1651 ((-304) (-1129) (-620 (-1129))))) +((-1655 (((-620 (-593 $)) $) 30)) (-1659 (($ $ (-286 $)) 81) (($ $ (-620 (-286 $))) 123) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-3503 (((-3 (-593 $) "failed") $) 113)) (-3502 (((-593 $) $) 112)) (-2898 (($ $) 19) (($ (-620 $)) 56)) (-1654 (((-620 (-113)) $) 38)) (-3375 (((-113) (-113)) 91)) (-3001 (((-112) $) 131)) (-4313 (($ (-1 $ $) (-593 $)) 89)) (-1657 (((-3 (-593 $) "failed") $) 93)) (-2312 (($ (-113) $) 61) (($ (-113) (-620 $)) 100)) (-2959 (((-112) $ (-113)) 117) (((-112) $ (-1147)) 116)) (-2928 (((-749) $) 46)) (-1653 (((-112) $ $) 59) (((-112) $ (-1147)) 51)) (-3002 (((-112) $) 129)) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 84) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) 69) (($ $ (-1147) (-1 $ $)) 75) (($ $ (-620 (-113)) (-620 (-1 $ $))) 83) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 85) (($ $ (-113) (-1 $ (-620 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4154 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-620 $)) 109)) (-1658 (($ $) 53) (($ $ $) 119)) (-2915 (($ $) 17) (($ (-620 $)) 55)) (-2333 (((-112) (-113)) 22))) +(((-290 |#1|) (-10 -8 (-15 -3001 ((-112) |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1147))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#1| |#1|) (-593 |#1|))) (-15 -2312 (|#1| (-113) (-620 |#1|))) (-15 -2312 (|#1| (-113) |#1|)) (-15 -2959 ((-112) |#1| (-1147))) (-15 -2959 ((-112) |#1| (-113))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1654 ((-620 (-113)) |#1|)) (-15 -1655 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -2928 ((-749) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2898 (|#1| (-620 |#1|))) (-15 -2898 (|#1| |#1|)) (-15 -2915 (|#1| (-620 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) "failed") |#1|))) (-291)) (T -290)) +((-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291))))) +(-10 -8 (-15 -3001 ((-112) |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1147))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#1| |#1|) (-593 |#1|))) (-15 -2312 (|#1| (-113) (-620 |#1|))) (-15 -2312 (|#1| (-113) |#1|)) (-15 -2959 ((-112) |#1| (-1147))) (-15 -2959 ((-112) |#1| (-113))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1654 ((-620 (-113)) |#1|)) (-15 -1655 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -2928 ((-749) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2898 (|#1| (-620 |#1|))) (-15 -2898 (|#1| |#1|)) (-15 -2915 (|#1| (-620 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) "failed") |#1|))) +((-2893 (((-112) $ $) 7)) (-1655 (((-620 (-593 $)) $) 44)) (-1659 (($ $ (-286 $)) 56) (($ $ (-620 (-286 $))) 55) (($ $ (-620 (-593 $)) (-620 $)) 54)) (-3503 (((-3 (-593 $) "failed") $) 69)) (-3502 (((-593 $) $) 68)) (-2898 (($ $) 51) (($ (-620 $)) 50)) (-1654 (((-620 (-113)) $) 43)) (-3375 (((-113) (-113)) 42)) (-3001 (((-112) $) 22 (|has| $ (-1012 (-536))))) (-1652 (((-1141 $) (-593 $)) 25 (|has| $ (-1023)))) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-4313 (($ (-1 $ $) (-593 $)) 36)) (-1657 (((-3 (-593 $) "failed") $) 46)) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 45)) (-2312 (($ (-113) $) 38) (($ (-113) (-620 $)) 37)) (-2959 (((-112) $ (-113)) 40) (((-112) $ (-1147)) 39)) (-2928 (((-749) $) 47)) (-3589 (((-1091) $) 10)) (-1653 (((-112) $ $) 35) (((-112) $ (-1147)) 34)) (-3002 (((-112) $) 23 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) 67) (($ $ (-620 (-593 $)) (-620 $)) 66) (($ $ (-620 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-620 $) (-620 $)) 62) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 33) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 32) (($ $ (-1147) (-1 $ (-620 $))) 31) (($ $ (-1147) (-1 $ $)) 30) (($ $ (-620 (-113)) (-620 (-1 $ $))) 29) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 28) (($ $ (-113) (-1 $ (-620 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4154 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-620 $)) 57)) (-1658 (($ $) 49) (($ $ $) 48)) (-3531 (($ $) 24 (|has| $ (-1023)))) (-4312 (((-838) $) 11) (($ (-593 $)) 70)) (-2915 (($ $) 53) (($ (-620 $)) 52)) (-2333 (((-112) (-113)) 41)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) +(((-291) (-138)) (T -291)) +((-4154 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *1))) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-593 *1))) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-2915 (*1 *1 *1) (-4 *1 (-291))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) (-2898 (*1 *1 *1) (-4 *1 (-291))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) (-1658 (*1 *1 *1) (-4 *1 (-291))) (-1658 (*1 *1 *1 *1) (-4 *1 (-291))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-749)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-593 *1)) (-4 *1 (-291)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-620 (-113))))) (-3375 (*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2333 (*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) (-2312 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-593 *1)) (-4 *1 (-291)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-593 *1)) (-4 *1 (-1023)) (-4 *1 (-291)) (-5 *2 (-1141 *1)))) (-3531 (*1 *1 *1) (-12 (-4 *1 (-1023)) (-4 *1 (-291)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112))))) +(-13 (-825) (-1012 (-593 $)) (-505 (-593 $) $) (-302 $) (-10 -8 (-15 -4154 ($ (-113) $)) (-15 -4154 ($ (-113) $ $)) (-15 -4154 ($ (-113) $ $ $)) (-15 -4154 ($ (-113) $ $ $ $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -1659 ($ $ (-286 $))) (-15 -1659 ($ $ (-620 (-286 $)))) (-15 -1659 ($ $ (-620 (-593 $)) (-620 $))) (-15 -2915 ($ $)) (-15 -2915 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -1658 ($ $)) (-15 -1658 ($ $ $)) (-15 -2928 ((-749) $)) (-15 -1657 ((-3 (-593 $) "failed") $)) (-15 -1656 ((-620 (-593 $)) $)) (-15 -1655 ((-620 (-593 $)) $)) (-15 -1654 ((-620 (-113)) $)) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (-15 -2312 ($ (-113) $)) (-15 -2312 ($ (-113) (-620 $))) (-15 -4313 ($ (-1 $ $) (-593 $))) (-15 -1653 ((-112) $ $)) (-15 -1653 ((-112) $ (-1147))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-1147) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-1147) (-1 $ $))) (-15 -4122 ($ $ (-620 (-113)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-113)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-113) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1023)) (PROGN (-15 -1652 ((-1141 $) (-593 $))) (-15 -3531 ($ $))) |%noBranch|) (IF (|has| $ (-1012 (-536))) (PROGN (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $))) |%noBranch|))) +(((-101) . T) ((-595 (-838)) . T) ((-302 $) . T) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-825) . T) ((-1012 (-593 $)) . T) ((-1072) . T)) +((-4313 ((|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)) 18))) +(((-292 |#1| |#2|) (-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)))) (-291) (-1183)) (T -292)) +((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1129)) (-5 *5 (-593 *6)) (-4 *6 (-291)) (-4 *2 (-1183)) (-5 *1 (-292 *6 *2))))) +(-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)))) +((-4313 ((|#2| (-1 |#2| |#1|) (-593 |#1|)) 17))) +(((-293 |#1| |#2|) (-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-593 |#1|)))) (-291) (-291)) (T -293)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-593 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-293 *5 *2))))) +(-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-593 |#1|)))) +((-1662 (((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219)))) 93)) (-1663 (((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219)))) 107) (((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219)))) 61)) (-1684 (((-620 (-1129)) (-1124 (-219))) NIL)) (-1661 (((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219)))) 58)) (-1664 (((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219)))) 49)) (-1683 (((-620 (-1129)) (-620 (-219))) NIL)) (-1685 (((-219) (-1060 (-817 (-219)))) 25)) (-1686 (((-219) (-1060 (-817 (-219)))) 26)) (-1660 (((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-1681 (((-1129) (-219)) NIL))) +(((-294) (-10 -7 (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1662 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1664 ((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))))) (T -294)) +((-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-294)))) (-1664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-294)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294))))) +(-10 -7 (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1662 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1664 ((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219))))) +((-2094 (((-112) (-219)) 10))) +(((-295 |#1| |#2|) (-10 -7 (-15 -2094 ((-112) (-219)))) (-219) (-219)) (T -295)) +((-2094 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2094 ((-112) (-219)))) +((-1680 (((-1229 (-307 (-371))) (-1229 (-307 (-219)))) 105)) (-1668 (((-1060 (-817 (-219))) (-1060 (-817 (-371)))) 40)) (-1684 (((-620 (-1129)) (-1124 (-219))) 87)) (-1691 (((-307 (-371)) (-920 (-219))) 50)) (-1692 (((-219) (-920 (-219))) 46)) (-1687 (((-1129) (-371)) 169)) (-1667 (((-817 (-219)) (-817 (-371))) 34)) (-1673 (((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219)))) 143)) (-1688 (((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) 181) (((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) 179)) (-1695 (((-667 (-219)) (-620 (-219)) (-749)) 14)) (-1678 (((-1229 (-677)) (-620 (-219))) 94)) (-1683 (((-620 (-1129)) (-620 (-219))) 75)) (-2984 (((-3 (-307 (-219)) "failed") (-307 (-219))) 120)) (-2094 (((-112) (-219) (-1060 (-817 (-219)))) 109)) (-1690 (((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-1685 (((-219) (-1060 (-817 (-219)))) 107)) (-1686 (((-219) (-1060 (-817 (-219)))) 108)) (-1694 (((-219) (-400 (-536))) 27)) (-1682 (((-1129) (-371)) 73)) (-1665 (((-219) (-371)) 17)) (-1672 (((-371) (-1229 (-307 (-219)))) 154)) (-1666 (((-307 (-219)) (-307 (-371))) 23)) (-1670 (((-400 (-536)) (-307 (-219))) 53)) (-1674 (((-307 (-400 (-536))) (-307 (-219))) 69)) (-1679 (((-307 (-371)) (-307 (-219))) 98)) (-1671 (((-219) (-307 (-219))) 54)) (-1676 (((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) 64)) (-1675 (((-1060 (-817 (-219))) (-1060 (-817 (-219)))) 61)) (-1681 (((-1129) (-219)) 72)) (-1677 (((-677) (-219)) 90)) (-1669 (((-400 (-536)) (-219)) 55)) (-1693 (((-307 (-371)) (-219)) 49)) (-4325 (((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371))))) 43)) (-4156 (((-1009) (-620 (-1009))) 165) (((-1009) (-1009) (-1009)) 162)) (-1689 (((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-296) (-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-817 (-219)) (-817 (-371)))) (-15 -1668 ((-1060 (-817 (-219))) (-1060 (-817 (-371))))) (-15 -4325 ((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371)))))) (-15 -1669 ((-400 (-536)) (-219))) (-15 -1670 ((-400 (-536)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2984 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1229 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-536))) (-307 (-219)))) (-15 -1675 ((-1060 (-817 (-219))) (-1060 (-817 (-219))))) (-15 -1676 ((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-15 -1677 ((-677) (-219))) (-15 -1678 ((-1229 (-677)) (-620 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1229 (-307 (-371))) (-1229 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1682 ((-1129) (-371))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -4156 ((-1009) (-1009) (-1009))) (-15 -4156 ((-1009) (-620 (-1009)))) (-15 -1687 ((-1129) (-371))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))))) (-15 -1689 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-920 (-219)))) (-15 -1692 ((-219) (-920 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-536)))) (-15 -1695 ((-667 (-219)) (-620 (-219)) (-749))))) (T -296)) +((-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-296)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-400 (-536))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-620 (-1009))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-817 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-296)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-1229 (-307 (-371)))) (-5 *1 (-296)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1229 (-677))) (-5 *1 (-296)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-296)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *2 (-620 (-219))) (-5 *1 (-296)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-536)))) (-5 *1 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536)))) (-5 *1 (-296)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296)))) (-2984 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-536))) (-5 *1 (-296)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-536))) (-5 *1 (-296)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-620 (-1060 (-817 (-371))))) (-5 *2 (-620 (-1060 (-817 (-219))))) (-5 *1 (-296)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-371)))) (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-817 (-371))) (-5 *2 (-817 (-219))) (-5 *1 (-296)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) +(-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-817 (-219)) (-817 (-371)))) (-15 -1668 ((-1060 (-817 (-219))) (-1060 (-817 (-371))))) (-15 -4325 ((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371)))))) (-15 -1669 ((-400 (-536)) (-219))) (-15 -1670 ((-400 (-536)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2984 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1229 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-536))) (-307 (-219)))) (-15 -1675 ((-1060 (-817 (-219))) (-1060 (-817 (-219))))) (-15 -1676 ((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-15 -1677 ((-677) (-219))) (-15 -1678 ((-1229 (-677)) (-620 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1229 (-307 (-371))) (-1229 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1682 ((-1129) (-371))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -4156 ((-1009) (-1009) (-1009))) (-15 -4156 ((-1009) (-620 (-1009)))) (-15 -1687 ((-1129) (-371))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))))) (-15 -1689 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-920 (-219)))) (-15 -1692 ((-219) (-920 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-536)))) (-15 -1695 ((-667 (-219)) (-620 (-219)) (-749)))) +((-1696 (((-620 |#1|) (-620 |#1|)) 10))) +(((-297 |#1|) (-10 -7 (-15 -1696 ((-620 |#1|) (-620 |#1|)))) (-823)) (T -297)) +((-1696 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-823)) (-5 *1 (-297 *3))))) +(-10 -7 (-15 -1696 ((-620 |#1|) (-620 |#1|)))) +((-4313 (((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -4313 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) (-1023) (-1023)) (T -298)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-667 *6)) (-5 *1 (-298 *5 *6))))) +(-10 -7 (-15 -4313 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) +((-1700 (((-112) $ $) 11)) (-2889 (($ $ $) 15)) (-2888 (($ $ $) 14)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 44)) (-1697 (((-3 (-620 $) "failed") (-620 $) $) 53)) (-3490 (($ $ $) 21) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3815 (((-3 $ "failed") $ $) 17)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 46))) +(((-299 |#1|) (-10 -8 (-15 -1697 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3068 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -3069 ((-2 (|:| -4308 (-620 |#1|)) (|:| -2496 |#1|)) (-620 |#1|))) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299)) +NIL +(-10 -8 (-15 -1697 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3068 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -3069 ((-2 (|:| -4308 (-620 |#1|)) (|:| -2496 |#1|)) (-620 |#1|))) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) "failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-300) (-138)) (T -300)) -((-1611 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749)))) (-1505 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-300)))) (-3429 (*1 *1 *1 *1) (-4 *1 (-300))) (-3455 (*1 *1 *1 *1) (-4 *1 (-300))) (-3581 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) (-4 *1 (-300)))) (-3581 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1915 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-300))))) -(-13 (-894) (-10 -8 (-15 -1611 ((-112) $ $)) (-15 -1988 ((-749) $)) (-15 -1505 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -3429 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3581 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $)) (-15 -3581 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1915 ((-3 (-623 $) "failed") (-623 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-1553 (($ $ (-623 |#2|) (-623 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-287 |#2|)) 11) (($ $ (-623 (-287 |#2|))) NIL))) -(((-301 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|)))) (-302 |#2|) (-1069)) (T -301)) -NIL -(-10 -8 (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|)))) -((-1553 (($ $ (-623 |#1|) (-623 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-287 |#1|)) 11) (($ $ (-623 (-287 |#1|))) 10))) -(((-302 |#1|) (-138) (-1069)) (T -302)) -((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1069)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1069))))) -(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -1553 ($ $ (-287 |t#1|))) (-15 -1553 ($ $ (-623 (-287 |t#1|)))))) +((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749)))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-300)))) (-2888 (*1 *1 *1 *1) (-4 *1 (-300))) (-2889 (*1 *1 *1 *1) (-4 *1 (-300))) (-1698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-300)))) (-1698 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1697 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-300))))) +(-13 (-895) (-10 -8 (-15 -1700 ((-112) $ $)) (-15 -1699 ((-749) $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -1698 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -1698 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1697 ((-3 (-620 $) "failed") (-620 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-4122 (($ $ (-620 |#2|) (-620 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-620 (-286 |#2|))) NIL))) +(((-301 |#1| |#2|) (-10 -8 (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|)))) (-302 |#2|) (-1072)) (T -301)) +NIL +(-10 -8 (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|)))) +((-4122 (($ $ (-620 |#1|) (-620 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-620 (-286 |#1|))) 10))) +(((-302 |#1|) (-138) (-1072)) (T -302)) +((-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1072))))) +(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -4122 ($ $ (-286 |t#1|))) (-15 -4122 ($ $ (-620 (-286 |t#1|)))))) (((-505 |#1| |#1|) . T)) -((-1553 ((|#1| (-1 |#1| (-550)) (-1147 (-400 (-550)))) 25))) -(((-303 |#1|) (-10 -7 (-15 -1553 (|#1| (-1 |#1| (-550)) (-1147 (-400 (-550)))))) (-38 (-400 (-550)))) (T -303)) -((-1553 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1147 (-400 (-550)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-550))))))) -(-10 -7 (-15 -1553 (|#1| (-1 |#1| (-550)) (-1147 (-400 (-550)))))) -((-2221 (((-112) $ $) NIL)) (-1360 (((-550) $) 12)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 9)) (-2233 (((-837) $) 21) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-304) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -1360 ((-550) $))))) (T -304)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-304)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-304))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -1360 ((-550) $)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 7)) (-2264 (((-112) $ $) 9))) -(((-305) (-1069)) (T -305)) -NIL -(-1069) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 62)) (-3104 (((-1214 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-1214 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-550)))) (((-3 (-1213 |#2| |#3| |#4|) "failed") $) 25)) (-2202 (((-1214 |#1| |#2| |#3| |#4|) $) NIL) (((-1145) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-550)))) (((-550) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-550)))) (((-1213 |#2| |#3| |#4|) $) NIL)) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-1214 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1228 (-1214 |#1| |#2| |#3| |#4|)))) (-667 $) (-1228 $)) NIL) (((-667 (-1214 |#1| |#2| |#3| |#4|)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-1214 |#1| |#2| |#3| |#4|) $) 21)) (-1620 (((-3 $ "failed") $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1120)))) (-1712 (((-112) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2173 (($ $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2392 (($ (-1 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|)) $) NIL)) (-3038 (((-3 (-818 |#2|) "failed") $) 78)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-300)))) (-3925 (((-1214 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-1214 |#1| |#2| |#3| |#4|)) (-623 (-1214 |#1| |#2| |#3| |#4|))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-302 (-1214 |#1| |#2| |#3| |#4|)))) (($ $ (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-302 (-1214 |#1| |#2| |#3| |#4|)))) (($ $ (-287 (-1214 |#1| |#2| |#3| |#4|))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-302 (-1214 |#1| |#2| |#3| |#4|)))) (($ $ (-623 (-287 (-1214 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-302 (-1214 |#1| |#2| |#3| |#4|)))) (($ $ (-623 (-1145)) (-623 (-1214 |#1| |#2| |#3| |#4|))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-505 (-1145) (-1214 |#1| |#2| |#3| |#4|)))) (($ $ (-1145) (-1214 |#1| |#2| |#3| |#4|)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-505 (-1145) (-1214 |#1| |#2| |#3| |#4|))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-1214 |#1| |#2| |#3| |#4|)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-279 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1145)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-1 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-1214 |#1| |#2| |#3| |#4|) $) 17)) (-2451 (((-866 (-550)) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-596 (-526)))) (((-372) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-996))) (((-219) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3| |#4|) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-1214 |#1| |#2| |#3| |#4|)) 29) (($ (-1145)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-1012 (-1145)))) (($ (-1213 |#2| |#3| |#4|)) 36)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3| |#4|) (-883))) (|has| (-1214 |#1| |#2| |#3| |#4|) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-1214 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-535)))) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-798)))) (-2688 (($) 41 T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1145)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-874 (-1145)))) (($ $ (-1 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-1214 |#1| |#2| |#3| |#4|) (-825)))) (-2382 (($ $ $) 34) (($ (-1214 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|)) 31)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-1214 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1214 |#1| |#2| |#3| |#4|)) NIL))) -(((-306 |#1| |#2| |#3| |#4|) (-13 (-966 (-1214 |#1| |#2| |#3| |#4|)) (-1012 (-1213 |#2| |#3| |#4|)) (-10 -8 (-15 -3038 ((-3 (-818 |#2|) "failed") $)) (-15 -2233 ($ (-1213 |#2| |#3| |#4|))))) (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1167) (-423 |#1|)) (-1145) |#2|) (T -306)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1213 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) (-14 *6 *4) (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-3038 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) (-5 *2 (-818 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) (-14 *6 *4)))) -(-13 (-966 (-1214 |#1| |#2| |#3| |#4|)) (-1012 (-1213 |#2| |#3| |#4|)) (-10 -8 (-15 -3038 ((-3 (-818 |#2|) "failed") $)) (-15 -2233 ($ (-1213 |#2| |#3| |#4|))))) -((-2392 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2392 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-825) (-825)) (T -307)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6))))) -(-10 -7 (-15 -2392 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) -((-1570 (((-52) |#2| (-287 |#2|) (-749)) 33) (((-52) |#2| (-287 |#2|)) 24) (((-52) |#2| (-749)) 28) (((-52) |#2|) 25) (((-52) (-1145)) 21)) (-2744 (((-52) |#2| (-287 |#2|) (-400 (-550))) 51) (((-52) |#2| (-287 |#2|)) 48) (((-52) |#2| (-400 (-550))) 50) (((-52) |#2|) 49) (((-52) (-1145)) 47)) (-1595 (((-52) |#2| (-287 |#2|) (-400 (-550))) 46) (((-52) |#2| (-287 |#2|)) 43) (((-52) |#2| (-400 (-550))) 45) (((-52) |#2|) 44) (((-52) (-1145)) 42)) (-1583 (((-52) |#2| (-287 |#2|) (-550)) 39) (((-52) |#2| (-287 |#2|)) 35) (((-52) |#2| (-550)) 38) (((-52) |#2|) 36) (((-52) (-1145)) 34))) -(((-308 |#1| |#2|) (-10 -7 (-15 -1570 ((-52) (-1145))) (-15 -1570 ((-52) |#2|)) (-15 -1570 ((-52) |#2| (-749))) (-15 -1570 ((-52) |#2| (-287 |#2|))) (-15 -1570 ((-52) |#2| (-287 |#2|) (-749))) (-15 -1583 ((-52) (-1145))) (-15 -1583 ((-52) |#2|)) (-15 -1583 ((-52) |#2| (-550))) (-15 -1583 ((-52) |#2| (-287 |#2|))) (-15 -1583 ((-52) |#2| (-287 |#2|) (-550))) (-15 -1595 ((-52) (-1145))) (-15 -1595 ((-52) |#2|)) (-15 -1595 ((-52) |#2| (-400 (-550)))) (-15 -1595 ((-52) |#2| (-287 |#2|))) (-15 -1595 ((-52) |#2| (-287 |#2|) (-400 (-550)))) (-15 -2744 ((-52) (-1145))) (-15 -2744 ((-52) |#2|)) (-15 -2744 ((-52) |#2| (-400 (-550)))) (-15 -2744 ((-52) |#2| (-287 |#2|))) (-15 -2744 ((-52) |#2| (-287 |#2|) (-400 (-550))))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -308)) -((-2744 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-2744 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1167) (-423 *4))))) (-1595 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1167) (-423 *4))))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-550)) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1167) (-423 *4))))) (-1570 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-1570 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1167) (-423 *4)))))) -(-10 -7 (-15 -1570 ((-52) (-1145))) (-15 -1570 ((-52) |#2|)) (-15 -1570 ((-52) |#2| (-749))) (-15 -1570 ((-52) |#2| (-287 |#2|))) (-15 -1570 ((-52) |#2| (-287 |#2|) (-749))) (-15 -1583 ((-52) (-1145))) (-15 -1583 ((-52) |#2|)) (-15 -1583 ((-52) |#2| (-550))) (-15 -1583 ((-52) |#2| (-287 |#2|))) (-15 -1583 ((-52) |#2| (-287 |#2|) (-550))) (-15 -1595 ((-52) (-1145))) (-15 -1595 ((-52) |#2|)) (-15 -1595 ((-52) |#2| (-400 (-550)))) (-15 -1595 ((-52) |#2| (-287 |#2|))) (-15 -1595 ((-52) |#2| (-287 |#2|) (-400 (-550)))) (-15 -2744 ((-52) (-1145))) (-15 -2744 ((-52) |#2|)) (-15 -2744 ((-52) |#2| (-400 (-550)))) (-15 -2744 ((-52) |#2| (-287 |#2|))) (-15 -2744 ((-52) |#2| (-287 |#2|) (-400 (-550))))) -((-2221 (((-112) $ $) NIL)) (-1510 (((-623 $) $ (-1145)) NIL (|has| |#1| (-542))) (((-623 $) $) NIL (|has| |#1| (-542))) (((-623 $) (-1141 $) (-1145)) NIL (|has| |#1| (-542))) (((-623 $) (-1141 $)) NIL (|has| |#1| (-542))) (((-623 $) (-926 $)) NIL (|has| |#1| (-542)))) (-2966 (($ $ (-1145)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1141 $) (-1145)) NIL (|has| |#1| (-542))) (($ (-1141 $)) NIL (|has| |#1| (-542))) (($ (-926 $)) NIL (|has| |#1| (-542)))) (-3378 (((-112) $) 27 (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))))) (-1516 (((-623 (-1145)) $) 351)) (-1705 (((-400 (-1141 $)) $ (-594 $)) NIL (|has| |#1| (-542)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-1608 (((-623 (-594 $)) $) NIL)) (-4160 (($ $) 161 (|has| |#1| (-542)))) (-2820 (($ $) 137 (|has| |#1| (-542)))) (-1846 (($ $ (-1061 $)) 222 (|has| |#1| (-542))) (($ $ (-1145)) 218 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) NIL (-1489 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))))) (-4230 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) 368) (($ $ (-623 (-594 $)) (-623 $)) 412)) (-4050 (((-411 (-1141 $)) (-1141 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-2318 (($ $) NIL (|has| |#1| (-542)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-542)))) (-1745 (($ $) NIL (|has| |#1| (-542)))) (-1611 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4137 (($ $) 157 (|has| |#1| (-542)))) (-2796 (($ $) 133 (|has| |#1| (-542)))) (-4314 (($ $ (-550)) 72 (|has| |#1| (-542)))) (-4183 (($ $) 165 (|has| |#1| (-542)))) (-2844 (($ $) 141 (|has| |#1| (-542)))) (-2991 (($) NIL (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081))) CONST)) (-1600 (((-623 $) $ (-1145)) NIL (|has| |#1| (-542))) (((-623 $) $) NIL (|has| |#1| (-542))) (((-623 $) (-1141 $) (-1145)) NIL (|has| |#1| (-542))) (((-623 $) (-1141 $)) NIL (|has| |#1| (-542))) (((-623 $) (-926 $)) NIL (|has| |#1| (-542)))) (-3217 (($ $ (-1145)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1141 $) (-1145)) 124 (|has| |#1| (-542))) (($ (-1141 $)) NIL (|has| |#1| (-542))) (($ (-926 $)) NIL (|has| |#1| (-542)))) (-2288 (((-3 (-594 $) "failed") $) 17) (((-3 (-1145) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-926 |#1|)) "failed") $) NIL (|has| |#1| (-542))) (((-3 (-926 |#1|) "failed") $) NIL (|has| |#1| (-1021))) (((-3 (-400 (-550)) "failed") $) 46 (-1489 (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-2202 (((-594 $) $) 11) (((-1145) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-926 |#1|)) $) NIL (|has| |#1| (-542))) (((-926 |#1|) $) NIL (|has| |#1| (-1021))) (((-400 (-550)) $) 306 (-1489 (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-3455 (($ $ $) NIL (|has| |#1| (-542)))) (-3756 (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 117 (|has| |#1| (-1021))) (((-667 |#1|) (-667 $)) 107 (|has| |#1| (-1021))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))) (-2924 (($ $) 89 (|has| |#1| (-542)))) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081))))) (-3429 (($ $ $) NIL (|has| |#1| (-542)))) (-3141 (($ $ (-1061 $)) 226 (|has| |#1| (-542))) (($ $ (-1145)) 224 (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-542)))) (-1568 (((-112) $) NIL (|has| |#1| (-542)))) (-3532 (($ $ $) 192 (|has| |#1| (-542)))) (-4187 (($) 127 (|has| |#1| (-542)))) (-4083 (($ $ $) 212 (|has| |#1| (-542)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 374 (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 381 (|has| |#1| (-860 (-372))))) (-1465 (($ $) NIL) (($ (-623 $)) NIL)) (-3745 (((-623 (-114)) $) NIL)) (-1355 (((-114) (-114)) 267)) (-2419 (((-112) $) 25 (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081))))) (-1286 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1484 (($ $) 71 (|has| |#1| (-1021)))) (-4153 (((-1094 |#1| (-594 $)) $) 84 (|has| |#1| (-1021)))) (-2685 (((-112) $) 64 (|has| |#1| (-542)))) (-1893 (($ $ (-550)) NIL (|has| |#1| (-542)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-542)))) (-1333 (((-1141 $) (-594 $)) 268 (|has| $ (-1021)))) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 $ $) (-594 $)) 408)) (-2041 (((-3 (-594 $) "failed") $) NIL)) (-3080 (($ $) 131 (|has| |#1| (-542)))) (-3431 (($ $) 237 (|has| |#1| (-542)))) (-3231 (($ (-623 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-2369 (((-1127) $) NIL)) (-1694 (((-623 (-594 $)) $) 49)) (-4232 (($ (-114) $) NIL) (($ (-114) (-623 $)) 413)) (-3833 (((-3 (-623 $) "failed") $) NIL (|has| |#1| (-1081)))) (-1795 (((-3 (-2 (|:| |val| $) (|:| -3068 (-550))) "failed") $) NIL (|has| |#1| (-1021)))) (-3017 (((-3 (-623 $) "failed") $) 416 (|has| |#1| (-25)))) (-2934 (((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 $))) "failed") $) 420 (|has| |#1| (-25)))) (-2891 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $) NIL (|has| |#1| (-1081))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-114)) NIL (|has| |#1| (-1021))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-1145)) NIL (|has| |#1| (-1021)))) (-2366 (((-112) $ (-114)) NIL) (((-112) $ (-1145)) 53)) (-1619 (($ $) NIL (-1489 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-1774 (($ $ (-1145)) 241 (|has| |#1| (-542))) (($ $ (-1061 $)) 243 (|has| |#1| (-542)))) (-1293 (((-749) $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) 43)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 288 (|has| |#1| (-542)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-4087 (((-112) $ $) NIL) (((-112) $ (-1145)) NIL)) (-3634 (($ $ (-1145)) 216 (|has| |#1| (-542))) (($ $) 214 (|has| |#1| (-542)))) (-3643 (($ $) 208 (|has| |#1| (-542)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-1735 (((-411 $) $) NIL (|has| |#1| (-542)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-542)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-542)))) (-1644 (($ $) 129 (|has| |#1| (-542)))) (-3725 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) 407) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1145) (-1 $ (-623 $))) NIL) (($ $ (-1145) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) 361) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1145)) NIL (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-596 (-526)))) (($ $) NIL (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1145)) 349 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-114)) (-623 $) (-1145)) 348 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ $))) NIL (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ (-623 $)))) NIL (|has| |#1| (-1021))) (($ $ (-1145) (-749) (-1 $ (-623 $))) NIL (|has| |#1| (-1021))) (($ $ (-1145) (-749) (-1 $ $)) NIL (|has| |#1| (-1021)))) (-1988 (((-749) $) NIL (|has| |#1| (-542)))) (-2743 (($ $) 229 (|has| |#1| (-542)))) (-2757 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-1532 (($ $) NIL) (($ $ $) NIL)) (-2779 (($ $) 239 (|has| |#1| (-542)))) (-1706 (($ $) 190 (|has| |#1| (-542)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-1021))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-1021))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-1021))) (($ $ (-1145)) NIL (|has| |#1| (-1021)))) (-3608 (($ $) 73 (|has| |#1| (-542)))) (-4163 (((-1094 |#1| (-594 $)) $) 86 (|has| |#1| (-542)))) (-3832 (($ $) 304 (|has| $ (-1021)))) (-4194 (($ $) 167 (|has| |#1| (-542)))) (-2856 (($ $) 143 (|has| |#1| (-542)))) (-4171 (($ $) 163 (|has| |#1| (-542)))) (-2832 (($ $) 139 (|has| |#1| (-542)))) (-4149 (($ $) 159 (|has| |#1| (-542)))) (-2807 (($ $) 135 (|has| |#1| (-542)))) (-2451 (((-866 (-550)) $) NIL (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| |#1| (-596 (-866 (-372))))) (($ (-411 $)) NIL (|has| |#1| (-542))) (((-526) $) 346 (|has| |#1| (-596 (-526))))) (-3018 (($ $ $) NIL (|has| |#1| (-465)))) (-1353 (($ $ $) NIL (|has| |#1| (-465)))) (-2233 (((-837) $) 406) (($ (-594 $)) 397) (($ (-1145)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-542))) (($ (-48)) 299 (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550))))) (($ (-1094 |#1| (-594 $))) 88 (|has| |#1| (-1021))) (($ (-400 |#1|)) NIL (|has| |#1| (-542))) (($ (-926 (-400 |#1|))) NIL (|has| |#1| (-542))) (($ (-400 (-926 (-400 |#1|)))) NIL (|has| |#1| (-542))) (($ (-400 (-926 |#1|))) NIL (|has| |#1| (-542))) (($ (-926 |#1|)) NIL (|has| |#1| (-1021))) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-542)) (|has| |#1| (-1012 (-400 (-550)))))) (($ (-550)) 34 (-1489 (|has| |#1| (-1012 (-550))) (|has| |#1| (-1021))))) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL (|has| |#1| (-1021)))) (-3790 (($ $) NIL) (($ (-623 $)) NIL)) (-1437 (($ $ $) 210 (|has| |#1| (-542)))) (-3504 (($ $ $) 196 (|has| |#1| (-542)))) (-3966 (($ $ $) 200 (|has| |#1| (-542)))) (-1744 (($ $ $) 194 (|has| |#1| (-542)))) (-2116 (($ $ $) 198 (|has| |#1| (-542)))) (-1905 (((-112) (-114)) 9)) (-4233 (($ $) 173 (|has| |#1| (-542)))) (-2893 (($ $) 149 (|has| |#1| (-542)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) 169 (|has| |#1| (-542)))) (-2869 (($ $) 145 (|has| |#1| (-542)))) (-4255 (($ $) 177 (|has| |#1| (-542)))) (-4117 (($ $) 153 (|has| |#1| (-542)))) (-4282 (($ (-1145) $) NIL) (($ (-1145) $ $) NIL) (($ (-1145) $ $ $) NIL) (($ (-1145) $ $ $ $) NIL) (($ (-1145) (-623 $)) NIL)) (-2577 (($ $) 204 (|has| |#1| (-542)))) (-1850 (($ $) 202 (|has| |#1| (-542)))) (-3363 (($ $) 179 (|has| |#1| (-542)))) (-4127 (($ $) 155 (|has| |#1| (-542)))) (-4244 (($ $) 175 (|has| |#1| (-542)))) (-2905 (($ $) 151 (|has| |#1| (-542)))) (-4218 (($ $) 171 (|has| |#1| (-542)))) (-2880 (($ $) 147 (|has| |#1| (-542)))) (-4188 (($ $) 182 (|has| |#1| (-542)))) (-2688 (($) 20 (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))) CONST)) (-2080 (($ $) 233 (|has| |#1| (-542)))) (-2700 (($) 22 (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081))) CONST)) (-3257 (($ $) 184 (|has| |#1| (-542))) (($ $ $) 186 (|has| |#1| (-542)))) (-1779 (($ $) 231 (|has| |#1| (-542)))) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-1021))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-1021))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-1021))) (($ $ (-1145)) NIL (|has| |#1| (-1021)))) (-3545 (($ $) 235 (|has| |#1| (-542)))) (-3044 (($ $ $) 188 (|has| |#1| (-542)))) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 81)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 80)) (-2382 (($ (-1094 |#1| (-594 $)) (-1094 |#1| (-594 $))) 98 (|has| |#1| (-542))) (($ $ $) 42 (-1489 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2370 (($ $ $) 40 (-1489 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))) (($ $) 29 (-1489 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))))) (-2358 (($ $ $) 38 (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))))) (** (($ $ $) 66 (|has| |#1| (-542))) (($ $ (-400 (-550))) 301 (|has| |#1| (-542))) (($ $ (-550)) 76 (-1489 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-749)) 74 (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081)))) (($ $ (-895)) 78 (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081))))) (* (($ (-400 (-550)) $) NIL (|has| |#1| (-542))) (($ $ (-400 (-550))) NIL (|has| |#1| (-542))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1489 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) (|has| |#1| (-1081)))) (($ (-550) $) 32 (-1489 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))) (($ (-749) $) NIL (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))) (($ (-895) $) NIL (-1489 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))))))) -(((-309 |#1|) (-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1167)) (-6 (-158)) (-6 (-609)) (-6 (-1108)) (-15 -2924 ($ $)) (-15 -2685 ((-112) $)) (-15 -4314 ($ $ (-550))) (IF (|has| |#1| (-444)) (PROGN (-15 -2182 ((-411 (-1141 $)) (-1141 $))) (-15 -4050 ((-411 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-550))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) (-825)) (T -309)) -((-2924 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-542)) (-4 *2 (-825)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-411 (-1141 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) (-4050 (*1 *2 *3) (-12 (-5 *2 (-411 (-1141 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825))))) -(-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1167)) (-6 (-158)) (-6 (-609)) (-6 (-1108)) (-15 -2924 ($ $)) (-15 -2685 ((-112) $)) (-15 -4314 ($ $ (-550))) (IF (|has| |#1| (-444)) (PROGN (-15 -2182 ((-411 (-1141 $)) (-1141 $))) (-15 -4050 ((-411 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-550))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) -((-2165 (((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)) 88) (((-52) |#2| (-114) (-287 |#2|) (-287 |#2|)) 84) (((-52) |#2| (-114) (-287 |#2|) |#2|) 86) (((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|) 87) (((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|))) 80) (((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|)) 82) (((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|)) 83) (((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|))) 81) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|)) 89) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|)) 85))) -(((-310 |#1| |#2|) (-10 -7 (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -2165 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)))) (-13 (-825) (-542) (-596 (-526))) (-423 |#1|)) (T -310)) -((-2165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-623 *3)) (-4 *3 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))) (-2165 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2165 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2165 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *5)))) (-2165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-114))) (-5 *6 (-623 (-287 *8))) (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-2165 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 (-287 *8))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *8)) (-5 *6 (-623 *8)) (-4 *8 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-2165 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2165 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-623 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2165 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) (-4 *5 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *6))))) -(-10 -7 (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -2165 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -2165 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -2165 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -2165 ((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)))) -((-1965 (((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550) (-1127)) 46) (((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550)) 47) (((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550) (-1127)) 43) (((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550)) 44)) (-2390 (((-1 (-219) (-219)) (-219)) 45))) -(((-311) (-10 -7 (-15 -2390 ((-1 (-219) (-219)) (-219))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550) (-1127))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550) (-1127))))) (T -311)) -((-1965 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1063 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *8 (-1127)) (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) (-1965 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1063 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) (-1965 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1063 (-219))) (-5 *6 (-550)) (-5 *7 (-1127)) (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) (-1965 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1063 (-219))) (-5 *6 (-550)) (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) (-2390 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) -(-10 -7 (-15 -2390 ((-1 (-219) (-219)) (-219))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-1 (-219) (-219)) (-550) (-1127))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550))) (-15 -1965 ((-1177 (-900)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-219) (-550) (-1127)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 25)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 20)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) 32)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) 16)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) NIL) (($ $ (-400 (-550))) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-400 (-550))) NIL) (($ $ (-1051) (-400 (-550))) NIL) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167)))))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3417 (((-400 (-550)) $) 17)) (-2684 (($ (-1213 |#1| |#2| |#3|)) 11)) (-3068 (((-1213 |#1| |#2| |#3|) $) 12)) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-3661 (((-400 (-550)) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 10)) (-2233 (((-837) $) 38) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) 30)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) NIL)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 27)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 33)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-312 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-770) (-10 -8 (-15 -2684 ($ (-1213 |#1| |#2| |#3|))) (-15 -3068 ((-1213 |#1| |#2| |#3|) $)) (-15 -3417 ((-400 (-550)) $)))) (-13 (-356) (-825)) (-1145) |#1|) (T -312)) -((-2684 (*1 *1 *2) (-12 (-5 *2 (-1213 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1145)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1213 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1145)) (-14 *5 *3))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1145)) (-14 *5 *3)))) -(-13 (-1209 |#1|) (-770) (-10 -8 (-15 -2684 ($ (-1213 |#1| |#2| |#3|))) (-15 -3068 ((-1213 |#1| |#2| |#3|) $)) (-15 -3417 ((-400 (-550)) $)))) -((-1893 (((-2 (|:| -3068 (-749)) (|:| -4304 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749)) 24)) (-3080 (((-623 (-2 (|:| -4304 (-749)) (|:| |logand| |#1|))) (-411 |#1|)) 28))) -(((-313 |#1|) (-10 -7 (-15 -1893 ((-2 (|:| -3068 (-749)) (|:| -4304 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749))) (-15 -3080 ((-623 (-2 (|:| -4304 (-749)) (|:| |logand| |#1|))) (-411 |#1|)))) (-542)) (T -313)) -((-3080 (*1 *2 *3) (-12 (-5 *3 (-411 *4)) (-4 *4 (-542)) (-5 *2 (-623 (-2 (|:| -4304 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *5)) (-4 *5 (-542)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *5) (|:| |radicand| (-623 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-749))))) -(-10 -7 (-15 -1893 ((-2 (|:| -3068 (-749)) (|:| -4304 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749))) (-15 -3080 ((-623 (-2 (|:| -4304 (-749)) (|:| |logand| |#1|))) (-411 |#1|)))) -((-1516 (((-623 |#2|) (-1141 |#4|)) 43)) (-4022 ((|#3| (-550)) 46)) (-3008 (((-1141 |#4|) (-1141 |#3|)) 30)) (-2399 (((-1141 |#4|) (-1141 |#4|) (-550)) 56)) (-2396 (((-1141 |#3|) (-1141 |#4|)) 21)) (-3661 (((-623 (-749)) (-1141 |#4|) (-623 |#2|)) 40)) (-2943 (((-1141 |#3|) (-1141 |#4|) (-623 |#2|) (-623 |#3|)) 35))) -(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2943 ((-1141 |#3|) (-1141 |#4|) (-623 |#2|) (-623 |#3|))) (-15 -3661 ((-623 (-749)) (-1141 |#4|) (-623 |#2|))) (-15 -1516 ((-623 |#2|) (-1141 |#4|))) (-15 -2396 ((-1141 |#3|) (-1141 |#4|))) (-15 -3008 ((-1141 |#4|) (-1141 |#3|))) (-15 -2399 ((-1141 |#4|) (-1141 |#4|) (-550))) (-15 -4022 (|#3| (-550)))) (-771) (-825) (-1021) (-923 |#3| |#1| |#2|)) (T -314)) -((-4022 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1021)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-923 *2 *4 *5)))) (-2399 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *7)) (-5 *3 (-550)) (-4 *7 (-923 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-923 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-5 *2 (-1141 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-923 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-5 *2 (-623 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *8)) (-5 *4 (-623 *6)) (-4 *6 (-825)) (-4 *8 (-923 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1021)) (-5 *2 (-623 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) (-2943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 *8)) (-4 *7 (-825)) (-4 *8 (-1021)) (-4 *9 (-923 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1141 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) -(-10 -7 (-15 -2943 ((-1141 |#3|) (-1141 |#4|) (-623 |#2|) (-623 |#3|))) (-15 -3661 ((-623 (-749)) (-1141 |#4|) (-623 |#2|))) (-15 -1516 ((-623 |#2|) (-1141 |#4|))) (-15 -2396 ((-1141 |#3|) (-1141 |#4|))) (-15 -3008 ((-1141 |#4|) (-1141 |#3|))) (-15 -2399 ((-1141 |#4|) (-1141 |#4|) (-550))) (-15 -4022 (|#3| (-550)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 14)) (-4222 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-550)))) $) 18)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749) $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-3325 ((|#1| $ (-550)) NIL)) (-2536 (((-550) $ (-550)) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-1453 (($ (-1 |#1| |#1|) $) NIL)) (-3067 (($ (-1 (-550) (-550)) $) 10)) (-2369 (((-1127) $) NIL)) (-3528 (($ $ $) NIL (|has| (-550) (-770)))) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (($ |#1|) NIL)) (-1708 (((-550) |#1| $) NIL)) (-2688 (($) 15 T CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) 21 (|has| |#1| (-825)))) (-2370 (($ $) 11) (($ $ $) 20)) (-2358 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL) (($ (-550) |#1|) 19))) -(((-315 |#1|) (-13 (-21) (-696 (-550)) (-316 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1069)) (T -315)) -NIL -(-13 (-21) (-696 (-550)) (-316 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-4222 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))) $) 27)) (-1993 (((-3 $ "failed") $ $) 19)) (-3828 (((-749) $) 28)) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 32)) (-2202 ((|#1| $) 31)) (-3325 ((|#1| $ (-550)) 25)) (-2536 ((|#2| $ (-550)) 26)) (-1453 (($ (-1 |#1| |#1|) $) 22)) (-3067 (($ (-1 |#2| |#2|) $) 23)) (-2369 (((-1127) $) 9)) (-3528 (($ $ $) 21 (|has| |#2| (-770)))) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ |#1|) 33)) (-1708 ((|#2| |#1| $) 24)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2358 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ |#2| |#1|) 29))) -(((-316 |#1| |#2|) (-138) (-1069) (-130)) (T -316)) -((-2358 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-130)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)) (-5 *2 (-749)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)) (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))))) (-2536 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-130)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1069)))) (-1708 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-130)))) (-3067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)))) (-3528 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-130)) (-4 *3 (-770))))) -(-13 (-130) (-1012 |t#1|) (-10 -8 (-15 -2358 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3828 ((-749) $)) (-15 -4222 ((-623 (-2 (|:| |gen| |t#1|) (|:| -1644 |t#2|))) $)) (-15 -2536 (|t#2| $ (-550))) (-15 -3325 (|t#1| $ (-550))) (-15 -1708 (|t#2| |t#1| $)) (-15 -3067 ($ (-1 |t#2| |t#2|) $)) (-15 -1453 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-770)) (-15 -3528 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1012 |#1|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-4222 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749) $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-3325 ((|#1| $ (-550)) NIL)) (-2536 (((-749) $ (-550)) NIL)) (-1453 (($ (-1 |#1| |#1|) $) NIL)) (-3067 (($ (-1 (-749) (-749)) $) NIL)) (-2369 (((-1127) $) NIL)) (-3528 (($ $ $) NIL (|has| (-749) (-770)))) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (($ |#1|) NIL)) (-1708 (((-749) |#1| $) NIL)) (-2688 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2358 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-749) |#1|) NIL))) -(((-317 |#1|) (-316 |#1| (-749)) (-1069)) (T -317)) +((-4122 ((|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))) 25))) +(((-303 |#1|) (-10 -7 (-15 -4122 (|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))))) (-38 (-400 (-536)))) (T -303)) +((-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-536))) (-5 *4 (-1149 (-400 (-536)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-536))))))) +(-10 -7 (-15 -4122 (|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 9))) +(((-304) (-1072)) (T -304)) +NIL +(-1072) +((-2893 (((-112) $ $) NIL)) (-3855 (((-536) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-305) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3855 ((-536) $))))) (T -305)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-305)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-305))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3855 ((-536) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 62)) (-3459 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1216 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-1210 |#2| |#3| |#4|) #2#) $) 25)) (-3502 (((-1216 |#1| |#2| |#3| |#4|) $) NIL) (((-1147) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-536) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-1216 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1229 (-1216 |#1| |#2| |#3| |#4|)))) (-667 $) (-1229 $)) NIL) (((-667 (-1216 |#1| |#2| |#3| |#4|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-1216 |#1| |#2| |#3| |#4|) $) 21)) (-3798 (((-3 $ "failed") $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3673 (($ $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-4313 (($ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) $) NIL)) (-4138 (((-3 (-817 |#2|) "failed") $) 78)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-300)))) (-3460 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-1216 |#1| |#2| |#3| |#4|)) (-620 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-620 (-286 (-1216 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-620 (-1147)) (-620 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-505 (-1147) (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-1147) (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-505 (-1147) (-1216 |#1| |#2| |#3| |#4|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-279 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-1216 |#1| |#2| |#3| |#4|) $) 17)) (-4325 (((-864 (-536)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-525)))) (((-371) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-994))) (((-219) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1216 |#1| |#2| |#3| |#4|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-1216 |#1| |#2| |#3| |#4|)) 29) (($ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (($ (-1210 |#2| |#3| |#4|)) 36)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1216 |#1| |#2| |#3| |#4|) (-884))) (|has| (-1216 |#1| |#2| |#3| |#4|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-2986 (($) 41 T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-4303 (($ $ $) 34) (($ (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) 31)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-1216 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1216 |#1| |#2| |#3| |#4|)) NIL))) +(((-306 |#1| |#2| |#3| |#4|) (-13 (-965 (-1216 |#1| |#2| |#3| |#4|)) (-1012 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4312 ($ (-1210 |#2| |#3| |#4|))))) (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -306)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4) (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-4138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-817 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) +(-13 (-965 (-1216 |#1| |#2| |#3| |#4|)) (-1012 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4312 ($ (-1210 |#2| |#3| |#4|))))) +((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) $ (-1147)) NIL (|has| |#1| (-543))) (((-620 $) $) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $)) NIL (|has| |#1| (-543))) (((-620 $) (-920 $)) NIL (|has| |#1| (-543)))) (-1263 (($ $ (-1147)) NIL (|has| |#1| (-543))) (($ $) NIL (|has| |#1| (-543))) (($ (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (($ (-1141 $)) NIL (|has| |#1| (-543))) (($ (-920 $)) NIL (|has| |#1| (-543)))) (-3534 (((-112) $) 27 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-3412 (((-620 (-1147)) $) 351)) (-3414 (((-400 (-1141 $)) $ (-593 $)) NIL (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1655 (((-620 (-593 $)) $) NIL)) (-3841 (($ $) 161 (|has| |#1| (-543)))) (-3997 (($ $) 137 (|has| |#1| (-543)))) (-1417 (($ $ (-1063 $)) 222 (|has| |#1| (-543))) (($ $ (-1147)) 218 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) 368) (($ $ (-620 (-593 $)) (-620 $)) 412)) (-3035 (((-398 (-1141 $)) (-1141 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-543))))) (-4129 (($ $) NIL (|has| |#1| (-543)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-543)))) (-3365 (($ $) NIL (|has| |#1| (-543)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3839 (($ $) 157 (|has| |#1| (-543)))) (-3996 (($ $) 133 (|has| |#1| (-543)))) (-1701 (($ $ (-536)) 72 (|has| |#1| (-543)))) (-3843 (($ $) 165 (|has| |#1| (-543)))) (-3995 (($ $) 141 (|has| |#1| (-543)))) (-3891 (($) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))) CONST)) (-1264 (((-620 $) $ (-1147)) NIL (|has| |#1| (-543))) (((-620 $) $) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $)) NIL (|has| |#1| (-543))) (((-620 $) (-920 $)) NIL (|has| |#1| (-543)))) (-3529 (($ $ (-1147)) NIL (|has| |#1| (-543))) (($ $) NIL (|has| |#1| (-543))) (($ (-1141 $) (-1147)) 124 (|has| |#1| (-543))) (($ (-1141 $)) NIL (|has| |#1| (-543))) (($ (-920 $)) NIL (|has| |#1| (-543)))) (-3503 (((-3 (-593 $) #1="failed") $) 17) (((-3 (-1147) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (((-3 (-536) #1#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-920 |#1|)) #1#) $) NIL (|has| |#1| (-543))) (((-3 (-920 |#1|) #1#) $) NIL (|has| |#1| (-1023))) (((-3 (-400 (-536)) #1#) $) 46 (-3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-593 $) $) 11) (((-1147) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-920 |#1|)) $) NIL (|has| |#1| (-543))) (((-920 |#1|) $) NIL (|has| |#1| (-1023))) (((-400 (-536)) $) 306 (-3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) NIL (|has| |#1| (-543)))) (-2357 (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 117 (|has| |#1| (-1023))) (((-667 |#1|) (-667 $)) 107 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (-4197 (($ $) 89 (|has| |#1| (-543)))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (-2888 (($ $ $) NIL (|has| |#1| (-543)))) (-4299 (($ $ (-1063 $)) 226 (|has| |#1| (-543))) (($ $ (-1147)) 224 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-543)))) (-4081 (((-112) $) NIL (|has| |#1| (-543)))) (-3740 (($ $ $) 192 (|has| |#1| (-543)))) (-3985 (($) 127 (|has| |#1| (-543)))) (-1414 (($ $ $) 212 (|has| |#1| (-543)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 374 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 381 (|has| |#1| (-860 (-371))))) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) 267)) (-2497 (((-112) $) 25 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3324 (($ $) 71 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 84 (|has| |#1| (-1023)))) (-1702 (((-112) $) 64 (|has| |#1| (-543)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-543)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-543)))) (-1652 (((-1141 $) (-593 $)) 268 (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) 408)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-4297 (($ $) 131 (|has| |#1| (-543)))) (-2336 (($ $) 237 (|has| |#1| (-543)))) (-2008 (($ (-620 $)) NIL (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) 49)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) 413)) (-3151 (((-3 (-620 $) #3="failed") $) NIL (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) #3#) $) NIL (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) #3#) $) 416 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $) NIL (|has| |#1| (-1083))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-113)) NIL (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-1147)) NIL (|has| |#1| (-1023)))) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) 53)) (-2729 (($ $) NIL (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-3160 (($ $ (-1147)) 241 (|has| |#1| (-543))) (($ $ (-1063 $)) 243 (|has| |#1| (-543)))) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 43)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 288 (|has| |#1| (-543)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-1418 (($ $ (-1147)) 216 (|has| |#1| (-543))) (($ $) 214 (|has| |#1| (-543)))) (-1412 (($ $) 208 (|has| |#1| (-543)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-543))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-543))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-543)))) (-4298 (($ $) 129 (|has| |#1| (-543)))) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) 407) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) 361) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1147)) NIL (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-596 (-525)))) (($ $) NIL (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 349 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-113)) (-620 $) (-1147)) 348 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ $)) NIL (|has| |#1| (-1023)))) (-1699 (((-749) $) NIL (|has| |#1| (-543)))) (-2334 (($ $) 229 (|has| |#1| (-543)))) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-1658 (($ $) NIL) (($ $ $) NIL)) (-2335 (($ $) 239 (|has| |#1| (-543)))) (-3739 (($ $) 190 (|has| |#1| (-543)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-1023))) (($ $ (-1147)) NIL (|has| |#1| (-1023)))) (-3323 (($ $) 73 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 86 (|has| |#1| (-543)))) (-3531 (($ $) 304 (|has| $ (-1023)))) (-3844 (($ $) 167 (|has| |#1| (-543)))) (-3994 (($ $) 143 (|has| |#1| (-543)))) (-3842 (($ $) 163 (|has| |#1| (-543)))) (-3993 (($ $) 139 (|has| |#1| (-543)))) (-3840 (($ $) 159 (|has| |#1| (-543)))) (-3992 (($ $) 135 (|has| |#1| (-543)))) (-4325 (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (($ (-398 $)) NIL (|has| |#1| (-543))) (((-525) $) 346 (|has| |#1| (-596 (-525))))) (-3337 (($ $ $) NIL (|has| |#1| (-465)))) (-2681 (($ $ $) NIL (|has| |#1| (-465)))) (-4312 (((-838) $) 406) (($ (-593 $)) 397) (($ (-1147)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-543))) (($ (-48)) 299 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (($ (-1096 |#1| (-593 $))) 88 (|has| |#1| (-1023))) (($ (-400 |#1|)) NIL (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) NIL (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) NIL (|has| |#1| (-543))) (($ (-400 (-920 |#1|))) NIL (|has| |#1| (-543))) (($ (-920 |#1|)) NIL (|has| |#1| (-1023))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-543)) (|has| |#1| (-1012 (-400 (-536)))))) (($ (-536)) 34 (-3886 (|has| |#1| (-1012 (-536))) (|has| |#1| (-1023))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL (|has| |#1| (-1023)))) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-3432 (($ $ $) 210 (|has| |#1| (-543)))) (-3743 (($ $ $) 196 (|has| |#1| (-543)))) (-3745 (($ $ $) 200 (|has| |#1| (-543)))) (-3742 (($ $ $) 194 (|has| |#1| (-543)))) (-3744 (($ $ $) 198 (|has| |#1| (-543)))) (-2333 (((-112) (-113)) 9)) (-3847 (($ $) 173 (|has| |#1| (-543)))) (-3835 (($ $) 149 (|has| |#1| (-543)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 169 (|has| |#1| (-543)))) (-3833 (($ $) 145 (|has| |#1| (-543)))) (-3849 (($ $) 177 (|has| |#1| (-543)))) (-3837 (($ $) 153 (|has| |#1| (-543)))) (-1909 (($ (-1147) $) NIL) (($ (-1147) $ $) NIL) (($ (-1147) $ $ $) NIL) (($ (-1147) $ $ $ $) NIL) (($ (-1147) (-620 $)) NIL)) (-3747 (($ $) 204 (|has| |#1| (-543)))) (-3746 (($ $) 202 (|has| |#1| (-543)))) (-3850 (($ $) 179 (|has| |#1| (-543)))) (-3838 (($ $) 155 (|has| |#1| (-543)))) (-3848 (($ $) 175 (|has| |#1| (-543)))) (-3836 (($ $) 151 (|has| |#1| (-543)))) (-3846 (($ $) 171 (|has| |#1| (-543)))) (-3834 (($ $) 147 (|has| |#1| (-543)))) (-3737 (($ $) 182 (|has| |#1| (-543)))) (-2986 (($) 20 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) CONST)) (-2338 (($ $) 233 (|has| |#1| (-543)))) (-2992 (($) 22 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))) CONST)) (-3741 (($ $) 184 (|has| |#1| (-543))) (($ $ $) 186 (|has| |#1| (-543)))) (-2339 (($ $) 231 (|has| |#1| (-543)))) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-1023))) (($ $ (-1147)) NIL (|has| |#1| (-1023)))) (-2337 (($ $) 235 (|has| |#1| (-543)))) (-3738 (($ $ $) 188 (|has| |#1| (-543)))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 81)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 80)) (-4303 (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 98 (|has| |#1| (-543))) (($ $ $) 42 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-4192 (($ $ $) 40 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ $) 29 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-4194 (($ $ $) 38 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (** (($ $ $) 66 (|has| |#1| (-543))) (($ $ (-400 (-536))) 301 (|has| |#1| (-543))) (($ $ (-536)) 76 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543)))) (($ $ (-749)) 74 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083)))) (($ $ (-893)) 78 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (* (($ (-400 (-536)) $) NIL (|has| |#1| (-543))) (($ $ (-400 (-536))) NIL (|has| |#1| (-543))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083)))) (($ (-536) $) 32 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ (-749) $) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ (-893) $) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))))) +(((-307 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-543)) (PROGN (-6 (-29 |#1|)) (-6 (-1169)) (-6 (-158)) (-6 (-610)) (-6 (-1110)) (-15 -4197 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-536))) (IF (|has| |#1| (-444)) (PROGN (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3035 ((-398 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-536))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) (-825)) (T -307)) +((-4197 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-543)) (-4 *2 (-825)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825))))) +(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-543)) (PROGN (-6 (-29 |#1|)) (-6 (-1169)) (-6 (-158)) (-6 (-610)) (-6 (-1110)) (-15 -4197 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-536))) (IF (|has| |#1| (-444)) (PROGN (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3035 ((-398 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-536))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) +((-4313 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4313 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-825) (-825)) (T -308)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -4313 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) +((-4084 (((-51) |#2| (-286 |#2|) (-749)) 33) (((-51) |#2| (-286 |#2|)) 24) (((-51) |#2| (-749)) 28) (((-51) |#2|) 25) (((-51) (-1147)) 21)) (-4173 (((-51) |#2| (-286 |#2|) (-400 (-536))) 51) (((-51) |#2| (-286 |#2|)) 48) (((-51) |#2| (-400 (-536))) 50) (((-51) |#2|) 49) (((-51) (-1147)) 47)) (-4136 (((-51) |#2| (-286 |#2|) (-400 (-536))) 46) (((-51) |#2| (-286 |#2|)) 43) (((-51) |#2| (-400 (-536))) 45) (((-51) |#2|) 44) (((-51) (-1147)) 42)) (-4133 (((-51) |#2| (-286 |#2|) (-536)) 39) (((-51) |#2| (-286 |#2|)) 35) (((-51) |#2| (-536)) 38) (((-51) |#2|) 36) (((-51) (-1147)) 34))) +(((-309 |#1| |#2|) (-10 -7 (-15 -4084 ((-51) (-1147))) (-15 -4084 ((-51) |#2|)) (-15 -4084 ((-51) |#2| (-749))) (-15 -4084 ((-51) |#2| (-286 |#2|))) (-15 -4084 ((-51) |#2| (-286 |#2|) (-749))) (-15 -4133 ((-51) (-1147))) (-15 -4133 ((-51) |#2|)) (-15 -4133 ((-51) |#2| (-536))) (-15 -4133 ((-51) |#2| (-286 |#2|))) (-15 -4133 ((-51) |#2| (-286 |#2|) (-536))) (-15 -4136 ((-51) (-1147))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-400 (-536)))) (-15 -4136 ((-51) |#2| (-286 |#2|))) (-15 -4136 ((-51) |#2| (-286 |#2|) (-400 (-536)))) (-15 -4173 ((-51) (-1147))) (-15 -4173 ((-51) |#2|)) (-15 -4173 ((-51) |#2| (-400 (-536)))) (-15 -4173 ((-51) |#2| (-286 |#2|))) (-15 -4173 ((-51) |#2| (-286 |#2|) (-400 (-536))))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -309)) +((-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4133 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-536)) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4084 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4)))))) +(-10 -7 (-15 -4084 ((-51) (-1147))) (-15 -4084 ((-51) |#2|)) (-15 -4084 ((-51) |#2| (-749))) (-15 -4084 ((-51) |#2| (-286 |#2|))) (-15 -4084 ((-51) |#2| (-286 |#2|) (-749))) (-15 -4133 ((-51) (-1147))) (-15 -4133 ((-51) |#2|)) (-15 -4133 ((-51) |#2| (-536))) (-15 -4133 ((-51) |#2| (-286 |#2|))) (-15 -4133 ((-51) |#2| (-286 |#2|) (-536))) (-15 -4136 ((-51) (-1147))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-400 (-536)))) (-15 -4136 ((-51) |#2| (-286 |#2|))) (-15 -4136 ((-51) |#2| (-286 |#2|) (-400 (-536)))) (-15 -4173 ((-51) (-1147))) (-15 -4173 ((-51) |#2|)) (-15 -4173 ((-51) |#2| (-400 (-536)))) (-15 -4173 ((-51) |#2| (-286 |#2|))) (-15 -4173 ((-51) |#2| (-286 |#2|) (-400 (-536))))) +((-1703 (((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)) 88) (((-51) |#2| (-113) (-286 |#2|) (-286 |#2|)) 84) (((-51) |#2| (-113) (-286 |#2|) |#2|) 86) (((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|) 87) (((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|))) 80) (((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|)) 82) (((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|)) 83) (((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|))) 81) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|)) 89) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|)) 85))) +(((-310 |#1| |#2|) (-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)))) (-13 (-825) (-543) (-596 (-525))) (-414 |#1|)) (T -310)) +((-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-620 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *3)))) (-1703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *5)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-113))) (-5 *6 (-620 (-286 *8))) (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 (-286 *8))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *8)) (-5 *6 (-620 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-620 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *5 *6))))) +(-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)))) +((-1705 (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129)) 46) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536)) 47) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129)) 43) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536)) 44)) (-1704 (((-1 (-219) (-219)) (-219)) 45))) +(((-311) (-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129))))) (T -311)) +((-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-536)) (-5 *8 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-536)) (-5 *7 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1704 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) +(-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 25)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 20)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 32)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) 16)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) NIL) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1706 (((-400 (-536)) $) 17)) (-3421 (($ (-1210 |#1| |#2| |#3|)) 11)) (-2488 (((-1210 |#1| |#2| |#3|) $) 12)) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 10)) (-4312 (((-838) $) 38) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 30)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) NIL)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 27)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 33)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-312 |#1| |#2| |#3|) (-13 (-1212 |#1|) (-770) (-10 -8 (-15 -3421 ($ (-1210 |#1| |#2| |#3|))) (-15 -2488 ((-1210 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-536)) $)))) (-13 (-356) (-825)) (-1147) |#1|) (T -312)) +((-3421 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3)))) +(-13 (-1212 |#1|) (-770) (-10 -8 (-15 -3421 ($ (-1210 |#1| |#2| |#3|))) (-15 -2488 ((-1210 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-536)) $)))) +((-3339 (((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749)) 24)) (-4297 (((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)) 28))) +(((-313 |#1|) (-10 -7 (-15 -3339 ((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749))) (-15 -4297 ((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)))) (-543)) (T -313)) +((-4297 (*1 *2 *3) (-12 (-5 *3 (-398 *4)) (-4 *4 (-543)) (-5 *2 (-620 (-2 (|:| -4308 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *5)) (-4 *5 (-543)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *5) (|:| |radicand| (-620 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-749))))) +(-10 -7 (-15 -3339 ((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749))) (-15 -4297 ((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)))) +((-3412 (((-620 |#2|) (-1141 |#4|)) 43)) (-1711 ((|#3| (-536)) 46)) (-1709 (((-1141 |#4|) (-1141 |#3|)) 30)) (-1710 (((-1141 |#4|) (-1141 |#4|) (-536)) 56)) (-1708 (((-1141 |#3|) (-1141 |#4|)) 21)) (-4302 (((-620 (-749)) (-1141 |#4|) (-620 |#2|)) 40)) (-1707 (((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|)) 35))) +(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1707 ((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|))) (-15 -4302 ((-620 (-749)) (-1141 |#4|) (-620 |#2|))) (-15 -3412 ((-620 |#2|) (-1141 |#4|))) (-15 -1708 ((-1141 |#3|) (-1141 |#4|))) (-15 -1709 ((-1141 |#4|) (-1141 |#3|))) (-15 -1710 ((-1141 |#4|) (-1141 |#4|) (-536))) (-15 -1711 (|#3| (-536)))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|)) (T -314)) +((-1711 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1023)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-924 *2 *4 *5)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *7)) (-5 *3 (-536)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *2 (-620 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-4302 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *8)) (-5 *4 (-620 *6)) (-4 *6 (-825)) (-4 *8 (-924 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1023)) (-5 *2 (-620 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) (-1707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1141 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) +(-10 -7 (-15 -1707 ((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|))) (-15 -4302 ((-620 (-749)) (-1141 |#4|) (-620 |#2|))) (-15 -3412 ((-620 |#2|) (-1141 |#4|))) (-15 -1708 ((-1141 |#3|) (-1141 |#4|))) (-15 -1709 ((-1141 |#4|) (-1141 |#3|))) (-15 -1710 ((-1141 |#4|) (-1141 |#4|) (-536))) (-15 -1711 (|#3| (-536)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 14)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $) 18)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-1714 (((-536) $ (-536)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2366 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-536) (-536)) $) 10)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) NIL (|has| (-536) (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-4035 (((-536) |#1| $) NIL)) (-2986 (($) 15 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 21 (|has| |#1| (-825)))) (-4192 (($ $) 11) (($ $ $) 20)) (-4194 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL) (($ (-536) |#1|) 19))) +(((-315 |#1|) (-13 (-21) (-696 (-536)) (-316 |#1| (-536)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1072)) (T -315)) +NIL +(-13 (-21) (-696 (-536)) (-316 |#1| (-536)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 27)) (-1367 (((-3 $ "failed") $ $) 19)) (-3466 (((-749) $) 28)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 32)) (-3502 ((|#1| $) 31)) (-2763 ((|#1| $ (-536)) 25)) (-1714 ((|#2| $ (-536)) 26)) (-2366 (($ (-1 |#1| |#1|) $) 22)) (-1713 (($ (-1 |#2| |#2|) $) 23)) (-3588 (((-1129) $) 9)) (-1712 (($ $ $) 21 (|has| |#2| (-770)))) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ |#1|) 33)) (-4035 ((|#2| |#1| $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ |#2| |#1|) 29))) +(((-316 |#1| |#2|) (-138) (-1072) (-130)) (T -316)) +((-4194 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-749)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1072)) (-4 *2 (-130)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1072)))) (-4035 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) (-1712 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)) (-4 *3 (-770))))) +(-13 (-130) (-1012 |t#1|) (-10 -8 (-15 -4194 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3466 ((-749) $)) (-15 -4128 ((-620 (-2 (|:| |gen| |t#1|) (|:| -4298 |t#2|))) $)) (-15 -1714 (|t#2| $ (-536))) (-15 -2763 (|t#1| $ (-536))) (-15 -4035 (|t#2| |t#1| $)) (-15 -1713 ($ (-1 |t#2| |t#2|) $)) (-15 -2366 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-770)) (-15 -1712 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1012 |#1|) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-1714 (((-749) $ (-536)) NIL)) (-2366 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-749) (-749)) $) NIL)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) NIL (|has| (-749) (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-4035 (((-749) |#1| $) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-749) |#1|) NIL))) +(((-317 |#1|) (-316 |#1| (-749)) (-1072)) (T -317)) NIL (-316 |#1| (-749)) -((-2731 (($ $) 53)) (-3401 (($ $ |#2| |#3| $) 14)) (-2863 (($ (-1 |#3| |#3|) $) 33)) (-1628 (((-112) $) 24)) (-1639 ((|#2| $) 26)) (-3409 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-1622 ((|#2| $) 49)) (-2969 (((-623 |#2|) $) 36)) (-3895 (($ $ $ (-749)) 20)) (-2382 (($ $ |#2|) 40))) -(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3895 (|#1| |#1| |#1| (-749))) (-15 -3401 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2863 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2969 ((-623 |#2|) |#1|)) (-15 -1639 (|#2| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1021) (-770)) (T -318)) -NIL -(-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3895 (|#1| |#1| |#1| (-749))) (-15 -3401 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2863 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2969 ((-623 |#2|) |#1|)) (-15 -1639 (|#2| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 88 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 86 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 85)) (-2202 (((-550) $) 89 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 87 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 84)) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-2731 (($ $) 73 (|has| |#1| (-444)))) (-3401 (($ $ |#1| |#2| $) 77)) (-2419 (((-112) $) 30)) (-3324 (((-749) $) 80)) (-3438 (((-112) $) 60)) (-1488 (($ |#1| |#2|) 59)) (-3346 ((|#2| $) 79)) (-2863 (($ (-1 |#2| |#2|) $) 78)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 83)) (-1639 ((|#1| $) 82)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-542)))) (-3661 ((|#2| $) 62)) (-1622 ((|#1| $) 74 (|has| |#1| (-444)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45) (($ (-400 (-550))) 55 (-1489 (|has| |#1| (-1012 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550))))))) (-2969 (((-623 |#1|) $) 81)) (-1708 ((|#1| $ |#2|) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-3895 (($ $ $ (-749)) 76 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-319 |#1| |#2|) (-138) (-1021) (-770)) (T -319)) -((-1628 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-112)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-623 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-749)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2863 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)))) (-3401 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) (-3895 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-4 *3 (-170)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) (-4 *2 (-542)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)) (-4 *2 (-444)))) (-2731 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) (-4 *2 (-444))))) -(-13 (-47 |t#1| |t#2|) (-404 |t#1|) (-10 -8 (-15 -1628 ((-112) $)) (-15 -1639 (|t#1| $)) (-15 -2969 ((-623 |t#1|) $)) (-15 -3324 ((-749) $)) (-15 -3346 (|t#2| $)) (-15 -2863 ($ (-1 |t#2| |t#2|) $)) (-15 -3401 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -3895 ($ $ $ (-749))) |%noBranch|) (IF (|has| |t#1| (-542)) (-15 -3409 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -1622 (|t#1| $)) (-15 -2731 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-404 |#1|) . T) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2756 (((-112) (-112)) NIL)) (-2409 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) NIL)) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2599 (($ $) NIL (|has| |#1| (-1069)))) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) NIL (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) NIL)) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-1695 (($ $ (-550)) NIL)) (-3653 (((-749) $) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2299 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1715 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2344 (($ (-623 |#1|)) NIL)) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3749 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-2037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2344 ($ (-623 |#1|))) (-15 -3653 ((-749) $)) (-15 -1695 ($ $ (-550))) (-15 -2756 ((-112) (-112))))) (-1182)) (T -320)) -((-2344 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-320 *3)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1182)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-320 *3)) (-4 *3 (-1182)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1182))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2344 ($ (-623 |#1|))) (-15 -3653 ((-749) $)) (-15 -1695 ($ $ (-550))) (-15 -2756 ((-112) (-112))))) -((-2594 (((-112) $) 42)) (-2532 (((-749)) 22)) (-2223 ((|#2| $) 46) (($ $ (-895)) 101)) (-3828 (((-749)) 102)) (-2821 (($ (-1228 |#2|)) 20)) (-3751 (((-112) $) 115)) (-1571 ((|#2| $) 48) (($ $ (-895)) 99)) (-2835 (((-1141 |#2|) $) NIL) (((-1141 $) $ (-895)) 95)) (-2888 (((-1141 |#2|) $) 82)) (-4180 (((-1141 |#2|) $) 79) (((-3 (-1141 |#2|) "failed") $ $) 76)) (-1542 (($ $ (-1141 |#2|)) 53)) (-4015 (((-811 (-895))) 28) (((-895)) 43)) (-1877 (((-133)) 25)) (-3661 (((-811 (-895)) $) 30) (((-895) $) 117)) (-3975 (($) 108)) (-2999 (((-1228 |#2|) $) NIL) (((-667 |#2|) (-1228 $)) 39)) (-1613 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3636 (((-112) $) 41))) -(((-321 |#1| |#2|) (-10 -8 (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -3828 ((-749))) (-15 -1613 (|#1| |#1|)) (-15 -4180 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -4180 ((-1141 |#2|) |#1|)) (-15 -2888 ((-1141 |#2|) |#1|)) (-15 -1542 (|#1| |#1| (-1141 |#2|))) (-15 -3751 ((-112) |#1|)) (-15 -3975 (|#1|)) (-15 -2223 (|#1| |#1| (-895))) (-15 -1571 (|#1| |#1| (-895))) (-15 -2835 ((-1141 |#1|) |#1| (-895))) (-15 -2223 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3661 ((-895) |#1|)) (-15 -4015 ((-895))) (-15 -2835 ((-1141 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2532 ((-749))) (-15 -4015 ((-811 (-895)))) (-15 -3661 ((-811 (-895)) |#1|)) (-15 -2594 ((-112) |#1|)) (-15 -3636 ((-112) |#1|)) (-15 -1877 ((-133)))) (-322 |#2|) (-356)) (T -321)) -((-1877 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4015 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-811 (-895))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-2532 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4015 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-895)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3828 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) -(-10 -8 (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -3828 ((-749))) (-15 -1613 (|#1| |#1|)) (-15 -4180 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -4180 ((-1141 |#2|) |#1|)) (-15 -2888 ((-1141 |#2|) |#1|)) (-15 -1542 (|#1| |#1| (-1141 |#2|))) (-15 -3751 ((-112) |#1|)) (-15 -3975 (|#1|)) (-15 -2223 (|#1| |#1| (-895))) (-15 -1571 (|#1| |#1| (-895))) (-15 -2835 ((-1141 |#1|) |#1| (-895))) (-15 -2223 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3661 ((-895) |#1|)) (-15 -4015 ((-895))) (-15 -2835 ((-1141 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2532 ((-749))) (-15 -4015 ((-811 (-895)))) (-15 -3661 ((-811 (-895)) |#1|)) (-15 -2594 ((-112) |#1|)) (-15 -3636 ((-112) |#1|)) (-15 -1877 ((-133)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-2594 (((-112) $) 91)) (-2532 (((-749)) 87)) (-2223 ((|#1| $) 137) (($ $ (-895)) 134 (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) 119 (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1611 (((-112) $ $) 57)) (-3828 (((-749)) 109 (|has| |#1| (-361)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 98)) (-2202 ((|#1| $) 97)) (-2821 (($ (-1228 |#1|)) 143)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-1864 (($) 106 (|has| |#1| (-361)))) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-2664 (($) 121 (|has| |#1| (-361)))) (-4139 (((-112) $) 122 (|has| |#1| (-361)))) (-4322 (($ $ (-749)) 84 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) 68)) (-2603 (((-895) $) 124 (|has| |#1| (-361))) (((-811 (-895)) $) 81 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) 30)) (-1888 (($) 132 (|has| |#1| (-361)))) (-3751 (((-112) $) 131 (|has| |#1| (-361)))) (-1571 ((|#1| $) 138) (($ $ (-895)) 135 (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2835 (((-1141 |#1|) $) 142) (((-1141 $) $ (-895)) 136 (|has| |#1| (-361)))) (-4073 (((-895) $) 107 (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) 128 (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) 129 (|has| |#1| (-361)))) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-2463 (($) 111 (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) 108 (|has| |#1| (-361)))) (-3881 (((-112) $) 90)) (-3445 (((-1089) $) 10)) (-2256 (($) 130 (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 118 (|has| |#1| (-361)))) (-1735 (((-411 $) $) 71)) (-4015 (((-811 (-895))) 88) (((-895)) 140)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2899 (((-749) $) 123 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 82 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) 96)) (-2798 (($ $) 115 (|has| |#1| (-361))) (($ $ (-749)) 113 (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) 89) (((-895) $) 139)) (-3832 (((-1141 |#1|)) 141)) (-2038 (($) 120 (|has| |#1| (-361)))) (-3975 (($) 133 (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) 145) (((-667 |#1|) (-1228 $)) 144)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 117 (|has| |#1| (-361)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 99)) (-1613 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) 28)) (-2206 (((-1228 $)) 147) (((-1228 $) (-895)) 146)) (-1819 (((-112) $ $) 37)) (-3636 (((-112) $) 92)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-3020 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-1901 (($ $) 114 (|has| |#1| (-361))) (($ $ (-749)) 112 (|has| |#1| (-361)))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62) (($ $ |#1|) 95)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +((-3852 (($ $) 53)) (-1716 (($ $ |#2| |#3| $) 14)) (-1717 (($ (-1 |#3| |#3|) $) 33)) (-1911 (((-112) $) 24)) (-1910 ((|#2| $) 26)) (-3815 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3145 ((|#2| $) 49)) (-4172 (((-620 |#2|) $) 36)) (-1715 (($ $ $ (-749)) 20)) (-4303 (($ $ |#2|) 40))) +(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-749))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1023) (-770)) (T -318)) +NIL +(-10 -8 (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-749))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 88 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 86 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 85)) (-3502 (((-536) $) 89 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 87 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 84)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 73 (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 77)) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 80)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59)) (-3148 ((|#2| $) 79)) (-1717 (($ (-1 |#2| |#2|) $) 78)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 83)) (-1910 ((|#1| $) 82)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-3145 ((|#1| $) 74 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45) (($ (-400 (-536))) 55 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 81)) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 76 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-319 |#1| |#2|) (-138) (-1023) (-770)) (T -319)) +((-1911 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-620 *3)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-1716 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-1715 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *3 (-170)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-543)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-444))))) +(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -4172 ((-620 |t#1|) $)) (-15 -2505 ((-749) $)) (-15 -3148 (|t#2| $)) (-15 -1717 ($ (-1 |t#2| |t#2|) $)) (-15 -1716 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1715 ($ $ $ (-749))) |%noBranch|) (IF (|has| |t#1| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3145 (|t#1| $)) (-15 -3852 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-405 |#1|) . T) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-2102 (((-112) (-112)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2103 (($ $ (-536)) NIL)) (-2104 (((-749) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2105 (($ (-620 |#1|)) NIL)) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) (-1183)) (T -320)) +((-2105 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-320 *3)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1183))))) +(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) +((-4287 (((-112) $) 42)) (-4284 (((-749)) 22)) (-3684 ((|#2| $) 46) (($ $ (-893)) 101)) (-3466 (((-749)) 102)) (-1906 (($ (-1229 |#2|)) 20)) (-2122 (((-112) $) 115)) (-3462 ((|#2| $) 48) (($ $ (-893)) 99)) (-2125 (((-1141 |#2|) $) NIL) (((-1141 $) $ (-893)) 95)) (-1719 (((-1141 |#2|) $) 82)) (-1718 (((-1141 |#2|) $) 79) (((-3 (-1141 |#2|) "failed") $ $) 76)) (-1720 (($ $ (-1141 |#2|)) 53)) (-4285 (((-810 (-893))) 28) (((-893)) 43)) (-4266 (((-133)) 25)) (-4302 (((-810 (-893)) $) 30) (((-893) $) 117)) (-1721 (($) 108)) (-3570 (((-1229 |#2|) $) NIL) (((-667 |#2|) (-1229 $)) 39)) (-3030 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4288 (((-112) $) 41))) +(((-321 |#1| |#2|) (-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-749))) (-15 -3030 (|#1| |#1|)) (-15 -1718 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1141 |#2|) |#1|)) (-15 -1719 ((-1141 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1141 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3684 (|#1| |#1| (-893))) (-15 -3462 (|#1| |#1| (-893))) (-15 -2125 ((-1141 |#1|) |#1| (-893))) (-15 -3684 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -4302 ((-893) |#1|)) (-15 -4285 ((-893))) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -4284 ((-749))) (-15 -4285 ((-810 (-893)))) (-15 -4302 ((-810 (-893)) |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|)) (-15 -4266 ((-133)))) (-322 |#2|) (-356)) (T -321)) +((-4266 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4285 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-810 (-893))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4284 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4285 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-893)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3466 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) +(-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-749))) (-15 -3030 (|#1| |#1|)) (-15 -1718 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1141 |#2|) |#1|)) (-15 -1719 ((-1141 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1141 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3684 (|#1| |#1| (-893))) (-15 -3462 (|#1| |#1| (-893))) (-15 -2125 ((-1141 |#1|) |#1| (-893))) (-15 -3684 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -4302 ((-893) |#1|)) (-15 -4285 ((-893))) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -4284 ((-749))) (-15 -4285 ((-810 (-893)))) (-15 -4302 ((-810 (-893)) |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|)) (-15 -4266 ((-133)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4287 (((-112) $) 91)) (-4284 (((-749)) 87)) (-3684 ((|#1| $) 137) (($ $ (-893)) 134 (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 119 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3466 (((-749)) 109 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 98)) (-3502 ((|#1| $) 97)) (-1906 (($ (-1229 |#1|)) 143)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 106 (|has| |#1| (-361)))) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-3161 (($) 121 (|has| |#1| (-361)))) (-1791 (((-112) $) 122 (|has| |#1| (-361)))) (-1881 (($ $ (-749)) 84 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) 68)) (-4126 (((-893) $) 124 (|has| |#1| (-361))) (((-810 (-893)) $) 81 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) 30)) (-2124 (($) 132 (|has| |#1| (-361)))) (-2122 (((-112) $) 131 (|has| |#1| (-361)))) (-3462 ((|#1| $) 138) (($ $ (-893)) 135 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2125 (((-1141 |#1|) $) 142) (((-1141 $) $ (-893)) 136 (|has| |#1| (-361)))) (-2121 (((-893) $) 107 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) 128 (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) 129 (|has| |#1| (-361)))) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 111 (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 108 (|has| |#1| (-361)))) (-4286 (((-112) $) 90)) (-3589 (((-1091) $) 10)) (-2496 (($) 130 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 118 (|has| |#1| (-361)))) (-4087 (((-398 $) $) 71)) (-4285 (((-810 (-893))) 88) (((-893)) 140)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-749) $) 123 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 82 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) 96)) (-4165 (($ $) 115 (|has| |#1| (-361))) (($ $ (-749)) 113 (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) 89) (((-893) $) 139)) (-3531 (((-1141 |#1|)) 141)) (-1785 (($) 120 (|has| |#1| (-361)))) (-1721 (($) 133 (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 145) (((-667 |#1|) (-1229 $)) 144)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 117 (|has| |#1| (-361)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 99)) (-3030 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 147) (((-1229 $) (-893)) 146)) (-2172 (((-112) $ $) 37)) (-4288 (((-112) $) 92)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-4283 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-2997 (($ $) 114 (|has| |#1| (-361))) (($ $ (-749)) 112 (|has| |#1| (-361)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62) (($ $ |#1|) 95)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) (((-322 |#1|) (-138) (-356)) (T -322)) -((-2206 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1228 *1)) (-4 *1 (-322 *3)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-356)) (-5 *2 (-1228 *1)) (-4 *1 (-322 *4)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1228 *3)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-3832 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-4015 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-895)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-895)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) (-4 *1 (-322 *4)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-2223 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3975 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1888 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-2256 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-4180 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) -(-13 (-1247 |t#1|) (-1012 |t#1|) (-10 -8 (-15 -2206 ((-1228 $))) (-15 -2206 ((-1228 $) (-895))) (-15 -2999 ((-1228 |t#1|) $)) (-15 -2999 ((-667 |t#1|) (-1228 $))) (-15 -2821 ($ (-1228 |t#1|))) (-15 -2835 ((-1141 |t#1|) $)) (-15 -3832 ((-1141 |t#1|))) (-15 -4015 ((-895))) (-15 -3661 ((-895) $)) (-15 -1571 (|t#1| $)) (-15 -2223 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-342)) (-15 -2835 ((-1141 $) $ (-895))) (-15 -1571 ($ $ (-895))) (-15 -2223 ($ $ (-895))) (-15 -3975 ($)) (-15 -1888 ($)) (-15 -3751 ((-112) $)) (-15 -2256 ($)) (-15 -1542 ($ $ (-1141 |t#1|))) (-15 -2888 ((-1141 |t#1|) $)) (-15 -4180 ((-1141 |t#1|) $)) (-15 -4180 ((-3 (-1141 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1489 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1247 |#1|) . T) ((-356) . T) ((-395) -1489 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-342) |has| |#1| (-361)) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1012 |#1|) . T) ((-1027 #0#) . T) ((-1027 |#1|) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| |#1| (-361)) ((-1186) . T) ((-1235 |#1|) . T)) -((-2221 (((-112) $ $) NIL)) (-4261 (($ (-1144) $) 88)) (-2494 (($) 77)) (-1982 (((-1089) (-1089)) 11)) (-4110 (($) 78)) (-3702 (($) 90) (($ (-309 (-677))) 98) (($ (-309 (-679))) 94) (($ (-309 (-672))) 102) (($ (-309 (-372))) 109) (($ (-309 (-550))) 105) (($ (-309 (-167 (-372)))) 113)) (-1402 (($ (-1144) $) 89)) (-3090 (($ (-623 (-837))) 79)) (-3394 (((-1233) $) 75)) (-1651 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2886 (($ (-1089)) 51)) (-1626 (((-1073) $) 25)) (-2817 (($ (-1061 (-926 (-550))) $) 85) (($ (-1061 (-926 (-550))) (-926 (-550)) $) 86)) (-2580 (($ (-1089)) 87)) (-2556 (($ (-1144) $) 115) (($ (-1144) $ $) 116)) (-3250 (($ (-1145) (-623 (-1145))) 76)) (-3808 (($ (-1127)) 82) (($ (-623 (-1127))) 80)) (-2233 (((-837) $) 118)) (-2278 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1145)) (|:| |arrayIndex| (-623 (-926 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1145)) (|:| |rand| (-837)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1144)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4217 (-112)) (|:| -1337 (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1127))) (|:| |callBranch| (-1127)) (|:| |forBranch| (-2 (|:| -2873 (-1061 (-926 (-550)))) (|:| |span| (-926 (-550))) (|:| -1865 $))) (|:| |labelBranch| (-1089)) (|:| |loopBranch| (-2 (|:| |switch| (-1144)) (|:| -1865 $))) (|:| |commonBranch| (-2 (|:| -1856 (-1145)) (|:| |contents| (-623 (-1145))))) (|:| |printBranch| (-623 (-837)))) $) 44)) (-4070 (($ (-1127)) 187)) (-1827 (($ (-623 $)) 114)) (-2691 (($ (-1145) (-1127)) 120) (($ (-1145) (-309 (-679))) 160) (($ (-1145) (-309 (-677))) 161) (($ (-1145) (-309 (-672))) 162) (($ (-1145) (-667 (-679))) 123) (($ (-1145) (-667 (-677))) 126) (($ (-1145) (-667 (-672))) 129) (($ (-1145) (-1228 (-679))) 132) (($ (-1145) (-1228 (-677))) 135) (($ (-1145) (-1228 (-672))) 138) (($ (-1145) (-667 (-309 (-679)))) 141) (($ (-1145) (-667 (-309 (-677)))) 144) (($ (-1145) (-667 (-309 (-672)))) 147) (($ (-1145) (-1228 (-309 (-679)))) 150) (($ (-1145) (-1228 (-309 (-677)))) 153) (($ (-1145) (-1228 (-309 (-672)))) 156) (($ (-1145) (-623 (-926 (-550))) (-309 (-679))) 157) (($ (-1145) (-623 (-926 (-550))) (-309 (-677))) 158) (($ (-1145) (-623 (-926 (-550))) (-309 (-672))) 159) (($ (-1145) (-309 (-550))) 184) (($ (-1145) (-309 (-372))) 185) (($ (-1145) (-309 (-167 (-372)))) 186) (($ (-1145) (-667 (-309 (-550)))) 165) (($ (-1145) (-667 (-309 (-372)))) 168) (($ (-1145) (-667 (-309 (-167 (-372))))) 171) (($ (-1145) (-1228 (-309 (-550)))) 174) (($ (-1145) (-1228 (-309 (-372)))) 177) (($ (-1145) (-1228 (-309 (-167 (-372))))) 180) (($ (-1145) (-623 (-926 (-550))) (-309 (-550))) 181) (($ (-1145) (-623 (-926 (-550))) (-309 (-372))) 182) (($ (-1145) (-623 (-926 (-550))) (-309 (-167 (-372)))) 183)) (-2264 (((-112) $ $) NIL))) -(((-323) (-13 (-1069) (-10 -8 (-15 -2233 ((-837) $)) (-15 -2817 ($ (-1061 (-926 (-550))) $)) (-15 -2817 ($ (-1061 (-926 (-550))) (-926 (-550)) $)) (-15 -4261 ($ (-1144) $)) (-15 -1402 ($ (-1144) $)) (-15 -2886 ($ (-1089))) (-15 -2580 ($ (-1089))) (-15 -3808 ($ (-1127))) (-15 -3808 ($ (-623 (-1127)))) (-15 -4070 ($ (-1127))) (-15 -3702 ($)) (-15 -3702 ($ (-309 (-677)))) (-15 -3702 ($ (-309 (-679)))) (-15 -3702 ($ (-309 (-672)))) (-15 -3702 ($ (-309 (-372)))) (-15 -3702 ($ (-309 (-550)))) (-15 -3702 ($ (-309 (-167 (-372))))) (-15 -2556 ($ (-1144) $)) (-15 -2556 ($ (-1144) $ $)) (-15 -2691 ($ (-1145) (-1127))) (-15 -2691 ($ (-1145) (-309 (-679)))) (-15 -2691 ($ (-1145) (-309 (-677)))) (-15 -2691 ($ (-1145) (-309 (-672)))) (-15 -2691 ($ (-1145) (-667 (-679)))) (-15 -2691 ($ (-1145) (-667 (-677)))) (-15 -2691 ($ (-1145) (-667 (-672)))) (-15 -2691 ($ (-1145) (-1228 (-679)))) (-15 -2691 ($ (-1145) (-1228 (-677)))) (-15 -2691 ($ (-1145) (-1228 (-672)))) (-15 -2691 ($ (-1145) (-667 (-309 (-679))))) (-15 -2691 ($ (-1145) (-667 (-309 (-677))))) (-15 -2691 ($ (-1145) (-667 (-309 (-672))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-679))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-677))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-672))))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-679)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-677)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-672)))) (-15 -2691 ($ (-1145) (-309 (-550)))) (-15 -2691 ($ (-1145) (-309 (-372)))) (-15 -2691 ($ (-1145) (-309 (-167 (-372))))) (-15 -2691 ($ (-1145) (-667 (-309 (-550))))) (-15 -2691 ($ (-1145) (-667 (-309 (-372))))) (-15 -2691 ($ (-1145) (-667 (-309 (-167 (-372)))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-550))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-372))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-167 (-372)))))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-550)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-372)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-167 (-372))))) (-15 -1827 ($ (-623 $))) (-15 -2494 ($)) (-15 -4110 ($)) (-15 -3090 ($ (-623 (-837)))) (-15 -3250 ($ (-1145) (-623 (-1145)))) (-15 -1651 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2278 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1145)) (|:| |arrayIndex| (-623 (-926 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1145)) (|:| |rand| (-837)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1144)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4217 (-112)) (|:| -1337 (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1127))) (|:| |callBranch| (-1127)) (|:| |forBranch| (-2 (|:| -2873 (-1061 (-926 (-550)))) (|:| |span| (-926 (-550))) (|:| -1865 $))) (|:| |labelBranch| (-1089)) (|:| |loopBranch| (-2 (|:| |switch| (-1144)) (|:| -1865 $))) (|:| |commonBranch| (-2 (|:| -1856 (-1145)) (|:| |contents| (-623 (-1145))))) (|:| |printBranch| (-623 (-837)))) $)) (-15 -3394 ((-1233) $)) (-15 -1626 ((-1073) $)) (-15 -1982 ((-1089) (-1089)))))) (T -323)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-323)))) (-2817 (*1 *1 *2 *1) (-12 (-5 *2 (-1061 (-926 (-550)))) (-5 *1 (-323)))) (-2817 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1061 (-926 (-550)))) (-5 *3 (-926 (-550))) (-5 *1 (-323)))) (-4261 (*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323)))) (-1402 (*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323)))) (-2886 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-323)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-323)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-323)))) (-3702 (*1 *1) (-5 *1 (-323))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-323)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-323)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-323)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-2556 (*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323)))) (-2556 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1127)) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-679))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-672))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-679))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-677))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-672))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-679)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-677)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-672)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-679)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-677)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-672)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-679))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-677))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-672))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-550))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-550)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-372)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-550)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-372)))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-550))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-372))) (-5 *1 (-323)))) (-2691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-323)))) (-2494 (*1 *1) (-5 *1 (-323))) (-4110 (*1 *1) (-5 *1 (-323))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-323)))) (-3250 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1145)) (-5 *1 (-323)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1145)) (|:| |arrayIndex| (-623 (-926 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1145)) (|:| |rand| (-837)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1144)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -4217 (-112)) (|:| -1337 (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |blockBranch| (-623 (-323))) (|:| |commentBranch| (-623 (-1127))) (|:| |callBranch| (-1127)) (|:| |forBranch| (-2 (|:| -2873 (-1061 (-926 (-550)))) (|:| |span| (-926 (-550))) (|:| -1865 (-323)))) (|:| |labelBranch| (-1089)) (|:| |loopBranch| (-2 (|:| |switch| (-1144)) (|:| -1865 (-323)))) (|:| |commonBranch| (-2 (|:| -1856 (-1145)) (|:| |contents| (-623 (-1145))))) (|:| |printBranch| (-623 (-837))))) (-5 *1 (-323)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-323)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-323)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323))))) -(-13 (-1069) (-10 -8 (-15 -2233 ((-837) $)) (-15 -2817 ($ (-1061 (-926 (-550))) $)) (-15 -2817 ($ (-1061 (-926 (-550))) (-926 (-550)) $)) (-15 -4261 ($ (-1144) $)) (-15 -1402 ($ (-1144) $)) (-15 -2886 ($ (-1089))) (-15 -2580 ($ (-1089))) (-15 -3808 ($ (-1127))) (-15 -3808 ($ (-623 (-1127)))) (-15 -4070 ($ (-1127))) (-15 -3702 ($)) (-15 -3702 ($ (-309 (-677)))) (-15 -3702 ($ (-309 (-679)))) (-15 -3702 ($ (-309 (-672)))) (-15 -3702 ($ (-309 (-372)))) (-15 -3702 ($ (-309 (-550)))) (-15 -3702 ($ (-309 (-167 (-372))))) (-15 -2556 ($ (-1144) $)) (-15 -2556 ($ (-1144) $ $)) (-15 -2691 ($ (-1145) (-1127))) (-15 -2691 ($ (-1145) (-309 (-679)))) (-15 -2691 ($ (-1145) (-309 (-677)))) (-15 -2691 ($ (-1145) (-309 (-672)))) (-15 -2691 ($ (-1145) (-667 (-679)))) (-15 -2691 ($ (-1145) (-667 (-677)))) (-15 -2691 ($ (-1145) (-667 (-672)))) (-15 -2691 ($ (-1145) (-1228 (-679)))) (-15 -2691 ($ (-1145) (-1228 (-677)))) (-15 -2691 ($ (-1145) (-1228 (-672)))) (-15 -2691 ($ (-1145) (-667 (-309 (-679))))) (-15 -2691 ($ (-1145) (-667 (-309 (-677))))) (-15 -2691 ($ (-1145) (-667 (-309 (-672))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-679))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-677))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-672))))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-679)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-677)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-672)))) (-15 -2691 ($ (-1145) (-309 (-550)))) (-15 -2691 ($ (-1145) (-309 (-372)))) (-15 -2691 ($ (-1145) (-309 (-167 (-372))))) (-15 -2691 ($ (-1145) (-667 (-309 (-550))))) (-15 -2691 ($ (-1145) (-667 (-309 (-372))))) (-15 -2691 ($ (-1145) (-667 (-309 (-167 (-372)))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-550))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-372))))) (-15 -2691 ($ (-1145) (-1228 (-309 (-167 (-372)))))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-550)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-372)))) (-15 -2691 ($ (-1145) (-623 (-926 (-550))) (-309 (-167 (-372))))) (-15 -1827 ($ (-623 $))) (-15 -2494 ($)) (-15 -4110 ($)) (-15 -3090 ($ (-623 (-837)))) (-15 -3250 ($ (-1145) (-623 (-1145)))) (-15 -1651 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2278 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1145)) (|:| |arrayIndex| (-623 (-926 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1145)) (|:| |rand| (-837)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1144)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4217 (-112)) (|:| -1337 (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1127))) (|:| |callBranch| (-1127)) (|:| |forBranch| (-2 (|:| -2873 (-1061 (-926 (-550)))) (|:| |span| (-926 (-550))) (|:| -1865 $))) (|:| |labelBranch| (-1089)) (|:| |loopBranch| (-2 (|:| |switch| (-1144)) (|:| -1865 $))) (|:| |commonBranch| (-2 (|:| -1856 (-1145)) (|:| |contents| (-623 (-1145))))) (|:| |printBranch| (-623 (-837)))) $)) (-15 -3394 ((-1233) $)) (-15 -1626 ((-1073) $)) (-15 -1982 ((-1089) (-1089))))) -((-2221 (((-112) $ $) NIL)) (-2339 (((-112) $) 11)) (-2796 (($ |#1|) 8)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2807 (($ |#1|) 9)) (-2233 (((-837) $) 17)) (-2963 ((|#1| $) 12)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 19))) -(((-324 |#1|) (-13 (-825) (-10 -8 (-15 -2796 ($ |#1|)) (-15 -2807 ($ |#1|)) (-15 -2339 ((-112) $)) (-15 -2963 (|#1| $)))) (-825)) (T -324)) -((-2796 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-2807 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825)))) (-2963 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825))))) -(-13 (-825) (-10 -8 (-15 -2796 ($ |#1|)) (-15 -2807 ($ |#1|)) (-15 -2339 ((-112) $)) (-15 -2963 (|#1| $)))) -((-2150 (((-323) (-1145) (-926 (-550))) 23)) (-1823 (((-323) (-1145) (-926 (-550))) 27)) (-3718 (((-323) (-1145) (-1061 (-926 (-550))) (-1061 (-926 (-550)))) 26) (((-323) (-1145) (-926 (-550)) (-926 (-550))) 24)) (-3472 (((-323) (-1145) (-926 (-550))) 31))) -(((-325) (-10 -7 (-15 -2150 ((-323) (-1145) (-926 (-550)))) (-15 -3718 ((-323) (-1145) (-926 (-550)) (-926 (-550)))) (-15 -3718 ((-323) (-1145) (-1061 (-926 (-550))) (-1061 (-926 (-550))))) (-15 -1823 ((-323) (-1145) (-926 (-550)))) (-15 -3472 ((-323) (-1145) (-926 (-550)))))) (T -325)) -((-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3718 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-1061 (-926 (-550)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3718 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) (-5 *1 (-325))))) -(-10 -7 (-15 -2150 ((-323) (-1145) (-926 (-550)))) (-15 -3718 ((-323) (-1145) (-926 (-550)) (-926 (-550)))) (-15 -3718 ((-323) (-1145) (-1061 (-926 (-550))) (-1061 (-926 (-550))))) (-15 -1823 ((-323) (-1145) (-926 (-550)))) (-15 -3472 ((-323) (-1145) (-926 (-550))))) -((-2392 (((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)) 33))) -(((-326 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2392 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1204 |#5|) (-1204 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -326)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1204 *9)) (-4 *11 (-1204 (-400 *10))) (-5 *2 (-329 *9 *10 *11 *12)) (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11))))) -(-10 -7 (-15 -2392 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) -((-1342 (((-112) $) 14))) -(((-327 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1342 ((-112) |#1|))) (-328 |#2| |#3| |#4| |#5|) (-356) (-1204 |#2|) (-1204 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -327)) -NIL -(-10 -8 (-15 -1342 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2924 (($ $) 26)) (-1342 (((-112) $) 25)) (-2369 (((-1127) $) 9)) (-2308 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3445 (((-1089) $) 10)) (-2256 (((-3 |#4| "failed") $) 24)) (-1279 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-550)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1301 (((-2 (|:| -3345 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20))) -(((-328 |#1| |#2| |#3| |#4|) (-138) (-356) (-1204 |t#1|) (-1204 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -328)) -((-2308 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-328 *3 *4 *5 *6)))) (-1279 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1279 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1204 *2)) (-4 *4 (-1204 (-400 *3))) (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1279 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-356)) (-4 *4 (-1204 *2)) (-4 *5 (-1204 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-1301 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -3345 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-2924 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1204 *2)) (-4 *4 (-1204 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1342 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-2256 (*1 *2 *1) (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1279 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2308 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1279 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1279 ($ |t#4|)) (-15 -1279 ($ |t#1| |t#1|)) (-15 -1279 ($ |t#1| |t#1| (-550))) (-15 -1301 ((-2 (|:| -3345 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2924 ($ $)) (-15 -1342 ((-112) $)) (-15 -2256 ((-3 |t#4| "failed") $)) (-15 -1279 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2924 (($ $) 33)) (-1342 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-1989 (((-1228 |#4|) $) 125)) (-2308 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3445 (((-1089) $) NIL)) (-2256 (((-3 |#4| "failed") $) 36)) (-1686 (((-1228 |#4|) $) 118)) (-1279 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-550)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1301 (((-2 (|:| -3345 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2233 (((-837) $) 17)) (-2688 (($) 14 T CONST)) (-2264 (((-112) $ $) 20)) (-2370 (($ $) 27) (($ $ $) NIL)) (-2358 (($ $ $) 25)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 23))) -(((-329 |#1| |#2| |#3| |#4|) (-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1686 ((-1228 |#4|) $)) (-15 -1989 ((-1228 |#4|) $)))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -329)) -((-1686 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-1228 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-1989 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-1228 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) -(-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1686 ((-1228 |#4|) $)) (-15 -1989 ((-1228 |#4|) $)))) -((-1553 (($ $ (-1145) |#2|) NIL) (($ $ (-623 (-1145)) (-623 |#2|)) 20) (($ $ (-623 (-287 |#2|))) 15) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-623 |#2|) (-623 |#2|)) NIL)) (-2757 (($ $ |#2|) 11))) -(((-330 |#1| |#2|) (-10 -8 (-15 -2757 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 |#2|))) (-15 -1553 (|#1| |#1| (-1145) |#2|))) (-331 |#2|) (-1069)) (T -330)) -NIL -(-10 -8 (-15 -2757 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 |#2|))) (-15 -1553 (|#1| |#1| (-1145) |#2|))) -((-2392 (($ (-1 |#1| |#1|) $) 6)) (-1553 (($ $ (-1145) |#1|) 17 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 16 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-623 (-287 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-623 |#1|) (-623 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-2757 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|))))) -(((-331 |#1|) (-138) (-1069)) (T -331)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1069))))) -(-13 (-10 -8 (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1145) |t#1|)) (-6 (-505 (-1145) |t#1|)) |%noBranch|))) -(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1145)) $) NIL)) (-4295 (((-112)) 91) (((-112) (-112)) 92)) (-1608 (((-623 (-594 $)) $) NIL)) (-4160 (($ $) NIL)) (-2820 (($ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4230 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-1745 (($ $) NIL)) (-4137 (($ $) NIL)) (-2796 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-594 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1145)) 97) (((-3 $ "failed") (-309 (-550))) 59 (|has| |#3| (-1012 (-550)))) (((-3 $ "failed") (-400 (-926 (-550)))) 65 (|has| |#3| (-1012 (-550)))) (((-3 $ "failed") (-926 (-550))) 60 (|has| |#3| (-1012 (-550)))) (((-3 $ "failed") (-309 (-372))) 89 (|has| |#3| (-1012 (-372)))) (((-3 $ "failed") (-400 (-926 (-372)))) 83 (|has| |#3| (-1012 (-372)))) (((-3 $ "failed") (-926 (-372))) 78 (|has| |#3| (-1012 (-372))))) (-2202 (((-594 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1145)) 98) (($ (-309 (-550))) 61 (|has| |#3| (-1012 (-550)))) (($ (-400 (-926 (-550)))) 66 (|has| |#3| (-1012 (-550)))) (($ (-926 (-550))) 62 (|has| |#3| (-1012 (-550)))) (($ (-309 (-372))) 90 (|has| |#3| (-1012 (-372)))) (($ (-400 (-926 (-372)))) 84 (|has| |#3| (-1012 (-372)))) (($ (-926 (-372))) 80 (|has| |#3| (-1012 (-372))))) (-1537 (((-3 $ "failed") $) NIL)) (-4187 (($) 10)) (-1465 (($ $) NIL) (($ (-623 $)) NIL)) (-3745 (((-623 (-114)) $) NIL)) (-1355 (((-114) (-114)) NIL)) (-2419 (((-112) $) NIL)) (-1286 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1333 (((-1141 $) (-594 $)) NIL (|has| $ (-1021)))) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 $ $) (-594 $)) NIL)) (-2041 (((-3 (-594 $) "failed") $) NIL)) (-1638 (($ $) 94)) (-3080 (($ $) NIL)) (-2369 (((-1127) $) NIL)) (-1694 (((-623 (-594 $)) $) NIL)) (-4232 (($ (-114) $) 93) (($ (-114) (-623 $)) NIL)) (-2366 (((-112) $ (-114)) NIL) (((-112) $ (-1145)) NIL)) (-1293 (((-749) $) NIL)) (-3445 (((-1089) $) NIL)) (-4087 (((-112) $ $) NIL) (((-112) $ (-1145)) NIL)) (-1644 (($ $) NIL)) (-3725 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1145) (-1 $ (-623 $))) NIL) (($ $ (-1145) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2757 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1532 (($ $) NIL) (($ $ $) NIL)) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL)) (-3832 (($ $) NIL (|has| $ (-1021)))) (-4149 (($ $) NIL)) (-2807 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-594 $)) NIL) (($ |#3|) NIL) (($ (-550)) NIL) (((-309 |#3|) $) 96)) (-3091 (((-749)) NIL)) (-3790 (($ $) NIL) (($ (-623 $)) NIL)) (-1905 (((-112) (-114)) NIL)) (-2893 (($ $) NIL)) (-2869 (($ $) NIL)) (-2880 (($ $) NIL)) (-4188 (($ $) NIL)) (-2688 (($) 95 T CONST)) (-2700 (($) 24 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL))) -(((-332 |#1| |#2| |#3|) (-13 (-295) (-38 |#3|) (-1012 |#3|) (-874 (-1145)) (-10 -8 (-15 -2202 ($ (-309 |#3|))) (-15 -2288 ((-3 $ "failed") (-309 |#3|))) (-15 -2202 ($ (-1145))) (-15 -2288 ((-3 $ "failed") (-1145))) (-15 -2233 ((-309 |#3|) $)) (IF (|has| |#3| (-1012 (-550))) (PROGN (-15 -2202 ($ (-309 (-550)))) (-15 -2288 ((-3 $ "failed") (-309 (-550)))) (-15 -2202 ($ (-400 (-926 (-550))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-550))))) (-15 -2202 ($ (-926 (-550)))) (-15 -2288 ((-3 $ "failed") (-926 (-550))))) |%noBranch|) (IF (|has| |#3| (-1012 (-372))) (PROGN (-15 -2202 ($ (-309 (-372)))) (-15 -2288 ((-3 $ "failed") (-309 (-372)))) (-15 -2202 ($ (-400 (-926 (-372))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-372))))) (-15 -2202 ($ (-926 (-372)))) (-15 -2288 ((-3 $ "failed") (-926 (-372))))) |%noBranch|) (-15 -4188 ($ $)) (-15 -1745 ($ $)) (-15 -1644 ($ $)) (-15 -3080 ($ $)) (-15 -1638 ($ $)) (-15 -2796 ($ $)) (-15 -2807 ($ $)) (-15 -2820 ($ $)) (-15 -2869 ($ $)) (-15 -2880 ($ $)) (-15 -2893 ($ $)) (-15 -4137 ($ $)) (-15 -4149 ($ $)) (-15 -4160 ($ $)) (-15 -4187 ($)) (-15 -1516 ((-623 (-1145)) $)) (-15 -4295 ((-112))) (-15 -4295 ((-112) (-112))))) (-623 (-1145)) (-623 (-1145)) (-380)) (T -332)) -((-2202 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-550)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-926 (-550)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-926 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-926 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-926 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-4188 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-1745 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2796 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2820 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-2893 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-4149 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-4187 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-4295 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380))))) -(-13 (-295) (-38 |#3|) (-1012 |#3|) (-874 (-1145)) (-10 -8 (-15 -2202 ($ (-309 |#3|))) (-15 -2288 ((-3 $ "failed") (-309 |#3|))) (-15 -2202 ($ (-1145))) (-15 -2288 ((-3 $ "failed") (-1145))) (-15 -2233 ((-309 |#3|) $)) (IF (|has| |#3| (-1012 (-550))) (PROGN (-15 -2202 ($ (-309 (-550)))) (-15 -2288 ((-3 $ "failed") (-309 (-550)))) (-15 -2202 ($ (-400 (-926 (-550))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-550))))) (-15 -2202 ($ (-926 (-550)))) (-15 -2288 ((-3 $ "failed") (-926 (-550))))) |%noBranch|) (IF (|has| |#3| (-1012 (-372))) (PROGN (-15 -2202 ($ (-309 (-372)))) (-15 -2288 ((-3 $ "failed") (-309 (-372)))) (-15 -2202 ($ (-400 (-926 (-372))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-372))))) (-15 -2202 ($ (-926 (-372)))) (-15 -2288 ((-3 $ "failed") (-926 (-372))))) |%noBranch|) (-15 -4188 ($ $)) (-15 -1745 ($ $)) (-15 -1644 ($ $)) (-15 -3080 ($ $)) (-15 -1638 ($ $)) (-15 -2796 ($ $)) (-15 -2807 ($ $)) (-15 -2820 ($ $)) (-15 -2869 ($ $)) (-15 -2880 ($ $)) (-15 -2893 ($ $)) (-15 -4137 ($ $)) (-15 -4149 ($ $)) (-15 -4160 ($ $)) (-15 -4187 ($)) (-15 -1516 ((-623 (-1145)) $)) (-15 -4295 ((-112))) (-15 -4295 ((-112) (-112))))) -((-2392 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2392 (|#8| (-1 |#5| |#1|) |#4|))) (-1186) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1186) (-1204 |#5|) (-1204 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -333)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1186)) (-4 *8 (-1186)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *9 (-1204 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1204 (-400 *9)))))) -(-10 -7 (-15 -2392 (|#8| (-1 |#5| |#1|) |#4|))) -((-3897 (((-2 (|:| |num| (-1228 |#3|)) (|:| |den| |#3|)) $) 38)) (-2821 (($ (-1228 (-400 |#3|)) (-1228 $)) NIL) (($ (-1228 (-400 |#3|))) NIL) (($ (-1228 |#3|) |#3|) 161)) (-3662 (((-1228 $) (-1228 $)) 145)) (-3142 (((-623 (-623 |#2|))) 119)) (-3758 (((-112) |#2| |#2|) 73)) (-2731 (($ $) 139)) (-3101 (((-749)) 31)) (-2938 (((-1228 $) (-1228 $)) 198)) (-1804 (((-623 (-926 |#2|)) (-1145)) 110)) (-2970 (((-112) $) 158)) (-4298 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-2043 (((-3 |#3| "failed")) 50)) (-1646 (((-749)) 170)) (-2757 ((|#2| $ |#2| |#2|) 132)) (-1834 (((-3 |#3| "failed")) 68)) (-2798 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-749)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2598 (((-1228 $) (-1228 $)) 151)) (-3597 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2687 (((-112)) 33))) -(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -3142 ((-623 (-623 |#2|)))) (-15 -1804 ((-623 (-926 |#2|)) (-1145))) (-15 -3597 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2043 ((-3 |#3| "failed"))) (-15 -1834 ((-3 |#3| "failed"))) (-15 -2757 (|#2| |#1| |#2| |#2|)) (-15 -2731 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4298 ((-112) |#1| |#3|)) (-15 -4298 ((-112) |#1| |#2|)) (-15 -2821 (|#1| (-1228 |#3|) |#3|)) (-15 -3897 ((-2 (|:| |num| (-1228 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3662 ((-1228 |#1|) (-1228 |#1|))) (-15 -2938 ((-1228 |#1|) (-1228 |#1|))) (-15 -2598 ((-1228 |#1|) (-1228 |#1|))) (-15 -4298 ((-112) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -3758 ((-112) |#2| |#2|)) (-15 -2687 ((-112))) (-15 -1646 ((-749))) (-15 -3101 ((-749))) (-15 -2798 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -2798 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -2821 (|#1| (-1228 (-400 |#3|)))) (-15 -2821 (|#1| (-1228 (-400 |#3|)) (-1228 |#1|)))) (-335 |#2| |#3| |#4|) (-1186) (-1204 |#2|) (-1204 (-400 |#3|))) (T -334)) -((-3101 (*1 *2) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1646 (*1 *2) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2687 (*1 *2) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *3 (-1186)) (-4 *5 (-1204 *3)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1834 (*1 *2) (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 (-400 *2))) (-4 *2 (-1204 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-2043 (*1 *2) (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 (-400 *2))) (-4 *2 (-1204 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *5 (-1186)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-5 *2 (-623 (-926 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-3142 (*1 *2) (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-623 (-623 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))) -(-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -3142 ((-623 (-623 |#2|)))) (-15 -1804 ((-623 (-926 |#2|)) (-1145))) (-15 -3597 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2043 ((-3 |#3| "failed"))) (-15 -1834 ((-3 |#3| "failed"))) (-15 -2757 (|#2| |#1| |#2| |#2|)) (-15 -2731 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4298 ((-112) |#1| |#3|)) (-15 -4298 ((-112) |#1| |#2|)) (-15 -2821 (|#1| (-1228 |#3|) |#3|)) (-15 -3897 ((-2 (|:| |num| (-1228 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3662 ((-1228 |#1|) (-1228 |#1|))) (-15 -2938 ((-1228 |#1|) (-1228 |#1|))) (-15 -2598 ((-1228 |#1|) (-1228 |#1|))) (-15 -4298 ((-112) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -3758 ((-112) |#2| |#2|)) (-15 -2687 ((-112))) (-15 -1646 ((-749))) (-15 -3101 ((-749))) (-15 -2798 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -2798 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -2821 (|#1| (-1228 (-400 |#3|)))) (-15 -2821 (|#1| (-1228 (-400 |#3|)) (-1228 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3897 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) 193)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-3050 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-3953 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-3992 (((-667 (-400 |#2|)) (-1228 $)) 44) (((-667 (-400 |#2|))) 59)) (-2223 (((-400 |#2|) $) 50)) (-3435 (((-1155 (-895) (-749)) (-550)) 144 (|has| (-400 |#2|) (-342)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-2207 (((-411 $) $) 112 (|has| (-400 |#2|) (-356)))) (-1611 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3828 (((-749)) 85 (|has| (-400 |#2|) (-361)))) (-2215 (((-112)) 210)) (-3676 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 166 (|has| (-400 |#2|) (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) 163)) (-2202 (((-550) $) 167 (|has| (-400 |#2|) (-1012 (-550)))) (((-400 (-550)) $) 165 (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-400 |#2|) $) 162)) (-2821 (($ (-1228 (-400 |#2|)) (-1228 $)) 46) (($ (-1228 (-400 |#2|))) 62) (($ (-1228 |#2|) |#2|) 192)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-342)))) (-3455 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-2766 (((-667 (-400 |#2|)) $ (-1228 $)) 51) (((-667 (-400 |#2|)) $) 57)) (-3756 (((-667 (-550)) (-667 $)) 161 (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 160 (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-400 |#2|))) (|:| |vec| (-1228 (-400 |#2|)))) (-667 $) (-1228 $)) 159) (((-667 (-400 |#2|)) (-667 $)) 158)) (-3662 (((-1228 $) (-1228 $)) 198)) (-2924 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-1537 (((-3 $ "failed") $) 32)) (-3142 (((-623 (-623 |#1|))) 179 (|has| |#1| (-361)))) (-3758 (((-112) |#1| |#1|) 214)) (-3398 (((-895)) 52)) (-1864 (($) 88 (|has| (-400 |#2|) (-361)))) (-3910 (((-112)) 207)) (-2283 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-3429 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 100 (|has| (-400 |#2|) (-356)))) (-2731 (($ $) 185)) (-2664 (($) 146 (|has| (-400 |#2|) (-342)))) (-4139 (((-112) $) 147 (|has| (-400 |#2|) (-342)))) (-4322 (($ $ (-749)) 138 (|has| (-400 |#2|) (-342))) (($ $) 137 (|has| (-400 |#2|) (-342)))) (-1568 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-2603 (((-895) $) 149 (|has| (-400 |#2|) (-342))) (((-811 (-895)) $) 135 (|has| (-400 |#2|) (-342)))) (-2419 (((-112) $) 30)) (-3101 (((-749)) 217)) (-2938 (((-1228 $) (-1228 $)) 199)) (-1571 (((-400 |#2|) $) 49)) (-1804 (((-623 (-926 |#1|)) (-1145)) 180 (|has| |#1| (-356)))) (-1620 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| (-400 |#2|) (-356)))) (-2835 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-4073 (((-895) $) 87 (|has| (-400 |#2|) (-361)))) (-2910 ((|#3| $) 153)) (-3231 (($ (-623 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-2369 (((-1127) $) 9)) (-1379 (((-667 (-400 |#2|))) 194)) (-3046 (((-667 (-400 |#2|))) 196)) (-1619 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-2252 (($ (-1228 |#2|) |#2|) 190)) (-4305 (((-667 (-400 |#2|))) 195)) (-1787 (((-667 (-400 |#2|))) 197)) (-3603 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-4090 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) 191)) (-2560 (((-1228 $)) 203)) (-2892 (((-1228 $)) 204)) (-2970 (((-112) $) 202)) (-4298 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-2463 (($) 140 (|has| (-400 |#2|) (-342)) CONST)) (-3690 (($ (-895)) 86 (|has| (-400 |#2|) (-361)))) (-2043 (((-3 |#2| "failed")) 182)) (-3445 (((-1089) $) 10)) (-1646 (((-749)) 216)) (-2256 (($) 157)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| (-400 |#2|) (-356)))) (-3260 (($ (-623 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 143 (|has| (-400 |#2|) (-342)))) (-1735 (((-411 $) $) 110 (|has| (-400 |#2|) (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-3409 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| (-400 |#2|) (-356)))) (-1988 (((-749) $) 103 (|has| (-400 |#2|) (-356)))) (-2757 ((|#1| $ |#1| |#1|) 184)) (-1834 (((-3 |#2| "failed")) 183)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-3563 (((-400 |#2|) (-1228 $)) 45) (((-400 |#2|)) 58)) (-2899 (((-749) $) 148 (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) 136 (|has| (-400 |#2|) (-342)))) (-2798 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-623 (-1145)) (-623 (-749))) 127 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-1145) (-749)) 128 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-623 (-1145))) 129 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-1145)) 130 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 132 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1304 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 134 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1304 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2871 (((-667 (-400 |#2|)) (-1228 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-3832 ((|#3|) 156)) (-2038 (($) 145 (|has| (-400 |#2|) (-342)))) (-2999 (((-1228 (-400 |#2|)) $ (-1228 $)) 48) (((-667 (-400 |#2|)) (-1228 $) (-1228 $)) 47) (((-1228 (-400 |#2|)) $) 64) (((-667 (-400 |#2|)) (-1228 $)) 63)) (-2451 (((-1228 (-400 |#2|)) $) 61) (($ (-1228 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 142 (|has| (-400 |#2|) (-342)))) (-2598 (((-1228 $) (-1228 $)) 200)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-550))) 84 (-1489 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-550)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-1613 (($ $) 141 (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-3359 ((|#3| $) 43)) (-3091 (((-749)) 28)) (-3071 (((-112)) 213)) (-3872 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2206 (((-1228 $)) 65)) (-1819 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-3597 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2687 (((-112)) 215)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1145)) (-623 (-749))) 123 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-1145) (-749)) 124 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-623 (-1145))) 125 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-1145)) 126 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) (-1304 (|has| (-400 |#2|) (-874 (-1145))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 131 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1304 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 133 (-1489 (-1304 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1304 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-550)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) 116 (|has| (-400 |#2|) (-356))))) -(((-335 |#1| |#2| |#3|) (-138) (-1186) (-1204 |t#1|) (-1204 (-400 |t#2|))) (T -335)) -((-3101 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-749)))) (-1646 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-749)))) (-2687 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3071 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3872 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3872 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) (-2215 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3676 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-3676 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) (-3910 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-2283 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-2283 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) (-2892 (*1 *2) (-12 (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)))) (-2560 (*1 *2) (-12 (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))))) (-1787 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-3046 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-4305 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1379 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1228 *4)) (|:| |den| *4))))) (-2821 (*1 *1 *2 *3) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1204 *4)) (-4 *4 (-1186)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1204 (-400 *3))))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1228 *4)) (|:| |den| *4))))) (-2252 (*1 *1 *2 *3) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1204 *4)) (-4 *4 (-1186)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1204 (-400 *3))))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5))))) (-4298 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) (-4298 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))))) (-2731 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-1204 *2)) (-4 *4 (-1204 (-400 *3))))) (-2757 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-1204 *2)) (-4 *4 (-1204 (-400 *3))))) (-1834 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1186)) (-4 *4 (-1204 (-400 *2))) (-4 *2 (-1204 *3)))) (-2043 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1186)) (-4 *4 (-1204 (-400 *2))) (-4 *2 (-1204 *3)))) (-3597 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-1186)) (-4 *6 (-1204 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-623 (-926 *4))))) (-3142 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-623 (-623 *3)))))) -(-13 (-703 (-400 |t#2|) |t#3|) (-10 -8 (-15 -3101 ((-749))) (-15 -1646 ((-749))) (-15 -2687 ((-112))) (-15 -3758 ((-112) |t#1| |t#1|)) (-15 -3071 ((-112))) (-15 -3872 ((-112) |t#1|)) (-15 -3872 ((-112) |t#2|)) (-15 -2215 ((-112))) (-15 -3676 ((-112) |t#1|)) (-15 -3676 ((-112) |t#2|)) (-15 -3910 ((-112))) (-15 -2283 ((-112) |t#1|)) (-15 -2283 ((-112) |t#2|)) (-15 -2892 ((-1228 $))) (-15 -2560 ((-1228 $))) (-15 -2970 ((-112) $)) (-15 -4298 ((-112) $)) (-15 -2598 ((-1228 $) (-1228 $))) (-15 -2938 ((-1228 $) (-1228 $))) (-15 -3662 ((-1228 $) (-1228 $))) (-15 -1787 ((-667 (-400 |t#2|)))) (-15 -3046 ((-667 (-400 |t#2|)))) (-15 -4305 ((-667 (-400 |t#2|)))) (-15 -1379 ((-667 (-400 |t#2|)))) (-15 -3897 ((-2 (|:| |num| (-1228 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2821 ($ (-1228 |t#2|) |t#2|)) (-15 -4090 ((-2 (|:| |num| (-1228 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2252 ($ (-1228 |t#2|) |t#2|)) (-15 -3603 ((-2 (|:| |num| (-667 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4298 ((-112) $ |t#1|)) (-15 -4298 ((-112) $ |t#2|)) (-15 -2798 ($ $ (-1 |t#2| |t#2|))) (-15 -2731 ($ $)) (-15 -2757 (|t#1| $ |t#1| |t#1|)) (-15 -1834 ((-3 |t#2| "failed"))) (-15 -2043 ((-3 |t#2| "failed"))) (-15 -3597 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1804 ((-623 (-926 |t#1|)) (-1145))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -3142 ((-623 (-623 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-38 #1=(-400 |#2|)) . T) ((-38 $) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #0# #0#) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-595 (-837)) . T) ((-170) . T) ((-596 |#3|) . T) ((-225 #1#) |has| (-400 |#2|) (-356)) ((-227) -1489 (|has| (-400 |#2|) (-342)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-283) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-300) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-356) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-342)) ((-361) -1489 (|has| (-400 |#2|) (-361)) (|has| (-400 |#2|) (-342))) ((-342) |has| (-400 |#2|) (-342)) ((-363 #1# |#3|) . T) ((-402 #1# |#3|) . T) ((-370 #1#) . T) ((-404 #1#) . T) ((-444) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-542) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-626 #0#) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-626 #1#) . T) ((-626 $) . T) ((-619 #1#) . T) ((-619 (-550)) |has| (-400 |#2|) (-619 (-550))) ((-696 #0#) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-696 #1#) . T) ((-696 $) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-703 #1# |#3|) . T) ((-705) . T) ((-874 (-1145)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145)))) ((-894) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1012 (-400 (-550))) |has| (-400 |#2|) (-1012 (-400 (-550)))) ((-1012 #1#) . T) ((-1012 (-550)) |has| (-400 |#2|) (-1012 (-550))) ((-1027 #0#) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1027 #1#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| (-400 |#2|) (-342)) ((-1186) -1489 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-884 |#1|) (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| (-884 |#1|) (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-884 |#1|) "failed") $) NIL)) (-2202 (((-884 |#1|) $) NIL)) (-2821 (($ (-1228 (-884 |#1|))) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-884 |#1|) (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-884 |#1|) (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| (-884 |#1|) (-361)))) (-4139 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361)))) (($ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| (-884 |#1|) (-361))) (((-811 (-895)) $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-884 |#1|) (-361)))) (-3751 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-1571 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 (-884 |#1|)) $) NIL) (((-1141 $) $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-4073 (((-895) $) NIL (|has| (-884 |#1|) (-361)))) (-2888 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361)))) (-4180 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-1141 (-884 |#1|)) "failed") $ $) NIL (|has| (-884 |#1|) (-361)))) (-1542 (($ $ (-1141 (-884 |#1|))) NIL (|has| (-884 |#1|) (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-884 |#1|) (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-3644 (((-932 (-1089))) NIL)) (-2256 (($) NIL (|has| (-884 |#1|) (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-884 |#1|) (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 (-884 |#1|))) NIL)) (-2038 (($) NIL (|has| (-884 |#1|) (-361)))) (-3975 (($) NIL (|has| (-884 |#1|) (-361)))) (-2999 (((-1228 (-884 |#1|)) $) NIL) (((-667 (-884 |#1|)) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-884 |#1|) (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-884 |#1|)) NIL)) (-1613 (($ $) NIL (|has| (-884 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-1901 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ (-884 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-884 |#1|)) NIL) (($ (-884 |#1|) $) NIL))) -(((-336 |#1| |#2|) (-13 (-322 (-884 |#1|)) (-10 -7 (-15 -3644 ((-932 (-1089)))))) (-895) (-895)) (T -336)) -((-3644 (*1 *2) (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-336 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))) -(-13 (-322 (-884 |#1|)) (-10 -7 (-15 -3644 ((-932 (-1089)))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 44)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) 41 (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 115)) (-2202 ((|#1| $) 86)) (-2821 (($ (-1228 |#1|)) 104)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) 98 (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) 129 (|has| |#1| (-361)))) (-4139 (((-112) $) 48 (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) 45 (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) 131 (|has| |#1| (-361)))) (-3751 (((-112) $) NIL (|has| |#1| (-361)))) (-1571 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) 90) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) 139 (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 146)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) 71 (|has| |#1| (-361)))) (-3881 (((-112) $) 118)) (-3445 (((-1089) $) NIL)) (-3644 (((-932 (-1089))) 42)) (-2256 (($) 127 (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 93 (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) 67) (((-895)) 68)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) 130 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 125 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 |#1|)) 96)) (-2038 (($) 128 (|has| |#1| (-361)))) (-3975 (($) 136 (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) 59) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) 142) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 75)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) 138)) (-2206 (((-1228 $)) 117) (((-1228 $) (-895)) 73)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) 49 T CONST)) (-2700 (($) 46 T CONST)) (-3020 (($ $) 81 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) 47)) (-2382 (($ $ $) 144) (($ $ |#1|) 145)) (-2370 (($ $) 126) (($ $ $) NIL)) (-2358 (($ $ $) 61)) (** (($ $ (-895)) 148) (($ $ (-749)) 149) (($ $ (-550)) 147)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 77) (($ $ $) 76) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-337 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -3644 ((-932 (-1089)))))) (-342) (-1141 |#1|)) (T -337)) -((-3644 (*1 *2) (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) (-14 *4 (-1141 *3))))) -(-13 (-322 |#1|) (-10 -7 (-15 -3644 ((-932 (-1089)))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2821 (($ (-1228 |#1|)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| |#1| (-361)))) (-4139 (((-112) $) NIL (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-361)))) (-3751 (((-112) $) NIL (|has| |#1| (-361)))) (-1571 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-3644 (((-932 (-1089))) NIL)) (-2256 (($) NIL (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 |#1|)) NIL)) (-2038 (($) NIL (|has| |#1| (-361)))) (-3975 (($) NIL (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) NIL) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -3644 ((-932 (-1089)))))) (-342) (-895)) (T -338)) -((-3644 (*1 *2) (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) (-14 *4 (-895))))) -(-13 (-322 |#1|) (-10 -7 (-15 -3644 ((-932 (-1089)))))) -((-4168 (((-749) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) 42)) (-2199 (((-932 (-1089)) (-1141 |#1|)) 85)) (-1984 (((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) (-1141 |#1|)) 78)) (-3738 (((-667 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) 86)) (-2434 (((-3 (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) "failed") (-895)) 13)) (-3484 (((-3 (-1141 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) (-895)) 18))) -(((-339 |#1|) (-10 -7 (-15 -2199 ((-932 (-1089)) (-1141 |#1|))) (-15 -1984 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) (-1141 |#1|))) (-15 -3738 ((-667 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -4168 ((-749) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2434 ((-3 (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) "failed") (-895))) (-15 -3484 ((-3 (-1141 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) (-895)))) (-342)) (T -339)) -((-3484 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-3 (-1141 *4) (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089))))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-2434 (*1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-5 *2 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) (-4 *4 (-342)) (-5 *2 (-749)) (-5 *1 (-339 *4)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) (-4 *4 (-342)) (-5 *2 (-667 *4)) (-5 *1 (-339 *4)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) (-5 *1 (-339 *4)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-932 (-1089))) (-5 *1 (-339 *4))))) -(-10 -7 (-15 -2199 ((-932 (-1089)) (-1141 |#1|))) (-15 -1984 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) (-1141 |#1|))) (-15 -3738 ((-667 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -4168 ((-749) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2434 ((-3 (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) "failed") (-895))) (-15 -3484 ((-3 (-1141 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) (-895)))) -((-2233 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-340 |#1| |#2| |#3|) (-10 -7 (-15 -2233 (|#3| |#1|)) (-15 -2233 (|#1| |#3|))) (-322 |#2|) (-342) (-322 |#2|)) (T -340)) -((-2233 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) (-4 *3 (-322 *4)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) (-4 *3 (-322 *4))))) -(-10 -7 (-15 -2233 (|#3| |#1|)) (-15 -2233 (|#1| |#3|))) -((-4139 (((-112) $) 51)) (-2603 (((-811 (-895)) $) 21) (((-895) $) 52)) (-1620 (((-3 $ "failed") $) 16)) (-2463 (($) 9)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 93)) (-2899 (((-3 (-749) "failed") $ $) 71) (((-749) $) 60)) (-2798 (($ $ (-749)) NIL) (($ $) 8)) (-2038 (($) 44)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 34)) (-1613 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-341 |#1|) (-10 -8 (-15 -2603 ((-895) |#1|)) (-15 -2899 ((-749) |#1|)) (-15 -4139 ((-112) |#1|)) (-15 -2038 (|#1|)) (-15 -2897 ((-3 (-1228 |#1|) "failed") (-667 |#1|))) (-15 -1613 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2899 ((-3 (-749) "failed") |#1| |#1|)) (-15 -2603 ((-811 (-895)) |#1|)) (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-342)) (T -341)) -NIL -(-10 -8 (-15 -2603 ((-895) |#1|)) (-15 -2899 ((-749) |#1|)) (-15 -4139 ((-112) |#1|)) (-15 -2038 (|#1|)) (-15 -2897 ((-3 (-1228 |#1|) "failed") (-667 |#1|))) (-15 -1613 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2899 ((-3 (-749) "failed") |#1| |#1|)) (-15 -2603 ((-811 (-895)) |#1|)) (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-3435 (((-1155 (-895) (-749)) (-550)) 90)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1611 (((-112) $ $) 57)) (-3828 (((-749)) 100)) (-2991 (($) 17 T CONST)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-1864 (($) 103)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-2664 (($) 88)) (-4139 (((-112) $) 87)) (-4322 (($ $) 76) (($ $ (-749)) 75)) (-1568 (((-112) $) 68)) (-2603 (((-811 (-895)) $) 78) (((-895) $) 85)) (-2419 (((-112) $) 30)) (-1620 (((-3 $ "failed") $) 99)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-4073 (((-895) $) 102)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-2463 (($) 98 T CONST)) (-3690 (($ (-895)) 101)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 91)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2899 (((-3 (-749) "failed") $ $) 77) (((-749) $) 86)) (-2798 (($ $ (-749)) 96) (($ $) 94)) (-2038 (($) 89)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 92)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-1613 (((-3 $ "failed") $) 79) (($ $) 93)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-749)) 97) (($ $) 95)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) -(((-342) (-138)) (T -342)) -((-1613 (*1 *1 *1) (-4 *1 (-342))) (-2897 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-342)) (-5 *2 (-1228 *1)))) (-1934 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))))) (-3435 (*1 *2 *3) (-12 (-4 *1 (-342)) (-5 *3 (-550)) (-5 *2 (-1155 (-895) (-749))))) (-2038 (*1 *1) (-4 *1 (-342))) (-2664 (*1 *1) (-4 *1 (-342))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-749)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-895)))) (-2082 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-395) (-361) (-1120) (-227) (-10 -8 (-15 -1613 ($ $)) (-15 -2897 ((-3 (-1228 $) "failed") (-667 $))) (-15 -1934 ((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550)))))) (-15 -3435 ((-1155 (-895) (-749)) (-550))) (-15 -2038 ($)) (-15 -2664 ($)) (-15 -4139 ((-112) $)) (-15 -2899 ((-749) $)) (-15 -2603 ((-895) $)) (-15 -2082 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-837)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) . T) ((-1186) . T)) -((-2443 (((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|) 53)) (-2892 (((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 51))) -(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $)))) (-1204 |#1|) (-402 |#1| |#2|)) (T -343)) -((-2443 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2892 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) -(-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-884 |#1|) (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-4168 (((-749)) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| (-884 |#1|) (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-884 |#1|) "failed") $) NIL)) (-2202 (((-884 |#1|) $) NIL)) (-2821 (($ (-1228 (-884 |#1|))) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-884 |#1|) (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-884 |#1|) (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| (-884 |#1|) (-361)))) (-4139 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361)))) (($ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| (-884 |#1|) (-361))) (((-811 (-895)) $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-884 |#1|) (-361)))) (-3751 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-1571 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 (-884 |#1|)) $) NIL) (((-1141 $) $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-4073 (((-895) $) NIL (|has| (-884 |#1|) (-361)))) (-2888 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361)))) (-4180 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-1141 (-884 |#1|)) "failed") $ $) NIL (|has| (-884 |#1|) (-361)))) (-1542 (($ $ (-1141 (-884 |#1|))) NIL (|has| (-884 |#1|) (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-884 |#1|) (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2512 (((-1228 (-623 (-2 (|:| -1337 (-884 |#1|)) (|:| -3690 (-1089)))))) NIL)) (-2877 (((-667 (-884 |#1|))) NIL)) (-2256 (($) NIL (|has| (-884 |#1|) (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-884 |#1|) (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 (-884 |#1|))) NIL)) (-2038 (($) NIL (|has| (-884 |#1|) (-361)))) (-3975 (($) NIL (|has| (-884 |#1|) (-361)))) (-2999 (((-1228 (-884 |#1|)) $) NIL) (((-667 (-884 |#1|)) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-884 |#1|) (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-884 |#1|)) NIL)) (-1613 (($ $) NIL (|has| (-884 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-1901 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ (-884 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-884 |#1|)) NIL) (($ (-884 |#1|) $) NIL))) -(((-344 |#1| |#2|) (-13 (-322 (-884 |#1|)) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 (-884 |#1|)) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 (-884 |#1|)))) (-15 -4168 ((-749))))) (-895) (-895)) (T -344)) -((-2512 (*1 *2) (-12 (-5 *2 (-1228 (-623 (-2 (|:| -1337 (-884 *3)) (|:| -3690 (-1089)))))) (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-2877 (*1 *2) (-12 (-5 *2 (-667 (-884 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-4168 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))) -(-13 (-322 (-884 |#1|)) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 (-884 |#1|)) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 (-884 |#1|)))) (-15 -4168 ((-749))))) -((-2221 (((-112) $ $) 61)) (-3378 (((-112) $) 74)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) 92) (($ $ (-895)) 90 (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) 148 (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-4168 (((-749)) 89)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) 162 (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 112)) (-2202 ((|#1| $) 91)) (-2821 (($ (-1228 |#1|)) 58)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) 158 (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) 149 (|has| |#1| (-361)))) (-4139 (((-112) $) NIL (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) 98 (|has| |#1| (-361)))) (-3751 (((-112) $) 175 (|has| |#1| (-361)))) (-1571 ((|#1| $) 94) (($ $ (-895)) 93 (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) 189) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) 134 (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) 73 (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) 69 (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 192)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) 137 (|has| |#1| (-361)))) (-3881 (((-112) $) 108)) (-3445 (((-1089) $) NIL)) (-2512 (((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) 83)) (-2877 (((-667 |#1|)) 87)) (-2256 (($) 96 (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 150 (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) 151)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) 62)) (-3832 (((-1141 |#1|)) 152)) (-2038 (($) 133 (|has| |#1| (-361)))) (-3975 (($) NIL (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) 106) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) 124) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 57)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) 156)) (-2206 (((-1228 $)) 172) (((-1228 $) (-895)) 101)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) 117 T CONST)) (-2700 (($) 33 T CONST)) (-3020 (($ $) 107 (|has| |#1| (-361))) (($ $ (-749)) 99 (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) 183)) (-2382 (($ $ $) 104) (($ $ |#1|) 105)) (-2370 (($ $) 177) (($ $ $) 181)) (-2358 (($ $ $) 179)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 138)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 186) (($ $ $) 142) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-345 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 |#1|))) (-15 -4168 ((-749))))) (-342) (-3 (-1141 |#1|) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (T -345)) -((-2512 (*1 *2) (-12 (-5 *2 (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1141 *3) *2)))) (-2877 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1141 *3) (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089))))))))) (-4168 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1141 *3) (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089)))))))))) -(-13 (-322 |#1|) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 |#1|))) (-15 -4168 ((-749))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-4168 (((-749)) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2821 (($ (-1228 |#1|)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| |#1| (-361)))) (-4139 (((-112) $) NIL (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-361)))) (-3751 (((-112) $) NIL (|has| |#1| (-361)))) (-1571 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2512 (((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089)))))) NIL)) (-2877 (((-667 |#1|)) NIL)) (-2256 (($) NIL (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 |#1|)) NIL)) (-2038 (($) NIL (|has| |#1| (-361)))) (-3975 (($) NIL (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) NIL) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 |#1|))) (-15 -4168 ((-749))))) (-342) (-895)) (T -346)) -((-2512 (*1 *2) (-12 (-5 *2 (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-895)))) (-2877 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-895)))) (-4168 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-895))))) -(-13 (-322 |#1|) (-10 -7 (-15 -2512 ((-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))))) (-15 -2877 ((-667 |#1|))) (-15 -4168 ((-749))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-884 |#1|) (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| (-884 |#1|) (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-884 |#1|) "failed") $) NIL)) (-2202 (((-884 |#1|) $) NIL)) (-2821 (($ (-1228 (-884 |#1|))) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-884 |#1|) (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-884 |#1|) (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| (-884 |#1|) (-361)))) (-4139 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361)))) (($ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| (-884 |#1|) (-361))) (((-811 (-895)) $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-884 |#1|) (-361)))) (-3751 (((-112) $) NIL (|has| (-884 |#1|) (-361)))) (-1571 (((-884 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 (-884 |#1|)) $) NIL) (((-1141 $) $ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-4073 (((-895) $) NIL (|has| (-884 |#1|) (-361)))) (-2888 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361)))) (-4180 (((-1141 (-884 |#1|)) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-1141 (-884 |#1|)) "failed") $ $) NIL (|has| (-884 |#1|) (-361)))) (-1542 (($ $ (-1141 (-884 |#1|))) NIL (|has| (-884 |#1|) (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-884 |#1|) (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| (-884 |#1|) (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL (|has| (-884 |#1|) (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-884 |#1|) (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| (-884 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 (-884 |#1|))) NIL)) (-2038 (($) NIL (|has| (-884 |#1|) (-361)))) (-3975 (($) NIL (|has| (-884 |#1|) (-361)))) (-2999 (((-1228 (-884 |#1|)) $) NIL) (((-667 (-884 |#1|)) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-884 |#1|) (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-884 |#1|)) NIL)) (-1613 (($ $) NIL (|has| (-884 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| (-884 |#1|) (-143)) (|has| (-884 |#1|) (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-1901 (($ $) NIL (|has| (-884 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-884 |#1|) (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ (-884 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-884 |#1|)) NIL) (($ (-884 |#1|) $) NIL))) -(((-347 |#1| |#2|) (-322 (-884 |#1|)) (-895) (-895)) (T -347)) -NIL -(-322 (-884 |#1|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) 120 (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) 140 (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 93)) (-2202 ((|#1| $) 90)) (-2821 (($ (-1228 |#1|)) 85)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) 82 (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) 42 (|has| |#1| (-361)))) (-4139 (((-112) $) NIL (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) 121 (|has| |#1| (-361)))) (-3751 (((-112) $) 74 (|has| |#1| (-361)))) (-1571 ((|#1| $) 39) (($ $ (-895)) 43 (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) 65) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) 97 (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) 95 (|has| |#1| (-361)))) (-3881 (((-112) $) 142)) (-3445 (((-1089) $) NIL)) (-2256 (($) 36 (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 115 (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) 139)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) 59)) (-3832 (((-1141 |#1|)) 88)) (-2038 (($) 126 (|has| |#1| (-361)))) (-3975 (($) NIL (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) 53) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) 138) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 87)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) 144)) (-2206 (((-1228 $)) 109) (((-1228 $) (-895)) 49)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) 111 T CONST)) (-2700 (($) 32 T CONST)) (-3020 (($ $) 68 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) 107)) (-2382 (($ $ $) 99) (($ $ |#1|) 100)) (-2370 (($ $) 80) (($ $ $) 105)) (-2358 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-749)) 44) (($ $ (-550)) 130)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 78) (($ $ $) 56) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-348 |#1| |#2|) (-322 |#1|) (-342) (-1141 |#1|)) (T -348)) +((-2123 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-4285 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) (-4 *1 (-322 *4)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1721 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2124 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-2496 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-1718 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) +(-13 (-1248 |t#1|) (-1012 |t#1|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -2123 ((-1229 $) (-893))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -2125 ((-1141 |t#1|) $)) (-15 -3531 ((-1141 |t#1|))) (-15 -4285 ((-893))) (-15 -4302 ((-893) $)) (-15 -3462 (|t#1| $)) (-15 -3684 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-343)) (-15 -2125 ((-1141 $) $ (-893))) (-15 -3462 ($ $ (-893))) (-15 -3684 ($ $ (-893))) (-15 -1721 ($)) (-15 -2124 ($)) (-15 -2122 ((-112) $)) (-15 -2496 ($)) (-15 -1720 ($ $ (-1141 |t#1|))) (-15 -1719 ((-1141 |t#1|) $)) (-15 -1718 ((-1141 |t#1|) $)) (-15 -1718 ((-3 (-1141 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1248 |#1|) . T) ((-356) . T) ((-395) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-343) |has| |#1| (-361)) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-361)) ((-1188) . T) ((-1237 |#1|) . T)) +((-2893 (((-112) $ $) NIL)) (-1739 (($ (-1146) $) 88)) (-1730 (($) 77)) (-1722 (((-1091) (-1091)) 11)) (-1729 (($) 78)) (-1733 (($) 90) (($ (-307 (-677))) 98) (($ (-307 (-679))) 94) (($ (-307 (-672))) 102) (($ (-307 (-371))) 109) (($ (-307 (-536))) 105) (($ (-307 (-166 (-371)))) 113)) (-1738 (($ (-1146) $) 89)) (-1728 (($ (-620 (-838))) 79)) (-1724 (((-1235) $) 75)) (-1726 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1737 (($ (-1091)) 51)) (-1723 (((-1074) $) 25)) (-1740 (($ (-1063 (-920 (-536))) $) 85) (($ (-1063 (-920 (-536))) (-920 (-536)) $) 86)) (-1736 (($ (-1091)) 87)) (-1732 (($ (-1146) $) 115) (($ (-1146) $ $) 116)) (-1727 (($ (-1147) (-620 (-1147))) 76)) (-1735 (($ (-1129)) 82) (($ (-620 (-1129))) 80)) (-4312 (((-838) $) 118)) (-1725 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $) 44)) (-1734 (($ (-1129)) 187)) (-1731 (($ (-620 $)) 114)) (-2911 (($ (-1147) (-1129)) 120) (($ (-1147) (-307 (-679))) 160) (($ (-1147) (-307 (-677))) 161) (($ (-1147) (-307 (-672))) 162) (($ (-1147) (-667 (-679))) 123) (($ (-1147) (-667 (-677))) 126) (($ (-1147) (-667 (-672))) 129) (($ (-1147) (-1229 (-679))) 132) (($ (-1147) (-1229 (-677))) 135) (($ (-1147) (-1229 (-672))) 138) (($ (-1147) (-667 (-307 (-679)))) 141) (($ (-1147) (-667 (-307 (-677)))) 144) (($ (-1147) (-667 (-307 (-672)))) 147) (($ (-1147) (-1229 (-307 (-679)))) 150) (($ (-1147) (-1229 (-307 (-677)))) 153) (($ (-1147) (-1229 (-307 (-672)))) 156) (($ (-1147) (-620 (-920 (-536))) (-307 (-679))) 157) (($ (-1147) (-620 (-920 (-536))) (-307 (-677))) 158) (($ (-1147) (-620 (-920 (-536))) (-307 (-672))) 159) (($ (-1147) (-307 (-536))) 184) (($ (-1147) (-307 (-371))) 185) (($ (-1147) (-307 (-166 (-371)))) 186) (($ (-1147) (-667 (-307 (-536)))) 165) (($ (-1147) (-667 (-307 (-371)))) 168) (($ (-1147) (-667 (-307 (-166 (-371))))) 171) (($ (-1147) (-1229 (-307 (-536)))) 174) (($ (-1147) (-1229 (-307 (-371)))) 177) (($ (-1147) (-1229 (-307 (-166 (-371))))) 180) (($ (-1147) (-620 (-920 (-536))) (-307 (-536))) 181) (($ (-1147) (-620 (-920 (-536))) (-307 (-371))) 182) (($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371)))) 183)) (-3382 (((-112) $ $) NIL))) +(((-323) (-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -1740 ($ (-1063 (-920 (-536))) $)) (-15 -1740 ($ (-1063 (-920 (-536))) (-920 (-536)) $)) (-15 -1739 ($ (-1146) $)) (-15 -1738 ($ (-1146) $)) (-15 -1737 ($ (-1091))) (-15 -1736 ($ (-1091))) (-15 -1735 ($ (-1129))) (-15 -1735 ($ (-620 (-1129)))) (-15 -1734 ($ (-1129))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-679)))) (-15 -1733 ($ (-307 (-672)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-536)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1146) $)) (-15 -1732 ($ (-1146) $ $)) (-15 -2911 ($ (-1147) (-1129))) (-15 -2911 ($ (-1147) (-307 (-679)))) (-15 -2911 ($ (-1147) (-307 (-677)))) (-15 -2911 ($ (-1147) (-307 (-672)))) (-15 -2911 ($ (-1147) (-667 (-679)))) (-15 -2911 ($ (-1147) (-667 (-677)))) (-15 -2911 ($ (-1147) (-667 (-672)))) (-15 -2911 ($ (-1147) (-1229 (-679)))) (-15 -2911 ($ (-1147) (-1229 (-677)))) (-15 -2911 ($ (-1147) (-1229 (-672)))) (-15 -2911 ($ (-1147) (-667 (-307 (-679))))) (-15 -2911 ($ (-1147) (-667 (-307 (-677))))) (-15 -2911 ($ (-1147) (-667 (-307 (-672))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-679))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-677))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-672))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-679)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-677)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-672)))) (-15 -2911 ($ (-1147) (-307 (-536)))) (-15 -2911 ($ (-1147) (-307 (-371)))) (-15 -2911 ($ (-1147) (-307 (-166 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-536))))) (-15 -2911 ($ (-1147) (-667 (-307 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-536))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-371))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-536)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-371)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371))))) (-15 -1731 ($ (-620 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-620 (-838)))) (-15 -1727 ($ (-1147) (-620 (-1147)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $)) (-15 -1724 ((-1235) $)) (-15 -1723 ((-1074) $)) (-15 -1722 ((-1091) (-1091)))))) (T -323)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *3 (-920 (-536))) (-5 *1 (-323)))) (-1739 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1738 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-323)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323)))) (-1733 (*1 *1) (-5 *1 (-323))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-679)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-677)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-672)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-679)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-677)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-672)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-536))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-536)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-536)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-536))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-371))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-323)))) (-1730 (*1 *1) (-5 *1 (-323))) (-1729 (*1 *1) (-5 *1 (-323))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-323)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-323)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 (-323))) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 (-323)))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 (-323)))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838))))) (-5 *1 (-323)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-323)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-323)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) +(-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -1740 ($ (-1063 (-920 (-536))) $)) (-15 -1740 ($ (-1063 (-920 (-536))) (-920 (-536)) $)) (-15 -1739 ($ (-1146) $)) (-15 -1738 ($ (-1146) $)) (-15 -1737 ($ (-1091))) (-15 -1736 ($ (-1091))) (-15 -1735 ($ (-1129))) (-15 -1735 ($ (-620 (-1129)))) (-15 -1734 ($ (-1129))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-679)))) (-15 -1733 ($ (-307 (-672)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-536)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1146) $)) (-15 -1732 ($ (-1146) $ $)) (-15 -2911 ($ (-1147) (-1129))) (-15 -2911 ($ (-1147) (-307 (-679)))) (-15 -2911 ($ (-1147) (-307 (-677)))) (-15 -2911 ($ (-1147) (-307 (-672)))) (-15 -2911 ($ (-1147) (-667 (-679)))) (-15 -2911 ($ (-1147) (-667 (-677)))) (-15 -2911 ($ (-1147) (-667 (-672)))) (-15 -2911 ($ (-1147) (-1229 (-679)))) (-15 -2911 ($ (-1147) (-1229 (-677)))) (-15 -2911 ($ (-1147) (-1229 (-672)))) (-15 -2911 ($ (-1147) (-667 (-307 (-679))))) (-15 -2911 ($ (-1147) (-667 (-307 (-677))))) (-15 -2911 ($ (-1147) (-667 (-307 (-672))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-679))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-677))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-672))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-679)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-677)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-672)))) (-15 -2911 ($ (-1147) (-307 (-536)))) (-15 -2911 ($ (-1147) (-307 (-371)))) (-15 -2911 ($ (-1147) (-307 (-166 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-536))))) (-15 -2911 ($ (-1147) (-667 (-307 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-536))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-371))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-536)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-371)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371))))) (-15 -1731 ($ (-620 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-620 (-838)))) (-15 -1727 ($ (-1147) (-620 (-1147)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $)) (-15 -1724 ((-1235) $)) (-15 -1723 ((-1074) $)) (-15 -1722 ((-1091) (-1091))))) +((-2893 (((-112) $ $) NIL)) (-1741 (((-112) $) 11)) (-3996 (($ |#1|) 8)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3992 (($ |#1|) 9)) (-4312 (((-838) $) 17)) (-2313 ((|#1| $) 12)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 19))) +(((-324 |#1|) (-13 (-825) (-10 -8 (-15 -3996 ($ |#1|)) (-15 -3992 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2313 (|#1| $)))) (-825)) (T -324)) +((-3996 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-3992 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825)))) (-2313 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825))))) +(-13 (-825) (-10 -8 (-15 -3996 ($ |#1|)) (-15 -3992 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2313 (|#1| $)))) +((-1742 (((-323) (-1147) (-920 (-536))) 23)) (-1743 (((-323) (-1147) (-920 (-536))) 27)) (-2404 (((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536)))) 26) (((-323) (-1147) (-920 (-536)) (-920 (-536))) 24)) (-1744 (((-323) (-1147) (-920 (-536))) 31))) +(((-325) (-10 -7 (-15 -1742 ((-323) (-1147) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-920 (-536)) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536))))) (-15 -1743 ((-323) (-1147) (-920 (-536)))) (-15 -1744 ((-323) (-1147) (-920 (-536)))))) (T -325)) +((-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1063 (-920 (-536)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) +(-10 -7 (-15 -1742 ((-323) (-1147) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-920 (-536)) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536))))) (-15 -1743 ((-323) (-1147) (-920 (-536)))) (-15 -1744 ((-323) (-1147) (-920 (-536))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ $) 33)) (-1747 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-1745 (((-1229 |#4|) $) 125)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3589 (((-1091) $) NIL)) (-2496 (((-3 |#4| "failed") $) 36)) (-1746 (((-1229 |#4|) $) 118)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-536)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4312 (((-838) $) 17)) (-2986 (($) 14 T CONST)) (-3382 (((-112) $ $) 20)) (-4192 (($ $) 27) (($ $ $) NIL)) (-4194 (($ $ $) 25)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 23))) +(((-326 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1229 |#4|) $)) (-15 -1745 ((-1229 |#4|) $)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -326)) +((-1746 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-1745 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) +(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1229 |#4|) $)) (-15 -1745 ((-1229 |#4|) $)))) +((-4313 (((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)) 33))) +(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1205 |#5|) (-1205 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -327)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1205 *9)) (-4 *11 (-1205 (-400 *10))) (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11))))) +(-10 -7 (-15 -4313 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) +((-1747 (((-112) $) 14))) +(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1747 ((-112) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-356) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -328)) +NIL +(-10 -8 (-15 -1747 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4197 (($ $) 26)) (-1747 (((-112) $) 25)) (-3588 (((-1129) $) 9)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3589 (((-1091) $) 10)) (-2496 (((-3 |#4| "failed") $) 24)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-536)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20))) +(((-329 |#1| |#2| |#3| |#4|) (-138) (-356) (-1205 |t#1|) (-1205 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -329)) +((-2087 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1748 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-329 *3 *4 *5 *6)))) (-1748 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1748 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-536)) (-4 *2 (-356)) (-4 *4 (-1205 *2)) (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -2412 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-2496 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2087 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1748 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1748 ($ |t#4|)) (-15 -1748 ($ |t#1| |t#1|)) (-15 -1748 ($ |t#1| |t#1| (-536))) (-15 -3789 ((-2 (|:| -2412 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4197 ($ $)) (-15 -1747 ((-112) $)) (-15 -2496 ((-3 |t#4| "failed") $)) (-15 -1748 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-4122 (($ $ (-1147) |#2|) NIL) (($ $ (-620 (-1147)) (-620 |#2|)) 20) (($ $ (-620 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-620 |#2|) (-620 |#2|)) NIL)) (-4154 (($ $ |#2|) 11))) +(((-330 |#1| |#2|) (-10 -8 (-15 -4154 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1147) |#2|))) (-331 |#2|) (-1072)) (T -330)) +NIL +(-10 -8 (-15 -4154 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1147) |#2|))) +((-4313 (($ (-1 |#1| |#1|) $) 6)) (-4122 (($ $ (-1147) |#1|) 17 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 16 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-286 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-620 |#1|) (-620 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-4154 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|))))) +(((-331 |#1|) (-138) (-1072)) (T -331)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1072))))) +(-13 (-10 -8 (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1147) |t#1|)) (-6 (-505 (-1147) |t#1|)) |%noBranch|))) +(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) NIL)) (-1749 (((-112)) 91) (((-112) (-112)) 92)) (-1655 (((-620 (-593 $)) $) NIL)) (-3841 (($ $) NIL)) (-3997 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-3365 (($ $) NIL)) (-3839 (($ $) NIL)) (-3996 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1147)) 97) (((-3 $ "failed") (-307 (-536))) 59 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-400 (-920 (-536)))) 65 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-920 (-536))) 60 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-307 (-371))) 89 (|has| |#3| (-1012 (-371)))) (((-3 $ "failed") (-400 (-920 (-371)))) 83 (|has| |#3| (-1012 (-371)))) (((-3 $ "failed") (-920 (-371))) 78 (|has| |#3| (-1012 (-371))))) (-3502 (((-593 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1147)) 98) (($ (-307 (-536))) 61 (|has| |#3| (-1012 (-536)))) (($ (-400 (-920 (-536)))) 66 (|has| |#3| (-1012 (-536)))) (($ (-920 (-536))) 62 (|has| |#3| (-1012 (-536)))) (($ (-307 (-371))) 90 (|has| |#3| (-1012 (-371)))) (($ (-400 (-920 (-371)))) 84 (|has| |#3| (-1012 (-371)))) (($ (-920 (-371))) 80 (|has| |#3| (-1012 (-371))))) (-3816 (((-3 $ "failed") $) NIL)) (-3985 (($) 10)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-1652 (((-1141 $) (-593 $)) NIL (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-1853 (($ $) 94)) (-4297 (($ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) 93) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4298 (($ $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-3840 (($ $) NIL)) (-3992 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ |#3|) NIL) (($ (-536)) NIL) (((-307 |#3|) $) 96)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) NIL)) (-3835 (($ $) NIL)) (-3833 (($ $) NIL)) (-3834 (($ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) 95 T CONST)) (-2992 (($) 24 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) +(((-332 |#1| |#2| |#3|) (-13 (-291) (-38 |#3|) (-1012 |#3|) (-874 (-1147)) (-10 -8 (-15 -3502 ($ (-307 |#3|))) (-15 -3503 ((-3 $ "failed") (-307 |#3|))) (-15 -3502 ($ (-1147))) (-15 -3503 ((-3 $ "failed") (-1147))) (-15 -4312 ((-307 |#3|) $)) (IF (|has| |#3| (-1012 (-536))) (PROGN (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536))))) |%noBranch|) (IF (|has| |#3| (-1012 (-371))) (PROGN (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371))))) |%noBranch|) (-15 -3737 ($ $)) (-15 -3365 ($ $)) (-15 -4298 ($ $)) (-15 -4297 ($ $)) (-15 -1853 ($ $)) (-15 -3996 ($ $)) (-15 -3992 ($ $)) (-15 -3997 ($ $)) (-15 -3833 ($ $)) (-15 -3834 ($ $)) (-15 -3835 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3841 ($ $)) (-15 -3985 ($)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) (-620 (-1147)) (-620 (-1147)) (-380)) (T -332)) +((-3502 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) (-14 *4 (-620 *2)) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) (-14 *4 (-620 *2)) (-4 *5 (-380)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3737 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-4298 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-4297 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3996 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3835 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3841 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3985 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380))))) +(-13 (-291) (-38 |#3|) (-1012 |#3|) (-874 (-1147)) (-10 -8 (-15 -3502 ($ (-307 |#3|))) (-15 -3503 ((-3 $ "failed") (-307 |#3|))) (-15 -3502 ($ (-1147))) (-15 -3503 ((-3 $ "failed") (-1147))) (-15 -4312 ((-307 |#3|) $)) (IF (|has| |#3| (-1012 (-536))) (PROGN (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536))))) |%noBranch|) (IF (|has| |#3| (-1012 (-371))) (PROGN (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371))))) |%noBranch|) (-15 -3737 ($ $)) (-15 -3365 ($ $)) (-15 -4298 ($ $)) (-15 -4297 ($ $)) (-15 -1853 ($ $)) (-15 -3996 ($ $)) (-15 -3992 ($ $)) (-15 -3997 ($ $)) (-15 -3833 ($ $)) (-15 -3834 ($ $)) (-15 -3835 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3841 ($ $)) (-15 -3985 ($)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) +(((-333 |#1| |#2|) (-322 (-880 |#1|)) (-893) (-893)) (T -333)) +NIL +(-322 (-880 |#1|)) +((-1758 (((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) $) 38)) (-1906 (($ (-1229 (-400 |#3|)) (-1229 $)) NIL) (($ (-1229 (-400 |#3|))) NIL) (($ (-1229 |#3|) |#3|) 161)) (-1763 (((-1229 $) (-1229 $)) 145)) (-1750 (((-620 (-620 |#2|))) 119)) (-1775 (((-112) |#2| |#2|) 73)) (-3852 (($ $) 139)) (-3731 (((-749)) 31)) (-1764 (((-1229 $) (-1229 $)) 198)) (-1751 (((-620 (-920 |#2|)) (-1147)) 110)) (-1767 (((-112) $) 158)) (-1766 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1753 (((-3 |#3| "failed")) 50)) (-1777 (((-749)) 170)) (-4154 ((|#2| $ |#2| |#2|) 132)) (-1754 (((-3 |#3| "failed")) 68)) (-4165 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-749)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-1765 (((-1229 $) (-1229 $)) 151)) (-1752 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1776 (((-112)) 33))) +(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1750 ((-620 (-620 |#2|)))) (-15 -1751 ((-620 (-920 |#2|)) (-1147))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4154 (|#2| |#1| |#2| |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1229 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1229 |#1|) (-1229 |#1|))) (-15 -1764 ((-1229 |#1|) (-1229 |#1|))) (-15 -1765 ((-1229 |#1|) (-1229 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-749))) (-15 -3731 ((-749))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -1906 (|#1| (-1229 (-400 |#3|)))) (-15 -1906 (|#1| (-1229 (-400 |#3|)) (-1229 |#1|)))) (-335 |#2| |#3| |#4|) (-1188) (-1205 |#2|) (-1205 (-400 |#3|))) (T -334)) +((-3731 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1777 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1776 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *3 (-1188)) (-4 *5 (-1205 *3)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1754 (*1 *2) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1753 (*1 *2) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-620 (-920 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1750 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-620 (-620 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))) +(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1750 ((-620 (-620 |#2|)))) (-15 -1751 ((-620 (-920 |#2|)) (-1147))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4154 (|#2| |#1| |#2| |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1229 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1229 |#1|) (-1229 |#1|))) (-15 -1764 ((-1229 |#1|) (-1229 |#1|))) (-15 -1765 ((-1229 |#1|) (-1229 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-749))) (-15 -3731 ((-749))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -1906 (|#1| (-1229 (-400 |#3|)))) (-15 -1906 (|#1| (-1229 (-400 |#3|)) (-1229 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 193)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2173 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) 44) (((-667 (-400 |#2|))) 59)) (-3684 (((-400 |#2|) $) 50)) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) 112 (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) 85 (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) 210)) (-1771 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) 163)) (-3502 (((-536) $) 167 (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) 162)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) 46) (($ (-1229 (-400 |#2|))) 62) (($ (-1229 |#2|) |#2|) 192)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) 51) (((-667 (-400 |#2|)) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) 159) (((-667 (-400 |#2|)) (-667 $)) 158)) (-1763 (((-1229 $) (-1229 $)) 198)) (-4197 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-1750 (((-620 (-620 |#1|))) 179 (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) 214)) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) 207)) (-1769 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2888 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| (-400 |#2|) (-356)))) (-3852 (($ $) 185)) (-3161 (($) 146 (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) 147 (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) 138 (|has| (-400 |#2|) (-343))) (($ $) 137 (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) 149 (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) 135 (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) 30)) (-3731 (((-749)) 217)) (-1764 (((-1229 $) (-1229 $)) 199)) (-3462 (((-400 |#2|) $) 49)) (-1751 (((-620 (-920 |#1|)) (-1147)) 180 (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) 87 (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) 153)) (-2008 (($ (-620 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) 9)) (-1759 (((-667 (-400 |#2|))) 194)) (-1761 (((-667 (-400 |#2|))) 196)) (-2729 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 190)) (-1760 (((-667 (-400 |#2|))) 195)) (-1762 (((-667 (-400 |#2|))) 197)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 191)) (-1768 (((-1229 $)) 203)) (-4273 (((-1229 $)) 204)) (-1767 (((-112) $) 202)) (-1766 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3799 (($) 140 (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| "failed")) 182)) (-3589 (((-1091) $) 10)) (-1777 (((-749)) 216)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) 110 (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) 103 (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) 184)) (-1754 (((-3 |#2| "failed")) 183)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) 45) (((-400 |#2|)) 58)) (-1882 (((-749) $) 148 (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) 136 (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-620 (-1147)) (-620 (-749))) 127 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147) (-749)) 128 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-620 (-1147))) 129 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147)) 130 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 132 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 134 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 156)) (-1785 (($) 145 (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) 48) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) 47) (((-1229 (-400 |#2|)) $) 64) (((-667 (-400 |#2|)) (-1229 $)) 63)) (-4325 (((-1229 (-400 |#2|)) $) 61) (($ (-1229 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) 200)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-536))) 84 (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-3030 (($ $) 141 (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) 43)) (-3456 (((-749)) 28)) (-1774 (((-112)) 213)) (-1773 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2123 (((-1229 $)) 65)) (-2172 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1776 (((-112)) 215)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) 123 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147) (-749)) 124 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-620 (-1147))) 125 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147)) 126 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 131 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 133 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-536)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) 116 (|has| (-400 |#2|) (-356))))) +(((-335 |#1| |#2| |#3|) (-138) (-1188) (-1205 |t#1|) (-1205 (-400 |t#2|))) (T -335)) +((-3731 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) (-1777 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) (-1776 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1774 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-1772 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-1770 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-4273 (*1 *2) (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1768 (*1 *2) (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1762 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1761 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1760 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1759 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4))))) (-1756 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5))))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))))) (-4154 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))))) (-1754 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3)))) (-1753 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1188)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-620 (-920 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-620 (-620 *3)))))) +(-13 (-703 (-400 |t#2|) |t#3|) (-10 -8 (-15 -3731 ((-749))) (-15 -1777 ((-749))) (-15 -1776 ((-112))) (-15 -1775 ((-112) |t#1| |t#1|)) (-15 -1774 ((-112))) (-15 -1773 ((-112) |t#1|)) (-15 -1773 ((-112) |t#2|)) (-15 -1772 ((-112))) (-15 -1771 ((-112) |t#1|)) (-15 -1771 ((-112) |t#2|)) (-15 -1770 ((-112))) (-15 -1769 ((-112) |t#1|)) (-15 -1769 ((-112) |t#2|)) (-15 -4273 ((-1229 $))) (-15 -1768 ((-1229 $))) (-15 -1767 ((-112) $)) (-15 -1766 ((-112) $)) (-15 -1765 ((-1229 $) (-1229 $))) (-15 -1764 ((-1229 $) (-1229 $))) (-15 -1763 ((-1229 $) (-1229 $))) (-15 -1762 ((-667 (-400 |t#2|)))) (-15 -1761 ((-667 (-400 |t#2|)))) (-15 -1760 ((-667 (-400 |t#2|)))) (-15 -1759 ((-667 (-400 |t#2|)))) (-15 -1758 ((-2 (|:| |num| (-1229 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1906 ($ (-1229 |t#2|) |t#2|)) (-15 -1757 ((-2 (|:| |num| (-1229 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1756 ($ (-1229 |t#2|) |t#2|)) (-15 -1755 ((-2 (|:| |num| (-667 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1766 ((-112) $ |t#1|)) (-15 -1766 ((-112) $ |t#2|)) (-15 -4165 ($ $ (-1 |t#2| |t#2|))) (-15 -3852 ($ $)) (-15 -4154 (|t#1| $ |t#1| |t#1|)) (-15 -1754 ((-3 |t#2| "failed"))) (-15 -1753 ((-3 |t#2| "failed"))) (-15 -1752 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1751 ((-620 (-920 |t#1|)) (-1147))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1750 ((-620 (-620 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-38 #2=(-400 |#2|)) . T) ((-38 $) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #1# #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 |#3|) . T) ((-225 #2#) |has| (-400 |#2|) (-356)) ((-227) -3886 (|has| (-400 |#2|) (-343)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-283) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-300) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-356) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-343)) ((-361) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-361))) ((-343) |has| (-400 |#2|) (-343)) ((-363 #2# |#3|) . T) ((-403 #2# |#3|) . T) ((-370 #2#) . T) ((-405 #2#) . T) ((-444) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-543) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-626 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-626 #2#) . T) ((-626 $) . T) ((-619 #2#) . T) ((-619 (-536)) |has| (-400 |#2|) (-619 (-536))) ((-696 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-696 #2#) . T) ((-696 $) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-703 #2# |#3|) . T) ((-705) . T) ((-874 (-1147)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) ((-895) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1012 (-400 (-536))) |has| (-400 |#2|) (-1012 (-400 (-536)))) ((-1012 #2#) . T) ((-1012 (-536)) |has| (-400 |#2|) (-1012 (-536))) ((-1029 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1029 #2#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| (-400 |#2|) (-343)) ((-1188) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356)))) +((-4313 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|))) (-1188) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1188) (-1205 |#5|) (-1205 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -336)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1188)) (-4 *8 (-1188)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *9 (-1205 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1205 (-400 *9)))))) +(-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) +(((-337 |#1| |#2|) (-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-893) (-893)) (T -337)) +((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-337 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893))))) +(-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1778 ((-932 (-1091)))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 44)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 41 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 115)) (-3502 ((|#1| $) 86)) (-1906 (($ (-1229 |#1|)) 104)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 98 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 129 (|has| |#1| (-361)))) (-1791 (((-112) $) 48 (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) 45 (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 131 (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 90) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 139 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 146)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 71 (|has| |#1| (-361)))) (-4286 (((-112) $) 118)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) 42)) (-2496 (($) 127 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 93 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) 67) (((-893)) 68)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) 130 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 125 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) 96)) (-1785 (($) 128 (|has| |#1| (-361)))) (-1721 (($) 136 (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 59) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 142) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 75)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 138)) (-2123 (((-1229 $)) 117) (((-1229 $) (-893)) 73)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 49 T CONST)) (-2992 (($) 46 T CONST)) (-4283 (($ $) 81 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 47)) (-4303 (($ $ $) 144) (($ $ |#1|) 145)) (-4192 (($ $) 126) (($ $ $) NIL)) (-4194 (($ $ $) 61)) (** (($ $ (-893)) 148) (($ $ (-749)) 149) (($ $ (-536)) 147)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 77) (($ $ $) 76) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-343) (-1141 |#1|)) (T -338)) +((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1141 *3))))) +(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-339 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-343) (-893)) (T -339)) +((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) +(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) +((-1788 (((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 42)) (-1779 (((-932 (-1091)) (-1141 |#1|)) 85)) (-1780 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|)) 78)) (-1781 (((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 86)) (-1782 (((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893)) 13)) (-1783 (((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)) 18))) +(((-340 |#1|) (-10 -7 (-15 -1779 ((-932 (-1091)) (-1141 |#1|))) (-15 -1780 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|))) (-15 -1781 ((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1788 ((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1782 ((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893))) (-15 -1783 ((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)))) (-343)) (T -340)) +((-1783 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-3 (-1141 *4) (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1782 (*1 *2 *3) (|partial| -12 (-5 *3 (-893)) (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-749)) (-5 *1 (-340 *4)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-667 *4)) (-5 *1 (-340 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-5 *1 (-340 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-932 (-1091))) (-5 *1 (-340 *4))))) +(-10 -7 (-15 -1779 ((-932 (-1091)) (-1141 |#1|))) (-15 -1780 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|))) (-15 -1781 ((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1788 ((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1782 ((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893))) (-15 -1783 ((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)))) +((-4312 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -4312 (|#3| |#1|)) (-15 -4312 (|#1| |#3|))) (-322 |#2|) (-343) (-322 |#2|)) (T -341)) +((-4312 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-322 *4)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-322 *4))))) +(-10 -7 (-15 -4312 (|#3| |#1|)) (-15 -4312 (|#1| |#3|))) +((-1791 (((-112) $) 51)) (-4126 (((-810 (-893)) $) 21) (((-893) $) 52)) (-3798 (((-3 $ "failed") $) 16)) (-3799 (($) 9)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93)) (-1882 (((-3 (-749) "failed") $ $) 71) (((-749) $) 60)) (-4165 (($ $ (-749)) NIL) (($ $) 8)) (-1785 (($) 44)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 34)) (-3030 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-342 |#1|) (-10 -8 (-15 -4126 ((-893) |#1|)) (-15 -1882 ((-749) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3031 ((-3 (-1229 |#1|) "failed") (-667 |#1|))) (-15 -3030 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-749) "failed") |#1| |#1|)) (-15 -4126 ((-810 (-893)) |#1|)) (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-343)) (T -342)) +NIL +(-10 -8 (-15 -4126 ((-893) |#1|)) (-15 -1882 ((-749) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3031 ((-3 (-1229 |#1|) "failed") (-667 |#1|))) (-15 -3030 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-749) "failed") |#1| |#1|)) (-15 -4126 ((-810 (-893)) |#1|)) (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1786 (((-1156 (-893) (-749)) (-536)) 90)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3466 (((-749)) 100)) (-3891 (($) 17 T CONST)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 103)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-3161 (($) 88)) (-1791 (((-112) $) 87)) (-1881 (($ $) 76) (($ $ (-749)) 75)) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 78) (((-893) $) 85)) (-2497 (((-112) $) 30)) (-3798 (((-3 $ "failed") $) 99)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2121 (((-893) $) 102)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 98 T CONST)) (-2487 (($ (-893)) 101)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 91)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 77) (((-749) $) 86)) (-4165 (($ $ (-749)) 96) (($ $) 94)) (-1785 (($) 89)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 92)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3030 (((-3 $ "failed") $) 79) (($ $) 93)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-749)) 97) (($ $) 95)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) +(((-343) (-138)) (T -343)) +((-3030 (*1 *1 *1) (-4 *1 (-343))) (-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-343)) (-5 *2 (-1229 *1)))) (-1787 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))))) (-1786 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-536)) (-5 *2 (-1156 (-893) (-749))))) (-1785 (*1 *1) (-4 *1 (-343))) (-3161 (*1 *1) (-4 *1 (-343))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-749)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-893)))) (-1784 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-395) (-361) (-1122) (-227) (-10 -8 (-15 -3030 ($ $)) (-15 -3031 ((-3 (-1229 $) "failed") (-667 $))) (-15 -1787 ((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536)))))) (-15 -1786 ((-1156 (-893) (-749)) (-536))) (-15 -1785 ($)) (-15 -3161 ($)) (-15 -1791 ((-112) $)) (-15 -1882 ((-749) $)) (-15 -4126 ((-893) $)) (-15 -1784 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-838)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) . T) ((-1188) . T)) +((-4274 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|) 53)) (-4273 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 51))) +(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $)))) (-1205 |#1|) (-403 |#1| |#2|)) (T -344)) +((-4274 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4273 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091)))))) NIL)) (-1789 (((-667 (-880 |#1|))) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 (-880 |#1|)))) (-15 -1788 ((-749))))) (-893) (-893)) (T -345)) +((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 (-880 *3)) (|:| -2487 (-1091)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 (-880 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893))))) +(-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 (-880 |#1|)))) (-15 -1788 ((-749))))) +((-2893 (((-112) $ $) 61)) (-3534 (((-112) $) 74)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) 92) (($ $ (-893)) 90 (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 148 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) 89)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) 162 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 112)) (-3502 ((|#1| $) 91)) (-1906 (($ (-1229 |#1|)) 58)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 158 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 149 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 98 (|has| |#1| (-361)))) (-2122 (((-112) $) 175 (|has| |#1| (-361)))) (-3462 ((|#1| $) 94) (($ $ (-893)) 93 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 189) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 134 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) 73 (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) 69 (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 192)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 137 (|has| |#1| (-361)))) (-4286 (((-112) $) 108)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 83)) (-1789 (((-667 |#1|)) 87)) (-2496 (($) 96 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 150 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) 151)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) 62)) (-3531 (((-1141 |#1|)) 152)) (-1785 (($) 133 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 106) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 124) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 57)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 156)) (-2123 (((-1229 $)) 172) (((-1229 $) (-893)) 101)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 117 T CONST)) (-2992 (($) 33 T CONST)) (-4283 (($ $) 107 (|has| |#1| (-361))) (($ $ (-749)) 99 (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 183)) (-4303 (($ $ $) 104) (($ $ |#1|) 105)) (-4192 (($ $) 177) (($ $ $) 181)) (-4194 (($ $ $) 179)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 138)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 186) (($ $ $) 142) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) (-343) (-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (T -346)) +((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) *2)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))))))) +(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) NIL)) (-1789 (((-667 |#1|)) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) (-343) (-893)) (T -347)) +((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893)))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) +(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 120 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) 140 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 93)) (-3502 ((|#1| $) 90)) (-1906 (($ (-1229 |#1|)) 85)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 82 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 42 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 121 (|has| |#1| (-361)))) (-2122 (((-112) $) 74 (|has| |#1| (-361)))) (-3462 ((|#1| $) 39) (($ $ (-893)) 43 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 65) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 97 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 95 (|has| |#1| (-361)))) (-4286 (((-112) $) 142)) (-3589 (((-1091) $) NIL)) (-2496 (($) 36 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 115 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) 139)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) 59)) (-3531 (((-1141 |#1|)) 88)) (-1785 (($) 126 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 53) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 138) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 87)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 144)) (-2123 (((-1229 $)) 109) (((-1229 $) (-893)) 49)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 111 T CONST)) (-2992 (($) 32 T CONST)) (-4283 (($ $) 68 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 107)) (-4303 (($ $ $) 99) (($ $ |#1|) 100)) (-4192 (($ $) 80) (($ $ $) 105)) (-4194 (($ $ $) 103)) (** (($ $ (-893)) NIL) (($ $ (-749)) 44) (($ $ (-536)) 130)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 78) (($ $ $) 56) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-348 |#1| |#2|) (-322 |#1|) (-343) (-1141 |#1|)) (T -348)) NIL (-322 |#1|) -((-3814 ((|#1| (-1141 |#2|)) 52))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3814 (|#1| (-1141 |#2|)))) (-13 (-395) (-10 -7 (-15 -2233 (|#1| |#2|)) (-15 -4073 ((-895) |#1|)) (-15 -2206 ((-1228 |#1|) (-895))) (-15 -3020 (|#1| |#1|)))) (-342)) (T -349)) -((-3814 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-4 *2 (-13 (-395) (-10 -7 (-15 -2233 (*2 *4)) (-15 -4073 ((-895) *2)) (-15 -2206 ((-1228 *2) (-895))) (-15 -3020 (*2 *2))))) (-5 *1 (-349 *2 *4))))) -(-10 -7 (-15 -3814 (|#1| (-1141 |#2|)))) -((-2699 (((-932 (-1141 |#1|)) (-1141 |#1|)) 36)) (-1864 (((-1141 |#1|) (-895) (-895)) 113) (((-1141 |#1|) (-895)) 112)) (-4139 (((-112) (-1141 |#1|)) 84)) (-2226 (((-895) (-895)) 71)) (-1424 (((-895) (-895)) 74)) (-2742 (((-895) (-895)) 69)) (-3751 (((-112) (-1141 |#1|)) 88)) (-2539 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 101)) (-2859 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 104)) (-4273 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 103)) (-1678 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 102)) (-2525 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 98)) (-1762 (((-1141 |#1|) (-1141 |#1|)) 62)) (-2604 (((-1141 |#1|) (-895)) 107)) (-3593 (((-1141 |#1|) (-895)) 110)) (-2282 (((-1141 |#1|) (-895)) 109)) (-2959 (((-1141 |#1|) (-895)) 108)) (-1303 (((-1141 |#1|) (-895)) 105))) -(((-350 |#1|) (-10 -7 (-15 -4139 ((-112) (-1141 |#1|))) (-15 -3751 ((-112) (-1141 |#1|))) (-15 -2742 ((-895) (-895))) (-15 -2226 ((-895) (-895))) (-15 -1424 ((-895) (-895))) (-15 -1303 ((-1141 |#1|) (-895))) (-15 -2604 ((-1141 |#1|) (-895))) (-15 -2959 ((-1141 |#1|) (-895))) (-15 -2282 ((-1141 |#1|) (-895))) (-15 -3593 ((-1141 |#1|) (-895))) (-15 -2525 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2539 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1678 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -4273 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2859 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1864 ((-1141 |#1|) (-895))) (-15 -1864 ((-1141 |#1|) (-895) (-895))) (-15 -1762 ((-1141 |#1|) (-1141 |#1|))) (-15 -2699 ((-932 (-1141 |#1|)) (-1141 |#1|)))) (-342)) (T -350)) -((-2699 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-350 *4)) (-5 *3 (-1141 *4)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-1864 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-4273 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-1678 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2539 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2525 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-2742 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4))))) -(-10 -7 (-15 -4139 ((-112) (-1141 |#1|))) (-15 -3751 ((-112) (-1141 |#1|))) (-15 -2742 ((-895) (-895))) (-15 -2226 ((-895) (-895))) (-15 -1424 ((-895) (-895))) (-15 -1303 ((-1141 |#1|) (-895))) (-15 -2604 ((-1141 |#1|) (-895))) (-15 -2959 ((-1141 |#1|) (-895))) (-15 -2282 ((-1141 |#1|) (-895))) (-15 -3593 ((-1141 |#1|) (-895))) (-15 -2525 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2539 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1678 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -4273 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2859 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1864 ((-1141 |#1|) (-895))) (-15 -1864 ((-1141 |#1|) (-895) (-895))) (-15 -1762 ((-1141 |#1|) (-1141 |#1|))) (-15 -2699 ((-932 (-1141 |#1|)) (-1141 |#1|)))) -((-1370 (((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|) 34))) -(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|))) (-342) (-1204 |#1|) (-1204 |#2|)) (T -351)) -((-1370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3))))) -(-10 -7 (-15 -1370 ((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2821 (($ (-1228 |#1|)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| |#1| (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| |#1| (-361)))) (-4139 (((-112) $) NIL (|has| |#1| (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| |#1| (-361))) (((-811 (-895)) $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-361)))) (-3751 (((-112) $) NIL (|has| |#1| (-361)))) (-1571 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-895)) NIL (|has| |#1| (-361)))) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-2888 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-4180 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1542 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| |#1| (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL (|has| |#1| (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| |#1| (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 |#1|)) NIL)) (-2038 (($) NIL (|has| |#1| (-361)))) (-3975 (($) NIL (|has| |#1| (-361)))) (-2999 (((-1228 |#1|) $) NIL) (((-667 |#1|) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-1613 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-1901 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-352 |#1| |#2|) (-322 |#1|) (-342) (-895)) (T -352)) +((-1806 (((-932 (-1141 |#1|)) (-1141 |#1|)) 36)) (-3322 (((-1141 |#1|) (-893) (-893)) 113) (((-1141 |#1|) (-893)) 112)) (-1791 (((-112) (-1141 |#1|)) 84)) (-1793 (((-893) (-893)) 71)) (-1794 (((-893) (-893)) 74)) (-1792 (((-893) (-893)) 69)) (-2122 (((-112) (-1141 |#1|)) 88)) (-1801 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 101)) (-1804 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 104)) (-1803 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 103)) (-1802 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 102)) (-1800 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 98)) (-1805 (((-1141 |#1|) (-1141 |#1|)) 62)) (-1796 (((-1141 |#1|) (-893)) 107)) (-1799 (((-1141 |#1|) (-893)) 110)) (-1798 (((-1141 |#1|) (-893)) 109)) (-1797 (((-1141 |#1|) (-893)) 108)) (-1795 (((-1141 |#1|) (-893)) 105))) +(((-349 |#1|) (-10 -7 (-15 -1791 ((-112) (-1141 |#1|))) (-15 -2122 ((-112) (-1141 |#1|))) (-15 -1792 ((-893) (-893))) (-15 -1793 ((-893) (-893))) (-15 -1794 ((-893) (-893))) (-15 -1795 ((-1141 |#1|) (-893))) (-15 -1796 ((-1141 |#1|) (-893))) (-15 -1797 ((-1141 |#1|) (-893))) (-15 -1798 ((-1141 |#1|) (-893))) (-15 -1799 ((-1141 |#1|) (-893))) (-15 -1800 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1801 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1802 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1803 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1804 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -3322 ((-1141 |#1|) (-893))) (-15 -3322 ((-1141 |#1|) (-893) (-893))) (-15 -1805 ((-1141 |#1|) (-1141 |#1|))) (-15 -1806 ((-932 (-1141 |#1|)) (-1141 |#1|)))) (-343)) (T -349)) +((-1806 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1141 *4)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-3322 (*1 *2 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1803 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1802 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1801 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1800 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) +(-10 -7 (-15 -1791 ((-112) (-1141 |#1|))) (-15 -2122 ((-112) (-1141 |#1|))) (-15 -1792 ((-893) (-893))) (-15 -1793 ((-893) (-893))) (-15 -1794 ((-893) (-893))) (-15 -1795 ((-1141 |#1|) (-893))) (-15 -1796 ((-1141 |#1|) (-893))) (-15 -1797 ((-1141 |#1|) (-893))) (-15 -1798 ((-1141 |#1|) (-893))) (-15 -1799 ((-1141 |#1|) (-893))) (-15 -1800 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1801 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1802 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1803 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1804 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -3322 ((-1141 |#1|) (-893))) (-15 -3322 ((-1141 |#1|) (-893) (-893))) (-15 -1805 ((-1141 |#1|) (-1141 |#1|))) (-15 -1806 ((-932 (-1141 |#1|)) (-1141 |#1|)))) +((-1807 ((|#1| (-1141 |#2|)) 52))) +(((-350 |#1| |#2|) (-10 -7 (-15 -1807 (|#1| (-1141 |#2|)))) (-13 (-395) (-10 -7 (-15 -4312 (|#1| |#2|)) (-15 -2121 ((-893) |#1|)) (-15 -2123 ((-1229 |#1|) (-893))) (-15 -4283 (|#1| |#1|)))) (-343)) (T -350)) +((-1807 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-395) (-10 -7 (-15 -4312 (*2 *4)) (-15 -2121 ((-893) *2)) (-15 -2123 ((-1229 *2) (-893))) (-15 -4283 (*2 *2))))) (-5 *1 (-350 *2 *4))))) +(-10 -7 (-15 -1807 (|#1| (-1141 |#2|)))) +((-3032 (((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|) 34))) +(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|))) (-343) (-1205 |#1|) (-1205 |#2|)) (T -351)) +((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3))))) +(-10 -7 (-15 -3032 ((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-352 |#1| |#2|) (-322 |#1|) (-343) (-893)) (T -352)) NIL (-322 |#1|) -((-1499 (((-112) (-623 (-926 |#1|))) 34)) (-2906 (((-623 (-926 |#1|)) (-623 (-926 |#1|))) 46)) (-1272 (((-3 (-623 (-926 |#1|)) "failed") (-623 (-926 |#1|))) 41))) -(((-353 |#1| |#2|) (-10 -7 (-15 -1499 ((-112) (-623 (-926 |#1|)))) (-15 -1272 ((-3 (-623 (-926 |#1|)) "failed") (-623 (-926 |#1|)))) (-15 -2906 ((-623 (-926 |#1|)) (-623 (-926 |#1|))))) (-444) (-623 (-1145))) (T -353)) -((-2906 (*1 *2 *2) (-12 (-5 *2 (-623 (-926 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1145))))) (-1272 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-926 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1145))))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-623 (-1145)))))) -(-10 -7 (-15 -1499 ((-112) (-623 (-926 |#1|)))) (-15 -1272 ((-3 (-623 (-926 |#1|)) "failed") (-623 (-926 |#1|)))) (-15 -2906 ((-623 (-926 |#1|)) (-623 (-926 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-3828 (((-749) $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) 15)) (-3325 ((|#1| $ (-550)) NIL)) (-3062 (((-550) $ (-550)) NIL)) (-1453 (($ (-1 |#1| |#1|) $) 32)) (-1332 (($ (-1 (-550) (-550)) $) 24)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 26)) (-3445 (((-1089) $) NIL)) (-1610 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-550)))) $) 28)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) 38) (($ |#1|) NIL)) (-2700 (($) 9 T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ |#1| (-550)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-354 |#1|) (-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -3828 ((-749) $)) (-15 -3062 ((-550) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1332 ($ (-1 (-550) (-550)) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-550)))) $)))) (-1069)) (T -354)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1069)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1069)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1069)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) (-3062 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1069)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-354 *3)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-550))))) (-5 *1 (-354 *3)) (-4 *3 (-1069))))) -(-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -3828 ((-749) $)) (-15 -3062 ((-550) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1332 ($ (-1 (-550) (-550)) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-550)))) $)))) -((-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 13)) (-3050 (($ $) 14)) (-2207 (((-411 $) $) 30)) (-1568 (((-112) $) 26)) (-1619 (($ $) 19)) (-3260 (($ $ $) 23) (($ (-623 $)) NIL)) (-1735 (((-411 $) $) 31)) (-3409 (((-3 $ "failed") $ $) 22)) (-1988 (((-749) $) 25)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 35)) (-1819 (((-112) $ $) 16)) (-2382 (($ $ $) 33))) -(((-355 |#1|) (-10 -8 (-15 -2382 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1988 ((-749) |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1819 ((-112) |#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355)) -NIL -(-10 -8 (-15 -2382 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1988 ((-749) |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1819 ((-112) |#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-2419 (((-112) $) 30)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +((-2328 (((-112) (-620 (-920 |#1|))) 34)) (-2330 (((-620 (-920 |#1|)) (-620 (-920 |#1|))) 46)) (-2329 (((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|))) 41))) +(((-353 |#1| |#2|) (-10 -7 (-15 -2328 ((-112) (-620 (-920 |#1|)))) (-15 -2329 ((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|)))) (-15 -2330 ((-620 (-920 |#1|)) (-620 (-920 |#1|))))) (-444) (-620 (-1147))) (T -353)) +((-2330 (*1 *2 *2) (-12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-620 (-1147))))) (-2329 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-620 (-1147))))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-620 (-1147)))))) +(-10 -7 (-15 -2328 ((-112) (-620 (-920 |#1|)))) (-15 -2329 ((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|)))) (-15 -2330 ((-620 (-920 |#1|)) (-620 (-920 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) 15)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-536) $ (-536)) NIL)) (-2366 (($ (-1 |#1| |#1|) $) 32)) (-2367 (($ (-1 (-536) (-536)) $) 24)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 26)) (-3589 (((-1091) $) NIL)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $) 28)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 38) (($ |#1|) NIL)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ |#1| (-536)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-354 |#1|) (-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-536))) (-15 -3466 ((-749) $)) (-15 -2764 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-536) (-536)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $)))) (-1072)) (T -354)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2764 (*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-536) (-536))) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-354 *3)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-536))))) (-5 *1 (-354 *3)) (-4 *3 (-1072))))) +(-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-536))) (-15 -3466 ((-749) $)) (-15 -2764 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-536) (-536)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $)))) +((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 13)) (-2173 (($ $) 14)) (-4324 (((-398 $) $) 30)) (-4081 (((-112) $) 26)) (-2729 (($ $) 19)) (-3490 (($ $ $) 23) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) 31)) (-3815 (((-3 $ "failed") $ $) 22)) (-1699 (((-749) $) 25)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 35)) (-2172 (((-112) $ $) 16)) (-4303 (($ $ $) 33))) +(((-355 |#1|) (-10 -8 (-15 -4303 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355)) +NIL +(-10 -8 (-15 -4303 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) (((-356) (-138)) (T -356)) -((-2382 (*1 *1 *1 *1) (-4 *1 (-356)))) -(-13 (-300) (-1186) (-237) (-10 -8 (-15 -2382 ($ $ $)) (-6 -4342) (-6 -4336))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-2221 (((-112) $ $) 7)) (-2363 ((|#2| $ |#2|) 13)) (-3053 (($ $ (-1127)) 18)) (-3258 ((|#2| $) 14)) (-4046 (($ |#1|) 20) (($ |#1| (-1127)) 19)) (-1856 ((|#1| $) 16)) (-2369 (((-1127) $) 9)) (-2216 (((-1127) $) 15)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-4231 (($ $) 17)) (-2264 (((-112) $ $) 6))) -(((-357 |#1| |#2|) (-138) (-1069) (-1069)) (T -357)) -((-4046 (*1 *1 *2) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-4046 (*1 *1 *2 *3) (-12 (-5 *3 (-1127)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1069)) (-4 *4 (-1069)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-4231 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1069)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-5 *2 (-1127)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) (-2363 (*1 *2 *1 *2) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -4046 ($ |t#1|)) (-15 -4046 ($ |t#1| (-1127))) (-15 -3053 ($ $ (-1127))) (-15 -4231 ($ $)) (-15 -1856 (|t#1| $)) (-15 -2216 ((-1127) $)) (-15 -3258 (|t#2| $)) (-15 -2363 (|t#2| $ |t#2|)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-2363 ((|#1| $ |#1|) 30)) (-3053 (($ $ (-1127)) 22)) (-1581 (((-3 |#1| "failed") $) 29)) (-3258 ((|#1| $) 27)) (-4046 (($ (-381)) 21) (($ (-381) (-1127)) 20)) (-1856 (((-381) $) 24)) (-2369 (((-1127) $) NIL)) (-2216 (((-1127) $) 25)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19)) (-4231 (($ $) 23)) (-2264 (((-112) $ $) 18))) -(((-358 |#1|) (-13 (-357 (-381) |#1|) (-10 -8 (-15 -1581 ((-3 |#1| "failed") $)))) (-1069)) (T -358)) -((-1581 (*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1069))))) -(-13 (-357 (-381) |#1|) (-10 -8 (-15 -1581 ((-3 |#1| "failed") $)))) -((-2946 (((-1228 (-667 |#2|)) (-1228 $)) 61)) (-2704 (((-667 |#2|) (-1228 $)) 120)) (-4281 ((|#2| $) 32)) (-2693 (((-667 |#2|) $ (-1228 $)) 123)) (-2988 (((-3 $ "failed") $) 75)) (-2710 ((|#2| $) 35)) (-2613 (((-1141 |#2|) $) 83)) (-1690 ((|#2| (-1228 $)) 106)) (-2015 (((-1141 |#2|) $) 28)) (-2030 (((-112)) 100)) (-2821 (($ (-1228 |#2|) (-1228 $)) 113)) (-1537 (((-3 $ "failed") $) 79)) (-1870 (((-112)) 95)) (-4189 (((-112)) 90)) (-2826 (((-112)) 53)) (-2128 (((-667 |#2|) (-1228 $)) 118)) (-2925 ((|#2| $) 31)) (-2224 (((-667 |#2|) $ (-1228 $)) 122)) (-3274 (((-3 $ "failed") $) 73)) (-1324 ((|#2| $) 34)) (-3784 (((-1141 |#2|) $) 82)) (-4216 ((|#2| (-1228 $)) 104)) (-3876 (((-1141 |#2|) $) 26)) (-1688 (((-112)) 99)) (-3143 (((-112)) 92)) (-1294 (((-112)) 51)) (-2498 (((-112)) 87)) (-2294 (((-112)) 101)) (-2999 (((-1228 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) (-1228 $) (-1228 $)) 111)) (-4118 (((-112)) 97)) (-2364 (((-623 (-1228 |#2|))) 86)) (-2941 (((-112)) 98)) (-2582 (((-112)) 96)) (-3268 (((-112)) 46)) (-3836 (((-112)) 102))) -(((-359 |#1| |#2|) (-10 -8 (-15 -2613 ((-1141 |#2|) |#1|)) (-15 -3784 ((-1141 |#2|) |#1|)) (-15 -2364 ((-623 (-1228 |#2|)))) (-15 -2988 ((-3 |#1| "failed") |#1|)) (-15 -3274 ((-3 |#1| "failed") |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 -4189 ((-112))) (-15 -3143 ((-112))) (-15 -1870 ((-112))) (-15 -1294 ((-112))) (-15 -2826 ((-112))) (-15 -2498 ((-112))) (-15 -3836 ((-112))) (-15 -2294 ((-112))) (-15 -2030 ((-112))) (-15 -1688 ((-112))) (-15 -3268 ((-112))) (-15 -2941 ((-112))) (-15 -2582 ((-112))) (-15 -4118 ((-112))) (-15 -2015 ((-1141 |#2|) |#1|)) (-15 -3876 ((-1141 |#2|) |#1|)) (-15 -2704 ((-667 |#2|) (-1228 |#1|))) (-15 -2128 ((-667 |#2|) (-1228 |#1|))) (-15 -1690 (|#2| (-1228 |#1|))) (-15 -4216 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2710 (|#2| |#1|)) (-15 -1324 (|#2| |#1|)) (-15 -4281 (|#2| |#1|)) (-15 -2925 (|#2| |#1|)) (-15 -2693 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2224 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2946 ((-1228 (-667 |#2|)) (-1228 |#1|)))) (-360 |#2|) (-170)) (T -359)) -((-4118 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2582 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2941 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3268 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1688 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2030 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2294 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3836 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2498 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1294 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1870 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3143 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4189 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2364 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-623 (-1228 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) -(-10 -8 (-15 -2613 ((-1141 |#2|) |#1|)) (-15 -3784 ((-1141 |#2|) |#1|)) (-15 -2364 ((-623 (-1228 |#2|)))) (-15 -2988 ((-3 |#1| "failed") |#1|)) (-15 -3274 ((-3 |#1| "failed") |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 -4189 ((-112))) (-15 -3143 ((-112))) (-15 -1870 ((-112))) (-15 -1294 ((-112))) (-15 -2826 ((-112))) (-15 -2498 ((-112))) (-15 -3836 ((-112))) (-15 -2294 ((-112))) (-15 -2030 ((-112))) (-15 -1688 ((-112))) (-15 -3268 ((-112))) (-15 -2941 ((-112))) (-15 -2582 ((-112))) (-15 -4118 ((-112))) (-15 -2015 ((-1141 |#2|) |#1|)) (-15 -3876 ((-1141 |#2|) |#1|)) (-15 -2704 ((-667 |#2|) (-1228 |#1|))) (-15 -2128 ((-667 |#2|) (-1228 |#1|))) (-15 -1690 (|#2| (-1228 |#1|))) (-15 -4216 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2710 (|#2| |#1|)) (-15 -1324 (|#2| |#1|)) (-15 -4281 (|#2| |#1|)) (-15 -2925 (|#2| |#1|)) (-15 -2693 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2224 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2946 ((-1228 (-667 |#2|)) (-1228 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-2305 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2946 (((-1228 (-667 |#1|)) (-1228 $)) 78)) (-4259 (((-1228 $)) 81)) (-2991 (($) 17 T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 40 (|has| |#1| (-542)))) (-1713 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-2704 (((-667 |#1|) (-1228 $)) 65)) (-4281 ((|#1| $) 74)) (-2693 (((-667 |#1|) $ (-1228 $)) 76)) (-2988 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-1339 (($ $ (-895)) 28)) (-2710 ((|#1| $) 72)) (-2613 (((-1141 |#1|) $) 42 (|has| |#1| (-542)))) (-1690 ((|#1| (-1228 $)) 67)) (-2015 (((-1141 |#1|) $) 63)) (-2030 (((-112)) 57)) (-2821 (($ (-1228 |#1|) (-1228 $)) 69)) (-1537 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-3398 (((-895)) 80)) (-4094 (((-112)) 54)) (-2210 (($ $ (-895)) 33)) (-1870 (((-112)) 50)) (-4189 (((-112)) 48)) (-2826 (((-112)) 52)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 41 (|has| |#1| (-542)))) (-3678 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-2128 (((-667 |#1|) (-1228 $)) 66)) (-2925 ((|#1| $) 75)) (-2224 (((-667 |#1|) $ (-1228 $)) 77)) (-3274 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-1692 (($ $ (-895)) 29)) (-1324 ((|#1| $) 73)) (-3784 (((-1141 |#1|) $) 43 (|has| |#1| (-542)))) (-4216 ((|#1| (-1228 $)) 68)) (-3876 (((-1141 |#1|) $) 64)) (-1688 (((-112)) 58)) (-2369 (((-1127) $) 9)) (-3143 (((-112)) 49)) (-1294 (((-112)) 51)) (-2498 (((-112)) 53)) (-3445 (((-1089) $) 10)) (-2294 (((-112)) 56)) (-2999 (((-1228 |#1|) $ (-1228 $)) 71) (((-667 |#1|) (-1228 $) (-1228 $)) 70)) (-2778 (((-623 (-926 |#1|)) (-1228 $)) 79)) (-1353 (($ $ $) 25)) (-4118 (((-112)) 62)) (-2233 (((-837) $) 11)) (-2364 (((-623 (-1228 |#1|))) 44 (|has| |#1| (-542)))) (-4143 (($ $ $ $) 26)) (-2941 (((-112)) 60)) (-1923 (($ $ $) 24)) (-2582 (((-112)) 61)) (-3268 (((-112)) 59)) (-3836 (((-112)) 55)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-4303 (*1 *1 *1 *1) (-4 *1 (-356)))) +(-13 (-300) (-1188) (-237) (-10 -8 (-15 -4303 ($ $ $)) (-6 -4346) (-6 -4340))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-2893 (((-112) $ $) NIL)) (-1808 ((|#1| $ |#1|) 30)) (-1812 (($ $ (-1129)) 22)) (-3977 (((-3 |#1| "failed") $) 29)) (-1809 ((|#1| $) 27)) (-1813 (($ (-381)) 21) (($ (-381) (-1129)) 20)) (-3900 (((-381) $) 24)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) 25)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19)) (-1811 (($ $) 23)) (-3382 (((-112) $ $) 18))) +(((-357 |#1|) (-13 (-358 (-381) |#1|) (-10 -8 (-15 -3977 ((-3 |#1| "failed") $)))) (-1072)) (T -357)) +((-3977 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1072))))) +(-13 (-358 (-381) |#1|) (-10 -8 (-15 -3977 ((-3 |#1| "failed") $)))) +((-2893 (((-112) $ $) 7)) (-1808 ((|#2| $ |#2|) 13)) (-1812 (($ $ (-1129)) 18)) (-1809 ((|#2| $) 14)) (-1813 (($ |#1|) 20) (($ |#1| (-1129)) 19)) (-3900 ((|#1| $) 16)) (-3588 (((-1129) $) 9)) (-1810 (((-1129) $) 15)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-1811 (($ $) 17)) (-3382 (((-112) $ $) 6))) +(((-358 |#1| |#2|) (-138) (-1072) (-1072)) (T -358)) +((-1813 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-1813 (*1 *1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1072)) (-4 *4 (-1072)))) (-1812 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-1129)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-1808 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -1813 ($ |t#1|)) (-15 -1813 ($ |t#1| (-1129))) (-15 -1812 ($ $ (-1129))) (-15 -1811 ($ $)) (-15 -3900 (|t#1| $)) (-15 -1810 ((-1129) $)) (-15 -1809 (|t#2| $)) (-15 -1808 (|t#2| $ |t#2|)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-3569 (((-1229 (-667 |#2|)) (-1229 $)) 61)) (-1902 (((-667 |#2|) (-1229 $)) 120)) (-1838 ((|#2| $) 32)) (-1900 (((-667 |#2|) $ (-1229 $)) 123)) (-2491 (((-3 $ "failed") $) 75)) (-1836 ((|#2| $) 35)) (-1816 (((-1141 |#2|) $) 83)) (-1904 ((|#2| (-1229 $)) 106)) (-1834 (((-1141 |#2|) $) 28)) (-1828 (((-112)) 100)) (-1906 (($ (-1229 |#2|) (-1229 $)) 113)) (-3816 (((-3 $ "failed") $) 79)) (-1821 (((-112)) 95)) (-1819 (((-112)) 90)) (-1823 (((-112)) 53)) (-1903 (((-667 |#2|) (-1229 $)) 118)) (-1839 ((|#2| $) 31)) (-1901 (((-667 |#2|) $ (-1229 $)) 122)) (-2492 (((-3 $ "failed") $) 73)) (-1837 ((|#2| $) 34)) (-1817 (((-1141 |#2|) $) 82)) (-1905 ((|#2| (-1229 $)) 104)) (-1835 (((-1141 |#2|) $) 26)) (-1829 (((-112)) 99)) (-1820 (((-112)) 92)) (-1822 (((-112)) 51)) (-1824 (((-112)) 87)) (-1827 (((-112)) 101)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) 111)) (-1833 (((-112)) 97)) (-1818 (((-620 (-1229 |#2|))) 86)) (-1831 (((-112)) 98)) (-1832 (((-112)) 96)) (-1830 (((-112)) 46)) (-1826 (((-112)) 102))) +(((-359 |#1| |#2|) (-10 -8 (-15 -1816 ((-1141 |#2|) |#1|)) (-15 -1817 ((-1141 |#2|) |#1|)) (-15 -1818 ((-620 (-1229 |#2|)))) (-15 -2491 ((-3 |#1| "failed") |#1|)) (-15 -2492 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1141 |#2|) |#1|)) (-15 -1835 ((-1141 |#2|) |#1|)) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|)))) (-360 |#2|) (-170)) (T -359)) +((-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1830 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1822 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1820 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-620 (-1229 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) +(-10 -8 (-15 -1816 ((-1141 |#2|) |#1|)) (-15 -1817 ((-1141 |#2|) |#1|)) (-15 -1818 ((-620 (-1229 |#2|)))) (-15 -2491 ((-3 |#1| "failed") |#1|)) (-15 -2492 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1141 |#2|) |#1|)) (-15 -1835 ((-1141 |#2|) |#1|)) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1887 (((-3 $ "failed")) 37 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) 78)) (-1840 (((-1229 $)) 81)) (-3891 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) 40 (|has| |#1| (-543)))) (-1814 (((-3 $ "failed")) 38 (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) 65)) (-1838 ((|#1| $) 74)) (-1900 (((-667 |#1|) $ (-1229 $)) 76)) (-2491 (((-3 $ "failed") $) 45 (|has| |#1| (-543)))) (-2494 (($ $ (-893)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1141 |#1|) $) 42 (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) 67)) (-1834 (((-1141 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1229 |#1|) (-1229 $)) 69)) (-3816 (((-3 $ "failed") $) 47 (|has| |#1| (-543)))) (-3439 (((-893)) 80)) (-1825 (((-112)) 54)) (-2519 (($ $ (-893)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) 41 (|has| |#1| (-543)))) (-1815 (((-3 $ "failed")) 39 (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) 66)) (-1839 ((|#1| $) 75)) (-1901 (((-667 |#1|) $ (-1229 $)) 77)) (-2492 (((-3 $ "failed") $) 46 (|has| |#1| (-543)))) (-2493 (($ $ (-893)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1141 |#1|) $) 43 (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) 68)) (-1835 (((-1141 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3588 (((-1129) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3589 (((-1091) $) 10)) (-1827 (((-112)) 56)) (-3570 (((-1229 |#1|) $ (-1229 $)) 71) (((-667 |#1|) (-1229 $) (-1229 $)) 70)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) 79)) (-2681 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4312 (((-838) $) 11)) (-1818 (((-620 (-1229 |#1|))) 44 (|has| |#1| (-543)))) (-2682 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2680 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-360 |#1|) (-138) (-170)) (T -360)) -((-4259 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1228 *1)) (-4 *1 (-360 *3)))) (-3398 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-895)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-623 (-926 *4))))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1228 (-667 *4))))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2693 (*1 *2 *1 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2999 (*1 *2 *1 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1228 *4)))) (-2999 (*1 *2 *3 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1228 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-4118 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2582 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2941 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3268 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1688 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2030 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2294 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3836 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4094 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2498 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2826 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1294 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1870 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3143 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4189 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1537 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-3274 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2988 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2364 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-623 (-1228 *3))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1141 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1141 *3)))) (-3811 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2206 (-623 *1)))) (-4 *1 (-360 *3)))) (-1350 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2206 (-623 *1)))) (-4 *1 (-360 *3)))) (-3678 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-1713 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-2305 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) -(-13 (-723 |t#1|) (-10 -8 (-15 -4259 ((-1228 $))) (-15 -3398 ((-895))) (-15 -2778 ((-623 (-926 |t#1|)) (-1228 $))) (-15 -2946 ((-1228 (-667 |t#1|)) (-1228 $))) (-15 -2224 ((-667 |t#1|) $ (-1228 $))) (-15 -2693 ((-667 |t#1|) $ (-1228 $))) (-15 -2925 (|t#1| $)) (-15 -4281 (|t#1| $)) (-15 -1324 (|t#1| $)) (-15 -2710 (|t#1| $)) (-15 -2999 ((-1228 |t#1|) $ (-1228 $))) (-15 -2999 ((-667 |t#1|) (-1228 $) (-1228 $))) (-15 -2821 ($ (-1228 |t#1|) (-1228 $))) (-15 -4216 (|t#1| (-1228 $))) (-15 -1690 (|t#1| (-1228 $))) (-15 -2128 ((-667 |t#1|) (-1228 $))) (-15 -2704 ((-667 |t#1|) (-1228 $))) (-15 -3876 ((-1141 |t#1|) $)) (-15 -2015 ((-1141 |t#1|) $)) (-15 -4118 ((-112))) (-15 -2582 ((-112))) (-15 -2941 ((-112))) (-15 -3268 ((-112))) (-15 -1688 ((-112))) (-15 -2030 ((-112))) (-15 -2294 ((-112))) (-15 -3836 ((-112))) (-15 -4094 ((-112))) (-15 -2498 ((-112))) (-15 -2826 ((-112))) (-15 -1294 ((-112))) (-15 -1870 ((-112))) (-15 -3143 ((-112))) (-15 -4189 ((-112))) (IF (|has| |t#1| (-542)) (PROGN (-15 -1537 ((-3 $ "failed") $)) (-15 -3274 ((-3 $ "failed") $)) (-15 -2988 ((-3 $ "failed") $)) (-15 -2364 ((-623 (-1228 |t#1|)))) (-15 -3784 ((-1141 |t#1|) $)) (-15 -2613 ((-1141 |t#1|) $)) (-15 -3811 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -1350 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -3678 ((-3 $ "failed"))) (-15 -1713 ((-3 $ "failed"))) (-15 -2305 ((-3 $ "failed"))) (-6 -4341)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-3828 (((-749)) 16)) (-1864 (($) 13)) (-4073 (((-895) $) 14)) (-2369 (((-1127) $) 9)) (-3690 (($ (-895)) 15)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) +((-1840 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-360 *3)))) (-3439 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-893)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))))) (-1901 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-1833 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1823 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1822 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1821 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1820 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1819 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3816 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-2492 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-2491 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-1818 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-620 (-1229 *3))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3)))) (-2024 (*1 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) (-2023 (*1 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) (-1815 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) (-1814 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) (-1887 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) +(-13 (-723 |t#1|) (-10 -8 (-15 -1840 ((-1229 $))) (-15 -3439 ((-893))) (-15 -2009 ((-620 (-920 |t#1|)) (-1229 $))) (-15 -3569 ((-1229 (-667 |t#1|)) (-1229 $))) (-15 -1901 ((-667 |t#1|) $ (-1229 $))) (-15 -1900 ((-667 |t#1|) $ (-1229 $))) (-15 -1839 (|t#1| $)) (-15 -1838 (|t#1| $)) (-15 -1837 (|t#1| $)) (-15 -1836 (|t#1| $)) (-15 -3570 ((-1229 |t#1|) $ (-1229 $))) (-15 -3570 ((-667 |t#1|) (-1229 $) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|) (-1229 $))) (-15 -1905 (|t#1| (-1229 $))) (-15 -1904 (|t#1| (-1229 $))) (-15 -1903 ((-667 |t#1|) (-1229 $))) (-15 -1902 ((-667 |t#1|) (-1229 $))) (-15 -1835 ((-1141 |t#1|) $)) (-15 -1834 ((-1141 |t#1|) $)) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (-15 -1823 ((-112))) (-15 -1822 ((-112))) (-15 -1821 ((-112))) (-15 -1820 ((-112))) (-15 -1819 ((-112))) (IF (|has| |t#1| (-543)) (PROGN (-15 -3816 ((-3 $ "failed") $)) (-15 -2492 ((-3 $ "failed") $)) (-15 -2491 ((-3 $ "failed") $)) (-15 -1818 ((-620 (-1229 |t#1|)))) (-15 -1817 ((-1141 |t#1|) $)) (-15 -1816 ((-1141 |t#1|) $)) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -1815 ((-3 $ "failed"))) (-15 -1814 ((-3 $ "failed"))) (-15 -1887 ((-3 $ "failed"))) (-6 -4345)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3466 (((-749)) 16)) (-3322 (($) 13)) (-2121 (((-893) $) 14)) (-3588 (((-1129) $) 9)) (-2487 (($ (-893)) 15)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) (((-361) (-138)) (T -361)) -((-3828 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-361)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-895)))) (-1864 (*1 *1) (-4 *1 (-361)))) -(-13 (-1069) (-10 -8 (-15 -3828 ((-749))) (-15 -3690 ($ (-895))) (-15 -4073 ((-895) $)) (-15 -1864 ($)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-3992 (((-667 |#2|) (-1228 $)) 40)) (-2821 (($ (-1228 |#2|) (-1228 $)) 34)) (-2766 (((-667 |#2|) $ (-1228 $)) 42)) (-3563 ((|#2| (-1228 $)) 13)) (-2999 (((-1228 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) (-1228 $) (-1228 $)) 25))) -(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -3992 ((-667 |#2|) (-1228 |#1|))) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2766 ((-667 |#2|) |#1| (-1228 |#1|)))) (-363 |#2| |#3|) (-170) (-1204 |#2|)) (T -362)) -NIL -(-10 -8 (-15 -3992 ((-667 |#2|) (-1228 |#1|))) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2766 ((-667 |#2|) |#1| (-1228 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3992 (((-667 |#1|) (-1228 $)) 44)) (-2223 ((|#1| $) 50)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2821 (($ (-1228 |#1|) (-1228 $)) 46)) (-2766 (((-667 |#1|) $ (-1228 $)) 51)) (-1537 (((-3 $ "failed") $) 32)) (-3398 (((-895)) 52)) (-2419 (((-112) $) 30)) (-1571 ((|#1| $) 49)) (-2835 ((|#2| $) 42 (|has| |#1| (-356)))) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3563 ((|#1| (-1228 $)) 45)) (-2999 (((-1228 |#1|) $ (-1228 $)) 48) (((-667 |#1|) (-1228 $) (-1228 $)) 47)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-1613 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3359 ((|#2| $) 43)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-363 |#1| |#2|) (-138) (-170) (-1204 |t#1|)) (T -363)) -((-3398 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-895)))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) (-2999 (*1 *2 *1 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-1228 *4)))) (-2999 (*1 *2 *3 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1228 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1204 *4)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1204 *2)) (-4 *2 (-170)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1204 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3398 ((-895))) (-15 -2766 ((-667 |t#1|) $ (-1228 $))) (-15 -2223 (|t#1| $)) (-15 -1571 (|t#1| $)) (-15 -2999 ((-1228 |t#1|) $ (-1228 $))) (-15 -2999 ((-667 |t#1|) (-1228 $) (-1228 $))) (-15 -2821 ($ (-1228 |t#1|) (-1228 $))) (-15 -3563 (|t#1| (-1228 $))) (-15 -3992 ((-667 |t#1|) (-1228 $))) (-15 -3359 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -2835 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2304 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2924 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2392 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2924 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2304 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1182) (-366 |#1|) (-1182) (-366 |#3|)) (T -364)) -((-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1182)) (-4 *5 (-1182)) (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2924 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2304 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1837 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2734 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1814 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1999 (($ $) 25)) (-3088 (((-550) (-1 (-112) |#2|) $) NIL) (((-550) |#2| $) 11) (((-550) |#2| $ (-550)) NIL)) (-2441 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-365 |#1| |#2|) (-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1814 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1999 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-366 |#2|) (-1182)) (T -365)) -NIL -(-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1814 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1999 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-3088 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 70)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 82 (|has| |#1| (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-366 |#1|) (-138) (-1182)) (T -366)) -((-2441 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) (-1999 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)))) (-1814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) (-1837 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1182)) (-5 *2 (-112)))) (-3088 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1182)) (-5 *2 (-550)))) (-3088 (*1 *2 *3 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-550)))) (-3088 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-366 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)) (-4 *2 (-825)))) (-1814 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)) (-4 *2 (-825)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1182)) (-4 *3 (-825)) (-5 *2 (-112)))) (-2502 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4345)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) (-3770 (*1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-366 *2)) (-4 *2 (-1182)))) (-2734 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4345)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) (-2734 (*1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-366 *2)) (-4 *2 (-1182)) (-4 *2 (-825))))) -(-13 (-629 |t#1|) (-10 -8 (-6 -4344) (-15 -2441 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1999 ($ $)) (-15 -1814 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1837 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3088 ((-550) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -3088 ((-550) |t#1| $)) (-15 -3088 ((-550) |t#1| $ (-550)))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-6 (-825)) (-15 -2441 ($ $ $)) (-15 -1814 ($ $)) (-15 -1837 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2502 ($ $ $ (-550))) (-15 -3770 ($ $)) (-15 -2734 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-825)) (-15 -2734 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1069) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-1182) . T)) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3016 (((-623 |#1|) $) 32)) (-1918 (($ $ (-749)) 33)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-3134 (((-1252 |#1| |#2|) (-1252 |#1| |#2|) $) 36)) (-2481 (($ $) 34)) (-1676 (((-1252 |#1| |#2|) (-1252 |#1| |#2|) $) 37)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1553 (($ $ |#1| $) 31) (($ $ (-623 |#1|) (-623 $)) 30)) (-3661 (((-749) $) 38)) (-2245 (($ $ $) 29)) (-2233 (((-837) $) 11) (($ |#1|) 41) (((-1243 |#1| |#2|) $) 40) (((-1252 |#1| |#2|) $) 39)) (-4304 ((|#2| (-1252 |#1| |#2|) $) 42)) (-2688 (($) 18 T CONST)) (-3372 (($ (-650 |#1|)) 35)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +((-3466 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-361)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-893)))) (-3322 (*1 *1) (-4 *1 (-361)))) +(-13 (-1072) (-10 -8 (-15 -3466 ((-749))) (-15 -2487 ($ (-893))) (-15 -2121 ((-893) $)) (-15 -3322 ($)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-1896 (((-667 |#2|) (-1229 $)) 40)) (-1906 (($ (-1229 |#2|) (-1229 $)) 34)) (-1895 (((-667 |#2|) $ (-1229 $)) 42)) (-4112 ((|#2| (-1229 $)) 13)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) 25))) +(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) (-363 |#2| |#3|) (-170) (-1205 |#2|)) (T -362)) +NIL +(-10 -8 (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1896 (((-667 |#1|) (-1229 $)) 44)) (-3684 ((|#1| $) 50)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46)) (-1895 (((-667 |#1|) $ (-1229 $)) 51)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4112 ((|#1| (-1229 $)) 45)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3030 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-363 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -363)) +((-3439 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-893)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1205 *4)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1205 *2)) (-4 *2 (-170)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-2693 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1205 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3439 ((-893))) (-15 -1895 ((-667 |t#1|) $ (-1229 $))) (-15 -3684 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3570 ((-1229 |t#1|) $ (-1229 $))) (-15 -3570 ((-667 |t#1|) (-1229 $) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|) (-1229 $))) (-15 -4112 (|t#1| (-1229 $))) (-15 -1896 ((-667 |t#1|) (-1229 $))) (-15 -2693 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -2125 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-1843 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1841 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3237 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2373 (($ $) 25)) (-3773 (((-536) (-1 (-112) |#2|) $) NIL) (((-536) |#2| $) 11) (((-536) |#2| $ (-536)) NIL)) (-3867 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-364 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1183)) (T -364)) +NIL +(-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-365 |#1|) (-138) (-1183)) (T -365)) +((-3867 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)))) (-3237 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-3773 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-825)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-2372 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)))) (-1841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-1841 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825))))) +(-13 (-629 |t#1|) (-10 -8 (-6 -4348) (-15 -3867 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2373 ($ $)) (-15 -3237 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1843 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3773 ((-536) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3773 ((-536) |t#1| $)) (-15 -3773 ((-536) |t#1| $ (-536)))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-6 (-825)) (-15 -3867 ($ $ $)) (-15 -3237 ($ $)) (-15 -1843 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -1842 ($ $ $ (-536))) (-15 -2372 ($ $)) (-15 -1841 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-825)) (-15 -1841 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) +((-4196 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4197 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4313 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1183) (-365 |#1|) (-1183) (-365 |#3|)) (T -366)) +((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-4 *2 (-365 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *2 (-365 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 32)) (-4301 (($ $ (-749)) 33)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4294 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 36)) (-4291 (($ $) 34)) (-4295 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 37)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4122 (($ $ |#1| $) 31) (($ $ (-620 |#1|) (-620 $)) 30)) (-4302 (((-749) $) 38)) (-3879 (($ $ $) 29)) (-4312 (((-838) $) 11) (($ |#1|) 41) (((-1245 |#1| |#2|) $) 40) (((-1254 |#1| |#2|) $) 39)) (-4308 ((|#2| (-1254 |#1| |#2|) $) 42)) (-2986 (($) 18 T CONST)) (-1844 (($ (-650 |#1|)) 35)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) (((-367 |#1| |#2|) (-138) (-825) (-170)) (T -367)) -((-4304 (*1 *2 *3 *1) (-12 (-5 *3 (-1252 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) (-4 *2 (-170)))) (-2233 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1243 *3 *4)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1252 *3 *4)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) (-1676 (*1 *2 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3134 (*1 *2 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-1918 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-623 *3)))) (-1553 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) (-4 *5 (-170))))) -(-13 (-614 |t#2|) (-10 -8 (-15 -4304 (|t#2| (-1252 |t#1| |t#2|) $)) (-15 -2233 ($ |t#1|)) (-15 -2233 ((-1243 |t#1| |t#2|) $)) (-15 -2233 ((-1252 |t#1| |t#2|) $)) (-15 -3661 ((-749) $)) (-15 -1676 ((-1252 |t#1| |t#2|) (-1252 |t#1| |t#2|) $)) (-15 -3134 ((-1252 |t#1| |t#2|) (-1252 |t#1| |t#2|) $)) (-15 -3372 ($ (-650 |t#1|))) (-15 -2481 ($ $)) (-15 -1918 ($ $ (-749))) (-15 -3016 ((-623 |t#1|) $)) (-15 -1553 ($ $ |t#1| $)) (-15 -1553 ($ $ (-623 |t#1|) (-623 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#2|) . T) ((-614 |#2|) . T) ((-696 |#2|) . T) ((-1027 |#2|) . T) ((-1069) . T)) -((-2460 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-2939 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3153 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-368 |#1| |#2|) (-10 -7 (-15 -2939 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3153 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2460 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1182) (-13 (-366 |#1|) (-10 -7 (-6 -4345)))) (T -368)) -((-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345)))))) (-3153 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345)))))) (-2939 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345))))))) -(-10 -7 (-15 -2939 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3153 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2460 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3756 (((-667 |#2|) (-667 $)) NIL) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 22) (((-667 (-550)) (-667 $)) 14))) -(((-369 |#1| |#2|) (-10 -8 (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 |#2|) (-667 |#1|)))) (-370 |#2|) (-1021)) (T -369)) -NIL -(-10 -8 (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 |#2|) (-667 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-3756 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 33) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 41 (|has| |#1| (-619 (-550)))) (((-667 (-550)) (-667 $)) 40 (|has| |#1| (-619 (-550))))) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-370 |#1|) (-138) (-1021)) (T -370)) -NIL -(-13 (-619 |t#1|) (-10 -7 (IF (|has| |t#1| (-619 (-550))) (-6 (-619 (-550))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2570 (((-623 (-287 (-926 (-167 |#1|)))) (-287 (-400 (-926 (-167 (-550))))) |#1|) 51) (((-623 (-287 (-926 (-167 |#1|)))) (-400 (-926 (-167 (-550)))) |#1|) 50) (((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-287 (-400 (-926 (-167 (-550)))))) |#1|) 47) (((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-400 (-926 (-167 (-550))))) |#1|) 41)) (-4018 (((-623 (-623 (-167 |#1|))) (-623 (-400 (-926 (-167 (-550))))) (-623 (-1145)) |#1|) 30) (((-623 (-167 |#1|)) (-400 (-926 (-167 (-550)))) |#1|) 18))) -(((-371 |#1|) (-10 -7 (-15 -2570 ((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-400 (-926 (-167 (-550))))) |#1|)) (-15 -2570 ((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-287 (-400 (-926 (-167 (-550)))))) |#1|)) (-15 -2570 ((-623 (-287 (-926 (-167 |#1|)))) (-400 (-926 (-167 (-550)))) |#1|)) (-15 -2570 ((-623 (-287 (-926 (-167 |#1|)))) (-287 (-400 (-926 (-167 (-550))))) |#1|)) (-15 -4018 ((-623 (-167 |#1|)) (-400 (-926 (-167 (-550)))) |#1|)) (-15 -4018 ((-623 (-623 (-167 |#1|))) (-623 (-400 (-926 (-167 (-550))))) (-623 (-1145)) |#1|))) (-13 (-356) (-823))) (T -371)) -((-4018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-400 (-926 (-167 (-550)))))) (-5 *4 (-623 (-1145))) (-5 *2 (-623 (-623 (-167 *5)))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-823))))) (-4018 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 (-167 (-550))))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-926 (-167 (-550)))))) (-5 *2 (-623 (-287 (-926 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 (-167 (-550))))) (-5 *2 (-623 (-287 (-926 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-926 (-167 (-550))))))) (-5 *2 (-623 (-623 (-287 (-926 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 (-167 (-550)))))) (-5 *2 (-623 (-623 (-287 (-926 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2570 ((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-400 (-926 (-167 (-550))))) |#1|)) (-15 -2570 ((-623 (-623 (-287 (-926 (-167 |#1|))))) (-623 (-287 (-400 (-926 (-167 (-550)))))) |#1|)) (-15 -2570 ((-623 (-287 (-926 (-167 |#1|)))) (-400 (-926 (-167 (-550)))) |#1|)) (-15 -2570 ((-623 (-287 (-926 (-167 |#1|)))) (-287 (-400 (-926 (-167 (-550))))) |#1|)) (-15 -4018 ((-623 (-167 |#1|)) (-400 (-926 (-167 (-550)))) |#1|)) (-15 -4018 ((-623 (-623 (-167 |#1|))) (-623 (-400 (-926 (-167 (-550))))) (-623 (-1145)) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 33)) (-3104 (((-550) $) 55)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2879 (($ $) 110)) (-4160 (($ $) 82)) (-2820 (($ $) 71)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) 44)) (-1611 (((-112) $ $) NIL)) (-4137 (($ $) 80)) (-2796 (($ $) 69)) (-4303 (((-550) $) 64)) (-1538 (($ $ (-550)) 62)) (-4183 (($ $) NIL)) (-2844 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-3878 (($ $) 112)) (-2288 (((-3 (-550) "failed") $) 189) (((-3 (-400 (-550)) "failed") $) 185)) (-2202 (((-550) $) 187) (((-400 (-550)) $) 183)) (-3455 (($ $ $) NIL)) (-3011 (((-550) $ $) 102)) (-1537 (((-3 $ "failed") $) 114)) (-3395 (((-400 (-550)) $ (-749)) 190) (((-400 (-550)) $ (-749) (-749)) 182)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1578 (((-895)) 73) (((-895) (-895)) 98 (|has| $ (-6 -4335)))) (-2694 (((-112) $) 106)) (-4187 (($) 40)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL)) (-1985 (((-1233) (-749)) 152)) (-3556 (((-1233)) 157) (((-1233) (-749)) 158)) (-2616 (((-1233)) 159) (((-1233) (-749)) 160)) (-2914 (((-1233)) 155) (((-1233) (-749)) 156)) (-2603 (((-550) $) 58)) (-2419 (((-112) $) 104)) (-1893 (($ $ (-550)) NIL)) (-3478 (($ $) 48)) (-1571 (($ $) NIL)) (-1712 (((-112) $) 35)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL) (($) NIL (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-2173 (($ $ $) NIL) (($) 99 (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-4136 (((-550) $) 17)) (-1916 (($) 87) (($ $) 92)) (-1638 (($) 91) (($ $) 93)) (-3080 (($ $) 83)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 116)) (-1566 (((-895) (-550)) 43 (|has| $ (-6 -4335)))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) 53)) (-3925 (($ $) 109)) (-2795 (($ (-550) (-550)) 107) (($ (-550) (-550) (-895)) 108)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3068 (((-550) $) 19)) (-2175 (($) 94)) (-1644 (($ $) 79)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-4051 (((-895)) 100) (((-895) (-895)) 101 (|has| $ (-6 -4335)))) (-2798 (($ $ (-749)) NIL) (($ $) 115)) (-3202 (((-895) (-550)) 47 (|has| $ (-6 -4335)))) (-4194 (($ $) NIL)) (-2856 (($ $) NIL)) (-4171 (($ $) NIL)) (-2832 (($ $) NIL)) (-4149 (($ $) 81)) (-2807 (($ $) 70)) (-2451 (((-372) $) 175) (((-219) $) 177) (((-866 (-372)) $) NIL) (((-1127) $) 162) (((-526) $) 173) (($ (-219)) 181)) (-2233 (((-837) $) 164) (($ (-550)) 186) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-550)) 186) (($ (-400 (-550))) NIL) (((-219) $) 178)) (-3091 (((-749)) NIL)) (-2967 (($ $) 111)) (-4319 (((-895)) 54) (((-895) (-895)) 66 (|has| $ (-6 -4335)))) (-4300 (((-895)) 103)) (-4233 (($ $) 86)) (-2893 (($ $) 46) (($ $ $) 52)) (-1819 (((-112) $ $) NIL)) (-4206 (($ $) 84)) (-2869 (($ $) 37)) (-4255 (($ $) NIL)) (-4117 (($ $) NIL)) (-3363 (($ $) NIL)) (-4127 (($ $) NIL)) (-4244 (($ $) NIL)) (-2905 (($ $) NIL)) (-4218 (($ $) 85)) (-2880 (($ $) 49)) (-4188 (($ $) 51)) (-2688 (($) 34 T CONST)) (-2700 (($) 38 T CONST)) (-3145 (((-1127) $) 27) (((-1127) $ (-112)) 29) (((-1233) (-800) $) 30) (((-1233) (-800) $ (-112)) 31)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 39)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 42)) (-2382 (($ $ $) 45) (($ $ (-550)) 41)) (-2370 (($ $) 36) (($ $ $) 50)) (-2358 (($ $ $) 61)) (** (($ $ (-895)) 67) (($ $ (-749)) NIL) (($ $ (-550)) 88) (($ $ (-400 (-550))) 125) (($ $ $) 117)) (* (($ (-895) $) 65) (($ (-749) $) NIL) (($ (-550) $) 68) (($ $ $) 60) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-372) (-13 (-397) (-227) (-596 (-1127)) (-806) (-595 (-219)) (-1167) (-596 (-526)) (-10 -8 (-15 -2382 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3478 ($ $)) (-15 -3011 ((-550) $ $)) (-15 -1538 ($ $ (-550))) (-15 -3395 ((-400 (-550)) $ (-749))) (-15 -3395 ((-400 (-550)) $ (-749) (-749))) (-15 -1916 ($)) (-15 -1638 ($)) (-15 -2175 ($)) (-15 -2893 ($ $ $)) (-15 -1916 ($ $)) (-15 -1638 ($ $)) (-15 -2451 ($ (-219))) (-15 -2616 ((-1233))) (-15 -2616 ((-1233) (-749))) (-15 -2914 ((-1233))) (-15 -2914 ((-1233) (-749))) (-15 -3556 ((-1233))) (-15 -3556 ((-1233) (-749))) (-15 -1985 ((-1233) (-749))) (-6 -4335) (-6 -4327)))) (T -372)) -((** (*1 *1 *1 *1) (-5 *1 (-372))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-3478 (*1 *1 *1) (-5 *1 (-372))) (-3011 (*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) (-3395 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) (-1916 (*1 *1) (-5 *1 (-372))) (-1638 (*1 *1) (-5 *1 (-372))) (-2175 (*1 *1) (-5 *1 (-372))) (-2893 (*1 *1 *1 *1) (-5 *1 (-372))) (-1916 (*1 *1 *1) (-5 *1 (-372))) (-1638 (*1 *1 *1) (-5 *1 (-372))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) (-2616 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) (-2914 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) (-3556 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372))))) -(-13 (-397) (-227) (-596 (-1127)) (-806) (-595 (-219)) (-1167) (-596 (-526)) (-10 -8 (-15 -2382 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3478 ($ $)) (-15 -3011 ((-550) $ $)) (-15 -1538 ($ $ (-550))) (-15 -3395 ((-400 (-550)) $ (-749))) (-15 -3395 ((-400 (-550)) $ (-749) (-749))) (-15 -1916 ($)) (-15 -1638 ($)) (-15 -2175 ($)) (-15 -2893 ($ $ $)) (-15 -1916 ($ $)) (-15 -1638 ($ $)) (-15 -2451 ($ (-219))) (-15 -2616 ((-1233))) (-15 -2616 ((-1233) (-749))) (-15 -2914 ((-1233))) (-15 -2914 ((-1233) (-749))) (-15 -3556 ((-1233))) (-15 -3556 ((-1233) (-749))) (-15 -1985 ((-1233) (-749))) (-6 -4335) (-6 -4327))) -((-4229 (((-623 (-287 (-926 |#1|))) (-287 (-400 (-926 (-550)))) |#1|) 46) (((-623 (-287 (-926 |#1|))) (-400 (-926 (-550))) |#1|) 45) (((-623 (-623 (-287 (-926 |#1|)))) (-623 (-287 (-400 (-926 (-550))))) |#1|) 42) (((-623 (-623 (-287 (-926 |#1|)))) (-623 (-400 (-926 (-550)))) |#1|) 36)) (-3598 (((-623 |#1|) (-400 (-926 (-550))) |#1|) 20) (((-623 (-623 |#1|)) (-623 (-400 (-926 (-550)))) (-623 (-1145)) |#1|) 30))) -(((-373 |#1|) (-10 -7 (-15 -4229 ((-623 (-623 (-287 (-926 |#1|)))) (-623 (-400 (-926 (-550)))) |#1|)) (-15 -4229 ((-623 (-623 (-287 (-926 |#1|)))) (-623 (-287 (-400 (-926 (-550))))) |#1|)) (-15 -4229 ((-623 (-287 (-926 |#1|))) (-400 (-926 (-550))) |#1|)) (-15 -4229 ((-623 (-287 (-926 |#1|))) (-287 (-400 (-926 (-550)))) |#1|)) (-15 -3598 ((-623 (-623 |#1|)) (-623 (-400 (-926 (-550)))) (-623 (-1145)) |#1|)) (-15 -3598 ((-623 |#1|) (-400 (-926 (-550))) |#1|))) (-13 (-823) (-356))) (T -373)) -((-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-400 (-926 (-550))))) (-5 *4 (-623 (-1145))) (-5 *2 (-623 (-623 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-926 (-550))))) (-5 *2 (-623 (-287 (-926 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 (-550)))) (-5 *2 (-623 (-287 (-926 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-926 (-550)))))) (-5 *2 (-623 (-623 (-287 (-926 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 (-550))))) (-5 *2 (-623 (-623 (-287 (-926 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356)))))) -(-10 -7 (-15 -4229 ((-623 (-623 (-287 (-926 |#1|)))) (-623 (-400 (-926 (-550)))) |#1|)) (-15 -4229 ((-623 (-623 (-287 (-926 |#1|)))) (-623 (-287 (-400 (-926 (-550))))) |#1|)) (-15 -4229 ((-623 (-287 (-926 |#1|))) (-400 (-926 (-550))) |#1|)) (-15 -4229 ((-623 (-287 (-926 |#1|))) (-287 (-400 (-926 (-550)))) |#1|)) (-15 -3598 ((-623 (-623 |#1|)) (-623 (-400 (-926 (-550)))) (-623 (-1145)) |#1|)) (-15 -3598 ((-623 |#1|) (-400 (-926 (-550))) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) 26)) (-2202 ((|#2| $) 28)) (-1693 (($ $) NIL)) (-3324 (((-749) $) 10)) (-2336 (((-623 $) $) 20)) (-3438 (((-112) $) NIL)) (-3227 (($ |#2| |#1|) 18)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1615 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1657 ((|#2| $) 15)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 45) (($ |#2|) 27)) (-2969 (((-623 |#1|) $) 17)) (-1708 ((|#1| $ |#2|) 47)) (-2688 (($) 29 T CONST)) (-1564 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-374 |#1| |#2|) (-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1021) (-825)) (T -374)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-825))))) -(-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#2| "failed") $) 44)) (-2202 ((|#2| $) 43)) (-1693 (($ $) 30)) (-3324 (((-749) $) 34)) (-2336 (((-623 $) $) 35)) (-3438 (((-112) $) 38)) (-3227 (($ |#2| |#1|) 39)) (-2392 (($ (-1 |#1| |#1|) $) 40)) (-1615 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1657 ((|#2| $) 33)) (-1670 ((|#1| $) 32)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ |#2|) 45)) (-2969 (((-623 |#1|) $) 36)) (-1708 ((|#1| $ |#2|) 41)) (-2688 (($) 18 T CONST)) (-1564 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-375 |#1| |#2|) (-138) (-1021) (-1069)) (T -375)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1069)))) (-1708 (*1 *2 *1 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1021)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)))) (-3227 (*1 *1 *2 *3) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1069)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-112)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-623 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-623 *3)))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-623 *1)) (-4 *1 (-375 *3 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-749)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1069)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1021)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1069))))) -(-13 (-111 |t#1| |t#1|) (-1012 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1708 (|t#1| $ |t#2|)) (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (-15 -3227 ($ |t#2| |t#1|)) (-15 -3438 ((-112) $)) (-15 -1564 ((-623 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2969 ((-623 |t#1|) $)) (-15 -2336 ((-623 $) $)) (-15 -3324 ((-749) $)) (-15 -1657 (|t#2| $)) (-15 -1670 (|t#1| $)) (-15 -1615 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1693 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-696 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-696 |#1|) |has| |#1| (-170)) ((-1012 |#2|) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8) (($ (-667 (-677))) 14) (($ (-623 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 11))) -(((-376) (-138)) (T -376)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-376)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-4 *1 (-376))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-667 (-677)))) (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-323))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))))) -(((-595 (-837)) . T) ((-388) . T) ((-1182) . T)) -((-2288 (((-3 $ "failed") (-667 (-309 (-372)))) 21) (((-3 $ "failed") (-667 (-309 (-550)))) 19) (((-3 $ "failed") (-667 (-926 (-372)))) 17) (((-3 $ "failed") (-667 (-926 (-550)))) 15) (((-3 $ "failed") (-667 (-400 (-926 (-372))))) 13) (((-3 $ "failed") (-667 (-400 (-926 (-550))))) 11)) (-2202 (($ (-667 (-309 (-372)))) 22) (($ (-667 (-309 (-550)))) 20) (($ (-667 (-926 (-372)))) 18) (($ (-667 (-926 (-550)))) 16) (($ (-667 (-400 (-926 (-372))))) 14) (($ (-667 (-400 (-926 (-550))))) 12)) (-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 23))) -(((-377) (-138)) (T -377)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-377)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-926 (-372)))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-926 (-372)))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-926 (-550)))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-926 (-550)))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-926 (-372))))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-926 (-372))))) (-4 *1 (-377)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-926 (-550))))) (-4 *1 (-377)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-926 (-550))))) (-4 *1 (-377))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-323))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))) (-15 -2202 ($ (-667 (-309 (-372))))) (-15 -2288 ((-3 $ "failed") (-667 (-309 (-372))))) (-15 -2202 ($ (-667 (-309 (-550))))) (-15 -2288 ((-3 $ "failed") (-667 (-309 (-550))))) (-15 -2202 ($ (-667 (-926 (-372))))) (-15 -2288 ((-3 $ "failed") (-667 (-926 (-372))))) (-15 -2202 ($ (-667 (-926 (-550))))) (-15 -2288 ((-3 $ "failed") (-667 (-926 (-550))))) (-15 -2202 ($ (-667 (-400 (-926 (-372)))))) (-15 -2288 ((-3 $ "failed") (-667 (-400 (-926 (-372)))))) (-15 -2202 ($ (-667 (-400 (-926 (-550)))))) (-15 -2288 ((-3 $ "failed") (-667 (-400 (-926 (-550)))))))) -(((-595 (-837)) . T) ((-388) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1488 (($ |#1| |#2|) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1821 ((|#2| $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 28)) (-2688 (($) 12 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-378 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) (-1021) (-825)) (T -378)) +((-4308 (*1 *2 *3 *1) (-12 (-5 *3 (-1254 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) (-4 *2 (-170)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1245 *3 *4)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1254 *3 *4)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) (-4295 (*1 *2 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4294 (*1 *2 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-620 *3)))) (-4122 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) (-4 *5 (-170))))) +(-13 (-615 |t#2|) (-10 -8 (-15 -4308 (|t#2| (-1254 |t#1| |t#2|) $)) (-15 -4312 ($ |t#1|)) (-15 -4312 ((-1245 |t#1| |t#2|) $)) (-15 -4312 ((-1254 |t#1| |t#2|) $)) (-15 -4302 ((-749) $)) (-15 -4295 ((-1254 |t#1| |t#2|) (-1254 |t#1| |t#2|) $)) (-15 -4294 ((-1254 |t#1| |t#2|) (-1254 |t#1| |t#2|) $)) (-15 -1844 ($ (-650 |t#1|))) (-15 -4291 ($ $)) (-15 -4301 ($ $ (-749))) (-15 -4289 ((-620 |t#1|) $)) (-15 -4122 ($ $ |t#1| $)) (-15 -4122 ($ $ (-620 |t#1|) (-620 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-615 |#2|) . T) ((-696 |#2|) . T) ((-1029 |#2|) . T) ((-1072) . T)) +((-1847 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1845 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1846 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-368 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1183) (-13 (-365 |#1|) (-10 -7 (-6 -4349)))) (T -368)) +((-1847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))))) (-1846 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))))) (-1845 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) +(-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2357 (((-667 |#2|) (-667 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 22) (((-667 (-536)) (-667 $)) 14))) +(((-369 |#1| |#2|) (-10 -8 (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 |#2|) (-667 |#1|)))) (-370 |#2|) (-1023)) (T -369)) +NIL +(-10 -8 (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 |#2|) (-667 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2357 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 33) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 41 (|has| |#1| (-619 (-536)))) (((-667 (-536)) (-667 $)) 40 (|has| |#1| (-619 (-536))))) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-370 |#1|) (-138) (-1023)) (T -370)) +NIL +(-13 (-619 |t#1|) (-10 -7 (IF (|has| |t#1| (-619 (-536))) (-6 (-619 (-536))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-3459 (((-536) $) 55)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) 110)) (-3841 (($ $) 82)) (-3997 (($ $) 71)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) 44)) (-1700 (((-112) $ $) NIL)) (-3839 (($ $) 80)) (-3996 (($ $) 69)) (-3981 (((-536) $) 64)) (-2685 (($ $ (-536)) 62)) (-3843 (($ $) NIL)) (-3995 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3457 (($ $) 112)) (-3503 (((-3 (-536) #1="failed") $) 189) (((-3 (-400 (-536)) #1#) $) 185)) (-3502 (((-536) $) 187) (((-400 (-536)) $) 183)) (-2889 (($ $ $) NIL)) (-1856 (((-536) $ $) 102)) (-3816 (((-3 $ "failed") $) 114)) (-1855 (((-400 (-536)) $ (-749)) 190) (((-400 (-536)) $ (-749) (-749)) 182)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 73) (((-893) (-893)) 98 (|has| $ (-6 -4339)))) (-3532 (((-112) $) 106)) (-3985 (($) 40)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-1848 (((-1235) (-749)) 152)) (-1849 (((-1235)) 157) (((-1235) (-749)) 158)) (-1851 (((-1235)) 159) (((-1235) (-749)) 160)) (-1850 (((-1235)) 155) (((-1235) (-749)) 156)) (-4126 (((-536) $) 58)) (-2497 (((-112) $) 104)) (-3339 (($ $ (-536)) NIL)) (-2687 (($ $) 48)) (-3462 (($ $) NIL)) (-3533 (((-112) $) 35)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-3673 (($ $ $) NIL) (($) 99 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 17)) (-1854 (($) 87) (($ $) 92)) (-1853 (($) 91) (($ $) 93)) (-4297 (($ $) 83)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 116)) (-1884 (((-893) (-536)) 43 (|has| $ (-6 -4339)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) 53)) (-3460 (($ $) 109)) (-3600 (($ (-536) (-536)) 107) (($ (-536) (-536) (-893)) 108)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 19)) (-1852 (($) 94)) (-4298 (($ $) 79)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-893)) 100) (((-893) (-893)) 101 (|has| $ (-6 -4339)))) (-4165 (($ $ (-749)) NIL) (($ $) 115)) (-1883 (((-893) (-536)) 47 (|has| $ (-6 -4339)))) (-3844 (($ $) NIL)) (-3994 (($ $) NIL)) (-3842 (($ $) NIL)) (-3993 (($ $) NIL)) (-3840 (($ $) 81)) (-3992 (($ $) 70)) (-4325 (((-371) $) 175) (((-219) $) 177) (((-864 (-371)) $) NIL) (((-1129) $) 162) (((-525) $) 173) (($ (-219)) 181)) (-4312 (((-838) $) 164) (($ (-536)) 186) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-536)) 186) (($ (-400 (-536))) NIL) (((-219) $) 178)) (-3456 (((-749)) NIL)) (-3461 (($ $) 111)) (-1885 (((-893)) 54) (((-893) (-893)) 66 (|has| $ (-6 -4339)))) (-3022 (((-893)) 103)) (-3847 (($ $) 86)) (-3835 (($ $) 46) (($ $ $) 52)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 84)) (-3833 (($ $) 37)) (-3849 (($ $) NIL)) (-3837 (($ $) NIL)) (-3850 (($ $) NIL)) (-3838 (($ $) NIL)) (-3848 (($ $) NIL)) (-3836 (($ $) NIL)) (-3846 (($ $) 85)) (-3834 (($ $) 49)) (-3737 (($ $) 51)) (-2986 (($) 34 T CONST)) (-2992 (($) 38 T CONST)) (-2829 (((-1129) $) 27) (((-1129) $ (-112)) 29) (((-1235) (-801) $) 30) (((-1235) (-801) $ (-112)) 31)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 39)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 42)) (-4303 (($ $ $) 45) (($ $ (-536)) 41)) (-4192 (($ $) 36) (($ $ $) 50)) (-4194 (($ $ $) 61)) (** (($ $ (-893)) 67) (($ $ (-749)) NIL) (($ $ (-536)) 88) (($ $ (-400 (-536))) 125) (($ $ $) 117)) (* (($ (-893) $) 65) (($ (-749) $) NIL) (($ (-536) $) 68) (($ $ $) 60) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-371) (-13 (-397) (-227) (-596 (-1129)) (-799) (-595 (-219)) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -2687 ($ $)) (-15 -1856 ((-536) $ $)) (-15 -2685 ($ $ (-536))) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3835 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4325 ($ (-219))) (-15 -1851 ((-1235))) (-15 -1851 ((-1235) (-749))) (-15 -1850 ((-1235))) (-15 -1850 ((-1235) (-749))) (-15 -1849 ((-1235))) (-15 -1849 ((-1235) (-749))) (-15 -1848 ((-1235) (-749))) (-6 -4339) (-6 -4331)))) (T -371)) +((** (*1 *1 *1 *1) (-5 *1 (-371))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-2687 (*1 *1 *1) (-5 *1 (-371))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) (-1854 (*1 *1) (-5 *1 (-371))) (-1853 (*1 *1) (-5 *1 (-371))) (-1852 (*1 *1) (-5 *1 (-371))) (-3835 (*1 *1 *1 *1) (-5 *1 (-371))) (-1854 (*1 *1 *1) (-5 *1 (-371))) (-1853 (*1 *1 *1) (-5 *1 (-371))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) (-1851 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1850 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1849 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371))))) +(-13 (-397) (-227) (-596 (-1129)) (-799) (-595 (-219)) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -2687 ($ $)) (-15 -1856 ((-536) $ $)) (-15 -2685 ($ $ (-536))) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3835 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4325 ($ (-219))) (-15 -1851 ((-1235))) (-15 -1851 ((-1235) (-749))) (-15 -1850 ((-1235))) (-15 -1850 ((-1235) (-749))) (-15 -1849 ((-1235))) (-15 -1849 ((-1235) (-749))) (-15 -1848 ((-1235) (-749))) (-6 -4339) (-6 -4331))) +((-1857 (((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|) 51) (((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|) 50) (((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|) 47) (((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|) 41)) (-1858 (((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|) 30) (((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|) 18))) +(((-372 |#1|) (-10 -7 (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1858 ((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1858 ((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|))) (-13 (-356) (-823))) (T -372)) +((-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-356) (-823))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 (-166 (-536)))))) (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 (-166 (-536))))))) (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1858 ((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1858 ((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|))) +((-3931 (((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|) 46) (((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|) 45) (((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|) 42) (((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|) 36)) (-1859 (((-620 |#1|) (-400 (-920 (-536))) |#1|) 20) (((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|) 30))) +(((-373 |#1|) (-10 -7 (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|)) (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|)) (-15 -1859 ((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|)) (-15 -1859 ((-620 |#1|) (-400 (-920 (-536))) |#1|))) (-13 (-823) (-356))) (T -373)) +((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-1859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 (-536))))) (-5 *2 (-620 (-286 (-920 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 (-286 (-920 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 (-536)))))) (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356)))))) +(-10 -7 (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|)) (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|)) (-15 -1859 ((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|)) (-15 -1859 ((-620 |#1|) (-400 (-920 (-536))) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 28)) (-2986 (($) 12 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-374 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) (-1023) (-825)) (T -374)) NIL (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3828 (((-749) $) 59)) (-2991 (($) NIL T CONST)) (-3134 (((-3 $ "failed") $ $) 61)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2587 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2419 (((-112) $) 15)) (-3325 ((|#1| $ (-550)) NIL)) (-3062 (((-749) $ (-550)) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-1453 (($ (-1 |#1| |#1|) $) 38)) (-1332 (($ (-1 (-749) (-749)) $) 35)) (-1676 (((-3 $ "failed") $ $) 50)) (-2369 (((-1127) $) NIL)) (-4170 (($ $ $) 26)) (-2749 (($ $ $) 24)) (-3445 (((-1089) $) NIL)) (-1610 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $) 32)) (-1505 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2233 (((-837) $) 22) (($ |#1|) NIL)) (-2700 (($) 9 T CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 41)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) 63 (|has| |#1| (-825)))) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-379 |#1|) (-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2749 ($ $ $)) (-15 -4170 ($ $ $)) (-15 -1676 ((-3 $ "failed") $ $)) (-15 -3134 ((-3 $ "failed") $ $)) (-15 -1505 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2587 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3828 ((-749) $)) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $)) (-15 -3062 ((-749) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1332 ($ (-1 (-749) (-749)) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1069)) (T -379)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-2749 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-4170 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-1676 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-3134 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-1505 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) (-2587 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-749))))) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1069)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-379 *2)) (-4 *2 (-1069)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-379 *3))))) -(-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2749 ($ $ $)) (-15 -4170 ($ $ $)) (-15 -1676 ((-3 $ "failed") $ $)) (-15 -3134 ((-3 $ "failed") $ $)) (-15 -1505 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2587 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3828 ((-749) $)) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $)) (-15 -3062 ((-749) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1332 ($ (-1 (-749) (-749)) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 45)) (-2202 (((-550) $) 44)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2793 (($ $ $) 52)) (-2173 (($ $ $) 51)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ $) 40)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 46)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 49)) (-2302 (((-112) $ $) 48)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 50)) (-2290 (((-112) $ $) 47)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) 26)) (-3502 ((|#2| $) 28)) (-4314 (($ $) NIL)) (-2505 (((-749) $) 10)) (-3149 (((-620 $) $) 20)) (-4292 (((-112) $) NIL)) (-4293 (($ |#2| |#1|) 18)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3222 ((|#2| $) 15)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 45) (($ |#2|) 27)) (-4172 (((-620 |#1|) $) 17)) (-4035 ((|#1| $ |#2|) 47)) (-2986 (($) 29 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-375 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1023) (-825)) (T -375)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825))))) +(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-667 (-677))) 14) (($ (-620 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 11))) +(((-376) (-138)) (T -376)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-376))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-667 (-677)))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))))) +(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| "failed") $) 44)) (-3502 ((|#2| $) 43)) (-4314 (($ $) 30)) (-2505 (((-749) $) 34)) (-3149 (((-620 $) $) 35)) (-4292 (((-112) $) 38)) (-4293 (($ |#2| |#1|) 39)) (-4313 (($ (-1 |#1| |#1|) $) 40)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3222 ((|#2| $) 33)) (-3520 ((|#1| $) 32)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ |#2|) 45)) (-4172 (((-620 |#1|) $) 36)) (-4035 ((|#1| $ |#2|) 41)) (-2986 (($) 18 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-377 |#1| |#2|) (-138) (-1023) (-1072)) (T -377)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)))) (-4293 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-112)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-377 *3 *4)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-749)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072))))) +(-13 (-111 |t#1| |t#1|) (-1012 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4035 (|t#1| $ |t#2|)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -4293 ($ |t#2| |t#1|)) (-15 -4292 ((-112) $)) (-15 -2991 ((-620 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4172 ((-620 |t#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (-15 -3222 (|t#2| $)) (-15 -3520 (|t#1| $)) (-15 -1860 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4314 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-696 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) |has| |#1| (-170)) ((-1012 |#2|) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-3503 (((-3 $ "failed") (-667 (-307 (-371)))) 21) (((-3 $ "failed") (-667 (-307 (-536)))) 19) (((-3 $ "failed") (-667 (-920 (-371)))) 17) (((-3 $ "failed") (-667 (-920 (-536)))) 15) (((-3 $ "failed") (-667 (-400 (-920 (-371))))) 13) (((-3 $ "failed") (-667 (-400 (-920 (-536))))) 11)) (-3502 (($ (-667 (-307 (-371)))) 22) (($ (-667 (-307 (-536)))) 20) (($ (-667 (-920 (-371)))) 18) (($ (-667 (-920 (-536)))) 16) (($ (-667 (-400 (-920 (-371))))) 14) (($ (-667 (-400 (-920 (-536))))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) +(((-378) (-138)) (T -378)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-378)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-667 (-307 (-371))))) (-15 -3503 ((-3 $ "failed") (-667 (-307 (-371))))) (-15 -3502 ($ (-667 (-307 (-536))))) (-15 -3503 ((-3 $ "failed") (-667 (-307 (-536))))) (-15 -3502 ($ (-667 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-667 (-920 (-371))))) (-15 -3502 ($ (-667 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-667 (-920 (-536))))) (-15 -3502 ($ (-667 (-400 (-920 (-371)))))) (-15 -3503 ((-3 $ "failed") (-667 (-400 (-920 (-371)))))) (-15 -3502 ($ (-667 (-400 (-920 (-536)))))) (-15 -3503 ((-3 $ "failed") (-667 (-400 (-920 (-536)))))))) +(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) 59)) (-3891 (($) NIL T CONST)) (-4294 (((-3 $ "failed") $ $) 61)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2765 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2497 (((-112) $) 15)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-749) $ (-536)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2366 (($ (-1 |#1| |#1|) $) 38)) (-2367 (($ (-1 (-749) (-749)) $) 35)) (-4295 (((-3 $ "failed") $ $) 50)) (-3588 (((-1129) $) NIL)) (-2766 (($ $ $) 26)) (-2767 (($ $ $) 24)) (-3589 (((-1091) $) NIL)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) 32)) (-3209 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4312 (((-838) $) 22) (($ |#1|) NIL)) (-2992 (($) 9 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 41)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 63 (|has| |#1| (-825)))) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-379 |#1|) (-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-749) (-749)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1072)) (T -379)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2767 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-4295 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-4294 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-3209 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2765 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1072)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-379 *3))))) +(-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-749) (-749)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 45)) (-3502 (((-536) $) 44)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3672 (($ $ $) 52)) (-3673 (($ $ $) 51)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 46)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 49)) (-2892 (((-112) $ $) 48)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 50)) (-3013 (((-112) $ $) 47)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-380) (-138)) (T -380)) NIL -(-13 (-542) (-825) (-1012 (-550))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-1012 (-550)) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3384 (((-112) $) 20)) (-1997 (((-112) $) 19)) (-3375 (($ (-1127) (-1127) (-1127)) 21)) (-1856 (((-1127) $) 16)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3566 (($ (-1127) (-1127) (-1127)) 14)) (-3505 (((-1127) $) 17)) (-1826 (((-112) $) 18)) (-1942 (((-1127) $) 15)) (-2233 (((-837) $) 12) (($ (-1127)) 13) (((-1127) $) 9)) (-2264 (((-112) $ $) 7))) +(-13 (-543) (-825) (-1012 (-536))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-1861 (((-112) $) 20)) (-1862 (((-112) $) 19)) (-3972 (($ (-1129) (-1129) (-1129)) 21)) (-3900 (((-1129) $) 16)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1866 (($ (-1129) (-1129) (-1129)) 14)) (-1864 (((-1129) $) 17)) (-1863 (((-112) $) 18)) (-1865 (((-1129) $) 15)) (-4312 (((-838) $) 12) (($ (-1129)) 13) (((-1129) $) 9)) (-3382 (((-112) $ $) 7))) (((-381) (-382)) (T -381)) NIL (-382) -((-2221 (((-112) $ $) 7)) (-3384 (((-112) $) 14)) (-1997 (((-112) $) 15)) (-3375 (($ (-1127) (-1127) (-1127)) 13)) (-1856 (((-1127) $) 18)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3566 (($ (-1127) (-1127) (-1127)) 20)) (-3505 (((-1127) $) 17)) (-1826 (((-112) $) 16)) (-1942 (((-1127) $) 19)) (-2233 (((-837) $) 11) (($ (-1127)) 22) (((-1127) $) 21)) (-2264 (((-112) $ $) 6))) +((-2893 (((-112) $ $) 7)) (-1861 (((-112) $) 14)) (-1862 (((-112) $) 15)) (-3972 (($ (-1129) (-1129) (-1129)) 13)) (-3900 (((-1129) $) 18)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-1866 (($ (-1129) (-1129) (-1129)) 20)) (-1864 (((-1129) $) 17)) (-1863 (((-112) $) 16)) (-1865 (((-1129) $) 19)) (-4312 (((-838) $) 11) (($ (-1129)) 22) (((-1129) $) 21)) (-3382 (((-112) $ $) 6))) (((-382) (-138)) (T -382)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) (-3566 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3375 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-1127))) (-15 -2233 ((-1127) $)) (-15 -3566 ($ (-1127) (-1127) (-1127))) (-15 -1942 ((-1127) $)) (-15 -1856 ((-1127) $)) (-15 -3505 ((-1127) $)) (-15 -1826 ((-112) $)) (-15 -1997 ((-112) $)) (-15 -3384 ((-112) $)) (-15 -3375 ($ (-1127) (-1127) (-1127))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3209 (((-837) $) 50)) (-2991 (($) NIL T CONST)) (-1339 (($ $ (-895)) NIL)) (-2210 (($ $ (-895)) NIL)) (-1692 (($ $ (-895)) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($ (-749)) 26)) (-1877 (((-749)) 17)) (-1496 (((-837) $) 52)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) NIL)) (-4143 (($ $ $ $) NIL)) (-1923 (($ $ $) NIL)) (-2688 (($) 20 T CONST)) (-2264 (((-112) $ $) 28)) (-2370 (($ $) 34) (($ $ $) 36)) (-2358 (($ $ $) 37)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-383 |#1| |#2| |#3|) (-13 (-723 |#3|) (-10 -8 (-15 -1877 ((-749))) (-15 -1496 ((-837) $)) (-15 -3209 ((-837) $)) (-15 -2256 ($ (-749))))) (-749) (-749) (-170)) (T -383)) -((-1877 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) -(-13 (-723 |#3|) (-10 -8 (-15 -1877 ((-749))) (-15 -1496 ((-837) $)) (-15 -3209 ((-837) $)) (-15 -2256 ($ (-749))))) -((-1469 (((-1127)) 10)) (-2992 (((-1116 (-1127))) 28)) (-1296 (((-1233) (-1127)) 25) (((-1233) (-381)) 24)) (-1306 (((-1233)) 26)) (-1313 (((-1116 (-1127))) 27))) -(((-384) (-10 -7 (-15 -1313 ((-1116 (-1127)))) (-15 -2992 ((-1116 (-1127)))) (-15 -1306 ((-1233))) (-15 -1296 ((-1233) (-381))) (-15 -1296 ((-1233) (-1127))) (-15 -1469 ((-1127))))) (T -384)) -((-1469 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-384)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-384)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1233)) (-5 *1 (-384)))) (-1306 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-384)))) (-2992 (*1 *2) (-12 (-5 *2 (-1116 (-1127))) (-5 *1 (-384)))) (-1313 (*1 *2) (-12 (-5 *2 (-1116 (-1127))) (-5 *1 (-384))))) -(-10 -7 (-15 -1313 ((-1116 (-1127)))) (-15 -2992 ((-1116 (-1127)))) (-15 -1306 ((-1233))) (-15 -1296 ((-1233) (-381))) (-15 -1296 ((-1233) (-1127))) (-15 -1469 ((-1127)))) -((-2603 (((-749) (-329 |#1| |#2| |#3| |#4|)) 16))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2603 ((-749) (-329 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385)) -((-2603 (*1 *2 *3) (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7))))) -(-10 -7 (-15 -2603 ((-749) (-329 |#1| |#2| |#3| |#4|)))) -((-2233 (((-387) |#1|) 11))) -(((-386 |#1|) (-10 -7 (-15 -2233 ((-387) |#1|))) (-1069)) (T -386)) -((-2233 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1069))))) -(-10 -7 (-15 -2233 ((-387) |#1|))) -((-2221 (((-112) $ $) NIL)) (-1405 (((-623 (-1127)) $ (-623 (-1127))) 38)) (-3681 (((-623 (-1127)) $ (-623 (-1127))) 39)) (-2846 (((-623 (-1127)) $ (-623 (-1127))) 40)) (-1494 (((-623 (-1127)) $) 35)) (-3375 (($) 23)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2004 (((-623 (-1127)) $) 36)) (-3664 (((-623 (-1127)) $) 37)) (-1970 (((-1233) $ (-550)) 33) (((-1233) $) 34)) (-2451 (($ (-837) (-550)) 30)) (-2233 (((-837) $) 42) (($ (-837)) 25)) (-2264 (((-112) $ $) NIL))) -(((-387) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-837))) (-15 -2451 ($ (-837) (-550))) (-15 -1970 ((-1233) $ (-550))) (-15 -1970 ((-1233) $)) (-15 -3664 ((-623 (-1127)) $)) (-15 -2004 ((-623 (-1127)) $)) (-15 -3375 ($)) (-15 -1494 ((-623 (-1127)) $)) (-15 -2846 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -3681 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -1405 ((-623 (-1127)) $ (-623 (-1127))))))) (T -387)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-387)))) (-2451 (*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-387)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-387)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-387)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) (-3375 (*1 *1) (-5 *1 (-387))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) (-2846 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) (-3681 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) (-1405 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-837))) (-15 -2451 ($ (-837) (-550))) (-15 -1970 ((-1233) $ (-550))) (-15 -1970 ((-1233) $)) (-15 -3664 ((-623 (-1127)) $)) (-15 -2004 ((-623 (-1127)) $)) (-15 -3375 ($)) (-15 -1494 ((-623 (-1127)) $)) (-15 -2846 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -3681 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -1405 ((-623 (-1127)) $ (-623 (-1127)))))) -((-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8))) -(((-388) (-138)) (T -388)) -((-1316 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1233))))) -(-13 (-1182) (-595 (-837)) (-10 -8 (-15 -1316 ((-1233) $)))) -(((-595 (-837)) . T) ((-1182) . T)) -((-2288 (((-3 $ "failed") (-309 (-372))) 21) (((-3 $ "failed") (-309 (-550))) 19) (((-3 $ "failed") (-926 (-372))) 17) (((-3 $ "failed") (-926 (-550))) 15) (((-3 $ "failed") (-400 (-926 (-372)))) 13) (((-3 $ "failed") (-400 (-926 (-550)))) 11)) (-2202 (($ (-309 (-372))) 22) (($ (-309 (-550))) 20) (($ (-926 (-372))) 18) (($ (-926 (-550))) 16) (($ (-400 (-926 (-372)))) 14) (($ (-400 (-926 (-550)))) 12)) (-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 23))) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1866 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3972 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -1866 ($ (-1129) (-1129) (-1129))) (-15 -1865 ((-1129) $)) (-15 -3900 ((-1129) $)) (-15 -1864 ((-1129) $)) (-15 -1863 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3972 ($ (-1129) (-1129) (-1129))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1867 (((-838) $) 50)) (-3891 (($) NIL T CONST)) (-2494 (($ $ (-893)) NIL)) (-2519 (($ $ (-893)) NIL)) (-2493 (($ $ (-893)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) 26)) (-4266 (((-749)) 17)) (-1868 (((-838) $) 52)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) NIL)) (-2682 (($ $ $ $) NIL)) (-2680 (($ $ $) NIL)) (-2986 (($) 20 T CONST)) (-3382 (((-112) $ $) 28)) (-4192 (($ $) 34) (($ $ $) 36)) (-4194 (($ $ $) 37)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-383 |#1| |#2| |#3|) (-13 (-723 |#3|) (-10 -8 (-15 -4266 ((-749))) (-15 -1868 ((-838) $)) (-15 -1867 ((-838) $)) (-15 -2496 ($ (-749))))) (-749) (-749) (-170)) (T -383)) +((-4266 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) +(-13 (-723 |#3|) (-10 -8 (-15 -4266 ((-749))) (-15 -1868 ((-838) $)) (-15 -1867 ((-838) $)) (-15 -2496 ($ (-749))))) +((-1873 (((-1129)) 10)) (-1870 (((-1118 (-1129))) 28)) (-1872 (((-1235) (-1129)) 25) (((-1235) (-381)) 24)) (-1871 (((-1235)) 26)) (-1869 (((-1118 (-1129))) 27))) +(((-384) (-10 -7 (-15 -1869 ((-1118 (-1129)))) (-15 -1870 ((-1118 (-1129)))) (-15 -1871 ((-1235))) (-15 -1872 ((-1235) (-381))) (-15 -1872 ((-1235) (-1129))) (-15 -1873 ((-1129))))) (T -384)) +((-1873 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-384)))) (-1871 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-384)))) (-1870 (*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384)))) (-1869 (*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) +(-10 -7 (-15 -1869 ((-1118 (-1129)))) (-15 -1870 ((-1118 (-1129)))) (-15 -1871 ((-1235))) (-15 -1872 ((-1235) (-381))) (-15 -1872 ((-1235) (-1129))) (-15 -1873 ((-1129)))) +((-4126 (((-749) (-326 |#1| |#2| |#3| |#4|)) 16))) +(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385)) +((-4126 (*1 *2 *3) (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7))))) +(-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|)))) +((-2893 (((-112) $ $) NIL)) (-3968 (((-620 (-1129)) $ (-620 (-1129))) 38)) (-1874 (((-620 (-1129)) $ (-620 (-1129))) 39)) (-3970 (((-620 (-1129)) $ (-620 (-1129))) 40)) (-3971 (((-620 (-1129)) $) 35)) (-3972 (($) 23)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1875 (((-620 (-1129)) $) 36)) (-3974 (((-620 (-1129)) $) 37)) (-3975 (((-1235) $ (-536)) 33) (((-1235) $) 34)) (-4325 (($ (-838) (-536)) 30)) (-4312 (((-838) $) 42) (($ (-838)) 25)) (-3382 (((-112) $ $) NIL))) +(((-386) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -1875 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -1874 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129))))))) (T -386)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-386)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-386)))) (-3975 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-386)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-386)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3972 (*1 *1) (-5 *1 (-386))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-1874 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -1875 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -1874 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129)))))) +((-4312 (((-386) |#1|) 11))) +(((-387 |#1|) (-10 -7 (-15 -4312 ((-386) |#1|))) (-1072)) (T -387)) +((-4312 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1072))))) +(-10 -7 (-15 -4312 ((-386) |#1|))) +((-1877 (((-620 (-1129)) (-620 (-1129))) 9)) (-3734 (((-1235) (-381)) 27)) (-1876 (((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147))) 60) (((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147)) 35) (((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147))) 34))) +(((-388) (-10 -7 (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)))) (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147))) (-15 -1876 ((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147)))) (-15 -3734 ((-1235) (-381))) (-15 -1877 ((-620 (-1129)) (-620 (-1129)))))) (T -388)) +((-1877 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-388)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *5 (-1150)) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388))))) +(-10 -7 (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)))) (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147))) (-15 -1876 ((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147)))) (-15 -3734 ((-1235) (-381))) (-15 -1877 ((-620 (-1129)) (-620 (-1129))))) +((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8))) (((-389) (-138)) (T -389)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-389)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-926 (-372))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-372))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-926 (-550))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-550))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-372)))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-926 (-372)))) (-4 *1 (-389)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-550)))) (-4 *1 (-389)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-926 (-550)))) (-4 *1 (-389))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-323))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))) (-15 -2202 ($ (-309 (-372)))) (-15 -2288 ((-3 $ "failed") (-309 (-372)))) (-15 -2202 ($ (-309 (-550)))) (-15 -2288 ((-3 $ "failed") (-309 (-550)))) (-15 -2202 ($ (-926 (-372)))) (-15 -2288 ((-3 $ "failed") (-926 (-372)))) (-15 -2202 ($ (-926 (-550)))) (-15 -2288 ((-3 $ "failed") (-926 (-550)))) (-15 -2202 ($ (-400 (-926 (-372))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-372))))) (-15 -2202 ($ (-400 (-926 (-550))))) (-15 -2288 ((-3 $ "failed") (-400 (-926 (-550))))))) -(((-595 (-837)) . T) ((-388) . T) ((-1182) . T)) -((-1472 (((-623 (-1127)) (-623 (-1127))) 9)) (-1316 (((-1233) (-381)) 27)) (-1616 (((-1073) (-1145) (-623 (-1145)) (-1148) (-623 (-1145))) 60) (((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145)) (-1145)) 35) (((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145))) 34))) -(((-390) (-10 -7 (-15 -1616 ((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145)))) (-15 -1616 ((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145)) (-1145))) (-15 -1616 ((-1073) (-1145) (-623 (-1145)) (-1148) (-623 (-1145)))) (-15 -1316 ((-1233) (-381))) (-15 -1472 ((-623 (-1127)) (-623 (-1127)))))) (T -390)) -((-1472 (*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-390)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1233)) (-5 *1 (-390)))) (-1616 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-623 (-1145))) (-5 *5 (-1148)) (-5 *3 (-1145)) (-5 *2 (-1073)) (-5 *1 (-390)))) (-1616 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1145))))) (-5 *6 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1073)) (-5 *1 (-390)))) (-1616 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1145))))) (-5 *6 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1073)) (-5 *1 (-390))))) -(-10 -7 (-15 -1616 ((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145)))) (-15 -1616 ((-1073) (-1145) (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145)))) (-623 (-623 (-3 (|:| |array| (-623 (-1145))) (|:| |scalar| (-1145))))) (-623 (-1145)) (-1145))) (-15 -1616 ((-1073) (-1145) (-623 (-1145)) (-1148) (-623 (-1145)))) (-15 -1316 ((-1233) (-381))) (-15 -1472 ((-623 (-1127)) (-623 (-1127))))) -((-1316 (((-1233) $) 38)) (-2233 (((-837) $) 98) (($ (-323)) 100) (($ (-623 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 97) (($ (-309 (-679))) 54) (($ (-309 (-677))) 73) (($ (-309 (-672))) 86) (($ (-287 (-309 (-679)))) 68) (($ (-287 (-309 (-677)))) 81) (($ (-287 (-309 (-672)))) 94) (($ (-309 (-550))) 104) (($ (-309 (-372))) 117) (($ (-309 (-167 (-372)))) 130) (($ (-287 (-309 (-550)))) 112) (($ (-287 (-309 (-372)))) 125) (($ (-287 (-309 (-167 (-372))))) 138))) -(((-391 |#1| |#2| |#3| |#4|) (-13 (-388) (-10 -8 (-15 -2233 ($ (-323))) (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))) (-15 -2233 ($ (-309 (-679)))) (-15 -2233 ($ (-309 (-677)))) (-15 -2233 ($ (-309 (-672)))) (-15 -2233 ($ (-287 (-309 (-679))))) (-15 -2233 ($ (-287 (-309 (-677))))) (-15 -2233 ($ (-287 (-309 (-672))))) (-15 -2233 ($ (-309 (-550)))) (-15 -2233 ($ (-309 (-372)))) (-15 -2233 ($ (-309 (-167 (-372))))) (-15 -2233 ($ (-287 (-309 (-550))))) (-15 -2233 ($ (-287 (-309 (-372))))) (-15 -2233 ($ (-287 (-309 (-167 (-372)))))))) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-1145)) (-1149)) (T -391)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-550)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-14 *5 (-623 (-1145))) (-14 *6 (-1149))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-323))) (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))) (-15 -2233 ($ (-309 (-679)))) (-15 -2233 ($ (-309 (-677)))) (-15 -2233 ($ (-309 (-672)))) (-15 -2233 ($ (-287 (-309 (-679))))) (-15 -2233 ($ (-287 (-309 (-677))))) (-15 -2233 ($ (-287 (-309 (-672))))) (-15 -2233 ($ (-309 (-550)))) (-15 -2233 ($ (-309 (-372)))) (-15 -2233 ($ (-309 (-167 (-372))))) (-15 -2233 ($ (-287 (-309 (-550))))) (-15 -2233 ($ (-287 (-309 (-372))))) (-15 -2233 ($ (-287 (-309 (-167 (-372)))))))) -((-2221 (((-112) $ $) NIL)) (-2942 ((|#2| $) 36)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1409 (($ (-400 |#2|)) 85)) (-1261 (((-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|))) $) 37)) (-2798 (($ $) 32) (($ $ (-749)) 34)) (-2451 (((-400 |#2|) $) 46)) (-2245 (($ (-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|)))) 31)) (-2233 (((-837) $) 120)) (-1901 (($ $) 33) (($ $ (-749)) 35)) (-2264 (((-112) $ $) NIL)) (-2358 (($ |#2| $) 39))) -(((-392 |#1| |#2|) (-13 (-1069) (-596 (-400 |#2|)) (-10 -8 (-15 -2358 ($ |#2| $)) (-15 -1409 ($ (-400 |#2|))) (-15 -2942 (|#2| $)) (-15 -1261 ((-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|))) $)) (-15 -2245 ($ (-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|))))) (-15 -2798 ($ $)) (-15 -1901 ($ $)) (-15 -2798 ($ $ (-749))) (-15 -1901 ($ $ (-749))))) (-13 (-356) (-145)) (-1204 |#1|)) (T -392)) -((-2358 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1204 *3)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-1204 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-1261 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-623 (-2 (|:| -3068 (-749)) (|:| -1808 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1204 *3)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3068 (-749)) (|:| -1808 *4) (|:| |num| *4)))) (-4 *4 (-1204 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-2798 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1204 *2)))) (-1901 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1204 *2)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1204 *3)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1204 *3))))) -(-13 (-1069) (-596 (-400 |#2|)) (-10 -8 (-15 -2358 ($ |#2| $)) (-15 -1409 ($ (-400 |#2|))) (-15 -2942 (|#2| $)) (-15 -1261 ((-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|))) $)) (-15 -2245 ($ (-623 (-2 (|:| -3068 (-749)) (|:| -1808 |#2|) (|:| |num| |#2|))))) (-15 -2798 ($ $)) (-15 -1901 ($ $)) (-15 -2798 ($ $ (-749))) (-15 -1901 ($ $ (-749))))) -((-2221 (((-112) $ $) 9 (-1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))))) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 15 (|has| |#1| (-860 (-372)))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 14 (|has| |#1| (-860 (-550))))) (-2369 (((-1127) $) 13 (-1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))))) (-3445 (((-1089) $) 12 (-1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))))) (-2233 (((-837) $) 11 (-1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))))) (-2264 (((-112) $ $) 10 (-1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372))))))) -(((-393 |#1|) (-138) (-1182)) (T -393)) -NIL -(-13 (-1182) (-10 -7 (IF (|has| |t#1| (-860 (-550))) (-6 (-860 (-550))) |%noBranch|) (IF (|has| |t#1| (-860 (-372))) (-6 (-860 (-372))) |%noBranch|))) -(((-101) -1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))) ((-595 (-837)) -1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))) ((-860 (-372)) |has| |#1| (-860 (-372))) ((-860 (-550)) |has| |#1| (-860 (-550))) ((-1069) -1489 (|has| |#1| (-860 (-550))) (|has| |#1| (-860 (-372)))) ((-1182) . T)) -((-4322 (($ $) 10) (($ $ (-749)) 11))) -(((-394 |#1|) (-10 -8 (-15 -4322 (|#1| |#1| (-749))) (-15 -4322 (|#1| |#1|))) (-395)) (T -394)) -NIL -(-10 -8 (-15 -4322 (|#1| |#1| (-749))) (-15 -4322 (|#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-4322 (($ $) 76) (($ $ (-749)) 75)) (-1568 (((-112) $) 68)) (-2603 (((-811 (-895)) $) 78)) (-2419 (((-112) $) 30)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2899 (((-3 (-749) "failed") $ $) 77)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-1613 (((-3 $ "failed") $) 79)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +((-3734 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1235))))) +(-13 (-1183) (-595 (-838)) (-10 -8 (-15 -3734 ((-1235) $)))) +(((-595 (-838)) . T) ((-1183) . T)) +((-3503 (((-3 $ "failed") (-307 (-371))) 21) (((-3 $ "failed") (-307 (-536))) 19) (((-3 $ "failed") (-920 (-371))) 17) (((-3 $ "failed") (-920 (-536))) 15) (((-3 $ "failed") (-400 (-920 (-371)))) 13) (((-3 $ "failed") (-400 (-920 (-536)))) 11)) (-3502 (($ (-307 (-371))) 22) (($ (-307 (-536))) 20) (($ (-920 (-371))) 18) (($ (-920 (-536))) 16) (($ (-400 (-920 (-371)))) 14) (($ (-400 (-920 (-536)))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) +(((-390) (-138)) (T -390)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-390)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371)))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))))) +(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) +((-3734 (((-1235) $) 38)) (-4312 (((-838) $) 98) (($ (-323)) 100) (($ (-620 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 97) (($ (-307 (-679))) 54) (($ (-307 (-677))) 73) (($ (-307 (-672))) 86) (($ (-286 (-307 (-679)))) 68) (($ (-286 (-307 (-677)))) 81) (($ (-286 (-307 (-672)))) 94) (($ (-307 (-536))) 104) (($ (-307 (-371))) 117) (($ (-307 (-166 (-371)))) 130) (($ (-286 (-307 (-536)))) 112) (($ (-286 (-307 (-371)))) 125) (($ (-286 (-307 (-166 (-371))))) 138))) +(((-391 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -4312 ($ (-323))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -4312 ($ (-307 (-679)))) (-15 -4312 ($ (-307 (-677)))) (-15 -4312 ($ (-307 (-672)))) (-15 -4312 ($ (-286 (-307 (-679))))) (-15 -4312 ($ (-286 (-307 (-677))))) (-15 -4312 ($ (-286 (-307 (-672))))) (-15 -4312 ($ (-307 (-536)))) (-15 -4312 ($ (-307 (-371)))) (-15 -4312 ($ (-307 (-166 (-371))))) (-15 -4312 ($ (-286 (-307 (-536))))) (-15 -4312 ($ (-286 (-307 (-371))))) (-15 -4312 ($ (-286 (-307 (-166 (-371)))))))) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 "void")) (-620 (-1147)) (-1151)) (T -391)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-536)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-323))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -4312 ($ (-307 (-679)))) (-15 -4312 ($ (-307 (-677)))) (-15 -4312 ($ (-307 (-672)))) (-15 -4312 ($ (-286 (-307 (-679))))) (-15 -4312 ($ (-286 (-307 (-677))))) (-15 -4312 ($ (-286 (-307 (-672))))) (-15 -4312 ($ (-307 (-536)))) (-15 -4312 ($ (-307 (-371)))) (-15 -4312 ($ (-307 (-166 (-371))))) (-15 -4312 ($ (-286 (-307 (-536))))) (-15 -4312 ($ (-286 (-307 (-371))))) (-15 -4312 ($ (-286 (-307 (-166 (-371)))))))) +((-2893 (((-112) $ $) NIL)) (-1879 ((|#2| $) 36)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1880 (($ (-400 |#2|)) 85)) (-1878 (((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $) 37)) (-4165 (($ $) 32) (($ $ (-749)) 34)) (-4325 (((-400 |#2|) $) 46)) (-3879 (($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|)))) 31)) (-4312 (((-838) $) 120)) (-2997 (($ $) 33) (($ $ (-749)) 35)) (-3382 (((-112) $ $) NIL)) (-4194 (($ |#2| $) 39))) +(((-392 |#1| |#2|) (-13 (-1072) (-596 (-400 |#2|)) (-10 -8 (-15 -4194 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))))) (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) (-13 (-356) (-145)) (-1205 |#1|)) (T -392)) +((-4194 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1205 *3)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-4165 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) (-2997 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3))))) +(-13 (-1072) (-596 (-400 |#2|)) (-10 -8 (-15 -4194 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))))) (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) +((-2893 (((-112) $ $) 9 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 15 (|has| |#1| (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 14 (|has| |#1| (-860 (-536))))) (-3588 (((-1129) $) 13 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3589 (((-1091) $) 12 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-4312 (((-838) $) 11 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3382 (((-112) $ $) 10 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371))))))) +(((-393 |#1|) (-138) (-1183)) (T -393)) +NIL +(-13 (-1183) (-10 -7 (IF (|has| |t#1| (-860 (-536))) (-6 (-860 (-536))) |%noBranch|) (IF (|has| |t#1| (-860 (-371))) (-6 (-860 (-371))) |%noBranch|))) +(((-101) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-595 (-838)) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-1072) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-1183) . T)) +((-1881 (($ $) 10) (($ $ (-749)) 11))) +(((-394 |#1|) (-10 -8 (-15 -1881 (|#1| |#1| (-749))) (-15 -1881 (|#1| |#1|))) (-395)) (T -394)) +NIL +(-10 -8 (-15 -1881 (|#1| |#1| (-749))) (-15 -1881 (|#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-1881 (($ $) 76) (($ $ (-749)) 75)) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 78)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 77)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3030 (((-3 $ "failed") $) 79)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) (((-395) (-138)) (T -395)) -((-2603 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-811 (-895))))) (-2899 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749)))) (-4322 (*1 *1 *1) (-4 *1 (-395))) (-4322 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749))))) -(-13 (-356) (-143) (-10 -8 (-15 -2603 ((-811 (-895)) $)) (-15 -2899 ((-3 (-749) "failed") $ $)) (-15 -4322 ($ $)) (-15 -4322 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-837)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-2795 (($ (-550) (-550)) 11) (($ (-550) (-550) (-895)) NIL)) (-4051 (((-895)) 16) (((-895) (-895)) NIL))) -(((-396 |#1|) (-10 -8 (-15 -4051 ((-895) (-895))) (-15 -4051 ((-895))) (-15 -2795 (|#1| (-550) (-550) (-895))) (-15 -2795 (|#1| (-550) (-550)))) (-397)) (T -396)) -((-4051 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-396 *3)) (-4 *3 (-397))))) -(-10 -8 (-15 -4051 ((-895) (-895))) (-15 -4051 ((-895))) (-15 -2795 (|#1| (-550) (-550) (-895))) (-15 -2795 (|#1| (-550) (-550)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3104 (((-550) $) 86)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-2879 (($ $) 84)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1745 (($ $) 94)) (-1611 (((-112) $ $) 57)) (-4303 (((-550) $) 111)) (-2991 (($) 17 T CONST)) (-3878 (($ $) 83)) (-2288 (((-3 (-550) "failed") $) 99) (((-3 (-400 (-550)) "failed") $) 96)) (-2202 (((-550) $) 98) (((-400 (-550)) $) 95)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-1578 (((-895)) 127) (((-895) (-895)) 124 (|has| $ (-6 -4335)))) (-2694 (((-112) $) 109)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 90)) (-2603 (((-550) $) 133)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 93)) (-1571 (($ $) 89)) (-1712 (((-112) $) 110)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2793 (($ $ $) 108) (($) 121 (-12 (-3548 (|has| $ (-6 -4335))) (-3548 (|has| $ (-6 -4327)))))) (-2173 (($ $ $) 107) (($) 120 (-12 (-3548 (|has| $ (-6 -4335))) (-3548 (|has| $ (-6 -4327)))))) (-4136 (((-550) $) 130)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-1566 (((-895) (-550)) 123 (|has| $ (-6 -4335)))) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1724 (($ $) 85)) (-3925 (($ $) 87)) (-2795 (($ (-550) (-550)) 135) (($ (-550) (-550) (-895)) 134)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3068 (((-550) $) 131)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-4051 (((-895)) 128) (((-895) (-895)) 125 (|has| $ (-6 -4335)))) (-3202 (((-895) (-550)) 122 (|has| $ (-6 -4335)))) (-2451 (((-372) $) 102) (((-219) $) 101) (((-866 (-372)) $) 91)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-550)) 100) (($ (-400 (-550))) 97)) (-3091 (((-749)) 28)) (-2967 (($ $) 88)) (-4319 (((-895)) 129) (((-895) (-895)) 126 (|has| $ (-6 -4335)))) (-4300 (((-895)) 132)) (-1819 (((-112) $ $) 37)) (-4188 (($ $) 112)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 105)) (-2302 (((-112) $ $) 104)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 106)) (-2290 (((-112) $ $) 103)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 92)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +((-4126 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-810 (-893))))) (-1882 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749)))) (-1881 (*1 *1 *1) (-4 *1 (-395))) (-1881 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749))))) +(-13 (-356) (-143) (-10 -8 (-15 -4126 ((-810 (-893)) $)) (-15 -1882 ((-3 (-749) "failed") $ $)) (-15 -1881 ($ $)) (-15 -1881 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-3600 (($ (-536) (-536)) 11) (($ (-536) (-536) (-893)) NIL)) (-2939 (((-893)) 16) (((-893) (-893)) NIL))) +(((-396 |#1|) (-10 -8 (-15 -2939 ((-893) (-893))) (-15 -2939 ((-893))) (-15 -3600 (|#1| (-536) (-536) (-893))) (-15 -3600 (|#1| (-536) (-536)))) (-397)) (T -396)) +((-2939 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397))))) +(-10 -8 (-15 -2939 ((-893) (-893))) (-15 -2939 ((-893))) (-15 -3600 (|#1| (-536) (-536) (-893))) (-15 -3600 (|#1| (-536) (-536)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 (((-536) $) 86)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4125 (($ $) 84)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 111)) (-3891 (($) 17 T CONST)) (-3457 (($ $) 83)) (-3503 (((-3 (-536) #1="failed") $) 99) (((-3 (-400 (-536)) #1#) $) 96)) (-3502 (((-536) $) 98) (((-400 (-536)) $) 95)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2461 (((-893)) 127) (((-893) (-893)) 124 (|has| $ (-6 -4339)))) (-3532 (((-112) $) 109)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 90)) (-4126 (((-536) $) 133)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 93)) (-3462 (($ $) 89)) (-3533 (((-112) $) 110)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-3672 (($ $ $) 108) (($) 121 (-12 (-3671 (|has| $ (-6 -4339))) (-3671 (|has| $ (-6 -4331)))))) (-3673 (($ $ $) 107) (($) 120 (-12 (-3671 (|has| $ (-6 -4339))) (-3671 (|has| $ (-6 -4331)))))) (-2462 (((-536) $) 130)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-1884 (((-893) (-536)) 123 (|has| $ (-6 -4339)))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 85)) (-3460 (($ $) 87)) (-3600 (($ (-536) (-536)) 135) (($ (-536) (-536) (-893)) 134)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-2488 (((-536) $) 131)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-2939 (((-893)) 128) (((-893) (-893)) 125 (|has| $ (-6 -4339)))) (-1883 (((-893) (-536)) 122 (|has| $ (-6 -4339)))) (-4325 (((-371) $) 102) (((-219) $) 101) (((-864 (-371)) $) 91)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-536)) 100) (($ (-400 (-536))) 97)) (-3456 (((-749)) 28)) (-3461 (($ $) 88)) (-1885 (((-893)) 129) (((-893) (-893)) 126 (|has| $ (-6 -4339)))) (-3022 (((-893)) 132)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 112)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 105)) (-2892 (((-112) $ $) 104)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 106)) (-3013 (((-112) $ $) 103)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 92)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) (((-397) (-138)) (T -397)) -((-2795 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-397)))) (-2795 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-895)) (-4 *1 (-397)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-4300 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-4319 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) (-4051 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) (-1578 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4335)) (-4 *1 (-397)) (-5 *2 (-895)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4335)) (-4 *1 (-397)) (-5 *2 (-895)))) (-2793 (*1 *1) (-12 (-4 *1 (-397)) (-3548 (|has| *1 (-6 -4335))) (-3548 (|has| *1 (-6 -4327))))) (-2173 (*1 *1) (-12 (-4 *1 (-397)) (-3548 (|has| *1 (-6 -4335))) (-3548 (|has| *1 (-6 -4327)))))) -(-13 (-1030) (-10 -8 (-6 -2154) (-15 -2795 ($ (-550) (-550))) (-15 -2795 ($ (-550) (-550) (-895))) (-15 -2603 ((-550) $)) (-15 -4300 ((-895))) (-15 -3068 ((-550) $)) (-15 -4136 ((-550) $)) (-15 -4319 ((-895))) (-15 -4051 ((-895))) (-15 -1578 ((-895))) (IF (|has| $ (-6 -4335)) (PROGN (-15 -4319 ((-895) (-895))) (-15 -4051 ((-895) (-895))) (-15 -1578 ((-895) (-895))) (-15 -1566 ((-895) (-550))) (-15 -3202 ((-895) (-550)))) |%noBranch|) (IF (|has| $ (-6 -4327)) |%noBranch| (IF (|has| $ (-6 -4335)) |%noBranch| (PROGN (-15 -2793 ($)) (-15 -2173 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-837)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-866 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-860 (-372)) . T) ((-894) . T) ((-976) . T) ((-996) . T) ((-1030) . T) ((-1012 (-400 (-550))) . T) ((-1012 (-550)) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-2392 (((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)) 20))) -(((-398 |#1| |#2|) (-10 -7 (-15 -2392 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) (-542) (-542)) (T -398)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6))))) -(-10 -7 (-15 -2392 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) -((-2392 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13))) -(((-399 |#1| |#2|) (-10 -7 (-15 -2392 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-542) (-542)) (T -399)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6))))) -(-10 -7 (-15 -2392 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 13)) (-3104 ((|#1| $) 21 (|has| |#1| (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| |#1| (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 17) (((-3 (-1145) "failed") $) NIL (|has| |#1| (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550))))) (-2202 ((|#1| $) 15) (((-1145) $) NIL (|has| |#1| (-1012 (-1145)))) (((-400 (-550)) $) 67 (|has| |#1| (-1012 (-550)))) (((-550) $) NIL (|has| |#1| (-1012 (-550))))) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) 50)) (-1864 (($) NIL (|has| |#1| (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| |#1| (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| |#1| (-860 (-372))))) (-2419 (((-112) $) 64)) (-1484 (($ $) NIL)) (-4153 ((|#1| $) 71)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1120)))) (-1712 (((-112) $) NIL (|has| |#1| (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| |#1| (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 97)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| |#1| (-300)))) (-3925 ((|#1| $) 28 (|has| |#1| (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 135 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 131 (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-505 (-1145) |#1|)))) (-1988 (((-749) $) NIL)) (-2757 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3608 (($ $) NIL)) (-4163 ((|#1| $) 73)) (-2451 (((-866 (-550)) $) NIL (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| |#1| (-596 (-866 (-372))))) (((-526) $) NIL (|has| |#1| (-596 (-526)))) (((-372) $) NIL (|has| |#1| (-996))) (((-219) $) NIL (|has| |#1| (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 10) (($ (-1145)) NIL (|has| |#1| (-1012 (-1145))))) (-1613 (((-3 $ "failed") $) 99 (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 100)) (-2967 ((|#1| $) 26 (|has| |#1| (-535)))) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| |#1| (-798)))) (-2688 (($) 22 T CONST)) (-2700 (($) 8 T CONST)) (-3145 (((-1127) $) 43 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1127) $ (-112)) 44 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1233) (-800) $) 45 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1233) (-800) $ (-112)) 46 (-12 (|has| |#1| (-535)) (|has| |#1| (-806))))) (-1901 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 56)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) 24 (|has| |#1| (-825)))) (-2382 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2370 (($ $) 25) (($ $ $) 55)) (-2358 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 125)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 60) (($ $ $) 57) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-400 |#1|) (-13 (-966 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4331)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4342)) (-6 -4331) |%noBranch|) |%noBranch|) |%noBranch|))) (-542)) (T -400)) -NIL -(-13 (-966 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4331)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4342)) (-6 -4331) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3992 (((-667 |#2|) (-1228 $)) NIL) (((-667 |#2|)) 18)) (-2821 (($ (-1228 |#2|) (-1228 $)) NIL) (($ (-1228 |#2|)) 24)) (-2766 (((-667 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) $) 38)) (-2835 ((|#3| $) 60)) (-3563 ((|#2| (-1228 $)) NIL) ((|#2|) 20)) (-2999 (((-1228 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) (-1228 $) (-1228 $)) NIL) (((-1228 |#2|) $) 22) (((-667 |#2|) (-1228 $)) 36)) (-2451 (((-1228 |#2|) $) 11) (($ (-1228 |#2|)) 13)) (-3359 ((|#3| $) 52))) -(((-401 |#1| |#2| |#3|) (-10 -8 (-15 -2766 ((-667 |#2|) |#1|)) (-15 -3563 (|#2|)) (-15 -3992 ((-667 |#2|))) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2835 (|#3| |#1|)) (-15 -3359 (|#3| |#1|)) (-15 -3992 ((-667 |#2|) (-1228 |#1|))) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2766 ((-667 |#2|) |#1| (-1228 |#1|)))) (-402 |#2| |#3|) (-170) (-1204 |#2|)) (T -401)) -((-3992 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)) (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) (-3563 (*1 *2) (-12 (-4 *4 (-1204 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) (-4 *3 (-402 *2 *4))))) -(-10 -8 (-15 -2766 ((-667 |#2|) |#1|)) (-15 -3563 (|#2|)) (-15 -3992 ((-667 |#2|))) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2835 (|#3| |#1|)) (-15 -3359 (|#3| |#1|)) (-15 -3992 ((-667 |#2|) (-1228 |#1|))) (-15 -3563 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2766 ((-667 |#2|) |#1| (-1228 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3992 (((-667 |#1|) (-1228 $)) 44) (((-667 |#1|)) 59)) (-2223 ((|#1| $) 50)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2821 (($ (-1228 |#1|) (-1228 $)) 46) (($ (-1228 |#1|)) 62)) (-2766 (((-667 |#1|) $ (-1228 $)) 51) (((-667 |#1|) $) 57)) (-1537 (((-3 $ "failed") $) 32)) (-3398 (((-895)) 52)) (-2419 (((-112) $) 30)) (-1571 ((|#1| $) 49)) (-2835 ((|#2| $) 42 (|has| |#1| (-356)))) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3563 ((|#1| (-1228 $)) 45) ((|#1|) 58)) (-2999 (((-1228 |#1|) $ (-1228 $)) 48) (((-667 |#1|) (-1228 $) (-1228 $)) 47) (((-1228 |#1|) $) 64) (((-667 |#1|) (-1228 $)) 63)) (-2451 (((-1228 |#1|) $) 61) (($ (-1228 |#1|)) 60)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-1613 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3359 ((|#2| $) 43)) (-3091 (((-749)) 28)) (-2206 (((-1228 $)) 65)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-402 |#1| |#2|) (-138) (-170) (-1204 |t#1|)) (T -402)) -((-2206 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-1228 *1)) (-4 *1 (-402 *3 *4)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-1228 *3)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1204 *3)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-1228 *3)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1204 *3)))) (-3992 (*1 *2) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-667 *3)))) (-3563 (*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-667 *3))))) -(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2206 ((-1228 $))) (-15 -2999 ((-1228 |t#1|) $)) (-15 -2999 ((-667 |t#1|) (-1228 $))) (-15 -2821 ($ (-1228 |t#1|))) (-15 -2451 ((-1228 |t#1|) $)) (-15 -2451 ($ (-1228 |t#1|))) (-15 -3992 ((-667 |t#1|))) (-15 -3563 (|t#1|)) (-15 -2766 ((-667 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-363 |#1| |#2|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) 27) (((-3 (-550) "failed") $) 19)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) 24) (((-550) $) 14)) (-2233 (($ |#2|) NIL) (($ (-400 (-550))) 22) (($ (-550)) 11))) -(((-403 |#1| |#2|) (-10 -8 (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2233 (|#1| (-550))) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|))) (-404 |#2|) (-1182)) (T -403)) -NIL -(-10 -8 (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2233 (|#1| (-550))) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|))) -((-2288 (((-3 |#1| "failed") $) 7) (((-3 (-400 (-550)) "failed") $) 16 (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) 13 (|has| |#1| (-1012 (-550))))) (-2202 ((|#1| $) 8) (((-400 (-550)) $) 15 (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) 12 (|has| |#1| (-1012 (-550))))) (-2233 (($ |#1|) 6) (($ (-400 (-550))) 17 (|has| |#1| (-1012 (-400 (-550))))) (($ (-550)) 14 (|has| |#1| (-1012 (-550)))))) -(((-404 |#1|) (-138) (-1182)) (T -404)) -NIL -(-13 (-1012 |t#1|) (-10 -7 (IF (|has| |t#1| (-1012 (-550))) (-6 (-1012 (-550))) |%noBranch|) (IF (|has| |t#1| (-1012 (-400 (-550)))) (-6 (-1012 (-400 (-550)))) |%noBranch|))) -(((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T)) -((-2392 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33))) -(((-405 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2392 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-966 |#1|) (-1204 |#2|) (-13 (-402 |#2| |#3|) (-1012 |#2|)) (-300) (-966 |#5|) (-1204 |#6|) (-13 (-402 |#6| |#7|) (-1012 |#6|))) (T -405)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-966 *5)) (-4 *7 (-1204 *6)) (-4 *8 (-13 (-402 *6 *7) (-1012 *6))) (-4 *9 (-300)) (-4 *10 (-966 *9)) (-4 *11 (-1204 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-402 *10 *11) (-1012 *10)))))) -(-10 -7 (-15 -2392 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) -((-2221 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2733 ((|#4| (-749) (-1228 |#4|)) 56)) (-2419 (((-112) $) NIL)) (-4153 (((-1228 |#4|) $) 17)) (-1571 ((|#2| $) 54)) (-1349 (($ $) 139)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 100)) (-2308 (($ (-1228 |#4|)) 99)) (-3445 (((-1089) $) NIL)) (-4163 ((|#1| $) 18)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) 134)) (-2206 (((-1228 |#4|) $) 129)) (-2700 (($) 11 T CONST)) (-2264 (((-112) $ $) 40)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 122)) (* (($ $ $) 121))) -(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2308 ($ (-1228 |#4|))) (-15 -2206 ((-1228 |#4|) $)) (-15 -1571 (|#2| $)) (-15 -4153 ((-1228 |#4|) $)) (-15 -4163 (|#1| $)) (-15 -1349 ($ $)) (-15 -2733 (|#4| (-749) (-1228 |#4|))))) (-300) (-966 |#1|) (-1204 |#2|) (-13 (-402 |#2| |#3|) (-1012 |#2|))) (T -406)) -((-2308 (*1 *1 *2) (-12 (-5 *2 (-1228 *6)) (-4 *6 (-13 (-402 *4 *5) (-1012 *4))) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2206 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-5 *2 (-1228 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1012 *4))))) (-1571 (*1 *2 *1) (-12 (-4 *4 (-1204 *2)) (-4 *2 (-966 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1012 *2))))) (-4153 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-5 *2 (-1228 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1012 *4))))) (-4163 (*1 *2 *1) (-12 (-4 *3 (-966 *2)) (-4 *4 (-1204 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1012 *3))))) (-1349 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-966 *2)) (-4 *4 (-1204 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1012 *3))))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1228 *2)) (-4 *5 (-300)) (-4 *6 (-966 *5)) (-4 *2 (-13 (-402 *6 *7) (-1012 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1204 *6))))) -(-13 (-465) (-10 -8 (-15 -2308 ($ (-1228 |#4|))) (-15 -2206 ((-1228 |#4|) $)) (-15 -1571 (|#2| $)) (-15 -4153 ((-1228 |#4|) $)) (-15 -4163 (|#1| $)) (-15 -1349 ($ $)) (-15 -2733 (|#4| (-749) (-1228 |#4|))))) -((-2221 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-1571 ((|#2| $) 61)) (-4096 (($ (-1228 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1012 |#2|)))) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 34)) (-2206 (((-1228 |#4|) $) 26)) (-2700 (($) 23 T CONST)) (-2264 (((-112) $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ $ $) 72))) -(((-407 |#1| |#2| |#3| |#4| |#5|) (-13 (-705) (-10 -8 (-15 -2206 ((-1228 |#4|) $)) (-15 -1571 (|#2| $)) (-15 -4096 ($ (-1228 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -4096 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-966 |#1|) (-1204 |#2|) (-402 |#2| |#3|) (-1228 |#4|)) (T -407)) -((-2206 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-5 *2 (-1228 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-4 *6 (-402 *4 *5)) (-14 *7 *2))) (-1571 (*1 *2 *1) (-12 (-4 *4 (-1204 *2)) (-4 *2 (-966 *3)) (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) (-14 *6 (-1228 *5)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1228 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-4 *6 (-402 *4 *5)) (-14 *7 (-1228 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))))) -(-13 (-705) (-10 -8 (-15 -2206 ((-1228 |#4|) $)) (-15 -1571 (|#2| $)) (-15 -4096 ($ (-1228 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -4096 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2392 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) (-410 |#2|) (-170) (-410 |#4|) (-170)) (T -408)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5))))) -(-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) -((-2305 (((-3 $ "failed")) 86)) (-2946 (((-1228 (-667 |#2|)) (-1228 $)) NIL) (((-1228 (-667 |#2|))) 91)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 85)) (-1713 (((-3 $ "failed")) 84)) (-2704 (((-667 |#2|) (-1228 $)) NIL) (((-667 |#2|)) 102)) (-2693 (((-667 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) $) 110)) (-1549 (((-1141 (-926 |#2|))) 55)) (-1690 ((|#2| (-1228 $)) NIL) ((|#2|) 106)) (-2821 (($ (-1228 |#2|) (-1228 $)) NIL) (($ (-1228 |#2|)) 112)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 83)) (-3678 (((-3 $ "failed")) 75)) (-2128 (((-667 |#2|) (-1228 $)) NIL) (((-667 |#2|)) 100)) (-2224 (((-667 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) $) 108)) (-3789 (((-1141 (-926 |#2|))) 54)) (-4216 ((|#2| (-1228 $)) NIL) ((|#2|) 104)) (-2999 (((-1228 |#2|) $ (-1228 $)) NIL) (((-667 |#2|) (-1228 $) (-1228 $)) NIL) (((-1228 |#2|) $) 111) (((-667 |#2|) (-1228 $)) 118)) (-2451 (((-1228 |#2|) $) 96) (($ (-1228 |#2|)) 98)) (-2778 (((-623 (-926 |#2|)) (-1228 $)) NIL) (((-623 (-926 |#2|))) 94)) (-3806 (($ (-667 |#2|) $) 90))) -(((-409 |#1| |#2|) (-10 -8 (-15 -3806 (|#1| (-667 |#2|) |#1|)) (-15 -1549 ((-1141 (-926 |#2|)))) (-15 -3789 ((-1141 (-926 |#2|)))) (-15 -2693 ((-667 |#2|) |#1|)) (-15 -2224 ((-667 |#2|) |#1|)) (-15 -2704 ((-667 |#2|))) (-15 -2128 ((-667 |#2|))) (-15 -1690 (|#2|)) (-15 -4216 (|#2|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2778 ((-623 (-926 |#2|)))) (-15 -2946 ((-1228 (-667 |#2|)))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2305 ((-3 |#1| "failed"))) (-15 -1713 ((-3 |#1| "failed"))) (-15 -3678 ((-3 |#1| "failed"))) (-15 -1350 ((-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed"))) (-15 -3811 ((-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed"))) (-15 -2704 ((-667 |#2|) (-1228 |#1|))) (-15 -2128 ((-667 |#2|) (-1228 |#1|))) (-15 -1690 (|#2| (-1228 |#1|))) (-15 -4216 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2693 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2224 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2946 ((-1228 (-667 |#2|)) (-1228 |#1|))) (-15 -2778 ((-623 (-926 |#2|)) (-1228 |#1|)))) (-410 |#2|) (-170)) (T -409)) -((-2946 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1228 (-667 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2778 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-623 (-926 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-4216 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-1690 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-2128 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2704 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-3789 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-926 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-1549 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-926 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4))))) -(-10 -8 (-15 -3806 (|#1| (-667 |#2|) |#1|)) (-15 -1549 ((-1141 (-926 |#2|)))) (-15 -3789 ((-1141 (-926 |#2|)))) (-15 -2693 ((-667 |#2|) |#1|)) (-15 -2224 ((-667 |#2|) |#1|)) (-15 -2704 ((-667 |#2|))) (-15 -2128 ((-667 |#2|))) (-15 -1690 (|#2|)) (-15 -4216 (|#2|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2821 (|#1| (-1228 |#2|))) (-15 -2778 ((-623 (-926 |#2|)))) (-15 -2946 ((-1228 (-667 |#2|)))) (-15 -2999 ((-667 |#2|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1|)) (-15 -2305 ((-3 |#1| "failed"))) (-15 -1713 ((-3 |#1| "failed"))) (-15 -3678 ((-3 |#1| "failed"))) (-15 -1350 ((-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed"))) (-15 -3811 ((-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed"))) (-15 -2704 ((-667 |#2|) (-1228 |#1|))) (-15 -2128 ((-667 |#2|) (-1228 |#1|))) (-15 -1690 (|#2| (-1228 |#1|))) (-15 -4216 (|#2| (-1228 |#1|))) (-15 -2821 (|#1| (-1228 |#2|) (-1228 |#1|))) (-15 -2999 ((-667 |#2|) (-1228 |#1|) (-1228 |#1|))) (-15 -2999 ((-1228 |#2|) |#1| (-1228 |#1|))) (-15 -2693 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2224 ((-667 |#2|) |#1| (-1228 |#1|))) (-15 -2946 ((-1228 (-667 |#2|)) (-1228 |#1|))) (-15 -2778 ((-623 (-926 |#2|)) (-1228 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-2305 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2946 (((-1228 (-667 |#1|)) (-1228 $)) 78) (((-1228 (-667 |#1|))) 100)) (-4259 (((-1228 $)) 81)) (-2991 (($) 17 T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 40 (|has| |#1| (-542)))) (-1713 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-2704 (((-667 |#1|) (-1228 $)) 65) (((-667 |#1|)) 92)) (-4281 ((|#1| $) 74)) (-2693 (((-667 |#1|) $ (-1228 $)) 76) (((-667 |#1|) $) 90)) (-2988 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-1549 (((-1141 (-926 |#1|))) 88 (|has| |#1| (-356)))) (-1339 (($ $ (-895)) 28)) (-2710 ((|#1| $) 72)) (-2613 (((-1141 |#1|) $) 42 (|has| |#1| (-542)))) (-1690 ((|#1| (-1228 $)) 67) ((|#1|) 94)) (-2015 (((-1141 |#1|) $) 63)) (-2030 (((-112)) 57)) (-2821 (($ (-1228 |#1|) (-1228 $)) 69) (($ (-1228 |#1|)) 98)) (-1537 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-3398 (((-895)) 80)) (-4094 (((-112)) 54)) (-2210 (($ $ (-895)) 33)) (-1870 (((-112)) 50)) (-4189 (((-112)) 48)) (-2826 (((-112)) 52)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) 41 (|has| |#1| (-542)))) (-3678 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-2128 (((-667 |#1|) (-1228 $)) 66) (((-667 |#1|)) 93)) (-2925 ((|#1| $) 75)) (-2224 (((-667 |#1|) $ (-1228 $)) 77) (((-667 |#1|) $) 91)) (-3274 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-3789 (((-1141 (-926 |#1|))) 89 (|has| |#1| (-356)))) (-1692 (($ $ (-895)) 29)) (-1324 ((|#1| $) 73)) (-3784 (((-1141 |#1|) $) 43 (|has| |#1| (-542)))) (-4216 ((|#1| (-1228 $)) 68) ((|#1|) 95)) (-3876 (((-1141 |#1|) $) 64)) (-1688 (((-112)) 58)) (-2369 (((-1127) $) 9)) (-3143 (((-112)) 49)) (-1294 (((-112)) 51)) (-2498 (((-112)) 53)) (-3445 (((-1089) $) 10)) (-2294 (((-112)) 56)) (-2757 ((|#1| $ (-550)) 101)) (-2999 (((-1228 |#1|) $ (-1228 $)) 71) (((-667 |#1|) (-1228 $) (-1228 $)) 70) (((-1228 |#1|) $) 103) (((-667 |#1|) (-1228 $)) 102)) (-2451 (((-1228 |#1|) $) 97) (($ (-1228 |#1|)) 96)) (-2778 (((-623 (-926 |#1|)) (-1228 $)) 79) (((-623 (-926 |#1|))) 99)) (-1353 (($ $ $) 25)) (-4118 (((-112)) 62)) (-2233 (((-837) $) 11)) (-2206 (((-1228 $)) 104)) (-2364 (((-623 (-1228 |#1|))) 44 (|has| |#1| (-542)))) (-4143 (($ $ $ $) 26)) (-2941 (((-112)) 60)) (-3806 (($ (-667 |#1|) $) 87)) (-1923 (($ $ $) 24)) (-2582 (((-112)) 61)) (-3268 (((-112)) 59)) (-3836 (((-112)) 55)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-410 |#1|) (-138) (-170)) (T -410)) -((-2206 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1228 *1)) (-4 *1 (-410 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 *3)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2946 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 (-667 *3))))) (-2778 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-623 (-926 *3))))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 *3)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-4216 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-1690 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2128 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2704 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2693 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-3789 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-926 *3))))) (-1549 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-926 *3))))) (-3806 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170))))) -(-13 (-360 |t#1|) (-10 -8 (-15 -2206 ((-1228 $))) (-15 -2999 ((-1228 |t#1|) $)) (-15 -2999 ((-667 |t#1|) (-1228 $))) (-15 -2757 (|t#1| $ (-550))) (-15 -2946 ((-1228 (-667 |t#1|)))) (-15 -2778 ((-623 (-926 |t#1|)))) (-15 -2821 ($ (-1228 |t#1|))) (-15 -2451 ((-1228 |t#1|) $)) (-15 -2451 ($ (-1228 |t#1|))) (-15 -4216 (|t#1|)) (-15 -1690 (|t#1|)) (-15 -2128 ((-667 |t#1|))) (-15 -2704 ((-667 |t#1|))) (-15 -2224 ((-667 |t#1|) $)) (-15 -2693 ((-667 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -3789 ((-1141 (-926 |t#1|)))) (-15 -1549 ((-1141 (-926 |t#1|))))) |%noBranch|) (-15 -3806 ($ (-667 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-360 |#1|) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 42)) (-2771 (($ $) 57)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 146)) (-3050 (($ $) NIL)) (-3953 (((-112) $) 36)) (-2305 ((|#1| $) 13)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-1186)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-1186)))) (-2496 (($ |#1| (-550)) 31)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 116)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 55)) (-1537 (((-3 $ "failed") $) 131)) (-3192 (((-3 (-400 (-550)) "failed") $) 63 (|has| |#1| (-535)))) (-2593 (((-112) $) 59 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 70 (|has| |#1| (-535)))) (-4190 (($ |#1| (-550)) 33)) (-1568 (((-112) $) 152 (|has| |#1| (-1186)))) (-2419 (((-112) $) 43)) (-1857 (((-749) $) 38)) (-3778 (((-3 "nil" "sqfr" "irred" "prime") $ (-550)) 137)) (-3325 ((|#1| $ (-550)) 136)) (-2145 (((-550) $ (-550)) 135)) (-1325 (($ |#1| (-550)) 30)) (-2392 (($ (-1 |#1| |#1|) $) 143)) (-3889 (($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550))))) 58)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-1757 (($ |#1| (-550)) 32)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-3030 (($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-1610 (((-623 (-2 (|:| -1735 |#1|) (|:| -3068 (-550)))) $) 54)) (-3161 (((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $) 12)) (-1735 (((-411 $) $) NIL (|has| |#1| (-1186)))) (-3409 (((-3 $ "failed") $ $) 138)) (-3068 (((-550) $) 132)) (-2062 ((|#1| $) 56)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 85 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) $) NIL (|has| |#1| (-505 (-1145) $))) (($ $ (-623 (-1145)) (-623 $)) 86 (|has| |#1| (-505 (-1145) $))) (($ $ (-623 (-287 $))) 82 (|has| |#1| (-302 $))) (($ $ (-287 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-623 $) (-623 $)) NIL (|has| |#1| (-302 $)))) (-2757 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-2798 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2451 (((-526) $) 27 (|has| |#1| (-596 (-526)))) (((-372) $) 92 (|has| |#1| (-996))) (((-219) $) 95 (|has| |#1| (-996)))) (-2233 (((-837) $) 114) (($ (-550)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550)))))) (-3091 (((-749)) 48)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 40 T CONST)) (-2700 (($) 39 T CONST)) (-1901 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2264 (((-112) $ $) 96)) (-2370 (($ $) 128) (($ $ $) NIL)) (-2358 (($ $ $) 140)) (** (($ $ (-895)) NIL) (($ $ (-749)) 102)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-411 |#1|) (-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -2062 (|#1| $)) (-15 -3068 ((-550) $)) (-15 -3889 ($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -3161 ((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -1325 ($ |#1| (-550))) (-15 -1610 ((-623 (-2 (|:| -1735 |#1|) (|:| -3068 (-550)))) $)) (-15 -1757 ($ |#1| (-550))) (-15 -2145 ((-550) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -3778 ((-3 "nil" "sqfr" "irred" "prime") $ (-550))) (-15 -1857 ((-749) $)) (-15 -4190 ($ |#1| (-550))) (-15 -2496 ($ |#1| (-550))) (-15 -3030 ($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2305 (|#1| $)) (-15 -2771 ($ $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1186)) (-6 (-1186)) |%noBranch|) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1145) $)) (-6 (-505 (-1145) $)) |%noBranch|))) (-542)) (T -411)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-411 *3)))) (-2062 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-3889 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-550))))) (-4 *2 (-542)) (-5 *1 (-411 *2)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-550))))) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-1325 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -1735 *3) (|:| -3068 (-550))))) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-1757 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2145 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *4)) (-4 *4 (-542)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-4190 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2496 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3030 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2305 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2771 (*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) (-3192 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542))))) -(-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -2062 (|#1| $)) (-15 -3068 ((-550) $)) (-15 -3889 ($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -3161 ((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -1325 ($ |#1| (-550))) (-15 -1610 ((-623 (-2 (|:| -1735 |#1|) (|:| -3068 (-550)))) $)) (-15 -1757 ($ |#1| (-550))) (-15 -2145 ((-550) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -3778 ((-3 "nil" "sqfr" "irred" "prime") $ (-550))) (-15 -1857 ((-749) $)) (-15 -4190 ($ |#1| (-550))) (-15 -2496 ($ |#1| (-550))) (-15 -3030 ($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2305 (|#1| $)) (-15 -2771 ($ $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1186)) (-6 (-1186)) |%noBranch|) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1145) $)) (-6 (-505 (-1145) $)) |%noBranch|))) -((-3471 (((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|)) 21)) (-2584 (((-411 |#1|) (-411 |#1|) (-411 |#1|)) 16))) -(((-412 |#1|) (-10 -7 (-15 -3471 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -2584 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) (-542)) (T -412)) -((-2584 (*1 *2 *2 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3)))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-542)) (-5 *2 (-411 *4)) (-5 *1 (-412 *4))))) -(-10 -7 (-15 -3471 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -2584 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) -((-2234 ((|#2| |#2|) 166)) (-2624 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112)) 57))) -(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2624 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112))) (-15 -2234 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|)) (-1145) |#2|) (T -413)) -((-2234 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1167) (-423 *3))) (-14 *4 (-1145)) (-14 *5 *2))) (-2624 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-14 *6 (-1145)) (-14 *7 *3)))) -(-10 -7 (-15 -2624 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112))) (-15 -2234 (|#2| |#2|))) -((-2392 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1021) (-825)) (-423 |#1|) (-13 (-1021) (-825)) (-423 |#3|)) (T -414)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1021) (-825))) (-4 *6 (-13 (-1021) (-825))) (-4 *2 (-423 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|))) -((-2234 ((|#2| |#2|) 90)) (-2994 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127)) 48)) (-2785 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127)) 154))) -(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2994 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127))) (-15 -2785 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127))) (-15 -2234 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|) (-10 -8 (-15 -2233 ($ |#3|)))) (-823) (-13 (-1206 |#2| |#3|) (-356) (-1167) (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $)))) (-957 |#4|) (-1145)) (T -415)) -((-2234 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-4 *2 (-13 (-27) (-1167) (-423 *3) (-10 -8 (-15 -2233 ($ *4))))) (-4 *4 (-823)) (-4 *5 (-13 (-1206 *2 *4) (-356) (-1167) (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1145)))) (-2785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-4 *3 (-13 (-27) (-1167) (-423 *6) (-10 -8 (-15 -2233 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1206 *3 *7) (-356) (-1167) (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1127)) (-4 *9 (-957 *8)) (-14 *10 (-1145)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-4 *3 (-13 (-27) (-1167) (-423 *6) (-10 -8 (-15 -2233 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1206 *3 *7) (-356) (-1167) (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1127)) (-4 *9 (-957 *8)) (-14 *10 (-1145))))) -(-10 -7 (-15 -2994 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127))) (-15 -2785 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127))))) |#2| (-112) (-1127))) (-15 -2234 (|#2| |#2|))) -((-2304 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2924 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2392 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2924 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2304 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1069) (-418 |#1|) (-1069) (-418 |#3|)) (T -416)) -((-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1069)) (-4 *5 (-1069)) (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2924 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2304 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3823 (($) 44)) (-4045 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3029 (($ $ $) 39)) (-1952 (((-112) $ $) 28)) (-3828 (((-749)) 47)) (-2085 (($ (-623 |#2|)) 20) (($) NIL)) (-1864 (($) 53)) (-2654 (((-112) $ $) 13)) (-2793 ((|#2| $) 61)) (-2173 ((|#2| $) 59)) (-4073 (((-895) $) 55)) (-4072 (($ $ $) 35)) (-3690 (($ (-895)) 50)) (-1287 (($ $ |#2|) NIL) (($ $ $) 38)) (-3457 (((-749) (-1 (-112) |#2|) $) NIL) (((-749) |#2| $) 26)) (-2245 (($ (-623 |#2|)) 24)) (-3580 (($ $) 46)) (-2233 (((-837) $) 33)) (-2102 (((-749) $) 21)) (-1299 (($ (-623 |#2|)) 19) (($) NIL)) (-2264 (((-112) $ $) 16))) -(((-417 |#1| |#2|) (-10 -8 (-15 -3828 ((-749))) (-15 -3690 (|#1| (-895))) (-15 -4073 ((-895) |#1|)) (-15 -1864 (|#1|)) (-15 -2793 (|#2| |#1|)) (-15 -2173 (|#2| |#1|)) (-15 -3823 (|#1|)) (-15 -3580 (|#1| |#1|)) (-15 -2102 ((-749) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2654 ((-112) |#1| |#1|)) (-15 -1299 (|#1|)) (-15 -1299 (|#1| (-623 |#2|))) (-15 -2085 (|#1|)) (-15 -2085 (|#1| (-623 |#2|))) (-15 -4072 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#2|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -1952 ((-112) |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#2|)) (-15 -4045 (|#1| |#2| |#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|))) (-418 |#2|) (-1069)) (T -417)) -((-3828 (*1 *2) (-12 (-4 *4 (-1069)) (-5 *2 (-749)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4))))) -(-10 -8 (-15 -3828 ((-749))) (-15 -3690 (|#1| (-895))) (-15 -4073 ((-895) |#1|)) (-15 -1864 (|#1|)) (-15 -2793 (|#2| |#1|)) (-15 -2173 (|#2| |#1|)) (-15 -3823 (|#1|)) (-15 -3580 (|#1| |#1|)) (-15 -2102 ((-749) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2654 ((-112) |#1| |#1|)) (-15 -1299 (|#1|)) (-15 -1299 (|#1| (-623 |#2|))) (-15 -2085 (|#1|)) (-15 -2085 (|#1| (-623 |#2|))) (-15 -4072 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#2|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -1952 ((-112) |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#2|)) (-15 -4045 (|#1| |#2| |#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -3457 ((-749) |#2| |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|))) -((-2221 (((-112) $ $) 19)) (-3823 (($) 67 (|has| |#1| (-361)))) (-4045 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3029 (($ $ $) 78)) (-1952 (((-112) $ $) 79)) (-3368 (((-112) $ (-749)) 8)) (-3828 (((-749)) 61 (|has| |#1| (-361)))) (-2085 (($ (-623 |#1|)) 74) (($) 73)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-1864 (($) 64 (|has| |#1| (-361)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) 70)) (-1445 (((-112) $ (-749)) 9)) (-2793 ((|#1| $) 65 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2173 ((|#1| $) 66 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-4073 (((-895) $) 63 (|has| |#1| (-361)))) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22)) (-4072 (($ $ $) 75)) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3690 (($ (-895)) 62 (|has| |#1| (-361)))) (-3445 (((-1089) $) 21)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-1287 (($ $ |#1|) 77) (($ $ $) 76)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-3580 (($ $) 68 (|has| |#1| (-361)))) (-2233 (((-837) $) 18)) (-2102 (((-749) $) 69)) (-1299 (($ (-623 |#1|)) 72) (($) 71)) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20)) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-418 |#1|) (-138) (-1069)) (T -418)) -((-2102 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1069)) (-5 *2 (-749)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-361)))) (-3823 (*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1069)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-825)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-825))))) -(-13 (-223 |t#1|) (-1067 |t#1|) (-10 -8 (-6 -4344) (-15 -2102 ((-749) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -3580 ($ $)) (-15 -3823 ($))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -2173 (|t#1| $)) (-15 -2793 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1067 |#1|) . T) ((-1069) . T) ((-1182) . T)) -((-1816 (((-569 |#2|) |#2| (-1145)) 36)) (-4254 (((-569 |#2|) |#2| (-1145)) 20)) (-4120 ((|#2| |#2| (-1145)) 25))) -(((-419 |#1| |#2|) (-10 -7 (-15 -4254 ((-569 |#2|) |#2| (-1145))) (-15 -1816 ((-569 |#2|) |#2| (-1145))) (-15 -4120 (|#2| |#2| (-1145)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-29 |#1|))) (T -419)) -((-4120 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1167) (-29 *4))))) (-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1167) (-29 *5))))) (-4254 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1167) (-29 *5)))))) -(-10 -7 (-15 -4254 ((-569 |#2|) |#2| (-1145))) (-15 -1816 ((-569 |#2|) |#2| (-1145))) (-15 -4120 (|#2| |#2| (-1145)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-3163 (($ |#2| |#1|) 35)) (-3515 (($ |#2| |#1|) 33)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-3091 (((-749)) NIL)) (-2688 (($) 10 T CONST)) (-2700 (($) 16 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-420 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4331)) (IF (|has| |#1| (-6 -4331)) (-6 -4331) |%noBranch|) |%noBranch|) (-15 -2233 ($ |#1|)) (-15 -2233 ($ (-324 |#2|))) (-15 -3163 ($ |#2| |#1|)) (-15 -3515 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-550)))) (-13 (-825) (-21))) (T -420)) -((-2233 (*1 *1 *2) (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-550))))) (-4 *3 (-13 (-825) (-21))))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))))) (-3163 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) (-4 *2 (-13 (-825) (-21))))) (-3515 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) (-4 *2 (-13 (-825) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4331)) (IF (|has| |#1| (-6 -4331)) (-6 -4331) |%noBranch|) |%noBranch|) (-15 -2233 ($ |#1|)) (-15 -2233 ($ (-324 |#2|))) (-15 -3163 ($ |#2| |#1|)) (-15 -3515 ($ |#2| |#1|)))) -((-2149 (((-3 |#2| (-623 |#2|)) |#2| (-1145)) 109))) -(((-421 |#1| |#2|) (-10 -7 (-15 -2149 ((-3 |#2| (-623 |#2|)) |#2| (-1145)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-933) (-29 |#1|))) (T -421)) -((-2149 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 *3 (-623 *3))) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1167) (-933) (-29 *5)))))) -(-10 -7 (-15 -2149 ((-3 |#2| (-623 |#2|)) |#2| (-1145)))) -((-1516 (((-623 (-1145)) $) 72)) (-1705 (((-400 (-1141 $)) $ (-594 $)) 273)) (-4230 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) 237)) (-2288 (((-3 (-594 $) "failed") $) NIL) (((-3 (-1145) "failed") $) 75) (((-3 (-550) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-400 (-926 |#2|)) "failed") $) 324) (((-3 (-926 |#2|) "failed") $) 235) (((-3 (-400 (-550)) "failed") $) NIL)) (-2202 (((-594 $) $) NIL) (((-1145) $) 30) (((-550) $) NIL) ((|#2| $) 231) (((-400 (-926 |#2|)) $) 305) (((-926 |#2|) $) 232) (((-400 (-550)) $) NIL)) (-1355 (((-114) (-114)) 47)) (-1484 (($ $) 87)) (-2041 (((-3 (-594 $) "failed") $) 228)) (-1694 (((-623 (-594 $)) $) 229)) (-3833 (((-3 (-623 $) "failed") $) 247)) (-1795 (((-3 (-2 (|:| |val| $) (|:| -3068 (-550))) "failed") $) 254)) (-3017 (((-3 (-623 $) "failed") $) 245)) (-2934 (((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 $))) "failed") $) 264)) (-2891 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $) 251) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-1145)) 219)) (-1628 (((-112) $) 19)) (-1639 ((|#2| $) 21)) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) 236) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) 96) (($ $ (-1145) (-1 $ (-623 $))) NIL) (($ $ (-1145) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1145)) 57) (($ $ (-623 (-1145))) 240) (($ $) 241) (($ $ (-114) $ (-1145)) 60) (($ $ (-623 (-114)) (-623 $) (-1145)) 67) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ $))) 107) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 242) (($ $ (-1145) (-749) (-1 $ (-623 $))) 94) (($ $ (-1145) (-749) (-1 $ $)) 93)) (-2757 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) 106)) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) 238)) (-3608 (($ $) 284)) (-2451 (((-866 (-550)) $) 257) (((-866 (-372)) $) 261) (($ (-411 $)) 320) (((-526) $) NIL)) (-2233 (((-837) $) 239) (($ (-594 $)) 84) (($ (-1145)) 26) (($ |#2|) NIL) (($ (-1094 |#2| (-594 $))) NIL) (($ (-400 |#2|)) 289) (($ (-926 (-400 |#2|))) 329) (($ (-400 (-926 (-400 |#2|)))) 301) (($ (-400 (-926 |#2|))) 295) (($ $) NIL) (($ (-926 |#2|)) 185) (($ (-400 (-550))) 334) (($ (-550)) NIL)) (-3091 (((-749)) 79)) (-1905 (((-112) (-114)) 41)) (-4282 (($ (-1145) $) 33) (($ (-1145) $ $) 34) (($ (-1145) $ $ $) 35) (($ (-1145) $ $ $ $) 36) (($ (-1145) (-623 $)) 39)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL))) -(((-422 |#1| |#2|) (-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3091 ((-749))) (-15 -2233 (|#1| (-550))) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-926 |#2|) |#1|)) (-15 -2288 ((-3 (-926 |#2|) "failed") |#1|)) (-15 -2233 (|#1| (-926 |#2|))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2202 ((-400 (-926 |#2|)) |#1|)) (-15 -2288 ((-3 (-400 (-926 |#2|)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-926 |#2|)))) (-15 -1705 ((-400 (-1141 |#1|)) |#1| (-594 |#1|))) (-15 -2233 (|#1| (-400 (-926 (-400 |#2|))))) (-15 -2233 (|#1| (-926 (-400 |#2|)))) (-15 -2233 (|#1| (-400 |#2|))) (-15 -3608 (|#1| |#1|)) (-15 -2451 (|#1| (-411 |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-749) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-749) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-749)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-749)) (-623 (-1 |#1| |#1|)))) (-15 -1795 ((-3 (-2 (|:| |val| |#1|) (|:| -3068 (-550))) "failed") |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1| (-1145))) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1| (-114))) (-15 -1484 (|#1| |#1|)) (-15 -2233 (|#1| (-1094 |#2| (-594 |#1|)))) (-15 -2934 ((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 |#1|))) "failed") |#1|)) (-15 -3017 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1|)) (-15 -3833 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 |#1|) (-1145))) (-15 -1553 (|#1| |#1| (-114) |#1| (-1145))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-623 (-1145)))) (-15 -1553 (|#1| |#1| (-1145))) (-15 -4282 (|#1| (-1145) (-623 |#1|))) (-15 -4282 (|#1| (-1145) |#1| |#1| |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1| |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1|)) (-15 -1516 ((-623 (-1145)) |#1|)) (-15 -1639 (|#2| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2233 (|#1| (-1145))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| |#1|)))) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -1694 ((-623 (-594 |#1|)) |#1|)) (-15 -2041 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -4230 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -4230 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -4230 (|#1| |#1| (-287 |#1|))) (-15 -2757 (|#1| (-114) (-623 |#1|))) (-15 -2757 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2202 ((-594 |#1|) |#1|)) (-15 -2288 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -2233 (|#1| (-594 |#1|))) (-15 -2233 ((-837) |#1|))) (-423 |#2|) (-825)) (T -422)) -((-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-825)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) (-3091 (*1 *2) (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4))))) -(-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3091 ((-749))) (-15 -2233 (|#1| (-550))) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-926 |#2|) |#1|)) (-15 -2288 ((-3 (-926 |#2|) "failed") |#1|)) (-15 -2233 (|#1| (-926 |#2|))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2202 ((-400 (-926 |#2|)) |#1|)) (-15 -2288 ((-3 (-400 (-926 |#2|)) "failed") |#1|)) (-15 -2233 (|#1| (-400 (-926 |#2|)))) (-15 -1705 ((-400 (-1141 |#1|)) |#1| (-594 |#1|))) (-15 -2233 (|#1| (-400 (-926 (-400 |#2|))))) (-15 -2233 (|#1| (-926 (-400 |#2|)))) (-15 -2233 (|#1| (-400 |#2|))) (-15 -3608 (|#1| |#1|)) (-15 -2451 (|#1| (-411 |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-749) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-749) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-749)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-749)) (-623 (-1 |#1| |#1|)))) (-15 -1795 ((-3 (-2 (|:| |val| |#1|) (|:| -3068 (-550))) "failed") |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1| (-1145))) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1| (-114))) (-15 -1484 (|#1| |#1|)) (-15 -2233 (|#1| (-1094 |#2| (-594 |#1|)))) (-15 -2934 ((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 |#1|))) "failed") |#1|)) (-15 -3017 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3068 (-550))) "failed") |#1|)) (-15 -3833 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 |#1|) (-1145))) (-15 -1553 (|#1| |#1| (-114) |#1| (-1145))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-623 (-1145)))) (-15 -1553 (|#1| |#1| (-1145))) (-15 -4282 (|#1| (-1145) (-623 |#1|))) (-15 -4282 (|#1| (-1145) |#1| |#1| |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1| |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1| |#1|)) (-15 -4282 (|#1| (-1145) |#1|)) (-15 -1516 ((-623 (-1145)) |#1|)) (-15 -1639 (|#2| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2233 (|#1| (-1145))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| |#1|))) (-15 -1553 (|#1| |#1| (-1145) (-1 |#1| (-623 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -1553 (|#1| |#1| (-623 (-1145)) (-623 (-1 |#1| |#1|)))) (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -1694 ((-623 (-594 |#1|)) |#1|)) (-15 -2041 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -4230 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -4230 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -4230 (|#1| |#1| (-287 |#1|))) (-15 -2757 (|#1| (-114) (-623 |#1|))) (-15 -2757 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1| |#1|)) (-15 -2757 (|#1| (-114) |#1|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1553 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2202 ((-594 |#1|) |#1|)) (-15 -2288 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -2233 (|#1| (-594 |#1|))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 113 (|has| |#1| (-25)))) (-1516 (((-623 (-1145)) $) 200)) (-1705 (((-400 (-1141 $)) $ (-594 $)) 168 (|has| |#1| (-542)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 140 (|has| |#1| (-542)))) (-3050 (($ $) 141 (|has| |#1| (-542)))) (-3953 (((-112) $) 143 (|has| |#1| (-542)))) (-1608 (((-623 (-594 $)) $) 44)) (-1993 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-4230 (($ $ (-287 $)) 56) (($ $ (-623 (-287 $))) 55) (($ $ (-623 (-594 $)) (-623 $)) 54)) (-2318 (($ $) 160 (|has| |#1| (-542)))) (-2207 (((-411 $) $) 161 (|has| |#1| (-542)))) (-1611 (((-112) $ $) 151 (|has| |#1| (-542)))) (-2991 (($) 101 (-1489 (|has| |#1| (-1081)) (|has| |#1| (-25))) CONST)) (-2288 (((-3 (-594 $) "failed") $) 69) (((-3 (-1145) "failed") $) 213) (((-3 (-550) "failed") $) 206 (|has| |#1| (-1012 (-550)))) (((-3 |#1| "failed") $) 204) (((-3 (-400 (-926 |#1|)) "failed") $) 166 (|has| |#1| (-542))) (((-3 (-926 |#1|) "failed") $) 120 (|has| |#1| (-1021))) (((-3 (-400 (-550)) "failed") $) 95 (-1489 (-12 (|has| |#1| (-1012 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1012 (-400 (-550))))))) (-2202 (((-594 $) $) 68) (((-1145) $) 212) (((-550) $) 207 (|has| |#1| (-1012 (-550)))) ((|#1| $) 203) (((-400 (-926 |#1|)) $) 165 (|has| |#1| (-542))) (((-926 |#1|) $) 119 (|has| |#1| (-1021))) (((-400 (-550)) $) 94 (-1489 (-12 (|has| |#1| (-1012 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1012 (-400 (-550))))))) (-3455 (($ $ $) 155 (|has| |#1| (-542)))) (-3756 (((-667 (-550)) (-667 $)) 134 (-1304 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 133 (-1304 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 132 (|has| |#1| (-1021))) (((-667 |#1|) (-667 $)) 131 (|has| |#1| (-1021)))) (-1537 (((-3 $ "failed") $) 103 (|has| |#1| (-1081)))) (-3429 (($ $ $) 154 (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 149 (|has| |#1| (-542)))) (-1568 (((-112) $) 162 (|has| |#1| (-542)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 209 (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 208 (|has| |#1| (-860 (-372))))) (-1465 (($ $) 51) (($ (-623 $)) 50)) (-3745 (((-623 (-114)) $) 43)) (-1355 (((-114) (-114)) 42)) (-2419 (((-112) $) 102 (|has| |#1| (-1081)))) (-1286 (((-112) $) 22 (|has| $ (-1012 (-550))))) (-1484 (($ $) 183 (|has| |#1| (-1021)))) (-4153 (((-1094 |#1| (-594 $)) $) 184 (|has| |#1| (-1021)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-542)))) (-1333 (((-1141 $) (-594 $)) 25 (|has| $ (-1021)))) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2392 (($ (-1 $ $) (-594 $)) 36)) (-2041 (((-3 (-594 $) "failed") $) 46)) (-3231 (($ (-623 $)) 147 (|has| |#1| (-542))) (($ $ $) 146 (|has| |#1| (-542)))) (-2369 (((-1127) $) 9)) (-1694 (((-623 (-594 $)) $) 45)) (-4232 (($ (-114) $) 38) (($ (-114) (-623 $)) 37)) (-3833 (((-3 (-623 $) "failed") $) 189 (|has| |#1| (-1081)))) (-1795 (((-3 (-2 (|:| |val| $) (|:| -3068 (-550))) "failed") $) 180 (|has| |#1| (-1021)))) (-3017 (((-3 (-623 $) "failed") $) 187 (|has| |#1| (-25)))) (-2934 (((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 $))) "failed") $) 186 (|has| |#1| (-25)))) (-2891 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $) 188 (|has| |#1| (-1081))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-114)) 182 (|has| |#1| (-1021))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-1145)) 181 (|has| |#1| (-1021)))) (-2366 (((-112) $ (-114)) 40) (((-112) $ (-1145)) 39)) (-1619 (($ $) 105 (-1489 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-1293 (((-749) $) 47)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 202)) (-1639 ((|#1| $) 201)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-542)))) (-3260 (($ (-623 $)) 145 (|has| |#1| (-542))) (($ $ $) 144 (|has| |#1| (-542)))) (-4087 (((-112) $ $) 35) (((-112) $ (-1145)) 34)) (-1735 (((-411 $) $) 159 (|has| |#1| (-542)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 156 (|has| |#1| (-542)))) (-3409 (((-3 $ "failed") $ $) 139 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-542)))) (-3725 (((-112) $) 23 (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) 67) (($ $ (-623 (-594 $)) (-623 $)) 66) (($ $ (-623 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-623 $) (-623 $)) 62) (($ $ (-623 (-1145)) (-623 (-1 $ $))) 33) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) 32) (($ $ (-1145) (-1 $ (-623 $))) 31) (($ $ (-1145) (-1 $ $)) 30) (($ $ (-623 (-114)) (-623 (-1 $ $))) 29) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 28) (($ $ (-114) (-1 $ (-623 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1145)) 194 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1145))) 193 (|has| |#1| (-596 (-526)))) (($ $) 192 (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1145)) 191 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-114)) (-623 $) (-1145)) 190 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ $))) 179 (|has| |#1| (-1021))) (($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 178 (|has| |#1| (-1021))) (($ $ (-1145) (-749) (-1 $ (-623 $))) 177 (|has| |#1| (-1021))) (($ $ (-1145) (-749) (-1 $ $)) 176 (|has| |#1| (-1021)))) (-1988 (((-749) $) 152 (|has| |#1| (-542)))) (-2757 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-623 $)) 57)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 153 (|has| |#1| (-542)))) (-1532 (($ $) 49) (($ $ $) 48)) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 125 (|has| |#1| (-1021))) (($ $ (-1145) (-749)) 124 (|has| |#1| (-1021))) (($ $ (-623 (-1145))) 123 (|has| |#1| (-1021))) (($ $ (-1145)) 122 (|has| |#1| (-1021)))) (-3608 (($ $) 173 (|has| |#1| (-542)))) (-4163 (((-1094 |#1| (-594 $)) $) 174 (|has| |#1| (-542)))) (-3832 (($ $) 24 (|has| $ (-1021)))) (-2451 (((-866 (-550)) $) 211 (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) 210 (|has| |#1| (-596 (-866 (-372))))) (($ (-411 $)) 175 (|has| |#1| (-542))) (((-526) $) 97 (|has| |#1| (-596 (-526))))) (-3018 (($ $ $) 108 (|has| |#1| (-465)))) (-1353 (($ $ $) 109 (|has| |#1| (-465)))) (-2233 (((-837) $) 11) (($ (-594 $)) 70) (($ (-1145)) 214) (($ |#1|) 205) (($ (-1094 |#1| (-594 $))) 185 (|has| |#1| (-1021))) (($ (-400 |#1|)) 171 (|has| |#1| (-542))) (($ (-926 (-400 |#1|))) 170 (|has| |#1| (-542))) (($ (-400 (-926 (-400 |#1|)))) 169 (|has| |#1| (-542))) (($ (-400 (-926 |#1|))) 167 (|has| |#1| (-542))) (($ $) 138 (|has| |#1| (-542))) (($ (-926 |#1|)) 121 (|has| |#1| (-1021))) (($ (-400 (-550))) 96 (-1489 (|has| |#1| (-542)) (-12 (|has| |#1| (-1012 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1012 (-400 (-550)))))) (($ (-550)) 93 (-1489 (|has| |#1| (-1021)) (|has| |#1| (-1012 (-550)))))) (-1613 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3091 (((-749)) 130 (|has| |#1| (-1021)))) (-3790 (($ $) 53) (($ (-623 $)) 52)) (-1905 (((-112) (-114)) 41)) (-1819 (((-112) $ $) 142 (|has| |#1| (-542)))) (-4282 (($ (-1145) $) 199) (($ (-1145) $ $) 198) (($ (-1145) $ $ $) 197) (($ (-1145) $ $ $ $) 196) (($ (-1145) (-623 $)) 195)) (-2688 (($) 112 (|has| |#1| (-25)) CONST)) (-2700 (($) 100 (|has| |#1| (-1081)) CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 129 (|has| |#1| (-1021))) (($ $ (-1145) (-749)) 128 (|has| |#1| (-1021))) (($ $ (-623 (-1145))) 127 (|has| |#1| (-1021))) (($ $ (-1145)) 126 (|has| |#1| (-1021)))) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2382 (($ (-1094 |#1| (-594 $)) (-1094 |#1| (-594 $))) 172 (|has| |#1| (-542))) (($ $ $) 106 (-1489 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2370 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2358 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-550)) 107 (-1489 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-749)) 104 (|has| |#1| (-1081))) (($ $ (-895)) 99 (|has| |#1| (-1081)))) (* (($ (-400 (-550)) $) 164 (|has| |#1| (-542))) (($ $ (-400 (-550))) 163 (|has| |#1| (-542))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-550) $) 118 (|has| |#1| (-21))) (($ (-749) $) 114 (|has| |#1| (-25))) (($ (-895) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1081))))) -(((-423 |#1|) (-138) (-825)) (T -423)) -((-1628 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-112)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-623 (-1145))))) (-4282 (*1 *1 *2 *1) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-4282 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-4282 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-4282 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-4282 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-623 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-526))))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1145))) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-526))))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-526))))) (-1553 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1145)) (-4 *1 (-423 *4)) (-4 *4 (-825)) (-4 *4 (-596 (-526))))) (-1553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 *1)) (-5 *4 (-1145)) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-526))))) (-3833 (*1 *2 *1) (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-423 *3)))) (-2891 (*1 *2 *1) (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) (-4 *1 (-423 *3)))) (-3017 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-423 *3)))) (-2934 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4304 (-550)) (|:| |var| (-594 *1)))) (-4 *1 (-423 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1094 *3 (-594 *1))) (-4 *3 (-1021)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-4153 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *3 (-825)) (-5 *2 (-1094 *3 (-594 *1))) (-4 *1 (-423 *3)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-1021)))) (-2891 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1021)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) (-4 *1 (-423 *4)))) (-2891 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1145)) (-4 *4 (-1021)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) (-4 *1 (-423 *4)))) (-1795 (*1 *2 *1) (|partial| -12 (-4 *3 (-1021)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |val| *1) (|:| -3068 (-550)))) (-4 *1 (-423 *3)))) (-1553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-749))) (-5 *4 (-623 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) (-1553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-749))) (-5 *4 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) (-1553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-623 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) (-1553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-4163 (*1 *2 *1) (-12 (-4 *3 (-542)) (-4 *3 (-825)) (-5 *2 (-1094 *3 (-594 *1))) (-4 *1 (-423 *3)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-542)))) (-2382 (*1 *1 *2 *2) (-12 (-5 *2 (-1094 *3 (-594 *1))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-926 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)) (-4 *4 (-542)) (-5 *2 (-400 (-1141 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-1081))))) -(-13 (-295) (-1012 (-1145)) (-858 |t#1|) (-393 |t#1|) (-404 |t#1|) (-10 -8 (-15 -1628 ((-112) $)) (-15 -1639 (|t#1| $)) (-15 -1516 ((-623 (-1145)) $)) (-15 -4282 ($ (-1145) $)) (-15 -4282 ($ (-1145) $ $)) (-15 -4282 ($ (-1145) $ $ $)) (-15 -4282 ($ (-1145) $ $ $ $)) (-15 -4282 ($ (-1145) (-623 $))) (IF (|has| |t#1| (-596 (-526))) (PROGN (-6 (-596 (-526))) (-15 -1553 ($ $ (-1145))) (-15 -1553 ($ $ (-623 (-1145)))) (-15 -1553 ($ $)) (-15 -1553 ($ $ (-114) $ (-1145))) (-15 -1553 ($ $ (-623 (-114)) (-623 $) (-1145)))) |%noBranch|) (IF (|has| |t#1| (-1081)) (PROGN (-6 (-705)) (-15 ** ($ $ (-749))) (-15 -3833 ((-3 (-623 $) "failed") $)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3017 ((-3 (-623 $) "failed") $)) (-15 -2934 ((-3 (-2 (|:| -4304 (-550)) (|:| |var| (-594 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1021)) (PROGN (-6 (-1021)) (-6 (-1012 (-926 |t#1|))) (-6 (-874 (-1145))) (-6 (-370 |t#1|)) (-15 -2233 ($ (-1094 |t#1| (-594 $)))) (-15 -4153 ((-1094 |t#1| (-594 $)) $)) (-15 -1484 ($ $)) (-15 -2891 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-114))) (-15 -2891 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3068 (-550))) "failed") $ (-1145))) (-15 -1795 ((-3 (-2 (|:| |val| $) (|:| -3068 (-550))) "failed") $)) (-15 -1553 ($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ $)))) (-15 -1553 ($ $ (-623 (-1145)) (-623 (-749)) (-623 (-1 $ (-623 $))))) (-15 -1553 ($ $ (-1145) (-749) (-1 $ (-623 $)))) (-15 -1553 ($ $ (-1145) (-749) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-356)) (-6 (-1012 (-400 (-926 |t#1|)))) (-15 -2451 ($ (-411 $))) (-15 -4163 ((-1094 |t#1| (-594 $)) $)) (-15 -3608 ($ $)) (-15 -2382 ($ (-1094 |t#1| (-594 $)) (-1094 |t#1| (-594 $)))) (-15 -2233 ($ (-400 |t#1|))) (-15 -2233 ($ (-926 (-400 |t#1|)))) (-15 -2233 ($ (-400 (-926 (-400 |t#1|))))) (-15 -1705 ((-400 (-1141 $)) $ (-594 $))) (IF (|has| |t#1| (-1012 (-550))) (-6 (-1012 (-400 (-550)))) |%noBranch|)) |%noBranch|))) -(((-21) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-400 (-550))) |has| |#1| (-542)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-542)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-542)) ((-130) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) |has| |#1| (-542)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-866 (-372))) |has| |#1| (-596 (-866 (-372)))) ((-596 (-866 (-550))) |has| |#1| (-596 (-866 (-550)))) ((-237) |has| |#1| (-542)) ((-283) |has| |#1| (-542)) ((-300) |has| |#1| (-542)) ((-302 $) . T) ((-295) . T) ((-356) |has| |#1| (-542)) ((-370 |#1|) |has| |#1| (-1021)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) |has| |#1| (-542)) ((-465) |has| |#1| (-465)) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-542)) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-619 (-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1021))) ((-619 |#1|) |has| |#1| (-1021)) ((-696 #0#) |has| |#1| (-542)) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) -1489 (|has| |#1| (-1081)) (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-825) . T) ((-874 (-1145)) |has| |#1| (-1021)) ((-860 (-372)) |has| |#1| (-860 (-372))) ((-860 (-550)) |has| |#1| (-860 (-550))) ((-858 |#1|) . T) ((-894) |has| |#1| (-542)) ((-1012 (-400 (-550))) -1489 (|has| |#1| (-1012 (-400 (-550)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1012 (-550))))) ((-1012 (-400 (-926 |#1|))) |has| |#1| (-542)) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 (-594 $)) . T) ((-1012 (-926 |#1|)) |has| |#1| (-1021)) ((-1012 (-1145)) . T) ((-1012 |#1|) . T) ((-1027 #0#) |has| |#1| (-542)) ((-1027 |#1|) |has| |#1| (-170)) ((-1027 $) |has| |#1| (-542)) ((-1021) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1028) -1489 (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1081) -1489 (|has| |#1| (-1081)) (|has| |#1| (-1021)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1069) . T) ((-1182) . T) ((-1186) |has| |#1| (-542))) -((-3532 ((|#2| |#2| |#2|) 33)) (-1355 (((-114) (-114)) 44)) (-1271 ((|#2| |#2|) 66)) (-1473 ((|#2| |#2|) 69)) (-1706 ((|#2| |#2|) 32)) (-3504 ((|#2| |#2| |#2|) 35)) (-3966 ((|#2| |#2| |#2|) 37)) (-1744 ((|#2| |#2| |#2|) 34)) (-2116 ((|#2| |#2| |#2|) 36)) (-1905 (((-112) (-114)) 42)) (-2577 ((|#2| |#2|) 39)) (-1850 ((|#2| |#2|) 38)) (-4188 ((|#2| |#2|) 27)) (-3257 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3044 ((|#2| |#2| |#2|) 31))) -(((-424 |#1| |#2|) (-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -4188 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3257 (|#2| |#2| |#2|)) (-15 -3044 (|#2| |#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -3532 (|#2| |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -3504 (|#2| |#2| |#2|)) (-15 -2116 (|#2| |#2| |#2|)) (-15 -3966 (|#2| |#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1271 (|#2| |#2|))) (-13 (-825) (-542)) (-423 |#1|)) (T -424)) -((-1271 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3966 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2116 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3504 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1744 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3532 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3044 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3257 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *4)) (-4 *4 (-423 *3)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4))))) -(-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -4188 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3257 (|#2| |#2| |#2|)) (-15 -3044 (|#2| |#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -3532 (|#2| |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -3504 (|#2| |#2| |#2|)) (-15 -2116 (|#2| |#2| |#2|)) (-15 -3966 (|#2| |#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1271 (|#2| |#2|))) -((-2664 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-623 |#2|)) 61))) -(((-425 |#1| |#2|) (-10 -7 (-15 -2664 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-623 |#2|))) (IF (|has| |#2| (-27)) (-15 -2664 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-542) (-825) (-145)) (-423 |#1|)) (T -425)) -((-2664 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-542) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) (|:| |pol2| (-1141 *3)) (|:| |prim| (-1141 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-542) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-623 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-425 *4 *5))))) -(-10 -7 (-15 -2664 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-623 |#2|))) (IF (|has| |#2| (-27)) (-15 -2664 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1729 (((-1233)) 19)) (-3081 (((-1141 (-400 (-550))) |#2| (-594 |#2|)) 41) (((-400 (-550)) |#2|) 25))) -(((-426 |#1| |#2|) (-10 -7 (-15 -3081 ((-400 (-550)) |#2|)) (-15 -3081 ((-1141 (-400 (-550))) |#2| (-594 |#2|))) (-15 -1729 ((-1233)))) (-13 (-825) (-542) (-1012 (-550))) (-423 |#1|)) (T -426)) -((-1729 (*1 *2) (-12 (-4 *3 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-1233)) (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-423 *5)) (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-426 *5 *3)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4))))) -(-10 -7 (-15 -3081 ((-400 (-550)) |#2|)) (-15 -3081 ((-1141 (-400 (-550))) |#2| (-594 |#2|))) (-15 -1729 ((-1233)))) -((-2326 (((-112) $) 28)) (-3796 (((-112) $) 30)) (-3517 (((-112) $) 31)) (-1691 (((-112) $) 34)) (-3157 (((-112) $) 29)) (-3355 (((-112) $) 33)) (-2233 (((-837) $) 18) (($ (-1127)) 27) (($ (-1145)) 23) (((-1145) $) 22) (((-1073) $) 21)) (-2108 (((-112) $) 32)) (-2264 (((-112) $ $) 15))) -(((-427) (-13 (-595 (-837)) (-10 -8 (-15 -2233 ($ (-1127))) (-15 -2233 ($ (-1145))) (-15 -2233 ((-1145) $)) (-15 -2233 ((-1073) $)) (-15 -2326 ((-112) $)) (-15 -3157 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -1691 ((-112) $)) (-15 -2108 ((-112) $)) (-15 -3796 ((-112) $)) (-15 -2264 ((-112) $ $))))) (T -427)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-427)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-427)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-427)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-427)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2264 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2233 ($ (-1127))) (-15 -2233 ($ (-1145))) (-15 -2233 ((-1145) $)) (-15 -2233 ((-1073) $)) (-15 -2326 ((-112) $)) (-15 -3157 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -1691 ((-112) $)) (-15 -2108 ((-112) $)) (-15 -3796 ((-112) $)) (-15 -2264 ((-112) $ $)))) -((-1315 (((-3 (-411 (-1141 (-400 (-550)))) "failed") |#3|) 70)) (-1586 (((-411 |#3|) |#3|) 34)) (-3182 (((-3 (-411 (-1141 (-48))) "failed") |#3|) 46 (|has| |#2| (-1012 (-48))))) (-2875 (((-3 (|:| |overq| (-1141 (-400 (-550)))) (|:| |overan| (-1141 (-48))) (|:| -3585 (-112))) |#3|) 37))) -(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -1586 ((-411 |#3|) |#3|)) (-15 -1315 ((-3 (-411 (-1141 (-400 (-550)))) "failed") |#3|)) (-15 -2875 ((-3 (|:| |overq| (-1141 (-400 (-550)))) (|:| |overan| (-1141 (-48))) (|:| -3585 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -3182 ((-3 (-411 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-542) (-825) (-1012 (-550))) (-423 |#1|) (-1204 |#2|)) (T -428)) -((-3182 (*1 *2 *3) (|partial| -12 (-4 *5 (-1012 (-48))) (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-3 (|:| |overq| (-1141 (-400 (-550)))) (|:| |overan| (-1141 (-48))) (|:| -3585 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5)))) (-1315 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1141 (-400 (-550))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5)))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5))))) -(-10 -7 (-15 -1586 ((-411 |#3|) |#3|)) (-15 -1315 ((-3 (-411 (-1141 (-400 (-550)))) "failed") |#3|)) (-15 -2875 ((-3 (|:| |overq| (-1141 (-400 (-550)))) (|:| |overan| (-1141 (-48))) (|:| -3585 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -3182 ((-3 (-411 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-2363 (((-1127) $ (-1127)) NIL)) (-3053 (($ $ (-1127)) NIL)) (-3258 (((-1127) $) NIL)) (-2295 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-4046 (($ (-381)) NIL) (($ (-381) (-1127)) NIL)) (-1856 (((-381) $) NIL)) (-2369 (((-1127) $) NIL)) (-2216 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3310 (((-1233) (-1127)) 9)) (-1899 (((-1233) (-1127)) 10)) (-2403 (((-1233)) 11)) (-2233 (((-837) $) NIL)) (-4231 (($ $) 35)) (-2264 (((-112) $ $) NIL))) -(((-429) (-13 (-357 (-381) (-1127)) (-10 -7 (-15 -2295 ((-381) (-381) (-381))) (-15 -2295 ((-381) (-381))) (-15 -3310 ((-1233) (-1127))) (-15 -1899 ((-1233) (-1127))) (-15 -2403 ((-1233)))))) (T -429)) -((-2295 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-429)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-429)))) (-2403 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-429))))) -(-13 (-357 (-381) (-1127)) (-10 -7 (-15 -2295 ((-381) (-381) (-381))) (-15 -2295 ((-381) (-381))) (-15 -3310 ((-1233) (-1127))) (-15 -1899 ((-1233) (-1127))) (-15 -2403 ((-1233))))) -((-2221 (((-112) $ $) NIL)) (-2968 (((-3 (|:| |fst| (-427)) (|:| -2487 "void")) $) 11)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3834 (($) 32)) (-3279 (($) 38)) (-2719 (($) 34)) (-4105 (($) 36)) (-2388 (($) 33)) (-3688 (($) 35)) (-1432 (($) 37)) (-3426 (((-112) $) 8)) (-2060 (((-623 (-926 (-550))) $) 19)) (-2245 (($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-1145)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-926 (-550))) (-112)) 28)) (-2233 (((-837) $) 23) (($ (-427)) 29)) (-2264 (((-112) $ $) NIL))) -(((-430) (-13 (-1069) (-10 -8 (-15 -2233 ((-837) $)) (-15 -2233 ($ (-427))) (-15 -2968 ((-3 (|:| |fst| (-427)) (|:| -2487 "void")) $)) (-15 -2060 ((-623 (-926 (-550))) $)) (-15 -3426 ((-112) $)) (-15 -2245 ($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-1145)) (-112))) (-15 -2245 ($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-926 (-550))) (-112))) (-15 -3834 ($)) (-15 -2388 ($)) (-15 -2719 ($)) (-15 -3279 ($)) (-15 -3688 ($)) (-15 -4105 ($)) (-15 -1432 ($))))) (T -430)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-430)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *1 (-430)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-623 (-926 (-550)))) (-5 *1 (-430)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))) (-2245 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *3 (-623 (-1145))) (-5 *4 (-112)) (-5 *1 (-430)))) (-2245 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-112)) (-5 *1 (-430)))) (-3834 (*1 *1) (-5 *1 (-430))) (-2388 (*1 *1) (-5 *1 (-430))) (-2719 (*1 *1) (-5 *1 (-430))) (-3279 (*1 *1) (-5 *1 (-430))) (-3688 (*1 *1) (-5 *1 (-430))) (-4105 (*1 *1) (-5 *1 (-430))) (-1432 (*1 *1) (-5 *1 (-430)))) -(-13 (-1069) (-10 -8 (-15 -2233 ((-837) $)) (-15 -2233 ($ (-427))) (-15 -2968 ((-3 (|:| |fst| (-427)) (|:| -2487 "void")) $)) (-15 -2060 ((-623 (-926 (-550))) $)) (-15 -3426 ((-112) $)) (-15 -2245 ($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-1145)) (-112))) (-15 -2245 ($ (-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-623 (-926 (-550))) (-112))) (-15 -3834 ($)) (-15 -2388 ($)) (-15 -2719 ($)) (-15 -3279 ($)) (-15 -3688 ($)) (-15 -4105 ($)) (-15 -1432 ($)))) -((-2221 (((-112) $ $) NIL)) (-1856 (((-1145) $) 8)) (-2369 (((-1127) $) 16)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 13))) -(((-431 |#1|) (-13 (-1069) (-10 -8 (-15 -1856 ((-1145) $)))) (-1145)) (T -431)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-431 *3)) (-14 *3 *2)))) -(-13 (-1069) (-10 -8 (-15 -1856 ((-1145) $)))) -((-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8) (($ (-1228 (-677))) 14) (($ (-623 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 11))) +((-3600 (*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-397)))) (-3600 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-4 *1 (-397)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-3022 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-1885 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2939 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2461 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893)))) (-3672 (*1 *1) (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) (-3671 (|has| *1 (-6 -4331))))) (-3673 (*1 *1) (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) (-3671 (|has| *1 (-6 -4331)))))) +(-13 (-1032) (-10 -8 (-6 -4124) (-15 -3600 ($ (-536) (-536))) (-15 -3600 ($ (-536) (-536) (-893))) (-15 -4126 ((-536) $)) (-15 -3022 ((-893))) (-15 -2488 ((-536) $)) (-15 -2462 ((-536) $)) (-15 -1885 ((-893))) (-15 -2939 ((-893))) (-15 -2461 ((-893))) (IF (|has| $ (-6 -4339)) (PROGN (-15 -1885 ((-893) (-893))) (-15 -2939 ((-893) (-893))) (-15 -2461 ((-893) (-893))) (-15 -1884 ((-893) (-536))) (-15 -1883 ((-893) (-536)))) |%noBranch|) (IF (|has| $ (-6 -4331)) |%noBranch| (IF (|has| $ (-6 -4339)) |%noBranch| (PROGN (-15 -3672 ($)) (-15 -3673 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-864 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-860 (-371)) . T) ((-895) . T) ((-976) . T) ((-994) . T) ((-1032) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 42)) (-1886 (($ $) 57)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 146)) (-2173 (($ $) NIL)) (-2171 (((-112) $) 36)) (-1887 ((|#1| $) 13)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-1188)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-1188)))) (-1889 (($ |#1| (-536)) 31)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 116)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 55)) (-3816 (((-3 $ "failed") $) 131)) (-3352 (((-3 (-400 (-536)) "failed") $) 63 (|has| |#1| (-535)))) (-3351 (((-112) $) 59 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 70 (|has| |#1| (-535)))) (-1890 (($ |#1| (-536)) 33)) (-4081 (((-112) $) 152 (|has| |#1| (-1188)))) (-2497 (((-112) $) 43)) (-1951 (((-749) $) 38)) (-1891 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-536)) 137)) (-2763 ((|#1| $ (-536)) 136)) (-1892 (((-536) $ (-536)) 135)) (-1894 (($ |#1| (-536)) 30)) (-4313 (($ (-1 |#1| |#1|) $) 143)) (-1948 (($ |#1| (-620 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536))))) 58)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1893 (($ |#1| (-536)) 32)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-1888 (($ |#1| (-536) (-3 #2# #3# #4# #5#)) 29)) (-2762 (((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $) 54)) (-2070 (((-620 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $) 12)) (-4087 (((-398 $) $) NIL (|has| |#1| (-1188)))) (-3815 (((-3 $ "failed") $ $) 138)) (-2488 (((-536) $) 132)) (-4318 ((|#1| $) 56)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 85 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) $) NIL (|has| |#1| (-505 (-1147) $))) (($ $ (-620 (-1147)) (-620 $)) 86 (|has| |#1| (-505 (-1147) $))) (($ $ (-620 (-286 $))) 82 (|has| |#1| (-302 $))) (($ $ (-286 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-620 $) (-620 $)) NIL (|has| |#1| (-302 $)))) (-4154 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4325 (((-525) $) 27 (|has| |#1| (-596 (-525)))) (((-371) $) 92 (|has| |#1| (-994))) (((-219) $) 95 (|has| |#1| (-994)))) (-4312 (((-838) $) 114) (($ (-536)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536)))))) (-3456 (((-749)) 48)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 40 T CONST)) (-2992 (($) 39 T CONST)) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3382 (((-112) $ $) 96)) (-4192 (($ $) 128) (($ $ $) NIL)) (-4194 (($ $ $) 140)) (** (($ $ (-893)) NIL) (($ $ (-749)) 102)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-398 |#1|) (-13 (-543) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4318 (|#1| $)) (-15 -2488 ((-536) $)) (-15 -1948 ($ |#1| (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))))) (-15 -2070 ((-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $)) (-15 -1894 ($ |#1| (-536))) (-15 -2762 ((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $)) (-15 -1893 ($ |#1| (-536))) (-15 -1892 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-536))) (-15 -1951 ((-749) $)) (-15 -1890 ($ |#1| (-536))) (-15 -1889 ($ |#1| (-536))) (-15 -1888 ($ |#1| (-536) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |#1| (-1188)) (-6 (-1188)) |%noBranch|) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1147) $)) (-6 (-505 (-1147) $)) |%noBranch|))) (-543)) (T -398)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-543)) (-5 *1 (-398 *3)))) (-4318 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1948 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-536))))) (-4 *2 (-543)) (-5 *1 (-398 *2)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-536))))) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -2488 (-536))))) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1892 (*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *4)) (-4 *4 (-543)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1888 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1887 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543))))) +(-13 (-543) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4318 (|#1| $)) (-15 -2488 ((-536) $)) (-15 -1948 ($ |#1| (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))))) (-15 -2070 ((-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $)) (-15 -1894 ($ |#1| (-536))) (-15 -2762 ((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $)) (-15 -1893 ($ |#1| (-536))) (-15 -1892 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-536))) (-15 -1951 ((-749) $)) (-15 -1890 ($ |#1| (-536))) (-15 -1889 ($ |#1| (-536))) (-15 -1888 ($ |#1| (-536) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |#1| (-1188)) (-6 (-1188)) |%noBranch|) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1147) $)) (-6 (-505 (-1147) $)) |%noBranch|))) +((-4313 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 20))) +(((-399 |#1| |#2|) (-10 -7 (-15 -4313 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-543) (-543)) (T -399)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6))))) +(-10 -7 (-15 -4313 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 13)) (-3459 ((|#1| $) 21 (|has| |#1| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#1| (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 17) (((-3 (-1147) #2#) $) NIL (|has| |#1| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 70 (|has| |#1| (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 15) (((-1147) $) NIL (|has| |#1| (-1012 (-1147)))) (((-400 (-536)) $) 67 (|has| |#1| (-1012 (-536)))) (((-536) $) NIL (|has| |#1| (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 50)) (-3322 (($) NIL (|has| |#1| (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| |#1| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#1| (-860 (-371))))) (-2497 (((-112) $) 64)) (-3324 (($ $) NIL)) (-3326 ((|#1| $) 71)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3533 (((-112) $) NIL (|has| |#1| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 97)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| |#1| (-300)))) (-3460 ((|#1| $) 28 (|has| |#1| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 135 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 131 (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) NIL)) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3323 (($ $) NIL)) (-3325 ((|#1| $) 73)) (-4325 (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (((-525) $) NIL (|has| |#1| (-596 (-525)))) (((-371) $) NIL (|has| |#1| (-994))) (((-219) $) NIL (|has| |#1| (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 10) (($ (-1147)) NIL (|has| |#1| (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) 99 (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 100)) (-3461 ((|#1| $) 26 (|has| |#1| (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| |#1| (-798)))) (-2986 (($) 22 T CONST)) (-2992 (($) 8 T CONST)) (-2829 (((-1129) $) 43 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1129) $ (-112)) 44 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1235) (-801) $) 45 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1235) (-801) $ (-112)) 46 (-12 (|has| |#1| (-535)) (|has| |#1| (-799))))) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 56)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 24 (|has| |#1| (-825)))) (-4303 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4192 (($ $) 25) (($ $ $) 55)) (-4194 (($ $ $) 53)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 125)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 60) (($ $ $) 57) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-400 |#1|) (-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4346)) (-6 -4335) |%noBranch|) |%noBranch|) |%noBranch|))) (-543)) (T -400)) +NIL +(-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4346)) (-6 -4335) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4313 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13))) +(((-401 |#1| |#2|) (-10 -7 (-15 -4313 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-543) (-543)) (T -401)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))) +(-10 -7 (-15 -4313 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) +((-1896 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 18)) (-1906 (($ (-1229 |#2|) (-1229 $)) NIL) (($ (-1229 |#2|)) 24)) (-1895 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 38)) (-2125 ((|#3| $) 60)) (-4112 ((|#2| (-1229 $)) NIL) ((|#2|) 20)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 22) (((-667 |#2|) (-1229 $)) 36)) (-4325 (((-1229 |#2|) $) 11) (($ (-1229 |#2|)) 13)) (-2693 ((|#3| $) 52))) +(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-667 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -1896 ((-667 |#2|))) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2693 (|#3| |#1|)) (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) (-403 |#2| |#3|) (-170) (-1205 |#2|)) (T -402)) +((-1896 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-4112 (*1 *2) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) +(-10 -8 (-15 -1895 ((-667 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -1896 ((-667 |#2|))) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2693 (|#3| |#1|)) (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3030 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-403 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -403)) +((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *1)) (-4 *1 (-403 *3 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1205 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *3)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1205 *3)))) (-1896 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-667 *3)))) (-4112 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-667 *3))))) +(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -4325 ((-1229 |t#1|) $)) (-15 -4325 ($ (-1229 |t#1|))) (-15 -1896 ((-667 |t#1|))) (-15 -4112 (|t#1|)) (-15 -1895 ((-667 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-363 |#1| |#2|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) 27) (((-3 (-536) #1#) $) 19)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) 24) (((-536) $) 14)) (-4312 (($ |#2|) NIL) (($ (-400 (-536))) 22) (($ (-536)) 11))) +(((-404 |#1| |#2|) (-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|))) (-405 |#2|) (-1183)) (T -404)) +NIL +(-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|))) +((-3503 (((-3 |#1| #1="failed") $) 7) (((-3 (-400 (-536)) #1#) $) 16 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #1#) $) 13 (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 8) (((-400 (-536)) $) 15 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 12 (|has| |#1| (-1012 (-536))))) (-4312 (($ |#1|) 6) (($ (-400 (-536))) 17 (|has| |#1| (-1012 (-400 (-536))))) (($ (-536)) 14 (|has| |#1| (-1012 (-536)))))) +(((-405 |#1|) (-138) (-1183)) (T -405)) +NIL +(-13 (-1012 |t#1|) (-10 -7 (IF (|has| |t#1| (-1012 (-536))) (-6 (-1012 (-536))) |%noBranch|) (IF (|has| |t#1| (-1012 (-400 (-536)))) (-6 (-1012 (-400 (-536)))) |%noBranch|))) +(((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T)) +((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-1897 ((|#4| (-749) (-1229 |#4|)) 56)) (-2497 (((-112) $) NIL)) (-3326 (((-1229 |#4|) $) 17)) (-3462 ((|#2| $) 54)) (-1898 (($ $) 139)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 100)) (-2087 (($ (-1229 |#4|)) 99)) (-3589 (((-1091) $) NIL)) (-3325 ((|#1| $) 18)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 134)) (-2123 (((-1229 |#4|) $) 129)) (-2992 (($) 11 T CONST)) (-3382 (((-112) $ $) 40)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 122)) (* (($ $ $) 121))) +(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2087 ($ (-1229 |#4|))) (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -3326 ((-1229 |#4|) $)) (-15 -3325 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-749) (-1229 |#4|))))) (-300) (-965 |#1|) (-1205 |#2|) (-13 (-403 |#2| |#3|) (-1012 |#2|))) (T -406)) +((-2087 (*1 *1 *2) (-12 (-5 *2 (-1229 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) (-3462 (*1 *2 *1) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1012 *2))))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) (-3325 (*1 *2 *1) (-12 (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) (-1898 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1229 *2)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *2 (-13 (-403 *6 *7) (-1012 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1205 *6))))) +(-13 (-465) (-10 -8 (-15 -2087 ($ (-1229 |#4|))) (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -3326 ((-1229 |#4|) $)) (-15 -3325 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-749) (-1229 |#4|))))) +((-4313 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33))) +(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-965 |#1|) (-1205 |#2|) (-13 (-403 |#2| |#3|) (-1012 |#2|)) (-300) (-965 |#5|) (-1205 |#6|) (-13 (-403 |#6| |#7|) (-1012 |#6|))) (T -407)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *7 (-1205 *6)) (-4 *8 (-13 (-403 *6 *7) (-1012 *6))) (-4 *9 (-300)) (-4 *10 (-965 *9)) (-4 *11 (-1205 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1012 *10)))))) +(-10 -7 (-15 -4313 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) +((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3462 ((|#2| $) 61)) (-1899 (($ (-1229 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1012 |#2|)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 34)) (-2123 (((-1229 |#4|) $) 26)) (-2992 (($) 23 T CONST)) (-3382 (((-112) $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ $ $) 72))) +(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-705) (-10 -8 (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -1899 ($ (-1229 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-965 |#1|) (-1205 |#2|) (-403 |#2| |#3|) (-1229 |#4|)) (T -408)) +((-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-3462 (*1 *2 *1) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1229 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-1229 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) +(-13 (-705) (-10 -8 (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -1899 ($ (-1229 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-170) (-411 |#4|) (-170)) (T -409)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) +(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) +((-1887 (((-3 $ #1="failed")) 86)) (-3569 (((-1229 (-667 |#2|)) (-1229 $)) NIL) (((-1229 (-667 |#2|))) 91)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 85)) (-1814 (((-3 $ #1#)) 84)) (-1902 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 102)) (-1900 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 110)) (-2017 (((-1141 (-920 |#2|))) 55)) (-1904 ((|#2| (-1229 $)) NIL) ((|#2|) 106)) (-1906 (($ (-1229 |#2|) (-1229 $)) NIL) (($ (-1229 |#2|)) 112)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 83)) (-1815 (((-3 $ #1#)) 75)) (-1903 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 100)) (-1901 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 108)) (-2021 (((-1141 (-920 |#2|))) 54)) (-1905 ((|#2| (-1229 $)) NIL) ((|#2|) 104)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 111) (((-667 |#2|) (-1229 $)) 118)) (-4325 (((-1229 |#2|) $) 96) (($ (-1229 |#2|)) 98)) (-2009 (((-620 (-920 |#2|)) (-1229 $)) NIL) (((-620 (-920 |#2|))) 94)) (-2875 (($ (-667 |#2|) $) 90))) +(((-410 |#1| |#2|) (-10 -8 (-15 -2875 (|#1| (-667 |#2|) |#1|)) (-15 -2017 ((-1141 (-920 |#2|)))) (-15 -2021 ((-1141 (-920 |#2|)))) (-15 -1900 ((-667 |#2|) |#1|)) (-15 -1901 ((-667 |#2|) |#1|)) (-15 -1902 ((-667 |#2|))) (-15 -1903 ((-667 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -2009 ((-620 (-920 |#2|)))) (-15 -3569 ((-1229 (-667 |#2|)))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|))) (-15 -2009 ((-620 (-920 |#2|)) (-1229 |#1|)))) (-411 |#2|) (-170)) (T -410)) +((-3569 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2009 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1905 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1904 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1903 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2021 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2017 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) +(-10 -8 (-15 -2875 (|#1| (-667 |#2|) |#1|)) (-15 -2017 ((-1141 (-920 |#2|)))) (-15 -2021 ((-1141 (-920 |#2|)))) (-15 -1900 ((-667 |#2|) |#1|)) (-15 -1901 ((-667 |#2|) |#1|)) (-15 -1902 ((-667 |#2|))) (-15 -1903 ((-667 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -2009 ((-620 (-920 |#2|)))) (-15 -3569 ((-1229 (-667 |#2|)))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|))) (-15 -2009 ((-620 (-920 |#2|)) (-1229 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1887 (((-3 $ #1="failed")) 37 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) 78) (((-1229 (-667 |#1|))) 100)) (-1840 (((-1229 $)) 81)) (-3891 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 40 (|has| |#1| (-543)))) (-1814 (((-3 $ #1#)) 38 (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) 65) (((-667 |#1|)) 92)) (-1838 ((|#1| $) 74)) (-1900 (((-667 |#1|) $ (-1229 $)) 76) (((-667 |#1|) $) 90)) (-2491 (((-3 $ #1#) $) 45 (|has| |#1| (-543)))) (-2017 (((-1141 (-920 |#1|))) 88 (|has| |#1| (-356)))) (-2494 (($ $ (-893)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1141 |#1|) $) 42 (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) 67) ((|#1|) 94)) (-1834 (((-1141 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1229 |#1|) (-1229 $)) 69) (($ (-1229 |#1|)) 98)) (-3816 (((-3 $ #1#) $) 47 (|has| |#1| (-543)))) (-3439 (((-893)) 80)) (-1825 (((-112)) 54)) (-2519 (($ $ (-893)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 41 (|has| |#1| (-543)))) (-1815 (((-3 $ #1#)) 39 (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) 66) (((-667 |#1|)) 93)) (-1839 ((|#1| $) 75)) (-1901 (((-667 |#1|) $ (-1229 $)) 77) (((-667 |#1|) $) 91)) (-2492 (((-3 $ #1#) $) 46 (|has| |#1| (-543)))) (-2021 (((-1141 (-920 |#1|))) 89 (|has| |#1| (-356)))) (-2493 (($ $ (-893)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1141 |#1|) $) 43 (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) 68) ((|#1|) 95)) (-1835 (((-1141 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3588 (((-1129) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3589 (((-1091) $) 10)) (-1827 (((-112)) 56)) (-4154 ((|#1| $ (-536)) 101)) (-3570 (((-1229 |#1|) $ (-1229 $)) 71) (((-667 |#1|) (-1229 $) (-1229 $)) 70) (((-1229 |#1|) $) 103) (((-667 |#1|) (-1229 $)) 102)) (-4325 (((-1229 |#1|) $) 97) (($ (-1229 |#1|)) 96)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) 79) (((-620 (-920 |#1|))) 99)) (-2681 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4312 (((-838) $) 11)) (-2123 (((-1229 $)) 104)) (-1818 (((-620 (-1229 |#1|))) 44 (|has| |#1| (-543)))) (-2682 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2875 (($ (-667 |#1|) $) 87)) (-2680 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-411 |#1|) (-138) (-170)) (T -411)) +((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-411 *3)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-3569 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 (-667 *3))))) (-2009 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-620 (-920 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1904 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1903 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2021 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-920 *3))))) (-2017 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-920 *3))))) (-2875 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170))))) +(-13 (-360 |t#1|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -4154 (|t#1| $ (-536))) (-15 -3569 ((-1229 (-667 |t#1|)))) (-15 -2009 ((-620 (-920 |t#1|)))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -4325 ((-1229 |t#1|) $)) (-15 -4325 ($ (-1229 |t#1|))) (-15 -1905 (|t#1|)) (-15 -1904 (|t#1|)) (-15 -1903 ((-667 |t#1|))) (-15 -1902 ((-667 |t#1|))) (-15 -1901 ((-667 |t#1|) $)) (-15 -1900 ((-667 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2021 ((-1141 (-920 |t#1|)))) (-15 -2017 ((-1141 (-920 |t#1|))))) |%noBranch|) (-15 -2875 ($ (-667 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-360 |#1|) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-3464 (((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|)) 21)) (-1907 (((-398 |#1|) (-398 |#1|) (-398 |#1|)) 16))) +(((-412 |#1|) (-10 -7 (-15 -3464 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) (-543)) (T -412)) +((-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-543)) (-5 *1 (-412 *3)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-543)) (-5 *2 (-398 *4)) (-5 *1 (-412 *4))))) +(-10 -7 (-15 -3464 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) +((-3412 (((-620 (-1147)) $) 72)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 273)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) 237)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-1147) #1#) $) 75) (((-3 (-536) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-400 (-920 |#2|)) #1#) $) 324) (((-3 (-920 |#2|) #1#) $) 235) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-1147) $) 30) (((-536) $) NIL) ((|#2| $) 231) (((-400 (-920 |#2|)) $) 305) (((-920 |#2|) $) 232) (((-400 (-536)) $) NIL)) (-3375 (((-113) (-113)) 47)) (-3324 (($ $) 87)) (-1657 (((-3 (-593 $) "failed") $) 228)) (-1656 (((-620 (-593 $)) $) 229)) (-3151 (((-3 (-620 $) "failed") $) 247)) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $) 254)) (-3150 (((-3 (-620 $) "failed") $) 245)) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $) 264)) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $) 251) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147)) 219)) (-1911 (((-112) $) 19)) (-1910 ((|#2| $) 21)) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) 236) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 96) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1147)) 57) (($ $ (-620 (-1147))) 240) (($ $) 241) (($ $ (-113) $ (-1147)) 60) (($ $ (-620 (-113)) (-620 $) (-1147)) 67) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 107) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 242) (($ $ (-1147) (-749) (-1 $ (-620 $))) 94) (($ $ (-1147) (-749) (-1 $ $)) 93)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) 106)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) 238)) (-3323 (($ $) 284)) (-4325 (((-864 (-536)) $) 257) (((-864 (-371)) $) 261) (($ (-398 $)) 320) (((-525) $) NIL)) (-4312 (((-838) $) 239) (($ (-593 $)) 84) (($ (-1147)) 26) (($ |#2|) NIL) (($ (-1096 |#2| (-593 $))) NIL) (($ (-400 |#2|)) 289) (($ (-920 (-400 |#2|))) 329) (($ (-400 (-920 (-400 |#2|)))) 301) (($ (-400 (-920 |#2|))) 295) (($ $) NIL) (($ (-920 |#2|)) 185) (($ (-400 (-536))) 334) (($ (-536)) NIL)) (-3456 (((-749)) 79)) (-2333 (((-112) (-113)) 41)) (-1909 (($ (-1147) $) 33) (($ (-1147) $ $) 34) (($ (-1147) $ $ $) 35) (($ (-1147) $ $ $ $) 36) (($ (-1147) (-620 $)) 39)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) +(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-893) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3456 ((-749))) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-920 |#2|) |#1|)) (-15 -3503 ((-3 (-920 |#2|) #1#) |#1|)) (-15 -4312 (|#1| (-920 |#2|))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -3502 ((-400 (-920 |#2|)) |#1|)) (-15 -3503 ((-3 (-400 (-920 |#2|)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-920 |#2|)))) (-15 -3414 ((-400 (-1141 |#1|)) |#1| (-593 |#1|))) (-15 -4312 (|#1| (-400 (-920 (-400 |#2|))))) (-15 -4312 (|#1| (-920 (-400 |#2|)))) (-15 -4312 (|#1| (-400 |#2|))) (-15 -3323 (|#1| |#1|)) (-15 -4325 (|#1| (-398 |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| |#1|)))) (-15 -3153 ((-3 (-2 (|:| |val| |#1|) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-1147))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-113))) (-15 -3324 (|#1| |#1|)) (-15 -4312 (|#1| (-1096 |#2| (-593 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 |#1|))) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 |#1|) (-1147))) (-15 -4122 (|#1| |#1| (-113) |#1| (-1147))) (-15 -4122 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1147)))) (-15 -4122 (|#1| |#1| (-1147))) (-15 -1909 (|#1| (-1147) (-620 |#1|))) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1|)) (-15 -3412 ((-620 (-1147)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1656 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) #1#) |#1|)) (-15 -4312 (|#1| (-593 |#1|))) (-15 -4312 ((-838) |#1|))) (-414 |#2|) (-825)) (T -413)) +((-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-825)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3456 (*1 *2) (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))) +(-10 -8 (-15 * (|#1| (-893) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3456 ((-749))) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-920 |#2|) |#1|)) (-15 -3503 ((-3 (-920 |#2|) #1#) |#1|)) (-15 -4312 (|#1| (-920 |#2|))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -3502 ((-400 (-920 |#2|)) |#1|)) (-15 -3503 ((-3 (-400 (-920 |#2|)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-920 |#2|)))) (-15 -3414 ((-400 (-1141 |#1|)) |#1| (-593 |#1|))) (-15 -4312 (|#1| (-400 (-920 (-400 |#2|))))) (-15 -4312 (|#1| (-920 (-400 |#2|)))) (-15 -4312 (|#1| (-400 |#2|))) (-15 -3323 (|#1| |#1|)) (-15 -4325 (|#1| (-398 |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| |#1|)))) (-15 -3153 ((-3 (-2 (|:| |val| |#1|) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-1147))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-113))) (-15 -3324 (|#1| |#1|)) (-15 -4312 (|#1| (-1096 |#2| (-593 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 |#1|))) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 |#1|) (-1147))) (-15 -4122 (|#1| |#1| (-113) |#1| (-1147))) (-15 -4122 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1147)))) (-15 -4122 (|#1| |#1| (-1147))) (-15 -1909 (|#1| (-1147) (-620 |#1|))) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1|)) (-15 -3412 ((-620 (-1147)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1656 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) #1#) |#1|)) (-15 -4312 (|#1| (-593 |#1|))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 113 (|has| |#1| (-25)))) (-3412 (((-620 (-1147)) $) 200)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 168 (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 140 (|has| |#1| (-543)))) (-2173 (($ $) 141 (|has| |#1| (-543)))) (-2171 (((-112) $) 143 (|has| |#1| (-543)))) (-1655 (((-620 (-593 $)) $) 44)) (-1367 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1659 (($ $ (-286 $)) 56) (($ $ (-620 (-286 $))) 55) (($ $ (-620 (-593 $)) (-620 $)) 54)) (-4129 (($ $) 160 (|has| |#1| (-543)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-543)))) (-1700 (((-112) $ $) 151 (|has| |#1| (-543)))) (-3891 (($) 101 (-3886 (|has| |#1| (-1083)) (|has| |#1| (-25))) CONST)) (-3503 (((-3 (-593 $) #1="failed") $) 69) (((-3 (-1147) #1#) $) 213) (((-3 (-536) #1#) $) 206 (|has| |#1| (-1012 (-536)))) (((-3 |#1| #1#) $) 204) (((-3 (-400 (-920 |#1|)) #1#) $) 166 (|has| |#1| (-543))) (((-3 (-920 |#1|) #1#) $) 120 (|has| |#1| (-1023))) (((-3 (-400 (-536)) #1#) $) 95 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-593 $) $) 68) (((-1147) $) 212) (((-536) $) 207 (|has| |#1| (-1012 (-536)))) ((|#1| $) 203) (((-400 (-920 |#1|)) $) 165 (|has| |#1| (-543))) (((-920 |#1|) $) 119 (|has| |#1| (-1023))) (((-400 (-536)) $) 94 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) 155 (|has| |#1| (-543)))) (-2357 (((-667 (-536)) (-667 $)) 134 (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 133 (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 132 (|has| |#1| (-1023))) (((-667 |#1|) (-667 $)) 131 (|has| |#1| (-1023)))) (-3816 (((-3 $ "failed") $) 103 (|has| |#1| (-1083)))) (-2888 (($ $ $) 154 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-543)))) (-4081 (((-112) $) 162 (|has| |#1| (-543)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 209 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 208 (|has| |#1| (-860 (-371))))) (-2898 (($ $) 51) (($ (-620 $)) 50)) (-1654 (((-620 (-113)) $) 43)) (-3375 (((-113) (-113)) 42)) (-2497 (((-112) $) 102 (|has| |#1| (-1083)))) (-3001 (((-112) $) 22 (|has| $ (-1012 (-536))))) (-3324 (($ $) 183 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 184 (|has| |#1| (-1023)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 158 (|has| |#1| (-543)))) (-1652 (((-1141 $) (-593 $)) 25 (|has| $ (-1023)))) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-4313 (($ (-1 $ $) (-593 $)) 36)) (-1657 (((-3 (-593 $) "failed") $) 46)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-543))) (($ $ $) 146 (|has| |#1| (-543)))) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 45)) (-2312 (($ (-113) $) 38) (($ (-113) (-620 $)) 37)) (-3151 (((-3 (-620 $) "failed") $) 189 (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $) 180 (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) "failed") $) 187 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $) 188 (|has| |#1| (-1083))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113)) 182 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147)) 181 (|has| |#1| (-1023)))) (-2959 (((-112) $ (-113)) 40) (((-112) $ (-1147)) 39)) (-2729 (($ $) 105 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-2928 (((-749) $) 47)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 202)) (-1910 ((|#1| $) 201)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-543)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-543))) (($ $ $) 144 (|has| |#1| (-543)))) (-1653 (((-112) $ $) 35) (((-112) $ (-1147)) 34)) (-4087 (((-398 $) $) 159 (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-543))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ $) 139 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-543)))) (-3002 (((-112) $) 23 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) 67) (($ $ (-620 (-593 $)) (-620 $)) 66) (($ $ (-620 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-620 $) (-620 $)) 62) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 33) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 32) (($ $ (-1147) (-1 $ (-620 $))) 31) (($ $ (-1147) (-1 $ $)) 30) (($ $ (-620 (-113)) (-620 (-1 $ $))) 29) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 28) (($ $ (-113) (-1 $ (-620 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1147)) 194 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) 193 (|has| |#1| (-596 (-525)))) (($ $) 192 (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 191 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-113)) (-620 $) (-1147)) 190 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 179 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 178 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) 177 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ $)) 176 (|has| |#1| (-1023)))) (-1699 (((-749) $) 152 (|has| |#1| (-543)))) (-4154 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-620 $)) 57)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-543)))) (-1658 (($ $) 49) (($ $ $) 48)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 125 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 124 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 123 (|has| |#1| (-1023))) (($ $ (-1147)) 122 (|has| |#1| (-1023)))) (-3323 (($ $) 173 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 174 (|has| |#1| (-543)))) (-3531 (($ $) 24 (|has| $ (-1023)))) (-4325 (((-864 (-536)) $) 211 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 210 (|has| |#1| (-596 (-864 (-371))))) (($ (-398 $)) 175 (|has| |#1| (-543))) (((-525) $) 97 (|has| |#1| (-596 (-525))))) (-3337 (($ $ $) 108 (|has| |#1| (-465)))) (-2681 (($ $ $) 109 (|has| |#1| (-465)))) (-4312 (((-838) $) 11) (($ (-593 $)) 70) (($ (-1147)) 214) (($ |#1|) 205) (($ (-1096 |#1| (-593 $))) 185 (|has| |#1| (-1023))) (($ (-400 |#1|)) 171 (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) 170 (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) 169 (|has| |#1| (-543))) (($ (-400 (-920 |#1|))) 167 (|has| |#1| (-543))) (($ $) 138 (|has| |#1| (-543))) (($ (-920 |#1|)) 121 (|has| |#1| (-1023))) (($ (-400 (-536))) 96 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536)))))) (($ (-536)) 93 (-3886 (|has| |#1| (-1023)) (|has| |#1| (-1012 (-536)))))) (-3030 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3456 (((-749)) 130 (|has| |#1| (-1023)))) (-2915 (($ $) 53) (($ (-620 $)) 52)) (-2333 (((-112) (-113)) 41)) (-2172 (((-112) $ $) 142 (|has| |#1| (-543)))) (-1909 (($ (-1147) $) 199) (($ (-1147) $ $) 198) (($ (-1147) $ $ $) 197) (($ (-1147) $ $ $ $) 196) (($ (-1147) (-620 $)) 195)) (-2986 (($) 112 (|has| |#1| (-25)) CONST)) (-2992 (($) 100 (|has| |#1| (-1083)) CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 129 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 128 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 127 (|has| |#1| (-1023))) (($ $ (-1147)) 126 (|has| |#1| (-1023)))) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4303 (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 172 (|has| |#1| (-543))) (($ $ $) 106 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-4192 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4194 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-536)) 107 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543)))) (($ $ (-749)) 104 (|has| |#1| (-1083))) (($ $ (-893)) 99 (|has| |#1| (-1083)))) (* (($ (-400 (-536)) $) 164 (|has| |#1| (-543))) (($ $ (-400 (-536))) 163 (|has| |#1| (-543))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-536) $) 118 (|has| |#1| (-21))) (($ (-749) $) 114 (|has| |#1| (-25))) (($ (-893) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1083))))) +(((-414 |#1|) (-138) (-825)) (T -414)) +((-1911 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-620 (-1147))))) (-1909 (*1 *1 *2 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-525))))) (-4122 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1147)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-596 (-525))))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 *1)) (-5 *4 (-1147)) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-525))))) (-3151 (*1 *2 *1) (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-414 *3)))) (-3152 (*1 *2 *1) (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) (-3150 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-414 *3)))) (-1908 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 (-536)) (|:| |var| (-593 *1)))) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-1023)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) (-4 *1 (-414 *3)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-1023)))) (-3152 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1023)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) (-3152 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-1023)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) (-3153 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |val| *1) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-620 *1))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-3325 (*1 *2 *1) (-12 (-4 *3 (-543)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) (-4 *1 (-414 *3)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-543)))) (-4303 (*1 *1 *2 *2) (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 *3))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-400 *3)))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-593 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-543)) (-5 *2 (-400 (-1141 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-1083))))) +(-13 (-291) (-1012 (-1147)) (-858 |t#1|) (-393 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1909 ($ (-1147) $)) (-15 -1909 ($ (-1147) $ $)) (-15 -1909 ($ (-1147) $ $ $)) (-15 -1909 ($ (-1147) $ $ $ $)) (-15 -1909 ($ (-1147) (-620 $))) (IF (|has| |t#1| (-596 (-525))) (PROGN (-6 (-596 (-525))) (-15 -4122 ($ $ (-1147))) (-15 -4122 ($ $ (-620 (-1147)))) (-15 -4122 ($ $)) (-15 -4122 ($ $ (-113) $ (-1147))) (-15 -4122 ($ $ (-620 (-113)) (-620 $) (-1147)))) |%noBranch|) (IF (|has| |t#1| (-1083)) (PROGN (-6 (-705)) (-15 ** ($ $ (-749))) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-1012 (-920 |t#1|))) (-6 (-874 (-1147))) (-6 (-370 |t#1|)) (-15 -4312 ($ (-1096 |t#1| (-593 $)))) (-15 -3326 ((-1096 |t#1| (-593 $)) $)) (-15 -3324 ($ $)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147))) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $)) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-1147) (-749) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-1147) (-749) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-356)) (-6 (-1012 (-400 (-920 |t#1|)))) (-15 -4325 ($ (-398 $))) (-15 -3325 ((-1096 |t#1| (-593 $)) $)) (-15 -3323 ($ $)) (-15 -4303 ($ (-1096 |t#1| (-593 $)) (-1096 |t#1| (-593 $)))) (-15 -4312 ($ (-400 |t#1|))) (-15 -4312 ($ (-920 (-400 |t#1|)))) (-15 -4312 ($ (-400 (-920 (-400 |t#1|))))) (-15 -3414 ((-400 (-1141 $)) $ (-593 $))) (IF (|has| |t#1| (-1012 (-536))) (-6 (-1012 (-400 (-536)))) |%noBranch|)) |%noBranch|))) +(((-21) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-400 (-536))) |has| |#1| (-543)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-543)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-543)) ((-130) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) |has| |#1| (-543)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-237) |has| |#1| (-543)) ((-283) |has| |#1| (-543)) ((-300) |has| |#1| (-543)) ((-302 $) . T) ((-291) . T) ((-356) |has| |#1| (-543)) ((-370 |#1|) |has| |#1| (-1023)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) |has| |#1| (-543)) ((-465) |has| |#1| (-465)) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-543)) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-619 (-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) ((-619 |#1|) |has| |#1| (-1023)) ((-696 #1#) |has| |#1| (-543)) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) -3886 (|has| |#1| (-1083)) (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-825) . T) ((-874 (-1147)) |has| |#1| (-1023)) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-895) |has| |#1| (-543)) ((-1012 (-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) ((-1012 (-400 (-920 |#1|))) |has| |#1| (-543)) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-593 $)) . T) ((-1012 (-920 |#1|)) |has| |#1| (-1023)) ((-1012 (-1147)) . T) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-543)) ((-1029 |#1|) |has| |#1| (-170)) ((-1029 $) |has| |#1| (-543)) ((-1023) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1030) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1083) -3886 (|has| |#1| (-1083)) (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1072) . T) ((-1183) . T) ((-1188) |has| |#1| (-543))) +((-4313 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1023) (-825)) (-414 |#1|) (-13 (-1023) (-825)) (-414 |#3|)) (T -415)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1023) (-825))) (-4 *6 (-13 (-1023) (-825))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-414 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) +((-1915 ((|#2| |#2|) 166)) (-1912 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112)) 57))) +(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -416)) +((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1169) (-414 *3))) (-14 *4 (-1147)) (-14 *5 *2))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-14 *6 (-1147)) (-14 *7 *3)))) +(-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) +((-1915 ((|#2| |#2|) 90)) (-1913 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129)) 48)) (-1914 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129)) 154))) +(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|) (-10 -8 (-15 -4312 ($ |#3|)))) (-823) (-13 (-1208 |#2| |#3|) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $)))) (-957 |#4|) (-1147)) (T -417)) +((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *2 (-13 (-27) (-1169) (-414 *3) (-10 -8 (-15 -4312 ($ *4))))) (-4 *4 (-823)) (-4 *5 (-13 (-1208 *2 *4) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1147)))) (-1914 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1208 *3 *7) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) (-14 *10 (-1147)))) (-1913 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1208 *3 *7) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) (-14 *10 (-1147))))) +(-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1915 (|#2| |#2|))) +((-1916 (($) 44)) (-3580 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3582 (($ $ $) 39)) (-3581 (((-112) $ $) 28)) (-3466 (((-749)) 47)) (-3585 (($ (-620 |#2|)) 20) (($) NIL)) (-3322 (($) 53)) (-3587 (((-112) $ $) 13)) (-3672 ((|#2| $) 61)) (-3673 ((|#2| $) 59)) (-2121 (((-893) $) 55)) (-3584 (($ $ $) 35)) (-2487 (($ (-893)) 50)) (-3583 (($ $ |#2|) NIL) (($ $ $) 38)) (-2064 (((-749) (-1 (-112) |#2|) $) NIL) (((-749) |#2| $) 26)) (-3879 (($ (-620 |#2|)) 24)) (-1917 (($ $) 46)) (-4312 (((-838) $) 33)) (-1918 (((-749) $) 21)) (-3586 (($ (-620 |#2|)) 19) (($) NIL)) (-3382 (((-112) $ $) 16))) +(((-418 |#1| |#2|) (-10 -8 (-15 -3466 ((-749))) (-15 -2487 (|#1| (-893))) (-15 -2121 ((-893) |#1|)) (-15 -3322 (|#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-749) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3587 ((-112) |#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3586 (|#1| (-620 |#2|))) (-15 -3585 (|#1|)) (-15 -3585 (|#1| (-620 |#2|))) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3581 ((-112) |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#2| |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|))) (-419 |#2|) (-1072)) (T -418)) +((-3466 (*1 *2) (-12 (-4 *4 (-1072)) (-5 *2 (-749)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -3466 ((-749))) (-15 -2487 (|#1| (-893))) (-15 -2121 ((-893) |#1|)) (-15 -3322 (|#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-749) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3587 ((-112) |#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3586 (|#1| (-620 |#2|))) (-15 -3585 (|#1|)) (-15 -3585 (|#1| (-620 |#2|))) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3581 ((-112) |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#2| |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|))) +((-2893 (((-112) $ $) 19)) (-1916 (($) 67 (|has| |#1| (-361)))) (-3580 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3582 (($ $ $) 78)) (-3581 (((-112) $ $) 79)) (-1269 (((-112) $ (-749)) 8)) (-3466 (((-749)) 61 (|has| |#1| (-361)))) (-3585 (($ (-620 |#1|)) 74) (($) 73)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-3322 (($) 64 (|has| |#1| (-361)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 70)) (-4077 (((-112) $ (-749)) 9)) (-3672 ((|#1| $) 65 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 66 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-2121 (((-893) $) 63 (|has| |#1| (-361)))) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 75)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-2487 (($ (-893)) 62 (|has| |#1| (-361)))) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3583 (($ $ |#1|) 77) (($ $ $) 76)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-1917 (($ $) 68 (|has| |#1| (-361)))) (-4312 (((-838) $) 18)) (-1918 (((-749) $) 69)) (-3586 (($ (-620 |#1|)) 72) (($) 71)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-419 |#1|) (-138) (-1072)) (T -419)) +((-1918 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1072)) (-5 *2 (-749)))) (-1917 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-361)))) (-1916 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1072)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825))))) +(-13 (-223 |t#1|) (-1070 |t#1|) (-10 -8 (-6 -4348) (-15 -1918 ((-749) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1917 ($ $)) (-15 -1916 ($))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -3673 (|t#1| $)) (-15 -3672 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) +((-4196 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4197 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4313 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1072) (-419 |#1|) (-1072) (-419 |#3|)) (T -420)) +((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1072)) (-4 *5 (-1072)) (-4 *2 (-419 *5)) (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1072)) (-4 *2 (-1072)) (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-419 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1919 (((-567 |#2|) |#2| (-1147)) 36)) (-2215 (((-567 |#2|) |#2| (-1147)) 20)) (-2256 ((|#2| |#2| (-1147)) 25))) +(((-421 |#1| |#2|) (-10 -7 (-15 -2215 ((-567 |#2|) |#2| (-1147))) (-15 -1919 ((-567 |#2|) |#2| (-1147))) (-15 -2256 (|#2| |#2| (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-29 |#1|))) (T -421)) +((-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1169) (-29 *4))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5))))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5)))))) +(-10 -7 (-15 -2215 ((-567 |#2|) |#2| (-1147))) (-15 -1919 ((-567 |#2|) |#2| (-1147))) (-15 -2256 (|#2| |#2| (-1147)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-1921 (($ |#2| |#1|) 35)) (-1920 (($ |#2| |#1|) 33)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-3456 (((-749)) NIL)) (-2986 (($) 10 T CONST)) (-2992 (($) 16 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4335)) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) |%noBranch|) (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-536)))) (-13 (-825) (-21))) (T -422)) +((-4312 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-536))))) (-4 *3 (-13 (-825) (-21))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))))) (-1921 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) (-4 *2 (-13 (-825) (-21))))) (-1920 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) (-4 *2 (-13 (-825) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4335)) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) |%noBranch|) (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) +((-4167 (((-3 |#2| (-620 |#2|)) |#2| (-1147)) 109))) +(((-423 |#1| |#2|) (-10 -7 (-15 -4167 ((-3 |#2| (-620 |#2|)) |#2| (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -423)) +((-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 *3 (-620 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1169) (-934) (-29 *5)))))) +(-10 -7 (-15 -4167 ((-3 |#2| (-620 |#2|)) |#2| (-1147)))) +((-3740 ((|#2| |#2| |#2|) 33)) (-3375 (((-113) (-113)) 44)) (-1923 ((|#2| |#2|) 66)) (-1922 ((|#2| |#2|) 69)) (-3739 ((|#2| |#2|) 32)) (-3743 ((|#2| |#2| |#2|) 35)) (-3745 ((|#2| |#2| |#2|) 37)) (-3742 ((|#2| |#2| |#2|) 34)) (-3744 ((|#2| |#2| |#2|) 36)) (-2333 (((-112) (-113)) 42)) (-3747 ((|#2| |#2|) 39)) (-3746 ((|#2| |#2|) 38)) (-3737 ((|#2| |#2|) 27)) (-3741 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3738 ((|#2| |#2| |#2|) 31))) +(((-424 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -3737 (|#2| |#2|)) (-15 -3741 (|#2| |#2|)) (-15 -3741 (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3740 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) (-13 (-825) (-543)) (-414 |#1|)) (T -424)) +((-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3744 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3740 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3738 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3741 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *4)) (-4 *4 (-414 *3)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4))))) +(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -3737 (|#2| |#2|)) (-15 -3741 (|#2| |#2|)) (-15 -3741 (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3740 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) +((-3161 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|)) 61))) +(((-425 |#1| |#2|) (-10 -7 (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|))) (IF (|has| |#2| (-27)) (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-543) (-825) (-145)) (-414 |#1|)) (T -425)) +((-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-543) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) (|:| |pol2| (-1141 *3)) (|:| |prim| (-1141 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-543) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-620 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-425 *4 *5))))) +(-10 -7 (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|))) (IF (|has| |#2| (-27)) (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1925 (((-1235)) 19)) (-1924 (((-1141 (-400 (-536))) |#2| (-593 |#2|)) 41) (((-400 (-536)) |#2|) 25))) +(((-426 |#1| |#2|) (-10 -7 (-15 -1924 ((-400 (-536)) |#2|)) (-15 -1924 ((-1141 (-400 (-536))) |#2| (-593 |#2|))) (-15 -1925 ((-1235)))) (-13 (-825) (-543) (-1012 (-536))) (-414 |#1|)) (T -426)) +((-1925 (*1 *2) (-12 (-4 *3 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1235)) (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-593 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-426 *5 *3)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4))))) +(-10 -7 (-15 -1924 ((-400 (-536)) |#2|)) (-15 -1924 ((-1141 (-400 (-536))) |#2| (-593 |#2|))) (-15 -1925 ((-1235)))) +((-4003 (((-112) $) 28)) (-1926 (((-112) $) 30)) (-3605 (((-112) $) 31)) (-1928 (((-112) $) 34)) (-1930 (((-112) $) 29)) (-1929 (((-112) $) 33)) (-4312 (((-838) $) 18) (($ (-1129)) 27) (($ (-1147)) 23) (((-1147) $) 22) (((-1074) $) 21)) (-1927 (((-112) $) 32)) (-3382 (((-112) $ $) 15))) +(((-427) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -4312 ((-1074) $)) (-15 -4003 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3382 ((-112) $ $))))) (T -427)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-427)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-427)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3382 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -4312 ((-1074) $)) (-15 -4003 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3382 ((-112) $ $)))) +((-1932 (((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|) 70)) (-1931 (((-398 |#3|) |#3|) 34)) (-1934 (((-3 (-398 (-1141 (-48))) "failed") |#3|) 46 (|has| |#2| (-1012 (-48))))) (-1933 (((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|) 37))) +(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -1934 ((-3 (-398 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-543) (-825) (-1012 (-536))) (-414 |#1|) (-1205 |#2|)) (T -428)) +((-1934 (*1 *2 *3) (|partial| -12 (-4 *5 (-1012 (-48))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1141 (-400 (-536))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -1934 ((-3 (-398 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-1943 (((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $) 11)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1941 (($) 32)) (-1938 (($) 38)) (-1939 (($) 34)) (-1936 (($) 36)) (-1940 (($) 33)) (-1937 (($) 35)) (-1935 (($) 37)) (-1942 (((-112) $) 8)) (-2677 (((-620 (-920 (-536))) $) 19)) (-3879 (($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112)) 28)) (-4312 (((-838) $) 23) (($ (-427)) 29)) (-3382 (((-112) $ $) NIL))) +(((-429) (-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -4312 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -2677 ((-620 (-920 (-536))) $)) (-15 -1942 ((-112) $)) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112))) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($))))) (T -429)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-429)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *1 (-429)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-620 (-920 (-536)))) (-5 *1 (-429)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-1147))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1941 (*1 *1) (-5 *1 (-429))) (-1940 (*1 *1) (-5 *1 (-429))) (-1939 (*1 *1) (-5 *1 (-429))) (-1938 (*1 *1) (-5 *1 (-429))) (-1937 (*1 *1) (-5 *1 (-429))) (-1936 (*1 *1) (-5 *1 (-429))) (-1935 (*1 *1) (-5 *1 (-429)))) +(-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -4312 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -2677 ((-620 (-920 (-536))) $)) (-15 -1942 ((-112) $)) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112))) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($)))) +((-2893 (((-112) $ $) NIL)) (-1808 (((-1129) $ (-1129)) NIL)) (-1812 (($ $ (-1129)) NIL)) (-1809 (((-1129) $) NIL)) (-1947 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) NIL)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1946 (((-1235) (-1129)) 9)) (-1945 (((-1235) (-1129)) 10)) (-1944 (((-1235)) 11)) (-4312 (((-838) $) NIL)) (-1811 (($ $) 35)) (-3382 (((-112) $ $) NIL))) +(((-430) (-13 (-358 (-381) (-1129)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1235) (-1129))) (-15 -1945 ((-1235) (-1129))) (-15 -1944 ((-1235)))))) (T -430)) +((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430)))) (-1944 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-430))))) +(-13 (-358 (-381) (-1129)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1235) (-1129))) (-15 -1945 ((-1235) (-1129))) (-15 -1944 ((-1235))))) +((-2893 (((-112) $ $) NIL)) (-3900 (((-1147) $) 8)) (-3588 (((-1129) $) 16)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 13))) +(((-431 |#1|) (-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) (-1147)) (T -431)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-431 *3)) (-14 *3 *2)))) +(-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) +((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-1229 (-677))) 14) (($ (-620 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 11))) (((-432) (-138)) (T -432)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-677))) (-4 *1 (-432)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-432)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-4 *1 (-432))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-1228 (-677)))) (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-323))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))))) -(((-595 (-837)) . T) ((-388) . T) ((-1182) . T)) -((-2288 (((-3 $ "failed") (-1228 (-309 (-372)))) 21) (((-3 $ "failed") (-1228 (-309 (-550)))) 19) (((-3 $ "failed") (-1228 (-926 (-372)))) 17) (((-3 $ "failed") (-1228 (-926 (-550)))) 15) (((-3 $ "failed") (-1228 (-400 (-926 (-372))))) 13) (((-3 $ "failed") (-1228 (-400 (-926 (-550))))) 11)) (-2202 (($ (-1228 (-309 (-372)))) 22) (($ (-1228 (-309 (-550)))) 20) (($ (-1228 (-926 (-372)))) 18) (($ (-1228 (-926 (-550)))) 16) (($ (-1228 (-400 (-926 (-372))))) 14) (($ (-1228 (-400 (-926 (-550))))) 12)) (-1316 (((-1233) $) 7)) (-2233 (((-837) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) 23))) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-677))) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-432))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-1229 (-677)))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))))) +(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) +((-3503 (((-3 $ "failed") (-1229 (-307 (-371)))) 21) (((-3 $ "failed") (-1229 (-307 (-536)))) 19) (((-3 $ "failed") (-1229 (-920 (-371)))) 17) (((-3 $ "failed") (-1229 (-920 (-536)))) 15) (((-3 $ "failed") (-1229 (-400 (-920 (-371))))) 13) (((-3 $ "failed") (-1229 (-400 (-920 (-536))))) 11)) (-3502 (($ (-1229 (-307 (-371)))) 22) (($ (-1229 (-307 (-536)))) 20) (($ (-1229 (-920 (-371)))) 18) (($ (-1229 (-920 (-536)))) 16) (($ (-1229 (-400 (-920 (-371))))) 14) (($ (-1229 (-400 (-920 (-536))))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) (((-433) (-138)) (T -433)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-433)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-309 (-372)))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-309 (-372)))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-309 (-550)))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-309 (-550)))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-926 (-372)))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-926 (-372)))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-926 (-550)))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-926 (-550)))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-400 (-926 (-372))))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-400 (-926 (-372))))) (-4 *1 (-433)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1228 (-400 (-926 (-550))))) (-4 *1 (-433)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1228 (-400 (-926 (-550))))) (-4 *1 (-433))))) -(-13 (-388) (-10 -8 (-15 -2233 ($ (-623 (-323)))) (-15 -2233 ($ (-323))) (-15 -2233 ($ (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323)))))) (-15 -2202 ($ (-1228 (-309 (-372))))) (-15 -2288 ((-3 $ "failed") (-1228 (-309 (-372))))) (-15 -2202 ($ (-1228 (-309 (-550))))) (-15 -2288 ((-3 $ "failed") (-1228 (-309 (-550))))) (-15 -2202 ($ (-1228 (-926 (-372))))) (-15 -2288 ((-3 $ "failed") (-1228 (-926 (-372))))) (-15 -2202 ($ (-1228 (-926 (-550))))) (-15 -2288 ((-3 $ "failed") (-1228 (-926 (-550))))) (-15 -2202 ($ (-1228 (-400 (-926 (-372)))))) (-15 -2288 ((-3 $ "failed") (-1228 (-400 (-926 (-372)))))) (-15 -2202 ($ (-1228 (-400 (-926 (-550)))))) (-15 -2288 ((-3 $ "failed") (-1228 (-400 (-926 (-550)))))))) -(((-595 (-837)) . T) ((-388) . T) ((-1182) . T)) -((-3095 (((-112)) 17)) (-2484 (((-112) (-112)) 18)) (-4085 (((-112)) 13)) (-3750 (((-112) (-112)) 14)) (-1798 (((-112)) 15)) (-3713 (((-112) (-112)) 16)) (-2179 (((-895) (-895)) 21) (((-895)) 20)) (-1857 (((-749) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550))))) 42)) (-3629 (((-895) (-895)) 23) (((-895)) 22)) (-3467 (((-2 (|:| -1910 (-550)) (|:| -1610 (-623 |#1|))) |#1|) 62)) (-3889 (((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550))))))) 126)) (-2896 (((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112)) 152)) (-3452 (((-411 |#1|) |#1| (-749) (-749)) 165) (((-411 |#1|) |#1| (-623 (-749)) (-749)) 162) (((-411 |#1|) |#1| (-623 (-749))) 164) (((-411 |#1|) |#1| (-749)) 163) (((-411 |#1|) |#1|) 161)) (-2786 (((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749) (-112)) 167) (((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749)) 168) (((-3 |#1| "failed") (-895) |#1| (-623 (-749))) 170) (((-3 |#1| "failed") (-895) |#1| (-749)) 169) (((-3 |#1| "failed") (-895) |#1|) 171)) (-1735 (((-411 |#1|) |#1| (-749) (-749)) 160) (((-411 |#1|) |#1| (-623 (-749)) (-749)) 156) (((-411 |#1|) |#1| (-623 (-749))) 158) (((-411 |#1|) |#1| (-749)) 157) (((-411 |#1|) |#1|) 155)) (-2171 (((-112) |#1|) 37)) (-2059 (((-716 (-749)) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550))))) 67)) (-1666 (((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112) (-1071 (-749)) (-749)) 154))) -(((-434 |#1|) (-10 -7 (-15 -3889 ((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))))) (-15 -2059 ((-716 (-749)) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))))) (-15 -3629 ((-895))) (-15 -3629 ((-895) (-895))) (-15 -2179 ((-895))) (-15 -2179 ((-895) (-895))) (-15 -1857 ((-749) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))))) (-15 -3467 ((-2 (|:| -1910 (-550)) (|:| -1610 (-623 |#1|))) |#1|)) (-15 -3095 ((-112))) (-15 -2484 ((-112) (-112))) (-15 -4085 ((-112))) (-15 -3750 ((-112) (-112))) (-15 -2171 ((-112) |#1|)) (-15 -1798 ((-112))) (-15 -3713 ((-112) (-112))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -1735 ((-411 |#1|) |#1| (-749))) (-15 -1735 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -1735 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -1735 ((-411 |#1|) |#1| (-749) (-749))) (-15 -3452 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1| (-749))) (-15 -3452 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -3452 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -3452 ((-411 |#1|) |#1| (-749) (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1|)) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749) (-112))) (-15 -2896 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112))) (-15 -1666 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112) (-1071 (-749)) (-749)))) (-1204 (-550))) (T -434)) -((-1666 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1071 (-749))) (-5 *6 (-749)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2786 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) (-2786 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) (-2786 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) (-2786 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) (-2786 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-895)) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) (-3452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3713 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1798 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-4085 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3095 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1910 (-550)) (|:| -1610 (-623 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -1735 *4) (|:| -3661 (-550))))) (-4 *4 (-1204 (-550))) (-5 *2 (-749)) (-5 *1 (-434 *4)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2179 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-3629 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -1735 *4) (|:| -3661 (-550))))) (-4 *4 (-1204 (-550))) (-5 *2 (-716 (-749))) (-5 *1 (-434 *4)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| *4) (|:| -1635 (-550))))))) (-4 *4 (-1204 (-550))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4))))) -(-10 -7 (-15 -3889 ((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))))) (-15 -2059 ((-716 (-749)) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))))) (-15 -3629 ((-895))) (-15 -3629 ((-895) (-895))) (-15 -2179 ((-895))) (-15 -2179 ((-895) (-895))) (-15 -1857 ((-749) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))))) (-15 -3467 ((-2 (|:| -1910 (-550)) (|:| -1610 (-623 |#1|))) |#1|)) (-15 -3095 ((-112))) (-15 -2484 ((-112) (-112))) (-15 -4085 ((-112))) (-15 -3750 ((-112) (-112))) (-15 -2171 ((-112) |#1|)) (-15 -1798 ((-112))) (-15 -3713 ((-112) (-112))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -1735 ((-411 |#1|) |#1| (-749))) (-15 -1735 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -1735 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -1735 ((-411 |#1|) |#1| (-749) (-749))) (-15 -3452 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1| (-749))) (-15 -3452 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -3452 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -3452 ((-411 |#1|) |#1| (-749) (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1|)) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749))) (-15 -2786 ((-3 |#1| "failed") (-895) |#1| (-623 (-749)) (-749) (-112))) (-15 -2896 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112))) (-15 -1666 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112) (-1071 (-749)) (-749)))) -((-2720 (((-550) |#2|) 48) (((-550) |#2| (-749)) 47)) (-3382 (((-550) |#2|) 55)) (-2997 ((|#3| |#2|) 25)) (-1571 ((|#3| |#2| (-895)) 14)) (-3839 ((|#3| |#2|) 15)) (-2555 ((|#3| |#2|) 9)) (-1293 ((|#3| |#2|) 10)) (-1747 ((|#3| |#2| (-895)) 62) ((|#3| |#2|) 30)) (-2134 (((-550) |#2|) 57))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -2134 ((-550) |#2|)) (-15 -1747 (|#3| |#2|)) (-15 -1747 (|#3| |#2| (-895))) (-15 -3382 ((-550) |#2|)) (-15 -2720 ((-550) |#2| (-749))) (-15 -2720 ((-550) |#2|)) (-15 -1571 (|#3| |#2| (-895))) (-15 -2997 (|#3| |#2|)) (-15 -2555 (|#3| |#2|)) (-15 -1293 (|#3| |#2|)) (-15 -3839 (|#3| |#2|))) (-1021) (-1204 |#1|) (-13 (-397) (-1012 |#1|) (-356) (-1167) (-277))) (T -435)) -((-3839 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) (-1293 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1204 *5)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1204 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))))) (-2720 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1204 *5)) (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))))) (-3382 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1204 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1204 *5)))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1204 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277)))))) -(-10 -7 (-15 -2134 ((-550) |#2|)) (-15 -1747 (|#3| |#2|)) (-15 -1747 (|#3| |#2| (-895))) (-15 -3382 ((-550) |#2|)) (-15 -2720 ((-550) |#2| (-749))) (-15 -2720 ((-550) |#2|)) (-15 -1571 (|#3| |#2| (-895))) (-15 -2997 (|#3| |#2|)) (-15 -2555 (|#3| |#2|)) (-15 -1293 (|#3| |#2|)) (-15 -3839 (|#3| |#2|))) -((-1931 ((|#2| (-1228 |#1|)) 36)) (-3730 ((|#2| |#2| |#1|) 49)) (-4169 ((|#2| |#2| |#1|) 41)) (-1999 ((|#2| |#2|) 38)) (-3748 (((-112) |#2|) 30)) (-2099 (((-623 |#2|) (-895) (-411 |#2|)) 17)) (-2786 ((|#2| (-895) (-411 |#2|)) 21)) (-2059 (((-716 (-749)) (-411 |#2|)) 25))) -(((-436 |#1| |#2|) (-10 -7 (-15 -3748 ((-112) |#2|)) (-15 -1931 (|#2| (-1228 |#1|))) (-15 -1999 (|#2| |#2|)) (-15 -4169 (|#2| |#2| |#1|)) (-15 -3730 (|#2| |#2| |#1|)) (-15 -2059 ((-716 (-749)) (-411 |#2|))) (-15 -2786 (|#2| (-895) (-411 |#2|))) (-15 -2099 ((-623 |#2|) (-895) (-411 |#2|)))) (-1021) (-1204 |#1|)) (T -436)) -((-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-411 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-1021)) (-5 *2 (-623 *6)) (-5 *1 (-436 *5 *6)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-411 *2)) (-4 *2 (-1204 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1021)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-1021)) (-5 *2 (-716 (-749))) (-5 *1 (-436 *4 *5)))) (-3730 (*1 *2 *2 *3) (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3)))) (-4169 (*1 *2 *2 *3) (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3)))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-1021)) (-4 *2 (-1204 *4)) (-5 *1 (-436 *4 *2)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -3748 ((-112) |#2|)) (-15 -1931 (|#2| (-1228 |#1|))) (-15 -1999 (|#2| |#2|)) (-15 -4169 (|#2| |#2| |#1|)) (-15 -3730 (|#2| |#2| |#1|)) (-15 -2059 ((-716 (-749)) (-411 |#2|))) (-15 -2786 (|#2| (-895) (-411 |#2|))) (-15 -2099 ((-623 |#2|) (-895) (-411 |#2|)))) -((-2818 (((-749)) 41)) (-3819 (((-749)) 23 (|has| |#1| (-397))) (((-749) (-749)) 22 (|has| |#1| (-397)))) (-1285 (((-550) |#1|) 18 (|has| |#1| (-397)))) (-1788 (((-550) |#1|) 20 (|has| |#1| (-397)))) (-1320 (((-749)) 40) (((-749) (-749)) 39)) (-1833 ((|#1| (-749) (-550)) 29)) (-2279 (((-1233)) 43))) -(((-437 |#1|) (-10 -7 (-15 -1833 (|#1| (-749) (-550))) (-15 -1320 ((-749) (-749))) (-15 -1320 ((-749))) (-15 -2818 ((-749))) (-15 -2279 ((-1233))) (IF (|has| |#1| (-397)) (PROGN (-15 -1788 ((-550) |#1|)) (-15 -1285 ((-550) |#1|)) (-15 -3819 ((-749) (-749))) (-15 -3819 ((-749)))) |%noBranch|)) (-1021)) (T -437)) -((-3819 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021)))) (-1285 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021)))) (-1788 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021)))) (-2279 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-437 *3)) (-4 *3 (-1021)))) (-2818 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021)))) (-1320 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021)))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-550)) (-5 *1 (-437 *2)) (-4 *2 (-1021))))) -(-10 -7 (-15 -1833 (|#1| (-749) (-550))) (-15 -1320 ((-749) (-749))) (-15 -1320 ((-749))) (-15 -2818 ((-749))) (-15 -2279 ((-1233))) (IF (|has| |#1| (-397)) (PROGN (-15 -1788 ((-550) |#1|)) (-15 -1285 ((-550) |#1|)) (-15 -3819 ((-749) (-749))) (-15 -3819 ((-749)))) |%noBranch|)) -((-1851 (((-623 (-550)) (-550)) 61)) (-1568 (((-112) (-167 (-550))) 65)) (-1735 (((-411 (-167 (-550))) (-167 (-550))) 60))) -(((-438) (-10 -7 (-15 -1735 ((-411 (-167 (-550))) (-167 (-550)))) (-15 -1851 ((-623 (-550)) (-550))) (-15 -1568 ((-112) (-167 (-550)))))) (T -438)) -((-1568 (*1 *2 *3) (-12 (-5 *3 (-167 (-550))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1851 (*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-438)) (-5 *3 (-550)))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 (-167 (-550)))) (-5 *1 (-438)) (-5 *3 (-167 (-550)))))) -(-10 -7 (-15 -1735 ((-411 (-167 (-550))) (-167 (-550)))) (-15 -1851 ((-623 (-550)) (-550))) (-15 -1568 ((-112) (-167 (-550))))) -((-3500 ((|#4| |#4| (-623 |#4|)) 61)) (-2009 (((-623 |#4|) (-623 |#4|) (-1127) (-1127)) 17) (((-623 |#4|) (-623 |#4|) (-1127)) 16) (((-623 |#4|) (-623 |#4|)) 11))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3500 (|#4| |#4| (-623 |#4|))) (-15 -2009 ((-623 |#4|) (-623 |#4|))) (-15 -2009 ((-623 |#4|) (-623 |#4|) (-1127))) (-15 -2009 ((-623 |#4|) (-623 |#4|) (-1127) (-1127)))) (-300) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -439)) -((-2009 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) (-3500 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2))))) -(-10 -7 (-15 -3500 (|#4| |#4| (-623 |#4|))) (-15 -2009 ((-623 |#4|) (-623 |#4|))) (-15 -2009 ((-623 |#4|) (-623 |#4|) (-1127))) (-15 -2009 ((-623 |#4|) (-623 |#4|) (-1127) (-1127)))) -((-3318 (((-623 (-623 |#4|)) (-623 |#4|) (-112)) 73) (((-623 (-623 |#4|)) (-623 |#4|)) 72) (((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112)) 66) (((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|)) 67)) (-1726 (((-623 (-623 |#4|)) (-623 |#4|) (-112)) 42) (((-623 (-623 |#4|)) (-623 |#4|)) 63))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1726 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1726 ((-623 (-623 |#4|)) (-623 |#4|) (-112))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-112)))) (-13 (-300) (-145)) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -440)) -((-3318 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3318 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-1726 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) -(-10 -7 (-15 -1726 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1726 ((-623 (-623 |#4|)) (-623 |#4|) (-112))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -3318 ((-623 (-623 |#4|)) (-623 |#4|) (-112)))) -((-3294 (((-749) |#4|) 12)) (-2537 (((-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|)))) 31)) (-3599 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3989 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2578 ((|#4| |#4| (-623 |#4|)) 40)) (-1269 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|)) 70)) (-1680 (((-1233) |#4|) 42)) (-2115 (((-1233) (-623 |#4|)) 51)) (-1263 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550)) 48)) (-2728 (((-1233) (-550)) 79)) (-3183 (((-623 |#4|) (-623 |#4|)) 77)) (-1896 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|)) |#4| (-749)) 25)) (-2090 (((-550) |#4|) 78)) (-2955 ((|#4| |#4|) 29)) (-4055 (((-623 |#4|) (-623 |#4|) (-550) (-550)) 56)) (-3846 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550)) 89)) (-2139 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3710 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1483 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2562 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2147 (((-112) |#2| |#2|) 57)) (-3810 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1829 (((-112) |#2| |#2| |#2| |#2|) 60)) (-3051 ((|#4| |#4| (-623 |#4|)) 71))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3051 (|#4| |#4| (-623 |#4|))) (-15 -2578 (|#4| |#4| (-623 |#4|))) (-15 -4055 ((-623 |#4|) (-623 |#4|) (-550) (-550))) (-15 -3710 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2147 ((-112) |#2| |#2|)) (-15 -1829 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3810 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2562 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1483 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1269 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|))) (-15 -2955 (|#4| |#4|)) (-15 -2537 ((-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|))))) (-15 -3989 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3599 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3183 ((-623 |#4|) (-623 |#4|))) (-15 -2090 ((-550) |#4|)) (-15 -1680 ((-1233) |#4|)) (-15 -1263 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -3846 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -2115 ((-1233) (-623 |#4|))) (-15 -2728 ((-1233) (-550))) (-15 -2139 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1896 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|)) |#4| (-749))) (-15 -3294 ((-749) |#4|))) (-444) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -441)) -((-3294 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6)))) (-1896 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2054 *4))) (-5 *5 (-749)) (-4 *4 (-923 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-441 *6 *7 *8 *4)))) (-2139 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1233)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1233)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3846 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *4)))) (-1263 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *4)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1233)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-550)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-771)) (-4 *2 (-923 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-825)))) (-2537 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 *3)))) (-5 *4 (-749)) (-4 *3 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *3)))) (-2955 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5)))) (-1269 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-441 *5 *6 *7 *3)))) (-1483 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-771)) (-4 *6 (-923 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *4 *3 *5 *6)))) (-2562 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-771)) (-4 *3 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *3)))) (-1829 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-923 *4 *3 *5)))) (-2147 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-923 *4 *3 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-4055 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-550)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2578 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2)))) (-3051 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) -(-10 -7 (-15 -3051 (|#4| |#4| (-623 |#4|))) (-15 -2578 (|#4| |#4| (-623 |#4|))) (-15 -4055 ((-623 |#4|) (-623 |#4|) (-550) (-550))) (-15 -3710 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2147 ((-112) |#2| |#2|)) (-15 -1829 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3810 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2562 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1483 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1269 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|))) (-15 -2955 (|#4| |#4|)) (-15 -2537 ((-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|))))) (-15 -3989 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3599 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3183 ((-623 |#4|) (-623 |#4|))) (-15 -2090 ((-550) |#4|)) (-15 -1680 ((-1233) |#4|)) (-15 -1263 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -3846 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -2115 ((-1233) (-623 |#4|))) (-15 -2728 ((-1233) (-550))) (-15 -2139 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1896 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2054 |#4|)) |#4| (-749))) (-15 -3294 ((-749) |#4|))) -((-2806 ((|#4| |#4| (-623 |#4|)) 22 (|has| |#1| (-356)))) (-2906 (((-623 |#4|) (-623 |#4|) (-1127) (-1127)) 41) (((-623 |#4|) (-623 |#4|) (-1127)) 40) (((-623 |#4|) (-623 |#4|)) 35))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2906 ((-623 |#4|) (-623 |#4|))) (-15 -2906 ((-623 |#4|) (-623 |#4|) (-1127))) (-15 -2906 ((-623 |#4|) (-623 |#4|) (-1127) (-1127))) (IF (|has| |#1| (-356)) (-15 -2806 (|#4| |#4| (-623 |#4|))) |%noBranch|)) (-444) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -442)) -((-2806 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2)))) (-2906 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6))))) -(-10 -7 (-15 -2906 ((-623 |#4|) (-623 |#4|))) (-15 -2906 ((-623 |#4|) (-623 |#4|) (-1127))) (-15 -2906 ((-623 |#4|) (-623 |#4|) (-1127) (-1127))) (IF (|has| |#1| (-356)) (-15 -2806 (|#4| |#4| (-623 |#4|))) |%noBranch|)) -((-3231 (($ $ $) 14) (($ (-623 $)) 21)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 41)) (-3260 (($ $ $) NIL) (($ (-623 $)) 22))) -(((-443 |#1|) (-10 -8 (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -3231 (|#1| (-623 |#1|))) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|))) (-444)) (T -443)) -NIL -(-10 -8 (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -3231 (|#1| (-623 |#1|))) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -3260 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3409 (((-3 $ "failed") $ $) 40)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-433)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433))))) +(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-1229 (-307 (-371))))) (-15 -3503 ((-3 $ "failed") (-1229 (-307 (-371))))) (-15 -3502 ($ (-1229 (-307 (-536))))) (-15 -3503 ((-3 $ "failed") (-1229 (-307 (-536))))) (-15 -3502 ($ (-1229 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-1229 (-920 (-371))))) (-15 -3502 ($ (-1229 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-1229 (-920 (-536))))) (-15 -3502 ($ (-1229 (-400 (-920 (-371)))))) (-15 -3503 ((-3 $ "failed") (-1229 (-400 (-920 (-371)))))) (-15 -3502 ($ (-1229 (-400 (-920 (-536)))))) (-15 -3503 ((-3 $ "failed") (-1229 (-400 (-920 (-536)))))))) +(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) +((-1953 (((-112)) 17)) (-1954 (((-112) (-112)) 18)) (-1955 (((-112)) 13)) (-1956 (((-112) (-112)) 14)) (-1958 (((-112)) 15)) (-1959 (((-112) (-112)) 16)) (-1950 (((-893) (-893)) 21) (((-893)) 20)) (-1951 (((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536))))) 42)) (-1949 (((-893) (-893)) 23) (((-893)) 22)) (-1952 (((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|) 62)) (-1948 (((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536))))))) 126)) (-4089 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)) 152)) (-4088 (((-398 |#1|) |#1| (-749) (-749)) 165) (((-398 |#1|) |#1| (-620 (-749)) (-749)) 162) (((-398 |#1|) |#1| (-620 (-749))) 164) (((-398 |#1|) |#1| (-749)) 163) (((-398 |#1|) |#1|) 161)) (-1970 (((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112)) 167) (((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749)) 168) (((-3 |#1| "failed") (-893) |#1| (-620 (-749))) 170) (((-3 |#1| "failed") (-893) |#1| (-749)) 169) (((-3 |#1| "failed") (-893) |#1|) 171)) (-4087 (((-398 |#1|) |#1| (-749) (-749)) 160) (((-398 |#1|) |#1| (-620 (-749)) (-749)) 156) (((-398 |#1|) |#1| (-620 (-749))) 158) (((-398 |#1|) |#1| (-749)) 157) (((-398 |#1|) |#1|) 155)) (-1957 (((-112) |#1|) 37)) (-1969 (((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536))))) 67)) (-1960 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)) 154))) +(((-434 |#1|) (-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))))) (-15 -1969 ((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1949 ((-893))) (-15 -1949 ((-893) (-893))) (-15 -1950 ((-893))) (-15 -1950 ((-893) (-893))) (-15 -1951 ((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1952 ((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1| (-749))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4087 ((-398 |#1|) |#1| (-749) (-749))) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1| (-749))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4088 ((-398 |#1|) |#1| (-749) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112))) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)))) (-1205 (-536))) (T -434)) +((-1960 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-749))) (-5 *6 (-749)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-893)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-4088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1955 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1953 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2903 (-536)) (|:| -2762 (-620 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) (-4 *4 (-1205 (-536))) (-5 *2 (-749)) (-5 *1 (-434 *4)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1950 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1949 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) (-4 *4 (-1205 (-536))) (-5 *2 (-715 (-749))) (-5 *1 (-434 *4)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *4) (|:| -2482 (-536))))))) (-4 *4 (-1205 (-536))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) +(-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))))) (-15 -1969 ((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1949 ((-893))) (-15 -1949 ((-893) (-893))) (-15 -1950 ((-893))) (-15 -1950 ((-893) (-893))) (-15 -1951 ((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1952 ((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1| (-749))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4087 ((-398 |#1|) |#1| (-749) (-749))) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1| (-749))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4088 ((-398 |#1|) |#1| (-749) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112))) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)))) +((-1964 (((-536) |#2|) 48) (((-536) |#2| (-749)) 47)) (-1963 (((-536) |#2|) 55)) (-1965 ((|#3| |#2|) 25)) (-3462 ((|#3| |#2| (-893)) 14)) (-4188 ((|#3| |#2|) 15)) (-1966 ((|#3| |#2|) 9)) (-2928 ((|#3| |#2|) 10)) (-1962 ((|#3| |#2| (-893)) 62) ((|#3| |#2|) 30)) (-1961 (((-536) |#2|) 57))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1961 ((-536) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-893))) (-15 -1963 ((-536) |#2|)) (-15 -1964 ((-536) |#2| (-749))) (-15 -1964 ((-536) |#2|)) (-15 -3462 (|#3| |#2| (-893))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2928 (|#3| |#2|)) (-15 -4188 (|#3| |#2|))) (-1023) (-1205 |#1|) (-13 (-397) (-1012 |#1|) (-356) (-1169) (-277))) (T -435)) +((-4188 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1205 *5)) (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))))) (-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1961 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) +(-10 -7 (-15 -1961 ((-536) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-893))) (-15 -1963 ((-536) |#2|)) (-15 -1964 ((-536) |#2| (-749))) (-15 -1964 ((-536) |#2|)) (-15 -3462 (|#3| |#2| (-893))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2928 (|#3| |#2|)) (-15 -4188 (|#3| |#2|))) +((-3708 ((|#2| (-1229 |#1|)) 36)) (-1968 ((|#2| |#2| |#1|) 49)) (-1967 ((|#2| |#2| |#1|) 41)) (-2373 ((|#2| |#2|) 38)) (-3519 (((-112) |#2|) 30)) (-1971 (((-620 |#2|) (-893) (-398 |#2|)) 17)) (-1970 ((|#2| (-893) (-398 |#2|)) 21)) (-1969 (((-715 (-749)) (-398 |#2|)) 25))) +(((-436 |#1| |#2|) (-10 -7 (-15 -3519 ((-112) |#2|)) (-15 -3708 (|#2| (-1229 |#1|))) (-15 -2373 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-715 (-749)) (-398 |#2|))) (-15 -1970 (|#2| (-893) (-398 |#2|))) (-15 -1971 ((-620 |#2|) (-893) (-398 |#2|)))) (-1023) (-1205 |#1|)) (T -436)) +((-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-398 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-1023)) (-5 *2 (-620 *6)) (-5 *1 (-436 *5 *6)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-398 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1023)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-715 (-749))) (-5 *1 (-436 *4 *5)))) (-1968 (*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-1967 (*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-1023)) (-4 *2 (-1205 *4)) (-5 *1 (-436 *4 *2)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -3519 ((-112) |#2|)) (-15 -3708 (|#2| (-1229 |#1|))) (-15 -2373 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-715 (-749)) (-398 |#2|))) (-15 -1970 (|#2| (-893) (-398 |#2|))) (-15 -1971 ((-620 |#2|) (-893) (-398 |#2|)))) +((-1974 (((-749)) 41)) (-1978 (((-749)) 23 (|has| |#1| (-397))) (((-749) (-749)) 22 (|has| |#1| (-397)))) (-1977 (((-536) |#1|) 18 (|has| |#1| (-397)))) (-1976 (((-536) |#1|) 20 (|has| |#1| (-397)))) (-1973 (((-749)) 40) (((-749) (-749)) 39)) (-1972 ((|#1| (-749) (-536)) 29)) (-1975 (((-1235)) 43))) +(((-437 |#1|) (-10 -7 (-15 -1972 (|#1| (-749) (-536))) (-15 -1973 ((-749) (-749))) (-15 -1973 ((-749))) (-15 -1974 ((-749))) (-15 -1975 ((-1235))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-536) |#1|)) (-15 -1977 ((-536) |#1|)) (-15 -1978 ((-749) (-749))) (-15 -1978 ((-749)))) |%noBranch|)) (-1023)) (T -437)) +((-1978 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1976 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1975 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1974 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1973 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-536)) (-5 *1 (-437 *2)) (-4 *2 (-1023))))) +(-10 -7 (-15 -1972 (|#1| (-749) (-536))) (-15 -1973 ((-749) (-749))) (-15 -1973 ((-749))) (-15 -1974 ((-749))) (-15 -1975 ((-1235))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-536) |#1|)) (-15 -1977 ((-536) |#1|)) (-15 -1978 ((-749) (-749))) (-15 -1978 ((-749)))) |%noBranch|)) +((-1979 (((-620 (-536)) (-536)) 61)) (-4081 (((-112) (-166 (-536))) 65)) (-4087 (((-398 (-166 (-536))) (-166 (-536))) 60))) +(((-438) (-10 -7 (-15 -4087 ((-398 (-166 (-536))) (-166 (-536)))) (-15 -1979 ((-620 (-536)) (-536))) (-15 -4081 ((-112) (-166 (-536)))))) (T -438)) +((-4081 (*1 *2 *3) (-12 (-5 *3 (-166 (-536))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-438)) (-5 *3 (-536)))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 (-166 (-536)))) (-5 *1 (-438)) (-5 *3 (-166 (-536)))))) +(-10 -7 (-15 -4087 ((-398 (-166 (-536))) (-166 (-536)))) (-15 -1979 ((-620 (-536)) (-536))) (-15 -4081 ((-112) (-166 (-536))))) +((-3274 ((|#4| |#4| (-620 |#4|)) 22 (|has| |#1| (-356)))) (-2330 (((-620 |#4|) (-620 |#4|) (-1129) (-1129)) 41) (((-620 |#4|) (-620 |#4|) (-1129)) 40) (((-620 |#4|) (-620 |#4|)) 35))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2330 ((-620 |#4|) (-620 |#4|))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129) (-1129))) (IF (|has| |#1| (-356)) (-15 -3274 (|#4| |#4| (-620 |#4|))) |%noBranch|)) (-444) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -439)) +((-3274 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2)))) (-2330 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6))))) +(-10 -7 (-15 -2330 ((-620 |#4|) (-620 |#4|))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129) (-1129))) (IF (|has| |#1| (-356)) (-15 -3274 (|#4| |#4| (-620 |#4|))) |%noBranch|)) +((-1980 ((|#4| |#4| (-620 |#4|)) 61)) (-1981 (((-620 |#4|) (-620 |#4|) (-1129) (-1129)) 17) (((-620 |#4|) (-620 |#4|) (-1129)) 16) (((-620 |#4|) (-620 |#4|)) 11))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1980 (|#4| |#4| (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129) (-1129)))) (-300) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -440)) +((-1981 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *2))))) +(-10 -7 (-15 -1980 (|#4| |#4| (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129) (-1129)))) +((-1983 (((-620 (-620 |#4|)) (-620 |#4|) (-112)) 73) (((-620 (-620 |#4|)) (-620 |#4|)) 72) (((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112)) 66) (((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|)) 67)) (-1982 (((-620 (-620 |#4|)) (-620 |#4|) (-112)) 42) (((-620 (-620 |#4|)) (-620 |#4|)) 63))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-112)))) (-13 (-300) (-145)) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -441)) +((-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-1983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1983 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) +(-10 -7 (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-112)))) +((-2007 (((-749) |#4|) 12)) (-1995 (((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)))) 31)) (-1997 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1996 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1985 ((|#4| |#4| (-620 |#4|)) 40)) (-1993 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|)) 70)) (-2000 (((-1235) |#4|) 42)) (-2003 (((-1235) (-620 |#4|)) 51)) (-2001 (((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536)) 48)) (-2004 (((-1235) (-536)) 79)) (-1998 (((-620 |#4|) (-620 |#4|)) 77)) (-2006 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749)) 25)) (-1999 (((-536) |#4|) 78)) (-1994 ((|#4| |#4|) 29)) (-1986 (((-620 |#4|) (-620 |#4|) (-536) (-536)) 56)) (-2002 (((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536)) 89)) (-2005 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1987 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1992 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1991 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1988 (((-112) |#2| |#2|) 57)) (-1990 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1989 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1984 ((|#4| |#4| (-620 |#4|)) 71))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1984 (|#4| |#4| (-620 |#4|))) (-15 -1985 (|#4| |#4| (-620 |#4|))) (-15 -1986 ((-620 |#4|) (-620 |#4|) (-536) (-536))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-620 |#4|) (-620 |#4|))) (-15 -1999 ((-536) |#4|)) (-15 -2000 ((-1235) |#4|)) (-15 -2001 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536))) (-15 -2002 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536))) (-15 -2003 ((-1235) (-620 |#4|))) (-15 -2004 ((-1235) (-536))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749))) (-15 -2007 ((-749) |#4|))) (-444) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -442)) +((-2007 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2115 *4))) (-5 *5 (-749)) (-4 *4 (-924 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2002 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2001 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-536)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-771)) (-4 *2 (-924 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-825)))) (-1995 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 *3)))) (-5 *4 (-749)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *3)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-1992 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-771)) (-4 *6 (-924 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1990 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-771)) (-4 *3 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1989 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) +(-10 -7 (-15 -1984 (|#4| |#4| (-620 |#4|))) (-15 -1985 (|#4| |#4| (-620 |#4|))) (-15 -1986 ((-620 |#4|) (-620 |#4|) (-536) (-536))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-620 |#4|) (-620 |#4|))) (-15 -1999 ((-536) |#4|)) (-15 -2000 ((-1235) |#4|)) (-15 -2001 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536))) (-15 -2002 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536))) (-15 -2003 ((-1235) (-620 |#4|))) (-15 -2004 ((-1235) (-536))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749))) (-15 -2007 ((-749) |#4|))) +((-2008 (($ $ $) 14) (($ (-620 $)) 21)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 41)) (-3490 (($ $ $) NIL) (($ (-620 $)) 22))) +(((-443 |#1|) (-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2008 (|#1| (-620 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|))) (-444)) (T -443)) +NIL +(-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2008 (|#1| (-620 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-444) (-138)) (T -444)) -((-3260 (*1 *1 *1 *1) (-4 *1 (-444))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) (-3231 (*1 *1 *1 *1) (-4 *1 (-444))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) (-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444))))) -(-13 (-542) (-10 -8 (-15 -3260 ($ $ $)) (-15 -3260 ($ (-623 $))) (-15 -3231 ($ $ $)) (-15 -3231 ($ (-623 $))) (-15 -3459 ((-1141 $) (-1141 $) (-1141 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2305 (((-3 $ "failed")) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2946 (((-1228 (-667 (-400 (-926 |#1|)))) (-1228 $)) NIL) (((-1228 (-667 (-400 (-926 |#1|))))) NIL)) (-4259 (((-1228 $)) NIL)) (-2991 (($) NIL T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL)) (-1713 (((-3 $ "failed")) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-2704 (((-667 (-400 (-926 |#1|))) (-1228 $)) NIL) (((-667 (-400 (-926 |#1|)))) NIL)) (-4281 (((-400 (-926 |#1|)) $) NIL)) (-2693 (((-667 (-400 (-926 |#1|))) $ (-1228 $)) NIL) (((-667 (-400 (-926 |#1|))) $) NIL)) (-2988 (((-3 $ "failed") $) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-1549 (((-1141 (-926 (-400 (-926 |#1|))))) NIL (|has| (-400 (-926 |#1|)) (-356))) (((-1141 (-400 (-926 |#1|)))) 84 (|has| |#1| (-542)))) (-1339 (($ $ (-895)) NIL)) (-2710 (((-400 (-926 |#1|)) $) NIL)) (-2613 (((-1141 (-400 (-926 |#1|))) $) 82 (|has| (-400 (-926 |#1|)) (-542)))) (-1690 (((-400 (-926 |#1|)) (-1228 $)) NIL) (((-400 (-926 |#1|))) NIL)) (-2015 (((-1141 (-400 (-926 |#1|))) $) NIL)) (-2030 (((-112)) NIL)) (-2821 (($ (-1228 (-400 (-926 |#1|))) (-1228 $)) 103) (($ (-1228 (-400 (-926 |#1|)))) NIL)) (-1537 (((-3 $ "failed") $) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-3398 (((-895)) NIL)) (-4094 (((-112)) NIL)) (-2210 (($ $ (-895)) NIL)) (-1870 (((-112)) NIL)) (-4189 (((-112)) NIL)) (-2826 (((-112)) NIL)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL)) (-3678 (((-3 $ "failed")) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-2128 (((-667 (-400 (-926 |#1|))) (-1228 $)) NIL) (((-667 (-400 (-926 |#1|)))) NIL)) (-2925 (((-400 (-926 |#1|)) $) NIL)) (-2224 (((-667 (-400 (-926 |#1|))) $ (-1228 $)) NIL) (((-667 (-400 (-926 |#1|))) $) NIL)) (-3274 (((-3 $ "failed") $) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-3789 (((-1141 (-926 (-400 (-926 |#1|))))) NIL (|has| (-400 (-926 |#1|)) (-356))) (((-1141 (-400 (-926 |#1|)))) 83 (|has| |#1| (-542)))) (-1692 (($ $ (-895)) NIL)) (-1324 (((-400 (-926 |#1|)) $) NIL)) (-3784 (((-1141 (-400 (-926 |#1|))) $) 77 (|has| (-400 (-926 |#1|)) (-542)))) (-4216 (((-400 (-926 |#1|)) (-1228 $)) NIL) (((-400 (-926 |#1|))) NIL)) (-3876 (((-1141 (-400 (-926 |#1|))) $) NIL)) (-1688 (((-112)) NIL)) (-2369 (((-1127) $) NIL)) (-3143 (((-112)) NIL)) (-1294 (((-112)) NIL)) (-2498 (((-112)) NIL)) (-3445 (((-1089) $) NIL)) (-1769 (((-400 (-926 |#1|)) $ $) 71 (|has| |#1| (-542)))) (-3336 (((-400 (-926 |#1|)) $) 93 (|has| |#1| (-542)))) (-1799 (((-400 (-926 |#1|)) $) 95 (|has| |#1| (-542)))) (-3077 (((-1141 (-400 (-926 |#1|))) $) 88 (|has| |#1| (-542)))) (-2241 (((-400 (-926 |#1|))) 72 (|has| |#1| (-542)))) (-3785 (((-400 (-926 |#1|)) $ $) 64 (|has| |#1| (-542)))) (-2517 (((-400 (-926 |#1|)) $) 92 (|has| |#1| (-542)))) (-1830 (((-400 (-926 |#1|)) $) 94 (|has| |#1| (-542)))) (-4132 (((-1141 (-400 (-926 |#1|))) $) 87 (|has| |#1| (-542)))) (-4315 (((-400 (-926 |#1|))) 68 (|has| |#1| (-542)))) (-2591 (($) 101) (($ (-1145)) 107) (($ (-1228 (-1145))) 106) (($ (-1228 $)) 96) (($ (-1145) (-1228 $)) 105) (($ (-1228 (-1145)) (-1228 $)) 104)) (-2294 (((-112)) NIL)) (-2757 (((-400 (-926 |#1|)) $ (-550)) NIL)) (-2999 (((-1228 (-400 (-926 |#1|))) $ (-1228 $)) 98) (((-667 (-400 (-926 |#1|))) (-1228 $) (-1228 $)) NIL) (((-1228 (-400 (-926 |#1|))) $) 40) (((-667 (-400 (-926 |#1|))) (-1228 $)) NIL)) (-2451 (((-1228 (-400 (-926 |#1|))) $) NIL) (($ (-1228 (-400 (-926 |#1|)))) 37)) (-2778 (((-623 (-926 (-400 (-926 |#1|)))) (-1228 $)) NIL) (((-623 (-926 (-400 (-926 |#1|))))) NIL) (((-623 (-926 |#1|)) (-1228 $)) 99 (|has| |#1| (-542))) (((-623 (-926 |#1|))) 100 (|has| |#1| (-542)))) (-1353 (($ $ $) NIL)) (-4118 (((-112)) NIL)) (-2233 (((-837) $) NIL) (($ (-1228 (-400 (-926 |#1|)))) NIL)) (-2206 (((-1228 $)) 60)) (-2364 (((-623 (-1228 (-400 (-926 |#1|))))) NIL (|has| (-400 (-926 |#1|)) (-542)))) (-4143 (($ $ $ $) NIL)) (-2941 (((-112)) NIL)) (-3806 (($ (-667 (-400 (-926 |#1|))) $) NIL)) (-1923 (($ $ $) NIL)) (-2582 (((-112)) NIL)) (-3268 (((-112)) NIL)) (-3836 (((-112)) NIL)) (-2688 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) 97)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 56) (($ $ (-400 (-926 |#1|))) NIL) (($ (-400 (-926 |#1|)) $) NIL) (($ (-1111 |#2| (-400 (-926 |#1|))) $) NIL))) -(((-445 |#1| |#2| |#3| |#4|) (-13 (-410 (-400 (-926 |#1|))) (-626 (-1111 |#2| (-400 (-926 |#1|)))) (-10 -8 (-15 -2233 ($ (-1228 (-400 (-926 |#1|))))) (-15 -3811 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -1350 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -2591 ($)) (-15 -2591 ($ (-1145))) (-15 -2591 ($ (-1228 (-1145)))) (-15 -2591 ($ (-1228 $))) (-15 -2591 ($ (-1145) (-1228 $))) (-15 -2591 ($ (-1228 (-1145)) (-1228 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -3789 ((-1141 (-400 (-926 |#1|))))) (-15 -4132 ((-1141 (-400 (-926 |#1|))) $)) (-15 -2517 ((-400 (-926 |#1|)) $)) (-15 -1830 ((-400 (-926 |#1|)) $)) (-15 -1549 ((-1141 (-400 (-926 |#1|))))) (-15 -3077 ((-1141 (-400 (-926 |#1|))) $)) (-15 -3336 ((-400 (-926 |#1|)) $)) (-15 -1799 ((-400 (-926 |#1|)) $)) (-15 -3785 ((-400 (-926 |#1|)) $ $)) (-15 -4315 ((-400 (-926 |#1|)))) (-15 -1769 ((-400 (-926 |#1|)) $ $)) (-15 -2241 ((-400 (-926 |#1|)))) (-15 -2778 ((-623 (-926 |#1|)) (-1228 $))) (-15 -2778 ((-623 (-926 |#1|))))) |%noBranch|))) (-170) (-895) (-623 (-1145)) (-1228 (-667 |#1|))) (T -445)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1228 (-400 (-926 *3)))) (-4 *3 (-170)) (-14 *6 (-1228 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))))) (-3811 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2206 (-623 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-1350 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2206 (-623 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2591 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895)) (-14 *4 (-623 (-1145))) (-14 *5 (-1228 (-667 *2))))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 *2)) (-14 *6 (-1228 (-667 *3))))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1228 (-1145))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1228 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-623 *2)) (-14 *7 (-1228 (-667 *4))))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-1228 (-1145))) (-5 *3 (-1228 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-623 (-1145))) (-14 *7 (-1228 (-667 *4))))) (-3789 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-1549 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-3785 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-4315 (*1 *2) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-1769 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2241 (*1 *2) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1228 (-445 *4 *5 *6 *7))) (-5 *2 (-623 (-926 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-623 (-1145))) (-14 *7 (-1228 (-667 *4))))) (-2778 (*1 *2) (-12 (-5 *2 (-623 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(-13 (-410 (-400 (-926 |#1|))) (-626 (-1111 |#2| (-400 (-926 |#1|)))) (-10 -8 (-15 -2233 ($ (-1228 (-400 (-926 |#1|))))) (-15 -3811 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -1350 ((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed"))) (-15 -2591 ($)) (-15 -2591 ($ (-1145))) (-15 -2591 ($ (-1228 (-1145)))) (-15 -2591 ($ (-1228 $))) (-15 -2591 ($ (-1145) (-1228 $))) (-15 -2591 ($ (-1228 (-1145)) (-1228 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -3789 ((-1141 (-400 (-926 |#1|))))) (-15 -4132 ((-1141 (-400 (-926 |#1|))) $)) (-15 -2517 ((-400 (-926 |#1|)) $)) (-15 -1830 ((-400 (-926 |#1|)) $)) (-15 -1549 ((-1141 (-400 (-926 |#1|))))) (-15 -3077 ((-1141 (-400 (-926 |#1|))) $)) (-15 -3336 ((-400 (-926 |#1|)) $)) (-15 -1799 ((-400 (-926 |#1|)) $)) (-15 -3785 ((-400 (-926 |#1|)) $ $)) (-15 -4315 ((-400 (-926 |#1|)))) (-15 -1769 ((-400 (-926 |#1|)) $ $)) (-15 -2241 ((-400 (-926 |#1|)))) (-15 -2778 ((-623 (-926 |#1|)) (-1228 $))) (-15 -2778 ((-623 (-926 |#1|))))) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 13)) (-1516 (((-623 (-839 |#1|)) $) 75)) (-1705 (((-1141 $) $ (-839 |#1|)) 46) (((-1141 |#2|) $) 118)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-3050 (($ $) NIL (|has| |#2| (-542)))) (-3953 (((-112) $) NIL (|has| |#2| (-542)))) (-2457 (((-749) $) 21) (((-749) $ (-623 (-839 |#1|))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL (|has| |#2| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) 44) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-839 |#1|) "failed") $) NIL)) (-2202 ((|#2| $) 42) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-839 |#1|) $) NIL)) (-1792 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-3752 (($ $ (-623 (-550))) 80)) (-1693 (($ $) 68)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#2| (-883)))) (-3401 (($ $ |#2| |#3| $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) 58)) (-1501 (($ (-1141 |#2|) (-839 |#1|)) 123) (($ (-1141 $) (-839 |#1|)) 52)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) 59)) (-1488 (($ |#2| |#3|) 28) (($ $ (-839 |#1|) (-749)) 30) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-839 |#1|)) NIL)) (-3346 ((|#3| $) NIL) (((-749) $ (-839 |#1|)) 50) (((-623 (-749)) $ (-623 (-839 |#1|))) 57)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2863 (($ (-1 |#3| |#3|) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4059 (((-3 (-839 |#1|) "failed") $) 39)) (-1657 (($ $) NIL)) (-1670 ((|#2| $) 41)) (-3231 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -3068 (-749))) "failed") $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) 40)) (-1639 ((|#2| $) 116)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-883)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-839 |#1|) |#2|) 87) (($ $ (-623 (-839 |#1|)) (-623 |#2|)) 90) (($ $ (-839 |#1|) $) 85) (($ $ (-623 (-839 |#1|)) (-623 $)) 106)) (-3563 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2798 (($ $ (-839 |#1|)) 53) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-3661 ((|#3| $) 67) (((-749) $ (-839 |#1|)) 37) (((-623 (-749)) $ (-623 (-839 |#1|))) 56)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-839 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-2233 (((-837) $) 145) (($ (-550)) NIL) (($ |#2|) 86) (($ (-839 |#1|)) 31) (($ (-400 (-550))) NIL (-1489 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ |#3|) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2688 (($) 17 T CONST)) (-2700 (($) 25 T CONST)) (-1901 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 111)) (** (($ $ (-895)) NIL) (($ $ (-749)) 109)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 29) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-446 |#1| |#2| |#3|) (-13 (-923 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) (-623 (-1145)) (-1021) (-232 (-3307 |#1|) (-749))) (T -446)) -((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-14 *3 (-623 (-1145))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1021)) (-4 *5 (-232 (-3307 *3) (-749)))))) -(-13 (-923 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) -((-3253 (((-112) |#1| (-623 |#2|)) 69)) (-1974 (((-3 (-1228 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|)) 78)) (-3632 (((-3 (-623 |#2|) "failed") |#2| |#1| (-1228 (-623 |#2|))) 80)) (-1591 ((|#2| |#2| |#1|) 28)) (-2227 (((-749) |#2| (-623 |#2|)) 20))) -(((-447 |#1| |#2|) (-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -2227 ((-749) |#2| (-623 |#2|))) (-15 -1974 ((-3 (-1228 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|))) (-15 -3632 ((-3 (-623 |#2|) "failed") |#2| |#1| (-1228 (-623 |#2|)))) (-15 -3253 ((-112) |#1| (-623 |#2|)))) (-300) (-1204 |#1|)) (T -447)) -((-3253 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *5)) (-4 *5 (-1204 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-3632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1228 (-623 *3))) (-4 *4 (-300)) (-5 *2 (-623 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1204 *4)))) (-1974 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1204 *4)) (-5 *2 (-1228 (-623 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-623 *6)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-300)) (-5 *2 (-749)) (-5 *1 (-447 *5 *3)))) (-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1204 *3))))) -(-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -2227 ((-749) |#2| (-623 |#2|))) (-15 -1974 ((-3 (-1228 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|))) (-15 -3632 ((-3 (-623 |#2|) "failed") |#2| |#1| (-1228 (-623 |#2|)))) (-15 -3253 ((-112) |#1| (-623 |#2|)))) -((-1735 (((-411 |#5|) |#5|) 24))) -(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1735 ((-411 |#5|) |#5|))) (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145))))) (-771) (-542) (-542) (-923 |#4| |#2| |#1|)) (T -448)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-4 *5 (-771)) (-4 *7 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-923 *7 *5 *4))))) -(-10 -7 (-15 -1735 ((-411 |#5|) |#5|))) -((-3921 ((|#3|) 37)) (-3459 (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 33))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3459 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3921 (|#3|))) (-771) (-825) (-883) (-923 |#3| |#1| |#2|)) (T -449)) -((-3921 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-883)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-923 *2 *3 *4)))) (-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-883)) (-5 *1 (-449 *3 *4 *5 *6))))) -(-10 -7 (-15 -3459 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3921 (|#3|))) -((-1735 (((-411 (-1141 |#1|)) (-1141 |#1|)) 43))) -(((-450 |#1|) (-10 -7 (-15 -1735 ((-411 (-1141 |#1|)) (-1141 |#1|)))) (-300)) (T -450)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1141 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1141 *4))))) -(-10 -7 (-15 -1735 ((-411 (-1141 |#1|)) (-1141 |#1|)))) -((-1570 (((-52) |#2| (-1145) (-287 |#2|) (-1195 (-749))) 42) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-749))) 41) (((-52) |#2| (-1145) (-287 |#2|)) 35) (((-52) (-1 |#2| (-550)) (-287 |#2|)) 28)) (-2744 (((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))) 80) (((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))) 79) (((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550))) 78) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550))) 77) (((-52) |#2| (-1145) (-287 |#2|)) 72) (((-52) (-1 |#2| (-550)) (-287 |#2|)) 71)) (-1595 (((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))) 66) (((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))) 64)) (-1583 (((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550))) 48) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550))) 47))) -(((-451 |#1| |#2|) (-10 -7 (-15 -1570 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -1570 ((-52) |#2| (-1145) (-287 |#2|))) (-15 -1570 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-749)))) (-15 -1570 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-749)))) (-15 -1583 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550)))) (-15 -1583 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550)))) (-15 -1595 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -1595 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -2744 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|))) (-15 -2744 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550)))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550)))) (-15 -2744 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))))) (-13 (-542) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -451)) -((-2744 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-400 (-550)))) (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *8))) (-4 *8 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) (-5 *5 (-1195 (-400 (-550)))) (-5 *6 (-400 (-550))) (-4 *8 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-550))) (-4 *7 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) (-1595 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-400 (-550)))) (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *8))) (-4 *8 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-1595 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) (-5 *5 (-1195 (-400 (-550)))) (-5 *6 (-400 (-550))) (-4 *8 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-1583 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-550))) (-4 *7 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-1570 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-749))) (-4 *3 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-1570 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-749))) (-4 *7 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-1570 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))) -(-10 -7 (-15 -1570 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -1570 ((-52) |#2| (-1145) (-287 |#2|))) (-15 -1570 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-749)))) (-15 -1570 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-749)))) (-15 -1583 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550)))) (-15 -1583 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550)))) (-15 -1595 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -1595 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -2744 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|))) (-15 -2744 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1195 (-550)))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-550)))) (-15 -2744 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550)))) (-15 -2744 ((-52) |#2| (-1145) (-287 |#2|) (-1195 (-400 (-550))) (-400 (-550))))) -((-1591 ((|#2| |#2| |#1|) 15)) (-1462 (((-623 |#2|) |#2| (-623 |#2|) |#1| (-895)) 69)) (-2861 (((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-895)) 60))) -(((-452 |#1| |#2|) (-10 -7 (-15 -2861 ((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-895))) (-15 -1462 ((-623 |#2|) |#2| (-623 |#2|) |#1| (-895))) (-15 -1591 (|#2| |#2| |#1|))) (-300) (-1204 |#1|)) (T -452)) -((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1204 *3)))) (-1462 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-623 *3)) (-5 *5 (-895)) (-4 *3 (-1204 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2861 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-895)) (-4 *5 (-300)) (-4 *3 (-1204 *5)) (-5 *2 (-2 (|:| |plist| (-623 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-623 *3))))) -(-10 -7 (-15 -2861 ((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-895))) (-15 -1462 ((-623 |#2|) |#2| (-623 |#2|) |#1| (-895))) (-15 -1591 (|#2| |#2| |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 28)) (-2065 (($ |#3|) 25)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) 32)) (-4211 (($ |#2| |#4| $) 33)) (-1488 (($ |#2| (-692 |#3| |#4| |#5|)) 24)) (-1657 (((-692 |#3| |#4| |#5|) $) 15)) (-2546 ((|#3| $) 19)) (-4088 ((|#4| $) 17)) (-1670 ((|#2| $) 29)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2804 (($ |#2| |#3| |#4|) 26)) (-2688 (($) 36 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 34)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -1670 (|#2| $)) (-15 -1657 ((-692 |#3| |#4| |#5|) $)) (-15 -4088 (|#4| $)) (-15 -2546 (|#3| $)) (-15 -1693 ($ $)) (-15 -1488 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -2065 ($ |#3|)) (-15 -2804 ($ |#2| |#3| |#4|)) (-15 -4211 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-623 (-1145)) (-170) (-825) (-232 (-3307 |#1|) (-749)) (-1 (-112) (-2 (|:| -3690 |#3|) (|:| -3068 |#4|)) (-2 (|:| -3690 |#3|) (|:| -3068 |#4|))) (-923 |#2| |#4| (-839 |#1|))) (T -453)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) (-4 *6 (-232 (-3307 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) (-2 (|:| -3690 *5) (|:| -3068 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) (-4 *2 (-923 *4 *6 (-839 *3))))) (-1670 (*1 *2 *1) (-12 (-14 *3 (-623 (-1145))) (-4 *5 (-232 (-3307 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *4) (|:| -3068 *5)) (-2 (|:| -3690 *4) (|:| -3068 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-923 *2 *5 (-839 *3))))) (-1657 (*1 *2 *1) (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) (-4 *6 (-232 (-3307 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) (-2 (|:| -3690 *5) (|:| -3068 *6)))) (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) (-4 *8 (-923 *4 *6 (-839 *3))))) (-4088 (*1 *2 *1) (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *2)) (-2 (|:| -3690 *5) (|:| -3068 *2)))) (-4 *2 (-232 (-3307 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-825)) (-4 *7 (-923 *4 *2 (-839 *3))))) (-2546 (*1 *2 *1) (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) (-4 *5 (-232 (-3307 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *5)) (-2 (|:| -3690 *2) (|:| -3068 *5)))) (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-923 *4 *5 (-839 *3))))) (-1693 (*1 *1 *1) (-12 (-14 *2 (-623 (-1145))) (-4 *3 (-170)) (-4 *5 (-232 (-3307 *2) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *4) (|:| -3068 *5)) (-2 (|:| -3690 *4) (|:| -3068 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-923 *3 *5 (-839 *2))))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-3307 *4) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) (-2 (|:| -3690 *5) (|:| -3068 *6)))) (-14 *4 (-623 (-1145))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-923 *2 *6 (-839 *4))))) (-2065 (*1 *1 *2) (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) (-4 *5 (-232 (-3307 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *5)) (-2 (|:| -3690 *2) (|:| -3068 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) (-4 *7 (-923 *4 *5 (-839 *3))))) (-2804 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-623 (-1145))) (-4 *2 (-170)) (-4 *4 (-232 (-3307 *5) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *3) (|:| -3068 *4)) (-2 (|:| -3690 *3) (|:| -3068 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) (-4 *7 (-923 *2 *4 (-839 *5))))) (-4211 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-623 (-1145))) (-4 *2 (-170)) (-4 *3 (-232 (-3307 *4) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *3)) (-2 (|:| -3690 *5) (|:| -3068 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) (-4 *7 (-923 *2 *3 (-839 *4)))))) -(-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -1670 (|#2| $)) (-15 -1657 ((-692 |#3| |#4| |#5|) $)) (-15 -4088 (|#4| $)) (-15 -2546 (|#3| $)) (-15 -1693 ($ $)) (-15 -1488 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -2065 ($ |#3|)) (-15 -2804 ($ |#2| |#3| |#4|)) (-15 -4211 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1969 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1969 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-771) (-825) (-542) (-923 |#3| |#1| |#2|) (-13 (-1012 (-400 (-550))) (-356) (-10 -8 (-15 -2233 ($ |#4|)) (-15 -4153 (|#4| $)) (-15 -4163 (|#4| $))))) (T -454)) -((-1969 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-542)) (-4 *7 (-923 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1012 (-400 (-550))) (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $)))))))) -(-10 -7 (-15 -1969 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-1516 (((-623 |#3|) $) 41)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) NIL (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3694 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 47)) (-2202 (($ (-623 |#4|)) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1979 (($ |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4344)))) (-2971 (((-623 |#4|) $) 18 (|has| $ (-6 -4344)))) (-1765 ((|#3| $) 45)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#4|) $) 14 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-3311 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 21)) (-3704 (((-623 |#3|) $) NIL)) (-4159 (((-112) |#3| $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3445 (((-1089) $) NIL)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 39)) (-2819 (($) 17)) (-3457 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) 16)) (-2451 (((-526) $) NIL (|has| |#4| (-596 (-526)))) (($ (-623 |#4|)) 49)) (-2245 (($ (-623 |#4|)) 13)) (-3537 (($ $ |#3|) NIL)) (-1446 (($ $ |#3|) NIL)) (-3175 (($ $ |#3|) NIL)) (-2233 (((-837) $) 38) (((-623 |#4|) $) 48)) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 30)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-455 |#1| |#2| |#3| |#4|) (-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2451 ($ (-623 |#4|))) (-6 -4344) (-6 -4345))) (-1021) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -455)) -((-2451 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6))))) -(-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2451 ($ (-623 |#4|))) (-6 -4344) (-6 -4345))) -((-2688 (($) 11)) (-2700 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2700 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2688 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456)) -NIL -(-10 -8 (-15 -2700 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2688 (|#1|))) -((-2221 (((-112) $ $) 7)) (-2288 (((-3 |#1| "failed") $) 26)) (-2202 ((|#1| $) 25)) (-3141 (($ $ $) 23)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3661 ((|#2| $) 19)) (-2233 (((-837) $) 11) (($ |#1|) 27)) (-2688 (($) 18 T CONST)) (-2700 (($) 24 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 15) (($ $ $) 13)) (-2358 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-3490 (*1 *1 *1 *1) (-4 *1 (-444))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) (-2008 (*1 *1 *1 *1) (-4 *1 (-444))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) (-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444))))) +(-13 (-543) (-10 -8 (-15 -3490 ($ $ $)) (-15 -3490 ($ (-620 $))) (-15 -2008 ($ $ $)) (-15 -2008 ($ (-620 $))) (-15 -3036 ((-1141 $) (-1141 $) (-1141 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 (-400 (-920 |#1|)))) (-1229 $)) NIL) (((-1229 (-667 (-400 (-920 |#1|))))) NIL)) (-1840 (((-1229 $)) NIL)) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) NIL)) (-1814 (((-3 $ #1#)) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1902 (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL) (((-667 (-400 (-920 |#1|)))) NIL)) (-1838 (((-400 (-920 |#1|)) $) NIL)) (-1900 (((-667 (-400 (-920 |#1|))) $ (-1229 $)) NIL) (((-667 (-400 (-920 |#1|))) $) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2017 (((-1141 (-920 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-356))) (((-1141 (-400 (-920 |#1|)))) 84 (|has| |#1| (-543)))) (-2494 (($ $ (-893)) NIL)) (-1836 (((-400 (-920 |#1|)) $) NIL)) (-1816 (((-1141 (-400 (-920 |#1|))) $) 82 (|has| (-400 (-920 |#1|)) (-543)))) (-1904 (((-400 (-920 |#1|)) (-1229 $)) NIL) (((-400 (-920 |#1|))) NIL)) (-1834 (((-1141 (-400 (-920 |#1|))) $) NIL)) (-1828 (((-112)) NIL)) (-1906 (($ (-1229 (-400 (-920 |#1|))) (-1229 $)) 103) (($ (-1229 (-400 (-920 |#1|)))) NIL)) (-3816 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-3439 (((-893)) NIL)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) NIL)) (-1815 (((-3 $ #1#)) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1903 (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL) (((-667 (-400 (-920 |#1|)))) NIL)) (-1839 (((-400 (-920 |#1|)) $) NIL)) (-1901 (((-667 (-400 (-920 |#1|))) $ (-1229 $)) NIL) (((-667 (-400 (-920 |#1|))) $) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2021 (((-1141 (-920 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-356))) (((-1141 (-400 (-920 |#1|)))) 83 (|has| |#1| (-543)))) (-2493 (($ $ (-893)) NIL)) (-1837 (((-400 (-920 |#1|)) $) NIL)) (-1817 (((-1141 (-400 (-920 |#1|))) $) 77 (|has| (-400 (-920 |#1|)) (-543)))) (-1905 (((-400 (-920 |#1|)) (-1229 $)) NIL) (((-400 (-920 |#1|))) NIL)) (-1835 (((-1141 (-400 (-920 |#1|))) $) NIL)) (-1829 (((-112)) NIL)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3589 (((-1091) $) NIL)) (-2011 (((-400 (-920 |#1|)) $ $) 71 (|has| |#1| (-543)))) (-2015 (((-400 (-920 |#1|)) $) 93 (|has| |#1| (-543)))) (-2014 (((-400 (-920 |#1|)) $) 95 (|has| |#1| (-543)))) (-2016 (((-1141 (-400 (-920 |#1|))) $) 88 (|has| |#1| (-543)))) (-2010 (((-400 (-920 |#1|))) 72 (|has| |#1| (-543)))) (-2013 (((-400 (-920 |#1|)) $ $) 64 (|has| |#1| (-543)))) (-2019 (((-400 (-920 |#1|)) $) 92 (|has| |#1| (-543)))) (-2018 (((-400 (-920 |#1|)) $) 94 (|has| |#1| (-543)))) (-2020 (((-1141 (-400 (-920 |#1|))) $) 87 (|has| |#1| (-543)))) (-2012 (((-400 (-920 |#1|))) 68 (|has| |#1| (-543)))) (-2022 (($) 101) (($ (-1147)) 107) (($ (-1229 (-1147))) 106) (($ (-1229 $)) 96) (($ (-1147) (-1229 $)) 105) (($ (-1229 (-1147)) (-1229 $)) 104)) (-1827 (((-112)) NIL)) (-4154 (((-400 (-920 |#1|)) $ (-536)) NIL)) (-3570 (((-1229 (-400 (-920 |#1|))) $ (-1229 $)) 98) (((-667 (-400 (-920 |#1|))) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 (-920 |#1|))) $) 40) (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL)) (-4325 (((-1229 (-400 (-920 |#1|))) $) NIL) (($ (-1229 (-400 (-920 |#1|)))) 37)) (-2009 (((-620 (-920 (-400 (-920 |#1|)))) (-1229 $)) NIL) (((-620 (-920 (-400 (-920 |#1|))))) NIL) (((-620 (-920 |#1|)) (-1229 $)) 99 (|has| |#1| (-543))) (((-620 (-920 |#1|))) 100 (|has| |#1| (-543)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-4312 (((-838) $) NIL) (($ (-1229 (-400 (-920 |#1|)))) NIL)) (-2123 (((-1229 $)) 60)) (-1818 (((-620 (-1229 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2875 (($ (-667 (-400 (-920 |#1|))) $) NIL)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) 97)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 56) (($ $ (-400 (-920 |#1|))) NIL) (($ (-400 (-920 |#1|)) $) NIL) (($ (-1113 |#2| (-400 (-920 |#1|))) $) NIL))) +(((-445 |#1| |#2| |#3| |#4|) (-13 (-411 (-400 (-920 |#1|))) (-626 (-1113 |#2| (-400 (-920 |#1|)))) (-10 -8 (-15 -4312 ($ (-1229 (-400 (-920 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1147))) (-15 -2022 ($ (-1229 (-1147)))) (-15 -2022 ($ (-1229 $))) (-15 -2022 ($ (-1147) (-1229 $))) (-15 -2022 ($ (-1229 (-1147)) (-1229 $))) (IF (|has| |#1| (-543)) (PROGN (-15 -2021 ((-1141 (-400 (-920 |#1|))))) (-15 -2020 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2019 ((-400 (-920 |#1|)) $)) (-15 -2018 ((-400 (-920 |#1|)) $)) (-15 -2017 ((-1141 (-400 (-920 |#1|))))) (-15 -2016 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2015 ((-400 (-920 |#1|)) $)) (-15 -2014 ((-400 (-920 |#1|)) $)) (-15 -2013 ((-400 (-920 |#1|)) $ $)) (-15 -2012 ((-400 (-920 |#1|)))) (-15 -2011 ((-400 (-920 |#1|)) $ $)) (-15 -2010 ((-400 (-920 |#1|)))) (-15 -2009 ((-620 (-920 |#1|)) (-1229 $))) (-15 -2009 ((-620 (-920 |#1|))))) |%noBranch|))) (-170) (-893) (-620 (-1147)) (-1229 (-667 |#1|))) (T -445)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 *3)))) (-4 *3 (-170)) (-14 *6 (-1229 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))))) (-2024 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2023 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-893)) (-14 *4 (-620 (-1147))) (-14 *5 (-1229 (-667 *2))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 *2)) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1229 (-1147))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1229 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 *2)) (-14 *7 (-1229 (-667 *4))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 (-1147))) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) (-2021 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2013 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2012 (*1 *2) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2011 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2010 (*1 *2) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *2 (-620 (-920 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) (-2009 (*1 *2) (-12 (-5 *2 (-620 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) +(-13 (-411 (-400 (-920 |#1|))) (-626 (-1113 |#2| (-400 (-920 |#1|)))) (-10 -8 (-15 -4312 ($ (-1229 (-400 (-920 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1147))) (-15 -2022 ($ (-1229 (-1147)))) (-15 -2022 ($ (-1229 $))) (-15 -2022 ($ (-1147) (-1229 $))) (-15 -2022 ($ (-1229 (-1147)) (-1229 $))) (IF (|has| |#1| (-543)) (PROGN (-15 -2021 ((-1141 (-400 (-920 |#1|))))) (-15 -2020 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2019 ((-400 (-920 |#1|)) $)) (-15 -2018 ((-400 (-920 |#1|)) $)) (-15 -2017 ((-1141 (-400 (-920 |#1|))))) (-15 -2016 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2015 ((-400 (-920 |#1|)) $)) (-15 -2014 ((-400 (-920 |#1|)) $)) (-15 -2013 ((-400 (-920 |#1|)) $ $)) (-15 -2012 ((-400 (-920 |#1|)))) (-15 -2011 ((-400 (-920 |#1|)) $ $)) (-15 -2010 ((-400 (-920 |#1|)))) (-15 -2009 ((-620 (-920 |#1|)) (-1229 $))) (-15 -2009 ((-620 (-920 |#1|))))) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 13)) (-3412 (((-620 (-839 |#1|)) $) 75)) (-3414 (((-1141 $) $ (-839 |#1|)) 46) (((-1141 |#2|) $) 118)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) 21) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) 44) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) 42) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) 80)) (-4314 (($ $) 68)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| |#3| $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 58)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) 123) (($ (-1141 $) (-839 |#1|)) 52)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) 59)) (-3221 (($ |#2| |#3|) 28) (($ $ (-839 |#1|) (-749)) 30) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 ((|#3| $) NIL) (((-749) $ (-839 |#1|)) 50) (((-620 (-749)) $ (-620 (-839 |#1|))) 57)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 |#3| |#3|) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) 39)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) 41)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#2| $) 116)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) 87) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) 90) (($ $ (-839 |#1|) $) 85) (($ $ (-620 (-839 |#1|)) (-620 $)) 106)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) 53) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 ((|#3| $) 67) (((-749) $ (-839 |#1|)) 37) (((-620 (-749)) $ (-620 (-839 |#1|))) 56)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) 145) (($ (-536)) NIL) (($ |#2|) 86) (($ (-839 |#1|)) 31) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ |#3|) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) 17 T CONST)) (-2992 (($) 25 T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 111)) (** (($ $ (-893)) NIL) (($ $ (-749)) 109)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 29) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-446 |#1| |#2| |#3|) (-13 (-924 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023) (-232 (-4311 |#1|) (-749))) (T -446)) +((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-14 *3 (-620 (-1147))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-232 (-4311 *3) (-749)))))) +(-13 (-924 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) +((-2028 (((-112) |#1| (-620 |#2|)) 69)) (-2026 (((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|)) 78)) (-2027 (((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|))) 80)) (-2147 ((|#2| |#2| |#1|) 28)) (-2025 (((-749) |#2| (-620 |#2|)) 20))) +(((-447 |#1| |#2|) (-10 -7 (-15 -2147 (|#2| |#2| |#1|)) (-15 -2025 ((-749) |#2| (-620 |#2|))) (-15 -2026 ((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|))) (-15 -2027 ((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|)))) (-15 -2028 ((-112) |#1| (-620 |#2|)))) (-300) (-1205 |#1|)) (T -447)) +((-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *5)) (-4 *5 (-1205 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1229 (-620 *3))) (-4 *4 (-300)) (-5 *2 (-620 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1205 *4)))) (-2026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1205 *4)) (-5 *2 (-1229 (-620 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-620 *6)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-300)) (-5 *2 (-749)) (-5 *1 (-447 *5 *3)))) (-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1205 *3))))) +(-10 -7 (-15 -2147 (|#2| |#2| |#1|)) (-15 -2025 ((-749) |#2| (-620 |#2|))) (-15 -2026 ((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|))) (-15 -2027 ((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|)))) (-15 -2028 ((-112) |#1| (-620 |#2|)))) +((-4087 (((-398 |#5|) |#5|) 24))) +(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4087 ((-398 |#5|) |#5|))) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-771) (-543) (-543) (-924 |#4| |#2| |#1|)) (T -448)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) (-4 *5 (-771)) (-4 *7 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-543)) (-4 *3 (-924 *7 *5 *4))))) +(-10 -7 (-15 -4087 ((-398 |#5|) |#5|))) +((-3028 ((|#3|) 37)) (-3036 (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 33))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3036 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3028 (|#3|))) (-771) (-825) (-884) (-924 |#3| |#1| |#2|)) (T -449)) +((-3028 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-884)) (-5 *1 (-449 *3 *4 *5 *6))))) +(-10 -7 (-15 -3036 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3028 (|#3|))) +((-4087 (((-398 (-1141 |#1|)) (-1141 |#1|)) 43))) +(((-450 |#1|) (-10 -7 (-15 -4087 ((-398 (-1141 |#1|)) (-1141 |#1|)))) (-300)) (T -450)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1141 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1141 *4))))) +(-10 -7 (-15 -4087 ((-398 (-1141 |#1|)) (-1141 |#1|)))) +((-4084 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749))) 42) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749))) 41) (((-51) |#2| (-1147) (-286 |#2|)) 35) (((-51) (-1 |#2| (-536)) (-286 |#2|)) 28)) (-4173 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 80) (((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 79) (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536))) 78) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536))) 77) (((-51) |#2| (-1147) (-286 |#2|)) 72) (((-51) (-1 |#2| (-536)) (-286 |#2|)) 71)) (-4136 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 66) (((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 64)) (-4133 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536))) 48) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536))) 47))) +(((-451 |#1| |#2|) (-10 -7 (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749)))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749)))) (-15 -4133 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4133 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4136 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4136 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -451)) +((-4173 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4173 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) (-4 *8 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4173 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6)))) (-4136 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4136 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) (-4 *8 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4133 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4084 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-749))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-749))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6))))) +(-10 -7 (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749)))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749)))) (-15 -4133 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4133 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4136 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4136 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))))) +((-2147 ((|#2| |#2| |#1|) 15)) (-2030 (((-620 |#2|) |#2| (-620 |#2|) |#1| (-893)) 69)) (-2029 (((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893)) 60))) +(((-452 |#1| |#2|) (-10 -7 (-15 -2029 ((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893))) (-15 -2030 ((-620 |#2|) |#2| (-620 |#2|) |#1| (-893))) (-15 -2147 (|#2| |#2| |#1|))) (-300) (-1205 |#1|)) (T -452)) +((-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1205 *3)))) (-2030 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-620 *3)) (-5 *5 (-893)) (-4 *3 (-1205 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-893)) (-4 *5 (-300)) (-4 *3 (-1205 *5)) (-5 *2 (-2 (|:| |plist| (-620 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-620 *3))))) +(-10 -7 (-15 -2029 ((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893))) (-15 -2030 ((-620 |#2|) |#2| (-620 |#2|) |#1| (-893))) (-15 -2147 (|#2| |#2| |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 28)) (-4065 (($ |#3|) 25)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) 32)) (-2031 (($ |#2| |#4| $) 33)) (-3221 (($ |#2| (-692 |#3| |#4| |#5|)) 24)) (-3222 (((-692 |#3| |#4| |#5|) $) 15)) (-2033 ((|#3| $) 19)) (-2034 ((|#4| $) 17)) (-3520 ((|#2| $) 29)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2032 (($ |#2| |#3| |#4|) 26)) (-2986 (($) 36 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3520 (|#2| $)) (-15 -3222 ((-692 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4314 ($ $)) (-15 -3221 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -4065 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-620 (-1147)) (-170) (-825) (-232 (-4311 |#1|) (-749)) (-1 (-112) (-2 (|:| -2487 |#3|) (|:| -2488 |#4|)) (-2 (|:| -2487 |#3|) (|:| -2488 |#4|))) (-924 |#2| |#4| (-839 |#1|))) (T -453)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) (-4 *2 (-924 *4 *6 (-839 *3))))) (-3520 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) (-2 (|:| -2487 *4) (|:| -2488 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-924 *2 *5 (-839 *3))))) (-3222 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) (-4 *8 (-924 *4 *6 (-839 *3))))) (-2034 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *2)) (-2 (|:| -2487 *5) (|:| -2488 *2)))) (-4 *2 (-232 (-4311 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-825)) (-4 *7 (-924 *4 *2 (-839 *3))))) (-2033 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) (-2 (|:| -2487 *2) (|:| -2488 *5)))) (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-924 *4 *5 (-839 *3))))) (-4314 (*1 *1 *1) (-12 (-14 *2 (-620 (-1147))) (-4 *3 (-170)) (-4 *5 (-232 (-4311 *2) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) (-2 (|:| -2487 *4) (|:| -2488 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-924 *3 *5 (-839 *2))))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-4311 *4) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-924 *2 *6 (-839 *4))))) (-4065 (*1 *1 *2) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) (-2 (|:| -2487 *2) (|:| -2488 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) (-4 *7 (-924 *4 *5 (-839 *3))))) (-2032 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-620 (-1147))) (-4 *2 (-170)) (-4 *4 (-232 (-4311 *5) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *4)) (-2 (|:| -2487 *3) (|:| -2488 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) (-4 *7 (-924 *2 *4 (-839 *5))))) (-2031 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-4 *3 (-232 (-4311 *4) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *3)) (-2 (|:| -2487 *5) (|:| -2488 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) (-4 *7 (-924 *2 *3 (-839 *4)))))) +(-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3520 (|#2| $)) (-15 -3222 ((-692 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4314 ($ $)) (-15 -3221 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -4065 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2035 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|) (-13 (-1012 (-400 (-536))) (-356) (-10 -8 (-15 -4312 ($ |#4|)) (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $))))) (T -454)) +((-2035 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-543)) (-4 *7 (-924 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1012 (-400 (-536))) (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) +(-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3412 (((-620 |#3|) $) 41)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 47)) (-3502 (($ (-620 |#4|)) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#4|) $) 18 (|has| $ (-6 -4348)))) (-3526 ((|#3| $) 45)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 14 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 39)) (-3923 (($) 17)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 16)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525)))) (($ (-620 |#4|)) 49)) (-3879 (($ (-620 |#4|)) 13)) (-3238 (($ $ |#3|) NIL)) (-3240 (($ $ |#3|) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 38) (((-620 |#4|) $) 48)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 30)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-455 |#1| |#2| |#3| |#4|) (-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4325 ($ (-620 |#4|))) (-6 -4348) (-6 -4349))) (-1023) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -455)) +((-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6))))) +(-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4325 ($ (-620 |#4|))) (-6 -4348) (-6 -4349))) +((-2986 (($) 11)) (-2992 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2992 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2986 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456)) +NIL +(-10 -8 (-15 -2992 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2986 (|#1|))) +((-2893 (((-112) $ $) 7)) (-3503 (((-3 |#1| "failed") $) 26)) (-3502 ((|#1| $) 25)) (-4299 (($ $ $) 23)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 ((|#2| $) 19)) (-4312 (((-838) $) 11) (($ |#1|) 27)) (-2986 (($) 18 T CONST)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 15) (($ $ $) 13)) (-4194 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-457 |#1| |#2|) (-138) (-170) (-23)) (T -457)) -((-2700 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-3141 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-462 |t#1| |t#2|) (-1012 |t#1|) (-10 -8 (-15 (-2700) ($) -4165) (-15 -3141 ($ $ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-462 |#1| |#2|) . T) ((-1012 |#1|) . T) ((-1069) . T)) -((-3843 (((-1228 (-1228 (-550))) (-1228 (-1228 (-550))) (-895)) 18)) (-2643 (((-1228 (-1228 (-550))) (-895)) 16))) -(((-458) (-10 -7 (-15 -3843 ((-1228 (-1228 (-550))) (-1228 (-1228 (-550))) (-895))) (-15 -2643 ((-1228 (-1228 (-550))) (-895))))) (T -458)) -((-2643 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1228 (-1228 (-550)))) (-5 *1 (-458)))) (-3843 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 (-1228 (-550)))) (-5 *3 (-895)) (-5 *1 (-458))))) -(-10 -7 (-15 -3843 ((-1228 (-1228 (-550))) (-1228 (-1228 (-550))) (-895))) (-15 -2643 ((-1228 (-1228 (-550))) (-895)))) -((-4003 (((-550) (-550)) 30) (((-550)) 22)) (-2672 (((-550) (-550)) 26) (((-550)) 18)) (-1394 (((-550) (-550)) 28) (((-550)) 20)) (-1265 (((-112) (-112)) 12) (((-112)) 10)) (-1367 (((-112) (-112)) 11) (((-112)) 9)) (-3031 (((-112) (-112)) 24) (((-112)) 15))) -(((-459) (-10 -7 (-15 -1367 ((-112))) (-15 -1265 ((-112))) (-15 -1367 ((-112) (-112))) (-15 -1265 ((-112) (-112))) (-15 -3031 ((-112))) (-15 -1394 ((-550))) (-15 -2672 ((-550))) (-15 -4003 ((-550))) (-15 -3031 ((-112) (-112))) (-15 -1394 ((-550) (-550))) (-15 -2672 ((-550) (-550))) (-15 -4003 ((-550) (-550))))) (T -459)) -((-4003 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-4003 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2672 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-1394 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-3031 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1265 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1367 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1265 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1367 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(-10 -7 (-15 -1367 ((-112))) (-15 -1265 ((-112))) (-15 -1367 ((-112) (-112))) (-15 -1265 ((-112) (-112))) (-15 -3031 ((-112))) (-15 -1394 ((-550))) (-15 -2672 ((-550))) (-15 -4003 ((-550))) (-15 -3031 ((-112) (-112))) (-15 -1394 ((-550) (-550))) (-15 -2672 ((-550) (-550))) (-15 -4003 ((-550) (-550)))) -((-2221 (((-112) $ $) NIL)) (-2220 (((-623 (-372)) $) 28) (((-623 (-372)) $ (-623 (-372))) 96)) (-3965 (((-623 (-1063 (-372))) $) 16) (((-623 (-1063 (-372))) $ (-623 (-1063 (-372)))) 94)) (-1288 (((-623 (-623 (-917 (-219)))) (-623 (-623 (-917 (-219)))) (-623 (-848))) 45)) (-2284 (((-623 (-623 (-917 (-219)))) $) 90)) (-2712 (((-1233) $ (-917 (-219)) (-848)) 108)) (-3890 (($ $) 89) (($ (-623 (-623 (-917 (-219))))) 99) (($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895))) 98) (($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895)) (-623 (-256))) 100)) (-2369 (((-1127) $) NIL)) (-3549 (((-550) $) 71)) (-3445 (((-1089) $) NIL)) (-3759 (($) 97)) (-2653 (((-623 (-219)) (-623 (-623 (-917 (-219))))) 56)) (-1749 (((-1233) $ (-623 (-917 (-219))) (-848) (-848) (-895)) 102) (((-1233) $ (-917 (-219))) 104) (((-1233) $ (-917 (-219)) (-848) (-848) (-895)) 103)) (-2233 (((-837) $) 114) (($ (-623 (-623 (-917 (-219))))) 109)) (-3093 (((-1233) $ (-917 (-219))) 107)) (-2264 (((-112) $ $) NIL))) -(((-460) (-13 (-1069) (-10 -8 (-15 -3759 ($)) (-15 -3890 ($ $)) (-15 -3890 ($ (-623 (-623 (-917 (-219)))))) (-15 -3890 ($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895)))) (-15 -3890 ($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895)) (-623 (-256)))) (-15 -2284 ((-623 (-623 (-917 (-219)))) $)) (-15 -3549 ((-550) $)) (-15 -3965 ((-623 (-1063 (-372))) $)) (-15 -3965 ((-623 (-1063 (-372))) $ (-623 (-1063 (-372))))) (-15 -2220 ((-623 (-372)) $)) (-15 -2220 ((-623 (-372)) $ (-623 (-372)))) (-15 -1749 ((-1233) $ (-623 (-917 (-219))) (-848) (-848) (-895))) (-15 -1749 ((-1233) $ (-917 (-219)))) (-15 -1749 ((-1233) $ (-917 (-219)) (-848) (-848) (-895))) (-15 -3093 ((-1233) $ (-917 (-219)))) (-15 -2712 ((-1233) $ (-917 (-219)) (-848))) (-15 -2233 ($ (-623 (-623 (-917 (-219)))))) (-15 -2233 ((-837) $)) (-15 -1288 ((-623 (-623 (-917 (-219)))) (-623 (-623 (-917 (-219)))) (-623 (-848)))) (-15 -2653 ((-623 (-219)) (-623 (-623 (-917 (-219))))))))) (T -460)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-460)))) (-3759 (*1 *1) (-5 *1 (-460))) (-3890 (*1 *1 *1) (-5 *1 (-460))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460)))) (-3890 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) (-5 *4 (-623 (-895))) (-5 *1 (-460)))) (-3890 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) (-5 *4 (-623 (-895))) (-5 *5 (-623 (-256))) (-5 *1 (-460)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-460)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-460)))) (-3965 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-460)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) (-2220 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) (-1749 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-895)) (-5 *2 (-1233)) (-5 *1 (-460)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1233)) (-5 *1 (-460)))) (-1749 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-895)) (-5 *2 (-1233)) (-5 *1 (-460)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1233)) (-5 *1 (-460)))) (-2712 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1233)) (-5 *1 (-460)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460)))) (-1288 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) (-5 *1 (-460)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *2 (-623 (-219))) (-5 *1 (-460))))) -(-13 (-1069) (-10 -8 (-15 -3759 ($)) (-15 -3890 ($ $)) (-15 -3890 ($ (-623 (-623 (-917 (-219)))))) (-15 -3890 ($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895)))) (-15 -3890 ($ (-623 (-623 (-917 (-219)))) (-623 (-848)) (-623 (-848)) (-623 (-895)) (-623 (-256)))) (-15 -2284 ((-623 (-623 (-917 (-219)))) $)) (-15 -3549 ((-550) $)) (-15 -3965 ((-623 (-1063 (-372))) $)) (-15 -3965 ((-623 (-1063 (-372))) $ (-623 (-1063 (-372))))) (-15 -2220 ((-623 (-372)) $)) (-15 -2220 ((-623 (-372)) $ (-623 (-372)))) (-15 -1749 ((-1233) $ (-623 (-917 (-219))) (-848) (-848) (-895))) (-15 -1749 ((-1233) $ (-917 (-219)))) (-15 -1749 ((-1233) $ (-917 (-219)) (-848) (-848) (-895))) (-15 -3093 ((-1233) $ (-917 (-219)))) (-15 -2712 ((-1233) $ (-917 (-219)) (-848))) (-15 -2233 ($ (-623 (-623 (-917 (-219)))))) (-15 -2233 ((-837) $)) (-15 -1288 ((-623 (-623 (-917 (-219)))) (-623 (-623 (-917 (-219)))) (-623 (-848)))) (-15 -2653 ((-623 (-219)) (-623 (-623 (-917 (-219)))))))) -((-2370 (($ $) NIL) (($ $ $) 11))) -(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461)) -NIL -(-10 -8 (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3661 ((|#2| $) 19)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 15) (($ $ $) 13)) (-2358 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2992 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4299 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-462 |t#1| |t#2|) (-1012 |t#1|) (-10 -8 (-15 (-2992) ($) -4306) (-15 -4299 ($ $ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-462 |#1| |#2|) . T) ((-1012 |#1|) . T) ((-1072) . T)) +((-2036 (((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893)) 18)) (-2037 (((-1229 (-1229 (-536))) (-893)) 16))) +(((-458) (-10 -7 (-15 -2036 ((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893))) (-15 -2037 ((-1229 (-1229 (-536))) (-893))))) (T -458)) +((-2037 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 (-536)))) (-5 *1 (-458)))) (-2036 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 (-1229 (-536)))) (-5 *3 (-893)) (-5 *1 (-458))))) +(-10 -7 (-15 -2036 ((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893))) (-15 -2037 ((-1229 (-1229 (-536))) (-893)))) +((-3098 (((-536) (-536)) 30) (((-536)) 22)) (-3102 (((-536) (-536)) 26) (((-536)) 18)) (-3100 (((-536) (-536)) 28) (((-536)) 20)) (-2039 (((-112) (-112)) 12) (((-112)) 10)) (-2038 (((-112) (-112)) 11) (((-112)) 9)) (-2040 (((-112) (-112)) 24) (((-112)) 15))) +(((-459) (-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3100 ((-536))) (-15 -3102 ((-536))) (-15 -3098 ((-536))) (-15 -2040 ((-112) (-112))) (-15 -3100 ((-536) (-536))) (-15 -3102 ((-536) (-536))) (-15 -3098 ((-536) (-536))))) (T -459)) +((-3098 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3098 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3102 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3100 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-2040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) +(-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3100 ((-536))) (-15 -3102 ((-536))) (-15 -3098 ((-536))) (-15 -2040 ((-112) (-112))) (-15 -3100 ((-536) (-536))) (-15 -3102 ((-536) (-536))) (-15 -3098 ((-536) (-536)))) +((-2893 (((-112) $ $) NIL)) (-4206 (((-620 (-371)) $) 28) (((-620 (-371)) $ (-620 (-371))) 96)) (-2045 (((-620 (-1060 (-371))) $) 16) (((-620 (-1060 (-371))) $ (-620 (-1060 (-371)))) 94)) (-2042 (((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848))) 45)) (-2046 (((-620 (-620 (-917 (-219)))) $) 90)) (-4064 (((-1235) $ (-917 (-219)) (-848)) 108)) (-2047 (($ $) 89) (($ (-620 (-620 (-917 (-219))))) 99) (($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893))) 98) (($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254))) 100)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 71)) (-3589 (((-1091) $) NIL)) (-2048 (($) 97)) (-2041 (((-620 (-219)) (-620 (-620 (-917 (-219))))) 56)) (-2044 (((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893)) 102) (((-1235) $ (-917 (-219))) 104) (((-1235) $ (-917 (-219)) (-848) (-848) (-893)) 103)) (-4312 (((-838) $) 114) (($ (-620 (-620 (-917 (-219))))) 109)) (-2043 (((-1235) $ (-917 (-219))) 107)) (-3382 (((-112) $ $) NIL))) +(((-460) (-13 (-1072) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-620 (-620 (-917 (-219)))))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254)))) (-15 -2046 ((-620 (-620 (-917 (-219)))) $)) (-15 -4215 ((-536) $)) (-15 -2045 ((-620 (-1060 (-371))) $)) (-15 -2045 ((-620 (-1060 (-371))) $ (-620 (-1060 (-371))))) (-15 -4206 ((-620 (-371)) $)) (-15 -4206 ((-620 (-371)) $ (-620 (-371)))) (-15 -2044 ((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893))) (-15 -2044 ((-1235) $ (-917 (-219)))) (-15 -2044 ((-1235) $ (-917 (-219)) (-848) (-848) (-893))) (-15 -2043 ((-1235) $ (-917 (-219)))) (-15 -4064 ((-1235) $ (-917 (-219)) (-848))) (-15 -4312 ($ (-620 (-620 (-917 (-219)))))) (-15 -4312 ((-838) $)) (-15 -2042 ((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848)))) (-15 -2041 ((-620 (-219)) (-620 (-620 (-917 (-219))))))))) (T -460)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-460)))) (-2048 (*1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *4 (-620 (-893))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *4 (-620 (-893))) (-5 *5 (-620 (-254))) (-5 *1 (-460)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-460)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) (-4206 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) (-4064 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *1 (-460)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-219))) (-5 *1 (-460))))) +(-13 (-1072) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-620 (-620 (-917 (-219)))))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254)))) (-15 -2046 ((-620 (-620 (-917 (-219)))) $)) (-15 -4215 ((-536) $)) (-15 -2045 ((-620 (-1060 (-371))) $)) (-15 -2045 ((-620 (-1060 (-371))) $ (-620 (-1060 (-371))))) (-15 -4206 ((-620 (-371)) $)) (-15 -4206 ((-620 (-371)) $ (-620 (-371)))) (-15 -2044 ((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893))) (-15 -2044 ((-1235) $ (-917 (-219)))) (-15 -2044 ((-1235) $ (-917 (-219)) (-848) (-848) (-893))) (-15 -2043 ((-1235) $ (-917 (-219)))) (-15 -4064 ((-1235) $ (-917 (-219)) (-848))) (-15 -4312 ($ (-620 (-620 (-917 (-219)))))) (-15 -4312 ((-838) $)) (-15 -2042 ((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848)))) (-15 -2041 ((-620 (-219)) (-620 (-620 (-917 (-219)))))))) +((-4192 (($ $) NIL) (($ $ $) 11))) +(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461)) +NIL +(-10 -8 (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 ((|#2| $) 19)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 15) (($ $ $) 13)) (-4194 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-462 |#1| |#2|) (-138) (-170) (-23)) (T -462)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2688 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2358 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-1069) (-10 -8 (-15 -3661 (|t#2| $)) (-15 (-2688) ($) -4165) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2370 ($ $)) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-1326 (((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-839 |#1|))) 92)) (-2559 (((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|))) 90)) (-3766 (((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|))) 61))) -(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2559 ((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|)))) (-15 -1326 ((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-839 |#1|)))) (-15 -3766 ((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|))))) (-623 (-1145)) (-444) (-444)) (T -463)) -((-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-839 *5))) (-14 *5 (-623 (-1145))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-623 (-241 *5 *6))) (|:| |coords| (-623 (-550))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444)))) (-1326 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-623 (-839 *4))) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-839 *5))) (-14 *5 (-623 (-1145))) (-4 *6 (-444)) (-5 *2 (-623 (-623 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) -(-10 -7 (-15 -2559 ((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|)))) (-15 -1326 ((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-839 |#1|)))) (-15 -3766 ((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-839 |#1|))))) -((-1537 (((-3 $ "failed") $) 11)) (-3018 (($ $ $) 18)) (-1353 (($ $ $) 19)) (-2382 (($ $ $) 9)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 17))) -(((-464 |#1|) (-10 -8 (-15 -1353 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895)))) (-465)) (T -464)) -NIL -(-10 -8 (-15 -1353 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-2991 (($) 18 T CONST)) (-1537 (((-3 $ "failed") $) 15)) (-2419 (((-112) $) 17)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 24)) (-3445 (((-1089) $) 10)) (-3018 (($ $ $) 21)) (-1353 (($ $ $) 20)) (-2233 (((-837) $) 11)) (-2700 (($) 19 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-749)) 16) (($ $ (-550)) 22)) (* (($ $ $) 14))) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2986 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-1072) (-10 -8 (-15 -4302 (|t#2| $)) (-15 (-2986) ($) -4306) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4192 ($ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2050 (((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|))) 92)) (-2049 (((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))) 90)) (-2051 (((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))) 61))) +(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2049 ((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2050 ((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))))) (-620 (-1147)) (-444) (-444)) (T -463)) +((-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-620 (-241 *5 *6))) (|:| |coords| (-620 (-536))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444)))) (-2050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-620 (-620 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) +(-10 -7 (-15 -2049 ((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2050 ((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))))) +((-3816 (((-3 $ "failed") $) 11)) (-3337 (($ $ $) 18)) (-2681 (($ $ $) 19)) (-4303 (($ $ $) 9)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 17))) +(((-464 |#1|) (-10 -8 (-15 -2681 (|#1| |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) (-465)) (T -464)) +NIL +(-10 -8 (-15 -2681 (|#1| |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-2497 (((-112) $) 17)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 24)) (-3589 (((-1091) $) 10)) (-3337 (($ $ $) 21)) (-2681 (($ $ $) 20)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 23)) (** (($ $ (-893)) 13) (($ $ (-749)) 16) (($ $ (-536)) 22)) (* (($ $ $) 14))) (((-465) (-138)) (T -465)) -((-1619 (*1 *1 *1) (-4 *1 (-465))) (-2382 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-550)))) (-3018 (*1 *1 *1 *1) (-4 *1 (-465))) (-1353 (*1 *1 *1 *1) (-4 *1 (-465)))) -(-13 (-705) (-10 -8 (-15 -1619 ($ $)) (-15 -2382 ($ $ $)) (-15 ** ($ $ (-550))) (-6 -4341) (-15 -3018 ($ $ $)) (-15 -1353 ($ $ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-705) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 17)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) NIL) (($ $ (-400 (-550))) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-400 (-550))) NIL) (($ $ (-1051) (-400 (-550))) NIL) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) 22)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) 26 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 33 (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 27 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) 25 (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1224 |#2|)) 15)) (-3661 (((-400 (-550)) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1224 |#2|)) NIL) (($ (-1213 |#1| |#2| |#3|)) 9) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 18)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) 24)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-466 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2233 ($ (-1213 |#1| |#2| |#3|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -466)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1213 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1209 |#1|) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2233 ($ (-1213 |#1| |#2| |#3|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) 18)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) 19)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 16)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) NIL)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-467 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2|) (-1069) (-1069) (-1158 |#1| |#2|) |#2|) (T -467)) -NIL -(-1158 |#1| |#2|) -((-2221 (((-112) $ $) NIL)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) NIL)) (-3186 (((-623 $) (-623 |#4|)) NIL)) (-1516 (((-623 |#3|) $) NIL)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3624 ((|#4| |#4| $) NIL)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) 26 (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3694 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2202 (($ (-623 |#4|)) NIL)) (-3870 (((-3 $ "failed") $) 39)) (-2962 ((|#4| |#4| $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1979 (($ |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) NIL)) (-2971 (((-623 |#4|) $) 16 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1765 ((|#3| $) 33)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#4|) $) 17 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-3311 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 21)) (-3704 (((-623 |#3|) $) NIL)) (-4159 (((-112) |#3| $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-2001 (((-3 |#4| "failed") $) 37)) (-3896 (((-623 |#4|) $) NIL)) (-3705 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2474 ((|#4| |#4| $) NIL)) (-3098 (((-112) $ $) NIL)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3959 ((|#4| |#4| $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-3 |#4| "failed") $) 35)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3747 (((-3 $ "failed") $ |#4|) 47)) (-4268 (($ $ |#4|) NIL)) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 15)) (-2819 (($) 13)) (-3661 (((-749) $) NIL)) (-3457 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) 12)) (-2451 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 20)) (-3537 (($ $ |#3|) 42)) (-1446 (($ $ |#3|) 44)) (-3236 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-2233 (((-837) $) 31) (((-623 |#4|) $) 40)) (-4265 (((-749) $) NIL (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) NIL)) (-3636 (((-112) |#3| $) NIL)) (-2264 (((-112) $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-468 |#1| |#2| |#3| |#4|) (-1175 |#1| |#2| |#3| |#4|) (-542) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -468)) -NIL -(-1175 |#1| |#2| |#3| |#4|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-4187 (($) 18)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2451 (((-372) $) 22) (((-219) $) 25) (((-400 (-1141 (-550))) $) 19) (((-526) $) 52)) (-2233 (((-837) $) 50) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (((-219) $) 24) (((-372) $) 21)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 36 T CONST)) (-2700 (($) 11 T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-469) (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))) (-996) (-595 (-219)) (-595 (-372)) (-596 (-400 (-1141 (-550)))) (-596 (-526)) (-10 -8 (-15 -4187 ($))))) (T -469)) -((-4187 (*1 *1) (-5 *1 (-469)))) -(-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))) (-996) (-595 (-219)) (-595 (-372)) (-596 (-400 (-1141 (-550)))) (-596 (-526)) (-10 -8 (-15 -4187 ($)))) -((-2221 (((-112) $ $) NIL)) (-2386 (((-1104) $) 11)) (-2374 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-470) (-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $))))) (T -470)) -((-2374 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-470)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-470))))) -(-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $)))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) 16)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) 20)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 18)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) 13)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 19)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 11 (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) 15 (|has| $ (-6 -4344))))) -(((-471 |#1| |#2| |#3|) (-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) (-1069) (-1069) (-1127)) (T -471)) -NIL -(-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) -((-2188 (((-550) (-550) (-550)) 7)) (-3912 (((-112) (-550) (-550) (-550) (-550)) 11)) (-2029 (((-1228 (-623 (-550))) (-749) (-749)) 23))) -(((-472) (-10 -7 (-15 -2188 ((-550) (-550) (-550))) (-15 -3912 ((-112) (-550) (-550) (-550) (-550))) (-15 -2029 ((-1228 (-623 (-550))) (-749) (-749))))) (T -472)) -((-2029 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1228 (-623 (-550)))) (-5 *1 (-472)))) (-3912 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2188 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-472))))) -(-10 -7 (-15 -2188 ((-550) (-550) (-550))) (-15 -3912 ((-112) (-550) (-550) (-550) (-550))) (-15 -2029 ((-1228 (-623 (-550))) (-749) (-749)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-839 |#1|)) $) NIL)) (-1705 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-3050 (($ $) NIL (|has| |#2| (-542)))) (-3953 (((-112) $) NIL (|has| |#2| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-839 |#1|))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL (|has| |#2| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-839 |#1|) "failed") $) NIL)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-839 |#1|) $) NIL)) (-1792 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-3752 (($ $ (-623 (-550))) NIL)) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#2| (-883)))) (-3401 (($ $ |#2| (-474 (-3307 |#1|) (-749)) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#2| (-474 (-3307 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-839 |#1|)) NIL)) (-3346 (((-474 (-3307 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2863 (($ (-1 (-474 (-3307 |#1|) (-749)) (-474 (-3307 |#1|) (-749))) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4059 (((-3 (-839 |#1|) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#2| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -3068 (-749))) "failed") $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#2| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-883)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-623 (-839 |#1|)) (-623 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-623 (-839 |#1|)) (-623 $)) NIL)) (-3563 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2798 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-3661 (((-474 (-3307 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-839 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-474 (-3307 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-473 |#1| |#2|) (-13 (-923 |#2| (-474 (-3307 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) (-623 (-1145)) (-1021)) (T -473)) -((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-473 *3 *4)) (-14 *3 (-623 (-1145))) (-4 *4 (-1021))))) -(-13 (-923 |#2| (-474 (-3307 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -3752 ($ $ (-623 (-550)))))) -((-2221 (((-112) $ $) NIL (|has| |#2| (-1069)))) (-3378 (((-112) $) NIL (|has| |#2| (-130)))) (-2065 (($ (-895)) NIL (|has| |#2| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) NIL (|has| |#2| (-771)))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#2| (-361)))) (-4303 (((-550) $) NIL (|has| |#2| (-823)))) (-2409 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1069)))) (-2202 (((-550) $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) ((|#2| $) NIL (|has| |#2| (-1069)))) (-3756 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL (|has| |#2| (-1021))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1021)))) (-1537 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-1864 (($) NIL (|has| |#2| (-361)))) (-3317 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ (-550)) 11)) (-2694 (((-112) $) NIL (|has| |#2| (-823)))) (-2971 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (|has| |#2| (-705)))) (-1712 (((-112) $) NIL (|has| |#2| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2876 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3311 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#2| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#2| (-1069)))) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#2| (-361)))) (-3445 (((-1089) $) NIL (|has| |#2| (-1069)))) (-3858 ((|#2| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-3451 ((|#2| $ $) NIL (|has| |#2| (-1021)))) (-1422 (($ (-1228 |#2|)) NIL)) (-1877 (((-133)) NIL (|has| |#2| (-356)))) (-2798 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-3457 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#2|) $) NIL) (($ (-550)) NIL (-1489 (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (|has| |#2| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (($ |#2|) NIL (|has| |#2| (-1069))) (((-837) $) NIL (|has| |#2| (-595 (-837))))) (-3091 (((-749)) NIL (|has| |#2| (-1021)))) (-3404 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#2| (-823)))) (-2688 (($) NIL (|has| |#2| (-130)) CONST)) (-2700 (($) NIL (|has| |#2| (-705)) CONST)) (-1901 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2264 (((-112) $ $) NIL (|has| |#2| (-1069)))) (-2313 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2290 (((-112) $ $) 15 (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $ $) NIL (|has| |#2| (-1021))) (($ $) NIL (|has| |#2| (-1021)))) (-2358 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-895)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1021))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) +((-2729 (*1 *1 *1) (-4 *1 (-465))) (-4303 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-536)))) (-3337 (*1 *1 *1 *1) (-4 *1 (-465))) (-2681 (*1 *1 *1 *1) (-4 *1 (-465)))) +(-13 (-705) (-10 -8 (-15 -2729 ($ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-536))) (-6 -4345) (-15 -3337 ($ $ $)) (-15 -2681 ($ $ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-705) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 17)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) NIL) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 26 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 33 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 27 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 25 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 15)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1226 |#2|)) NIL) (($ (-1210 |#1| |#2| |#3|)) 9) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 18)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 24)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-466 |#1| |#2| |#3|) (-13 (-1212 |#1|) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4312 ($ (-1210 |#1| |#2| |#3|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -466)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1212 |#1|) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4312 ($ (-1210 |#1| |#2| |#3|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) 18)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 19)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 16)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-467 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2|) (-1072) (-1072) (-1160 |#1| |#2|) |#2|) (T -467)) +NIL +(-1160 |#1| |#2|) +((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) NIL)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-3 |#4| #1#) $) 37)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 47)) (-4123 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-4288 (((-112) |#3| $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-468 |#1| |#2| |#3| |#4|) (-1178 |#1| |#2| |#3| |#4|) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -468)) +NIL +(-1178 |#1| |#2| |#3| |#4|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3985 (($) 18)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4325 (((-371) $) 22) (((-219) $) 25) (((-400 (-1141 (-536))) $) 19) (((-525) $) 52)) (-4312 (((-838) $) 50) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (((-219) $) 24) (((-371) $) 21)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 36 T CONST)) (-2992 (($) 11 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-469) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))) (-994) (-595 (-219)) (-595 (-371)) (-596 (-400 (-1141 (-536)))) (-596 (-525)) (-10 -8 (-15 -3985 ($))))) (T -469)) +((-3985 (*1 *1) (-5 *1 (-469)))) +(-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))) (-994) (-595 (-219)) (-595 (-371)) (-596 (-400 (-1141 (-536)))) (-596 (-525)) (-10 -8 (-15 -3985 ($)))) +((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-470) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -470)) +((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470))))) +(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) 16)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 20)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 18)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) 13)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 19)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 11 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) 15 (|has| $ (-6 -4348))))) +(((-471 |#1| |#2| |#3|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072) (-1129)) (T -471)) +NIL +(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) +((-2052 (((-536) (-536) (-536)) 7)) (-2053 (((-112) (-536) (-536) (-536) (-536)) 11)) (-3806 (((-1229 (-620 (-536))) (-749) (-749)) 23))) +(((-472) (-10 -7 (-15 -2052 ((-536) (-536) (-536))) (-15 -2053 ((-112) (-536) (-536) (-536) (-536))) (-15 -3806 ((-1229 (-620 (-536))) (-749) (-749))))) (T -472)) +((-3806 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1229 (-620 (-536)))) (-5 *1 (-472)))) (-2053 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-472))))) +(-10 -7 (-15 -2052 ((-536) (-536) (-536))) (-15 -2053 ((-112) (-536) (-536) (-536) (-536))) (-15 -3806 ((-1229 (-620 (-536))) (-749) (-749)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) NIL)) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-474 (-4311 |#1|) (-749)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-474 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-474 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-474 (-4311 |#1|) (-749)) (-474 (-4311 |#1|) (-749))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-474 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-474 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-473 |#1| |#2|) (-13 (-924 |#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023)) (T -473)) +((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-473 *3 *4)) (-14 *3 (-620 (-1147))) (-4 *4 (-1023))))) +(-13 (-924 |#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) +((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) NIL (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) NIL (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 11)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) NIL)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) NIL (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) NIL (|has| |#2| (-130)) CONST)) (-2992 (($) NIL (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 15 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) (((-474 |#1| |#2|) (-232 |#1| |#2|) (-749) (-771)) (T -474)) NIL (-232 |#1| |#2|) -((-2221 (((-112) $ $) NIL)) (-4148 (((-623 (-497)) $) 11)) (-1856 (((-497) $) 10)) (-2369 (((-1127) $) NIL)) (-2180 (($ (-497) (-623 (-497))) 9)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-475) (-13 (-1052) (-10 -8 (-15 -2180 ($ (-497) (-623 (-497)))) (-15 -1856 ((-497) $)) (-15 -4148 ((-623 (-497)) $))))) (T -475)) -((-2180 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-623 (-497))) (-5 *1 (-475))))) -(-13 (-1052) (-10 -8 (-15 -2180 ($ (-497) (-623 (-497)))) (-15 -1856 ((-497) $)) (-15 -4148 ((-623 (-497)) $)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2299 (($ $ $) 32)) (-2441 (($ $ $) 31)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2173 ((|#1| $) 26)) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) 27)) (-1715 (($ |#1| $) 10)) (-3019 (($ (-623 |#1|)) 12)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3576 ((|#1| $) 23)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 9)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 29)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) 21 (|has| $ (-6 -4344))))) -(((-476 |#1|) (-13 (-942 |#1|) (-10 -8 (-15 -3019 ($ (-623 |#1|))))) (-825)) (T -476)) -((-3019 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) -(-13 (-942 |#1|) (-10 -8 (-15 -3019 ($ (-623 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2924 (($ $) 69)) (-1342 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-2308 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3445 (((-1089) $) NIL)) (-2256 (((-3 |#4| "failed") $) 107)) (-1279 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-550)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-1301 (((-2 (|:| -3345 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2233 (((-837) $) 102)) (-2688 (($) 33 T CONST)) (-2264 (((-112) $ $) 109)) (-2370 (($ $) 72) (($ $ $) NIL)) (-2358 (($ $ $) 70)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 73))) -(((-477 |#1| |#2| |#3| |#4|) (-328 |#1| |#2| |#3| |#4|) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477)) -NIL -(-328 |#1| |#2| |#3| |#4|) -((-1633 (((-550) (-623 (-550))) 30)) (-1701 ((|#1| (-623 |#1|)) 56)) (-3133 (((-623 |#1|) (-623 |#1|)) 57)) (-3347 (((-623 |#1|) (-623 |#1|)) 59)) (-3260 ((|#1| (-623 |#1|)) 58)) (-1622 (((-623 (-550)) (-623 |#1|)) 33))) -(((-478 |#1|) (-10 -7 (-15 -3260 (|#1| (-623 |#1|))) (-15 -1701 (|#1| (-623 |#1|))) (-15 -3347 ((-623 |#1|) (-623 |#1|))) (-15 -3133 ((-623 |#1|) (-623 |#1|))) (-15 -1622 ((-623 (-550)) (-623 |#1|))) (-15 -1633 ((-550) (-623 (-550))))) (-1204 (-550))) (T -478)) -((-1633 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-550)) (-5 *1 (-478 *4)) (-4 *4 (-1204 *2)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1204 (-550))) (-5 *2 (-623 (-550))) (-5 *1 (-478 *4)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1204 (-550))) (-5 *1 (-478 *3)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1204 (-550))) (-5 *1 (-478 *3)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1204 (-550))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1204 (-550)))))) -(-10 -7 (-15 -3260 (|#1| (-623 |#1|))) (-15 -1701 (|#1| (-623 |#1|))) (-15 -3347 ((-623 |#1|) (-623 |#1|))) (-15 -3133 ((-623 |#1|) (-623 |#1|))) (-15 -1622 ((-623 (-550)) (-623 |#1|))) (-15 -1633 ((-550) (-623 (-550))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-550) $) NIL (|has| (-550) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-550) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-550) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1012 (-550))))) (-2202 (((-550) $) NIL) (((-1145) $) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-550) (-1012 (-550)))) (((-550) $) NIL (|has| (-550) (-1012 (-550))))) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-550) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-550) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-550) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-550) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-550) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-550) (-1120)))) (-1712 (((-112) $) NIL (|has| (-550) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-550) (-825)))) (-2392 (($ (-1 (-550) (-550)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-550) (-1120)) CONST)) (-3319 (($ (-400 (-550))) 9)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-3925 (((-550) $) NIL (|has| (-550) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1145)) (-623 (-550))) NIL (|has| (-550) (-505 (-1145) (-550)))) (($ $ (-1145) (-550)) NIL (|has| (-550) (-505 (-1145) (-550))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-550) $) NIL)) (-2451 (((-866 (-550)) $) NIL (|has| (-550) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-550) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-996))) (((-219) $) NIL (|has| (-550) (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1145)) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL) (((-978 16) $) 10)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-550) (-883))) (|has| (-550) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-550) $) NIL (|has| (-550) (-535)))) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| (-550) (-798)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2382 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) -(((-479) (-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 16) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -3319 ($ (-400 (-550))))))) (T -479)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479))))) -(-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -2233 ((-978 16) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -3319 ($ (-400 (-550)))))) -((-2876 (((-623 |#2|) $) 23)) (-3922 (((-112) |#2| $) 28)) (-1410 (((-112) (-1 (-112) |#2|) $) 21)) (-1553 (($ $ (-623 (-287 |#2|))) 13) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-623 |#2|) (-623 |#2|)) NIL)) (-3457 (((-749) (-1 (-112) |#2|) $) 22) (((-749) |#2| $) 26)) (-2233 (((-837) $) 37)) (-3404 (((-112) (-1 (-112) |#2|) $) 20)) (-2264 (((-112) $ $) 31)) (-3307 (((-749) $) 17))) -(((-480 |#1| |#2|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -2876 ((-623 |#2|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|))) (-481 |#2|) (-1182)) (T -480)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#2| |#2|)) (-15 -1553 (|#1| |#1| (-287 |#2|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3922 ((-112) |#2| |#1|)) (-15 -3457 ((-749) |#2| |#1|)) (-15 -2876 ((-623 |#2|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-481 |#1|) (-138) (-1182)) (T -481)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1182)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4345)) (-4 *1 (-481 *3)) (-4 *3 (-1182)))) (-3404 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) (-4 *4 (-1182)) (-5 *2 (-112)))) (-1410 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) (-4 *4 (-1182)) (-5 *2 (-112)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) (-4 *4 (-1182)) (-5 *2 (-749)))) (-2971 (*1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) (-5 *2 (-623 *3)))) (-2876 (*1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) (-5 *2 (-623 *3)))) (-3457 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-749)))) (-3922 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-595 (-837))) (-6 (-595 (-837))) |%noBranch|) (IF (|has| |t#1| (-1069)) (-6 (-1069)) |%noBranch|) (IF (|has| |t#1| (-1069)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4345)) (-15 -3311 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4344)) (PROGN (-15 -3404 ((-112) (-1 (-112) |t#1|) $)) (-15 -1410 ((-112) (-1 (-112) |t#1|) $)) (-15 -3457 ((-749) (-1 (-112) |t#1|) $)) (-15 -2971 ((-623 |t#1|) $)) (-15 -2876 ((-623 |t#1|) $)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -3457 ((-749) |t#1| $)) (-15 -3922 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2430 (($ (-1127)) 8)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 14) (((-1127) $) 11)) (-2264 (((-112) $ $) 10))) -(((-482) (-13 (-1069) (-595 (-1127)) (-10 -8 (-15 -2430 ($ (-1127)))))) (T -482)) -((-2430 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-482))))) -(-13 (-1069) (-595 (-1127)) (-10 -8 (-15 -2430 ($ (-1127))))) -((-4160 (($ $) 15)) (-4137 (($ $) 24)) (-4183 (($ $) 12)) (-4194 (($ $) 10)) (-4171 (($ $) 17)) (-4149 (($ $) 22))) -(((-483 |#1|) (-10 -8 (-15 -4149 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|))) (-484)) (T -483)) -NIL -(-10 -8 (-15 -4149 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|))) -((-4160 (($ $) 11)) (-4137 (($ $) 10)) (-4183 (($ $) 9)) (-4194 (($ $) 8)) (-4171 (($ $) 7)) (-4149 (($ $) 6))) +((-2893 (((-112) $ $) NIL)) (-2055 (((-620 (-497)) $) 11)) (-3900 (((-497) $) 10)) (-3588 (((-1129) $) NIL)) (-2056 (($ (-497) (-620 (-497))) 9)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-475) (-13 (-1054) (-10 -8 (-15 -2056 ($ (-497) (-620 (-497)))) (-15 -3900 ((-497) $)) (-15 -2055 ((-620 (-497)) $))))) (T -475)) +((-2056 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-620 (-497))) (-5 *1 (-475))))) +(-13 (-1054) (-10 -8 (-15 -2056 ($ (-497) (-620 (-497)))) (-15 -3900 ((-497) $)) (-15 -2055 ((-620 (-497)) $)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-3187 (($ $ $) 32)) (-3867 (($ $ $) 31)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3673 ((|#1| $) 26)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 27)) (-3965 (($ |#1| $) 10)) (-2057 (($ (-620 |#1|)) 12)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 23)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 9)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 29)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) 21 (|has| $ (-6 -4348))))) +(((-476 |#1|) (-13 (-942 |#1|) (-10 -8 (-15 -2057 ($ (-620 |#1|))))) (-825)) (T -476)) +((-2057 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) +(-13 (-942 |#1|) (-10 -8 (-15 -2057 ($ (-620 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ $) 69)) (-1747 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3589 (((-1091) $) NIL)) (-2496 (((-3 |#4| "failed") $) 107)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-536)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4312 (((-838) $) 102)) (-2986 (($) 33 T CONST)) (-3382 (((-112) $ $) 109)) (-4192 (($ $) 72) (($ $ $) NIL)) (-4194 (($ $ $) 70)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 73))) +(((-477 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477)) +NIL +(-329 |#1| |#2| |#3| |#4|) +((-2061 (((-536) (-620 (-536))) 30)) (-2058 ((|#1| (-620 |#1|)) 56)) (-2060 (((-620 |#1|) (-620 |#1|)) 57)) (-2059 (((-620 |#1|) (-620 |#1|)) 59)) (-3490 ((|#1| (-620 |#1|)) 58)) (-3145 (((-620 (-536)) (-620 |#1|)) 33))) +(((-478 |#1|) (-10 -7 (-15 -3490 (|#1| (-620 |#1|))) (-15 -2058 (|#1| (-620 |#1|))) (-15 -2059 ((-620 |#1|) (-620 |#1|))) (-15 -2060 ((-620 |#1|) (-620 |#1|))) (-15 -3145 ((-620 (-536)) (-620 |#1|))) (-15 -2061 ((-536) (-620 (-536))))) (-1205 (-536))) (T -478)) +((-2061 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-536)) (-5 *1 (-478 *4)) (-4 *4 (-1205 *2)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1205 (-536))) (-5 *2 (-620 (-536))) (-5 *1 (-478 *4)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536))))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536)))))) +(-10 -7 (-15 -3490 (|#1| (-620 |#1|))) (-15 -2058 (|#1| (-620 |#1|))) (-15 -2059 ((-620 |#1|) (-620 |#1|))) (-15 -2060 ((-620 |#1|) (-620 |#1|))) (-15 -3145 ((-620 (-536)) (-620 |#1|))) (-15 -2061 ((-536) (-620 (-536))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-2062 (($ (-400 (-536))) 9)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 16) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) +(((-479) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 16) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2062 ($ (-400 (-536))))))) (T -479)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479))))) +(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 16) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2062 ($ (-400 (-536)))))) +((-2506 (((-620 |#2|) $) 23)) (-3591 (((-112) |#2| $) 28)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4122 (($ $ (-620 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-620 |#2|) (-620 |#2|)) NIL)) (-2064 (((-749) (-1 (-112) |#2|) $) 22) (((-749) |#2| $) 26)) (-4312 (((-838) $) 37)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3382 (((-112) $ $) 31)) (-4311 (((-749) $) 17))) +(((-480 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2506 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) (-481 |#2|) (-1183)) (T -480)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2506 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-481 |#1|) (-138) (-1183)) (T -481)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) (-2066 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2064 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-749)))) (-2063 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-2506 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-2064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-749)))) (-3591 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |t#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |t#1| (-1072)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4349)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4348)) (PROGN (-15 -2066 ((-112) (-1 (-112) |t#1|) $)) (-15 -2065 ((-112) (-1 (-112) |t#1|) $)) (-15 -2064 ((-749) (-1 (-112) |t#1|) $)) (-15 -2063 ((-620 |t#1|) $)) (-15 -2506 ((-620 |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -2064 ((-749) |t#1| $)) (-15 -3591 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2068 (($ (-1129)) 8)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14) (((-1129) $) 11)) (-3382 (((-112) $ $) 10))) +(((-482) (-13 (-1072) (-595 (-1129)) (-10 -8 (-15 -2068 ($ (-1129)))))) (T -482)) +((-2068 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-482))))) +(-13 (-1072) (-595 (-1129)) (-10 -8 (-15 -2068 ($ (-1129))))) +((-3841 (($ $) 15)) (-3839 (($ $) 24)) (-3843 (($ $) 12)) (-3844 (($ $) 10)) (-3842 (($ $) 17)) (-3840 (($ $) 22))) +(((-483 |#1|) (-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|))) (-484)) (T -483)) +NIL +(-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|))) +((-3841 (($ $) 11)) (-3839 (($ $) 10)) (-3843 (($ $) 9)) (-3844 (($ $) 8)) (-3842 (($ $) 7)) (-3840 (($ $) 6))) (((-484) (-138)) (T -484)) -((-4160 (*1 *1 *1) (-4 *1 (-484))) (-4137 (*1 *1 *1) (-4 *1 (-484))) (-4183 (*1 *1 *1) (-4 *1 (-484))) (-4194 (*1 *1 *1) (-4 *1 (-484))) (-4171 (*1 *1 *1) (-4 *1 (-484))) (-4149 (*1 *1 *1) (-4 *1 (-484)))) -(-13 (-10 -8 (-15 -4149 ($ $)) (-15 -4171 ($ $)) (-15 -4194 ($ $)) (-15 -4183 ($ $)) (-15 -4137 ($ $)) (-15 -4160 ($ $)))) -((-1735 (((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)) 42))) -(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) (-356) (-1204 |#1|) (-13 (-356) (-145) (-703 |#1| |#2|)) (-1204 |#3|)) (T -485)) -((-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-411 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1204 *7))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) -((-2221 (((-112) $ $) NIL)) (-1510 (((-623 $) (-1141 $) (-1145)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-926 $)) NIL)) (-2966 (($ (-1141 $) (-1145)) NIL) (($ (-1141 $)) NIL) (($ (-926 $)) NIL)) (-3378 (((-112) $) 39)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-3255 (((-112) $ $) 64)) (-1608 (((-623 (-594 $)) $) 48)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4230 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1600 (((-623 $) (-1141 $) (-1145)) NIL) (((-623 $) (-1141 $)) NIL) (((-623 $) (-926 $)) NIL)) (-3217 (($ (-1141 $) (-1145)) NIL) (($ (-1141 $)) NIL) (($ (-926 $)) NIL)) (-2288 (((-3 (-594 $) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2202 (((-594 $) $) NIL) (((-550) $) NIL) (((-400 (-550)) $) 50)) (-3455 (($ $ $) NIL)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-400 (-550)))) (|:| |vec| (-1228 (-400 (-550))))) (-667 $) (-1228 $)) NIL) (((-667 (-400 (-550))) (-667 $)) NIL)) (-2924 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1465 (($ $) NIL) (($ (-623 $)) NIL)) (-3745 (((-623 (-114)) $) NIL)) (-1355 (((-114) (-114)) NIL)) (-2419 (((-112) $) 42)) (-1286 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-4153 (((-1094 (-550) (-594 $)) $) 37)) (-1893 (($ $ (-550)) NIL)) (-1571 (((-1141 $) (-1141 $) (-594 $)) 78) (((-1141 $) (-1141 $) (-623 (-594 $))) 55) (($ $ (-594 $)) 67) (($ $ (-623 (-594 $))) 68)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1333 (((-1141 $) (-594 $)) 65 (|has| $ (-1021)))) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 $ $) (-594 $)) NIL)) (-2041 (((-3 (-594 $) "failed") $) NIL)) (-3231 (($ (-623 $)) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-1694 (((-623 (-594 $)) $) NIL)) (-4232 (($ (-114) $) NIL) (($ (-114) (-623 $)) NIL)) (-2366 (((-112) $ (-114)) NIL) (((-112) $ (-1145)) NIL)) (-1619 (($ $) NIL)) (-1293 (((-749) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ (-623 $)) NIL) (($ $ $) NIL)) (-4087 (((-112) $ $) NIL) (((-112) $ (-1145)) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL (|has| $ (-1012 (-550))))) (-1553 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1145)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1145) (-1 $ (-623 $))) NIL) (($ $ (-1145) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1988 (((-749) $) NIL)) (-2757 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-1532 (($ $) NIL) (($ $ $) NIL)) (-2798 (($ $ (-749)) NIL) (($ $) 36)) (-4163 (((-1094 (-550) (-594 $)) $) 20)) (-3832 (($ $) NIL (|has| $ (-1021)))) (-2451 (((-372) $) 92) (((-219) $) 100) (((-167 (-372)) $) 108)) (-2233 (((-837) $) NIL) (($ (-594 $)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1094 (-550) (-594 $))) 21)) (-3091 (((-749)) NIL)) (-3790 (($ $) NIL) (($ (-623 $)) NIL)) (-1905 (((-112) (-114)) 84)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 10 T CONST)) (-2700 (($) 22 T CONST)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 24)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2382 (($ $ $) 44)) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-400 (-550))) NIL) (($ $ (-550)) 46) (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ $ $) 27) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-895) $) NIL))) -(((-486) (-13 (-295) (-27) (-1012 (-550)) (-1012 (-400 (-550))) (-619 (-550)) (-996) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -2233 ($ (-1094 (-550) (-594 $)))) (-15 -4153 ((-1094 (-550) (-594 $)) $)) (-15 -4163 ((-1094 (-550) (-594 $)) $)) (-15 -2924 ($ $)) (-15 -3255 ((-112) $ $)) (-15 -1571 ((-1141 $) (-1141 $) (-594 $))) (-15 -1571 ((-1141 $) (-1141 $) (-623 (-594 $)))) (-15 -1571 ($ $ (-594 $))) (-15 -1571 ($ $ (-623 (-594 $))))))) (T -486)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-2924 (*1 *1 *1) (-5 *1 (-486))) (-3255 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-1571 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-594 (-486))) (-5 *1 (-486)))) (-1571 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-623 (-594 (-486)))) (-5 *1 (-486)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-486))) (-5 *1 (-486)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-486)))) (-5 *1 (-486))))) -(-13 (-295) (-27) (-1012 (-550)) (-1012 (-400 (-550))) (-619 (-550)) (-996) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -2233 ($ (-1094 (-550) (-594 $)))) (-15 -4153 ((-1094 (-550) (-594 $)) $)) (-15 -4163 ((-1094 (-550) (-594 $)) $)) (-15 -2924 ($ $)) (-15 -3255 ((-112) $ $)) (-15 -1571 ((-1141 $) (-1141 $) (-594 $))) (-15 -1571 ((-1141 $) (-1141 $) (-623 (-594 $)))) (-15 -1571 ($ $ (-594 $))) (-15 -1571 ($ $ (-623 (-594 $)))))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) 25 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 22 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 21)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 14)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 12 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) 23 (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) 10 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 13)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 24) (($ $ (-1195 (-550))) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) 9 (|has| $ (-6 -4344))))) -(((-487 |#1| |#2|) (-19 |#1|) (-1182) (-550)) (T -487)) +((-3841 (*1 *1 *1) (-4 *1 (-484))) (-3839 (*1 *1 *1) (-4 *1 (-484))) (-3843 (*1 *1 *1) (-4 *1 (-484))) (-3844 (*1 *1 *1) (-4 *1 (-484))) (-3842 (*1 *1 *1) (-4 *1 (-484))) (-3840 (*1 *1 *1) (-4 *1 (-484)))) +(-13 (-10 -8 (-15 -3840 ($ $)) (-15 -3842 ($ $)) (-15 -3844 ($ $)) (-15 -3843 ($ $)) (-15 -3839 ($ $)) (-15 -3841 ($ $)))) +((-4087 (((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)) 42))) +(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) (-356) (-1205 |#1|) (-13 (-356) (-145) (-703 |#1| |#2|)) (-1205 |#3|)) (T -485)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-398 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1205 *7))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) +((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-1263 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3534 (((-112) $) 39)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2069 (((-112) $ $) 64)) (-1655 (((-620 (-593 $)) $) 48)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-1264 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-3529 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-536) $) NIL) (((-400 (-536)) $) 50)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-400 (-536)))) (|:| |vec| (-1229 (-400 (-536))))) (-667 $) (-1229 $)) NIL) (((-667 (-400 (-536))) (-667 $)) NIL)) (-4197 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) 42)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3326 (((-1096 (-536) (-593 $)) $) 37)) (-3339 (($ $ (-536)) NIL)) (-3462 (((-1141 $) (-1141 $) (-593 $)) 78) (((-1141 $) (-1141 $) (-620 (-593 $))) 55) (($ $ (-593 $)) 67) (($ $ (-620 (-593 $))) 68)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-1652 (((-1141 $) (-593 $)) 65 (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2729 (($ $) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-749) $) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) 36)) (-3325 (((-1096 (-536) (-593 $)) $) 20)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-4325 (((-371) $) 92) (((-219) $) 100) (((-166 (-371)) $) 108)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-1096 (-536) (-593 $))) 21)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) 84)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 10 T CONST)) (-2992 (($) 22 T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 24)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) 44)) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-400 (-536))) NIL) (($ $ (-536)) 46) (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ $ $) 27) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) +(((-486) (-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $))))))) (T -486)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-4197 (*1 *1 *1) (-5 *1 (-486))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-593 (-486))) (-5 *1 (-486)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-620 (-593 (-486)))) (-5 *1 (-486)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-593 (-486))) (-5 *1 (-486)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-486)))) (-5 *1 (-486))))) +(-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $)))))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 25 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 22 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 21)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 14)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 12 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) 23 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 10 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 13)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 24) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 9 (|has| $ (-6 -4348))))) +(((-487 |#1| |#2|) (-19 |#1|) (-1183) (-536)) (T -487)) NIL (-19 |#1|) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1645 (($ $ (-550) (-487 |#1| |#3|)) NIL)) (-4097 (($ $ (-550) (-487 |#1| |#2|)) NIL)) (-2991 (($) NIL T CONST)) (-1297 (((-487 |#1| |#3|) $ (-550)) NIL)) (-3317 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3263 ((|#1| $ (-550) (-550)) NIL)) (-2971 (((-623 |#1|) $) NIL)) (-2050 (((-749) $) NIL)) (-3375 (($ (-749) (-749) |#1|) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-1457 (((-487 |#1| |#2|) $ (-550)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1182) (-550) (-550)) (T -488)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL)) (-1307 (($ $ (-536) (-487 |#1| |#3|)) NIL)) (-1306 (($ $ (-536) (-487 |#1| |#2|)) NIL)) (-3891 (($) NIL T CONST)) (-3442 (((-487 |#1| |#3|) $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-487 |#1| |#2|) $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1183) (-536) (-536)) (T -488)) NIL (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) -((-1547 (((-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749)) 27)) (-3161 (((-623 (-1141 |#1|)) |#1| (-749) (-749) (-749)) 34)) (-4068 (((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)) 85))) -(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-623 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -1547 ((-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -4068 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) (-342) (-1204 |#1|) (-1204 |#2|)) (T -489)) -((-4068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-2 (|:| -2206 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7))))) (-5 *5 (-749)) (-4 *8 (-1204 *7)) (-4 *7 (-1204 *6)) (-4 *6 (-342)) (-5 *2 (-2 (|:| -2206 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-4 *5 (-342)) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -2206 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2206 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) (-4 *7 (-1204 *6)))) (-3161 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-749)) (-4 *3 (-342)) (-4 *5 (-1204 *3)) (-5 *2 (-623 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1204 *5))))) -(-10 -7 (-15 -3161 ((-623 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -1547 ((-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -4068 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) -((-4042 (((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 62)) (-3349 ((|#1| (-667 |#1|) |#1| (-749)) 25)) (-1902 (((-749) (-749) (-749)) 30)) (-2530 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 42)) (-3454 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 50) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 47)) (-3225 ((|#1| (-667 |#1|) (-667 |#1|) |#1| (-550)) 29)) (-2761 ((|#1| (-667 |#1|)) 18))) -(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -2761 (|#1| (-667 |#1|))) (-15 -3349 (|#1| (-667 |#1|) |#1| (-749))) (-15 -3225 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-550))) (-15 -1902 ((-749) (-749) (-749))) (-15 -3454 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3454 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2530 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -4042 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $)))) (-1204 |#1|) (-402 |#1| |#2|)) (T -490)) -((-4042 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2530 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3454 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3454 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3225 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-550)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *5 (-1204 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-3349 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-4 *5 (-1204 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-667 *2)) (-4 *4 (-1204 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4))))) -(-10 -7 (-15 -2761 (|#1| (-667 |#1|))) (-15 -3349 (|#1| (-667 |#1|) |#1| (-749))) (-15 -3225 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-550))) (-15 -1902 ((-749) (-749) (-749))) (-15 -3454 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3454 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2530 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -4042 ((-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2206 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) -((-2221 (((-112) $ $) NIL)) (-4026 (($ $) NIL)) (-3875 (($ $ $) 35)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2734 (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4345)))) (-1814 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-112) $ (-1195 (-550)) (-112)) NIL (|has| $ (-6 -4345))) (((-112) $ (-550) (-112)) 36 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-1979 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-2924 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-3317 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4345)))) (-3263 (((-112) $ (-550)) NIL)) (-3088 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1069))) (((-550) (-112) $) NIL (|has| (-112) (-1069))) (((-550) (-1 (-112) (-112)) $) NIL)) (-2971 (((-623 (-112)) $) NIL (|has| $ (-6 -4344)))) (-3741 (($ $ $) 33)) (-3548 (($ $) NIL)) (-2595 (($ $ $) NIL)) (-3375 (($ (-749) (-112)) 23)) (-4157 (($ $ $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 8 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL)) (-2441 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2876 (((-623 (-112)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL)) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-112) $) NIL (|has| (-550) (-825)))) (-1614 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2491 (($ $ (-112)) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-112)) (-623 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069)))) (($ $ (-623 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069))))) (-1375 (((-623 (-112)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 24)) (-2757 (($ $ (-1195 (-550))) NIL) (((-112) $ (-550)) 18) (((-112) $ (-550) (-112)) NIL)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-3457 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-112) (-1069)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) 25)) (-2451 (((-526) $) NIL (|has| (-112) (-596 (-526))))) (-2245 (($ (-623 (-112))) NIL)) (-4006 (($ (-623 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2233 (((-837) $) 22)) (-3404 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4344)))) (-1304 (($ $ $) 31)) (-2300 (($ $ $) NIL)) (-3399 (($ $ $) 39)) (-3410 (($ $) 37)) (-3389 (($ $ $) 38)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 26)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 27)) (-2287 (($ $ $) NIL)) (-3307 (((-749) $) 10 (|has| $ (-6 -4344))))) -(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3410 ($ $)) (-15 -3399 ($ $ $)) (-15 -3389 ($ $ $)))) (-550)) (T -491)) -((-3410 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) (-3399 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) (-3389 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550))))) -(-13 (-123) (-10 -8 (-15 -3410 ($ $)) (-15 -3399 ($ $ $)) (-15 -3389 ($ $ $)))) -((-1861 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|)) 35)) (-2750 (((-1141 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1141 |#4|)) 22)) (-3630 (((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|))) 46)) (-2046 (((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2750 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2750 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1861 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -3630 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2046 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) (-1021) (-1204 |#1|) (-1204 |#2|) (-1021)) (T -492)) -((-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1021)) (-4 *7 (-1021)) (-4 *6 (-1204 *5)) (-5 *2 (-1141 (-1141 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1204 *6)))) (-3630 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1141 *8))) (-4 *5 (-1021)) (-4 *8 (-1021)) (-4 *6 (-1204 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1204 *6)))) (-1861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1021)) (-4 *7 (-1021)) (-4 *2 (-1204 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1204 *2)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1021)) (-4 *7 (-1021)) (-4 *4 (-1204 *5)) (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1204 *4)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1021)) (-4 *7 (-1021)) (-4 *2 (-1204 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1204 *2))))) -(-10 -7 (-15 -2750 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2750 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1861 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -3630 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2046 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1858 (((-1233) $) 19)) (-2757 (((-1127) $ (-1145)) 23)) (-1970 (((-1233) $) 15)) (-2233 (((-837) $) 21) (($ (-1127)) 20)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 9)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 8))) -(((-493) (-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $)) (-15 -2233 ($ (-1127)))))) (T -493)) -((-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1127)) (-5 *1 (-493)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-493)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-493)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-493))))) -(-13 (-825) (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) (-15 -1858 ((-1233) $)) (-15 -2233 ($ (-1127))))) -((-3805 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2543 ((|#1| |#4|) 10)) (-4054 ((|#3| |#4|) 17))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2543 (|#1| |#4|)) (-15 -4054 (|#3| |#4|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-542) (-966 |#1|) (-366 |#1|) (-366 |#2|)) (T -494)) -((-3805 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) (-4054 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) (-4 *2 (-366 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) (-2543 (*1 *2 *3) (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-366 *4))))) -(-10 -7 (-15 -2543 (|#1| |#4|)) (-15 -4054 (|#3| |#4|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2221 (((-112) $ $) NIL)) (-2575 (((-112) $ (-623 |#3|)) 105) (((-112) $) 106)) (-3378 (((-112) $) 149)) (-2019 (($ $ |#4|) 97) (($ $ |#4| (-623 |#3|)) 101)) (-3560 (((-1134 (-623 (-926 |#1|)) (-623 (-287 (-926 |#1|)))) (-623 |#4|)) 142 (|has| |#3| (-596 (-1145))))) (-3123 (($ $ $) 91) (($ $ |#4|) 89)) (-2419 (((-112) $) 148)) (-1872 (($ $) 109)) (-2369 (((-1127) $) NIL)) (-4072 (($ $ $) 83) (($ (-623 $)) 85)) (-1497 (((-112) |#4| $) 108)) (-3961 (((-112) $ $) 72)) (-2308 (($ (-623 |#4|)) 90)) (-3445 (((-1089) $) NIL)) (-3995 (($ (-623 |#4|)) 146)) (-2261 (((-112) $) 147)) (-2906 (($ $) 74)) (-1461 (((-623 |#4|) $) 63)) (-4177 (((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|)) NIL)) (-1506 (((-112) |#4| $) 77)) (-1877 (((-550) $ (-623 |#3|)) 110) (((-550) $) 111)) (-2233 (((-837) $) 145) (($ (-623 |#4|)) 86)) (-3191 (($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $))) NIL)) (-2264 (((-112) $ $) 73)) (-2358 (($ $ $) 93)) (** (($ $ (-749)) 96)) (* (($ $ $) 95))) -(((-495 |#1| |#2| |#3| |#4|) (-13 (-1069) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -2358 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3378 ((-112) $)) (-15 -1506 ((-112) |#4| $)) (-15 -3961 ((-112) $ $)) (-15 -1497 ((-112) |#4| $)) (-15 -2575 ((-112) $ (-623 |#3|))) (-15 -2575 ((-112) $)) (-15 -4072 ($ $ $)) (-15 -4072 ($ (-623 $))) (-15 -3123 ($ $ $)) (-15 -3123 ($ $ |#4|)) (-15 -2906 ($ $)) (-15 -4177 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|))) (-15 -3191 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -1877 ((-550) $ (-623 |#3|))) (-15 -1877 ((-550) $)) (-15 -1872 ($ $)) (-15 -2308 ($ (-623 |#4|))) (-15 -3995 ($ (-623 |#4|))) (-15 -2261 ((-112) $)) (-15 -1461 ((-623 |#4|) $)) (-15 -2233 ($ (-623 |#4|))) (-15 -2019 ($ $ |#4|)) (-15 -2019 ($ $ |#4| (-623 |#3|))) (IF (|has| |#3| (-596 (-1145))) (-15 -3560 ((-1134 (-623 (-926 |#1|)) (-623 (-287 (-926 |#1|)))) (-623 |#4|))) |%noBranch|))) (-356) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -495)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-2358 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-2419 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-3378 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-1506 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6)))) (-3961 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-1497 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6)))) (-2575 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6)))) (-2575 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-4072 (*1 *1 *2) (-12 (-5 *2 (-623 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-3123 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-3123 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5)))) (-2906 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6)))) (-3191 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-1877 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-550)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6)))) (-1877 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-1872 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2261 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-1461 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2019 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5)))) (-2019 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-923 *4 *5 *6)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *5 *6)) (-4 *6 (-596 (-1145))) (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1134 (-623 (-926 *4)) (-623 (-287 (-926 *4))))) (-5 *1 (-495 *4 *5 *6 *7))))) -(-13 (-1069) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -2358 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3378 ((-112) $)) (-15 -1506 ((-112) |#4| $)) (-15 -3961 ((-112) $ $)) (-15 -1497 ((-112) |#4| $)) (-15 -2575 ((-112) $ (-623 |#3|))) (-15 -2575 ((-112) $)) (-15 -4072 ($ $ $)) (-15 -4072 ($ (-623 $))) (-15 -3123 ($ $ $)) (-15 -3123 ($ $ |#4|)) (-15 -2906 ($ $)) (-15 -4177 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|))) (-15 -3191 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -1877 ((-550) $ (-623 |#3|))) (-15 -1877 ((-550) $)) (-15 -1872 ($ $)) (-15 -2308 ($ (-623 |#4|))) (-15 -3995 ($ (-623 |#4|))) (-15 -2261 ((-112) $)) (-15 -1461 ((-623 |#4|) $)) (-15 -2233 ($ (-623 |#4|))) (-15 -2019 ($ $ |#4|)) (-15 -2019 ($ $ |#4| (-623 |#3|))) (IF (|has| |#3| (-596 (-1145))) (-15 -3560 ((-1134 (-623 (-926 |#1|)) (-623 (-287 (-926 |#1|)))) (-623 |#4|))) |%noBranch|))) -((-2330 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) 150)) (-3222 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) 151)) (-2864 (((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) 108)) (-1568 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) NIL)) (-2191 (((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) 153)) (-2909 (((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-839 |#1|))) 165))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2330 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -3222 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1568 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2864 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2191 ((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2909 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-839 |#1|))))) (-623 (-1145)) (-749)) (T -496)) -((-2909 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550))))) (-5 *3 (-623 (-839 *4))) (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *1 (-496 *4 *5)))) (-2191 (*1 *2 *3) (-12 (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-623 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550))))))) (-2864 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-550)) (-234 *4 (-749)) (-839 *3) (-241 *3 (-400 (-550))))) (-14 *3 (-623 (-1145))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5))))) -(-10 -7 (-15 -2330 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -3222 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1568 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2864 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2191 ((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -2909 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-839 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 11) (((-1150) $) NIL) (($ (-1150)) NIL) (((-1145) $) 8)) (-2264 (((-112) $ $) NIL))) -(((-497) (-13 (-1052) (-595 (-1145)))) (T -497)) -NIL -(-13 (-1052) (-595 (-1145))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1488 (($ |#1| |#2|) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1821 ((|#2| $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2688 (($) 12 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) 11) (($ $ $) 24)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 18))) +((-2071 (((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749)) 27)) (-2070 (((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749)) 34)) (-2192 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)) 85))) +(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -2071 ((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2192 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) (-343) (-1205 |#1|) (-1205 |#2|)) (T -489)) +((-2192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7))))) (-5 *5 (-749)) (-4 *8 (-1205 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-4 *5 (-343)) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) (-4 *7 (-1205 *6)))) (-2070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-749)) (-4 *3 (-343)) (-4 *5 (-1205 *3)) (-5 *2 (-620 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1205 *5))))) +(-10 -7 (-15 -2070 ((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -2071 ((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2192 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) +((-2077 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 62)) (-2072 ((|#1| (-667 |#1|) |#1| (-749)) 25)) (-2074 (((-749) (-749) (-749)) 30)) (-2076 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 42)) (-2075 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 50) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 47)) (-2073 ((|#1| (-667 |#1|) (-667 |#1|) |#1| (-536)) 29)) (-3683 ((|#1| (-667 |#1|)) 18))) +(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3683 (|#1| (-667 |#1|))) (-15 -2072 (|#1| (-667 |#1|) |#1| (-749))) (-15 -2073 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-536))) (-15 -2074 ((-749) (-749) (-749))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2076 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $)))) (-1205 |#1|) (-403 |#1| |#2|)) (T -490)) +((-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2076 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2073 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-536)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-667 *2)) (-4 *4 (-1205 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) +(-10 -7 (-15 -3683 (|#1| (-667 |#1|))) (-15 -2072 (|#1| (-667 |#1|) |#1| (-749))) (-15 -2073 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-536))) (-15 -2074 ((-749) (-749) (-749))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2076 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) +((-2893 (((-112) $ $) NIL)) (-3674 (($ $) NIL)) (-3670 (($ $ $) 35)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-112) $ (-1196 (-536)) (-112)) NIL (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) 36 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-3760 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-1632 (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) NIL)) (-3773 (((-536) (-112) $ (-536)) NIL (|has| (-112) (-1072))) (((-536) (-112) $) NIL (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) NIL)) (-2063 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3185 (($ $ $) 33)) (-3671 (($ $) NIL)) (-1359 (($ $ $) NIL)) (-3972 (($ (-749) (-112)) 23)) (-1360 (($ $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 8 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL)) (-3867 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2506 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ (-112) $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-112) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2301 (($ $ (-112)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 24)) (-4154 (($ $ (-1196 (-536))) NIL) (((-112) $ (-536)) 18) (((-112) $ (-536) (-112)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2064 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) 25)) (-4325 (((-525) $) NIL (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) NIL)) (-4156 (($ (-620 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4312 (((-838) $) 22)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3186 (($ $ $) 31)) (-3676 (($ $ $) NIL)) (-3667 (($ $ $) 39)) (-3669 (($ $) 37)) (-3668 (($ $ $) 38)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 26)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 27)) (-3675 (($ $ $) NIL)) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) +(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3669 ($ $)) (-15 -3667 ($ $ $)) (-15 -3668 ($ $ $)))) (-536)) (T -491)) +((-3669 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) (-3667 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) (-3668 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536))))) +(-13 (-123) (-10 -8 (-15 -3669 ($ $)) (-15 -3667 ($ $ $)) (-15 -3668 ($ $ $)))) +((-2079 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|)) 35)) (-2078 (((-1141 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1141 |#4|)) 22)) (-2080 (((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|))) 46)) (-2081 (((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2078 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -2080 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2081 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) (-1023) (-1205 |#1|) (-1205 |#2|) (-1023)) (T -492)) +((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-1141 (-1141 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1205 *6)))) (-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1141 *8))) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1205 *6)))) (-2079 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *4 (-1205 *5)) (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1205 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2))))) +(-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2078 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -2080 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2081 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2082 (((-1235) $) 19)) (-4154 (((-1129) $ (-1147)) 23)) (-3975 (((-1235) $) 15)) (-4312 (((-838) $) 21) (($ (-1129)) 20)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) +(((-493) (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -4312 ($ (-1129)))))) (T -493)) +((-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1129)) (-5 *1 (-493)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-493))))) +(-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -4312 ($ (-1129))))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4094 ((|#1| |#4|) 10)) (-4095 ((|#3| |#4|) 17))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4094 (|#1| |#4|)) (-15 -4095 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-543) (-965 |#1|) (-365 |#1|) (-365 |#2|)) (T -494)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-4 *2 (-365 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))) +(-10 -7 (-15 -4094 (|#1| |#4|)) (-15 -4095 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2893 (((-112) $ $) NIL)) (-2092 (((-112) $ (-620 |#3|)) 105) (((-112) $) 106)) (-3534 (((-112) $) 149)) (-2084 (($ $ |#4|) 97) (($ $ |#4| (-620 |#3|)) 101)) (-2083 (((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|)) 142 (|has| |#3| (-596 (-1147))))) (-2091 (($ $ $) 91) (($ $ |#4|) 89)) (-2497 (((-112) $) 148)) (-2088 (($ $) 109)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 83) (($ (-620 $)) 85)) (-2093 (((-112) |#4| $) 108)) (-2094 (((-112) $ $) 72)) (-2087 (($ (-620 |#4|)) 90)) (-3589 (((-1091) $) NIL)) (-2086 (($ (-620 |#4|)) 146)) (-2085 (((-112) $) 147)) (-2330 (($ $) 74)) (-3023 (((-620 |#4|) $) 63)) (-2090 (((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|)) NIL)) (-2095 (((-112) |#4| $) 77)) (-4266 (((-536) $ (-620 |#3|)) 110) (((-536) $) 111)) (-4312 (((-838) $) 145) (($ (-620 |#4|)) 86)) (-2089 (($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $))) NIL)) (-3382 (((-112) $ $) 73)) (-4194 (($ $ $) 93)) (** (($ $ (-749)) 96)) (* (($ $ $) 95))) +(((-495 |#1| |#2| |#3| |#4|) (-13 (-1072) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -4194 ($ $ $)) (-15 -2497 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-620 |#3|))) (-15 -2092 ((-112) $)) (-15 -3584 ($ $ $)) (-15 -3584 ($ (-620 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -4266 ((-536) $ (-620 |#3|))) (-15 -4266 ((-536) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-620 |#4|))) (-15 -2086 ($ (-620 |#4|))) (-15 -2085 ((-112) $)) (-15 -3023 ((-620 |#4|) $)) (-15 -4312 ($ (-620 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-620 |#3|))) (IF (|has| |#3| (-596 (-1147))) (-15 -2083 ((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|))) |%noBranch|))) (-356) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -495)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3534 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2095 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2094 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2093 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-620 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2091 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-2330 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-536)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-4266 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2088 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2085 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3023 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2084 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-924 *4 *5 *6)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *6 (-596 (-1147))) (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1136 (-620 (-920 *4)) (-620 (-286 (-920 *4))))) (-5 *1 (-495 *4 *5 *6 *7))))) +(-13 (-1072) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -4194 ($ $ $)) (-15 -2497 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-620 |#3|))) (-15 -2092 ((-112) $)) (-15 -3584 ($ $ $)) (-15 -3584 ($ (-620 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -4266 ((-536) $ (-620 |#3|))) (-15 -4266 ((-536) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-620 |#4|))) (-15 -2086 ($ (-620 |#4|))) (-15 -2085 ((-112) $)) (-15 -3023 ((-620 |#4|) $)) (-15 -4312 ($ (-620 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-620 |#3|))) (IF (|has| |#3| (-596 (-1147))) (-15 -2083 ((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|))) |%noBranch|))) +((-2096 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 150)) (-2097 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 151)) (-2098 (((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 108)) (-4081 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) NIL)) (-2099 (((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 153)) (-2100 (((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))) 165))) +(((-496 |#1| |#2|) (-10 -7 (-15 -2096 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2097 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -4081 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2098 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2099 ((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2100 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))))) (-620 (-1147)) (-749)) (T -496)) +((-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *1 (-496 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-620 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-536)) (-233 *4 (-749)) (-839 *3) (-241 *3 (-400 (-536))))) (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5))))) +(-10 -7 (-15 -2096 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2097 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -4081 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2098 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2099 ((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2100 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1147) $) 8)) (-3382 (((-112) $ $) NIL))) +(((-497) (-13 (-1054) (-595 (-1147)))) (T -497)) +NIL +(-13 (-1054) (-595 (-1147))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) 12 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 11) (($ $ $) 24)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 18))) (((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-825)) (T -498)) NIL (-13 (-21) (-500 |#1| |#2|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 12)) (-2991 (($) NIL T CONST)) (-1693 (($ $) 28)) (-1488 (($ |#1| |#2|) 25)) (-2392 (($ (-1 |#1| |#1|) $) 27)) (-1821 ((|#2| $) NIL)) (-1670 ((|#1| $) 29)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2688 (($) 10 T CONST)) (-2264 (((-112) $ $) NIL)) (-2358 (($ $ $) 18)) (* (($ (-895) $) NIL) (($ (-749) $) 23))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 12)) (-3891 (($) NIL T CONST)) (-4314 (($ $) 28)) (-3221 (($ |#1| |#2|) 25)) (-4313 (($ (-1 |#1| |#1|) $) 27)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) 29)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) 10 T CONST)) (-3382 (((-112) $ $) NIL)) (-4194 (($ $ $) 18)) (* (($ (-893) $) NIL) (($ (-749) $) 23))) (((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-825)) (T -499)) NIL (-13 (-23) (-500 |#1| |#2|)) -((-2221 (((-112) $ $) 7)) (-1693 (($ $) 13)) (-1488 (($ |#1| |#2|) 16)) (-2392 (($ (-1 |#1| |#1|) $) 17)) (-1821 ((|#2| $) 14)) (-1670 ((|#1| $) 15)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) -(((-500 |#1| |#2|) (-138) (-1069) (-825)) (T -500)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-825)))) (-1488 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-825)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1069)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-825)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-825))))) -(-13 (-1069) (-10 -8 (-15 -2392 ($ (-1 |t#1| |t#1|) $)) (-15 -1488 ($ |t#1| |t#2|)) (-15 -1670 (|t#1| $)) (-15 -1821 (|t#2| $)) (-15 -1693 ($ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1488 (($ |#1| |#2|) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1821 ((|#2| $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2688 (($) NIL T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 13)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL))) -(((-501 |#1| |#2|) (-13 (-770) (-500 |#1| |#2|)) (-770) (-825)) (T -501)) +((-2893 (((-112) $ $) 7)) (-4314 (($ $) 13)) (-3221 (($ |#1| |#2|) 16)) (-4313 (($ (-1 |#1| |#1|) $) 17)) (-2101 ((|#2| $) 14)) (-3520 ((|#1| $) 15)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) +(((-500 |#1| |#2|) (-138) (-1072) (-825)) (T -500)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-825)))) (-3221 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1072)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-825)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825))))) +(-13 (-1072) (-10 -8 (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -3221 ($ |t#1| |t#2|)) (-15 -3520 (|t#1| $)) (-15 -2101 (|t#2| $)) (-15 -4314 ($ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-4314 (($ $) 25)) (-3221 (($ |#1| |#2|) 22)) (-4313 (($ (-1 |#1| |#1|) $) 24)) (-2101 ((|#2| $) 27)) (-3520 ((|#1| $) 26)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21)) (-3382 (((-112) $ $) 14))) +(((-501 |#1| |#2|) (-500 |#1| |#2|) (-1072) (-825)) (T -501)) +NIL +(-500 |#1| |#2|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 13)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) +(((-502 |#1| |#2|) (-13 (-770) (-500 |#1| |#2|)) (-770) (-825)) (T -502)) NIL (-13 (-770) (-500 |#1| |#2|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-4250 (($ $ $) 16)) (-1993 (((-3 $ "failed") $ $) 13)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1488 (($ |#1| |#2|) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1821 ((|#2| $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL)) (-2688 (($) NIL T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL))) -(((-502 |#1| |#2|) (-13 (-771) (-500 |#1| |#2|)) (-771) (-825)) (T -502)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) 16)) (-1367 (((-3 $ "failed") $ $) 13)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) +(((-503 |#1| |#2|) (-13 (-771) (-500 |#1| |#2|)) (-771) (-825)) (T -503)) NIL (-13 (-771) (-500 |#1| |#2|)) -((-2221 (((-112) $ $) NIL)) (-1693 (($ $) 25)) (-1488 (($ |#1| |#2|) 22)) (-2392 (($ (-1 |#1| |#1|) $) 24)) (-1821 ((|#2| $) 27)) (-1670 ((|#1| $) 26)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21)) (-2264 (((-112) $ $) 14))) -(((-503 |#1| |#2|) (-500 |#1| |#2|) (-1069) (-825)) (T -503)) +((-4122 (($ $ (-620 |#2|) (-620 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -4122 (|#1| |#1| |#2| |#3|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#3|)))) (-505 |#2| |#3|) (-1072) (-1183)) (T -504)) NIL -(-500 |#1| |#2|) -((-1553 (($ $ (-623 |#2|) (-623 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -1553 (|#1| |#1| |#2| |#3|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#3|)))) (-505 |#2| |#3|) (-1069) (-1182)) (T -504)) -NIL -(-10 -8 (-15 -1553 (|#1| |#1| |#2| |#3|)) (-15 -1553 (|#1| |#1| (-623 |#2|) (-623 |#3|)))) -((-1553 (($ $ (-623 |#1|) (-623 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-505 |#1| |#2|) (-138) (-1069) (-1182)) (T -505)) -((-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1182)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1182))))) -(-13 (-10 -8 (-15 -1553 ($ $ |t#1| |t#2|)) (-15 -1553 ($ $ (-623 |t#1|) (-623 |t#2|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 16)) (-4222 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))) $) 18)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749) $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-3325 ((|#1| $ (-550)) 23)) (-2536 ((|#2| $ (-550)) 21)) (-1453 (($ (-1 |#1| |#1|) $) 46)) (-3067 (($ (-1 |#2| |#2|) $) 43)) (-2369 (((-1127) $) NIL)) (-3528 (($ $ $) 53 (|has| |#2| (-770)))) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 42) (($ |#1|) NIL)) (-1708 ((|#2| |#1| $) 49)) (-2688 (($) 11 T CONST)) (-2264 (((-112) $ $) 29)) (-2358 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-895) $) NIL) (($ (-749) $) 36) (($ |#2| |#1|) 31))) -(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1069) (-130) |#2|) (T -506)) +(-10 -8 (-15 -4122 (|#1| |#1| |#2| |#3|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#3|)))) +((-4122 (($ $ (-620 |#1|) (-620 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-505 |#1| |#2|) (-138) (-1072) (-1183)) (T -505)) +((-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1183)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1183))))) +(-13 (-10 -8 (-15 -4122 ($ $ |t#1| |t#2|)) (-15 -4122 ($ $ (-620 |t#1|) (-620 |t#2|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 16)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 18)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) 23)) (-1714 ((|#2| $ (-536)) 21)) (-2366 (($ (-1 |#1| |#1|) $) 46)) (-1713 (($ (-1 |#2| |#2|) $) 43)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) 53 (|has| |#2| (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 42) (($ |#1|) NIL)) (-4035 ((|#2| |#1| $) 49)) (-2986 (($) 11 T CONST)) (-3382 (((-112) $ $) 29)) (-4194 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-893) $) NIL) (($ (-749) $) 36) (($ |#2| |#1|) 31))) +(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1072) (-130) |#2|) (T -506)) NIL (-316 |#1| |#2|) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2756 (((-112) (-112)) 25)) (-2409 ((|#1| $ (-550) |#1|) 28 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) 52)) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2599 (($ $) 56 (|has| |#1| (-1069)))) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) NIL (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) 44)) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-1695 (($ $ (-550)) 13)) (-3653 (((-749) $) 11)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 23)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 21 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2299 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) 20 (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1715 (($ $ $ (-550)) 51) (($ |#1| $ (-550)) 37)) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2344 (($ (-623 |#1|)) 29)) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) 19 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 40)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 16)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 33) (($ $ (-1195 (-550))) NIL)) (-3749 (($ $ (-1195 (-550))) 50) (($ $ (-550)) 45)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) 41 (|has| $ (-6 -4345)))) (-2435 (($ $) 32)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-2037 (($ $ $) 42) (($ $ |#1|) 39)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) 17 (|has| $ (-6 -4344))))) -(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2344 ($ (-623 |#1|))) (-15 -3653 ((-749) $)) (-15 -1695 ($ $ (-550))) (-15 -2756 ((-112) (-112))))) (-1182) (-550)) (T -507)) -((-2344 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-507 *3 *4)) (-14 *4 (-550)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) (-14 *4 (-550)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) (-14 *4 *2))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) (-14 *4 (-550))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2344 ($ (-623 |#1|))) (-15 -3653 ((-749) $)) (-15 -1695 ($ $ (-550))) (-15 -2756 ((-112) (-112))))) -((-2221 (((-112) $ $) NIL)) (-3178 (((-1104) $) 11)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-4241 (((-1104) $) 13)) (-1723 (((-1104) $) 9)) (-2233 (((-837) $) 21) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-508) (-13 (-1052) (-10 -8 (-15 -1723 ((-1104) $)) (-15 -3178 ((-1104) $)) (-15 -4241 ((-1104) $))))) (T -508)) -((-1723 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508))))) -(-13 (-1052) (-10 -8 (-15 -1723 ((-1104) $)) (-15 -3178 ((-1104) $)) (-15 -4241 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (((-565 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-565 |#1|) (-361)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-565 |#1|) (-361)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL (|has| (-565 |#1|) (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-565 |#1|) "failed") $) NIL)) (-2202 (((-565 |#1|) $) NIL)) (-2821 (($ (-1228 (-565 |#1|))) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-565 |#1|) (-361)))) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-565 |#1|) (-361)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL (|has| (-565 |#1|) (-361)))) (-4139 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-4322 (($ $ (-749)) NIL (-1489 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361)))) (($ $) NIL (-1489 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-1568 (((-112) $) NIL)) (-2603 (((-895) $) NIL (|has| (-565 |#1|) (-361))) (((-811 (-895)) $) NIL (-1489 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-565 |#1|) (-361)))) (-3751 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-1571 (((-565 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-565 |#1|) (-361)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-565 |#1|) (-361)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 (-565 |#1|)) $) NIL) (((-1141 $) $ (-895)) NIL (|has| (-565 |#1|) (-361)))) (-4073 (((-895) $) NIL (|has| (-565 |#1|) (-361)))) (-2888 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361)))) (-4180 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-1141 (-565 |#1|)) "failed") $ $) NIL (|has| (-565 |#1|) (-361)))) (-1542 (($ $ (-1141 (-565 |#1|))) NIL (|has| (-565 |#1|) (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-565 |#1|) (-361)) CONST)) (-3690 (($ (-895)) NIL (|has| (-565 |#1|) (-361)))) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL (|has| (-565 |#1|) (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-565 |#1|) (-361)))) (-1735 (((-411 $) $) NIL)) (-4015 (((-811 (-895))) NIL) (((-895)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-749) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1489 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-1877 (((-133)) NIL)) (-2798 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-3661 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-3832 (((-1141 (-565 |#1|))) NIL)) (-2038 (($) NIL (|has| (-565 |#1|) (-361)))) (-3975 (($) NIL (|has| (-565 |#1|) (-361)))) (-2999 (((-1228 (-565 |#1|)) $) NIL) (((-667 (-565 |#1|)) (-1228 $)) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-565 |#1|) (-361)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-565 |#1|)) NIL)) (-1613 (($ $) NIL (|has| (-565 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1489 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL) (((-1228 $) (-895)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-1901 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ $ (-565 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-565 |#1|)) NIL) (($ (-565 |#1|) $) NIL))) -(((-509 |#1| |#2|) (-322 (-565 |#1|)) (-895) (-895)) (T -509)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-2102 (((-112) (-112)) 25)) (-4142 ((|#1| $ (-536) |#1|) 28 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 52)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-2450 (($ $) 56 (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) 44)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2103 (($ $ (-536)) 13)) (-2104 (((-749) $) 11)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 23)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 21 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) 20 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ $ $ (-536)) 51) (($ |#1| $ (-536)) 37)) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2105 (($ (-620 |#1|)) 29)) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 19 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 40)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 16)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 33) (($ $ (-1196 (-536))) NIL)) (-1627 (($ $ (-1196 (-536))) 50) (($ $ (-536)) 45)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) 41 (|has| $ (-6 -4349)))) (-3754 (($ $) 32)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) 42) (($ $ |#1|) 39)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 17 (|has| $ (-6 -4348))))) +(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) (-1183) (-536)) (T -507)) +((-2105 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-507 *3 *4)) (-14 *4 (-536)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 *2))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) +(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) +((-2893 (((-112) $ $) NIL)) (-2107 (((-1106) $) 11)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2106 (((-1106) $) 13)) (-4277 (((-1106) $) 9)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-508) (-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)) (-15 -2107 ((-1106) $)) (-15 -2106 ((-1106) $))))) (T -508)) +((-4277 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) +(-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)) (-15 -2107 ((-1106) $)) (-15 -2106 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-565 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-565 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-565 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-565 |#1|) "failed") $) NIL)) (-3502 (((-565 |#1|) $) NIL)) (-1906 (($ (-1229 (-565 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-565 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-565 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-565 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-565 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-565 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-3462 (((-565 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-565 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-565 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-565 |#1|) (-361)))) (-1719 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361)))) (-1718 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-1141 (-565 |#1|)) "failed") $ $) NIL (|has| (-565 |#1|) (-361)))) (-1720 (($ $ (-1141 (-565 |#1|))) NIL (|has| (-565 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-565 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| (-565 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-565 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-565 |#1|))) NIL)) (-1785 (($) NIL (|has| (-565 |#1|) (-361)))) (-1721 (($) NIL (|has| (-565 |#1|) (-361)))) (-3570 (((-1229 (-565 |#1|)) $) NIL) (((-667 (-565 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-565 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-565 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-565 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-565 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-565 |#1|)) NIL) (($ (-565 |#1|) $) NIL))) +(((-509 |#1| |#2|) (-322 (-565 |#1|)) (-893) (-893)) (T -509)) NIL (-322 (-565 |#1|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) 35)) (-1645 (($ $ (-550) |#4|) NIL)) (-4097 (($ $ (-550) |#5|) NIL)) (-2991 (($) NIL T CONST)) (-1297 ((|#4| $ (-550)) NIL)) (-3317 ((|#1| $ (-550) (-550) |#1|) 34)) (-3263 ((|#1| $ (-550) (-550)) 32)) (-2971 (((-623 |#1|) $) NIL)) (-2050 (((-749) $) 28)) (-3375 (($ (-749) (-749) |#1|) 25)) (-2063 (((-749) $) 30)) (-1445 (((-112) $ (-749)) NIL)) (-3397 (((-550) $) 26)) (-2415 (((-550) $) 27)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) 29)) (-2964 (((-550) $) 31)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) 38 (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 14)) (-2819 (($) 16)) (-2757 ((|#1| $ (-550) (-550)) 33) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-1457 ((|#5| $ (-550)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1182) (-550) (-550) (-366 |#1|) (-366 |#1|)) (T -510)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) 35)) (-1307 (($ $ (-536) |#4|) NIL)) (-1306 (($ $ (-536) |#5|) NIL)) (-3891 (($) NIL T CONST)) (-3442 ((|#4| $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) 34)) (-3443 ((|#1| $ (-536) (-536)) 32)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) 28)) (-3972 (($ (-749) (-749) |#1|) 25)) (-3444 (((-749) $) 30)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) 26)) (-3447 (((-536) $) 27)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 29)) (-3446 (((-536) $) 31)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) 38 (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 16)) (-4154 ((|#1| $ (-536) (-536)) 33) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 ((|#5| $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1183) (-536) (-536) (-365 |#1|) (-365 |#1|)) (T -510)) NIL (-56 |#1| |#4| |#5|) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) NIL)) (-2422 ((|#1| $) NIL)) (-2470 (($ $) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 59 (|has| $ (-6 -4345)))) (-1837 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4345)))) (-1814 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2872 (($ $ $) 23 (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 21 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4345))) (($ $ "rest" $) 24 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) NIL)) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2408 ((|#1| $) NIL)) (-2991 (($) NIL T CONST)) (-3770 (($ $) 28 (|has| $ (-6 -4345)))) (-1999 (($ $) 29)) (-3870 (($ $) 18) (($ $ (-749)) 32)) (-2599 (($ $) 55 (|has| |#1| (-1069)))) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) NIL (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) NIL)) (-1979 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-2950 (((-112) $) NIL)) (-3088 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069))) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2971 (((-623 |#1|) $) 27 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 31 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2299 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2441 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3743 (($ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) 51 (|has| |#1| (-1069)))) (-2001 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1715 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) 13) (($ $ (-749)) NIL)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-3164 (((-112) $) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 12)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) 17)) (-2819 (($) 16)) (-2757 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1195 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL)) (-1456 (((-550) $ $) NIL)) (-3749 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-2320 (((-112) $) 34)) (-1662 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4345)))) (-3300 (((-749) $) NIL)) (-3813 (($ $) 36)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) 35)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 26)) (-2037 (($ $ $) 54) (($ $ |#1|) NIL)) (-4006 (($ $ $) NIL) (($ |#1| $) 10) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-2233 (((-837) $) 46 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 48 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) 9 (|has| $ (-6 -4344))))) -(((-511 |#1| |#2|) (-644 |#1|) (-1182) (-550)) (T -511)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 59 (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 23 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 21 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) 28 (|has| $ (-6 -4349)))) (-2373 (($ $) 29)) (-4153 (($ $) 18) (($ $ (-749)) 32)) (-2450 (($ $) 55 (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) 27 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 31 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) 51 (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) 13) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 12)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) 17)) (-3923 (($) 16)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) NIL) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3991 (((-112) $) 34)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) 36)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) 35)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 26)) (-4145 (($ $ $) 54) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) 10) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (((-838) $) 46 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 48 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 9 (|has| $ (-6 -4348))))) +(((-511 |#1| |#2|) (-644 |#1|) (-1183) (-536)) (T -511)) NIL (-644 |#1|) -((-4257 ((|#4| |#4|) 27)) (-3398 (((-749) |#4|) 32)) (-1436 (((-749) |#4|) 33)) (-3113 (((-623 |#3|) |#4|) 40 (|has| |#3| (-6 -4345)))) (-3765 (((-3 |#4| "failed") |#4|) 51)) (-3943 ((|#4| |#4|) 44)) (-4270 ((|#1| |#4|) 43))) -(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4257 (|#4| |#4|)) (-15 -3398 ((-749) |#4|)) (-15 -1436 ((-749) |#4|)) (IF (|has| |#3| (-6 -4345)) (-15 -3113 ((-623 |#3|) |#4|)) |%noBranch|) (-15 -4270 (|#1| |#4|)) (-15 -3943 (|#4| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#4|))) (-356) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -512)) -((-3765 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) (-3113 (*1 *2 *3) (-12 (|has| *6 (-6 -4345)) (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-1436 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3398 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-4257 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(-10 -7 (-15 -4257 (|#4| |#4|)) (-15 -3398 ((-749) |#4|)) (-15 -1436 ((-749) |#4|)) (IF (|has| |#3| (-6 -4345)) (-15 -3113 ((-623 |#3|) |#4|)) |%noBranch|) (-15 -4270 (|#1| |#4|)) (-15 -3943 (|#4| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#4|))) -((-4257 ((|#8| |#4|) 20)) (-3113 (((-623 |#3|) |#4|) 29 (|has| |#7| (-6 -4345)))) (-3765 (((-3 |#8| "failed") |#4|) 23))) -(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4257 (|#8| |#4|)) (-15 -3765 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4345)) (-15 -3113 ((-623 |#3|) |#4|)) |%noBranch|)) (-542) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|) (-966 |#1|) (-366 |#5|) (-366 |#5|) (-665 |#5| |#6| |#7|)) (T -513)) -((-3113 (*1 *2 *3) (-12 (|has| *9 (-6 -4345)) (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-966 *4)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)) (-5 *2 (-623 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-665 *4 *5 *6)) (-4 *10 (-665 *7 *8 *9)))) (-3765 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-966 *4)) (-4 *2 (-665 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) (-4257 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-966 *4)) (-4 *2 (-665 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))) -(-10 -7 (-15 -4257 (|#8| |#4|)) (-15 -3765 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4345)) (-15 -3113 ((-623 |#3|) |#4|)) |%noBranch|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749) (-749)) NIL)) (-2705 (($ $ $) NIL)) (-3569 (($ (-584 |#1| |#3|)) NIL) (($ $) NIL)) (-3684 (((-112) $) NIL)) (-1481 (($ $ (-550) (-550)) 12)) (-3781 (($ $ (-550) (-550)) NIL)) (-1825 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-4296 (($ $) NIL)) (-2644 (((-112) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3154 (($ $ (-550) (-550) $) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1645 (($ $ (-550) (-584 |#1| |#3|)) NIL)) (-4097 (($ $ (-550) (-584 |#1| |#2|)) NIL)) (-3955 (($ (-749) |#1|) NIL)) (-2991 (($) NIL T CONST)) (-4257 (($ $) 21 (|has| |#1| (-300)))) (-1297 (((-584 |#1| |#3|) $ (-550)) NIL)) (-3398 (((-749) $) 24 (|has| |#1| (-542)))) (-3317 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3263 ((|#1| $ (-550) (-550)) NIL)) (-2971 (((-623 |#1|) $) NIL)) (-1436 (((-749) $) 26 (|has| |#1| (-542)))) (-3113 (((-623 (-584 |#1| |#2|)) $) 29 (|has| |#1| (-542)))) (-2050 (((-749) $) NIL)) (-3375 (($ (-749) (-749) |#1|) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-1517 ((|#1| $) 19 (|has| |#1| (-6 (-4346 "*"))))) (-3397 (((-550) $) 10)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) 11)) (-2964 (((-550) $) NIL)) (-4224 (($ (-623 (-623 |#1|))) NIL)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3380 (((-623 (-623 |#1|)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3765 (((-3 $ "failed") $) 33 (|has| |#1| (-356)))) (-2458 (($ $ $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4000 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL)) (-2418 (((-112) $) NIL)) (-4270 ((|#1| $) 17 (|has| |#1| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-1457 (((-584 |#1| |#2|) $ (-550)) NIL)) (-2233 (($ (-584 |#1| |#2|)) NIL) (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-584 |#1| |#2|) $ (-584 |#1| |#2|)) NIL) (((-584 |#1| |#3|) (-584 |#1| |#3|) $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-514 |#1| |#2| |#3|) (-665 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) (-1021) (-550) (-550)) (T -514)) -NIL -(-665 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3162 (((-623 (-1181)) $) 13)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20) (((-1150) $) NIL) (($ (-1150)) NIL) (($ (-623 (-1181))) 11)) (-2264 (((-112) $ $) NIL))) -(((-515) (-13 (-1052) (-10 -8 (-15 -2233 ($ (-623 (-1181)))) (-15 -3162 ((-623 (-1181)) $))))) (T -515)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-515)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-515))))) -(-13 (-1052) (-10 -8 (-15 -2233 ($ (-623 (-1181)))) (-15 -3162 ((-623 (-1181)) $)))) -((-2221 (((-112) $ $) NIL)) (-1681 (((-1104) $) 14)) (-2369 (((-1127) $) NIL)) (-3639 (((-1145) $) 11)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-516) (-13 (-1052) (-10 -8 (-15 -3639 ((-1145) $)) (-15 -1681 ((-1104) $))))) (T -516)) -((-3639 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-516)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-516))))) -(-13 (-1052) (-10 -8 (-15 -3639 ((-1145) $)) (-15 -1681 ((-1104) $)))) -((-2547 (((-1089) $ (-128)) 17))) -(((-517 |#1|) (-10 -8 (-15 -2547 ((-1089) |#1| (-128)))) (-518)) (T -517)) -NIL -(-10 -8 (-15 -2547 ((-1089) |#1| (-128)))) -((-2547 (((-1089) $ (-128)) 7)) (-1307 (((-1089) $) 8)) (-4231 (($ $) 6))) +((-3440 ((|#4| |#4|) 27)) (-3439 (((-749) |#4|) 32)) (-3438 (((-749) |#4|) 33)) (-3437 (((-620 |#3|) |#4|) 40 (|has| |#3| (-6 -4349)))) (-3947 (((-3 |#4| "failed") |#4|) 51)) (-2108 ((|#4| |#4|) 44)) (-3682 ((|#1| |#4|) 43))) +(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3440 (|#4| |#4|)) (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (IF (|has| |#3| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|) (-15 -3682 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3947 ((-3 |#4| "failed") |#4|))) (-356) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -512)) +((-3947 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) (-3437 (*1 *2 *3) (-12 (|has| *6 (-6 -4349)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-620 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(-10 -7 (-15 -3440 (|#4| |#4|)) (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (IF (|has| |#3| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|) (-15 -3682 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3947 ((-3 |#4| "failed") |#4|))) +((-3440 ((|#8| |#4|) 20)) (-3437 (((-620 |#3|) |#4|) 29 (|has| |#7| (-6 -4349)))) (-3947 (((-3 |#8| "failed") |#4|) 23))) +(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3440 (|#8| |#4|)) (-15 -3947 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|)) (-543) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|) (-965 |#1|) (-365 |#5|) (-365 |#5|) (-664 |#5| |#6| |#7|)) (T -513)) +((-3437 (*1 *2 *3) (-12 (|has| *9 (-6 -4349)) (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-620 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-664 *4 *5 *6)) (-4 *10 (-664 *7 *8 *9)))) (-3947 (*1 *2 *3) (|partial| -12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))) +(-10 -7 (-15 -3440 (|#8| |#4|)) (-15 -3947 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) NIL)) (-2426 (($ $ $) NIL)) (-3768 (($ (-584 |#1| |#3|)) NIL) (($ $) NIL)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) 12)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-584 |#1| |#3|)) NIL)) (-1306 (($ $ (-536) (-584 |#1| |#2|)) NIL)) (-3687 (($ (-749) |#1|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 21 (|has| |#1| (-300)))) (-3442 (((-584 |#1| |#3|) $ (-536)) NIL)) (-3439 (((-749) $) 24 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) 26 (|has| |#1| (-543)))) (-3437 (((-620 (-584 |#1| |#2|)) $) 29 (|has| |#1| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) 19 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 10)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 11)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) 33 (|has| |#1| (-356)))) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) 17 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-584 |#1| |#2|) $ (-536)) NIL)) (-4312 (($ (-584 |#1| |#2|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-584 |#1| |#2|) $ (-584 |#1| |#2|)) NIL) (((-584 |#1| |#3|) (-584 |#1| |#3|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-514 |#1| |#2| |#3|) (-664 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) (-1023) (-536) (-536)) (T -514)) +NIL +(-664 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2109 (((-620 (-1184)) $) 13)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL) (($ (-620 (-1184))) 11)) (-3382 (((-112) $ $) NIL))) +(((-515) (-13 (-1054) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2109 ((-620 (-1184)) $))))) (T -515)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515))))) +(-13 (-1054) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2109 ((-620 (-1184)) $)))) +((-2893 (((-112) $ $) NIL)) (-2110 (((-1106) $) 14)) (-3588 (((-1129) $) NIL)) (-2111 (((-1147) $) 11)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-516) (-13 (-1054) (-10 -8 (-15 -2111 ((-1147) $)) (-15 -2110 ((-1106) $))))) (T -516)) +((-2111 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-516)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-516))))) +(-13 (-1054) (-10 -8 (-15 -2111 ((-1147) $)) (-15 -2110 ((-1106) $)))) +((-2112 (((-1091) $ (-129)) 17))) +(((-517 |#1|) (-10 -8 (-15 -2112 ((-1091) |#1| (-129)))) (-518)) (T -517)) +NIL +(-10 -8 (-15 -2112 ((-1091) |#1| (-129)))) +((-2112 (((-1091) $ (-129)) 7)) (-2113 (((-1091) $) 8)) (-1811 (($ $) 6))) (((-518) (-138)) (T -518)) -((-1307 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1089)))) (-2547 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1089))))) -(-13 (-171) (-10 -8 (-15 -1307 ((-1089) $)) (-15 -2547 ((-1089) $ (-128))))) +((-2113 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1091)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1091))))) +(-13 (-171) (-10 -8 (-15 -2113 ((-1091) $)) (-15 -2112 ((-1091) $ (-129))))) (((-171) . T)) -((-1835 (((-1141 |#1|) (-749)) 76)) (-2223 (((-1228 |#1|) (-1228 |#1|) (-895)) 69)) (-3671 (((-1233) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) |#1|) 84)) (-3207 (((-1228 |#1|) (-1228 |#1|) (-749)) 36)) (-1864 (((-1228 |#1|) (-895)) 71)) (-1345 (((-1228 |#1|) (-1228 |#1|) (-550)) 24)) (-2054 (((-1141 |#1|) (-1228 |#1|)) 77)) (-1888 (((-1228 |#1|) (-895)) 95)) (-3751 (((-112) (-1228 |#1|)) 80)) (-1571 (((-1228 |#1|) (-1228 |#1|) (-895)) 62)) (-2835 (((-1141 |#1|) (-1228 |#1|)) 89)) (-4073 (((-895) (-1228 |#1|)) 59)) (-1619 (((-1228 |#1|) (-1228 |#1|)) 30)) (-3690 (((-1228 |#1|) (-895) (-895)) 97)) (-2974 (((-1228 |#1|) (-1228 |#1|) (-1089) (-1089)) 23)) (-3503 (((-1228 |#1|) (-1228 |#1|) (-749) (-1089)) 37)) (-2206 (((-1228 (-1228 |#1|)) (-895)) 94)) (-2382 (((-1228 |#1|) (-1228 |#1|) (-1228 |#1|)) 81)) (** (((-1228 |#1|) (-1228 |#1|) (-550)) 45)) (* (((-1228 |#1|) (-1228 |#1|) (-1228 |#1|)) 25))) -(((-519 |#1|) (-10 -7 (-15 -3671 ((-1233) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) |#1|)) (-15 -1864 ((-1228 |#1|) (-895))) (-15 -3690 ((-1228 |#1|) (-895) (-895))) (-15 -2054 ((-1141 |#1|) (-1228 |#1|))) (-15 -1835 ((-1141 |#1|) (-749))) (-15 -3503 ((-1228 |#1|) (-1228 |#1|) (-749) (-1089))) (-15 -3207 ((-1228 |#1|) (-1228 |#1|) (-749))) (-15 -2974 ((-1228 |#1|) (-1228 |#1|) (-1089) (-1089))) (-15 -1345 ((-1228 |#1|) (-1228 |#1|) (-550))) (-15 ** ((-1228 |#1|) (-1228 |#1|) (-550))) (-15 * ((-1228 |#1|) (-1228 |#1|) (-1228 |#1|))) (-15 -2382 ((-1228 |#1|) (-1228 |#1|) (-1228 |#1|))) (-15 -1571 ((-1228 |#1|) (-1228 |#1|) (-895))) (-15 -2223 ((-1228 |#1|) (-1228 |#1|) (-895))) (-15 -1619 ((-1228 |#1|) (-1228 |#1|))) (-15 -4073 ((-895) (-1228 |#1|))) (-15 -3751 ((-112) (-1228 |#1|))) (-15 -2206 ((-1228 (-1228 |#1|)) (-895))) (-15 -1888 ((-1228 |#1|) (-895))) (-15 -2835 ((-1141 |#1|) (-1228 |#1|)))) (-342)) (T -519)) -((-2835 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1228 (-1228 *4))) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-895)) (-5 *1 (-519 *4)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (-2223 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-895)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-1571 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-895)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-550)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-1345 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-550)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2974 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1089)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3503 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1228 *5)) (-5 *3 (-749)) (-5 *4 (-1089)) (-4 *5 (-342)) (-5 *1 (-519 *5)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) (-4 *4 (-342)) (-5 *2 (-1233)) (-5 *1 (-519 *4))))) -(-10 -7 (-15 -3671 ((-1233) (-1228 (-623 (-2 (|:| -1337 |#1|) (|:| -3690 (-1089))))) |#1|)) (-15 -1864 ((-1228 |#1|) (-895))) (-15 -3690 ((-1228 |#1|) (-895) (-895))) (-15 -2054 ((-1141 |#1|) (-1228 |#1|))) (-15 -1835 ((-1141 |#1|) (-749))) (-15 -3503 ((-1228 |#1|) (-1228 |#1|) (-749) (-1089))) (-15 -3207 ((-1228 |#1|) (-1228 |#1|) (-749))) (-15 -2974 ((-1228 |#1|) (-1228 |#1|) (-1089) (-1089))) (-15 -1345 ((-1228 |#1|) (-1228 |#1|) (-550))) (-15 ** ((-1228 |#1|) (-1228 |#1|) (-550))) (-15 * ((-1228 |#1|) (-1228 |#1|) (-1228 |#1|))) (-15 -2382 ((-1228 |#1|) (-1228 |#1|) (-1228 |#1|))) (-15 -1571 ((-1228 |#1|) (-1228 |#1|) (-895))) (-15 -2223 ((-1228 |#1|) (-1228 |#1|) (-895))) (-15 -1619 ((-1228 |#1|) (-1228 |#1|))) (-15 -4073 ((-895) (-1228 |#1|))) (-15 -3751 ((-112) (-1228 |#1|))) (-15 -2206 ((-1228 (-1228 |#1|)) (-895))) (-15 -1888 ((-1228 |#1|) (-895))) (-15 -2835 ((-1141 |#1|) (-1228 |#1|)))) -((-2547 (((-1089) $ (-128)) NIL)) (-1307 (((-1089) $) 21)) (-3572 (((-112) $) 19)) (-2143 (($ (-381)) 12) (($ (-1127)) 14)) (-3739 (((-112) $) 22)) (-2233 (((-837) $) 26)) (-4231 (($ $) 23))) -(((-520) (-13 (-518) (-595 (-837)) (-10 -8 (-15 -2143 ($ (-381))) (-15 -2143 ($ (-1127))) (-15 -3739 ((-112) $)) (-15 -3572 ((-112) $))))) (T -520)) -((-2143 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520)))) (-2143 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-520)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) -(-13 (-518) (-595 (-837)) (-10 -8 (-15 -2143 ($ (-381))) (-15 -2143 ($ (-1127))) (-15 -3739 ((-112) $)) (-15 -3572 ((-112) $)))) -((-2048 (((-1 |#1| |#1|) |#1|) 11)) (-1533 (((-1 |#1| |#1|)) 10))) -(((-521 |#1|) (-10 -7 (-15 -1533 ((-1 |#1| |#1|))) (-15 -2048 ((-1 |#1| |#1|) |#1|))) (-13 (-705) (-25))) (T -521)) -((-2048 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25))))) (-1533 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) -(-10 -7 (-15 -1533 ((-1 |#1| |#1|))) (-15 -2048 ((-1 |#1| |#1|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-4250 (($ $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1488 (($ (-749) |#1|) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 (-749) (-749)) $) NIL)) (-1821 ((|#1| $) NIL)) (-1670 (((-749) $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20)) (-2688 (($) NIL T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL))) +((-2116 (((-1141 |#1|) (-749)) 76)) (-3684 (((-1229 |#1|) (-1229 |#1|) (-893)) 69)) (-2114 (((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|) 84)) (-2118 (((-1229 |#1|) (-1229 |#1|) (-749)) 36)) (-3322 (((-1229 |#1|) (-893)) 71)) (-2120 (((-1229 |#1|) (-1229 |#1|) (-536)) 24)) (-2115 (((-1141 |#1|) (-1229 |#1|)) 77)) (-2124 (((-1229 |#1|) (-893)) 95)) (-2122 (((-112) (-1229 |#1|)) 80)) (-3462 (((-1229 |#1|) (-1229 |#1|) (-893)) 62)) (-2125 (((-1141 |#1|) (-1229 |#1|)) 89)) (-2121 (((-893) (-1229 |#1|)) 59)) (-2729 (((-1229 |#1|) (-1229 |#1|)) 30)) (-2487 (((-1229 |#1|) (-893) (-893)) 97)) (-2119 (((-1229 |#1|) (-1229 |#1|) (-1091) (-1091)) 23)) (-2117 (((-1229 |#1|) (-1229 |#1|) (-749) (-1091)) 37)) (-2123 (((-1229 (-1229 |#1|)) (-893)) 94)) (-4303 (((-1229 |#1|) (-1229 |#1|) (-1229 |#1|)) 81)) (** (((-1229 |#1|) (-1229 |#1|) (-536)) 45)) (* (((-1229 |#1|) (-1229 |#1|) (-1229 |#1|)) 25))) +(((-519 |#1|) (-10 -7 (-15 -2114 ((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|)) (-15 -3322 ((-1229 |#1|) (-893))) (-15 -2487 ((-1229 |#1|) (-893) (-893))) (-15 -2115 ((-1141 |#1|) (-1229 |#1|))) (-15 -2116 ((-1141 |#1|) (-749))) (-15 -2117 ((-1229 |#1|) (-1229 |#1|) (-749) (-1091))) (-15 -2118 ((-1229 |#1|) (-1229 |#1|) (-749))) (-15 -2119 ((-1229 |#1|) (-1229 |#1|) (-1091) (-1091))) (-15 -2120 ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 ** ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 * ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -4303 ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -3462 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -3684 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -2729 ((-1229 |#1|) (-1229 |#1|))) (-15 -2121 ((-893) (-1229 |#1|))) (-15 -2122 ((-112) (-1229 |#1|))) (-15 -2123 ((-1229 (-1229 |#1|)) (-893))) (-15 -2124 ((-1229 |#1|) (-893))) (-15 -2125 ((-1141 |#1|) (-1229 |#1|)))) (-343)) (T -519)) +((-2125 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 *4))) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-893)) (-5 *1 (-519 *4)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (-3684 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2119 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1091)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2117 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1229 *5)) (-5 *3 (-749)) (-5 *4 (-1091)) (-4 *5 (-343)) (-5 *1 (-519 *5)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-2487 (*1 *2 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-1235)) (-5 *1 (-519 *4))))) +(-10 -7 (-15 -2114 ((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|)) (-15 -3322 ((-1229 |#1|) (-893))) (-15 -2487 ((-1229 |#1|) (-893) (-893))) (-15 -2115 ((-1141 |#1|) (-1229 |#1|))) (-15 -2116 ((-1141 |#1|) (-749))) (-15 -2117 ((-1229 |#1|) (-1229 |#1|) (-749) (-1091))) (-15 -2118 ((-1229 |#1|) (-1229 |#1|) (-749))) (-15 -2119 ((-1229 |#1|) (-1229 |#1|) (-1091) (-1091))) (-15 -2120 ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 ** ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 * ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -4303 ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -3462 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -3684 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -2729 ((-1229 |#1|) (-1229 |#1|))) (-15 -2121 ((-893) (-1229 |#1|))) (-15 -2122 ((-112) (-1229 |#1|))) (-15 -2123 ((-1229 (-1229 |#1|)) (-893))) (-15 -2124 ((-1229 |#1|) (-893))) (-15 -2125 ((-1141 |#1|) (-1229 |#1|)))) +((-2112 (((-1091) $ (-129)) NIL)) (-2113 (((-1091) $) 21)) (-2886 (((-112) $) 19)) (-2127 (($ (-381)) 12) (($ (-1129)) 14)) (-2126 (((-112) $) 22)) (-4312 (((-838) $) 26)) (-1811 (($ $) 23))) +(((-520) (-13 (-518) (-595 (-838)) (-10 -8 (-15 -2127 ($ (-381))) (-15 -2127 ($ (-1129))) (-15 -2126 ((-112) $)) (-15 -2886 ((-112) $))))) (T -520)) +((-2127 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-520)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) +(-13 (-518) (-595 (-838)) (-10 -8 (-15 -2127 ($ (-381))) (-15 -2127 ($ (-1129))) (-15 -2126 ((-112) $)) (-15 -2886 ((-112) $)))) +((-2129 (((-1 |#1| |#1|) |#1|) 11)) (-2128 (((-1 |#1| |#1|)) 10))) +(((-521 |#1|) (-10 -7 (-15 -2128 ((-1 |#1| |#1|))) (-15 -2129 ((-1 |#1| |#1|) |#1|))) (-13 (-705) (-25))) (T -521)) +((-2129 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25))))) (-2128 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(-10 -7 (-15 -2128 ((-1 |#1| |#1|))) (-15 -2129 ((-1 |#1| |#1|) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ (-749) |#1|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 (-749) (-749)) $) NIL)) (-2101 ((|#1| $) NIL)) (-3520 (((-749) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) (((-522 |#1|) (-13 (-771) (-500 (-749) |#1|)) (-825)) (T -522)) NIL (-13 (-771) (-500 (-749) |#1|)) -((-2035 (((-623 |#2|) (-1141 |#1|) |#3|) 83)) (-3849 (((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1141 |#1|)) (-1141 |#1|))) 100)) (-3414 (((-1141 |#1|) (-667 |#1|)) 95))) -(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -3414 ((-1141 |#1|) (-667 |#1|))) (-15 -2035 ((-623 |#2|) (-1141 |#1|) |#3|)) (-15 -3849 ((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1141 |#1|)) (-1141 |#1|))))) (-356) (-356) (-13 (-356) (-823))) (T -523)) -((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-411 (-1141 *6)) (-1141 *6))) (-4 *6 (-356)) (-5 *2 (-623 (-2 (|:| |outval| *7) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 *7)))))) (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-623 *6)) (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) -(-10 -7 (-15 -3414 ((-1141 |#1|) (-667 |#1|))) (-15 -2035 ((-623 |#2|) (-1141 |#1|) |#3|)) (-15 -3849 ((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1141 |#1|)) (-1141 |#1|))))) -((-2414 (((-818 (-550))) 12)) (-2427 (((-818 (-550))) 14)) (-4197 (((-811 (-550))) 9))) -(((-524) (-10 -7 (-15 -4197 ((-811 (-550)))) (-15 -2414 ((-818 (-550)))) (-15 -2427 ((-818 (-550)))))) (T -524)) -((-2427 (*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) (-2414 (*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) (-4197 (*1 *2) (-12 (-5 *2 (-811 (-550))) (-5 *1 (-524))))) -(-10 -7 (-15 -4197 ((-811 (-550)))) (-15 -2414 ((-818 (-550)))) (-15 -2427 ((-818 (-550))))) -((-3633 (((-526) (-1145)) 15)) (-4307 ((|#1| (-526)) 20))) -(((-525 |#1|) (-10 -7 (-15 -3633 ((-526) (-1145))) (-15 -4307 (|#1| (-526)))) (-1182)) (T -525)) -((-4307 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-525 *2)) (-4 *2 (-1182)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-526)) (-5 *1 (-525 *4)) (-4 *4 (-1182))))) -(-10 -7 (-15 -3633 ((-526) (-1145))) (-15 -4307 (|#1| (-526)))) -((-2221 (((-112) $ $) NIL)) (-2189 (((-1127) $) 48)) (-2297 (((-112) $) 43)) (-3590 (((-1145) $) 44)) (-1906 (((-112) $) 41)) (-1755 (((-1127) $) 42)) (-3732 (($ (-1127)) 49)) (-2093 (((-112) $) NIL)) (-3422 (((-112) $) NIL)) (-3555 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-2012 (($ $ (-623 (-1145))) 20)) (-4307 (((-52) $) 22)) (-3517 (((-112) $) NIL)) (-1776 (((-550) $) NIL)) (-3445 (((-1089) $) NIL)) (-3112 (($ $ (-623 (-1145)) (-1145)) 61)) (-1968 (((-112) $) NIL)) (-2795 (((-219) $) NIL)) (-3822 (($ $) 38)) (-2520 (((-837) $) NIL)) (-1309 (((-112) $ $) NIL)) (-2757 (($ $ (-550)) NIL) (($ $ (-623 (-550))) NIL)) (-1444 (((-623 $) $) 28)) (-1652 (((-1145) (-623 $)) 50)) (-2451 (($ (-623 $)) 57) (($ (-1127)) NIL) (($ (-1145)) 18) (($ (-550)) 8) (($ (-219)) 25) (($ (-837)) NIL) (((-1073) $) 11) (($ (-1073)) 12)) (-1863 (((-1145) (-1145) (-623 $)) 53)) (-2233 (((-837) $) 46)) (-3762 (($ $) 52)) (-3753 (($ $) 51)) (-1876 (($ $ (-623 $)) 58)) (-1797 (((-112) $) 27)) (-2688 (($) 9 T CONST)) (-2700 (($) 10 T CONST)) (-2264 (((-112) $ $) 62)) (-2382 (($ $ $) 67)) (-2358 (($ $ $) 63)) (** (($ $ (-749)) 66) (($ $ (-550)) 65)) (* (($ $ $) 64)) (-3307 (((-550) $) NIL))) -(((-526) (-13 (-1072 (-1127) (-1145) (-550) (-219) (-837)) (-596 (-1073)) (-10 -8 (-15 -4307 ((-52) $)) (-15 -2451 ($ (-1073))) (-15 -1876 ($ $ (-623 $))) (-15 -3112 ($ $ (-623 (-1145)) (-1145))) (-15 -2012 ($ $ (-623 (-1145)))) (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 -2382 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-550))) (-15 0 ($) -4165) (-15 1 ($) -4165) (-15 -3822 ($ $)) (-15 -2189 ((-1127) $)) (-15 -3732 ($ (-1127))) (-15 -1652 ((-1145) (-623 $))) (-15 -1863 ((-1145) (-1145) (-623 $)))))) (T -526)) -((-4307 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-526)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-526)))) (-1876 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-526))) (-5 *1 (-526)))) (-3112 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-1145)) (-5 *1 (-526)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-526)))) (-2358 (*1 *1 *1 *1) (-5 *1 (-526))) (* (*1 *1 *1 *1) (-5 *1 (-526))) (-2382 (*1 *1 *1 *1) (-5 *1 (-526))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-526)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-526)))) (-2688 (*1 *1) (-5 *1 (-526))) (-2700 (*1 *1) (-5 *1 (-526))) (-3822 (*1 *1 *1) (-5 *1 (-526))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-526)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-526)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-623 (-526))) (-5 *2 (-1145)) (-5 *1 (-526)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-526))) (-5 *1 (-526))))) -(-13 (-1072 (-1127) (-1145) (-550) (-219) (-837)) (-596 (-1073)) (-10 -8 (-15 -4307 ((-52) $)) (-15 -2451 ($ (-1073))) (-15 -1876 ($ $ (-623 $))) (-15 -3112 ($ $ (-623 (-1145)) (-1145))) (-15 -2012 ($ $ (-623 (-1145)))) (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 -2382 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-550))) (-15 (-2688) ($) -4165) (-15 (-2700) ($) -4165) (-15 -3822 ($ $)) (-15 -2189 ((-1127) $)) (-15 -3732 ($ (-1127))) (-15 -1652 ((-1145) (-623 $))) (-15 -1863 ((-1145) (-1145) (-623 $))))) -((-3469 ((|#2| |#2|) 17)) (-2588 ((|#2| |#2|) 13)) (-4099 ((|#2| |#2| (-550) (-550)) 20)) (-4279 ((|#2| |#2|) 15))) -(((-527 |#1| |#2|) (-10 -7 (-15 -2588 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-550) (-550)))) (-13 (-542) (-145)) (-1219 |#1|)) (T -527)) -((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-527 *4 *2)) (-4 *2 (-1219 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1219 *3)))) (-4279 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1219 *3)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1219 *3))))) -(-10 -7 (-15 -2588 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-550) (-550)))) -((-3714 (((-623 (-287 (-926 |#2|))) (-623 |#2|) (-623 (-1145))) 32)) (-2306 (((-623 |#2|) (-926 |#1|) |#3|) 53) (((-623 |#2|) (-1141 |#1|) |#3|) 52)) (-4119 (((-623 (-623 |#2|)) (-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145)) |#3|) 91))) -(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -2306 ((-623 |#2|) (-1141 |#1|) |#3|)) (-15 -2306 ((-623 |#2|) (-926 |#1|) |#3|)) (-15 -4119 ((-623 (-623 |#2|)) (-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145)) |#3|)) (-15 -3714 ((-623 (-287 (-926 |#2|))) (-623 |#2|) (-623 (-1145))))) (-444) (-356) (-13 (-356) (-823))) (T -528)) -((-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1145))) (-4 *6 (-356)) (-5 *2 (-623 (-287 (-926 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823))))) (-4119 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) (-4 *6 (-444)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-823))))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-926 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2306 ((-623 |#2|) (-1141 |#1|) |#3|)) (-15 -2306 ((-623 |#2|) (-926 |#1|) |#3|)) (-15 -4119 ((-623 (-623 |#2|)) (-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145)) |#3|)) (-15 -3714 ((-623 (-287 (-926 |#2|))) (-623 |#2|) (-623 (-1145))))) -((-1591 ((|#2| |#2| |#1|) 17)) (-2802 ((|#2| (-623 |#2|)) 27)) (-2044 ((|#2| (-623 |#2|)) 46))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2802 (|#2| (-623 |#2|))) (-15 -2044 (|#2| (-623 |#2|))) (-15 -1591 (|#2| |#2| |#1|))) (-300) (-1204 |#1|) |#1| (-1 |#1| |#1| (-749))) (T -529)) -((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1204 *3)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) -(-10 -7 (-15 -2802 (|#2| (-623 |#2|))) (-15 -2044 (|#2| (-623 |#2|))) (-15 -1591 (|#2| |#2| |#1|))) -((-1735 (((-411 (-1141 |#4|)) (-1141 |#4|) (-1 (-411 (-1141 |#3|)) (-1141 |#3|))) 80) (((-411 |#4|) |#4| (-1 (-411 (-1141 |#3|)) (-1141 |#3|))) 169))) -(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4| (-1 (-411 (-1141 |#3|)) (-1141 |#3|)))) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|) (-1 (-411 (-1141 |#3|)) (-1141 |#3|))))) (-825) (-771) (-13 (-300) (-145)) (-923 |#3| |#2| |#1|)) (T -530)) -((-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-923 *7 *6 *5)) (-5 *2 (-411 (-1141 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-411 *3)) (-5 *1 (-530 *5 *6 *7 *3)) (-4 *3 (-923 *7 *6 *5))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4| (-1 (-411 (-1141 |#3|)) (-1141 |#3|)))) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|) (-1 (-411 (-1141 |#3|)) (-1141 |#3|))))) -((-3469 ((|#4| |#4|) 74)) (-2588 ((|#4| |#4|) 70)) (-4099 ((|#4| |#4| (-550) (-550)) 76)) (-4279 ((|#4| |#4|) 72))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2588 (|#4| |#4|)) (-15 -4279 (|#4| |#4|)) (-15 -3469 (|#4| |#4|)) (-15 -4099 (|#4| |#4| (-550) (-550)))) (-13 (-356) (-361) (-596 (-550))) (-1204 |#1|) (-703 |#1| |#2|) (-1219 |#3|)) (T -531)) -((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1204 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1219 *6)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5)))) (-4279 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5))))) -(-10 -7 (-15 -2588 (|#4| |#4|)) (-15 -4279 (|#4| |#4|)) (-15 -3469 (|#4| |#4|)) (-15 -4099 (|#4| |#4| (-550) (-550)))) -((-3469 ((|#2| |#2|) 27)) (-2588 ((|#2| |#2|) 23)) (-4099 ((|#2| |#2| (-550) (-550)) 29)) (-4279 ((|#2| |#2|) 25))) -(((-532 |#1| |#2|) (-10 -7 (-15 -2588 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-550) (-550)))) (-13 (-356) (-361) (-596 (-550))) (-1219 |#1|)) (T -532)) -((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-5 *1 (-532 *4 *2)) (-4 *2 (-1219 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1219 *3)))) (-4279 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1219 *3)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1219 *3))))) -(-10 -7 (-15 -2588 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-550) (-550)))) -((-1291 (((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)) 14) (((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|)) 13) (((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|)) 26))) -(((-533 |#1| |#2|) (-10 -7 (-15 -1291 ((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -1291 ((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -1291 ((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)))) (-1021) (-1204 |#1|)) (T -533)) -((-1291 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1204 *4)))) (-1291 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1204 *4)))) (-1291 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-550) "failed") *5)) (-4 *5 (-1021)) (-5 *2 (-550)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1204 *5))))) -(-10 -7 (-15 -1291 ((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -1291 ((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -1291 ((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)))) -((-2633 (($ $ $) 79)) (-2207 (((-411 $) $) 47)) (-2288 (((-3 (-550) "failed") $) 59)) (-2202 (((-550) $) 37)) (-3192 (((-3 (-400 (-550)) "failed") $) 74)) (-2593 (((-112) $) 24)) (-3169 (((-400 (-550)) $) 72)) (-1568 (((-112) $) 50)) (-2083 (($ $ $ $) 86)) (-2694 (((-112) $) 16)) (-4083 (($ $ $) 57)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 69)) (-1620 (((-3 $ "failed") $) 64)) (-1673 (($ $) 23)) (-2711 (($ $ $) 84)) (-2463 (($) 60)) (-3643 (($ $) 53)) (-1735 (((-411 $) $) 45)) (-3725 (((-112) $) 14)) (-1988 (((-749) $) 28)) (-2798 (($ $ (-749)) NIL) (($ $) 10)) (-2435 (($ $) 17)) (-2451 (((-550) $) NIL) (((-526) $) 36) (((-866 (-550)) $) 40) (((-372) $) 31) (((-219) $) 33)) (-3091 (((-749)) 8)) (-1796 (((-112) $ $) 20)) (-1437 (($ $ $) 55))) -(((-534 |#1|) (-10 -8 (-15 -2711 (|#1| |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -1796 ((-112) |#1| |#1|)) (-15 -3725 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -1437 (|#1| |#1| |#1|)) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2451 ((-550) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2694 ((-112) |#1|)) (-15 -1988 ((-749) |#1|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -3091 ((-749)))) (-535)) (T -534)) -((-3091 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535))))) -(-10 -8 (-15 -2711 (|#1| |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -1796 ((-112) |#1| |#1|)) (-15 -3725 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -1437 (|#1| |#1| |#1|)) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2451 ((-550) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2694 ((-112) |#1|)) (-15 -1988 ((-749) |#1|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -3091 ((-749)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-2633 (($ $ $) 82)) (-1993 (((-3 $ "failed") $ $) 19)) (-1534 (($ $ $ $) 71)) (-2318 (($ $) 49)) (-2207 (((-411 $) $) 50)) (-1611 (((-112) $ $) 122)) (-4303 (((-550) $) 111)) (-1538 (($ $ $) 85)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 103)) (-2202 (((-550) $) 102)) (-3455 (($ $ $) 126)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 101) (((-667 (-550)) (-667 $)) 100)) (-1537 (((-3 $ "failed") $) 32)) (-3192 (((-3 (-400 (-550)) "failed") $) 79)) (-2593 (((-112) $) 81)) (-3169 (((-400 (-550)) $) 80)) (-1864 (($) 78) (($ $) 77)) (-3429 (($ $ $) 125)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 120)) (-1568 (((-112) $) 51)) (-2083 (($ $ $ $) 69)) (-2181 (($ $ $) 83)) (-2694 (((-112) $) 113)) (-4083 (($ $ $) 94)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 97)) (-2419 (((-112) $) 30)) (-1286 (((-112) $) 89)) (-1620 (((-3 $ "failed") $) 91)) (-1712 (((-112) $) 112)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 129)) (-2960 (($ $ $ $) 70)) (-2793 (($ $ $) 114)) (-2173 (($ $ $) 115)) (-1673 (($ $) 73)) (-3839 (($ $) 86)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-2711 (($ $ $) 68)) (-2463 (($) 90 T CONST)) (-2486 (($ $) 75)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3643 (($ $) 95)) (-1735 (((-411 $) $) 48)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 127)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 121)) (-3725 (((-112) $) 88)) (-1988 (((-749) $) 123)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 124)) (-2798 (($ $ (-749)) 108) (($ $) 106)) (-2417 (($ $) 74)) (-2435 (($ $) 76)) (-2451 (((-550) $) 105) (((-526) $) 99) (((-866 (-550)) $) 98) (((-372) $) 93) (((-219) $) 92)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 104)) (-3091 (((-749)) 28)) (-1796 (((-112) $ $) 84)) (-1437 (($ $ $) 96)) (-4300 (($) 87)) (-1819 (((-112) $ $) 37)) (-4133 (($ $ $ $) 72)) (-4188 (($ $) 110)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-749)) 109) (($ $) 107)) (-2324 (((-112) $ $) 117)) (-2302 (((-112) $ $) 118)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 116)) (-2290 (((-112) $ $) 119)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-2131 (((-620 |#2|) (-1141 |#1|) |#3|) 83)) (-2132 (((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))) 100)) (-2130 (((-1141 |#1|) (-667 |#1|)) 95))) +(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-1141 |#1|) (-667 |#1|))) (-15 -2131 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2132 ((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))))) (-356) (-356) (-13 (-356) (-823))) (T -523)) +((-2132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-398 (-1141 *6)) (-1141 *6))) (-4 *6 (-356)) (-5 *2 (-620 (-2 (|:| |outval| *7) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 *7)))))) (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-620 *6)) (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2130 ((-1141 |#1|) (-667 |#1|))) (-15 -2131 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2132 ((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))))) +((-2858 (((-817 (-536))) 12)) (-2857 (((-817 (-536))) 14)) (-2843 (((-810 (-536))) 9))) +(((-524) (-10 -7 (-15 -2843 ((-810 (-536)))) (-15 -2858 ((-817 (-536)))) (-15 -2857 ((-817 (-536)))))) (T -524)) +((-2857 (*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) (-2858 (*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) (-2843 (*1 *2) (-12 (-5 *2 (-810 (-536))) (-5 *1 (-524))))) +(-10 -7 (-15 -2843 ((-810 (-536)))) (-15 -2858 ((-817 (-536)))) (-15 -2857 ((-817 (-536))))) +((-2893 (((-112) $ $) NIL)) (-2136 (((-1129) $) 48)) (-3606 (((-112) $) 43)) (-3602 (((-1147) $) 44)) (-3607 (((-112) $) 41)) (-3893 (((-1129) $) 42)) (-2135 (($ (-1129)) 49)) (-3609 (((-112) $) NIL)) (-3611 (((-112) $) NIL)) (-3608 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-2138 (($ $ (-620 (-1147))) 20)) (-2141 (((-51) $) 22)) (-3605 (((-112) $) NIL)) (-3601 (((-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-2470 (($ $ (-620 (-1147)) (-1147)) 61)) (-3604 (((-112) $) NIL)) (-3600 (((-219) $) NIL)) (-2137 (($ $) 38)) (-3599 (((-838) $) NIL)) (-3612 (((-112) $ $) NIL)) (-4154 (($ $ (-536)) NIL) (($ $ (-620 (-536))) NIL)) (-3603 (((-620 $) $) 28)) (-2134 (((-1147) (-620 $)) 50)) (-4325 (($ (-620 $)) 57) (($ (-1129)) NIL) (($ (-1147)) 18) (($ (-536)) 8) (($ (-219)) 25) (($ (-838)) NIL) (((-1074) $) 11) (($ (-1074)) 12)) (-2133 (((-1147) (-1147) (-620 $)) 53)) (-4312 (((-838) $) 46)) (-3597 (($ $) 52)) (-3598 (($ $) 51)) (-2139 (($ $ (-620 $)) 58)) (-3610 (((-112) $) 27)) (-2986 (($) 9 T CONST)) (-2992 (($) 10 T CONST)) (-3382 (((-112) $ $) 62)) (-4303 (($ $ $) 67)) (-4194 (($ $ $) 63)) (** (($ $ (-749)) 66) (($ $ (-536)) 65)) (* (($ $ $) 64)) (-4311 (((-536) $) NIL))) +(((-525) (-13 (-1075 (-1129) (-1147) (-536) (-219) (-838)) (-596 (-1074)) (-10 -8 (-15 -2141 ((-51) $)) (-15 -4325 ($ (-1074))) (-15 -2139 ($ $ (-620 $))) (-15 -2470 ($ $ (-620 (-1147)) (-1147))) (-15 -2138 ($ $ (-620 (-1147)))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-536))) (-15 0 ($) -4306) (-15 1 ($) -4306) (-15 -2137 ($ $)) (-15 -2136 ((-1129) $)) (-15 -2135 ($ (-1129))) (-15 -2134 ((-1147) (-620 $))) (-15 -2133 ((-1147) (-1147) (-620 $)))))) (T -525)) +((-2141 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-525)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-525)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-525))) (-5 *1 (-525)))) (-2470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1147)) (-5 *1 (-525)))) (-2138 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-525)))) (-4194 (*1 *1 *1 *1) (-5 *1 (-525))) (* (*1 *1 *1 *1) (-5 *1 (-525))) (-4303 (*1 *1 *1 *1) (-5 *1 (-525))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-525)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-525)))) (-2986 (*1 *1) (-5 *1 (-525))) (-2992 (*1 *1) (-5 *1 (-525))) (-2137 (*1 *1 *1) (-5 *1 (-525))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-620 (-525))) (-5 *2 (-1147)) (-5 *1 (-525)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-525))) (-5 *1 (-525))))) +(-13 (-1075 (-1129) (-1147) (-536) (-219) (-838)) (-596 (-1074)) (-10 -8 (-15 -2141 ((-51) $)) (-15 -4325 ($ (-1074))) (-15 -2139 ($ $ (-620 $))) (-15 -2470 ($ $ (-620 (-1147)) (-1147))) (-15 -2138 ($ $ (-620 (-1147)))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-536))) (-15 (-2986) ($) -4306) (-15 (-2992) ($) -4306) (-15 -2137 ($ $)) (-15 -2136 ((-1129) $)) (-15 -2135 ($ (-1129))) (-15 -2134 ((-1147) (-620 $))) (-15 -2133 ((-1147) (-1147) (-620 $))))) +((-2140 (((-525) (-1147)) 15)) (-2141 ((|#1| (-525)) 20))) +(((-526 |#1|) (-10 -7 (-15 -2140 ((-525) (-1147))) (-15 -2141 (|#1| (-525)))) (-1183)) (T -526)) +((-2141 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-526 *2)) (-4 *2 (-1183)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-525)) (-5 *1 (-526 *4)) (-4 *4 (-1183))))) +(-10 -7 (-15 -2140 ((-525) (-1147))) (-15 -2141 (|#1| (-525)))) +((-3802 ((|#2| |#2|) 17)) (-3800 ((|#2| |#2|) 13)) (-3803 ((|#2| |#2| (-536) (-536)) 20)) (-3801 ((|#2| |#2|) 15))) +(((-527 |#1| |#2|) (-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) (-13 (-543) (-145)) (-1222 |#1|)) (T -527)) +((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-527 *4 *2)) (-4 *2 (-1222 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3))))) +(-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) +((-2144 (((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))) 32)) (-2142 (((-620 |#2|) (-920 |#1|) |#3|) 53) (((-620 |#2|) (-1141 |#1|) |#3|) 52)) (-2143 (((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|) 91))) +(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -2142 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2142 ((-620 |#2|) (-920 |#1|) |#3|)) (-15 -2143 ((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|)) (-15 -2144 ((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))))) (-444) (-356) (-13 (-356) (-823))) (T -528)) +((-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1147))) (-4 *6 (-356)) (-5 *2 (-620 (-286 (-920 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823))))) (-2143 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-823))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2142 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2142 ((-620 |#2|) (-920 |#1|) |#3|)) (-15 -2143 ((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|)) (-15 -2144 ((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))))) +((-2147 ((|#2| |#2| |#1|) 17)) (-2145 ((|#2| (-620 |#2|)) 27)) (-2146 ((|#2| (-620 |#2|)) 46))) +(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2145 (|#2| (-620 |#2|))) (-15 -2146 (|#2| (-620 |#2|))) (-15 -2147 (|#2| |#2| |#1|))) (-300) (-1205 |#1|) |#1| (-1 |#1| |#1| (-749))) (T -529)) +((-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1205 *3)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749))))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) +(-10 -7 (-15 -2145 (|#2| (-620 |#2|))) (-15 -2146 (|#2| (-620 |#2|))) (-15 -2147 (|#2| |#2| |#1|))) +((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))) 80) (((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|))) 169))) +(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|)))) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))))) (-825) (-771) (-13 (-300) (-145)) (-924 |#3| |#2| |#1|)) (T -530)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-924 *7 *6 *5)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-530 *5 *6 *7 *3)) (-4 *3 (-924 *7 *6 *5))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|)))) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))))) +((-3802 ((|#4| |#4|) 74)) (-3800 ((|#4| |#4|) 70)) (-3803 ((|#4| |#4| (-536) (-536)) 76)) (-3801 ((|#4| |#4|) 72))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 (|#4| |#4|)) (-15 -3801 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3803 (|#4| |#4| (-536) (-536)))) (-13 (-356) (-361) (-596 (-536))) (-1205 |#1|) (-703 |#1| |#2|) (-1222 |#3|)) (T -531)) +((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1205 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1222 *6)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5))))) +(-10 -7 (-15 -3800 (|#4| |#4|)) (-15 -3801 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3803 (|#4| |#4| (-536) (-536)))) +((-3802 ((|#2| |#2|) 27)) (-3800 ((|#2| |#2|) 23)) (-3803 ((|#2| |#2| (-536) (-536)) 29)) (-3801 ((|#2| |#2|) 25))) +(((-532 |#1| |#2|) (-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) (-13 (-356) (-361) (-596 (-536))) (-1222 |#1|)) (T -532)) +((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-5 *1 (-532 *4 *2)) (-4 *2 (-1222 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3))))) +(-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) +((-2148 (((-3 (-536) #1="failed") |#2| |#1| (-1 (-3 (-536) #1#) |#1|)) 14) (((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|)) 13) (((-3 (-536) #1#) |#2| (-536) (-1 (-3 (-536) #1#) |#1|)) 26))) +(((-533 |#1| |#2|) (-10 -7 (-15 -2148 ((-3 (-536) #1="failed") |#2| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-1 (-3 (-536) #1#) |#1|)))) (-1023) (-1205 |#1|)) (T -533)) +((-2148 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-536) #1="failed") *4)) (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) (-2148 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) (-2148 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-536) #1#) *5)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1205 *5))))) +(-10 -7 (-15 -2148 ((-3 (-536) #1="failed") |#2| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-1 (-3 (-536) #1#) |#1|)))) +((-2157 (($ $ $) 79)) (-4324 (((-398 $) $) 47)) (-3503 (((-3 (-536) "failed") $) 59)) (-3502 (((-536) $) 37)) (-3352 (((-3 (-400 (-536)) "failed") $) 74)) (-3351 (((-112) $) 24)) (-3350 (((-400 (-536)) $) 72)) (-4081 (((-112) $) 50)) (-2150 (($ $ $ $) 86)) (-3532 (((-112) $) 16)) (-1414 (($ $ $) 57)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 69)) (-3798 (((-3 $ "failed") $) 64)) (-2154 (($ $) 23)) (-2149 (($ $ $) 84)) (-3799 (($) 60)) (-1412 (($ $) 53)) (-4087 (((-398 $) $) 45)) (-3002 (((-112) $) 14)) (-1699 (((-749) $) 28)) (-4165 (($ $ (-749)) NIL) (($ $) 10)) (-3754 (($ $) 17)) (-4325 (((-536) $) NIL) (((-525) $) 36) (((-864 (-536)) $) 40) (((-371) $) 31) (((-219) $) 33)) (-3456 (((-749)) 8)) (-2159 (((-112) $ $) 20)) (-3432 (($ $ $) 55))) +(((-534 |#1|) (-10 -8 (-15 -2149 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -2157 (|#1| |#1| |#1|)) (-15 -2159 ((-112) |#1| |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) "failed") |#1|)) (-15 -4325 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3532 ((-112) |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -3456 ((-749)))) (-535)) (T -534)) +((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535))))) +(-10 -8 (-15 -2149 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -2157 (|#1| |#1| |#1|)) (-15 -2159 ((-112) |#1| |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) "failed") |#1|)) (-15 -4325 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3532 ((-112) |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -3456 ((-749)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-2157 (($ $ $) 82)) (-1367 (((-3 $ "failed") $ $) 19)) (-2152 (($ $ $ $) 71)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-1700 (((-112) $ $) 122)) (-3981 (((-536) $) 111)) (-2685 (($ $ $) 85)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 103)) (-3502 (((-536) $) 102)) (-2889 (($ $ $) 126)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 101) (((-667 (-536)) (-667 $)) 100)) (-3816 (((-3 $ "failed") $) 32)) (-3352 (((-3 (-400 (-536)) "failed") $) 79)) (-3351 (((-112) $) 81)) (-3350 (((-400 (-536)) $) 80)) (-3322 (($) 78) (($ $) 77)) (-2888 (($ $ $) 125)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 120)) (-4081 (((-112) $) 51)) (-2150 (($ $ $ $) 69)) (-2158 (($ $ $) 83)) (-3532 (((-112) $) 113)) (-1414 (($ $ $) 94)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 97)) (-2497 (((-112) $) 30)) (-3001 (((-112) $) 89)) (-3798 (((-3 $ "failed") $) 91)) (-3533 (((-112) $) 112)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 129)) (-2151 (($ $ $ $) 70)) (-3672 (($ $ $) 114)) (-3673 (($ $ $) 115)) (-2154 (($ $) 73)) (-4188 (($ $) 86)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2149 (($ $ $) 68)) (-3799 (($) 90 T CONST)) (-2156 (($ $) 75)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1412 (($ $) 95)) (-4087 (((-398 $) $) 48)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 127)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 121)) (-3002 (((-112) $) 88)) (-1699 (((-749) $) 123)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 124)) (-4165 (($ $ (-749)) 108) (($ $) 106)) (-2155 (($ $) 74)) (-3754 (($ $) 76)) (-4325 (((-536) $) 105) (((-525) $) 99) (((-864 (-536)) $) 98) (((-371) $) 93) (((-219) $) 92)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 104)) (-3456 (((-749)) 28)) (-2159 (((-112) $ $) 84)) (-3432 (($ $ $) 96)) (-3022 (($) 87)) (-2172 (((-112) $ $) 37)) (-2153 (($ $ $ $) 72)) (-3737 (($ $) 110)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-749)) 109) (($ $) 107)) (-2891 (((-112) $ $) 117)) (-2892 (((-112) $ $) 118)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 116)) (-3013 (((-112) $ $) 119)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-535) (-138)) (T -535)) -((-1286 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-4300 (*1 *1) (-4 *1 (-535))) (-3839 (*1 *1 *1) (-4 *1 (-535))) (-1538 (*1 *1 *1 *1) (-4 *1 (-535))) (-1796 (*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-2181 (*1 *1 *1 *1) (-4 *1 (-535))) (-2633 (*1 *1 *1 *1) (-4 *1 (-535))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) (-3192 (*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) (-1864 (*1 *1) (-4 *1 (-535))) (-1864 (*1 *1 *1) (-4 *1 (-535))) (-2435 (*1 *1 *1) (-4 *1 (-535))) (-2486 (*1 *1 *1) (-4 *1 (-535))) (-2417 (*1 *1 *1) (-4 *1 (-535))) (-1673 (*1 *1 *1) (-4 *1 (-535))) (-4133 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-1534 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2960 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2083 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2711 (*1 *1 *1 *1) (-4 *1 (-535)))) -(-13 (-1186) (-300) (-798) (-227) (-596 (-550)) (-1012 (-550)) (-619 (-550)) (-596 (-526)) (-596 (-866 (-550))) (-860 (-550)) (-141) (-996) (-145) (-1120) (-10 -8 (-15 -1286 ((-112) $)) (-15 -3725 ((-112) $)) (-6 -4343) (-15 -4300 ($)) (-15 -3839 ($ $)) (-15 -1538 ($ $ $)) (-15 -1796 ((-112) $ $)) (-15 -2181 ($ $ $)) (-15 -2633 ($ $ $)) (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $)) (-15 -1864 ($)) (-15 -1864 ($ $)) (-15 -2435 ($ $)) (-15 -2486 ($ $)) (-15 -2417 ($ $)) (-15 -1673 ($ $)) (-15 -4133 ($ $ $ $)) (-15 -1534 ($ $ $ $)) (-15 -2960 ($ $ $ $)) (-15 -2083 ($ $ $ $)) (-15 -2711 ($ $ $)) (-6 -4342))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-837)) . T) ((-141) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-526)) . T) ((-596 (-550)) . T) ((-596 (-866 (-550))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-619 (-550)) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-798) . T) ((-823) . T) ((-825) . T) ((-860 (-550)) . T) ((-894) . T) ((-996) . T) ((-1012 (-550)) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) . T) ((-1186) . T)) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) NIL)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) NIL)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-536 |#1| |#2| |#3|) (-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) (-1069) (-1069) (-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344)))) (T -536)) -NIL -(-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) -((-1351 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))) 51))) -(((-537 |#1| |#2|) (-10 -7 (-15 -1351 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) (-13 (-825) (-542)) (-13 (-27) (-423 |#1|))) (T -537)) -((-1351 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-825) (-542))) (-5 *2 (-569 *3)) (-5 *1 (-537 *6 *3))))) -(-10 -7 (-15 -1351 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) -((-4091 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2790 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2398 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-538 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2398 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4091 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2790 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-825) (-542) (-1012 (-550))) (-13 (-27) (-423 |#1|)) (-1204 |#2|) (-1204 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -538)) -((-2790 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-27) (-423 *4))) (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-4 *7 (-1204 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1204 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) (-4 *8 (-1204 (-400 *7))) (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1204 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) (-4 *8 (-1204 (-400 *7))) (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) -(-10 -7 (-15 -2398 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4091 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2790 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2837 (((-112) (-550) (-550)) 10)) (-1383 (((-550) (-550)) 7)) (-4263 (((-550) (-550) (-550)) 8))) -(((-539) (-10 -7 (-15 -1383 ((-550) (-550))) (-15 -4263 ((-550) (-550) (-550))) (-15 -2837 ((-112) (-550) (-550))))) (T -539)) -((-2837 (*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-539)))) (-4263 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) -(-10 -7 (-15 -1383 ((-550) (-550))) (-15 -4263 ((-550) (-550) (-550))) (-15 -2837 ((-112) (-550) (-550)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-2500 ((|#1| $) 59)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-4160 (($ $) 89)) (-2820 (($ $) 72)) (-4250 ((|#1| $) 60)) (-1993 (((-3 $ "failed") $ $) 19)) (-1745 (($ $) 71)) (-4137 (($ $) 88)) (-2796 (($ $) 73)) (-4183 (($ $) 87)) (-2844 (($ $) 74)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 67)) (-2202 (((-550) $) 66)) (-1537 (((-3 $ "failed") $) 32)) (-3719 (($ |#1| |#1|) 64)) (-2694 (((-112) $) 58)) (-4187 (($) 99)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 70)) (-1712 (((-112) $) 57)) (-2793 (($ $ $) 105)) (-2173 (($ $ $) 104)) (-3080 (($ $) 96)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-2268 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-550))) 62)) (-3947 ((|#1| $) 61)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3409 (((-3 $ "failed") $ $) 40)) (-1644 (($ $) 97)) (-4194 (($ $) 86)) (-2856 (($ $) 75)) (-4171 (($ $) 85)) (-2832 (($ $) 76)) (-4149 (($ $) 84)) (-2807 (($ $) 77)) (-2365 (((-112) $ |#1|) 56)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 68)) (-3091 (((-749)) 28)) (-4233 (($ $) 95)) (-2893 (($ $) 83)) (-1819 (((-112) $ $) 37)) (-4206 (($ $) 94)) (-2869 (($ $) 82)) (-4255 (($ $) 93)) (-4117 (($ $) 81)) (-3363 (($ $) 92)) (-4127 (($ $) 80)) (-4244 (($ $) 91)) (-2905 (($ $) 79)) (-4218 (($ $) 90)) (-2880 (($ $) 78)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 102)) (-2302 (((-112) $ $) 101)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 103)) (-2290 (((-112) $ $) 100)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ $) 98) (($ $ (-400 (-550))) 69)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-540 |#1|) (-138) (-13 (-397) (-1167))) (T -540)) -((-2268 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-3719 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-2268 (*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112))))) -(-13 (-444) (-825) (-1167) (-976) (-1012 (-550)) (-10 -8 (-6 -2154) (-15 -2268 ($ |t#1| |t#1|)) (-15 -3719 ($ |t#1| |t#1|)) (-15 -2268 ($ |t#1|)) (-15 -2268 ($ (-400 (-550)))) (-15 -3947 (|t#1| $)) (-15 -4250 (|t#1| $)) (-15 -2500 (|t#1| $)) (-15 -2694 ((-112) $)) (-15 -1712 ((-112) $)) (-15 -2365 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-976) . T) ((-1012 (-550)) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) . T) ((-1170) . T)) -((-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 9)) (-3050 (($ $) 11)) (-3953 (((-112) $) 18)) (-1537 (((-3 $ "failed") $) 16)) (-1819 (((-112) $ $) 20))) -(((-541 |#1|) (-10 -8 (-15 -3953 ((-112) |#1|)) (-15 -1819 ((-112) |#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|))) (-542)) (T -541)) -NIL -(-10 -8 (-15 -3953 ((-112) |#1|)) (-15 -1819 ((-112) |#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3911 ((-2 (|:| -2305 |#1|) (|:| -4331 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ $) 40)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-542) (-138)) (T -542)) -((-3409 (*1 *1 *1 *1) (|partial| -4 *1 (-542))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2305 *1) (|:| -4331 *1) (|:| |associate| *1))) (-4 *1 (-542)))) (-3050 (*1 *1 *1) (-4 *1 (-542))) (-1819 (*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) -(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -3409 ((-3 $ "failed") $ $)) (-15 -3911 ((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $)) (-15 -3050 ($ $)) (-15 -1819 ((-112) $ $)) (-15 -3953 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2217 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1145) (-623 |#2|)) 37)) (-3605 (((-569 |#2|) |#2| (-1145)) 62)) (-1900 (((-3 |#2| "failed") |#2| (-1145)) 152)) (-2067 (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) (-594 |#2|) (-623 (-594 |#2|))) 155)) (-3668 (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) |#2|) 40))) -(((-543 |#1| |#2|) (-10 -7 (-15 -3668 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) |#2|)) (-15 -2217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1145) (-623 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-1145))) (-15 -3605 ((-569 |#2|) |#2| (-1145))) (-15 -2067 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) (-594 |#2|) (-623 (-594 |#2|))))) (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -543)) -((-2067 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1145)) (-5 *6 (-623 (-594 *3))) (-5 *5 (-594 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *7))) (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-1900 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-2217 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6 *3)))) (-3668 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(-10 -7 (-15 -3668 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) |#2|)) (-15 -2217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1145) (-623 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-1145))) (-15 -3605 ((-569 |#2|) |#2| (-1145))) (-15 -2067 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1145) (-594 |#2|) (-623 (-594 |#2|))))) -((-2207 (((-411 |#1|) |#1|) 18)) (-1735 (((-411 |#1|) |#1|) 33)) (-3937 (((-3 |#1| "failed") |#1|) 44)) (-2439 (((-411 |#1|) |#1|) 51))) -(((-544 |#1|) (-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2439 ((-411 |#1|) |#1|)) (-15 -3937 ((-3 |#1| "failed") |#1|))) (-535)) (T -544)) -((-3937 (*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-535)))) (-2439 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) (-2207 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2439 ((-411 |#1|) |#1|)) (-15 -3937 ((-3 |#1| "failed") |#1|))) -((-3613 (($) 9)) (-2961 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-4212 (((-623 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-1715 (($ (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2628 (($ (-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3859 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1375 (((-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3216 (((-1233)) 12))) -(((-545) (-10 -8 (-15 -3613 ($)) (-15 -3216 ((-1233))) (-15 -4212 ((-623 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2628 ($ (-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1715 ($ (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2961 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1375 ((-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -545)) -((-3859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-545)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-545)))) (-2961 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-545)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-545)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-545)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-545)))) (-3216 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-545)))) (-3613 (*1 *1) (-5 *1 (-545)))) -(-10 -8 (-15 -3613 ($)) (-15 -3216 ((-1233))) (-15 -4212 ((-623 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2628 ($ (-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1715 ($ (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2961 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1375 ((-623 (-2 (|:| -3549 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1125 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2873 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-1705 (((-1141 (-400 (-1141 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1141 |#2|)) 32)) (-3448 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1141 |#2|)) 110)) (-2151 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|))) 80) (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|)) 52)) (-3854 (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1141 |#2|))) 87) (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1141 |#2|)) 109)) (-3078 (((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) (-594 |#2|) |#2| (-400 (-1141 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) |#2| (-1141 |#2|)) 111)) (-2614 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|))) 128 (|has| |#3| (-634 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|)) 127 (|has| |#3| (-634 |#2|)))) (-1501 ((|#2| (-1141 (-400 (-1141 |#2|))) (-594 |#2|) |#2|) 50)) (-2910 (((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-594 |#2|)) 31))) -(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2151 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|))) (-15 -2151 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3854 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -3854 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3448 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1141 |#2|))) (-15 -3448 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3078 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) |#2| (-1141 |#2|))) (-15 -3078 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -1705 ((-1141 (-400 (-1141 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1141 |#2|))) (-15 -1501 (|#2| (-1141 (-400 (-1141 |#2|))) (-594 |#2|) |#2|)) (-15 -2910 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-594 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2614 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|))) (-15 -2614 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550))) (-13 (-423 |#1|) (-27) (-1167)) (-1069)) (T -546)) -((-2614 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-400 (-1141 *4))) (-4 *4 (-13 (-423 *7) (-27) (-1167))) (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069)))) (-2614 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-1141 *4)) (-4 *4 (-13 (-423 *7) (-27) (-1167))) (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069)))) (-2910 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1167))) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1141 *6)) (-4 *7 (-1069)))) (-1501 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-594 *2)) (-4 *2 (-13 (-423 *5) (-27) (-1167))) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1069)))) (-1705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1141 *3)) (-4 *7 (-1069)))) (-3078 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1069)))) (-3078 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) (-5 *5 (-1141 *2)) (-4 *2 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1069)))) (-3448 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-400 (-1141 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1167))) (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1069)))) (-3448 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-1141 *3)) (-4 *3 (-13 (-423 *7) (-27) (-1167))) (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1069)))) (-3854 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069)))) (-3854 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069)))) (-2151 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069)))) (-2151 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069))))) -(-10 -7 (-15 -2151 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|))) (-15 -2151 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3854 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -3854 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3448 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1141 |#2|))) (-15 -3448 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3078 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) |#2| (-1141 |#2|))) (-15 -3078 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)) (-594 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -1705 ((-1141 (-400 (-1141 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1141 |#2|))) (-15 -1501 (|#2| (-1141 (-400 (-1141 |#2|))) (-594 |#2|) |#2|)) (-15 -2910 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-594 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2614 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1141 |#2|))) (-15 -2614 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) -((-4228 (((-550) (-550) (-749)) 66)) (-1439 (((-550) (-550)) 65)) (-3180 (((-550) (-550)) 64)) (-3487 (((-550) (-550)) 69)) (-3645 (((-550) (-550) (-550)) 49)) (-1777 (((-550) (-550) (-550)) 46)) (-2068 (((-400 (-550)) (-550)) 20)) (-3424 (((-550) (-550)) 21)) (-1689 (((-550) (-550)) 58)) (-3729 (((-550) (-550)) 32)) (-3628 (((-623 (-550)) (-550)) 63)) (-4068 (((-550) (-550) (-550) (-550) (-550)) 44)) (-1423 (((-400 (-550)) (-550)) 41))) -(((-547) (-10 -7 (-15 -1423 ((-400 (-550)) (-550))) (-15 -4068 ((-550) (-550) (-550) (-550) (-550))) (-15 -3628 ((-623 (-550)) (-550))) (-15 -3729 ((-550) (-550))) (-15 -1689 ((-550) (-550))) (-15 -3424 ((-550) (-550))) (-15 -2068 ((-400 (-550)) (-550))) (-15 -1777 ((-550) (-550) (-550))) (-15 -3645 ((-550) (-550) (-550))) (-15 -3487 ((-550) (-550))) (-15 -3180 ((-550) (-550))) (-15 -1439 ((-550) (-550))) (-15 -4228 ((-550) (-550) (-749))))) (T -547)) -((-4228 (*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-749)) (-5 *1 (-547)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3645 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1777 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-2068 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3628 (*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) (-4068 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) -(-10 -7 (-15 -1423 ((-400 (-550)) (-550))) (-15 -4068 ((-550) (-550) (-550) (-550) (-550))) (-15 -3628 ((-623 (-550)) (-550))) (-15 -3729 ((-550) (-550))) (-15 -1689 ((-550) (-550))) (-15 -3424 ((-550) (-550))) (-15 -2068 ((-400 (-550)) (-550))) (-15 -1777 ((-550) (-550) (-550))) (-15 -3645 ((-550) (-550) (-550))) (-15 -3487 ((-550) (-550))) (-15 -3180 ((-550) (-550))) (-15 -1439 ((-550) (-550))) (-15 -4228 ((-550) (-550) (-749)))) -((-2927 (((-2 (|:| |answer| |#4|) (|:| -1544 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-2 (|:| |answer| |#4|) (|:| -1544 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -548)) -((-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-4 *7 (-1204 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1544 *3))) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))) -(-10 -7 (-15 -2927 ((-2 (|:| |answer| |#4|) (|:| -1544 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2927 (((-2 (|:| |answer| (-400 |#2|)) (|:| -1544 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2927 ((-2 (|:| |answer| (-400 |#2|)) (|:| -1544 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1204 |#1|)) (T -549)) -((-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -1544 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -2927 ((-2 (|:| |answer| (-400 |#2|)) (|:| -1544 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 25)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 88)) (-3050 (($ $) 89)) (-3953 (((-112) $) NIL)) (-2633 (($ $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1534 (($ $ $ $) 43)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL)) (-1538 (($ $ $) 82)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL)) (-2202 (((-550) $) NIL)) (-3455 (($ $ $) 81)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 62) (((-667 (-550)) (-667 $)) 58)) (-1537 (((-3 $ "failed") $) 85)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL)) (-2593 (((-112) $) NIL)) (-3169 (((-400 (-550)) $) NIL)) (-1864 (($) 64) (($ $) 65)) (-3429 (($ $ $) 80)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2083 (($ $ $ $) NIL)) (-2181 (($ $ $) 55)) (-2694 (((-112) $) NIL)) (-4083 (($ $ $) NIL)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL)) (-2419 (((-112) $) 26)) (-1286 (((-112) $) 75)) (-1620 (((-3 $ "failed") $) NIL)) (-1712 (((-112) $) 35)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2960 (($ $ $ $) 44)) (-2793 (($ $ $) 77)) (-2173 (($ $ $) 76)) (-1673 (($ $) NIL)) (-3839 (($ $) 41)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) 54)) (-2711 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-2486 (($ $) 31)) (-3445 (((-1089) $) 34)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 119)) (-3260 (($ $ $) 86) (($ (-623 $)) NIL)) (-3643 (($ $) NIL)) (-1735 (((-411 $) $) 105)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 84)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 79)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-2417 (($ $) 32)) (-2435 (($ $) 30)) (-2451 (((-550) $) 40) (((-526) $) 52) (((-866 (-550)) $) NIL) (((-372) $) 47) (((-219) $) 49) (((-1127) $) 53)) (-2233 (((-837) $) 38) (($ (-550)) 39) (($ $) NIL) (($ (-550)) 39)) (-3091 (((-749)) NIL)) (-1796 (((-112) $ $) NIL)) (-1437 (($ $ $) NIL)) (-4300 (($) 29)) (-1819 (((-112) $ $) NIL)) (-4133 (($ $ $ $) 42)) (-4188 (($ $) 63)) (-2688 (($) 27 T CONST)) (-2700 (($) 28 T CONST)) (-3145 (((-1127) $) 20) (((-1127) $ (-112)) 22) (((-1233) (-800) $) 23) (((-1233) (-800) $ (-112)) 24)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 66)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 67)) (-2370 (($ $) 68) (($ $ $) 70)) (-2358 (($ $ $) 69)) (** (($ $ (-895)) NIL) (($ $ (-749)) 74)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 72) (($ $ $) 71))) -(((-550) (-13 (-535) (-596 (-1127)) (-806) (-10 -8 (-15 -1864 ($ $)) (-6 -4331) (-6 -4336) (-6 -4332) (-6 -4326)))) (T -550)) -((-1864 (*1 *1 *1) (-5 *1 (-550)))) -(-13 (-535) (-596 (-1127)) (-806) (-10 -8 (-15 -1864 ($ $)) (-6 -4331) (-6 -4336) (-6 -4332) (-6 -4326))) -((-3612 (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747) (-1033)) 108) (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747)) 110)) (-2149 (((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1145)) 172) (((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1127)) 171) (((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372) (-1033)) 176) (((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372)) 177) (((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372)) 178) (((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372))))) 179) (((-1009) (-309 (-372)) (-1063 (-818 (-372)))) 167) (((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372)) 166) (((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372)) 162) (((-1009) (-747)) 155) (((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372) (-1033)) 161))) -(((-551) (-10 -7 (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372) (-1033))) (-15 -2149 ((-1009) (-747))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372) (-1033))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747) (-1033))) (-15 -2149 ((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1127))) (-15 -2149 ((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1145))))) (T -551)) -((-2149 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-818 (-372)))) (-5 *5 (-1145)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-818 (-372)))) (-5 *5 (-1127)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1033)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) (-5 *5 (-372)) (-5 *6 (-1033)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2149 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) (-5 *5 (-372)) (-5 *6 (-1033)) (-5 *2 (-1009)) (-5 *1 (-551))))) -(-10 -7 (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372) (-1033))) (-15 -2149 ((-1009) (-747))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-1063 (-818 (-372))))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372))) (-15 -2149 ((-1009) (-309 (-372)) (-623 (-1063 (-818 (-372)))) (-372) (-372) (-1033))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009))) (-747) (-1033))) (-15 -2149 ((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1127))) (-15 -2149 ((-3 (-1009) "failed") (-309 (-372)) (-1061 (-818 (-372))) (-1145)))) -((-2095 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|)) 184)) (-1575 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|)) 98)) (-3574 (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|) 180)) (-1922 (((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145))) 189)) (-3754 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1145)) 197 (|has| |#3| (-634 |#2|))))) -(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -1575 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|))) (-15 -3574 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|)) (-15 -2095 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|))) (-15 -1922 ((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)))) (IF (|has| |#3| (-634 |#2|)) (-15 -3754 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1145))) |%noBranch|)) (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550))) (-13 (-423 |#1|) (-27) (-1167)) (-1069)) (T -552)) -((-3754 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-1145)) (-4 *4 (-13 (-423 *7) (-27) (-1167))) (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069)))) (-1922 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) (-4 *2 (-13 (-423 *5) (-27) (-1167))) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1069)))) (-2095 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1167))) (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1069)))) (-3574 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1167))) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1069)))) (-1575 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1167))) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1069))))) -(-10 -7 (-15 -1575 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|))) (-15 -3574 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|)) (-15 -2095 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|))) (-15 -1922 ((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1145)))) (IF (|has| |#3| (-634 |#2|)) (-15 -3754 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2206 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1145))) |%noBranch|)) -((-2529 (((-2 (|:| -2983 |#2|) (|:| |nconst| |#2|)) |#2| (-1145)) 64)) (-1981 (((-3 |#2| "failed") |#2| (-1145) (-818 |#2|) (-818 |#2|)) 164 (-12 (|has| |#2| (-1108)) (|has| |#1| (-596 (-866 (-550)))) (|has| |#1| (-860 (-550))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)) 147 (-12 (|has| |#2| (-609)) (|has| |#1| (-596 (-866 (-550)))) (|has| |#1| (-860 (-550)))))) (-2197 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)) 148 (-12 (|has| |#2| (-609)) (|has| |#1| (-596 (-866 (-550)))) (|has| |#1| (-860 (-550))))))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2529 ((-2 (|:| -2983 |#2|) (|:| |nconst| |#2|)) |#2| (-1145))) (IF (|has| |#1| (-596 (-866 (-550)))) (IF (|has| |#1| (-860 (-550))) (PROGN (IF (|has| |#2| (-609)) (PROGN (-15 -2197 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145))) (-15 -1981 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)))) |%noBranch|) (IF (|has| |#2| (-1108)) (-15 -1981 ((-3 |#2| "failed") |#2| (-1145) (-818 |#2|) (-818 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-825) (-1012 (-550)) (-444) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -553)) -((-1981 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1145)) (-5 *4 (-818 *2)) (-4 *2 (-1108)) (-4 *2 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-596 (-866 (-550)))) (-4 *5 (-860 (-550))) (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) (-5 *1 (-553 *5 *2)))) (-1981 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-596 (-866 (-550)))) (-4 *5 (-860 (-550))) (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-2197 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-596 (-866 (-550)))) (-4 *5 (-860 (-550))) (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-2529 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| -2983 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(-10 -7 (-15 -2529 ((-2 (|:| -2983 |#2|) (|:| |nconst| |#2|)) |#2| (-1145))) (IF (|has| |#1| (-596 (-866 (-550)))) (IF (|has| |#1| (-860 (-550))) (PROGN (IF (|has| |#2| (-609)) (PROGN (-15 -2197 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145))) (-15 -1981 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)))) |%noBranch|) (IF (|has| |#2| (-1108)) (-15 -1981 ((-3 |#2| "failed") |#2| (-1145) (-818 |#2|) (-818 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2903 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))) 41)) (-2149 (((-569 (-400 |#2|)) (-400 |#2|)) 28)) (-1449 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-4306 (((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2149 ((-569 (-400 |#2|)) (-400 |#2|))) (-15 -1449 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -4306 ((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2903 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-550))) (-1204 |#1|)) (T -554)) -((-2903 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-623 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *5 *6)))) (-4306 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| -3230 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) (-1449 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-13 (-356) (-145) (-1012 (-550)))) (-5 *1 (-554 *3 *4)))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) (-5 *2 (-569 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -2149 ((-569 (-400 |#2|)) (-400 |#2|))) (-15 -1449 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -4306 ((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2903 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))))) -((-1392 (((-3 (-550) "failed") |#1|) 14)) (-3517 (((-112) |#1|) 13)) (-1776 (((-550) |#1|) 9))) -(((-555 |#1|) (-10 -7 (-15 -1776 ((-550) |#1|)) (-15 -3517 ((-112) |#1|)) (-15 -1392 ((-3 (-550) "failed") |#1|))) (-1012 (-550))) (T -555)) -((-1392 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-550))))) (-1776 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) -(-10 -7 (-15 -1776 ((-550) |#1|)) (-15 -3517 ((-112) |#1|)) (-15 -1392 ((-3 (-550) "failed") |#1|))) -((-2355 (((-3 (-2 (|:| |mainpart| (-400 (-926 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-926 |#1|))) (|:| |logand| (-400 (-926 |#1|))))))) "failed") (-400 (-926 |#1|)) (-1145) (-623 (-400 (-926 |#1|)))) 48)) (-4254 (((-569 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-1145)) 28)) (-2811 (((-3 (-400 (-926 |#1|)) "failed") (-400 (-926 |#1|)) (-1145)) 23)) (-3928 (((-3 (-2 (|:| -3230 (-400 (-926 |#1|))) (|:| |coeff| (-400 (-926 |#1|)))) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|))) 35))) -(((-556 |#1|) (-10 -7 (-15 -4254 ((-569 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -2811 ((-3 (-400 (-926 |#1|)) "failed") (-400 (-926 |#1|)) (-1145))) (-15 -2355 ((-3 (-2 (|:| |mainpart| (-400 (-926 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-926 |#1|))) (|:| |logand| (-400 (-926 |#1|))))))) "failed") (-400 (-926 |#1|)) (-1145) (-623 (-400 (-926 |#1|))))) (-15 -3928 ((-3 (-2 (|:| -3230 (-400 (-926 |#1|))) (|:| |coeff| (-400 (-926 |#1|)))) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|))))) (-13 (-542) (-1012 (-550)) (-145))) (T -556)) -((-3928 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-1012 (-550)) (-145))) (-5 *2 (-2 (|:| -3230 (-400 (-926 *5))) (|:| |coeff| (-400 (-926 *5))))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-926 *5))))) (-2355 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 (-400 (-926 *6)))) (-5 *3 (-400 (-926 *6))) (-4 *6 (-13 (-542) (-1012 (-550)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6)))) (-2811 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-926 *4))) (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-1012 (-550)) (-145))) (-5 *1 (-556 *4)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-1012 (-550)) (-145))) (-5 *2 (-569 (-400 (-926 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-926 *5)))))) -(-10 -7 (-15 -4254 ((-569 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -2811 ((-3 (-400 (-926 |#1|)) "failed") (-400 (-926 |#1|)) (-1145))) (-15 -2355 ((-3 (-2 (|:| |mainpart| (-400 (-926 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-926 |#1|))) (|:| |logand| (-400 (-926 |#1|))))))) "failed") (-400 (-926 |#1|)) (-1145) (-623 (-400 (-926 |#1|))))) (-15 -3928 ((-3 (-2 (|:| -3230 (-400 (-926 |#1|))) (|:| |coeff| (-400 (-926 |#1|)))) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|))))) -((-2221 (((-112) $ $) 58)) (-3378 (((-112) $) 36)) (-2500 ((|#1| $) 30)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) 62)) (-4160 (($ $) 122)) (-2820 (($ $) 102)) (-4250 ((|#1| $) 28)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $) NIL)) (-4137 (($ $) 124)) (-2796 (($ $) 98)) (-4183 (($ $) 126)) (-2844 (($ $) 106)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) 77)) (-2202 (((-550) $) 79)) (-1537 (((-3 $ "failed") $) 61)) (-3719 (($ |#1| |#1|) 26)) (-2694 (((-112) $) 33)) (-4187 (($) 88)) (-2419 (((-112) $) 43)) (-1893 (($ $ (-550)) NIL)) (-1712 (((-112) $) 34)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-3080 (($ $) 90)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-2268 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-550))) 76)) (-3947 ((|#1| $) 27)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) 64) (($ (-623 $)) NIL)) (-3409 (((-3 $ "failed") $ $) 63)) (-1644 (($ $) 92)) (-4194 (($ $) 130)) (-2856 (($ $) 104)) (-4171 (($ $) 132)) (-2832 (($ $) 108)) (-4149 (($ $) 128)) (-2807 (($ $) 100)) (-2365 (((-112) $ |#1|) 31)) (-2233 (((-837) $) 84) (($ (-550)) 66) (($ $) NIL) (($ (-550)) 66)) (-3091 (((-749)) 86)) (-4233 (($ $) 144)) (-2893 (($ $) 114)) (-1819 (((-112) $ $) NIL)) (-4206 (($ $) 142)) (-2869 (($ $) 110)) (-4255 (($ $) 140)) (-4117 (($ $) 120)) (-3363 (($ $) 138)) (-4127 (($ $) 118)) (-4244 (($ $) 136)) (-2905 (($ $) 116)) (-4218 (($ $) 134)) (-2880 (($ $) 112)) (-2688 (($) 21 T CONST)) (-2700 (($) 10 T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 37)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 35)) (-2370 (($ $) 41) (($ $ $) 42)) (-2358 (($ $ $) 40)) (** (($ $ (-895)) 54) (($ $ (-749)) NIL) (($ $ $) 94) (($ $ (-400 (-550))) 146)) (* (($ (-895) $) 51) (($ (-749) $) NIL) (($ (-550) $) 50) (($ $ $) 48))) -(((-557 |#1|) (-540 |#1|) (-13 (-397) (-1167))) (T -557)) -NIL -(-540 |#1|) -((-1370 (((-3 (-623 (-1141 (-550))) "failed") (-623 (-1141 (-550))) (-1141 (-550))) 24))) -(((-558) (-10 -7 (-15 -1370 ((-3 (-623 (-1141 (-550))) "failed") (-623 (-1141 (-550))) (-1141 (-550)))))) (T -558)) -((-1370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 (-550)))) (-5 *3 (-1141 (-550))) (-5 *1 (-558))))) -(-10 -7 (-15 -1370 ((-3 (-623 (-1141 (-550))) "failed") (-623 (-1141 (-550))) (-1141 (-550))))) -((-3689 (((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1145)) 19)) (-3907 (((-623 (-594 |#2|)) (-623 |#2|) (-1145)) 23)) (-4045 (((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|))) 11)) (-2563 ((|#2| |#2| (-1145)) 54 (|has| |#1| (-542)))) (-4092 ((|#2| |#2| (-1145)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-4186 (((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1145)) 25)) (-2373 (((-594 |#2|) (-623 (-594 |#2|))) 24)) (-2675 (((-569 |#2|) |#2| (-1145) (-1 (-569 |#2|) |#2| (-1145)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-609)) (|has| |#2| (-1012 (-1145))) (|has| |#1| (-596 (-866 (-550)))) (|has| |#1| (-444)) (|has| |#1| (-860 (-550))))))) -(((-559 |#1| |#2|) (-10 -7 (-15 -3689 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1145))) (-15 -2373 ((-594 |#2|) (-623 (-594 |#2|)))) (-15 -4186 ((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1145))) (-15 -4045 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|)))) (-15 -3907 ((-623 (-594 |#2|)) (-623 |#2|) (-1145))) (IF (|has| |#1| (-542)) (-15 -2563 (|#2| |#2| (-1145))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -4092 (|#2| |#2| (-1145))) (IF (|has| |#1| (-596 (-866 (-550)))) (IF (|has| |#1| (-860 (-550))) (IF (|has| |#2| (-609)) (IF (|has| |#2| (-1012 (-1145))) (-15 -2675 ((-569 |#2|) |#2| (-1145) (-1 (-569 |#2|) |#2| (-1145)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-825) (-423 |#1|)) (T -559)) -((-2675 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-569 *3) *3 (-1145))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1145))) (-4 *3 (-277)) (-4 *3 (-609)) (-4 *3 (-1012 *4)) (-4 *3 (-423 *7)) (-5 *4 (-1145)) (-4 *7 (-596 (-866 (-550)))) (-4 *7 (-444)) (-4 *7 (-860 (-550))) (-4 *7 (-825)) (-5 *2 (-569 *3)) (-5 *1 (-559 *7 *3)))) (-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))) (-2563 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-542)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-423 *4)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-1145)) (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *2 (-623 (-594 *6))) (-5 *1 (-559 *5 *6)))) (-4045 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-594 *4))) (-4 *4 (-423 *3)) (-4 *3 (-825)) (-5 *1 (-559 *3 *4)))) (-4186 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-594 *6))) (-5 *4 (-1145)) (-5 *2 (-594 *6)) (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-623 (-594 *5))) (-4 *4 (-825)) (-5 *2 (-594 *5)) (-5 *1 (-559 *4 *5)) (-4 *5 (-423 *4)))) (-3689 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-594 *5))) (-5 *3 (-1145)) (-4 *5 (-423 *4)) (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) -(-10 -7 (-15 -3689 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1145))) (-15 -2373 ((-594 |#2|) (-623 (-594 |#2|)))) (-15 -4186 ((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1145))) (-15 -4045 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|)))) (-15 -3907 ((-623 (-594 |#2|)) (-623 |#2|) (-1145))) (IF (|has| |#1| (-542)) (-15 -2563 (|#2| |#2| (-1145))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -4092 (|#2| |#2| (-1145))) (IF (|has| |#1| (-596 (-866 (-550)))) (IF (|has| |#1| (-860 (-550))) (IF (|has| |#2| (-609)) (IF (|has| |#2| (-1012 (-1145))) (-15 -2675 ((-569 |#2|) |#2| (-1145) (-1 (-569 |#2|) |#2| (-1145)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1145)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3673 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|)) 172)) (-1852 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|))) 148)) (-2467 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|))) 145)) (-3085 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2442 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2982 (((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2839 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|)) 178)) (-4260 (((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-3760 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3331 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|))) 152)) (-1602 (((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 137)) (-3949 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 162)) (-2285 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|)) 183))) -(((-560 |#1| |#2|) (-10 -7 (-15 -2442 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3949 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -3673 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2839 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -2285 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|))) (-15 -1852 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|)))) (-15 -3331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|)))) (-15 -2982 ((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2467 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|)))) (-15 -3085 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1602 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -4260 ((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3760 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1204 |#1|)) (T -560)) -((-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-569 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-1602 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-603 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3490 *4) (|:| |sol?| (-112))) (-550) *4)) (-4 *4 (-356)) (-4 *5 (-1204 *4)) (-5 *1 (-560 *4 *5)))) (-3085 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1204 *4)))) (-2467 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-623 (-400 *7))) (-4 *7 (-1204 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *7)))) (-2982 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3230 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-3331 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3490 *7) (|:| |sol?| (-112))) (-550) *7)) (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1204 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-1852 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3230 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1204 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2285 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3490 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -3230 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2839 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -3230 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-3673 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-623 *6) "failed") (-550) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-3949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3490 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2442 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3230 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(-10 -7 (-15 -2442 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3949 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -3673 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2839 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -2285 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|))) (-15 -1852 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|)))) (-15 -3331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|)))) (-15 -2982 ((-3 (-2 (|:| -3230 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2467 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|)))) (-15 -3085 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1602 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3490 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -4260 ((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3760 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2036 (((-3 |#2| "failed") |#2| (-1145) (-1145)) 10))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2036 ((-3 |#2| "failed") |#2| (-1145) (-1145)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-933) (-1108) (-29 |#1|))) (T -561)) -((-2036 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1145)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1167) (-933) (-1108) (-29 *4)))))) -(-10 -7 (-15 -2036 ((-3 |#2| "failed") |#2| (-1145) (-1145)))) -((-2376 (((-1089) $ (-128)) 12)) (-1966 (((-1089) $ (-129)) 11)) (-2547 (((-1089) $ (-128)) 7)) (-1307 (((-1089) $) 8)) (-4231 (($ $) 6))) +((-3001 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3022 (*1 *1) (-4 *1 (-535))) (-4188 (*1 *1 *1) (-4 *1 (-535))) (-2685 (*1 *1 *1 *1) (-4 *1 (-535))) (-2159 (*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-2158 (*1 *1 *1 *1) (-4 *1 (-535))) (-2157 (*1 *1 *1 *1) (-4 *1 (-535))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) (-3322 (*1 *1) (-4 *1 (-535))) (-3322 (*1 *1 *1) (-4 *1 (-535))) (-3754 (*1 *1 *1) (-4 *1 (-535))) (-2156 (*1 *1 *1) (-4 *1 (-535))) (-2155 (*1 *1 *1) (-4 *1 (-535))) (-2154 (*1 *1 *1) (-4 *1 (-535))) (-2153 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2152 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2151 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2150 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2149 (*1 *1 *1 *1) (-4 *1 (-535)))) +(-13 (-1188) (-300) (-798) (-227) (-596 (-536)) (-1012 (-536)) (-619 (-536)) (-596 (-525)) (-596 (-864 (-536))) (-860 (-536)) (-141) (-994) (-145) (-1122) (-10 -8 (-15 -3001 ((-112) $)) (-15 -3002 ((-112) $)) (-6 -4347) (-15 -3022 ($)) (-15 -4188 ($ $)) (-15 -2685 ($ $ $)) (-15 -2159 ((-112) $ $)) (-15 -2158 ($ $ $)) (-15 -2157 ($ $ $)) (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $)) (-15 -3322 ($)) (-15 -3322 ($ $)) (-15 -3754 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $ $ $)) (-15 -2152 ($ $ $ $)) (-15 -2151 ($ $ $ $)) (-15 -2150 ($ $ $ $)) (-15 -2149 ($ $ $)) (-6 -4346))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-141) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-525)) . T) ((-596 (-536)) . T) ((-596 (-864 (-536))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-619 (-536)) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-798) . T) ((-823) . T) ((-825) . T) ((-860 (-536)) . T) ((-895) . T) ((-994) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) . T) ((-1188) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 25)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 88)) (-2173 (($ $) 89)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) 43)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) 82)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) 81)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 62) (((-667 (-536)) (-667 $)) 58)) (-3816 (((-3 $ "failed") $) 85)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) 64) (($ $) 65)) (-2888 (($ $ $) 80)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) 55)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) 26)) (-3001 (((-112) $) 75)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) 35)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) 44)) (-3672 (($ $ $) 77)) (-3673 (($ $ $) 76)) (-2154 (($ $) NIL)) (-4188 (($ $) 41)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) 54)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) 31)) (-3589 (((-1091) $) 34)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 119)) (-3490 (($ $ $) 86) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) 105)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 84)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 79)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) 32)) (-3754 (($ $) 30)) (-4325 (((-536) $) 40) (((-525) $) 52) (((-864 (-536)) $) NIL) (((-371) $) 47) (((-219) $) 49) (((-1129) $) 53)) (-4312 (((-838) $) 38) (($ (-536)) 39) (($ $) NIL) (($ (-536)) 39)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) 29)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) 42)) (-3737 (($ $) 63)) (-2986 (($) 27 T CONST)) (-2992 (($) 28 T CONST)) (-2829 (((-1129) $) 20) (((-1129) $ (-112)) 22) (((-1235) (-801) $) 23) (((-1235) (-801) $ (-112)) 24)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 66)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 67)) (-4192 (($ $) 68) (($ $ $) 70)) (-4194 (($ $ $) 69)) (** (($ $ (-893)) NIL) (($ $ (-749)) 74)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 72) (($ $ $) 71))) +(((-536) (-13 (-535) (-596 (-1129)) (-799) (-10 -8 (-15 -3322 ($ $)) (-6 -4335) (-6 -4340) (-6 -4336) (-6 -4330)))) (T -536)) +((-3322 (*1 *1 *1) (-5 *1 (-536)))) +(-13 (-535) (-596 (-1129)) (-799) (-10 -8 (-15 -3322 ($ $)) (-6 -4335) (-6 -4340) (-6 -4336) (-6 -4330))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-537 |#1| |#2| |#3|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348)))) (T -537)) +NIL +(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) +((-2160 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))) 51))) +(((-538 |#1| |#2|) (-10 -7 (-15 -2160 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) (-13 (-825) (-543)) (-13 (-27) (-414 |#1|))) (T -538)) +((-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-825) (-543))) (-5 *2 (-567 *3)) (-5 *1 (-538 *6 *3))))) +(-10 -7 (-15 -2160 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) +((-2162 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2163 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2161 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2161 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2162 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-825) (-543) (-1012 (-536))) (-13 (-27) (-414 |#1|)) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -539)) +((-2163 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-4 *7 (-1205 (-400 *6))) (-5 *1 (-539 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-2161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) +(-10 -7 (-15 -2161 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2162 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2166 (((-112) (-536) (-536)) 10)) (-2164 (((-536) (-536)) 7)) (-2165 (((-536) (-536) (-536)) 8))) +(((-540) (-10 -7 (-15 -2164 ((-536) (-536))) (-15 -2165 ((-536) (-536) (-536))) (-15 -2166 ((-112) (-536) (-536))))) (T -540)) +((-2166 (*1 *2 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-540)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) +(-10 -7 (-15 -2164 ((-536) (-536))) (-15 -2165 ((-536) (-536) (-536))) (-15 -2166 ((-112) (-536) (-536)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2929 ((|#1| $) 59)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-3841 (($ $) 89)) (-3997 (($ $) 72)) (-2728 ((|#1| $) 60)) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 71)) (-3839 (($ $) 88)) (-3996 (($ $) 73)) (-3843 (($ $) 87)) (-3995 (($ $) 74)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 67)) (-3502 (((-536) $) 66)) (-3816 (((-3 $ "failed") $) 32)) (-2169 (($ |#1| |#1|) 64)) (-3532 (((-112) $) 58)) (-3985 (($) 99)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 70)) (-3533 (((-112) $) 57)) (-3672 (($ $ $) 105)) (-3673 (($ $ $) 104)) (-4297 (($ $) 96)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2170 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-536))) 62)) (-2168 ((|#1| $) 61)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-4298 (($ $) 97)) (-3844 (($ $) 86)) (-3994 (($ $) 75)) (-3842 (($ $) 85)) (-3993 (($ $) 76)) (-3840 (($ $) 84)) (-3992 (($ $) 77)) (-2167 (((-112) $ |#1|) 56)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 68)) (-3456 (((-749)) 28)) (-3847 (($ $) 95)) (-3835 (($ $) 83)) (-2172 (((-112) $ $) 37)) (-3845 (($ $) 94)) (-3833 (($ $) 82)) (-3849 (($ $) 93)) (-3837 (($ $) 81)) (-3850 (($ $) 92)) (-3838 (($ $) 80)) (-3848 (($ $) 91)) (-3836 (($ $) 79)) (-3846 (($ $) 90)) (-3834 (($ $) 78)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 102)) (-2892 (((-112) $ $) 101)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 103)) (-3013 (((-112) $ $) 100)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ $) 98) (($ $ (-400 (-536))) 69)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-541 |#1|) (-138) (-13 (-397) (-1169))) (T -541)) +((-2170 (*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2169 (*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2170 (*1 *1 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) (-2167 (*1 *2 *1 *3) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112))))) +(-13 (-444) (-825) (-1169) (-976) (-1012 (-536)) (-10 -8 (-6 -4124) (-15 -2170 ($ |t#1| |t#1|)) (-15 -2169 ($ |t#1| |t#1|)) (-15 -2170 ($ |t#1|)) (-15 -2170 ($ (-400 (-536)))) (-15 -2168 (|t#1| $)) (-15 -2728 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -3532 ((-112) $)) (-15 -3533 ((-112) $)) (-15 -2167 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-976) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) . T) ((-1172) . T)) +((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 9)) (-2173 (($ $) 11)) (-2171 (((-112) $) 18)) (-3816 (((-3 $ "failed") $) 16)) (-2172 (((-112) $ $) 20))) +(((-542 |#1|) (-10 -8 (-15 -2171 ((-112) |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) (-543)) (T -542)) +NIL +(-10 -8 (-15 -2171 ((-112) |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-543) (-138)) (T -543)) +((-3815 (*1 *1 *1 *1) (|partial| -4 *1 (-543))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4335 *1) (|:| |associate| *1))) (-4 *1 (-543)))) (-2173 (*1 *1 *1) (-4 *1 (-543))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) +(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2174 ((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $)) (-15 -2173 ($ $)) (-15 -2172 ((-112) $ $)) (-15 -2171 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2176 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|)) 37)) (-2178 (((-567 |#2|) |#2| (-1147)) 62)) (-2177 (((-3 |#2| "failed") |#2| (-1147)) 152)) (-2179 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))) 155)) (-2175 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) |#2|) 40))) +(((-544 |#1| |#2|) (-10 -7 (-15 -2175 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) |#2|)) (-15 -2176 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|))) (-15 -2177 ((-3 |#2| "failed") |#2| (-1147))) (-15 -2178 ((-567 |#2|) |#2| (-1147))) (-15 -2179 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -544)) +((-2179 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1147)) (-5 *6 (-620 (-593 *3))) (-5 *5 (-593 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *7 *3)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-544 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2177 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-544 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-2176 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *6 *3)))) (-2175 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) +(-10 -7 (-15 -2175 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) |#2|)) (-15 -2176 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|))) (-15 -2177 ((-3 |#2| "failed") |#2| (-1147))) (-15 -2178 ((-567 |#2|) |#2| (-1147))) (-15 -2179 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))))) +((-4324 (((-398 |#1|) |#1|) 18)) (-4087 (((-398 |#1|) |#1|) 33)) (-2181 (((-3 |#1| "failed") |#1|) 44)) (-2180 (((-398 |#1|) |#1|) 51))) +(((-545 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -2180 ((-398 |#1|) |#1|)) (-15 -2181 ((-3 |#1| "failed") |#1|))) (-535)) (T -545)) +((-2181 (*1 *2 *2) (|partial| -12 (-5 *1 (-545 *2)) (-4 *2 (-535)))) (-2180 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) (-4324 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -2180 ((-398 |#1|) |#1|)) (-15 -2181 ((-3 |#1| "failed") |#1|))) +((-2182 (($) 9)) (-2185 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-2739 (((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-3965 (($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2184 (($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2186 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2307 (((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2183 (((-1235)) 12))) +(((-546) (-10 -8 (-15 -2182 ($)) (-15 -2183 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2184 ($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2185 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2307 ((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2186 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -546)) +((-2186 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-546)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-546)))) (-2185 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-546)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-546)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-546)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-546)))) (-2183 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-546)))) (-2182 (*1 *1) (-5 *1 (-546)))) +(-10 -8 (-15 -2182 ($)) (-15 -2183 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2184 ($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2185 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2307 ((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2186 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-3414 (((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|)) 32)) (-2189 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|)) 110)) (-2187 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 80) (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|)) 52)) (-2188 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|))) 87) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|)) 109)) (-2190 (((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|)) 111)) (-2191 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 128 (|has| |#3| (-636 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|)) 127 (|has| |#3| (-636 |#2|)))) (-3415 ((|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|) 50)) (-3408 (((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|)) 31))) +(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2190 ((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|))) (-15 -2190 ((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3414 ((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|))) (-15 -3415 (|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|)) (-15 -3408 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536))) (-13 (-414 |#1|) (-27) (-1169)) (-1072)) (T -547)) +((-2191 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-400 (-1141 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-2191 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-1141 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-593 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-547 *5 *6 *7)) (-5 *3 (-1141 *6)) (-4 *7 (-1072)))) (-3415 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-593 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *5 *2 *6)) (-4 *6 (-1072)))) (-3414 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-547 *6 *3 *7)) (-5 *5 (-1141 *3)) (-4 *7 (-1072)))) (-2190 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1147))) (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) (-2190 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1147))) (-5 *5 (-1141 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) (-2189 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) (-2189 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-1141 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) (-2188 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2188 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2187 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2187 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072))))) +(-10 -7 (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2190 ((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|))) (-15 -2190 ((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3414 ((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|))) (-15 -3415 (|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|)) (-15 -3408 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) +((-2201 (((-536) (-536) (-749)) 66)) (-2200 (((-536) (-536)) 65)) (-2199 (((-536) (-536)) 64)) (-2198 (((-536) (-536)) 69)) (-3133 (((-536) (-536) (-536)) 49)) (-2197 (((-536) (-536) (-536)) 46)) (-2196 (((-400 (-536)) (-536)) 20)) (-2195 (((-536) (-536)) 21)) (-2194 (((-536) (-536)) 58)) (-3130 (((-536) (-536)) 32)) (-2193 (((-620 (-536)) (-536)) 63)) (-2192 (((-536) (-536) (-536) (-536) (-536)) 44)) (-3126 (((-400 (-536)) (-536)) 41))) +(((-548) (-10 -7 (-15 -3126 ((-400 (-536)) (-536))) (-15 -2192 ((-536) (-536) (-536) (-536) (-536))) (-15 -2193 ((-620 (-536)) (-536))) (-15 -3130 ((-536) (-536))) (-15 -2194 ((-536) (-536))) (-15 -2195 ((-536) (-536))) (-15 -2196 ((-400 (-536)) (-536))) (-15 -2197 ((-536) (-536) (-536))) (-15 -3133 ((-536) (-536) (-536))) (-15 -2198 ((-536) (-536))) (-15 -2199 ((-536) (-536))) (-15 -2200 ((-536) (-536))) (-15 -2201 ((-536) (-536) (-749))))) (T -548)) +((-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-749)) (-5 *1 (-548)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3133 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2196 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) (-2192 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3126 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) +(-10 -7 (-15 -3126 ((-400 (-536)) (-536))) (-15 -2192 ((-536) (-536) (-536) (-536) (-536))) (-15 -2193 ((-620 (-536)) (-536))) (-15 -3130 ((-536) (-536))) (-15 -2194 ((-536) (-536))) (-15 -2195 ((-536) (-536))) (-15 -2196 ((-400 (-536)) (-536))) (-15 -2197 ((-536) (-536) (-536))) (-15 -3133 ((-536) (-536) (-536))) (-15 -2198 ((-536) (-536))) (-15 -2199 ((-536) (-536))) (-15 -2200 ((-536) (-536))) (-15 -2201 ((-536) (-536) (-749)))) +((-2202 (((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2202 ((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -549)) +((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2245 *3))) (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))) +(-10 -7 (-15 -2202 ((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2202 (((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18))) +(((-550 |#1| |#2|) (-10 -7 (-15 -2202 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -550)) +((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -2245 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -2202 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) +((-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035)) 108) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747)) 110)) (-4167 (((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147)) 172) (((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129)) 171) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035)) 176) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371)) 177) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371)) 178) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371))))) 179) (((-1009) (-307 (-371)) (-1060 (-817 (-371)))) 167) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371)) 166) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371)) 162) (((-1009) (-747)) 155) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035)) 161))) +(((-551) (-10 -7 (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035))) (-15 -4167 ((-1009) (-747))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147))))) (T -551)) +((-4167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) (-5 *5 (-1147)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) (-5 *5 (-1129)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551))))) +(-10 -7 (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035))) (-15 -4167 ((-1009) (-747))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147)))) +((-2205 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|)) 184)) (-2203 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|)) 98)) (-2204 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|) 180)) (-2206 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147))) 189)) (-2207 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147)) 197 (|has| |#3| (-636 |#2|))))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2203 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|))) (-15 -2204 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|)) (-15 -2205 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|))) (-15 -2206 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2207 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536))) (-13 (-414 |#1|) (-27) (-1169)) (-1072)) (T -552)) +((-2207 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-1147)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-2206 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1147))) (-4 *2 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1072)))) (-2205 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1072)))) (-2204 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072)))) (-2203 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072))))) +(-10 -7 (-15 -2203 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|))) (-15 -2204 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|)) (-15 -2205 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|))) (-15 -2206 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2207 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147))) |%noBranch|)) +((-2208 (((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147)) 64)) (-2210 (((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|)) 164 (-12 (|has| |#2| (-1110)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)) 147 (-12 (|has| |#2| (-610)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536)))))) (-2209 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)) 148 (-12 (|has| |#2| (-610)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536))))))) +(((-553 |#1| |#2|) (-10 -7 (-15 -2208 ((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (PROGN (IF (|has| |#2| (-610)) (PROGN (-15 -2209 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) (IF (|has| |#2| (-1110)) (-15 -2210 ((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-825) (-1012 (-536)) (-444) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -553)) +((-2210 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1147)) (-5 *4 (-817 *2)) (-4 *2 (-1110)) (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *1 (-553 *5 *2)))) (-2210 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2209 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| -2414 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) +(-10 -7 (-15 -2208 ((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (PROGN (IF (|has| |#2| (-610)) (PROGN (-15 -2209 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) (IF (|has| |#2| (-1110)) (-15 -2210 ((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2213 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))) 41)) (-4167 (((-567 (-400 |#2|)) (-400 |#2|)) 28)) (-2211 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-2212 (((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48))) +(((-554 |#1| |#2|) (-10 -7 (-15 -4167 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -2211 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2212 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2213 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -554)) +((-2213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-620 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *5 *6)))) (-2212 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2246 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) (-2211 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145) (-1012 (-536)))) (-5 *1 (-554 *3 *4)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-567 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) +(-10 -7 (-15 -4167 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -2211 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2212 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2213 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))))) +((-2214 (((-3 (-536) "failed") |#1|) 14)) (-3605 (((-112) |#1|) 13)) (-3601 (((-536) |#1|) 9))) +(((-555 |#1|) (-10 -7 (-15 -3601 ((-536) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -2214 ((-3 (-536) "failed") |#1|))) (-1012 (-536))) (T -555)) +((-2214 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-536))))) (-3601 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) +(-10 -7 (-15 -3601 ((-536) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -2214 ((-3 (-536) "failed") |#1|))) +((-2217 (((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|)))) 48)) (-2215 (((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147)) 28)) (-2216 (((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147)) 23)) (-2218 (((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))) 35))) +(((-556 |#1|) (-10 -7 (-15 -2215 ((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2216 ((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147))) (-15 -2217 ((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|))))) (-15 -2218 ((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))))) (-13 (-543) (-1012 (-536)) (-145))) (T -556)) +((-2218 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-2 (|:| -2246 (-400 (-920 *5))) (|:| |coeff| (-400 (-920 *5))))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5))))) (-2217 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 (-400 (-920 *6)))) (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6)))) (-2216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-1012 (-536)) (-145))) (-5 *1 (-556 *4)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-567 (-400 (-920 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) +(-10 -7 (-15 -2215 ((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2216 ((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147))) (-15 -2217 ((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|))))) (-15 -2218 ((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))))) +((-2893 (((-112) $ $) 58)) (-3534 (((-112) $) 36)) (-2929 ((|#1| $) 30)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) 62)) (-3841 (($ $) 122)) (-3997 (($ $) 102)) (-2728 ((|#1| $) 28)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL)) (-3839 (($ $) 124)) (-3996 (($ $) 98)) (-3843 (($ $) 126)) (-3995 (($ $) 106)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) 77)) (-3502 (((-536) $) 79)) (-3816 (((-3 $ "failed") $) 61)) (-2169 (($ |#1| |#1|) 26)) (-3532 (((-112) $) 33)) (-3985 (($) 88)) (-2497 (((-112) $) 43)) (-3339 (($ $ (-536)) NIL)) (-3533 (((-112) $) 34)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4297 (($ $) 90)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2170 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-536))) 76)) (-2168 ((|#1| $) 27)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) 64) (($ (-620 $)) NIL)) (-3815 (((-3 $ "failed") $ $) 63)) (-4298 (($ $) 92)) (-3844 (($ $) 130)) (-3994 (($ $) 104)) (-3842 (($ $) 132)) (-3993 (($ $) 108)) (-3840 (($ $) 128)) (-3992 (($ $) 100)) (-2167 (((-112) $ |#1|) 31)) (-4312 (((-838) $) 84) (($ (-536)) 66) (($ $) NIL) (($ (-536)) 66)) (-3456 (((-749)) 86)) (-3847 (($ $) 144)) (-3835 (($ $) 114)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 142)) (-3833 (($ $) 110)) (-3849 (($ $) 140)) (-3837 (($ $) 120)) (-3850 (($ $) 138)) (-3838 (($ $) 118)) (-3848 (($ $) 136)) (-3836 (($ $) 116)) (-3846 (($ $) 134)) (-3834 (($ $) 112)) (-2986 (($) 21 T CONST)) (-2992 (($) 10 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 37)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35)) (-4192 (($ $) 41) (($ $ $) 42)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) 54) (($ $ (-749)) NIL) (($ $ $) 94) (($ $ (-400 (-536))) 146)) (* (($ (-893) $) 51) (($ (-749) $) NIL) (($ (-536) $) 50) (($ $ $) 48))) +(((-557 |#1|) (-541 |#1|) (-13 (-397) (-1169))) (T -557)) +NIL +(-541 |#1|) +((-3032 (((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536))) 24))) +(((-558) (-10 -7 (-15 -3032 ((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536)))))) (T -558)) +((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 (-536)))) (-5 *3 (-1141 (-536))) (-5 *1 (-558))))) +(-10 -7 (-15 -3032 ((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536))))) +((-2219 (((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147)) 19)) (-2222 (((-620 (-593 |#2|)) (-620 |#2|) (-1147)) 23)) (-3580 (((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|))) 11)) (-2223 ((|#2| |#2| (-1147)) 54 (|has| |#1| (-543)))) (-2224 ((|#2| |#2| (-1147)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-2221 (((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147)) 25)) (-2220 (((-593 |#2|) (-620 (-593 |#2|))) 24)) (-2225 (((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-610)) (|has| |#2| (-1012 (-1147))) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-444)) (|has| |#1| (-860 (-536))))))) +(((-559 |#1| |#2|) (-10 -7 (-15 -2219 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147))) (-15 -2220 ((-593 |#2|) (-620 (-593 |#2|)))) (-15 -2221 ((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147))) (-15 -3580 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|)))) (-15 -2222 ((-620 (-593 |#2|)) (-620 |#2|) (-1147))) (IF (|has| |#1| (-543)) (-15 -2223 (|#2| |#2| (-1147))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2224 (|#2| |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (IF (|has| |#2| (-610)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2225 ((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-825) (-414 |#1|)) (T -559)) +((-2225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-567 *3) *3 (-1147))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1147))) (-4 *3 (-277)) (-4 *3 (-610)) (-4 *3 (-1012 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1147)) (-4 *7 (-596 (-864 (-536)))) (-4 *7 (-444)) (-4 *7 (-860 (-536))) (-4 *7 (-825)) (-5 *2 (-567 *3)) (-5 *1 (-559 *7 *3)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-414 *4)))) (-2223 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-543)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-414 *4)))) (-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-1147)) (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *2 (-620 (-593 *6))) (-5 *1 (-559 *5 *6)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-593 *4))) (-4 *4 (-414 *3)) (-4 *3 (-825)) (-5 *1 (-559 *3 *4)))) (-2221 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-593 *6))) (-5 *4 (-1147)) (-5 *2 (-593 *6)) (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-620 (-593 *5))) (-4 *4 (-825)) (-5 *2 (-593 *5)) (-5 *1 (-559 *4 *5)) (-4 *5 (-414 *4)))) (-2219 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-593 *5))) (-5 *3 (-1147)) (-4 *5 (-414 *4)) (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) +(-10 -7 (-15 -2219 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147))) (-15 -2220 ((-593 |#2|) (-620 (-593 |#2|)))) (-15 -2221 ((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147))) (-15 -3580 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|)))) (-15 -2222 ((-620 (-593 |#2|)) (-620 |#2|) (-1147))) (IF (|has| |#1| (-543)) (-15 -2223 (|#2| |#2| (-1147))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2224 (|#2| |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (IF (|has| |#2| (-610)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2225 ((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2228 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|)) 172)) (-2231 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-620 (-400 |#2|))) 148)) (-2234 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|))) 145)) (-2235 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2226 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2233 (((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2229 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|)) 178)) (-2237 (((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2238 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2232 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|))) 152)) (-2236 (((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|)) 137)) (-2227 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|)) 162)) (-2230 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|)) 183))) +(((-560 |#1| |#2|) (-10 -7 (-15 -2226 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2227 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2228 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2230 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|))) (-15 -2231 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-620 (-400 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|)))) (-15 -2233 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2234 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|)))) (-15 -2235 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2236 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2237 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2238 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -560)) +((-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2236 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-603 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112))) (-536) *4)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *1 (-560 *4 *5)))) (-2235 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1205 *4)))) (-2234 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-620 (-400 *7))) (-4 *7 (-1205 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *7)))) (-2233 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2246 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2232 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3467 *7) (|:| |sol?| (-112))) (-536) *7)) (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2231 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2230 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2229 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-620 *6) "failed") (-536) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2226 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(-10 -7 (-15 -2226 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2227 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2228 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2230 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|))) (-15 -2231 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-620 (-400 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|)))) (-15 -2233 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2234 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|)))) (-15 -2235 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2236 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2237 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2238 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2239 (((-3 |#2| "failed") |#2| (-1147) (-1147)) 10))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 |#2| "failed") |#2| (-1147) (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-1110) (-29 |#1|))) (T -561)) +((-2239 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-1110) (-29 *4)))))) +(-10 -7 (-15 -2239 ((-3 |#2| "failed") |#2| (-1147) (-1147)))) +((-2884 (((-1091) $ (-129)) 12)) (-2885 (((-1091) $ (-128)) 11)) (-2112 (((-1091) $ (-129)) 7)) (-2113 (((-1091) $) 8)) (-1811 (($ $) 6))) (((-562) (-138)) (T -562)) NIL -(-13 (-518) (-835)) -(((-171) . T) ((-518) . T) ((-835) . T)) -((-2221 (((-112) $ $) NIL)) (-2346 (($) 7 T CONST)) (-2369 (((-1127) $) NIL)) (-2025 (($) 6 T CONST)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 14)) (-3205 (($) 8 T CONST)) (-2264 (((-112) $ $) 10))) -(((-563) (-13 (-1069) (-10 -8 (-15 -2025 ($) -4165) (-15 -2346 ($) -4165) (-15 -3205 ($) -4165)))) (T -563)) -((-2025 (*1 *1) (-5 *1 (-563))) (-2346 (*1 *1) (-5 *1 (-563))) (-3205 (*1 *1) (-5 *1 (-563)))) -(-13 (-1069) (-10 -8 (-15 -2025 ($) -4165) (-15 -2346 ($) -4165) (-15 -3205 ($) -4165))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $ (-550)) 66)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1451 (($ (-1141 (-550)) (-550)) 72)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) 58)) (-4004 (($ $) 34)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2603 (((-749) $) 15)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2351 (((-550)) 29)) (-3761 (((-550) $) 32)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4268 (($ $ (-550)) 21)) (-3409 (((-3 $ "failed") $ $) 59)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) 16)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 61)) (-4051 (((-1125 (-550)) $) 18)) (-4012 (($ $) 23)) (-2233 (((-837) $) 87) (($ (-550)) 52) (($ $) NIL)) (-3091 (((-749)) 14)) (-1819 (((-112) $ $) NIL)) (-2154 (((-550) $ (-550)) 36)) (-2688 (($) 35 T CONST)) (-2700 (($) 19 T CONST)) (-2264 (((-112) $ $) 39)) (-2370 (($ $) 51) (($ $ $) 37)) (-2358 (($ $ $) 50)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 54) (($ $ $) 55))) -(((-564 |#1| |#2|) (-843 |#1|) (-550) (-112)) (T -564)) -NIL -(-843 |#1|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 21)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (($ $ (-895)) NIL (|has| $ (-361))) (($ $) NIL)) (-3435 (((-1155 (-895) (-749)) (-550)) 47)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 $ "failed") $) 75)) (-2202 (($ $) 74)) (-2821 (($ (-1228 $)) 73)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) 32)) (-1864 (($) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) 49)) (-4139 (((-112) $) NIL)) (-4322 (($ $) NIL) (($ $ (-749)) NIL)) (-1568 (((-112) $) NIL)) (-2603 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-2419 (((-112) $) NIL)) (-1888 (($) 37 (|has| $ (-361)))) (-3751 (((-112) $) NIL (|has| $ (-361)))) (-1571 (($ $ (-895)) NIL (|has| $ (-361))) (($ $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 $) $ (-895)) NIL (|has| $ (-361))) (((-1141 $) $) 83)) (-4073 (((-895) $) 55)) (-2888 (((-1141 $) $) NIL (|has| $ (-361)))) (-4180 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1542 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-3690 (($ (-895)) 48)) (-3881 (((-112) $) 67)) (-3445 (((-1089) $) NIL)) (-2256 (($) 19 (|has| $ (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 42)) (-1735 (((-411 $) $) NIL)) (-4015 (((-895)) 66) (((-811 (-895))) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-1877 (((-133)) NIL)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-3661 (((-895) $) 65) (((-811 (-895)) $) NIL)) (-3832 (((-1141 $)) 82)) (-2038 (($) 54)) (-3975 (($) 38 (|has| $ (-361)))) (-2999 (((-667 $) (-1228 $)) NIL) (((-1228 $) $) 71)) (-2451 (((-550) $) 28)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) 30) (($ $) NIL) (($ (-400 (-550))) NIL)) (-1613 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3091 (((-749)) 39)) (-2206 (((-1228 $) (-895)) 77) (((-1228 $)) 76)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) 22 T CONST)) (-2700 (($) 18 T CONST)) (-3020 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 26)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 61) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-565 |#1|) (-13 (-342) (-322 $) (-596 (-550))) (-895)) (T -565)) -NIL -(-13 (-342) (-322 $) (-596 (-550))) -((-1541 (((-1233) (-1127)) 10))) -(((-566) (-10 -7 (-15 -1541 ((-1233) (-1127))))) (T -566)) -((-1541 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-566))))) -(-10 -7 (-15 -1541 ((-1233) (-1127)))) -((-2590 (((-569 |#2|) (-569 |#2|)) 40)) (-2062 (((-623 |#2|) (-569 |#2|)) 42)) (-2561 ((|#2| (-569 |#2|)) 48))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2590 ((-569 |#2|) (-569 |#2|))) (-15 -2062 ((-623 |#2|) (-569 |#2|))) (-15 -2561 (|#2| (-569 |#2|)))) (-13 (-444) (-1012 (-550)) (-825) (-619 (-550))) (-13 (-29 |#1|) (-1167))) (T -567)) -((-2561 (*1 *2 *3) (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1167))) (-5 *1 (-567 *4 *2)) (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1167))) (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *2 (-623 *5)) (-5 *1 (-567 *4 *5)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1167))) (-4 *3 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *1 (-567 *3 *4))))) -(-10 -7 (-15 -2590 ((-569 |#2|) (-569 |#2|))) (-15 -2062 ((-623 |#2|) (-569 |#2|))) (-15 -2561 (|#2| (-569 |#2|)))) -((-2392 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|)) 30))) -(((-568 |#1| |#2|) (-10 -7 (-15 -2392 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -2392 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2392 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -568)) -((-2392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-568 *5 *6)))) (-2392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) (-2392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3230 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -3230 *6) (|:| |coeff| *6))) (-5 *1 (-568 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-569 *6)) (-5 *1 (-568 *5 *6))))) -(-10 -7 (-15 -2392 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -2392 ((-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3230 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2392 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 69)) (-2202 ((|#1| $) NIL)) (-3230 ((|#1| $) 26)) (-3094 (((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2953 (($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1544 (((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $) 27)) (-2369 (((-1127) $) NIL)) (-1774 (($ |#1| |#1|) 33) (($ |#1| (-1145)) 44 (|has| |#1| (-1012 (-1145))))) (-3445 (((-1089) $) NIL)) (-4128 (((-112) $) 30)) (-2798 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1145)) 82 (|has| |#1| (-874 (-1145))))) (-2233 (((-837) $) 96) (($ |#1|) 25)) (-2688 (($) 16 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) 15) (($ $ $) NIL)) (-2358 (($ $ $) 78)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 14) (($ (-400 (-550)) $) 36) (($ $ (-400 (-550))) NIL))) -(((-569 |#1|) (-13 (-696 (-400 (-550))) (-1012 |#1|) (-10 -8 (-15 -2953 ($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3230 (|#1| $)) (-15 -1544 ((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -3094 ((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4128 ((-112) $)) (-15 -1774 ($ |#1| |#1|)) (-15 -2798 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1145))) (-15 -2798 (|#1| $ (-1145))) |%noBranch|) (IF (|has| |#1| (-1012 (-1145))) (-15 -1774 ($ |#1| (-1145))) |%noBranch|))) (-356)) (T -569)) -((-2953 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 *2)) (|:| |logand| (-1141 *2))))) (-5 *4 (-623 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-569 *2)))) (-3230 (*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 *3)) (|:| |logand| (-1141 *3))))) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-1774 (*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-2798 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-2798 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1145)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *1 (-569 *2)) (-4 *2 (-1012 *3)) (-4 *2 (-356))))) -(-13 (-696 (-400 (-550))) (-1012 |#1|) (-10 -8 (-15 -2953 ($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3230 (|#1| $)) (-15 -1544 ((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -3094 ((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4128 ((-112) $)) (-15 -1774 ($ |#1| |#1|)) (-15 -2798 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1145))) (-15 -2798 (|#1| $ (-1145))) |%noBranch|) (IF (|has| |#1| (-1012 (-1145))) (-15 -1774 ($ |#1| (-1145))) |%noBranch|))) -((-2100 (((-112) |#1|) 16)) (-1668 (((-3 |#1| "failed") |#1|) 14)) (-4193 (((-2 (|:| -4300 |#1|) (|:| -3068 (-749))) |#1|) 31) (((-3 |#1| "failed") |#1| (-749)) 18)) (-1416 (((-112) |#1| (-749)) 19)) (-3357 ((|#1| |#1|) 32)) (-2671 ((|#1| |#1| (-749)) 34))) -(((-570 |#1|) (-10 -7 (-15 -1416 ((-112) |#1| (-749))) (-15 -4193 ((-3 |#1| "failed") |#1| (-749))) (-15 -4193 ((-2 (|:| -4300 |#1|) (|:| -3068 (-749))) |#1|)) (-15 -2671 (|#1| |#1| (-749))) (-15 -2100 ((-112) |#1|)) (-15 -1668 ((-3 |#1| "failed") |#1|)) (-15 -3357 (|#1| |#1|))) (-535)) (T -570)) -((-3357 (*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-1668 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2100 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2671 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-4193 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4300 *3) (|:| -3068 (-749)))) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-4193 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -1416 ((-112) |#1| (-749))) (-15 -4193 ((-3 |#1| "failed") |#1| (-749))) (-15 -4193 ((-2 (|:| -4300 |#1|) (|:| -3068 (-749))) |#1|)) (-15 -2671 (|#1| |#1| (-749))) (-15 -2100 ((-112) |#1|)) (-15 -1668 ((-3 |#1| "failed") |#1|)) (-15 -3357 (|#1| |#1|))) -((-3027 (((-1141 |#1|) (-895)) 27))) -(((-571 |#1|) (-10 -7 (-15 -3027 ((-1141 |#1|) (-895)))) (-342)) (T -571)) -((-3027 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) (-4 *4 (-342))))) -(-10 -7 (-15 -3027 ((-1141 |#1|) (-895)))) -((-2590 (((-569 (-400 (-926 |#1|))) (-569 (-400 (-926 |#1|)))) 27)) (-2149 (((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-926 |#1|)) (-1145)) 34 (|has| |#1| (-145)))) (-2062 (((-623 (-309 |#1|)) (-569 (-400 (-926 |#1|)))) 19)) (-4120 (((-309 |#1|) (-400 (-926 |#1|)) (-1145)) 32 (|has| |#1| (-145)))) (-2561 (((-309 |#1|) (-569 (-400 (-926 |#1|)))) 21))) -(((-572 |#1|) (-10 -7 (-15 -2590 ((-569 (-400 (-926 |#1|))) (-569 (-400 (-926 |#1|))))) (-15 -2062 ((-623 (-309 |#1|)) (-569 (-400 (-926 |#1|))))) (-15 -2561 ((-309 |#1|) (-569 (-400 (-926 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2149 ((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -4120 ((-309 |#1|) (-400 (-926 |#1|)) (-1145)))) |%noBranch|)) (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (T -572)) -((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *2 (-309 *5)) (-5 *1 (-572 *5)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *2 (-3 (-309 *5) (-623 (-309 *5)))) (-5 *1 (-572 *5)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-569 (-400 (-926 *4)))) (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-572 *4)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-569 (-400 (-926 *4)))) (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *2 (-623 (-309 *4))) (-5 *1 (-572 *4)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-569 (-400 (-926 *3)))) (-4 *3 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) (-5 *1 (-572 *3))))) -(-10 -7 (-15 -2590 ((-569 (-400 (-926 |#1|))) (-569 (-400 (-926 |#1|))))) (-15 -2062 ((-623 (-309 |#1|)) (-569 (-400 (-926 |#1|))))) (-15 -2561 ((-309 |#1|) (-569 (-400 (-926 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2149 ((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -4120 ((-309 |#1|) (-400 (-926 |#1|)) (-1145)))) |%noBranch|)) -((-2447 (((-623 (-667 (-550))) (-623 (-550)) (-623 (-879 (-550)))) 46) (((-623 (-667 (-550))) (-623 (-550))) 47) (((-667 (-550)) (-623 (-550)) (-879 (-550))) 42)) (-2822 (((-749) (-623 (-550))) 40))) -(((-573) (-10 -7 (-15 -2822 ((-749) (-623 (-550)))) (-15 -2447 ((-667 (-550)) (-623 (-550)) (-879 (-550)))) (-15 -2447 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -2447 ((-623 (-667 (-550))) (-623 (-550)) (-623 (-879 (-550))))))) (T -573)) -((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-550))) (-5 *4 (-623 (-879 (-550)))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-550))) (-5 *4 (-879 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-573)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-749)) (-5 *1 (-573))))) -(-10 -7 (-15 -2822 ((-749) (-623 (-550)))) (-15 -2447 ((-667 (-550)) (-623 (-550)) (-879 (-550)))) (-15 -2447 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -2447 ((-623 (-667 (-550))) (-623 (-550)) (-623 (-879 (-550)))))) -((-3000 (((-623 |#5|) |#5| (-112)) 73)) (-3824 (((-112) |#5| (-623 |#5|)) 30))) -(((-574 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3000 ((-623 |#5|) |#5| (-112))) (-15 -3824 ((-112) |#5| (-623 |#5|)))) (-13 (-300) (-145)) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3| |#4|)) (T -574)) -((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1078 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-623 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1078 *5 *6 *7 *8))))) -(-10 -7 (-15 -3000 ((-623 |#5|) |#5| (-112))) (-15 -3824 ((-112) |#5| (-623 |#5|)))) -((-2221 (((-112) $ $) NIL)) (-2386 (((-1104) $) 11)) (-2374 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-575) (-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $))))) (T -575)) -((-2374 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-575)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-575))))) -(-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $)))) -((-2221 (((-112) $ $) NIL (|has| (-142) (-1069)))) (-1539 (($ $) 34)) (-3567 (($ $) NIL)) (-1790 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1560 (((-112) $ $) 51)) (-2763 (((-112) $ $ (-550)) 46)) (-2590 (((-623 $) $ (-142)) 60) (((-623 $) $ (-139)) 61)) (-1837 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-2734 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-142) (-825))))) (-1814 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-142) $ (-550) (-142)) 45 (|has| $ (-6 -4345))) (((-142) $ (-1195 (-550)) (-142)) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3787 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-1699 (($ $ (-1195 (-550)) $) 44)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1979 (($ (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4344)))) (-3317 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4345)))) (-3263 (((-142) $ (-550)) NIL)) (-1584 (((-112) $ $) 72)) (-3088 (((-550) (-1 (-112) (-142)) $) NIL) (((-550) (-142) $) NIL (|has| (-142) (-1069))) (((-550) (-142) $ (-550)) 48 (|has| (-142) (-1069))) (((-550) $ $ (-550)) 47) (((-550) (-139) $ (-550)) 50)) (-2971 (((-623 (-142)) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) (-142)) 9)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 28 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| (-142) (-825)))) (-2441 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2876 (((-623 (-142)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2506 (((-550) $) 42 (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-142) (-825)))) (-2462 (((-112) $ $ (-142)) 73)) (-2034 (((-749) $ $ (-142)) 70)) (-3311 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-2111 (($ $) 37)) (-1898 (($ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3802 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2369 (((-1127) $) 38 (|has| (-142) (-1069)))) (-1476 (($ (-142) $ (-550)) NIL) (($ $ $ (-550)) 23)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-550) $) 69) (((-1089) $) NIL (|has| (-142) (-1069)))) (-3858 (((-142) $) NIL (|has| (-550) (-825)))) (-1614 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2491 (($ $ (-142)) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1375 (((-623 (-142)) $) NIL)) (-4217 (((-112) $) 12)) (-2819 (($) 10)) (-2757 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) 52) (($ $ (-1195 (-550))) 21) (($ $ $) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2502 (($ $ $ (-550)) 66 (|has| $ (-6 -4345)))) (-2435 (($ $) 17)) (-2451 (((-526) $) NIL (|has| (-142) (-596 (-526))))) (-2245 (($ (-623 (-142))) NIL)) (-4006 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-623 $)) 67)) (-2233 (($ (-142)) NIL) (((-837) $) 27 (|has| (-142) (-595 (-837))))) (-3404 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2264 (((-112) $ $) 14 (|has| (-142) (-1069)))) (-2313 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2290 (((-112) $ $) 15 (|has| (-142) (-825)))) (-3307 (((-749) $) 13 (|has| $ (-6 -4344))))) -(((-576 |#1|) (-13 (-1113) (-10 -8 (-15 -3445 ((-550) $)))) (-550)) (T -576)) -((-3445 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-576 *3)) (-14 *3 *2)))) -(-13 (-1113) (-10 -8 (-15 -3445 ((-550) $)))) -((-3405 (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1063 |#4|)) 32))) -(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3405 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1063 |#4|))) (-15 -3405 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) (-771) (-825) (-542) (-923 |#3| |#1| |#2|)) (T -577)) -((-3405 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-923 *6 *5 *4)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1063 *3)) (-4 *3 (-923 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-577 *6 *4 *7 *3))))) -(-10 -7 (-15 -3405 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1063 |#4|))) (-15 -3405 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 63)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-550)) 54) (($ $ (-550) (-550)) 55)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 60)) (-3918 (($ $) 100)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1590 (((-837) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1000 (-818 (-550))) (-1145) |#1| (-400 (-550))) 224)) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 34)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3771 (((-112) $) NIL)) (-2603 (((-550) $) 58) (((-550) $ (-550)) 59)) (-2419 (((-112) $) NIL)) (-1937 (($ $ (-895)) 76)) (-1546 (($ (-1 |#1| (-550)) $) 73)) (-3438 (((-112) $) 25)) (-1488 (($ |#1| (-550)) 22) (($ $ (-1051) (-550)) NIL) (($ $ (-623 (-1051)) (-623 (-550))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) 67)) (-1334 (($ (-1000 (-818 (-550))) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 13)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-2149 (($ $) 150 (|has| |#1| (-38 (-400 (-550)))))) (-3677 (((-3 $ "failed") $ $ (-112)) 99)) (-3060 (($ $ $) 108)) (-3445 (((-1089) $) NIL)) (-2114 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 15)) (-1716 (((-1000 (-818 (-550))) $) 14)) (-4268 (($ $ (-550)) 45)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-2757 ((|#1| $ (-550)) 57) (($ $ $) NIL (|has| (-550) (-1081)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-3661 (((-550) $) NIL)) (-4012 (($ $) 46)) (-2233 (((-837) $) NIL) (($ (-550)) 28) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 27 (|has| |#1| (-170)))) (-1708 ((|#1| $ (-550)) 56)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) 37)) (-1808 ((|#1| $) NIL)) (-1485 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-2619 (($ $) 158 (|has| |#1| (-38 (-400 (-550)))))) (-3554 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-1754 (($ $) 163 (|has| |#1| (-38 (-400 (-550)))))) (-2455 (($ $) 189 (|has| |#1| (-38 (-400 (-550)))))) (-1314 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-2648 (($ $ (-400 (-550))) 166 (|has| |#1| (-38 (-400 (-550)))))) (-4223 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-550)))))) (-1389 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-3003 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-2931 (($ $) 191 (|has| |#1| (-38 (-400 (-550)))))) (-2805 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3138 (($ $) 187 (|has| |#1| (-38 (-400 (-550)))))) (-4048 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-4063 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-2160 (($ $) 161 (|has| |#1| (-38 (-400 (-550)))))) (-2120 (($ $) 197 (|has| |#1| (-38 (-400 (-550)))))) (-3525 (($ $) 173 (|has| |#1| (-38 (-400 (-550)))))) (-1364 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-4199 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-2022 (($ $) 201 (|has| |#1| (-38 (-400 (-550)))))) (-1393 (($ $) 177 (|has| |#1| (-38 (-400 (-550)))))) (-3519 (($ $) 203 (|has| |#1| (-38 (-400 (-550)))))) (-3206 (($ $) 179 (|has| |#1| (-38 (-400 (-550)))))) (-3119 (($ $) 199 (|has| |#1| (-38 (-400 (-550)))))) (-4029 (($ $) 175 (|has| |#1| (-38 (-400 (-550)))))) (-1897 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-1378 (($ $) 171 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2154 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-2688 (($) 29 T CONST)) (-2700 (($) 38 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2264 (((-112) $ $) 65)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) 84) (($ $ $) 64)) (-2358 (($ $ $) 81)) (** (($ $ (-895)) NIL) (($ $ (-749)) 103)) (* (($ (-895) $) 89) (($ (-749) $) 87) (($ (-550) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-578 |#1|) (-13 (-1206 |#1| (-550)) (-10 -8 (-15 -1334 ($ (-1000 (-818 (-550))) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -1716 ((-1000 (-818 (-550))) $)) (-15 -2114 ((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -2744 ($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3438 ((-112) $)) (-15 -1546 ($ (-1 |#1| (-550)) $)) (-15 -3677 ((-3 $ "failed") $ $ (-112))) (-15 -3918 ($ $)) (-15 -3060 ($ $ $)) (-15 -1590 ((-837) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1000 (-818 (-550))) (-1145) |#1| (-400 (-550)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $)) (-15 -4223 ($ $ |#1|)) (-15 -2648 ($ $ (-400 (-550)))) (-15 -3003 ($ $)) (-15 -1389 ($ $)) (-15 -1754 ($ $)) (-15 -2160 ($ $)) (-15 -2619 ($ $)) (-15 -4048 ($ $)) (-15 -1314 ($ $)) (-15 -2805 ($ $)) (-15 -4199 ($ $)) (-15 -1378 ($ $)) (-15 -3525 ($ $)) (-15 -4029 ($ $)) (-15 -1393 ($ $)) (-15 -3206 ($ $)) (-15 -3554 ($ $)) (-15 -4063 ($ $)) (-15 -1485 ($ $)) (-15 -3138 ($ $)) (-15 -2455 ($ $)) (-15 -2931 ($ $)) (-15 -1364 ($ $)) (-15 -1897 ($ $)) (-15 -2120 ($ $)) (-15 -3119 ($ $)) (-15 -2022 ($ $)) (-15 -3519 ($ $))) |%noBranch|))) (-1021)) (T -578)) -((-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1021)))) (-1334 (*1 *1 *2 *3) (-12 (-5 *2 (-1000 (-818 (-550)))) (-5 *3 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1021)) (-5 *1 (-578 *4)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-1000 (-818 (-550)))) (-5 *1 (-578 *3)) (-4 *3 (-1021)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-5 *1 (-578 *3)) (-4 *3 (-1021)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1021)) (-5 *1 (-578 *3)))) (-1546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1021)) (-5 *1 (-578 *3)))) (-3677 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1021)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1021)))) (-3060 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1021)))) (-1590 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *6)))) (-5 *4 (-1000 (-818 (-550)))) (-5 *5 (-1145)) (-5 *7 (-400 (-550))) (-4 *6 (-1021)) (-5 *2 (-837)) (-5 *1 (-578 *6)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-4223 (*1 *1 *1 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1021)))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1754 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2619 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2805 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-4199 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1378 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-4029 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1393 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3206 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-4063 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2455 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2931 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1364 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-2022 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(-13 (-1206 |#1| (-550)) (-10 -8 (-15 -1334 ($ (-1000 (-818 (-550))) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -1716 ((-1000 (-818 (-550))) $)) (-15 -2114 ((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -2744 ($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3438 ((-112) $)) (-15 -1546 ($ (-1 |#1| (-550)) $)) (-15 -3677 ((-3 $ "failed") $ $ (-112))) (-15 -3918 ($ $)) (-15 -3060 ($ $ $)) (-15 -1590 ((-837) (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1000 (-818 (-550))) (-1145) |#1| (-400 (-550)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $)) (-15 -4223 ($ $ |#1|)) (-15 -2648 ($ $ (-400 (-550)))) (-15 -3003 ($ $)) (-15 -1389 ($ $)) (-15 -1754 ($ $)) (-15 -2160 ($ $)) (-15 -2619 ($ $)) (-15 -4048 ($ $)) (-15 -1314 ($ $)) (-15 -2805 ($ $)) (-15 -4199 ($ $)) (-15 -1378 ($ $)) (-15 -3525 ($ $)) (-15 -4029 ($ $)) (-15 -1393 ($ $)) (-15 -3206 ($ $)) (-15 -3554 ($ $)) (-15 -4063 ($ $)) (-15 -1485 ($ $)) (-15 -3138 ($ $)) (-15 -2455 ($ $)) (-15 -2931 ($ $)) (-15 -1364 ($ $)) (-15 -1897 ($ $)) (-15 -2120 ($ $)) (-15 -3119 ($ $)) (-15 -2022 ($ $)) (-15 -3519 ($ $))) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2744 (($ (-1125 |#1|)) 9)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) 42)) (-3771 (((-112) $) 52)) (-2603 (((-749) $) 55) (((-749) $ (-749)) 54)) (-2419 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ $) 44 (|has| |#1| (-542)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-1125 |#1|) $) 23)) (-3091 (((-749)) 51)) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 10 T CONST)) (-2700 (($) 14 T CONST)) (-2264 (((-112) $ $) 22)) (-2370 (($ $) 30) (($ $ $) 16)) (-2358 (($ $ $) 25)) (** (($ $ (-895)) NIL) (($ $ (-749)) 49)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-550)) 36))) -(((-579 |#1|) (-13 (-1021) (-10 -8 (-15 -2969 ((-1125 |#1|) $)) (-15 -2744 ($ (-1125 |#1|))) (-15 -3771 ((-112) $)) (-15 -2603 ((-749) $)) (-15 -2603 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-550))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) (-1021)) (T -579)) -((-2969 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-579 *3)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) (-2603 (*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1021)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1021)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-579 *3)) (-4 *3 (-1021))))) -(-13 (-1021) (-10 -8 (-15 -2969 ((-1125 |#1|) $)) (-15 -2744 ($ (-1125 |#1|))) (-15 -3771 ((-112) $)) (-15 -2603 ((-749) $)) (-15 -2603 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-550))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) -((-2392 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 15))) -(((-580 |#1| |#2|) (-10 -7 (-15 -2392 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1182) (-1182)) (T -580)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6))))) -(-10 -7 (-15 -2392 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) -((-2392 (((-1125 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1125 |#2|)) 20) (((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-583 |#2|)) 19) (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 18))) -(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-583 |#2|))) (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1125 |#2|)))) (-1182) (-1182) (-1182)) (T -581)) -((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1125 *7)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) (-5 *1 (-581 *6 *7 *8)))) (-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1125 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) (-5 *1 (-581 *6 *7 *8)))) (-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-583 *8)) (-5 *1 (-581 *6 *7 *8))))) -(-10 -7 (-15 -2392 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-583 |#2|))) (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1125 |#2|)))) -((-3539 ((|#3| |#3| (-623 (-594 |#3|)) (-623 (-1145))) 55)) (-3948 (((-167 |#2|) |#3|) 117)) (-2803 ((|#3| (-167 |#2|)) 44)) (-2273 ((|#2| |#3|) 19)) (-2534 ((|#3| |#2|) 33))) -(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -2803 (|#3| (-167 |#2|))) (-15 -2273 (|#2| |#3|)) (-15 -2534 (|#3| |#2|)) (-15 -3948 ((-167 |#2|) |#3|)) (-15 -3539 (|#3| |#3| (-623 (-594 |#3|)) (-623 (-1145))))) (-13 (-542) (-825)) (-13 (-423 |#1|) (-976) (-1167)) (-13 (-423 (-167 |#1|)) (-976) (-1167))) (T -582)) -((-3539 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-623 (-1145))) (-4 *2 (-13 (-423 (-167 *5)) (-976) (-1167))) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-423 *5) (-976) (-1167))))) (-3948 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-5 *2 (-167 *5)) (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-976) (-1167))) (-4 *3 (-13 (-423 (-167 *4)) (-976) (-1167))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 (-167 *4)) (-976) (-1167))) (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-976) (-1167))))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 *4) (-976) (-1167))) (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-423 (-167 *4)) (-976) (-1167))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-976) (-1167))) (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 (-167 *4)) (-976) (-1167))) (-5 *1 (-582 *4 *5 *2))))) -(-10 -7 (-15 -2803 (|#3| (-167 |#2|))) (-15 -2273 (|#2| |#3|)) (-15 -2534 (|#3| |#2|)) (-15 -3948 ((-167 |#2|) |#3|)) (-15 -3539 (|#3| |#3| (-623 (-594 |#3|)) (-623 (-1145))))) -((-2097 (($ (-1 (-112) |#1|) $) 17)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2029 (($ (-1 |#1| |#1|) |#1|) 9)) (-2073 (($ (-1 (-112) |#1|) $) 13)) (-2086 (($ (-1 (-112) |#1|) $) 15)) (-2245 (((-1125 |#1|) $) 18)) (-2233 (((-837) $) NIL))) -(((-583 |#1|) (-13 (-595 (-837)) (-10 -8 (-15 -2392 ($ (-1 |#1| |#1|) $)) (-15 -2073 ($ (-1 (-112) |#1|) $)) (-15 -2086 ($ (-1 (-112) |#1|) $)) (-15 -2097 ($ (-1 (-112) |#1|) $)) (-15 -2029 ($ (-1 |#1| |#1|) |#1|)) (-15 -2245 ((-1125 |#1|) $)))) (-1182)) (T -583)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) (-2073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) (-2086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) (-2097 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) (-2029 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1182))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2392 ($ (-1 |#1| |#1|) $)) (-15 -2073 ($ (-1 (-112) |#1|) $)) (-15 -2086 ($ (-1 (-112) |#1|) $)) (-15 -2097 ($ (-1 (-112) |#1|) $)) (-15 -2029 ($ (-1 |#1| |#1|) |#1|)) (-15 -2245 ((-1125 |#1|) $)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749)) NIL (|has| |#1| (-23)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-2755 (((-667 |#1|) $ $) NIL (|has| |#1| (-1021)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2986 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-1700 (((-112) $ (-749)) NIL)) (-3839 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3451 ((|#1| $ $) NIL (|has| |#1| (-1021)))) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1442 (($ $ $) NIL (|has| |#1| (-1021)))) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2370 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2358 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-584 |#1| |#2|) (-1226 |#1|) (-1182) (-550)) (T -584)) -NIL -(-1226 |#1|) -((-3037 (((-1233) $ |#2| |#2|) 36)) (-3096 ((|#2| $) 23)) (-2506 ((|#2| $) 21)) (-3311 (($ (-1 |#3| |#3|) $) 32)) (-2392 (($ (-1 |#3| |#3|) $) 30)) (-3858 ((|#3| $) 26)) (-2491 (($ $ |#3|) 33)) (-4100 (((-112) |#3| $) 17)) (-1375 (((-623 |#3|) $) 15)) (-2757 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-585 |#1| |#2| |#3|) (-10 -8 (-15 -3037 ((-1233) |#1| |#2| |#2|)) (-15 -2491 (|#1| |#1| |#3|)) (-15 -3858 (|#3| |#1|)) (-15 -3096 (|#2| |#1|)) (-15 -2506 (|#2| |#1|)) (-15 -4100 ((-112) |#3| |#1|)) (-15 -1375 ((-623 |#3|) |#1|)) (-15 -2757 (|#3| |#1| |#2|)) (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -3311 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2392 (|#1| (-1 |#3| |#3|) |#1|))) (-586 |#2| |#3|) (-1069) (-1182)) (T -585)) -NIL -(-10 -8 (-15 -3037 ((-1233) |#1| |#2| |#2|)) (-15 -2491 (|#1| |#1| |#3|)) (-15 -3858 (|#3| |#1|)) (-15 -3096 (|#2| |#1|)) (-15 -2506 (|#2| |#1|)) (-15 -4100 ((-112) |#3| |#1|)) (-15 -1375 ((-623 |#3|) |#1|)) (-15 -2757 (|#3| |#1| |#2|)) (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -3311 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2392 (|#1| (-1 |#3| |#3|) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#2| (-1069)))) (-3037 (((-1233) $ |#1| |#1|) 40 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-3317 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) 51)) (-2971 (((-623 |#2|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-3096 ((|#1| $) 43 (|has| |#1| (-825)))) (-2876 (((-623 |#2|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2506 ((|#1| $) 44 (|has| |#1| (-825)))) (-3311 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#2| (-1069)))) (-3611 (((-623 |#1|) $) 46)) (-3166 (((-112) |#1| $) 47)) (-3445 (((-1089) $) 21 (|has| |#2| (-1069)))) (-3858 ((|#2| $) 42 (|has| |#1| (-825)))) (-2491 (($ $ |#2|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3457 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4344))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#2| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#2| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-586 |#1| |#2|) (-138) (-1069) (-1182)) (T -586)) -((-1375 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) (-5 *2 (-623 *4)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) (-5 *2 (-623 *3)))) (-4100 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1182)) (-4 *2 (-1069)) (-4 *2 (-825)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1182)) (-4 *2 (-1069)) (-4 *2 (-825)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1069)) (-4 *3 (-825)) (-4 *2 (-1182)))) (-2491 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) (-3037 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) (-5 *2 (-1233))))) -(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -1375 ((-623 |t#2|) $)) (-15 -3166 ((-112) |t#1| $)) (-15 -3611 ((-623 |t#1|) $)) (IF (|has| |t#2| (-1069)) (IF (|has| $ (-6 -4344)) (-15 -4100 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -2506 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3858 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2491 ($ $ |t#2|)) (-15 -3037 ((-1233) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1069)) ((-595 (-837)) -1489 (|has| |#2| (-1069)) (|has| |#2| (-595 (-837)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-1069) |has| |#2| (-1069)) ((-1182) . T)) -((-2233 (((-837) $) 19) (((-129) $) 14) (($ (-129)) 13))) -(((-587) (-13 (-595 (-837)) (-595 (-129)) (-10 -8 (-15 -2233 ($ (-129)))))) (T -587)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-587))))) -(-13 (-595 (-837)) (-595 (-129)) (-10 -8 (-15 -2233 ($ (-129))))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (((-1150) $) NIL) (($ (-1150)) NIL) (((-1181) $) 14) (($ (-623 (-1181))) 13)) (-3444 (((-623 (-1181)) $) 10)) (-2264 (((-112) $ $) NIL))) -(((-588) (-13 (-1052) (-595 (-1181)) (-10 -8 (-15 -2233 ($ (-623 (-1181)))) (-15 -3444 ((-623 (-1181)) $))))) (T -588)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-588)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-588))))) -(-13 (-1052) (-595 (-1181)) (-10 -8 (-15 -2233 ($ (-623 (-1181)))) (-15 -3444 ((-623 (-1181)) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2305 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2946 (((-1228 (-667 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1228 (-667 |#1|)) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-4259 (((-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2991 (($) NIL T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1713 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2704 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-4281 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2693 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2988 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1549 (((-1141 (-926 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-1339 (($ $ (-895)) NIL)) (-2710 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2613 (((-1141 |#1|) $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1690 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2015 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2030 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2821 (($ (-1228 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1228 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3398 (((-895)) NIL (|has| |#2| (-360 |#1|)))) (-4094 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2210 (($ $ (-895)) NIL)) (-1870 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4189 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3678 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2128 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2925 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2224 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-3274 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3789 (((-1141 (-926 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-1692 (($ $ (-895)) NIL)) (-1324 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-3784 (((-1141 |#1|) $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4216 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-3876 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1688 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2369 (((-1127) $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1294 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2498 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3445 (((-1089) $) NIL)) (-2294 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2757 ((|#1| $ (-550)) NIL (|has| |#2| (-410 |#1|)))) (-2999 (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-410 |#1|))) (((-1228 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $) (-1228 $)) NIL (|has| |#2| (-360 |#1|))) (((-1228 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2451 (($ (-1228 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1228 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2778 (((-623 (-926 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-623 (-926 |#1|)) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-1353 (($ $ $) NIL)) (-4118 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2233 (((-837) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2206 (((-1228 $)) NIL (|has| |#2| (-410 |#1|)))) (-2364 (((-623 (-1228 |#1|))) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4143 (($ $ $ $) NIL)) (-2941 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3806 (($ (-667 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1923 (($ $ $) NIL)) (-2582 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3268 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3836 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2688 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) 24)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-589 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -2233 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -589)) -((-2233 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3))))) -(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -2233 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-2363 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) 33)) (-3364 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL) (($) NIL)) (-3037 (((-1233) $ (-1127) (-1127)) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-1127) |#1|) 43)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#1| "failed") (-1127) $) 46)) (-2991 (($) NIL T CONST)) (-3053 (($ $ (-1127)) 24)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-2505 (((-3 |#1| "failed") (-1127) $) 47) (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (|has| $ (-6 -4344)))) (-1979 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-2924 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-3258 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) 32)) (-3317 ((|#1| $ (-1127) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-1127)) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-4210 (($ $) 48)) (-4046 (($ (-381)) 22) (($ (-381) (-1127)) 21)) (-1856 (((-381) $) 34)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-1127) $) NIL (|has| (-1127) (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344))) (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (((-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-2506 (((-1127) $) NIL (|has| (-1127) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-4212 (((-623 (-1127)) $) 39)) (-3998 (((-112) (-1127) $) NIL)) (-2216 (((-1127) $) 35)) (-1696 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-3611 (((-623 (-1127)) $) NIL)) (-3166 (((-112) (-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 ((|#1| $) NIL (|has| (-1127) (-825)))) (-1614 (((-3 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) "failed") (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-623 (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 37)) (-2757 ((|#1| $ (-1127) |#1|) NIL) ((|#1| $ (-1127)) 42)) (-3246 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL) (($) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (((-749) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (((-749) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-2233 (((-837) $) 20)) (-4231 (($ $) 25)) (-4017 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 19)) (-3307 (((-749) $) 41 (|has| $ (-6 -4344))))) -(((-590 |#1|) (-13 (-357 (-381) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) (-1158 (-1127) |#1|) (-10 -8 (-6 -4344) (-15 -4210 ($ $)))) (-1069)) (T -590)) -((-4210 (*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1069))))) -(-13 (-357 (-381) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) (-1158 (-1127) |#1|) (-10 -8 (-6 -4344) (-15 -4210 ($ $)))) -((-3922 (((-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) 15)) (-4212 (((-623 |#2|) $) 19)) (-3998 (((-112) |#2| $) 12))) -(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -4212 ((-623 |#2|) |#1|)) (-15 -3998 ((-112) |#2| |#1|)) (-15 -3922 ((-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|))) (-592 |#2| |#3|) (-1069) (-1069)) (T -591)) -NIL -(-10 -8 (-15 -4212 ((-623 |#2|) |#1|)) (-15 -3998 ((-112) |#2| |#1|)) (-15 -3922 ((-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|))) -((-2221 (((-112) $ $) 19 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) 61)) (-2991 (($) 7 T CONST)) (-2708 (($ $) 58 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 62)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 54 (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 56 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 53 (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-4212 (((-623 |#1|) $) 63)) (-3998 (((-112) |#1| $) 64)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 39)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 40)) (-3445 (((-1089) $) 21 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 51)) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 41)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) 26 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 25 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 24 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 23 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3246 (($) 49) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 48)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 50)) (-2233 (((-837) $) 18 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 42)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-592 |#1| |#2|) (-138) (-1069) (-1069)) (T -592)) -((-3998 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-5 *2 (-112)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-5 *2 (-623 *3)))) (-2505 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) (-3696 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) -(-13 (-223 (-2 (|:| -3549 |t#1|) (|:| -3859 |t#2|))) (-10 -8 (-15 -3998 ((-112) |t#1| $)) (-15 -4212 ((-623 |t#1|) $)) (-15 -2505 ((-3 |t#2| "failed") |t#1| $)) (-15 -3696 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((-101) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) ((-595 (-837)) -1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837)))) ((-149 #0#) . T) ((-596 (-526)) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-481 #0#) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-1069) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) ((-1182) . T)) -((-4031 (((-594 |#2|) |#1|) 15)) (-2611 (((-3 |#1| "failed") (-594 |#2|)) 19))) -(((-593 |#1| |#2|) (-10 -7 (-15 -4031 ((-594 |#2|) |#1|)) (-15 -2611 ((-3 |#1| "failed") (-594 |#2|)))) (-825) (-825)) (T -593)) -((-2611 (*1 *2 *3) (|partial| -12 (-5 *3 (-594 *4)) (-4 *4 (-825)) (-4 *2 (-825)) (-5 *1 (-593 *2 *4)))) (-4031 (*1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *1 (-593 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) -(-10 -7 (-15 -4031 ((-594 |#2|) |#1|)) (-15 -2611 ((-3 |#1| "failed") (-594 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3498 (((-3 (-1145) "failed") $) 37)) (-4195 (((-1233) $ (-749)) 26)) (-3088 (((-749) $) 25)) (-1355 (((-114) $) 12)) (-1856 (((-1145) $) 20)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-4232 (($ (-114) (-623 |#1|) (-749)) 30) (($ (-1145)) 31)) (-2366 (((-112) $ (-114)) 18) (((-112) $ (-1145)) 16)) (-1293 (((-749) $) 22)) (-3445 (((-1089) $) NIL)) (-2451 (((-866 (-550)) $) 77 (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) 84 (|has| |#1| (-596 (-866 (-372))))) (((-526) $) 69 (|has| |#1| (-596 (-526))))) (-2233 (((-837) $) 55)) (-2963 (((-623 |#1|) $) 24)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 41)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 42))) -(((-594 |#1|) (-13 (-131) (-858 |#1|) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -1355 ((-114) $)) (-15 -2963 ((-623 |#1|) $)) (-15 -1293 ((-749) $)) (-15 -4232 ($ (-114) (-623 |#1|) (-749))) (-15 -4232 ($ (-1145))) (-15 -3498 ((-3 (-1145) "failed") $)) (-15 -2366 ((-112) $ (-114))) (-15 -2366 ((-112) $ (-1145))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) (-825)) (T -594)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-4232 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-825)) (-5 *1 (-594 *5)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-3498 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2366 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) (-2366 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825))))) -(-13 (-131) (-858 |#1|) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -1355 ((-114) $)) (-15 -2963 ((-623 |#1|) $)) (-15 -1293 ((-749) $)) (-15 -4232 ($ (-114) (-623 |#1|) (-749))) (-15 -4232 ($ (-1145))) (-15 -3498 ((-3 (-1145) "failed") $)) (-15 -2366 ((-112) $ (-114))) (-15 -2366 ((-112) $ (-1145))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) -((-2233 ((|#1| $) 6))) -(((-595 |#1|) (-138) (-1182)) (T -595)) -((-2233 (*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1182))))) -(-13 (-10 -8 (-15 -2233 (|t#1| $)))) -((-2451 ((|#1| $) 6))) -(((-596 |#1|) (-138) (-1182)) (T -596)) -((-2451 (*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1182))))) -(-13 (-10 -8 (-15 -2451 (|t#1| $)))) -((-2312 (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)) 15) (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16))) -(((-597 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) (-13 (-145) (-27) (-1012 (-550)) (-1012 (-400 (-550)))) (-1204 |#1|)) (T -597)) -((-2312 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-145) (-27) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6)))) (-2312 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -2312 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) -((-2221 (((-112) $ $) NIL)) (-1377 (($) 11 T CONST)) (-1292 (($) 12 T CONST)) (-3741 (($ $ $) 24)) (-3548 (($ $) 22)) (-2369 (((-1127) $) NIL)) (-3852 (($ $ $) 25)) (-3445 (((-1089) $) NIL)) (-3271 (($) 10 T CONST)) (-2660 (($ $ $) 26)) (-2233 (((-837) $) 30)) (-2676 (((-112) $ (|[\|\|]| -3271)) 19) (((-112) $ (|[\|\|]| -1377)) 21) (((-112) $ (|[\|\|]| -1292)) 17)) (-1304 (($ $ $) 23)) (-2264 (((-112) $ $) 15))) -(((-598) (-13 (-941) (-10 -8 (-15 -3271 ($) -4165) (-15 -1377 ($) -4165) (-15 -1292 ($) -4165) (-15 -2676 ((-112) $ (|[\|\|]| -3271))) (-15 -2676 ((-112) $ (|[\|\|]| -1377))) (-15 -2676 ((-112) $ (|[\|\|]| -1292)))))) (T -598)) -((-3271 (*1 *1) (-5 *1 (-598))) (-1377 (*1 *1) (-5 *1 (-598))) (-1292 (*1 *1) (-5 *1 (-598))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3271)) (-5 *2 (-112)) (-5 *1 (-598)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1377)) (-5 *2 (-112)) (-5 *1 (-598)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1292)) (-5 *2 (-112)) (-5 *1 (-598))))) -(-13 (-941) (-10 -8 (-15 -3271 ($) -4165) (-15 -1377 ($) -4165) (-15 -1292 ($) -4165) (-15 -2676 ((-112) $ (|[\|\|]| -3271))) (-15 -2676 ((-112) $ (|[\|\|]| -1377))) (-15 -2676 ((-112) $ (|[\|\|]| -1292))))) -((-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) -(((-599 |#1| |#2|) (-10 -8 (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-600 |#2|) (-1021)) (T -599)) -NIL -(-10 -8 (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 34)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-600 |#1|) (-138) (-1021)) (T -600)) -((-2233 (*1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1021))))) -(-13 (-1021) (-626 |t#1|) (-10 -8 (-15 -2233 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4303 (((-550) $) NIL (|has| |#1| (-823)))) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2694 (((-112) $) NIL (|has| |#1| (-823)))) (-2419 (((-112) $) NIL)) (-4153 ((|#1| $) 13)) (-1712 (((-112) $) NIL (|has| |#1| (-823)))) (-2793 (($ $ $) NIL (|has| |#1| (-823)))) (-2173 (($ $ $) NIL (|has| |#1| (-823)))) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-4163 ((|#3| $) 15)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL)) (-3091 (((-749)) 20)) (-4188 (($ $) NIL (|has| |#1| (-823)))) (-2688 (($) NIL T CONST)) (-2700 (($) 12 T CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2382 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-601 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -2382 ($ $ |#3|)) (-15 -2382 ($ |#1| |#3|)) (-15 -4153 (|#1| $)) (-15 -4163 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -601)) -((-2382 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-2382 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-4153 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-4163 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -2382 ($ $ |#3|)) (-15 -2382 ($ |#1| |#3|)) (-15 -4153 (|#1| $)) (-15 -4163 (|#3| $)))) -((-3883 ((|#2| |#2| (-1145) (-1145)) 18))) -(((-602 |#1| |#2|) (-10 -7 (-15 -3883 (|#2| |#2| (-1145) (-1145)))) (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-933) (-29 |#1|))) (T -602)) -((-3883 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1167) (-933) (-29 *4)))))) -(-10 -7 (-15 -3883 (|#2| |#2| (-1145) (-1145)))) -((-2221 (((-112) $ $) 56)) (-3378 (((-112) $) 52)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-3497 ((|#1| $) 49)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4146 (((-2 (|:| -2942 $) (|:| -1261 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) 24)) (-1537 (((-3 $ "failed") $) 75)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2603 (((-550) $) 19)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) 36)) (-1488 (($ |#1| (-550)) 21)) (-1670 ((|#1| $) 51)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ $) 79)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1988 (((-749) $) 99 (|has| |#1| (-356)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 98 (|has| |#1| (-356)))) (-2798 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3661 (((-550) $) 34)) (-2451 (((-400 |#2|) $) 42)) (-2233 (((-837) $) 62) (($ (-550)) 32) (($ $) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) 31) (($ |#2|) 22)) (-1708 ((|#1| $ (-550)) 63)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) 29)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 9 T CONST)) (-2700 (($) 12 T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2264 (((-112) $ $) 17)) (-2370 (($ $) 46) (($ $ $) NIL)) (-2358 (($ $ $) 76)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 26) (($ $ $) 44))) -(((-603 |#1| |#2|) (-13 (-225 |#2|) (-542) (-596 (-400 |#2|)) (-404 |#1|) (-1012 |#2|) (-10 -8 (-15 -3438 ((-112) $)) (-15 -3661 ((-550) $)) (-15 -2603 ((-550) $)) (-15 -1693 ($ $)) (-15 -1670 (|#1| $)) (-15 -3497 (|#1| $)) (-15 -1708 (|#1| $ (-550))) (-15 -1488 ($ |#1| (-550))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4146 ((-2 (|:| -2942 $) (|:| -1261 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-542) (-1204 |#1|)) (T -603)) -((-3438 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1204 *3)))) (-3661 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1204 *3)))) (-2603 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1204 *3)))) (-1693 (*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2)))) (-1670 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2)))) (-3497 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1204 *2)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1204 *2)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| -2942 (-603 *4 *5)) (|:| -1261 (-400 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5))))) -(-13 (-225 |#2|) (-542) (-596 (-400 |#2|)) (-404 |#1|) (-1012 |#2|) (-10 -8 (-15 -3438 ((-112) $)) (-15 -3661 ((-550) $)) (-15 -2603 ((-550) $)) (-15 -1693 ($ $)) (-15 -1670 (|#1| $)) (-15 -3497 (|#1| $)) (-15 -1708 (|#1| $ (-550))) (-15 -1488 ($ |#1| (-550))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4146 ((-2 (|:| -2942 $) (|:| -1261 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) -((-3186 (((-623 |#6|) (-623 |#4|) (-112)) 47)) (-3117 ((|#6| |#6|) 40))) -(((-604 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3117 (|#6| |#6|)) (-15 -3186 ((-623 |#6|) (-623 |#4|) (-112)))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|) (-1078 |#1| |#2| |#3| |#4|)) (T -604)) -((-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *10)) (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *10 (-1078 *5 *6 *7 *8)))) (-3117 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *2 (-1078 *3 *4 *5 *6))))) -(-10 -7 (-15 -3117 (|#6| |#6|)) (-15 -3186 ((-623 |#6|) (-623 |#4|) (-112)))) -((-2518 (((-112) |#3| (-749) (-623 |#3|)) 23)) (-3197 (((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1141 |#3|)))) "failed") |#3| (-623 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1610 (-623 (-2 (|:| |irr| |#4|) (|:| -1635 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)) 55))) -(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2518 ((-112) |#3| (-749) (-623 |#3|))) (-15 -3197 ((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1141 |#3|)))) "failed") |#3| (-623 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1610 (-623 (-2 (|:| |irr| |#4|) (|:| -1635 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)))) (-825) (-771) (-300) (-923 |#3| |#2| |#1|)) (T -605)) -((-3197 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1610 (-623 (-2 (|:| |irr| *10) (|:| -1635 (-550))))))) (-5 *6 (-623 *3)) (-5 *7 (-623 *8)) (-4 *8 (-825)) (-4 *3 (-300)) (-4 *10 (-923 *3 *9 *8)) (-4 *9 (-771)) (-5 *2 (-2 (|:| |polfac| (-623 *10)) (|:| |correct| *3) (|:| |corrfact| (-623 (-1141 *3))))) (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-623 (-1141 *3))))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-749)) (-5 *5 (-623 *3)) (-4 *3 (-300)) (-4 *6 (-825)) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) (-4 *8 (-923 *3 *7 *6))))) -(-10 -7 (-15 -2518 ((-112) |#3| (-749) (-623 |#3|))) (-15 -3197 ((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1141 |#3|)))) "failed") |#3| (-623 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1610 (-623 (-2 (|:| |irr| |#4|) (|:| -1635 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)))) -((-2221 (((-112) $ $) NIL)) (-2386 (((-1104) $) 11)) (-2374 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-606) (-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $))))) (T -606)) -((-2374 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-606)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-606))))) -(-13 (-1052) (-10 -8 (-15 -2374 ((-1104) $)) (-15 -2386 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-3016 (((-623 |#1|) $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2481 (($ $) 67)) (-3080 (((-642 |#1| |#2|) $) 52)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 70)) (-1920 (((-623 (-287 |#2|)) $ $) 33)) (-3445 (((-1089) $) NIL)) (-1644 (($ (-642 |#1| |#2|)) 48)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) 58) (((-1243 |#1| |#2|) $) NIL) (((-1248 |#1| |#2|) $) 66)) (-2700 (($) 53 T CONST)) (-3420 (((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) 31)) (-2987 (((-623 (-642 |#1| |#2|)) (-623 |#1|)) 65)) (-1564 (((-623 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) 37)) (-2264 (((-112) $ $) 54)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 44))) -(((-607 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -1644 ($ (-642 |#1| |#2|))) (-15 -3080 ((-642 |#1| |#2|) $)) (-15 -1564 ((-623 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -2233 ((-1243 |#1| |#2|) $)) (-15 -2233 ((-1248 |#1| |#2|) $)) (-15 -2481 ($ $)) (-15 -3016 ((-623 |#1|) $)) (-15 -2987 ((-623 (-642 |#1| |#2|)) (-623 |#1|))) (-15 -3420 ((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -1920 ((-623 (-287 |#2|)) $ $)))) (-825) (-13 (-170) (-696 (-400 (-550)))) (-895)) (T -607)) -((-1644 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-5 *1 (-607 *3 *4 *5)) (-14 *5 (-895)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1248 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-13 (-170) (-696 (-400 (-550))))) (-14 *4 (-895)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-642 *4 *5))) (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-550))))) (-14 *6 (-895)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) (-1920 (*1 *2 *1 *1) (-12 (-5 *2 (-623 (-287 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895))))) -(-13 (-465) (-10 -8 (-15 -1644 ($ (-642 |#1| |#2|))) (-15 -3080 ((-642 |#1| |#2|) $)) (-15 -1564 ((-623 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -2233 ((-1243 |#1| |#2|) $)) (-15 -2233 ((-1248 |#1| |#2|) $)) (-15 -2481 ($ $)) (-15 -3016 ((-623 |#1|) $)) (-15 -2987 ((-623 (-642 |#1| |#2|)) (-623 |#1|))) (-15 -3420 ((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -1920 ((-623 (-287 |#2|)) $ $)))) -((-3186 (((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112)) 72) (((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112)) 58)) (-1499 (((-112) (-623 (-758 |#1| (-839 |#2|)))) 23)) (-2246 (((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112)) 71)) (-2444 (((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112)) 57)) (-2906 (((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|)))) 27)) (-1272 (((-3 (-623 (-758 |#1| (-839 |#2|))) "failed") (-623 (-758 |#1| (-839 |#2|)))) 26))) -(((-608 |#1| |#2|) (-10 -7 (-15 -1499 ((-112) (-623 (-758 |#1| (-839 |#2|))))) (-15 -1272 ((-3 (-623 (-758 |#1| (-839 |#2|))) "failed") (-623 (-758 |#1| (-839 |#2|))))) (-15 -2906 ((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|))))) (-15 -2444 ((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2246 ((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -3186 ((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -3186 ((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112)))) (-444) (-623 (-1145))) (T -608)) -((-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1115 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1115 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-623 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-623 (-1145))) (-5 *1 (-608 *3 *4)))) (-1272 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-623 (-1145))) (-5 *1 (-608 *3 *4)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-623 (-758 *4 (-839 *5)))) (-4 *4 (-444)) (-14 *5 (-623 (-1145))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) -(-10 -7 (-15 -1499 ((-112) (-623 (-758 |#1| (-839 |#2|))))) (-15 -1272 ((-3 (-623 (-758 |#1| (-839 |#2|))) "failed") (-623 (-758 |#1| (-839 |#2|))))) (-15 -2906 ((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|))))) (-15 -2444 ((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2246 ((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -3186 ((-623 (-1018 |#1| |#2|)) (-623 (-758 |#1| (-839 |#2|))) (-112))) (-15 -3186 ((-623 (-1115 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-623 (-758 |#1| (-839 |#2|))) (-112)))) -((-4160 (($ $) 38)) (-2820 (($ $) 21)) (-4137 (($ $) 37)) (-2796 (($ $) 22)) (-4183 (($ $) 36)) (-2844 (($ $) 23)) (-4187 (($) 48)) (-3080 (($ $) 45)) (-3431 (($ $) 17)) (-1774 (($ $ (-1061 $)) 7) (($ $ (-1145)) 6)) (-1644 (($ $) 46)) (-2743 (($ $) 15)) (-2779 (($ $) 16)) (-4194 (($ $) 35)) (-2856 (($ $) 24)) (-4171 (($ $) 34)) (-2832 (($ $) 25)) (-4149 (($ $) 33)) (-2807 (($ $) 26)) (-4233 (($ $) 44)) (-2893 (($ $) 32)) (-4206 (($ $) 43)) (-2869 (($ $) 31)) (-4255 (($ $) 42)) (-4117 (($ $) 30)) (-3363 (($ $) 41)) (-4127 (($ $) 29)) (-4244 (($ $) 40)) (-2905 (($ $) 28)) (-4218 (($ $) 39)) (-2880 (($ $) 27)) (-2080 (($ $) 19)) (-1779 (($ $) 20)) (-3545 (($ $) 18)) (** (($ $ $) 47))) -(((-609) (-138)) (T -609)) -((-1779 (*1 *1 *1) (-4 *1 (-609))) (-2080 (*1 *1 *1) (-4 *1 (-609))) (-3545 (*1 *1 *1) (-4 *1 (-609))) (-3431 (*1 *1 *1) (-4 *1 (-609))) (-2779 (*1 *1 *1) (-4 *1 (-609))) (-2743 (*1 *1 *1) (-4 *1 (-609)))) -(-13 (-933) (-1167) (-10 -8 (-15 -1779 ($ $)) (-15 -2080 ($ $)) (-15 -3545 ($ $)) (-15 -3431 ($ $)) (-15 -2779 ($ $)) (-15 -2743 ($ $)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-933) . T) ((-1167) . T) ((-1170) . T)) -((-1355 (((-114) (-114)) 83)) (-3431 ((|#2| |#2|) 30)) (-1774 ((|#2| |#2| (-1061 |#2|)) 79) ((|#2| |#2| (-1145)) 52)) (-2743 ((|#2| |#2|) 29)) (-2779 ((|#2| |#2|) 31)) (-1905 (((-112) (-114)) 34)) (-2080 ((|#2| |#2|) 26)) (-1779 ((|#2| |#2|) 28)) (-3545 ((|#2| |#2|) 27))) -(((-610 |#1| |#2|) (-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -1779 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3545 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2779 (|#2| |#2|)) (-15 -1774 (|#2| |#2| (-1145))) (-15 -1774 (|#2| |#2| (-1061 |#2|)))) (-13 (-825) (-542)) (-13 (-423 |#1|) (-976) (-1167))) (T -610)) -((-1774 (*1 *2 *2 *3) (-12 (-5 *3 (-1061 *2)) (-4 *2 (-13 (-423 *4) (-976) (-1167))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)))) (-1774 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-423 *4) (-976) (-1167))))) (-2779 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-2080 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-1779 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-976) (-1167))))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *4)) (-4 *4 (-13 (-423 *3) (-976) (-1167))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)) (-4 *5 (-13 (-423 *4) (-976) (-1167)))))) -(-10 -7 (-15 -1905 ((-112) (-114))) (-15 -1355 ((-114) (-114))) (-15 -1779 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3545 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2779 (|#2| |#2|)) (-15 -1774 (|#2| |#2| (-1145))) (-15 -1774 (|#2| |#2| (-1061 |#2|)))) -((-2380 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-3267 (((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 68)) (-1976 (((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-839 |#1|)) 70) (((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-839 |#1|)) 69)) (-2649 (((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|))) 108)) (-1946 (((-623 (-473 |#1| |#2|)) (-839 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 83)) (-1368 (((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|))) 118)) (-3691 (((-1228 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|))) 58)) (-3795 (((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 41)) (-3700 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|))) 50)) (-2142 (((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|))) 91))) -(((-611 |#1| |#2|) (-10 -7 (-15 -2649 ((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|)))) (-15 -1368 ((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|)))) (-15 -3267 ((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -1976 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -1976 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -3795 ((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -3691 ((-1228 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|)))) (-15 -2142 ((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -1946 ((-623 (-473 |#1| |#2|)) (-839 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -3700 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -2380 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-623 (-1145)) (-444)) (T -611)) -((-2380 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5)))) (-3700 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-1946 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-839 *4)) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-2142 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-623 (-1145))) (-5 *1 (-611 *5 *6)))) (-3691 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-623 (-1145))) (-4 *6 (-444)) (-5 *2 (-1228 *6)) (-5 *1 (-611 *5 *6)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-623 (-473 *3 *4))) (-14 *3 (-623 (-1145))) (-4 *4 (-444)) (-5 *1 (-611 *3 *4)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-623 (-1145))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-1976 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-623 (-1145))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *2 (-623 (-241 *4 *5))) (-5 *1 (-611 *4 *5)))) (-1368 (*1 *2 *3) (-12 (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-623 (-241 *4 *5))) (|:| |glval| (-623 (-550))))) (-5 *1 (-611 *4 *5)) (-5 *3 (-623 (-241 *4 *5))))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-623 (-241 *4 *5))) (|:| |gvlist| (-623 (-550))))) (-5 *1 (-611 *4 *5))))) -(-10 -7 (-15 -2649 ((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|)))) (-15 -1368 ((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|)))) (-15 -3267 ((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -1976 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -1976 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -3795 ((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -3691 ((-1228 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|)))) (-15 -2142 ((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -1946 ((-623 (-473 |#1| |#2|)) (-839 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -3700 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -2380 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL)) (-3037 (((-1233) $ (-1127) (-1127)) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-52) $ (-1127) (-52)) 16) (((-52) $ (-1145) (-52)) 17)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 (-52) "failed") (-1127) $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069))))) (-2505 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-3 (-52) "failed") (-1127) $) NIL)) (-1979 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (((-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-3317 (((-52) $ (-1127) (-52)) NIL (|has| $ (-6 -4345)))) (-3263 (((-52) $ (-1127)) NIL)) (-2971 (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-4210 (($ $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-1127) $) NIL (|has| (-1127) (-825)))) (-2876 (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-2506 (((-1127) $) NIL (|has| (-1127) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4345))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2039 (($ (-381)) 9)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069))))) (-4212 (((-623 (-1127)) $) NIL)) (-3998 (((-112) (-1127) $) NIL)) (-1696 (((-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL)) (-1715 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL)) (-3611 (((-623 (-1127)) $) NIL)) (-3166 (((-112) (-1127) $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069))))) (-3858 (((-52) $) NIL (|has| (-1127) (-825)))) (-1614 (((-3 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL)) (-2491 (($ $ (-52)) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (($ $ (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (($ $ (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-1375 (((-623 (-52)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (((-52) $ (-1127)) 14) (((-52) $ (-1127) (-52)) NIL) (((-52) $ (-1145)) 15)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-52) (-595 (-837))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 (-52))) (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-612) (-13 (-1158 (-1127) (-52)) (-10 -8 (-15 -2039 ($ (-381))) (-15 -4210 ($ $)) (-15 -2757 ((-52) $ (-1145))) (-15 -2409 ((-52) $ (-1145) (-52)))))) (T -612)) -((-2039 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612)))) (-4210 (*1 *1 *1) (-5 *1 (-612))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-612)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1145)) (-5 *1 (-612))))) -(-13 (-1158 (-1127) (-52)) (-10 -8 (-15 -2039 ($ (-381))) (-15 -4210 ($ $)) (-15 -2757 ((-52) $ (-1145))) (-15 -2409 ((-52) $ (-1145) (-52))))) -((-2382 (($ $ |#2|) 10))) -(((-613 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1| |#2|))) (-614 |#2|) (-170)) (T -613)) -NIL -(-10 -8 (-15 -2382 (|#1| |#1| |#2|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2245 (($ $ $) 29)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-614 |#1|) (-138) (-170)) (T -614)) -((-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-696 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2245 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -2382 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2305 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2946 (((-1228 (-667 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1228 (-667 |#1|)) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-4259 (((-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2991 (($) NIL T CONST)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1713 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2704 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-4281 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2693 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2988 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1549 (((-1141 (-926 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-1339 (($ $ (-895)) NIL)) (-2710 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2613 (((-1141 |#1|) $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1690 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2015 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2030 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2821 (($ (-1228 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1228 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3398 (((-895)) NIL (|has| |#2| (-360 |#1|)))) (-4094 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2210 (($ $ (-895)) NIL)) (-1870 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4189 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3678 (((-3 $ "failed")) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2128 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2925 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2224 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-3274 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3789 (((-1141 (-926 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-1692 (($ $ (-895)) NIL)) (-1324 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-3784 (((-1141 |#1|) $) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4216 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-3876 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1688 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2369 (((-1127) $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1294 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2498 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3445 (((-1089) $) NIL)) (-2294 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2757 ((|#1| $ (-550)) NIL (|has| |#2| (-410 |#1|)))) (-2999 (((-667 |#1|) (-1228 $)) NIL (|has| |#2| (-410 |#1|))) (((-1228 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1228 $) (-1228 $)) NIL (|has| |#2| (-360 |#1|))) (((-1228 |#1|) $ (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-2451 (($ (-1228 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1228 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2778 (((-623 (-926 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-623 (-926 |#1|)) (-1228 $)) NIL (|has| |#2| (-360 |#1|)))) (-1353 (($ $ $) NIL)) (-4118 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2233 (((-837) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2206 (((-1228 $)) NIL (|has| |#2| (-410 |#1|)))) (-2364 (((-623 (-1228 |#1|))) NIL (-1489 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4143 (($ $ $ $) NIL)) (-2941 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3806 (($ (-667 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1923 (($ $ $) NIL)) (-2582 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3268 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3836 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2688 (($) 15 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) 17)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-615 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -2233 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -615)) -((-2233 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-723 *3))))) -(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -2233 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-1450 (((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1127)) 82) (((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|))) 104)) (-2531 (((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|))) 109))) -(((-616 |#1| |#2|) (-10 -7 (-15 -1450 ((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|)))) (-15 -2531 ((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|)))) (-15 -1450 ((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1127)))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -616)) -((-1450 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1127)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-818 *3)) (-5 *1 (-616 *6 *3)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-287 (-811 *3))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-811 *3)) (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-818 *3))) (-4 *3 (-13 (-27) (-1167) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-3 (-818 *3) (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) "failed")) (-5 *1 (-616 *5 *3))))) -(-10 -7 (-15 -1450 ((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|)))) (-15 -2531 ((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|)))) (-15 -1450 ((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1127)))) -((-1450 (((-3 (-818 (-400 (-926 |#1|))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))) (-1127)) 80) (((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|)))) 20) (((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-818 (-926 |#1|)))) 35)) (-2531 (((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|)))) 23) (((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-811 (-926 |#1|)))) 43))) -(((-617 |#1|) (-10 -7 (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-818 (-926 |#1|))))) (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -2531 ((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-811 (-926 |#1|))))) (-15 -2531 ((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))) (-1127)))) (-444)) (T -617)) -((-1450 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 (-400 (-926 *6)))) (-5 *5 (-1127)) (-5 *3 (-400 (-926 *6))) (-4 *6 (-444)) (-5 *2 (-818 *3)) (-5 *1 (-617 *6)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) (-4 *5 (-444)) (-5 *2 (-811 *3)) (-5 *1 (-617 *5)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-811 (-926 *5)))) (-4 *5 (-444)) (-5 *2 (-811 (-400 (-926 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-926 *5))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-818 *3) (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) "failed")) (-5 *1 (-617 *5)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-818 (-926 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-818 (-400 (-926 *5))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 *5))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 *5))) "failed"))) "failed")) (-5 *1 (-617 *5)) (-5 *3 (-400 (-926 *5)))))) -(-10 -7 (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-818 (-926 |#1|))))) (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-926 |#1|))) "failed"))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -2531 ((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-811 (-926 |#1|))))) (-15 -2531 ((-811 (-400 (-926 |#1|))) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -1450 ((-3 (-818 (-400 (-926 |#1|))) "failed") (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))) (-1127)))) -((-1879 (((-3 (-1228 (-400 |#1|)) "failed") (-1228 |#2|) |#2|) 57 (-3548 (|has| |#1| (-356)))) (((-3 (-1228 |#1|) "failed") (-1228 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-3269 (((-112) (-1228 |#2|)) 30)) (-3167 (((-3 (-1228 |#1|) "failed") (-1228 |#2|)) 33))) -(((-618 |#1| |#2|) (-10 -7 (-15 -3269 ((-112) (-1228 |#2|))) (-15 -3167 ((-3 (-1228 |#1|) "failed") (-1228 |#2|))) (IF (|has| |#1| (-356)) (-15 -1879 ((-3 (-1228 |#1|) "failed") (-1228 |#2|) |#2|)) (-15 -1879 ((-3 (-1228 (-400 |#1|)) "failed") (-1228 |#2|) |#2|)))) (-542) (-619 |#1|)) (T -618)) -((-1879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 *5)) (-3548 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1228 (-400 *5))) (-5 *1 (-618 *5 *4)))) (-1879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-1228 *5)) (-5 *1 (-618 *5 *4)))) (-3167 (*1 *2 *3) (|partial| -12 (-5 *3 (-1228 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) (-5 *2 (-1228 *4)) (-5 *1 (-618 *4 *5)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-1228 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) -(-10 -7 (-15 -3269 ((-112) (-1228 |#2|))) (-15 -3167 ((-3 (-1228 |#1|) "failed") (-1228 |#2|))) (IF (|has| |#1| (-356)) (-15 -1879 ((-3 (-1228 |#1|) "failed") (-1228 |#2|) |#2|)) (-15 -1879 ((-3 (-1228 (-400 |#1|)) "failed") (-1228 |#2|) |#2|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-3756 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 33)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-619 |#1|) (-138) (-1021)) (T -619)) -((-3756 (*1 *2 *3) (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1021)) (-5 *2 (-667 *4)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *1)) (-5 *4 (-1228 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1021)) (-5 *2 (-2 (|:| -3121 (-667 *5)) (|:| |vec| (-1228 *5))))))) -(-13 (-1021) (-10 -8 (-15 -3756 ((-667 |t#1|) (-667 $))) (-15 -3756 ((-2 (|:| -3121 (-667 |t#1|)) (|:| |vec| (-1228 |t#1|))) (-667 $) (-1228 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2034 ((|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|) 17) ((|#2| (-623 |#1|) (-623 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|)) 12))) -(((-620 |#1| |#2|) (-10 -7 (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|))) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1|)) (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|)) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|)) (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|))) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)))) (-1069) (-1182)) (T -620)) -((-2034 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1069)) (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) (-2034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1069)) (-4 *6 (-1182)) (-5 *1 (-620 *5 *6)))) (-2034 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1069)) (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) (-2034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 *5)) (-4 *6 (-1069)) (-4 *5 (-1182)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) (-2034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1069)) (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1069)) (-4 *6 (-1182)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6))))) -(-10 -7 (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|))) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1|)) (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|)) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|)) (-15 -2034 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|))) (-15 -2034 (|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)))) -((-2304 (((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|) 16)) (-2924 ((|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|) 18)) (-2392 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 13))) -(((-621 |#1| |#2|) (-10 -7 (-15 -2304 ((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2392 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-1182) (-1182)) (T -621)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-623 *6)) (-5 *1 (-621 *5 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-623 *5)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-621 *5 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-623 *6)) (-4 *6 (-1182)) (-4 *5 (-1182)) (-5 *2 (-623 *5)) (-5 *1 (-621 *6 *5))))) -(-10 -7 (-15 -2304 ((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2392 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) -((-2392 (((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)) 13))) -(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)))) (-1182) (-1182) (-1182)) (T -622)) -((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-623 *6)) (-5 *5 (-623 *7)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-623 *8)) (-5 *1 (-622 *6 *7 *8))))) -(-10 -7 (-15 -2392 ((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) NIL)) (-2422 ((|#1| $) NIL)) (-2470 (($ $) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-1814 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2872 (($ $ $) NIL (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "rest" $) NIL (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-3791 (($ $ $) 32 (|has| |#1| (-1069)))) (-3779 (($ $ $) 34 (|has| |#1| (-1069)))) (-3769 (($ $ $) 37 (|has| |#1| (-1069)))) (-3994 (($ (-1 (-112) |#1|) $) NIL)) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2408 ((|#1| $) NIL)) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-3870 (($ $) NIL) (($ $ (-749)) NIL)) (-2599 (($ $) NIL (|has| |#1| (-1069)))) (-2708 (($ $) 31 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) NIL (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) NIL)) (-1979 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-2950 (((-112) $) NIL)) (-3088 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069))) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-2663 (((-112) $) 9)) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2836 (($) 7)) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2299 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2441 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3743 (($ |#1|) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-2001 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1715 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-3164 (((-112) $) NIL)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1195 (-550))) NIL) ((|#1| $ (-550)) 36) ((|#1| $ (-550) |#1|) NIL)) (-1456 (((-550) $ $) NIL)) (-3749 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-2320 (((-112) $) NIL)) (-1662 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4345)))) (-3300 (((-749) $) NIL)) (-3813 (($ $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) 45 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-2132 (($ |#1| $) 10)) (-2037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4006 (($ $ $) 30) (($ |#1| $) NIL) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3254 (($ $ $) 11)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-3145 (((-1127) $) 26 (|has| |#1| (-806))) (((-1127) $ (-112)) 27 (|has| |#1| (-806))) (((-1233) (-800) $) 28 (|has| |#1| (-806))) (((-1233) (-800) $ (-112)) 29 (|has| |#1| (-806)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-623 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -2836 ($)) (-15 -2663 ((-112) $)) (-15 -2132 ($ |#1| $)) (-15 -3254 ($ $ $)) (IF (|has| |#1| (-1069)) (PROGN (-15 -3791 ($ $ $)) (-15 -3779 ($ $ $)) (-15 -3769 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) (-1182)) (T -623)) -((-2836 (*1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1182)))) (-2132 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182)))) (-3254 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182)))) (-3791 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182)))) (-3779 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182)))) (-3769 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182))))) -(-13 (-644 |#1|) (-10 -8 (-15 -2836 ($)) (-15 -2663 ((-112) $)) (-15 -2132 ($ |#1| $)) (-15 -3254 ($ $ $)) (IF (|has| |#1| (-1069)) (PROGN (-15 -3791 ($ $ $)) (-15 -3779 ($ $ $)) (-15 -3769 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 11) (((-1150) $) NIL) (($ (-1150)) NIL) ((|#1| $) 8)) (-2264 (((-112) $ $) NIL))) -(((-624 |#1|) (-13 (-1052) (-595 |#1|)) (-1069)) (T -624)) -NIL -(-13 (-1052) (-595 |#1|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3879 (($ |#1| |#1| $) 43)) (-3368 (((-112) $ (-749)) NIL)) (-3994 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-2599 (($ $) 45)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) 52 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 9 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 37)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) 46)) (-1715 (($ |#1| $) 26) (($ |#1| $ (-749)) 42)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3576 ((|#1| $) 48)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 21)) (-2819 (($) 25)) (-3032 (((-112) $) 50)) (-3009 (((-623 (-2 (|:| -3859 |#1|) (|:| -3457 (-749)))) $) 59)) (-3246 (($) 23) (($ (-623 |#1|)) 18)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) 56 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 19)) (-2451 (((-526) $) 34 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-2233 (((-837) $) 14 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 22)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 61 (|has| |#1| (-1069)))) (-3307 (((-749) $) 16 (|has| $ (-6 -4344))))) -(((-625 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4344) (-15 -3032 ((-112) $)) (-15 -3879 ($ |#1| |#1| $)))) (-1069)) (T -625)) -((-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1069)))) (-3879 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1069))))) -(-13 (-673 |#1|) (-10 -8 (-6 -4344) (-15 -3032 ((-112) $)) (-15 -3879 ($ |#1| |#1| $)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23))) -(((-626 |#1|) (-138) (-1028)) (T -626)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1028))))) +(-13 (-518) (-836)) +(((-171) . T) ((-518) . T) ((-836) . T)) +((-2893 (((-112) $ $) NIL)) (-3809 (($) 7 T CONST)) (-3588 (((-1129) $) NIL)) (-2241 (($) 6 T CONST)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14)) (-2240 (($) 8 T CONST)) (-3382 (((-112) $ $) 10))) +(((-563) (-13 (-1072) (-10 -8 (-15 -2241 ($) -4306) (-15 -3809 ($) -4306) (-15 -2240 ($) -4306)))) (T -563)) +((-2241 (*1 *1) (-5 *1 (-563))) (-3809 (*1 *1) (-5 *1 (-563))) (-2240 (*1 *1) (-5 *1 (-563)))) +(-13 (-1072) (-10 -8 (-15 -2241 ($) -4306) (-15 -3809 ($) -4306) (-15 -2240 ($) -4306))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) 66)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) 72)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 58)) (-2936 (($ $) 34)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) 15)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) 29)) (-2937 (((-536) $) 32)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) 21)) (-3815 (((-3 $ "failed") $ $) 59)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) 16)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 61)) (-2939 (((-1124 (-536)) $) 18)) (-3219 (($ $) 23)) (-4312 (((-838) $) 87) (($ (-536)) 52) (($ $) NIL)) (-3456 (((-749)) 14)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) 36)) (-2986 (($) 35 T CONST)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 39)) (-4192 (($ $) 51) (($ $ $) 37)) (-4194 (($ $ $) 50)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 54) (($ $ $) 55))) +(((-564 |#1| |#2|) (-844 |#1|) (-536) (-112)) (T -564)) +NIL +(-844 |#1|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 21)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) 47)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 $ "failed") $) 75)) (-3502 (($ $) 74)) (-1906 (($ (-1229 $)) 73)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 49)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-749)) NIL)) (-4081 (((-112) $) NIL)) (-4126 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-2497 (((-112) $) NIL)) (-2124 (($) 37 (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3462 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 $) $ (-893)) NIL (|has| $ (-361))) (((-1141 $) $) 83)) (-2121 (((-893) $) 55)) (-1719 (((-1141 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL T CONST)) (-2487 (($ (-893)) 48)) (-4286 (((-112) $) 67)) (-3589 (((-1091) $) NIL)) (-2496 (($) 19 (|has| $ (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 42)) (-4087 (((-398 $) $) NIL)) (-4285 (((-893)) 66) (((-810 (-893))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-4266 (((-133)) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-4302 (((-893) $) 65) (((-810 (-893)) $) NIL)) (-3531 (((-1141 $)) 82)) (-1785 (($) 54)) (-1721 (($) 38 (|has| $ (-361)))) (-3570 (((-667 $) (-1229 $)) NIL) (((-1229 $) $) 71)) (-4325 (((-536) $) 28)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) 30) (($ $) NIL) (($ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3456 (((-749)) 39)) (-2123 (((-1229 $) (-893)) 77) (((-1229 $)) 76)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 22 T CONST)) (-2992 (($) 18 T CONST)) (-4283 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 26)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 61) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-565 |#1|) (-13 (-343) (-322 $) (-596 (-536))) (-893)) (T -565)) +NIL +(-13 (-343) (-322 $) (-596 (-536))) +((-2242 (((-1235) (-1129)) 10))) +(((-566) (-10 -7 (-15 -2242 ((-1235) (-1129))))) (T -566)) +((-2242 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-566))))) +(-10 -7 (-15 -2242 ((-1235) (-1129)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 69)) (-3502 ((|#1| $) NIL)) (-2246 ((|#1| $) 26)) (-2244 (((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2247 (($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2245 (((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $) 27)) (-3588 (((-1129) $) NIL)) (-3160 (($ |#1| |#1|) 33) (($ |#1| (-1147)) 44 (|has| |#1| (-1012 (-1147))))) (-3589 (((-1091) $) NIL)) (-2243 (((-112) $) 30)) (-4165 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1147)) 82 (|has| |#1| (-874 (-1147))))) (-4312 (((-838) $) 96) (($ |#1|) 25)) (-2986 (($) 16 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 15) (($ $ $) NIL)) (-4194 (($ $ $) 78)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 14) (($ (-400 (-536)) $) 36) (($ $ (-400 (-536))) NIL))) +(((-567 |#1|) (-13 (-696 (-400 (-536))) (-1012 |#1|) (-10 -8 (-15 -2247 ($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -2245 ((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -2244 ((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2243 ((-112) $)) (-15 -3160 ($ |#1| |#1|)) (-15 -4165 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1147))) (-15 -4165 (|#1| $ (-1147))) |%noBranch|) (IF (|has| |#1| (-1012 (-1147))) (-15 -3160 ($ |#1| (-1147))) |%noBranch|))) (-356)) (T -567)) +((-2247 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *2)) (|:| |logand| (-1141 *2))))) (-5 *4 (-620 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-567 *2)))) (-2246 (*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *3)) (|:| |logand| (-1141 *3))))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-3160 (*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-4165 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-4165 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1147)))) (-3160 (*1 *1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *1 (-567 *2)) (-4 *2 (-1012 *3)) (-4 *2 (-356))))) +(-13 (-696 (-400 (-536))) (-1012 |#1|) (-10 -8 (-15 -2247 ($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -2245 ((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -2244 ((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2243 ((-112) $)) (-15 -3160 ($ |#1| |#1|)) (-15 -4165 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1147))) (-15 -4165 (|#1| $ (-1147))) |%noBranch|) (IF (|has| |#1| (-1012 (-1147))) (-15 -3160 ($ |#1| (-1147))) |%noBranch|))) +((-4313 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 30))) +(((-568 |#1| |#2|) (-10 -7 (-15 -4313 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -4313 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -568)) +((-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-568 *5 *6)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6))) (-5 *1 (-568 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-568 *5 *6))))) +(-10 -7 (-15 -4313 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -4313 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3772 (((-567 |#2|) (-567 |#2|)) 40)) (-4318 (((-620 |#2|) (-567 |#2|)) 42)) (-2255 ((|#2| (-567 |#2|)) 48))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3772 ((-567 |#2|) (-567 |#2|))) (-15 -4318 ((-620 |#2|) (-567 |#2|))) (-15 -2255 (|#2| (-567 |#2|)))) (-13 (-444) (-1012 (-536)) (-825) (-619 (-536))) (-13 (-29 |#1|) (-1169))) (T -569)) +((-2255 (*1 *2 *3) (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1169))) (-5 *1 (-569 *4 *2)) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1169))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 *5)) (-5 *1 (-569 *4 *5)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1169))) (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-569 *3 *4))))) +(-10 -7 (-15 -3772 ((-567 |#2|) (-567 |#2|))) (-15 -4318 ((-620 |#2|) (-567 |#2|))) (-15 -2255 (|#2| (-567 |#2|)))) +((-2251 (((-112) |#1|) 16)) (-2252 (((-3 |#1| "failed") |#1|) 14)) (-2249 (((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|) 31) (((-3 |#1| "failed") |#1| (-749)) 18)) (-2248 (((-112) |#1| (-749)) 19)) (-2253 ((|#1| |#1|) 32)) (-2250 ((|#1| |#1| (-749)) 34))) +(((-570 |#1|) (-10 -7 (-15 -2248 ((-112) |#1| (-749))) (-15 -2249 ((-3 |#1| "failed") |#1| (-749))) (-15 -2249 ((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|)) (-15 -2250 (|#1| |#1| (-749))) (-15 -2251 ((-112) |#1|)) (-15 -2252 ((-3 |#1| "failed") |#1|)) (-15 -2253 (|#1| |#1|))) (-535)) (T -570)) +((-2253 (*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2251 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2249 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3022 *3) (|:| -2488 (-749)))) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2249 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -2248 ((-112) |#1| (-749))) (-15 -2249 ((-3 |#1| "failed") |#1| (-749))) (-15 -2249 ((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|)) (-15 -2250 (|#1| |#1| (-749))) (-15 -2251 ((-112) |#1|)) (-15 -2252 ((-3 |#1| "failed") |#1|)) (-15 -2253 (|#1| |#1|))) +((-2254 (((-1141 |#1|) (-893)) 27))) +(((-571 |#1|) (-10 -7 (-15 -2254 ((-1141 |#1|) (-893)))) (-343)) (T -571)) +((-2254 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) (-4 *4 (-343))))) +(-10 -7 (-15 -2254 ((-1141 |#1|) (-893)))) +((-3772 (((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|)))) 27)) (-4167 (((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147)) 34 (|has| |#1| (-145)))) (-4318 (((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|)))) 19)) (-2256 (((-307 |#1|) (-400 (-920 |#1|)) (-1147)) 32 (|has| |#1| (-145)))) (-2255 (((-307 |#1|) (-567 (-400 (-920 |#1|)))) 21))) +(((-572 |#1|) (-10 -7 (-15 -3772 ((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|))))) (-15 -4318 ((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|))))) (-15 -2255 ((-307 |#1|) (-567 (-400 (-920 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4167 ((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2256 ((-307 |#1|) (-400 (-920 |#1|)) (-1147)))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (T -572)) +((-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *5)) (-5 *1 (-572 *5)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-3 (-307 *5) (-620 (-307 *5)))) (-5 *1 (-572 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-920 *4)))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-572 *4)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-920 *4)))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 (-307 *4))) (-5 *1 (-572 *4)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-567 (-400 (-920 *3)))) (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-572 *3))))) +(-10 -7 (-15 -3772 ((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|))))) (-15 -4318 ((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|))))) (-15 -2255 ((-307 |#1|) (-567 (-400 (-920 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4167 ((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2256 ((-307 |#1|) (-400 (-920 |#1|)) (-1147)))) |%noBranch|)) +((-2258 (((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536)))) 46) (((-620 (-667 (-536))) (-620 (-536))) 47) (((-667 (-536)) (-620 (-536)) (-876 (-536))) 42)) (-2257 (((-749) (-620 (-536))) 40))) +(((-573) (-10 -7 (-15 -2257 ((-749) (-620 (-536)))) (-15 -2258 ((-667 (-536)) (-620 (-536)) (-876 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536))))))) (T -573)) +((-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-536))) (-5 *4 (-620 (-876 (-536)))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-536))) (-5 *4 (-876 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-573)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-749)) (-5 *1 (-573))))) +(-10 -7 (-15 -2257 ((-749) (-620 (-536)))) (-15 -2258 ((-667 (-536)) (-620 (-536)) (-876 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536)))))) +((-3559 (((-620 |#5|) |#5| (-112)) 73)) (-2259 (((-112) |#5| (-620 |#5|)) 30))) +(((-574 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3559 ((-620 |#5|) |#5| (-112))) (-15 -2259 ((-112) |#5| (-620 |#5|)))) (-13 (-300) (-145)) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -574)) +((-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-620 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1080 *5 *6 *7 *8))))) +(-10 -7 (-15 -3559 ((-620 |#5|) |#5| (-112))) (-15 -2259 ((-112) |#5| (-620 |#5|)))) +((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-575) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -575)) +((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575))))) +(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) +((-2893 (((-112) $ $) NIL (|has| (-142) (-1072)))) (-3780 (($ $) 34)) (-3781 (($ $) NIL)) (-3771 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 51)) (-3777 (((-112) $ $ (-536)) 46)) (-3772 (((-620 $) $ (-142)) 60) (((-620 $) $ (-139)) 61)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-142) (-825))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-142) $ (-536) (-142)) 45 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3769 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-3774 (($ $ (-1196 (-536)) $) 44)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3760 (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) NIL)) (-3779 (((-112) $ $) 72)) (-3773 (((-536) (-1 (-112) (-142)) $) NIL) (((-536) (-142) $) NIL (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 48 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 47) (((-536) (-139) $ (-536)) 50)) (-2063 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 9)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 28 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2303 (((-536) $) 42 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 73)) (-3776 (((-749) $ $ (-142)) 70)) (-2067 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3782 (($ $) 37)) (-3783 (($ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3770 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3588 (((-1129) $) 38 (|has| (-142) (-1072)))) (-2377 (($ (-142) $ (-536)) NIL) (($ $ $ (-536)) 23)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-536) $) 69) (((-1091) $) NIL (|has| (-142) (-1072)))) (-4155 (((-142) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2301 (($ $ (-142)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) NIL)) (-3757 (((-112) $) 12)) (-3923 (($) 10)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) 52) (($ $ (-1196 (-536))) 21) (($ $ $) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-1842 (($ $ $ (-536)) 66 (|has| $ (-6 -4349)))) (-3754 (($ $) 17)) (-4325 (((-525) $) NIL (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) NIL)) (-4156 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-620 $)) 67)) (-4312 (($ (-142)) NIL) (((-838) $) 27 (|has| (-142) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3382 (((-112) $ $) 14 (|has| (-142) (-1072)))) (-3012 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3013 (((-112) $ $) 15 (|has| (-142) (-825)))) (-4311 (((-749) $) 13 (|has| $ (-6 -4348))))) +(((-576 |#1|) (-13 (-1115) (-10 -8 (-15 -3589 ((-536) $)))) (-536)) (T -576)) +((-3589 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-576 *3)) (-14 *3 *2)))) +(-13 (-1115) (-10 -8 (-15 -3589 ((-536) $)))) +((-3881 (((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|)) 32))) +(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|))) (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|)) (T -577)) +((-3881 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1060 *3)) (-4 *3 (-924 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) (-4 *7 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *6 *4 *7 *3))))) +(-10 -7 (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|))) (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 63)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 54) (($ $ (-536) (-536)) 55)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 60)) (-2290 (($ $) 100)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2288 (((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536))) 224)) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 34)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3220 (((-112) $) NIL)) (-4126 (((-536) $) 58) (((-536) $ (-536)) 59)) (-2497 (((-112) $) NIL)) (-4131 (($ $ (-893)) 76)) (-4170 (($ (-1 |#1| (-536)) $) 73)) (-4292 (((-112) $) 25)) (-3221 (($ |#1| (-536)) 22) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 67)) (-2294 (($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 13)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $) 150 (|has| |#1| (-38 (-400 (-536)))))) (-2291 (((-3 $ "failed") $ $ (-112)) 99)) (-2289 (($ $ $) 108)) (-3589 (((-1091) $) NIL)) (-2292 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 15)) (-2293 (((-1000 (-817 (-536))) $) 14)) (-4123 (($ $ (-536)) 45)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536)))))) (-4154 ((|#1| $ (-536)) 57) (($ $ $) NIL (|has| (-536) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-4302 (((-536) $) NIL)) (-3219 (($ $) 46)) (-4312 (((-838) $) NIL) (($ (-536)) 28) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4035 ((|#1| $ (-536)) 56)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 37)) (-4127 ((|#1| $) NIL)) (-2269 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-2281 (($ $) 158 (|has| |#1| (-38 (-400 (-536)))))) (-2271 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-2283 (($ $) 163 (|has| |#1| (-38 (-400 (-536)))))) (-2267 (($ $) 189 (|has| |#1| (-38 (-400 (-536)))))) (-2279 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-2286 (($ $ (-400 (-536))) 166 (|has| |#1| (-38 (-400 (-536)))))) (-2287 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-536)))))) (-2284 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-2285 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-2266 (($ $) 191 (|has| |#1| (-38 (-400 (-536)))))) (-2278 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-2268 (($ $) 187 (|has| |#1| (-38 (-400 (-536)))))) (-2280 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-2270 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-2282 (($ $) 161 (|has| |#1| (-38 (-400 (-536)))))) (-2263 (($ $) 197 (|has| |#1| (-38 (-400 (-536)))))) (-2275 (($ $) 173 (|has| |#1| (-38 (-400 (-536)))))) (-2265 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-2277 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-2261 (($ $) 201 (|has| |#1| (-38 (-400 (-536)))))) (-2273 (($ $) 177 (|has| |#1| (-38 (-400 (-536)))))) (-2260 (($ $) 203 (|has| |#1| (-38 (-400 (-536)))))) (-2272 (($ $) 179 (|has| |#1| (-38 (-400 (-536)))))) (-2262 (($ $) 199 (|has| |#1| (-38 (-400 (-536)))))) (-2274 (($ $) 175 (|has| |#1| (-38 (-400 (-536)))))) (-2264 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-2276 (($ $) 171 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-2986 (($) 29 T CONST)) (-2992 (($) 38 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-3382 (((-112) $ $) 65)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 84) (($ $ $) 64)) (-4194 (($ $ $) 81)) (** (($ $ (-893)) NIL) (($ $ (-749)) 103)) (* (($ (-893) $) 89) (($ (-749) $) 87) (($ (-536) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-578 |#1|) (-13 (-1208 |#1| (-536)) (-10 -8 (-15 -2294 ($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -2293 ((-1000 (-817 (-536))) $)) (-15 -2292 ((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $)) (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -4292 ((-112) $)) (-15 -4170 ($ (-1 |#1| (-536)) $)) (-15 -2291 ((-3 $ "failed") $ $ (-112))) (-15 -2290 ($ $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (-15 -2287 ($ $ |#1|)) (-15 -2286 ($ $ (-400 (-536)))) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $))) |%noBranch|))) (-1023)) (T -578)) +((-4292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *4)))) (-4 *4 (-1023)) (-5 *1 (-578 *4)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) (-2291 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023)))) (-2289 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023)))) (-2288 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *6)))) (-5 *4 (-1000 (-817 (-536)))) (-5 *5 (-1147)) (-5 *7 (-400 (-536))) (-4 *6 (-1023)) (-5 *2 (-838)) (-5 *1 (-578 *6)))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2287 (*1 *1 *1 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1023)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(-13 (-1208 |#1| (-536)) (-10 -8 (-15 -2294 ($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -2293 ((-1000 (-817 (-536))) $)) (-15 -2292 ((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $)) (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -4292 ((-112) $)) (-15 -4170 ($ (-1 |#1| (-536)) $)) (-15 -2291 ((-3 $ "failed") $ $ (-112))) (-15 -2290 ($ $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (-15 -2287 ($ $ |#1|)) (-15 -2286 ($ $ (-400 (-536)))) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $))) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4173 (($ (-1124 |#1|)) 9)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 42)) (-3220 (((-112) $) 52)) (-4126 (((-749) $) 55) (((-749) $ (-749)) 54)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ $) 44 (|has| |#1| (-543)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-1124 |#1|) $) 23)) (-3456 (((-749)) 51)) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 10 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) 22)) (-4192 (($ $) 30) (($ $ $) 16)) (-4194 (($ $ $) 25)) (** (($ $ (-893)) NIL) (($ $ (-749)) 49)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-536)) 36))) +(((-579 |#1|) (-13 (-1023) (-10 -8 (-15 -4172 ((-1124 |#1|) $)) (-15 -4173 ($ (-1124 |#1|))) (-15 -3220 ((-112) $)) (-15 -4126 ((-749) $)) (-15 -4126 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-536))) (IF (|has| |#1| (-543)) (-6 (-543)) |%noBranch|))) (-1023)) (T -579)) +((-4172 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-579 *3)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4126 (*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-579 *3)) (-4 *3 (-1023))))) +(-13 (-1023) (-10 -8 (-15 -4172 ((-1124 |#1|) $)) (-15 -4173 ($ (-1124 |#1|))) (-15 -3220 ((-112) $)) (-15 -4126 ((-749) $)) (-15 -4126 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-536))) (IF (|has| |#1| (-543)) (-6 (-543)) |%noBranch|))) +((-4313 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 15))) +(((-580 |#1| |#2|) (-10 -7 (-15 -4313 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1183) (-1183)) (T -580)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6))))) +(-10 -7 (-15 -4313 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) +((-4313 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)) 20) (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|)) 19) (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 18))) +(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) (-1183) (-1183) (-1183)) (T -581)) +((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-583 *8)) (-5 *1 (-581 *6 *7 *8))))) +(-10 -7 (-15 -4313 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) +((-2299 ((|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))) 55)) (-2298 (((-166 |#2|) |#3|) 117)) (-2295 ((|#3| (-166 |#2|)) 44)) (-2296 ((|#2| |#3|) 19)) (-2297 ((|#3| |#2|) 33))) +(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -2295 (|#3| (-166 |#2|))) (-15 -2296 (|#2| |#3|)) (-15 -2297 (|#3| |#2|)) (-15 -2298 ((-166 |#2|) |#3|)) (-15 -2299 (|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))))) (-13 (-543) (-825)) (-13 (-414 |#1|) (-976) (-1169)) (-13 (-414 (-166 |#1|)) (-976) (-1169))) (T -582)) +((-2299 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-620 (-1147))) (-4 *2 (-13 (-414 (-166 *5)) (-976) (-1169))) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-976) (-1169))))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-5 *2 (-166 *5)) (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169))))) (-2297 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-976) (-1169))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 *4) (-976) (-1169))) (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169))))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *5 *2))))) +(-10 -7 (-15 -2295 (|#3| (-166 |#2|))) (-15 -2296 (|#2| |#3|)) (-15 -2297 (|#3| |#2|)) (-15 -2298 ((-166 |#2|) |#3|)) (-15 -2299 (|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))))) +((-4068 (($ (-1 (-112) |#1|) $) 17)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (($ (-1 |#1| |#1|) |#1|) 9)) (-3805 (($ (-1 (-112) |#1|) $) 13)) (-3804 (($ (-1 (-112) |#1|) $) 15)) (-3879 (((-1124 |#1|) $) 18)) (-4312 (((-838) $) NIL))) +(((-583 |#1|) (-13 (-595 (-838)) (-10 -8 (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)) (-15 -4068 ($ (-1 (-112) |#1|) $)) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ((-1124 |#1|) $)))) (-1183)) (T -583)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3805 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1183))))) +(-13 (-595 (-838)) (-10 -8 (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)) (-15 -4068 ($ (-1 (-112) |#1|) $)) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ((-1124 |#1|) $)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) NIL (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-584 |#1| |#2|) (-1228 |#1|) (-1183) (-536)) (T -584)) +NIL +(-1228 |#1|) +((-2300 (((-1235) $ |#2| |#2|) 36)) (-2302 ((|#2| $) 23)) (-2303 ((|#2| $) 21)) (-2067 (($ (-1 |#3| |#3|) $) 32)) (-4313 (($ (-1 |#3| |#3|) $) 30)) (-4155 ((|#3| $) 26)) (-2301 (($ $ |#3|) 33)) (-2304 (((-112) |#3| $) 17)) (-2307 (((-620 |#3|) $) 15)) (-4154 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-585 |#1| |#2| |#3|) (-10 -8 (-15 -2300 ((-1235) |#1| |#2| |#2|)) (-15 -2301 (|#1| |#1| |#3|)) (-15 -4155 (|#3| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 (|#2| |#1|)) (-15 -2304 ((-112) |#3| |#1|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|))) (-586 |#2| |#3|) (-1072) (-1183)) (T -585)) +NIL +(-10 -8 (-15 -2300 ((-1235) |#1| |#2| |#2|)) (-15 -2301 (|#1| |#1| |#3|)) (-15 -4155 (|#3| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 (|#2| |#1|)) (-15 -2304 ((-112) |#3| |#1|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#2| (-1072)))) (-2300 (((-1235) $ |#1| |#1|) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-1632 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 51)) (-2063 (((-620 |#2|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 43 (|has| |#1| (-825)))) (-2506 (((-620 |#2|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 44 (|has| |#1| (-825)))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#2| (-1072)))) (-2305 (((-620 |#1|) $) 46)) (-2306 (((-112) |#1| $) 47)) (-3589 (((-1091) $) 21 (|has| |#2| (-1072)))) (-4155 ((|#2| $) 42 (|has| |#1| (-825)))) (-2301 (($ $ |#2|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2064 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4348))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#2| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#2| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-586 |#1| |#2|) (-138) (-1072) (-1183)) (T -586)) +((-2307 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *4)))) (-2306 (*1 *2 *3 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *3)))) (-2304 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1072)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *3 (-825)) (-4 *2 (-1183)))) (-2301 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-2300 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-1235))))) +(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2307 ((-620 |t#2|) $)) (-15 -2306 ((-112) |t#1| $)) (-15 -2305 ((-620 |t#1|) $)) (IF (|has| |t#2| (-1072)) (IF (|has| $ (-6 -4348)) (-15 -2304 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -2303 (|t#1| $)) (-15 -2302 (|t#1| $)) (-15 -4155 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -2301 ($ $ |t#2|)) (-15 -2300 ((-1235) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1072)) ((-595 (-838)) -3886 (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-1072) |has| |#2| (-1072)) ((-1183) . T)) +((-4312 (((-838) $) 19) (((-128) $) 14) (($ (-128)) 13))) +(((-587) (-13 (-595 (-838)) (-595 (-128)) (-10 -8 (-15 -4312 ($ (-128)))))) (T -587)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-587))))) +(-13 (-595 (-838)) (-595 (-128)) (-10 -8 (-15 -4312 ($ (-128))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1184) $) 14) (($ (-620 (-1184))) 13)) (-2308 (((-620 (-1184)) $) 10)) (-3382 (((-112) $ $) NIL))) +(((-588) (-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2308 ((-620 (-1184)) $))))) (T -588)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588))))) +(-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2308 ((-620 (-1184)) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1229 (-667 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1814 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1902 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2491 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2017 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1229 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3816 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-3439 (((-893)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1815 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1903 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2492 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2021 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4154 ((|#1| $ (-536)) NIL (|has| |#2| (-411 |#1|)))) (-3570 (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $) (-1229 $)) NIL (|has| |#2| (-360 |#1|))) (((-1229 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-4325 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-620 (-920 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-620 (-920 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4312 (((-838) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2123 (((-1229 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-620 (-1229 |#1|))) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2875 (($ (-667 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 24)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-589 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -589)) +((-4312 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3))))) +(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-1808 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) 33)) (-3955 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL) (($) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-1129) |#1|) 43)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#1| #1="failed") (-1129) $) 46)) (-3891 (($) NIL T CONST)) (-1812 (($ $ (-1129)) 24)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-3759 (((-3 |#1| #1#) (-1129) $) 47) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (|has| $ (-6 -4348)))) (-3760 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-1809 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) 32)) (-1632 ((|#1| $ (-1129) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-1129)) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2350 (($ $) 48)) (-1813 (($ (-381)) 22) (($ (-381) (-1129)) 21)) (-3900 (((-381) $) 34)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2739 (((-620 (-1129)) $) 39)) (-2310 (((-112) (-1129) $) NIL)) (-1810 (((-1129) $) 35)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 37)) (-4154 ((|#1| $ (-1129) |#1|) NIL) ((|#1| $ (-1129)) 42)) (-1518 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL) (($) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-4312 (((-838) $) 20)) (-1811 (($ $) 25)) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 19)) (-4311 (((-749) $) 41 (|has| $ (-6 -4348))))) +(((-590 |#1|) (-13 (-358 (-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-1160 (-1129) |#1|) (-10 -8 (-6 -4348) (-15 -2350 ($ $)))) (-1072)) (T -590)) +((-2350 (*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1072))))) +(-13 (-358 (-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-1160 (-1129) |#1|) (-10 -8 (-6 -4348) (-15 -2350 ($ $)))) +((-3591 (((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 15)) (-2739 (((-620 |#2|) $) 19)) (-2310 (((-112) |#2| $) 12))) +(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -2739 ((-620 |#2|) |#1|)) (-15 -2310 ((-112) |#2| |#1|)) (-15 -3591 ((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|))) (-592 |#2| |#3|) (-1072) (-1072)) (T -591)) +NIL +(-10 -8 (-15 -2739 ((-620 |#2|) |#1|)) (-15 -2310 ((-112) |#2| |#1|)) (-15 -3591 ((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|))) +((-2893 (((-112) $ $) 19 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| "failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| "failed") |#1| $) 62)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40)) (-3589 (((-1091) $) 21 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51)) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50)) (-4312 (((-838) $) 18 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-592 |#1| |#2|) (-138) (-1072) (-1072)) (T -592)) +((-2310 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-112)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) (-3759 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-2309 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) +(-13 (-223 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))) (-10 -8 (-15 -2310 ((-112) |t#1| $)) (-15 -2739 ((-620 |t#1|) $)) (-15 -3759 ((-3 |t#2| "failed") |t#1| $)) (-15 -2309 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))) ((-149 #1#) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-481 #1#) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-1072) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-2311 (((-3 (-1147) "failed") $) 37)) (-1368 (((-1235) $ (-749)) 26)) (-3773 (((-749) $) 25)) (-3375 (((-113) $) 12)) (-3900 (((-1147) $) 20)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2312 (($ (-113) (-620 |#1|) (-749)) 30) (($ (-1147)) 31)) (-2959 (((-112) $ (-113)) 18) (((-112) $ (-1147)) 16)) (-2928 (((-749) $) 22)) (-3589 (((-1091) $) NIL)) (-4325 (((-864 (-536)) $) 77 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 84 (|has| |#1| (-596 (-864 (-371))))) (((-525) $) 69 (|has| |#1| (-596 (-525))))) (-4312 (((-838) $) 55)) (-2313 (((-620 |#1|) $) 24)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 41)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 42))) +(((-593 |#1|) (-13 (-131) (-858 |#1|) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3375 ((-113) $)) (-15 -2313 ((-620 |#1|) $)) (-15 -2928 ((-749) $)) (-15 -2312 ($ (-113) (-620 |#1|) (-749))) (-15 -2312 ($ (-1147))) (-15 -2311 ((-3 (-1147) "failed") $)) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) (-825)) (T -593)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2312 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-825)) (-5 *1 (-593 *5)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2311 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825))))) +(-13 (-131) (-858 |#1|) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3375 ((-113) $)) (-15 -2313 ((-620 |#1|) $)) (-15 -2928 ((-749) $)) (-15 -2312 ($ (-113) (-620 |#1|) (-749))) (-15 -2312 ($ (-1147))) (-15 -2311 ((-3 (-1147) "failed") $)) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) +((-2314 (((-593 |#2|) |#1|) 15)) (-2315 (((-3 |#1| "failed") (-593 |#2|)) 19))) +(((-594 |#1| |#2|) (-10 -7 (-15 -2314 ((-593 |#2|) |#1|)) (-15 -2315 ((-3 |#1| "failed") (-593 |#2|)))) (-825) (-825)) (T -594)) +((-2315 (*1 *2 *3) (|partial| -12 (-5 *3 (-593 *4)) (-4 *4 (-825)) (-4 *2 (-825)) (-5 *1 (-594 *2 *4)))) (-2314 (*1 *2 *3) (-12 (-5 *2 (-593 *4)) (-5 *1 (-594 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) +(-10 -7 (-15 -2314 ((-593 |#2|) |#1|)) (-15 -2315 ((-3 |#1| "failed") (-593 |#2|)))) +((-4312 ((|#1| $) 6))) +(((-595 |#1|) (-138) (-1183)) (T -595)) +((-4312 (*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1183))))) +(-13 (-10 -8 (-15 -4312 (|t#1| $)))) +((-4325 ((|#1| $) 6))) +(((-596 |#1|) (-138) (-1183)) (T -596)) +((-4325 (*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1183))))) +(-13 (-10 -8 (-15 -4325 (|t#1| $)))) +((-2316 (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)) 15) (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16))) +(((-597 |#1| |#2|) (-10 -7 (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -597)) +((-2316 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6)))) (-2316 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) (-5 *3 (-400 *5))))) +(-10 -7 (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) +((-2893 (((-112) $ $) NIL)) (-2318 (($) 11 T CONST)) (-2317 (($) 12 T CONST)) (-3185 (($ $ $) 24)) (-3671 (($ $) 22)) (-3588 (((-1129) $) NIL)) (-3184 (($ $ $) 25)) (-3589 (((-1091) $) NIL)) (-2319 (($) 10 T CONST)) (-3183 (($ $ $) 26)) (-4312 (((-838) $) 30)) (-3924 (((-112) $ (|[\|\|]| -2319)) 19) (((-112) $ (|[\|\|]| -2318)) 21) (((-112) $ (|[\|\|]| -2317)) 17)) (-3186 (($ $ $) 23)) (-3382 (((-112) $ $) 15))) +(((-598) (-13 (-941) (-10 -8 (-15 -2319 ($) -4306) (-15 -2318 ($) -4306) (-15 -2317 ($) -4306) (-15 -3924 ((-112) $ (|[\|\|]| -2319))) (-15 -3924 ((-112) $ (|[\|\|]| -2318))) (-15 -3924 ((-112) $ (|[\|\|]| -2317)))))) (T -598)) +((-2319 (*1 *1) (-5 *1 (-598))) (-2318 (*1 *1) (-5 *1 (-598))) (-2317 (*1 *1) (-5 *1 (-598))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2319)) (-5 *2 (-112)) (-5 *1 (-598)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2318)) (-5 *2 (-112)) (-5 *1 (-598)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2317)) (-5 *2 (-112)) (-5 *1 (-598))))) +(-13 (-941) (-10 -8 (-15 -2319 ($) -4306) (-15 -2318 ($) -4306) (-15 -2317 ($) -4306) (-15 -3924 ((-112) $ (|[\|\|]| -2319))) (-15 -3924 ((-112) $ (|[\|\|]| -2318))) (-15 -3924 ((-112) $ (|[\|\|]| -2317))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2497 (((-112) $) NIL)) (-3326 ((|#1| $) 13)) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3325 ((|#3| $) 15)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL)) (-3456 (((-749)) 20)) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) 12 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4303 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-599 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -599)) +((-4303 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-4303 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-3325 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) +((-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10))) +(((-600 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-601 |#2|) (-1023)) (T -600)) +NIL +(-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 34)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-601 |#1|) (-138) (-1023)) (T -601)) +((-4312 (*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1023))))) +(-13 (-1023) (-626 |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2320 ((|#2| |#2| (-1147) (-1147)) 18))) +(((-602 |#1| |#2|) (-10 -7 (-15 -2320 (|#2| |#2| (-1147) (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -602)) +((-2320 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-29 *4)))))) +(-10 -7 (-15 -2320 (|#2| |#2| (-1147) (-1147)))) +((-2893 (((-112) $ $) 56)) (-3534 (((-112) $) 52)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2321 ((|#1| $) 49)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4106 (((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 24)) (-3816 (((-3 $ "failed") $) 75)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4126 (((-536) $) 19)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) 36)) (-3221 (($ |#1| (-536)) 21)) (-3520 ((|#1| $) 51)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) 79)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-749) $) 99 (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 98 (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4302 (((-536) $) 34)) (-4325 (((-400 |#2|) $) 42)) (-4312 (((-838) $) 62) (($ (-536)) 32) (($ $) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 31) (($ |#2|) 22)) (-4035 ((|#1| $ (-536)) 63)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 29)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 9 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) 17)) (-4192 (($ $) 46) (($ $ $) NIL)) (-4194 (($ $ $) 76)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 26) (($ $ $) 44))) +(((-603 |#1| |#2|) (-13 (-225 |#2|) (-543) (-596 (-400 |#2|)) (-405 |#1|) (-1012 |#2|) (-10 -8 (-15 -4292 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4126 ((-536) $)) (-15 -4314 ($ $)) (-15 -3520 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4035 (|#1| $ (-536))) (-15 -3221 ($ |#1| (-536))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4106 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-543) (-1205 |#1|)) (T -603)) +((-4292 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4302 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4126 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4314 (*1 *1 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-2321 (*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-543)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -1879 (-603 *4 *5)) (|:| -1878 (-400 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5))))) +(-13 (-225 |#2|) (-543) (-596 (-400 |#2|)) (-405 |#1|) (-1012 |#2|) (-10 -8 (-15 -4292 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4126 ((-536) $)) (-15 -4314 ($ $)) (-15 -3520 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4035 (|#1| $ (-536))) (-15 -3221 ($ |#1| (-536))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4106 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) +((-4040 (((-620 |#6|) (-620 |#4|) (-112)) 47)) (-2322 ((|#6| |#6|) 40))) +(((-604 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2322 (|#6| |#6|)) (-15 -4040 ((-620 |#6|) (-620 |#4|) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|) (-1080 |#1| |#2| |#3| |#4|)) (T -604)) +((-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *10)) (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *10 (-1080 *5 *6 *7 *8)))) (-2322 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *2 (-1080 *3 *4 *5 *6))))) +(-10 -7 (-15 -2322 (|#6| |#6|)) (-15 -4040 ((-620 |#6|) (-620 |#4|) (-112)))) +((-2323 (((-112) |#3| (-749) (-620 |#3|)) 23)) (-2324 (((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)) 55))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-112) |#3| (-749) (-620 |#3|))) (-15 -2324 ((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)))) (-825) (-771) (-300) (-924 |#3| |#2| |#1|)) (T -605)) +((-2324 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2762 (-620 (-2 (|:| |irr| *10) (|:| -2482 (-536))))))) (-5 *6 (-620 *3)) (-5 *7 (-620 *8)) (-4 *8 (-825)) (-4 *3 (-300)) (-4 *10 (-924 *3 *9 *8)) (-4 *9 (-771)) (-5 *2 (-2 (|:| |polfac| (-620 *10)) (|:| |correct| *3) (|:| |corrfact| (-620 (-1141 *3))))) (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-620 (-1141 *3))))) (-2323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-749)) (-5 *5 (-620 *3)) (-4 *3 (-300)) (-4 *6 (-825)) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) (-4 *8 (-924 *3 *7 *6))))) +(-10 -7 (-15 -2323 ((-112) |#3| (-749) (-620 |#3|))) (-15 -2324 ((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)))) +((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-606) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -606)) +((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606))))) +(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4291 (($ $) 67)) (-4297 (((-642 |#1| |#2|) $) 52)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 70)) (-2325 (((-620 (-286 |#2|)) $ $) 33)) (-3589 (((-1091) $) NIL)) (-4298 (($ (-642 |#1| |#2|)) 48)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 58) (((-1245 |#1| |#2|) $) NIL) (((-1250 |#1| |#2|) $) 66)) (-2992 (($) 53 T CONST)) (-2326 (((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) 31)) (-2327 (((-620 (-642 |#1| |#2|)) (-620 |#1|)) 65)) (-2991 (((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) 37)) (-3382 (((-112) $ $) 54)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 44))) +(((-607 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -4298 ($ (-642 |#1| |#2|))) (-15 -4297 ((-642 |#1| |#2|) $)) (-15 -2991 ((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1250 |#1| |#2|) $)) (-15 -4291 ($ $)) (-15 -4289 ((-620 |#1|) $)) (-15 -2327 ((-620 (-642 |#1| |#2|)) (-620 |#1|))) (-15 -2326 ((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -2325 ((-620 (-286 |#2|)) $ $)))) (-825) (-13 (-170) (-696 (-400 (-536)))) (-893)) (T -607)) +((-4298 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-5 *1 (-607 *3 *4 *5)) (-14 *5 (-893)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-13 (-170) (-696 (-400 (-536))))) (-14 *4 (-893)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-642 *4 *5))) (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-536))))) (-14 *6 (-893)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2325 (*1 *2 *1 *1) (-12 (-5 *2 (-620 (-286 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) +(-13 (-465) (-10 -8 (-15 -4298 ($ (-642 |#1| |#2|))) (-15 -4297 ((-642 |#1| |#2|) $)) (-15 -2991 ((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1250 |#1| |#2|) $)) (-15 -4291 ($ $)) (-15 -4289 ((-620 |#1|) $)) (-15 -2327 ((-620 (-642 |#1| |#2|)) (-620 |#1|))) (-15 -2326 ((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -2325 ((-620 (-286 |#2|)) $ $)))) +((-4040 (((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)) 72) (((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112)) 58)) (-2328 (((-112) (-620 (-758 |#1| (-839 |#2|)))) 23)) (-2332 (((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)) 71)) (-2331 (((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112)) 57)) (-2330 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|)))) 27)) (-2329 (((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|)))) 26))) +(((-608 |#1| |#2|) (-10 -7 (-15 -2328 ((-112) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2329 ((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|))))) (-15 -2330 ((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2331 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2332 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)))) (-444) (-620 (-1147))) (T -608)) +((-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4)))) (-2329 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 (-758 *4 (-839 *5)))) (-4 *4 (-444)) (-14 *5 (-620 (-1147))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) +(-10 -7 (-15 -2328 ((-112) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2329 ((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|))))) (-15 -2330 ((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2331 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2332 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)))) +((-3375 (((-113) (-113)) 83)) (-2336 ((|#2| |#2|) 30)) (-3160 ((|#2| |#2| (-1063 |#2|)) 79) ((|#2| |#2| (-1147)) 52)) (-2334 ((|#2| |#2|) 29)) (-2335 ((|#2| |#2|) 31)) (-2333 (((-112) (-113)) 34)) (-2338 ((|#2| |#2|) 26)) (-2339 ((|#2| |#2|) 28)) (-2337 ((|#2| |#2|) 27))) +(((-609 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -2339 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3160 (|#2| |#2| (-1147))) (-15 -3160 (|#2| |#2| (-1063 |#2|)))) (-13 (-825) (-543)) (-13 (-414 |#1|) (-976) (-1169))) (T -609)) +((-3160 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2337 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *4)) (-4 *4 (-13 (-414 *3) (-976) (-1169))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-609 *4 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169)))))) +(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -2339 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3160 (|#2| |#2| (-1147))) (-15 -3160 (|#2| |#2| (-1063 |#2|)))) +((-3841 (($ $) 38)) (-3997 (($ $) 21)) (-3839 (($ $) 37)) (-3996 (($ $) 22)) (-3843 (($ $) 36)) (-3995 (($ $) 23)) (-3985 (($) 48)) (-4297 (($ $) 45)) (-2336 (($ $) 17)) (-3160 (($ $ (-1063 $)) 7) (($ $ (-1147)) 6)) (-4298 (($ $) 46)) (-2334 (($ $) 15)) (-2335 (($ $) 16)) (-3844 (($ $) 35)) (-3994 (($ $) 24)) (-3842 (($ $) 34)) (-3993 (($ $) 25)) (-3840 (($ $) 33)) (-3992 (($ $) 26)) (-3847 (($ $) 44)) (-3835 (($ $) 32)) (-3845 (($ $) 43)) (-3833 (($ $) 31)) (-3849 (($ $) 42)) (-3837 (($ $) 30)) (-3850 (($ $) 41)) (-3838 (($ $) 29)) (-3848 (($ $) 40)) (-3836 (($ $) 28)) (-3846 (($ $) 39)) (-3834 (($ $) 27)) (-2338 (($ $) 19)) (-2339 (($ $) 20)) (-2337 (($ $) 18)) (** (($ $ $) 47))) +(((-610) (-138)) (T -610)) +((-2339 (*1 *1 *1) (-4 *1 (-610))) (-2338 (*1 *1 *1) (-4 *1 (-610))) (-2337 (*1 *1 *1) (-4 *1 (-610))) (-2336 (*1 *1 *1) (-4 *1 (-610))) (-2335 (*1 *1 *1) (-4 *1 (-610))) (-2334 (*1 *1 *1) (-4 *1 (-610)))) +(-13 (-934) (-1169) (-10 -8 (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)))) +(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-934) . T) ((-1169) . T) ((-1172) . T)) +((-2349 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-2342 (((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 68)) (-2343 (((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|)) 70) (((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|)) 69)) (-2340 (((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|))) 108)) (-2347 (((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 83)) (-2341 (((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|))) 118)) (-2345 (((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|))) 58)) (-2344 (((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 41)) (-2348 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|))) 50)) (-2346 (((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|))) 91))) +(((-611 |#1| |#2|) (-10 -7 (-15 -2340 ((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|)))) (-15 -2341 ((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|)))) (-15 -2342 ((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2344 ((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2345 ((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|)))) (-15 -2346 ((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2347 ((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2348 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2349 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-620 (-1147)) (-444)) (T -611)) +((-2349 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5)))) (-2348 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-2347 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-839 *4)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-2346 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-620 (-1147))) (-5 *1 (-611 *5 *6)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-1229 *6)) (-5 *1 (-611 *5 *6)))) (-2344 (*1 *2 *2) (-12 (-5 *2 (-620 (-473 *3 *4))) (-14 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-611 *3 *4)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-2343 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-620 (-241 *4 *5))) (-5 *1 (-611 *4 *5)))) (-2341 (*1 *2 *3) (-12 (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-620 (-241 *4 *5))) (|:| |glval| (-620 (-536))))) (-5 *1 (-611 *4 *5)) (-5 *3 (-620 (-241 *4 *5))))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-620 (-241 *4 *5))) (|:| |gvlist| (-620 (-536))))) (-5 *1 (-611 *4 *5))))) +(-10 -7 (-15 -2340 ((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|)))) (-15 -2341 ((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|)))) (-15 -2342 ((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2344 ((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2345 ((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|)))) (-15 -2346 ((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2347 ((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2348 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2349 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-51) $ (-1129) (-51)) 16) (((-51) $ (-1147) (-51)) 17)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1129) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1129) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-51) $ (-1129) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1129)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-2350 (($ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2351 (($ (-381)) 9)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1129)) $) NIL)) (-2310 (((-112) (-1129) $) NIL)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-4155 (((-51) $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1129)) 14) (((-51) $ (-1129) (-51)) NIL) (((-51) $ (-1147)) 15)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-612) (-13 (-1160 (-1129) (-51)) (-10 -8 (-15 -2351 ($ (-381))) (-15 -2350 ($ $)) (-15 -4154 ((-51) $ (-1147))) (-15 -4142 ((-51) $ (-1147) (-51)))))) (T -612)) +((-2351 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612)))) (-2350 (*1 *1 *1) (-5 *1 (-612))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-51)) (-5 *1 (-612)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1147)) (-5 *1 (-612))))) +(-13 (-1160 (-1129) (-51)) (-10 -8 (-15 -2351 ($ (-381))) (-15 -2350 ($ $)) (-15 -4154 ((-51) $ (-1147))) (-15 -4142 ((-51) $ (-1147) (-51))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1229 (-667 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1814 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1902 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2491 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2017 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1229 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3816 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-3439 (((-893)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1815 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1903 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2492 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2021 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4154 ((|#1| $ (-536)) NIL (|has| |#2| (-411 |#1|)))) (-3570 (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $) (-1229 $)) NIL (|has| |#2| (-360 |#1|))) (((-1229 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-4325 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-620 (-920 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-620 (-920 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4312 (((-838) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2123 (((-1229 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-620 (-1229 |#1|))) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2875 (($ (-667 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2986 (($) 15 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 17)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-613 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -613)) +((-4312 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-723 *3))))) +(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) +((-4303 (($ $ |#2|) 10))) +(((-614 |#1| |#2|) (-10 -8 (-15 -4303 (|#1| |#1| |#2|))) (-615 |#2|) (-170)) (T -614)) +NIL +(-10 -8 (-15 -4303 (|#1| |#1| |#2|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3879 (($ $ $) 29)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-615 |#1|) (-138) (-170)) (T -615)) +((-3879 (*1 *1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(-13 (-696 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3879 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-2353 (((-3 (-817 |#2|) #1="failed") |#2| (-286 |#2|) (-1129)) 82) (((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|))) 104)) (-2352 (((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|))) 109))) +(((-616 |#1| |#2|) (-10 -7 (-15 -2353 ((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|)))) (-15 -2352 ((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|)))) (-15 -2353 ((-3 (-817 |#2|) #1#) |#2| (-286 |#2|) (-1129)))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -616)) +((-2353 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1129)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-817 *3)) (-5 *1 (-616 *6 *3)))) (-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-810 *3))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-810 *3)) (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-817 *3))) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (-817 *3) (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-817 *3) #1#))) "failed")) (-5 *1 (-616 *5 *3))))) +(-10 -7 (-15 -2353 ((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|)))) (-15 -2352 ((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|)))) (-15 -2353 ((-3 (-817 |#2|) #1#) |#2| (-286 |#2|) (-1129)))) +((-2353 (((-3 (-817 (-400 (-920 |#1|))) #1="failed") (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)) 80) (((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 20) (((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|)))) 35)) (-2352 (((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 23) (((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|)))) 43))) +(((-617 |#1|) (-10 -7 (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) #1#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)))) (-444)) (T -617)) +((-2353 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-400 (-920 *6)))) (-5 *5 (-1129)) (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-817 *3)) (-5 *1 (-617 *6)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) (-5 *2 (-810 *3)) (-5 *1 (-617 *5)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-810 (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-810 (-400 (-920 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-817 *3) (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-817 *3) #1#))) #2="failed")) (-5 *1 (-617 *5)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-817 (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-817 (-400 (-920 *5))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 *5))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 *5))) #1#))) #2#)) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5)))))) +(-10 -7 (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) #1#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)))) +((-2356 (((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|) 57 (-3671 (|has| |#1| (-356)))) (((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-2354 (((-112) (-1229 |#2|)) 30)) (-2355 (((-3 (-1229 |#1|) "failed") (-1229 |#2|)) 33))) +(((-618 |#1| |#2|) (-10 -7 (-15 -2354 ((-112) (-1229 |#2|))) (-15 -2355 ((-3 (-1229 |#1|) "failed") (-1229 |#2|))) (IF (|has| |#1| (-356)) (-15 -2356 ((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|)) (-15 -2356 ((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|)))) (-543) (-619 |#1|)) (T -618)) +((-2356 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-3671 (-4 *5 (-356))) (-4 *5 (-543)) (-5 *2 (-1229 (-400 *5))) (-5 *1 (-618 *5 *4)))) (-2356 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) (-4 *5 (-543)) (-5 *2 (-1229 *5)) (-5 *1 (-618 *5 *4)))) (-2355 (*1 *2 *3) (|partial| -12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-1229 *4)) (-5 *1 (-618 *4 *5)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) +(-10 -7 (-15 -2354 ((-112) (-1229 |#2|))) (-15 -2355 ((-3 (-1229 |#1|) "failed") (-1229 |#2|))) (IF (|has| |#1| (-356)) (-15 -2356 ((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|)) (-15 -2356 ((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2357 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 33)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-619 |#1|) (-138) (-1023)) (T -619)) +((-2357 (*1 *2 *3) (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1023)) (-5 *2 (-667 *4)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *1)) (-5 *4 (-1229 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 *5))))))) +(-13 (-1023) (-10 -8 (-15 -2357 ((-667 |t#1|) (-667 $))) (-15 -2357 ((-2 (|:| -1695 (-667 |t#1|)) (|:| |vec| (-1229 |t#1|))) (-667 $) (-1229 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-2360 (($ $ $) 32 (|has| |#1| (-1072)))) (-2359 (($ $ $) 34 (|has| |#1| (-1072)))) (-2358 (($ $ $) 37 (|has| |#1| (-1072)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $) NIL) (($ $ (-749)) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) 31 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-2362 (((-112) $) 9)) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2363 (($) 7)) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) 36) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 45 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-3810 (($ |#1| $) 10)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) 30) (($ |#1| $) NIL) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2361 (($ $ $) 11)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 26 (|has| |#1| (-799))) (((-1129) $ (-112)) 27 (|has| |#1| (-799))) (((-1235) (-801) $) 28 (|has| |#1| (-799))) (((-1235) (-801) $ (-112)) 29 (|has| |#1| (-799)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-620 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -2363 ($)) (-15 -2362 ((-112) $)) (-15 -3810 ($ |#1| $)) (-15 -2361 ($ $ $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -2360 ($ $ $)) (-15 -2359 ($ $ $)) (-15 -2358 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) (-1183)) (T -620)) +((-2363 (*1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-620 *3)) (-4 *3 (-1183)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2361 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2360 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)))) (-2359 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)))) (-2358 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) +(-13 (-644 |#1|) (-10 -8 (-15 -2363 ($)) (-15 -2362 ((-112) $)) (-15 -3810 ($ |#1| $)) (-15 -2361 ($ $ $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -2360 ($ $ $)) (-15 -2359 ($ $ $)) (-15 -2358 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) +((-4196 (((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|) 18)) (-4313 (((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)) 13))) +(((-621 |#1| |#2|) (-10 -7 (-15 -4196 ((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)))) (-1183) (-1183)) (T -621)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-621 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-621 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-620 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-620 *5)) (-5 *1 (-621 *6 *5))))) +(-10 -7 (-15 -4196 ((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)))) +((-3776 ((|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|) 17) ((|#2| (-620 |#1|) (-620 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|)) 12))) +(((-622 |#1| |#2|) (-10 -7 (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|)) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)))) (-1072) (-1183)) (T -622)) +((-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-622 *5 *6)))) (-3776 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 *5)) (-4 *6 (-1072)) (-4 *5 (-1183)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6))))) +(-10 -7 (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|)) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)))) +((-4313 (((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)) 13))) +(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)))) (-1183) (-1183) (-1183)) (T -623)) +((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-620 *6)) (-5 *5 (-620 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-620 *8)) (-5 *1 (-623 *6 *7 *8))))) +(-10 -7 (-15 -4313 ((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1152) $) NIL) (($ (-1152)) NIL) ((|#1| $) 8)) (-3382 (((-112) $ $) NIL))) +(((-624 |#1|) (-13 (-1054) (-595 |#1|)) (-1072)) (T -624)) +NIL +(-13 (-1054) (-595 |#1|)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2364 (($ |#1| |#1| $) 43)) (-1269 (((-112) $ (-749)) NIL)) (-1626 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2450 (($ $) 45)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 52 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 9 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 37)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 46)) (-3965 (($ |#1| $) 26) (($ |#1| $ (-749)) 42)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1332 ((|#1| $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 21)) (-3923 (($) 25)) (-2365 (((-112) $) 50)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 59)) (-1518 (($) 23) (($ (-620 |#1|)) 18)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) 56 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 19)) (-4325 (((-525) $) 34 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4312 (((-838) $) 14 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 61 (|has| |#1| (-1072)))) (-4311 (((-749) $) 16 (|has| $ (-6 -4348))))) +(((-625 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4348) (-15 -2365 ((-112) $)) (-15 -2364 ($ |#1| |#1| $)))) (-1072)) (T -625)) +((-2365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1072)))) (-2364 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1072))))) +(-13 (-673 |#1|) (-10 -8 (-6 -4348) (-15 -2365 ((-112) $)) (-15 -2364 ($ |#1| |#1| $)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23))) +(((-626 |#1|) (-138) (-1030)) (T -626)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1030))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3828 (((-749) $) 15)) (-2410 (($ $ |#1|) 56)) (-3770 (($ $) 32)) (-1999 (($ $) 31)) (-2288 (((-3 |#1| "failed") $) 48)) (-2202 ((|#1| $) NIL)) (-3144 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3303 (((-837) $ (-1 (-837) (-837) (-837)) (-1 (-837) (-837) (-837)) (-550)) 46)) (-3325 ((|#1| $ (-550)) 30)) (-3062 ((|#2| $ (-550)) 29)) (-1453 (($ (-1 |#1| |#1|) $) 34)) (-1332 (($ (-1 |#2| |#2|) $) 38)) (-4002 (($) 10)) (-3941 (($ |#1| |#2|) 22)) (-2315 (($ (-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|)))) 23)) (-1913 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))) $) 13)) (-2667 (($ |#1| $) 57)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3058 (((-112) $ $) 60)) (-2233 (((-837) $) 19) (($ |#1|) 16)) (-2264 (((-112) $ $) 25))) -(((-627 |#1| |#2| |#3|) (-13 (-1069) (-1012 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-1 (-837) (-837) (-837)) (-1 (-837) (-837) (-837)) (-550))) (-15 -1913 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))) $)) (-15 -3941 ($ |#1| |#2|)) (-15 -2315 ($ (-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))))) (-15 -3062 (|#2| $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1999 ($ $)) (-15 -3770 ($ $)) (-15 -3828 ((-749) $)) (-15 -4002 ($)) (-15 -2410 ($ $ |#1|)) (-15 -2667 ($ |#1| $)) (-15 -3144 ($ |#1| |#2| $)) (-15 -3144 ($ $ $)) (-15 -3058 ((-112) $ $)) (-15 -1332 ($ (-1 |#2| |#2|) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)))) (-1069) (-23) |#2|) (T -627)) -((-3303 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-837) (-837) (-837))) (-5 *4 (-550)) (-5 *2 (-837)) (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-23)) (-14 *7 *6))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4))) (-3941 (*1 *1 *2 *3) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-2315 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))) (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1069)) (-14 *5 *2))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-1069)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4))) (-4002 (*1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-2410 (*1 *1 *1 *2) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-2667 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-3144 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-3144 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) (-14 *4 *3))) (-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1069) (-1012 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-1 (-837) (-837) (-837)) (-1 (-837) (-837) (-837)) (-550))) (-15 -1913 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))) $)) (-15 -3941 ($ |#1| |#2|)) (-15 -2315 ($ (-623 (-2 (|:| |gen| |#1|) (|:| -1644 |#2|))))) (-15 -3062 (|#2| $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1999 ($ $)) (-15 -3770 ($ $)) (-15 -3828 ((-749) $)) (-15 -4002 ($)) (-15 -2410 ($ $ |#1|)) (-15 -2667 ($ |#1| $)) (-15 -3144 ($ |#1| |#2| $)) (-15 -3144 ($ $ $)) (-15 -3058 ((-112) $ $)) (-15 -1332 ($ (-1 |#2| |#2|) $)) (-15 -1453 ($ (-1 |#1| |#1|) $)))) -((-2506 (((-550) $) 24)) (-1476 (($ |#2| $ (-550)) 22) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) 12)) (-3166 (((-112) (-550) $) 15)) (-4006 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-623 $)) NIL))) -(((-628 |#1| |#2|) (-10 -8 (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -2506 ((-550) |#1|)) (-15 -3611 ((-623 (-550)) |#1|)) (-15 -3166 ((-112) (-550) |#1|))) (-629 |#2|) (-1182)) (T -628)) -NIL -(-10 -8 (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -4006 (|#1| (-623 |#1|))) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -2506 ((-550) |#1|)) (-15 -3611 ((-623 (-550)) |#1|)) (-15 -3166 ((-112) (-550) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 70)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-629 |#1|) (-138) (-1182)) (T -629)) -((-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-4006 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) (-4006 (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) (-4006 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-2392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-1476 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-629 *2)) (-4 *2 (-1182)))) (-1476 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1195 (-550))) (|has| *1 (-6 -4345)) (-4 *1 (-629 *2)) (-4 *2 (-1182))))) -(-13 (-586 (-550) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3375 ($ (-749) |t#1|)) (-15 -4006 ($ $ |t#1|)) (-15 -4006 ($ |t#1| $)) (-15 -4006 ($ $ $)) (-15 -4006 ($ (-623 $))) (-15 -2392 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2757 ($ $ (-1195 (-550)))) (-15 -1512 ($ $ (-550))) (-15 -1512 ($ $ (-1195 (-550)))) (-15 -1476 ($ |t#1| $ (-550))) (-15 -1476 ($ $ $ (-550))) (IF (|has| $ (-6 -4345)) (-15 -2409 (|t#1| $ (-1195 (-550)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-4229 (((-3 |#2| "failed") |#3| |#2| (-1145) |#2| (-623 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) "failed") |#3| |#2| (-1145)) 44))) -(((-630 |#1| |#2| |#3|) (-10 -7 (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) "failed") |#3| |#2| (-1145))) (-15 -4229 ((-3 |#2| "failed") |#3| |#2| (-1145) |#2| (-623 |#2|)))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1167) (-933)) (-634 |#2|)) (T -630)) -((-4229 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *1 (-630 *6 *2 *3)) (-4 *3 (-634 *2)))) (-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1145)) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-4 *4 (-13 (-29 *6) (-1167) (-933))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2206 (-623 *4)))) (-5 *1 (-630 *6 *4 *3)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) "failed") |#3| |#2| (-1145))) (-15 -4229 ((-3 |#2| "failed") |#3| |#2| (-1145) |#2| (-623 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-356)))) (-1756 (($ $ $) NIL (|has| |#1| (-356)))) (-3755 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-356)))) (-3379 (($ $ $) NIL (|has| |#1| (-356)))) (-1655 (($ $ $) NIL (|has| |#1| (-356)))) (-3010 (($ $ $) NIL (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-2419 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) NIL)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3346 (((-749) $) NIL)) (-1587 (($ $ $) NIL (|has| |#1| (-356)))) (-4184 (($ $ $) NIL (|has| |#1| (-356)))) (-1276 (($ $ $) NIL (|has| |#1| (-356)))) (-3728 (($ $ $) NIL (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2757 ((|#1| $ |#1|) NIL)) (-2310 (($ $ $) NIL (|has| |#1| (-356)))) (-3661 (((-749) $) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) NIL)) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-3806 ((|#1| $ |#1| |#1|) NIL)) (-3557 (($ $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($) NIL)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-631 |#1|) (-634 |#1|) (-227)) (T -631)) -NIL -(-634 |#1|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-356)))) (-1756 (($ $ $) NIL (|has| |#1| (-356)))) (-3755 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-356)))) (-3379 (($ $ $) NIL (|has| |#1| (-356)))) (-1655 (($ $ $) NIL (|has| |#1| (-356)))) (-3010 (($ $ $) NIL (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-2419 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) NIL)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3346 (((-749) $) NIL)) (-1587 (($ $ $) NIL (|has| |#1| (-356)))) (-4184 (($ $ $) NIL (|has| |#1| (-356)))) (-1276 (($ $ $) NIL (|has| |#1| (-356)))) (-3728 (($ $ $) NIL (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2757 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2310 (($ $ $) NIL (|has| |#1| (-356)))) (-3661 (((-749) $) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) NIL)) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-3806 ((|#1| $ |#1| |#1|) NIL)) (-3557 (($ $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($) NIL)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-632 |#1| |#2|) (-13 (-634 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-626 |#1|) (-10 -8 (-15 -2798 ($ $))))) (T -632)) -NIL -(-13 (-634 |#1|) (-279 |#2| |#2|)) -((-3898 (($ $) 26)) (-3557 (($ $) 24)) (-1901 (($) 12))) -(((-633 |#1| |#2|) (-10 -8 (-15 -3898 (|#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1901 (|#1|))) (-634 |#2|) (-1021)) (T -633)) -NIL -(-10 -8 (-15 -3898 (|#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1901 (|#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3898 (($ $) 80 (|has| |#1| (-356)))) (-1756 (($ $ $) 82 (|has| |#1| (-356)))) (-3755 (($ $ (-749)) 81 (|has| |#1| (-356)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1810 (($ $ $) 43 (|has| |#1| (-356)))) (-3379 (($ $ $) 44 (|has| |#1| (-356)))) (-1655 (($ $ $) 46 (|has| |#1| (-356)))) (-3010 (($ $ $) 41 (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 40 (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 45 (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) 72 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 67)) (-2202 (((-550) $) 73 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 71 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 66)) (-1693 (($ $) 62)) (-1537 (((-3 $ "failed") $) 32)) (-2731 (($ $) 53 (|has| |#1| (-444)))) (-2419 (((-112) $) 30)) (-1488 (($ |#1| (-749)) 60)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55 (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 56 (|has| |#1| (-542)))) (-3346 (((-749) $) 64)) (-1587 (($ $ $) 50 (|has| |#1| (-356)))) (-4184 (($ $ $) 51 (|has| |#1| (-356)))) (-1276 (($ $ $) 39 (|has| |#1| (-356)))) (-3728 (($ $ $) 48 (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 47 (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 52 (|has| |#1| (-356)))) (-1670 ((|#1| $) 63)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-2757 ((|#1| $ |#1|) 85)) (-2310 (($ $ $) 79 (|has| |#1| (-356)))) (-3661 (((-749) $) 65)) (-1622 ((|#1| $) 54 (|has| |#1| (-444)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 69 (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) 68)) (-2969 (((-623 |#1|) $) 59)) (-1708 ((|#1| $ (-749)) 61)) (-3091 (((-749)) 28)) (-3806 ((|#1| $ |#1| |#1|) 58)) (-3557 (($ $) 83)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($) 84)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-634 |#1|) (-138) (-1021)) (T -634)) -((-1901 (*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-634 *3)) (-4 *3 (-1021)) (-4 *3 (-356)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(-13 (-827 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -1901 ($)) (-15 -3557 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -1756 ($ $ $)) (-15 -3755 ($ $ (-749))) (-15 -3898 ($ $)) (-15 -2310 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-279 |#1| |#1|) . T) ((-404 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-827 |#1|) . T)) -((-2841 (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-1735 (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 17))) -(((-635 |#1| |#2|) (-10 -7 (-15 -1735 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1735 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2841 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550)))) (-1204 |#1|)) (T -635)) -((-2841 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6)))))) -(-10 -7 (-15 -1735 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1735 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2841 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-356)))) (-1756 (($ $ $) 28 (|has| |#1| (-356)))) (-3755 (($ $ (-749)) 31 (|has| |#1| (-356)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-356)))) (-3379 (($ $ $) NIL (|has| |#1| (-356)))) (-1655 (($ $ $) NIL (|has| |#1| (-356)))) (-3010 (($ $ $) NIL (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-2419 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) NIL)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-3346 (((-749) $) NIL)) (-1587 (($ $ $) NIL (|has| |#1| (-356)))) (-4184 (($ $ $) NIL (|has| |#1| (-356)))) (-1276 (($ $ $) NIL (|has| |#1| (-356)))) (-3728 (($ $ $) NIL (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2757 ((|#1| $ |#1|) 24)) (-2310 (($ $ $) 33 (|has| |#1| (-356)))) (-3661 (((-749) $) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) 20) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) NIL)) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-3806 ((|#1| $ |#1| |#1|) 23)) (-3557 (($ $) NIL)) (-2688 (($) 21 T CONST)) (-2700 (($) 8 T CONST)) (-1901 (($) NIL)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-636 |#1| |#2|) (-634 |#1|) (-1021) (-1 |#1| |#1|)) (T -636)) -NIL -(-634 |#1|) -((-1756 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3755 ((|#2| |#2| (-749) (-1 |#1| |#1|)) 40)) (-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-637 |#1| |#2|) (-10 -7 (-15 -1756 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3755 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -637)) -((-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) (-4 *2 (-634 *4)))) (-3755 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-637 *5 *2)) (-4 *2 (-634 *5)))) (-1756 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) (-4 *2 (-634 *4))))) -(-10 -7 (-15 -1756 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3755 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2300 (($ $ $) 9))) -(((-638 |#1|) (-10 -8 (-15 -2300 (|#1| |#1| |#1|))) (-639)) (T -638)) -NIL -(-10 -8 (-15 -2300 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-4026 (($ $) 10)) (-2300 (($ $ $) 8)) (-2264 (((-112) $ $) 6)) (-2287 (($ $ $) 9))) -(((-639) (-138)) (T -639)) -((-4026 (*1 *1 *1) (-4 *1 (-639))) (-2287 (*1 *1 *1 *1) (-4 *1 (-639))) (-2300 (*1 *1 *1 *1) (-4 *1 (-639)))) -(-13 (-101) (-10 -8 (-15 -4026 ($ $)) (-15 -2287 ($ $ $)) (-15 -2300 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) 15)) (-2370 (($ $ |#1|) 56)) (-2372 (($ $) 32)) (-2373 (($ $) 31)) (-3503 (((-3 |#1| "failed") $) 48)) (-3502 ((|#1| $) NIL)) (-2402 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3882 (((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536)) 46)) (-2763 ((|#1| $ (-536)) 30)) (-2764 ((|#2| $ (-536)) 29)) (-2366 (($ (-1 |#1| |#1|) $) 34)) (-2367 (($ (-1 |#2| |#2|) $) 38)) (-2371 (($) 10)) (-2375 (($ |#1| |#2|) 22)) (-2374 (($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|)))) 23)) (-2376 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 13)) (-2369 (($ |#1| $) 57)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2368 (((-112) $ $) 60)) (-4312 (((-838) $) 19) (($ |#1|) 16)) (-3382 (((-112) $ $) 25))) +(((-627 |#1| |#2| |#3|) (-13 (-1072) (-1012 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536))) (-15 -2376 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $)) (-15 -2375 ($ |#1| |#2|)) (-15 -2374 ($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))))) (-15 -2764 (|#2| $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -3466 ((-749) $)) (-15 -2371 ($)) (-15 -2370 ($ $ |#1|)) (-15 -2369 ($ |#1| $)) (-15 -2402 ($ |#1| |#2| $)) (-15 -2402 ($ $ $)) (-15 -2368 ((-112) $ $)) (-15 -2367 ($ (-1 |#2| |#2|) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)))) (-1072) (-23) |#2|) (T -627)) +((-3882 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-838) (-838) (-838))) (-5 *4 (-536)) (-5 *2 (-838)) (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1072)) (-4 *6 (-23)) (-14 *7 *6))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2375 (*1 *1 *2 *3) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1072)) (-14 *5 *2))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-1072)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2371 (*1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2370 (*1 *1 *1 *2) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2369 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2402 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2368 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1072) (-1012 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536))) (-15 -2376 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $)) (-15 -2375 ($ |#1| |#2|)) (-15 -2374 ($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))))) (-15 -2764 (|#2| $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -3466 ((-749) $)) (-15 -2371 ($)) (-15 -2370 ($ $ |#1|)) (-15 -2369 ($ |#1| $)) (-15 -2402 ($ |#1| |#2| $)) (-15 -2402 ($ $ $)) (-15 -2368 ((-112) $ $)) (-15 -2367 ($ (-1 |#2| |#2|) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)))) +((-2303 (((-536) $) 24)) (-2377 (($ |#2| $ (-536)) 22) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) 12)) (-2306 (((-112) (-536) $) 15)) (-4156 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-620 $)) NIL))) +(((-628 |#1| |#2|) (-10 -8 (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2303 ((-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2306 ((-112) (-536) |#1|))) (-629 |#2|) (-1183)) (T -628)) +NIL +(-10 -8 (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2303 ((-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2306 ((-112) (-536) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-629 |#1|) (-138) (-1183)) (T -629)) +((-3972 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4156 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2377 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-2377 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1196 (-536))) (|has| *1 (-6 -4349)) (-4 *1 (-629 *2)) (-4 *2 (-1183))))) +(-13 (-586 (-536) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3972 ($ (-749) |t#1|)) (-15 -4156 ($ $ |t#1|)) (-15 -4156 ($ |t#1| $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ (-620 $))) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4154 ($ $ (-1196 (-536)))) (-15 -2378 ($ $ (-536))) (-15 -2378 ($ $ (-1196 (-536)))) (-15 -2377 ($ |t#1| $ (-536))) (-15 -2377 ($ $ $ (-536))) (IF (|has| $ (-6 -4349)) (-15 -4142 (|t#1| $ (-1196 (-536)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 15)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3326 ((|#1| $) 21)) (-3672 (($ $ $) NIL (|has| |#1| (-769)))) (-3673 (($ $ $) NIL (|has| |#1| (-769)))) (-3588 (((-1129) $) 46)) (-3589 (((-1091) $) NIL)) (-3325 ((|#3| $) 22)) (-4312 (((-838) $) 42)) (-2986 (($) 10 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-769)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL (|has| |#1| (-769)))) (-3013 (((-112) $ $) 24 (|has| |#1| (-769)))) (-4303 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4192 (($ $) 17) (($ $ $) NIL)) (-4194 (($ $ $) 27)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-630 |#1| |#2| |#3|) (-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) (-696 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -630)) +((-4303 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-4303 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-696 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-630 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-3325 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4))))) +(-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) +((-3931 (((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147)) 44))) +(((-631 |#1| |#2| |#3|) (-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147))) (-15 -3931 ((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934)) (-636 |#2|)) (T -631)) +((-3931 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-631 *6 *2 *3)) (-4 *3 (-636 *2)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-4 *4 (-13 (-29 *6) (-1169) (-934))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) (-5 *1 (-631 *6 *4 *3)) (-4 *3 (-636 *4))))) +(-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147))) (-15 -3931 ((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) 28 (|has| |#1| (-356)))) (-2382 (($ $ (-749)) 31 (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) 24)) (-2383 (($ $ $) 33 (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) 20) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) 23)) (-2849 (($ $) NIL)) (-2986 (($) 21 T CONST)) (-2992 (($) 8 T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-632 |#1| |#2|) (-636 |#1|) (-1023) (-1 |#1| |#1|)) (T -632)) +NIL +(-636 |#1|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) NIL (|has| |#1| (-356)))) (-2382 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) NIL)) (-2849 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-633 |#1|) (-636 |#1|) (-227)) (T -633)) +NIL +(-636 |#1|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) NIL (|has| |#1| (-356)))) (-2382 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2383 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) NIL)) (-2849 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-634 |#1| |#2|) (-13 (-636 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-626 |#1|) (-10 -8 (-15 -4165 ($ $))))) (T -634)) +NIL +(-13 (-636 |#1|) (-279 |#2| |#2|)) +((-2379 (($ $) 26)) (-2849 (($ $) 24)) (-2997 (($) 12))) +(((-635 |#1| |#2|) (-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2997 (|#1|))) (-636 |#2|) (-1023)) (T -635)) +NIL +(-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2997 (|#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2379 (($ $) 80 (|has| |#1| (-356)))) (-2381 (($ $ $) 82 (|has| |#1| (-356)))) (-2382 (($ $ (-749)) 81 (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2866 (($ $ $) 43 (|has| |#1| (-356)))) (-2867 (($ $ $) 44 (|has| |#1| (-356)))) (-2868 (($ $ $) 46 (|has| |#1| (-356)))) (-2864 (($ $ $) 41 (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 40 (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 45 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) 72 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) 70 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) 67)) (-3502 (((-536) $) 73 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 71 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 66)) (-4314 (($ $) 62)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 53 (|has| |#1| (-444)))) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 60)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 56 (|has| |#1| (-543)))) (-3148 (((-749) $) 64)) (-2872 (($ $ $) 50 (|has| |#1| (-356)))) (-2873 (($ $ $) 51 (|has| |#1| (-356)))) (-2862 (($ $ $) 39 (|has| |#1| (-356)))) (-2870 (($ $ $) 48 (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 47 (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) 49 (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 52 (|has| |#1| (-356)))) (-3520 ((|#1| $) 63)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) 85)) (-2383 (($ $ $) 79 (|has| |#1| (-356)))) (-4302 (((-749) $) 65)) (-3145 ((|#1| $) 54 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 69 (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 68)) (-4172 (((-620 |#1|) $) 59)) (-4035 ((|#1| $ (-749)) 61)) (-3456 (((-749)) 28)) (-2875 ((|#1| $ |#1| |#1|) 58)) (-2849 (($ $) 83)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($) 84)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-636 |#1|) (-138) (-1023)) (T -636)) +((-2997 (*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) (-2849 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) (-2381 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-636 *3)) (-4 *3 (-1023)) (-4 *3 (-356)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(-13 (-827 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -2997 ($)) (-15 -2849 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2381 ($ $ $)) (-15 -2382 ($ $ (-749))) (-15 -2379 ($ $)) (-15 -2383 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-279 |#1| |#1|) . T) ((-405 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-827 |#1|) . T)) +((-2380 (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-4087 (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 17))) +(((-637 |#1| |#2|) (-10 -7 (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)))) (-15 -2380 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -637)) +((-2380 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-400 *5))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-400 *5))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-633 (-400 *6)))) (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-400 *6)))))) +(-10 -7 (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)))) (-15 -2380 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))))) |%noBranch|)) +((-2381 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2382 ((|#2| |#2| (-749) (-1 |#1| |#1|)) 40)) (-2383 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-638 |#1| |#2|) (-10 -7 (-15 -2381 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2382 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2383 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-636 |#1|)) (T -638)) +((-2383 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) (-4 *2 (-636 *4)))) (-2382 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-638 *5 *2)) (-4 *2 (-636 *5)))) (-2381 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) (-4 *2 (-636 *4))))) +(-10 -7 (-15 -2381 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2382 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2383 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3676 (($ $ $) 9))) +(((-639 |#1|) (-10 -8 (-15 -3676 (|#1| |#1| |#1|))) (-640)) (T -639)) +NIL +(-10 -8 (-15 -3676 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3674 (($ $) 10)) (-3676 (($ $ $) 8)) (-3382 (((-112) $ $) 6)) (-3675 (($ $ $) 9))) +(((-640) (-138)) (T -640)) +((-3674 (*1 *1 *1) (-4 *1 (-640))) (-3675 (*1 *1 *1 *1) (-4 *1 (-640))) (-3676 (*1 *1 *1 *1) (-4 *1 (-640)))) +(-13 (-101) (-10 -8 (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)))) (((-101) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 15)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-4153 ((|#1| $) 21)) (-2793 (($ $ $) NIL (|has| |#1| (-769)))) (-2173 (($ $ $) NIL (|has| |#1| (-769)))) (-2369 (((-1127) $) 46)) (-3445 (((-1089) $) NIL)) (-4163 ((|#3| $) 22)) (-2233 (((-837) $) 42)) (-2688 (($) 10 T CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2264 (((-112) $ $) 20)) (-2313 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2290 (((-112) $ $) 24 (|has| |#1| (-769)))) (-2382 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2370 (($ $) 17) (($ $ $) NIL)) (-2358 (($ $ $) 27)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-640 |#1| |#2| |#3|) (-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -2382 ($ $ |#3|)) (-15 -2382 ($ |#1| |#3|)) (-15 -4153 (|#1| $)) (-15 -4163 (|#3| $)))) (-696 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -640)) -((-2382 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-2382 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-696 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-4153 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-640 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-4163 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4))))) -(-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -2382 ($ $ |#3|)) (-15 -2382 ($ |#1| |#3|)) (-15 -4153 (|#1| $)) (-15 -4163 (|#3| $)))) -((-3996 (((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|)) 33))) -(((-641 |#1|) (-10 -7 (-15 -3996 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|)))) (-883)) (T -641)) -((-3996 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 *4))) (-5 *3 (-1141 *4)) (-4 *4 (-883)) (-5 *1 (-641 *4))))) -(-10 -7 (-15 -3996 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3016 (((-623 |#1|) $) 82)) (-1918 (($ $ (-749)) 90)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-3134 (((-1252 |#1| |#2|) (-1252 |#1| |#2|) $) 48)) (-2288 (((-3 (-650 |#1|) "failed") $) NIL)) (-2202 (((-650 |#1|) $) NIL)) (-1693 (($ $) 89)) (-3324 (((-749) $) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ (-650 |#1|) |#2|) 68)) (-2481 (($ $) 86)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-1676 (((-1252 |#1| |#2|) (-1252 |#1| |#2|) $) 47)) (-1615 (((-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1657 (((-650 |#1|) $) NIL)) (-1670 ((|#2| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1553 (($ $ |#1| $) 30) (($ $ (-623 |#1|) (-623 $)) 32)) (-3661 (((-749) $) 88)) (-2245 (($ $ $) 20) (($ (-650 |#1|) (-650 |#1|)) 77) (($ (-650 |#1|) $) 75) (($ $ (-650 |#1|)) 76)) (-2233 (((-837) $) NIL) (($ |#1|) 74) (((-1243 |#1| |#2|) $) 58) (((-1252 |#1| |#2|) $) 41) (($ (-650 |#1|)) 25)) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-650 |#1|)) NIL)) (-4304 ((|#2| (-1252 |#1| |#2|) $) 43)) (-2688 (($) 23 T CONST)) (-1564 (((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2631 (((-3 $ "failed") (-1243 |#1| |#2|)) 60)) (-3372 (($ (-650 |#1|)) 14)) (-2264 (((-112) $ $) 44)) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) 66) (($ $ $) NIL)) (-2358 (($ $ $) 29)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-650 |#1|)) NIL))) -(((-642 |#1| |#2|) (-13 (-367 |#1| |#2|) (-375 |#2| (-650 |#1|)) (-10 -8 (-15 -2631 ((-3 $ "failed") (-1243 |#1| |#2|))) (-15 -2245 ($ (-650 |#1|) (-650 |#1|))) (-15 -2245 ($ (-650 |#1|) $)) (-15 -2245 ($ $ (-650 |#1|))))) (-825) (-170)) (T -642)) -((-2631 (*1 *1 *2) (|partial| -12 (-5 *2 (-1243 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-642 *3 *4)))) (-2245 (*1 *1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-2245 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170))))) -(-13 (-367 |#1| |#2|) (-375 |#2| (-650 |#1|)) (-10 -8 (-15 -2631 ((-3 $ "failed") (-1243 |#1| |#2|))) (-15 -2245 ($ (-650 |#1|) (-650 |#1|))) (-15 -2245 ($ (-650 |#1|) $)) (-15 -2245 ($ $ (-650 |#1|))))) -((-1837 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2734 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3994 (($ (-1 (-112) |#2|) $) 28)) (-3770 (($ $) 56)) (-2599 (($ $) 64)) (-2505 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2924 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3088 (((-550) |#2| $ (-550)) 61) (((-550) |#2| $) NIL) (((-550) (-1 (-112) |#2|) $) 47)) (-3375 (($ (-749) |#2|) 54)) (-2299 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2441 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2392 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3743 (($ |#2|) 15)) (-1715 (($ $ $ (-550)) 36) (($ |#2| $ (-550)) 34)) (-1614 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3749 (($ $ (-1195 (-550))) 44) (($ $ (-550)) 38)) (-2502 (($ $ $ (-550)) 60)) (-2435 (($ $) 58)) (-2290 (((-112) $ $) 66))) -(((-643 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3749 (|#1| |#1| (-550))) (-15 -3749 (|#1| |#1| (-1195 (-550)))) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1715 (|#1| |#2| |#1| (-550))) (-15 -1715 (|#1| |#1| |#1| (-550))) (-15 -2299 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3994 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -2502 (|#1| |#1| |#1| (-550))) (-15 -3770 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3375 (|#1| (-749) |#2|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) (-644 |#2|) (-1182)) (T -643)) -NIL -(-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3749 (|#1| |#1| (-550))) (-15 -3749 (|#1| |#1| (-1195 (-550)))) (-15 -2505 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1715 (|#1| |#2| |#1| (-550))) (-15 -1715 (|#1| |#1| |#1| (-550))) (-15 -2299 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3994 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2505 (|#1| |#2| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1837 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3088 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3088 ((-550) |#2| |#1|)) (-15 -3088 ((-550) |#2| |#1| (-550))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -2502 (|#1| |#1| |#1| (-550))) (-15 -3770 (|#1| |#1|)) (-15 -2734 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2924 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3375 (|#1| (-749) |#2|)) (-15 -2392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-2422 ((|#1| $) 65)) (-2470 (($ $) 67)) (-3037 (((-1233) $ (-550) (-550)) 97 (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 52 (|has| $ (-6 -4345)))) (-1837 (((-112) $) 142 (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2734 (($ $) 146 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4345)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4345)))) (-1814 (($ $) 141 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-2872 (($ $ $) 56 (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) 54 (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 58 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4345))) (($ $ "rest" $) 55 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 117 (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-3994 (($ (-1 (-112) |#1|) $) 129)) (-2097 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4344)))) (-2408 ((|#1| $) 66)) (-2991 (($) 7 T CONST)) (-3770 (($ $) 144 (|has| $ (-6 -4345)))) (-1999 (($ $) 134)) (-3870 (($ $) 73) (($ $ (-749)) 71)) (-2599 (($ $) 131 (|has| |#1| (-1069)))) (-2708 (($ $) 99 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 130 (|has| |#1| (-1069))) (($ (-1 (-112) |#1|) $) 125)) (-1979 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4344))) (($ |#1| $) 100 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3317 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 87)) (-2950 (((-112) $) 83)) (-3088 (((-550) |#1| $ (-550)) 139 (|has| |#1| (-1069))) (((-550) |#1| $) 138 (|has| |#1| (-1069))) (((-550) (-1 (-112) |#1|) $) 137)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) 108)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 95 (|has| (-550) (-825)))) (-2793 (($ $ $) 147 (|has| |#1| (-825)))) (-2299 (($ $ $) 132 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2441 (($ $ $) 140 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 94 (|has| (-550) (-825)))) (-2173 (($ $ $) 148 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3743 (($ |#1|) 122)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-2001 ((|#1| $) 70) (($ $ (-749)) 68)) (-1715 (($ $ $ (-550)) 127) (($ |#1| $ (-550)) 126)) (-1476 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-3611 (((-623 (-550)) $) 92)) (-3166 (((-112) (-550) $) 91)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 76) (($ $ (-749)) 74)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2491 (($ $ |#1|) 96 (|has| $ (-6 -4345)))) (-3164 (((-112) $) 84)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 90)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1195 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-1456 (((-550) $ $) 44)) (-3749 (($ $ (-1195 (-550))) 124) (($ $ (-550)) 123)) (-1512 (($ $ (-1195 (-550))) 114) (($ $ (-550)) 113)) (-2320 (((-112) $) 46)) (-1662 (($ $) 62)) (-3709 (($ $) 59 (|has| $ (-6 -4345)))) (-3300 (((-749) $) 63)) (-3813 (($ $) 64)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 143 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 107)) (-2037 (($ $ $) 61) (($ $ |#1|) 60)) (-4006 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 150 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 151 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) 149 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 152 (|has| |#1| (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-644 |#1|) (-138) (-1182)) (T -644)) -((-3743 (*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1182))))) -(-13 (-1118 |t#1|) (-366 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)))) -(((-34) . T) ((-101) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-275 |#1|) . T) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-984 |#1|) . T) ((-1069) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-1118 |#1|) . T) ((-1182) . T) ((-1216 |#1|) . T)) -((-4229 (((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-623 (-623 |#1|)) (-623 (-1228 |#1|))) 22) (((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-667 |#1|) (-623 (-1228 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-623 (-623 |#1|)) (-1228 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|)) 14)) (-3398 (((-749) (-667 |#1|) (-1228 |#1|)) 30)) (-3786 (((-3 (-1228 |#1|) "failed") (-667 |#1|) (-1228 |#1|)) 24)) (-3837 (((-112) (-667 |#1|) (-1228 |#1|)) 27))) -(((-645 |#1|) (-10 -7 (-15 -4229 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|))) (-15 -4229 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-623 (-623 |#1|)) (-1228 |#1|))) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-667 |#1|) (-623 (-1228 |#1|)))) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-623 (-623 |#1|)) (-623 (-1228 |#1|)))) (-15 -3786 ((-3 (-1228 |#1|) "failed") (-667 |#1|) (-1228 |#1|))) (-15 -3837 ((-112) (-667 |#1|) (-1228 |#1|))) (-15 -3398 ((-749) (-667 |#1|) (-1228 |#1|)))) (-356)) (T -645)) -((-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-645 *5)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-645 *5)))) (-3786 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1228 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *1 (-645 *4)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| |particular| (-3 (-1228 *5) "failed")) (|:| -2206 (-623 (-1228 *5)))))) (-5 *1 (-645 *5)) (-5 *4 (-623 (-1228 *5))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| |particular| (-3 (-1228 *5) "failed")) (|:| -2206 (-623 (-1228 *5)))))) (-5 *1 (-645 *5)) (-5 *4 (-623 (-1228 *5))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1228 *5) "failed")) (|:| -2206 (-623 (-1228 *5))))) (-5 *1 (-645 *5)) (-5 *4 (-1228 *5)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1228 *5) "failed")) (|:| -2206 (-623 (-1228 *5))))) (-5 *1 (-645 *5)) (-5 *4 (-1228 *5))))) -(-10 -7 (-15 -4229 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|))) (-15 -4229 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-623 (-623 |#1|)) (-1228 |#1|))) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-667 |#1|) (-623 (-1228 |#1|)))) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|))))) (-623 (-623 |#1|)) (-623 (-1228 |#1|)))) (-15 -3786 ((-3 (-1228 |#1|) "failed") (-667 |#1|) (-1228 |#1|))) (-15 -3837 ((-112) (-667 |#1|) (-1228 |#1|))) (-15 -3398 ((-749) (-667 |#1|) (-1228 |#1|)))) -((-4229 (((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|)))) |#4| (-623 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|) 45)) (-3398 (((-749) |#4| |#3|) 17)) (-3786 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3837 (((-112) |#4| |#3|) 13))) -(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4229 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|)) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|)))) |#4| (-623 |#3|))) (-15 -3786 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3837 ((-112) |#4| |#3|)) (-15 -3398 ((-749) |#4| |#3|))) (-356) (-13 (-366 |#1|) (-10 -7 (-6 -4345))) (-13 (-366 |#1|) (-10 -7 (-6 -4345))) (-665 |#1| |#2| |#3|)) (T -646)) -((-3398 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-749)) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-112)) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-3786 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4345)))) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345)))) (-5 *1 (-646 *4 *5 *2 *3)) (-4 *3 (-665 *4 *5 *2)))) (-4229 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-623 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2206 (-623 *7))))) (-5 *1 (-646 *5 *6 *7 *3)) (-5 *4 (-623 *7)) (-4 *3 (-665 *5 *6 *7)))) (-4229 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) -(-10 -7 (-15 -4229 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|)) (-15 -4229 ((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|)))) |#4| (-623 |#3|))) (-15 -3786 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3837 ((-112) |#4| |#3|)) (-15 -3398 ((-749) |#4| |#3|))) -((-2572 (((-2 (|:| |particular| (-3 (-1228 (-400 |#4|)) "failed")) (|:| -2206 (-623 (-1228 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)) 45))) -(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2572 ((-2 (|:| |particular| (-3 (-1228 (-400 |#4|)) "failed")) (|:| -2206 (-623 (-1228 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)))) (-542) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -647)) -((-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *7)) (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |particular| (-3 (-1228 (-400 *8)) "failed")) (|:| -2206 (-623 (-1228 (-400 *8)))))) (-5 *1 (-647 *5 *6 *7 *8))))) -(-10 -7 (-15 -2572 ((-2 (|:| |particular| (-3 (-1228 (-400 |#4|)) "failed")) (|:| -2206 (-623 (-1228 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2305 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2223 ((|#2| $) NIL)) (-3684 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2946 (((-1228 (-667 |#2|))) NIL) (((-1228 (-667 |#2|)) (-1228 $)) NIL)) (-2644 (((-112) $) NIL)) (-4259 (((-1228 $)) 37)) (-3368 (((-112) $ (-749)) NIL)) (-3955 (($ |#2|) NIL)) (-2991 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| |#2| (-300)))) (-1297 (((-234 |#1| |#2|) $ (-550)) NIL)) (-1350 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (|has| |#2| (-542)))) (-1713 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2704 (((-667 |#2|)) NIL) (((-667 |#2|) (-1228 $)) NIL)) (-4281 ((|#2| $) NIL)) (-2693 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1228 $)) NIL)) (-2988 (((-3 $ "failed") $) NIL (|has| |#2| (-542)))) (-1549 (((-1141 (-926 |#2|))) NIL (|has| |#2| (-356)))) (-1339 (($ $ (-895)) NIL)) (-2710 ((|#2| $) NIL)) (-2613 (((-1141 |#2|) $) NIL (|has| |#2| (-542)))) (-1690 ((|#2|) NIL) ((|#2| (-1228 $)) NIL)) (-2015 (((-1141 |#2|) $) NIL)) (-2030 (((-112)) NIL)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) ((|#2| $) NIL)) (-2821 (($ (-1228 |#2|)) NIL) (($ (-1228 |#2|) (-1228 $)) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3398 (((-749) $) NIL (|has| |#2| (-542))) (((-895)) 38)) (-3263 ((|#2| $ (-550) (-550)) NIL)) (-4094 (((-112)) NIL)) (-2210 (($ $ (-895)) NIL)) (-2971 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL)) (-1436 (((-749) $) NIL (|has| |#2| (-542)))) (-3113 (((-623 (-234 |#1| |#2|)) $) NIL (|has| |#2| (-542)))) (-2050 (((-749) $) NIL)) (-1870 (((-112)) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-1517 ((|#2| $) NIL (|has| |#2| (-6 (-4346 "*"))))) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-4224 (($ (-623 (-623 |#2|))) NIL)) (-3311 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3380 (((-623 (-623 |#2|)) $) NIL)) (-4189 (((-112)) NIL)) (-2826 (((-112)) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3811 (((-3 (-2 (|:| |particular| $) (|:| -2206 (-623 $))) "failed")) NIL (|has| |#2| (-542)))) (-3678 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2128 (((-667 |#2|)) NIL) (((-667 |#2|) (-1228 $)) NIL)) (-2925 ((|#2| $) NIL)) (-2224 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1228 $)) NIL)) (-3274 (((-3 $ "failed") $) NIL (|has| |#2| (-542)))) (-3789 (((-1141 (-926 |#2|))) NIL (|has| |#2| (-356)))) (-1692 (($ $ (-895)) NIL)) (-1324 ((|#2| $) NIL)) (-3784 (((-1141 |#2|) $) NIL (|has| |#2| (-542)))) (-4216 ((|#2|) NIL) ((|#2| (-1228 $)) NIL)) (-3876 (((-1141 |#2|) $) NIL)) (-1688 (((-112)) NIL)) (-2369 (((-1127) $) NIL)) (-3143 (((-112)) NIL)) (-1294 (((-112)) NIL)) (-2498 (((-112)) NIL)) (-3765 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3445 (((-1089) $) NIL)) (-2294 (((-112)) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-1410 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) 22) ((|#2| $ (-550)) NIL)) (-2798 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2761 ((|#2| $) NIL)) (-4000 (($ (-623 |#2|)) NIL)) (-2418 (((-112) $) NIL)) (-2407 (((-234 |#1| |#2|) $) NIL)) (-4270 ((|#2| $) NIL (|has| |#2| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2435 (($ $) NIL)) (-2999 (((-667 |#2|) (-1228 $)) NIL) (((-1228 |#2|) $) NIL) (((-667 |#2|) (-1228 $) (-1228 $)) NIL) (((-1228 |#2|) $ (-1228 $)) 25)) (-2451 (($ (-1228 |#2|)) NIL) (((-1228 |#2|) $) NIL)) (-2778 (((-623 (-926 |#2|))) NIL) (((-623 (-926 |#2|)) (-1228 $)) NIL)) (-1353 (($ $ $) NIL)) (-4118 (((-112)) NIL)) (-1457 (((-234 |#1| |#2|) $ (-550)) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1012 (-400 (-550))))) (($ |#2|) NIL) (((-667 |#2|) $) NIL)) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) 36)) (-2364 (((-623 (-1228 |#2|))) NIL (|has| |#2| (-542)))) (-4143 (($ $ $ $) NIL)) (-2941 (((-112)) NIL)) (-3806 (($ (-667 |#2|) $) NIL)) (-3404 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-1923 (($ $ $) NIL)) (-2582 (((-112)) NIL)) (-3268 (((-112)) NIL)) (-3836 (((-112)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#2| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) NIL) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-648 |#1| |#2|) (-13 (-1092 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-410 |#2|)) (-895) (-170)) (T -648)) -NIL -(-13 (-1092 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-410 |#2|)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1734 (((-623 (-1104)) $) 10)) (-2233 (((-837) $) 18) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-649) (-13 (-1052) (-10 -8 (-15 -1734 ((-623 (-1104)) $))))) (T -649)) -((-1734 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-649))))) -(-13 (-1052) (-10 -8 (-15 -1734 ((-623 (-1104)) $)))) -((-2221 (((-112) $ $) NIL)) (-3016 (((-623 |#1|) $) NIL)) (-3490 (($ $) 52)) (-2918 (((-112) $) NIL)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-1752 (((-3 $ "failed") (-797 |#1|)) 23)) (-3001 (((-112) (-797 |#1|)) 15)) (-3415 (($ (-797 |#1|)) 24)) (-2526 (((-112) $ $) 30)) (-3839 (((-895) $) 37)) (-3480 (($ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1735 (((-623 $) (-797 |#1|)) 17)) (-2233 (((-837) $) 43) (($ |#1|) 34) (((-797 |#1|) $) 39) (((-655 |#1|) $) 44)) (-2516 (((-58 (-623 $)) (-623 |#1|) (-895)) 57)) (-3891 (((-623 $) (-623 |#1|) (-895)) 60)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 53)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 38))) -(((-650 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2918 ((-112) $)) (-15 -3480 ($ $)) (-15 -3490 ($ $)) (-15 -3839 ((-895) $)) (-15 -2526 ((-112) $ $)) (-15 -2233 ((-797 |#1|) $)) (-15 -2233 ((-655 |#1|) $)) (-15 -1735 ((-623 $) (-797 |#1|))) (-15 -3001 ((-112) (-797 |#1|))) (-15 -3415 ($ (-797 |#1|))) (-15 -1752 ((-3 $ "failed") (-797 |#1|))) (-15 -3016 ((-623 |#1|) $)) (-15 -2516 ((-58 (-623 $)) (-623 |#1|) (-895))) (-15 -3891 ((-623 $) (-623 |#1|) (-895))))) (-825)) (T -650)) -((-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-3480 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2526 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-650 *4))) (-5 *1 (-650 *4)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-1752 (*1 *1 *2) (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-895)) (-4 *5 (-825)) (-5 *2 (-58 (-623 (-650 *5)))) (-5 *1 (-650 *5)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-895)) (-4 *5 (-825)) (-5 *2 (-623 (-650 *5))) (-5 *1 (-650 *5))))) -(-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2918 ((-112) $)) (-15 -3480 ($ $)) (-15 -3490 ($ $)) (-15 -3839 ((-895) $)) (-15 -2526 ((-112) $ $)) (-15 -2233 ((-797 |#1|) $)) (-15 -2233 ((-655 |#1|) $)) (-15 -1735 ((-623 $) (-797 |#1|))) (-15 -3001 ((-112) (-797 |#1|))) (-15 -3415 ($ (-797 |#1|))) (-15 -1752 ((-3 $ "failed") (-797 |#1|))) (-15 -3016 ((-623 |#1|) $)) (-15 -2516 ((-58 (-623 $)) (-623 |#1|) (-895))) (-15 -3891 ((-623 $) (-623 |#1|) (-895))))) -((-1337 ((|#2| $) 76)) (-2470 (($ $) 96)) (-3368 (((-112) $ (-749)) 26)) (-3870 (($ $) 85) (($ $ (-749)) 88)) (-2950 (((-112) $) 97)) (-4079 (((-623 $) $) 72)) (-3687 (((-112) $ $) 71)) (-1445 (((-112) $ (-749)) 24)) (-3096 (((-550) $) 46)) (-2506 (((-550) $) 45)) (-1700 (((-112) $ (-749)) 22)) (-1515 (((-112) $) 74)) (-2001 ((|#2| $) 89) (($ $ (-749)) 92)) (-1476 (($ $ $ (-550)) 62) (($ |#2| $ (-550)) 61)) (-3611 (((-623 (-550)) $) 44)) (-3166 (((-112) (-550) $) 42)) (-3858 ((|#2| $) NIL) (($ $ (-749)) 84)) (-4268 (($ $ (-550)) 100)) (-3164 (((-112) $) 99)) (-1410 (((-112) (-1 (-112) |#2|) $) 32)) (-1375 (((-623 |#2|) $) 33)) (-2757 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1195 (-550))) 58) ((|#2| $ (-550)) 40) ((|#2| $ (-550) |#2|) 41)) (-1456 (((-550) $ $) 70)) (-1512 (($ $ (-1195 (-550))) 57) (($ $ (-550)) 51)) (-2320 (((-112) $) 66)) (-1662 (($ $) 81)) (-3300 (((-749) $) 80)) (-3813 (($ $) 79)) (-2245 (($ (-623 |#2|)) 37)) (-4012 (($ $) 101)) (-4075 (((-623 $) $) 69)) (-1977 (((-112) $ $) 68)) (-3404 (((-112) (-1 (-112) |#2|) $) 31)) (-2264 (((-112) $ $) 18)) (-3307 (((-749) $) 29))) -(((-651 |#1| |#2|) (-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -4268 (|#1| |#1| (-550))) (-15 -2950 ((-112) |#1|)) (-15 -3164 ((-112) |#1|)) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -1375 ((-623 |#2|) |#1|)) (-15 -3166 ((-112) (-550) |#1|)) (-15 -3611 ((-623 (-550)) |#1|)) (-15 -2506 ((-550) |#1|)) (-15 -3096 ((-550) |#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1662 (|#1| |#1|)) (-15 -3300 ((-749) |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -2001 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "last")) (-15 -2001 (|#2| |#1|)) (-15 -3870 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| "rest")) (-15 -3870 (|#1| |#1|)) (-15 -3858 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "first")) (-15 -3858 (|#2| |#1|)) (-15 -3687 ((-112) |#1| |#1|)) (-15 -1977 ((-112) |#1| |#1|)) (-15 -1456 ((-550) |#1| |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1337 (|#2| |#1|)) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749)))) (-652 |#2|) (-1182)) (T -651)) -NIL -(-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -4268 (|#1| |#1| (-550))) (-15 -2950 ((-112) |#1|)) (-15 -3164 ((-112) |#1|)) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -1375 ((-623 |#2|) |#1|)) (-15 -3166 ((-112) (-550) |#1|)) (-15 -3611 ((-623 (-550)) |#1|)) (-15 -2506 ((-550) |#1|)) (-15 -3096 ((-550) |#1|)) (-15 -2245 (|#1| (-623 |#2|))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -1512 (|#1| |#1| (-550))) (-15 -1512 (|#1| |#1| (-1195 (-550)))) (-15 -1476 (|#1| |#2| |#1| (-550))) (-15 -1476 (|#1| |#1| |#1| (-550))) (-15 -1662 (|#1| |#1|)) (-15 -3300 ((-749) |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -2001 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "last")) (-15 -2001 (|#2| |#1|)) (-15 -3870 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| "rest")) (-15 -3870 (|#1| |#1|)) (-15 -3858 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "first")) (-15 -3858 (|#2| |#1|)) (-15 -3687 ((-112) |#1| |#1|)) (-15 -1977 ((-112) |#1| |#1|)) (-15 -1456 ((-550) |#1| |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1337 (|#2| |#1|)) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1410 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-2422 ((|#1| $) 65)) (-2470 (($ $) 67)) (-3037 (((-1233) $ (-550) (-550)) 97 (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 52 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-2872 (($ $ $) 56 (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) 54 (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 58 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4345))) (($ $ "rest" $) 55 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 117 (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 102)) (-2408 ((|#1| $) 66)) (-2991 (($) 7 T CONST)) (-4129 (($ $) 124)) (-3870 (($ $) 73) (($ $ (-749)) 71)) (-2708 (($ $) 99 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 100 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 103)) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3317 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 87)) (-2950 (((-112) $) 83)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2602 (((-749) $) 123)) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) 108)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 95 (|has| (-550) (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 94 (|has| (-550) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-4264 (($ $) 126)) (-2850 (((-112) $) 127)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-2001 ((|#1| $) 70) (($ $ (-749)) 68)) (-1476 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-3611 (((-623 (-550)) $) 92)) (-3166 (((-112) (-550) $) 91)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1376 ((|#1| $) 125)) (-3858 ((|#1| $) 76) (($ $ (-749)) 74)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2491 (($ $ |#1|) 96 (|has| $ (-6 -4345)))) (-4268 (($ $ (-550)) 122)) (-3164 (((-112) $) 84)) (-2333 (((-112) $) 128)) (-1524 (((-112) $) 129)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 90)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1195 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-1456 (((-550) $ $) 44)) (-1512 (($ $ (-1195 (-550))) 114) (($ $ (-550)) 113)) (-2320 (((-112) $) 46)) (-1662 (($ $) 62)) (-3709 (($ $) 59 (|has| $ (-6 -4345)))) (-3300 (((-749) $) 63)) (-3813 (($ $) 64)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 107)) (-2037 (($ $ $) 61 (|has| $ (-6 -4345))) (($ $ |#1|) 60 (|has| $ (-6 -4345)))) (-4006 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-4012 (($ $) 121)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-652 |#1|) (-138) (-1182)) (T -652)) -((-1979 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) (-2097 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-4264 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182))))) -(-13 (-1118 |t#1|) (-10 -8 (-15 -1979 ($ (-1 (-112) |t#1|) $)) (-15 -2097 ($ (-1 (-112) |t#1|) $)) (-15 -1524 ((-112) $)) (-15 -2333 ((-112) $)) (-15 -2850 ((-112) $)) (-15 -4264 ($ $)) (-15 -1376 (|t#1| $)) (-15 -4129 ($ $)) (-15 -2602 ((-749) $)) (-15 -4268 ($ $ (-550))) (-15 -4012 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1118 |#1|) . T) ((-1182) . T) ((-1216 |#1|) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3718 (($ (-749) (-749) (-749)) 33 (|has| |#1| (-1021)))) (-3368 (((-112) $ (-749)) NIL)) (-3812 ((|#1| $ (-749) (-749) (-749) |#1|) 27)) (-2991 (($) NIL T CONST)) (-3144 (($ $ $) 37 (|has| |#1| (-1021)))) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1381 (((-1228 (-749)) $) 9)) (-1521 (($ (-1145) $ $) 22)) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-2277 (($ (-749)) 35 (|has| |#1| (-1021)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-749) (-749) (-749)) 25)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2245 (($ (-623 (-623 (-623 |#1|)))) 44)) (-2233 (($ (-932 (-932 (-932 |#1|)))) 15) (((-932 (-932 (-932 |#1|))) $) 12) (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-653 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1021)) (PROGN (-15 -3718 ($ (-749) (-749) (-749))) (-15 -2277 ($ (-749))) (-15 -3144 ($ $ $))) |%noBranch|) (-15 -2245 ($ (-623 (-623 (-623 |#1|))))) (-15 -2757 (|#1| $ (-749) (-749) (-749))) (-15 -3812 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -2233 ($ (-932 (-932 (-932 |#1|))))) (-15 -2233 ((-932 (-932 (-932 |#1|))) $)) (-15 -1521 ($ (-1145) $ $)) (-15 -1381 ((-1228 (-749)) $)))) (-1069)) (T -653)) -((-3718 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1021)) (-4 *3 (-1069)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1021)) (-4 *3 (-1069)))) (-3144 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1021)) (-4 *2 (-1069)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-623 *3)))) (-4 *3 (-1069)) (-5 *1 (-653 *3)))) (-2757 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1069)))) (-3812 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1069)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1069)) (-5 *1 (-653 *3)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1069)))) (-1521 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-653 *3)) (-4 *3 (-1069)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1228 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1069))))) -(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1021)) (PROGN (-15 -3718 ($ (-749) (-749) (-749))) (-15 -2277 ($ (-749))) (-15 -3144 ($ $ $))) |%noBranch|) (-15 -2245 ($ (-623 (-623 (-623 |#1|))))) (-15 -2757 (|#1| $ (-749) (-749) (-749))) (-15 -3812 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -2233 ($ (-932 (-932 (-932 |#1|))))) (-15 -2233 ((-932 (-932 (-932 |#1|))) $)) (-15 -1521 ($ (-1145) $ $)) (-15 -1381 ((-1228 (-749)) $)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3724 (((-475) $) 10)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 12)) (-2264 (((-112) $ $) NIL))) -(((-654) (-13 (-1052) (-10 -8 (-15 -3724 ((-475) $)) (-15 -1865 ((-1104) $))))) (T -654)) -((-3724 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-654))))) -(-13 (-1052) (-10 -8 (-15 -3724 ((-475) $)) (-15 -1865 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-3016 (((-623 |#1|) $) 14)) (-3490 (($ $) 18)) (-2918 (((-112) $) 19)) (-2288 (((-3 |#1| "failed") $) 22)) (-2202 ((|#1| $) 20)) (-3870 (($ $) 36)) (-2481 (($ $) 24)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2526 (((-112) $ $) 42)) (-3839 (((-895) $) 38)) (-3480 (($ $) 17)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 ((|#1| $) 35)) (-2233 (((-837) $) 31) (($ |#1|) 23) (((-797 |#1|) $) 27)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 12)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-655 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2233 ((-797 |#1|) $)) (-15 -3858 (|#1| $)) (-15 -3480 ($ $)) (-15 -3839 ((-895) $)) (-15 -2526 ((-112) $ $)) (-15 -2481 ($ $)) (-15 -3870 ($ $)) (-15 -2918 ((-112) $)) (-15 -3490 ($ $)) (-15 -3016 ((-623 |#1|) $)))) (-825)) (T -655)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-3858 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3480 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-2526 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2233 ((-797 |#1|) $)) (-15 -3858 (|#1| $)) (-15 -3480 ($ $)) (-15 -3839 ((-895) $)) (-15 -2526 ((-112) $ $)) (-15 -2481 ($ $)) (-15 -3870 ($ $)) (-15 -2918 ((-112) $)) (-15 -3490 ($ $)) (-15 -3016 ((-623 |#1|) $)))) -((-1593 ((|#1| (-1 |#1| (-749) |#1|) (-749) |#1|) 11)) (-1319 ((|#1| (-1 |#1| |#1|) (-749) |#1|) 9))) -(((-656 |#1|) (-10 -7 (-15 -1319 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -1593 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) (-1069)) (T -656)) -((-1593 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1069)) (-5 *1 (-656 *2)))) (-1319 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1069)) (-5 *1 (-656 *2))))) -(-10 -7 (-15 -1319 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -1593 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) -((-1998 ((|#2| |#1| |#2|) 9)) (-1986 ((|#1| |#1| |#2|) 8))) -(((-657 |#1| |#2|) (-10 -7 (-15 -1986 (|#1| |#1| |#2|)) (-15 -1998 (|#2| |#1| |#2|))) (-1069) (-1069)) (T -657)) -((-1998 (*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(-10 -7 (-15 -1986 (|#1| |#1| |#2|)) (-15 -1998 (|#2| |#1| |#2|))) -((-3969 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3969 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1069) (-1069) (-1069)) (T -658)) -((-3969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)) (-5 *1 (-658 *5 *6 *2))))) -(-10 -7 (-15 -3969 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-2263 (((-1181) $) 20)) (-2203 (((-623 (-1181)) $) 18)) (-3638 (($ (-623 (-1181)) (-1181)) 13)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 29) (((-1150) $) NIL) (($ (-1150)) NIL) (((-1181) $) 21) (($ (-1087)) 10)) (-2264 (((-112) $ $) NIL))) -(((-659) (-13 (-1052) (-595 (-1181)) (-10 -8 (-15 -2233 ($ (-1087))) (-15 -3638 ($ (-623 (-1181)) (-1181))) (-15 -2203 ((-623 (-1181)) $)) (-15 -2263 ((-1181) $))))) (T -659)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-659)))) (-3638 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1181))) (-5 *3 (-1181)) (-5 *1 (-659)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-659)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-659))))) -(-13 (-1052) (-595 (-1181)) (-10 -8 (-15 -2233 ($ (-1087))) (-15 -3638 ($ (-623 (-1181)) (-1181))) (-15 -2203 ((-623 (-1181)) $)) (-15 -2263 ((-1181) $)))) -((-1593 (((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)) 23)) (-2668 (((-1 |#1|) |#1|) 8)) (-3345 ((|#1| |#1|) 16)) (-1874 (((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2233 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-749)) 20))) -(((-660 |#1|) (-10 -7 (-15 -2668 ((-1 |#1|) |#1|)) (-15 -2233 ((-1 |#1|) |#1|)) (-15 -1874 (|#1| (-1 |#1| |#1|))) (-15 -1874 ((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550))) (-15 -3345 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -1593 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) (-1069)) (T -660)) -((-1593 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1069)) (-5 *1 (-660 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1069)) (-5 *1 (-660 *4)))) (-3345 (*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1069)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-623 *5) (-623 *5))) (-5 *4 (-550)) (-5 *2 (-623 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1069)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1069)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1069)))) (-2668 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1069))))) -(-10 -7 (-15 -2668 ((-1 |#1|) |#1|)) (-15 -2233 ((-1 |#1|) |#1|)) (-15 -1874 (|#1| (-1 |#1| |#1|))) (-15 -1874 ((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550))) (-15 -3345 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -1593 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) -((-2853 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3777 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4165 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2983 (((-1 |#2| |#1|) |#2|) 11))) -(((-661 |#1| |#2|) (-10 -7 (-15 -2983 ((-1 |#2| |#1|) |#2|)) (-15 -3777 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4165 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2853 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1069) (-1069)) (T -661)) -((-2853 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1069)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) (-4 *4 (-1069)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5)))) (-2983 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-1069))))) -(-10 -7 (-15 -2983 ((-1 |#2| |#1|) |#2|)) (-15 -3777 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4165 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2853 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1274 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2519 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2495 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3354 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2357 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -2519 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2495 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3354 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2357 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1274 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1069) (-1069) (-1069)) (T -662)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1069)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1069)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1069)) (-4 *4 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) -(-10 -7 (-15 -2519 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2495 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3354 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2357 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1274 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2924 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2392 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2392 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2392 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2924 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1021) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|) (-1021) (-366 |#5|) (-366 |#5|) (-665 |#5| |#6| |#7|)) (T -663)) -((-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1021)) (-4 *2 (-1021)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) (-4 *9 (-366 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-665 *5 *6 *7)) (-4 *10 (-665 *2 *8 *9)))) (-2392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1021)) (-4 *8 (-1021)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1021)) (-4 *8 (-1021)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))) -(-10 -7 (-15 -2392 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2392 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2924 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3370 (($ (-749) (-749)) 33)) (-2705 (($ $ $) 56)) (-3569 (($ |#3|) 52) (($ $) 53)) (-3684 (((-112) $) 28)) (-1481 (($ $ (-550) (-550)) 58)) (-3781 (($ $ (-550) (-550)) 59)) (-1825 (($ $ (-550) (-550) (-550) (-550)) 63)) (-4296 (($ $) 54)) (-2644 (((-112) $) 14)) (-3154 (($ $ (-550) (-550) $) 64)) (-2409 ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) 62)) (-3955 (($ (-749) |#2|) 39)) (-4224 (($ (-623 (-623 |#2|))) 37)) (-3380 (((-623 (-623 |#2|)) $) 57)) (-2458 (($ $ $) 55)) (-3409 (((-3 $ "failed") $ |#2|) 91)) (-2757 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-623 (-550)) (-623 (-550))) 61)) (-4000 (($ (-623 |#2|)) 40) (($ (-623 $)) 42)) (-2418 (((-112) $) 24)) (-2233 (($ |#4|) 47) (((-837) $) NIL)) (-3695 (((-112) $) 30)) (-2382 (($ $ |#2|) 93)) (-2370 (($ $ $) 68) (($ $) 71)) (-2358 (($ $ $) 66)) (** (($ $ (-749)) 80) (($ $ (-550)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-550) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2382 (|#1| |#1| |#2|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-550) (-550) |#1|)) (-15 -1825 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -3781 (|#1| |#1| (-550) (-550))) (-15 -1481 (|#1| |#1| (-550) (-550))) (-15 -2409 (|#1| |#1| (-623 (-550)) (-623 (-550)) |#1|)) (-15 -2757 (|#1| |#1| (-623 (-550)) (-623 (-550)))) (-15 -3380 ((-623 (-623 |#2|)) |#1|)) (-15 -2705 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -4296 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| |#3|)) (-15 -2233 (|#1| |#4|)) (-15 -4000 (|#1| (-623 |#1|))) (-15 -4000 (|#1| (-623 |#2|))) (-15 -3955 (|#1| (-749) |#2|)) (-15 -4224 (|#1| (-623 (-623 |#2|)))) (-15 -3370 (|#1| (-749) (-749))) (-15 -3695 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -2409 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550)))) (-665 |#2| |#3| |#4|) (-1021) (-366 |#2|) (-366 |#2|)) (T -664)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2382 (|#1| |#1| |#2|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-550) (-550) |#1|)) (-15 -1825 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -3781 (|#1| |#1| (-550) (-550))) (-15 -1481 (|#1| |#1| (-550) (-550))) (-15 -2409 (|#1| |#1| (-623 (-550)) (-623 (-550)) |#1|)) (-15 -2757 (|#1| |#1| (-623 (-550)) (-623 (-550)))) (-15 -3380 ((-623 (-623 |#2|)) |#1|)) (-15 -2705 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -4296 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| |#3|)) (-15 -2233 (|#1| |#4|)) (-15 -4000 (|#1| (-623 |#1|))) (-15 -4000 (|#1| (-623 |#2|))) (-15 -3955 (|#1| (-749) |#2|)) (-15 -4224 (|#1| (-623 (-623 |#2|)))) (-15 -3370 (|#1| (-749) (-749))) (-15 -3695 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -2409 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) (-550)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3370 (($ (-749) (-749)) 97)) (-2705 (($ $ $) 87)) (-3569 (($ |#2|) 91) (($ $) 90)) (-3684 (((-112) $) 99)) (-1481 (($ $ (-550) (-550)) 83)) (-3781 (($ $ (-550) (-550)) 82)) (-1825 (($ $ (-550) (-550) (-550) (-550)) 81)) (-4296 (($ $) 89)) (-2644 (((-112) $) 101)) (-3368 (((-112) $ (-749)) 8)) (-3154 (($ $ (-550) (-550) $) 80)) (-2409 ((|#1| $ (-550) (-550) |#1|) 44) (($ $ (-623 (-550)) (-623 (-550)) $) 84)) (-1645 (($ $ (-550) |#2|) 42)) (-4097 (($ $ (-550) |#3|) 41)) (-3955 (($ (-749) |#1|) 95)) (-2991 (($) 7 T CONST)) (-4257 (($ $) 67 (|has| |#1| (-300)))) (-1297 ((|#2| $ (-550)) 46)) (-3398 (((-749) $) 66 (|has| |#1| (-542)))) (-3317 ((|#1| $ (-550) (-550) |#1|) 43)) (-3263 ((|#1| $ (-550) (-550)) 48)) (-2971 (((-623 |#1|) $) 30)) (-1436 (((-749) $) 65 (|has| |#1| (-542)))) (-3113 (((-623 |#3|) $) 64 (|has| |#1| (-542)))) (-2050 (((-749) $) 51)) (-3375 (($ (-749) (-749) |#1|) 57)) (-2063 (((-749) $) 50)) (-1445 (((-112) $ (-749)) 9)) (-1517 ((|#1| $) 62 (|has| |#1| (-6 (-4346 "*"))))) (-3397 (((-550) $) 55)) (-2415 (((-550) $) 53)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1630 (((-550) $) 54)) (-2964 (((-550) $) 52)) (-4224 (($ (-623 (-623 |#1|))) 96)) (-3311 (($ (-1 |#1| |#1|) $) 34)) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3380 (((-623 (-623 |#1|)) $) 86)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3765 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-2458 (($ $ $) 88)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) 56)) (-3409 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-542)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) (-550)) 49) ((|#1| $ (-550) (-550) |#1|) 47) (($ $ (-623 (-550)) (-623 (-550))) 85)) (-4000 (($ (-623 |#1|)) 94) (($ (-623 $)) 93)) (-2418 (((-112) $) 100)) (-4270 ((|#1| $) 63 (|has| |#1| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-1457 ((|#3| $ (-550)) 45)) (-2233 (($ |#3|) 92) (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-3695 (((-112) $) 98)) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2382 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-2370 (($ $ $) 78) (($ $) 77)) (-2358 (($ $ $) 79)) (** (($ $ (-749)) 70) (($ $ (-550)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-550) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-665 |#1| |#2| |#3|) (-138) (-1021) (-366 |t#1|) (-366 |t#1|)) (T -665)) -((-2644 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-3370 (*1 *1 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3955 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *2)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *1 (-665 *3 *2 *4)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (-3569 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2458 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2705 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-623 (-623 *3))))) (-2757 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2409 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1481 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3781 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1825 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3154 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2358 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-665 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-665 *3 *2 *4)) (-4 *3 (-1021)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-542)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (-4257 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-300)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-623 *5)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) (-3765 (*1 *1 *1) (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4345) (-6 -4344) (-15 -2644 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3695 ((-112) $)) (-15 -3370 ($ (-749) (-749))) (-15 -4224 ($ (-623 (-623 |t#1|)))) (-15 -3955 ($ (-749) |t#1|)) (-15 -4000 ($ (-623 |t#1|))) (-15 -4000 ($ (-623 $))) (-15 -2233 ($ |t#3|)) (-15 -3569 ($ |t#2|)) (-15 -3569 ($ $)) (-15 -4296 ($ $)) (-15 -2458 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -3380 ((-623 (-623 |t#1|)) $)) (-15 -2757 ($ $ (-623 (-550)) (-623 (-550)))) (-15 -2409 ($ $ (-623 (-550)) (-623 (-550)) $)) (-15 -1481 ($ $ (-550) (-550))) (-15 -3781 ($ $ (-550) (-550))) (-15 -1825 ($ $ (-550) (-550) (-550) (-550))) (-15 -3154 ($ $ (-550) (-550) $)) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-550) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-749))) (IF (|has| |t#1| (-542)) (-15 -3409 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2382 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -4257 ($ $)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3398 ((-749) $)) (-15 -1436 ((-749) $)) (-15 -3113 ((-623 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4346 "*"))) (PROGN (-15 -4270 (|t#1| $)) (-15 -1517 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3765 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-56 |#1| |#2| |#3|) . T) ((-1182) . T)) -((-4257 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3398 (((-749) |#4|) 99 (|has| |#1| (-542)))) (-1436 (((-749) |#4|) 76 (|has| |#1| (-542)))) (-3113 (((-623 |#3|) |#4|) 83 (|has| |#1| (-542)))) (-3492 (((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-1517 ((|#1| |#4|) 35)) (-2609 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-542)))) (-3765 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2926 ((|#4| |#4|) 68 (|has| |#1| (-542)))) (-1959 ((|#4| |#4| |#1| (-550) (-550)) 43)) (-3240 ((|#4| |#4| (-550) (-550)) 38)) (-3298 ((|#4| |#4| |#1| (-550) (-550)) 48)) (-4270 ((|#1| |#4|) 78)) (-3557 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-542))))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4270 (|#1| |#4|)) (-15 -1517 (|#1| |#4|)) (-15 -3240 (|#4| |#4| (-550) (-550))) (-15 -1959 (|#4| |#4| |#1| (-550) (-550))) (-15 -3298 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-542)) (PROGN (-15 -3398 ((-749) |#4|)) (-15 -1436 ((-749) |#4|)) (-15 -3113 ((-623 |#3|) |#4|)) (-15 -2926 (|#4| |#4|)) (-15 -2609 ((-3 |#4| "failed") |#4|)) (-15 -3557 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -4257 (|#4| |#4|)) (-15 -3492 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3765 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -666)) -((-3765 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3492 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-665 *3 *4 *5)))) (-4257 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2609 (*1 *2 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-1436 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3398 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3298 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-665 *3 *5 *6)))) (-1959 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-665 *3 *5 *6)))) (-3240 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-665 *4 *5 *6)))) (-1517 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5))))) -(-10 -7 (-15 -4270 (|#1| |#4|)) (-15 -1517 (|#1| |#4|)) (-15 -3240 (|#4| |#4| (-550) (-550))) (-15 -1959 (|#4| |#4| |#1| (-550) (-550))) (-15 -3298 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-542)) (PROGN (-15 -3398 ((-749) |#4|)) (-15 -1436 ((-749) |#4|)) (-15 -3113 ((-623 |#3|) |#4|)) (-15 -2926 (|#4| |#4|)) (-15 -2609 ((-3 |#4| "failed") |#4|)) (-15 -3557 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -4257 (|#4| |#4|)) (-15 -3492 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3765 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749) (-749)) 47)) (-2705 (($ $ $) NIL)) (-3569 (($ (-1228 |#1|)) NIL) (($ $) NIL)) (-3684 (((-112) $) NIL)) (-1481 (($ $ (-550) (-550)) 12)) (-3781 (($ $ (-550) (-550)) NIL)) (-1825 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-4296 (($ $) NIL)) (-2644 (((-112) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3154 (($ $ (-550) (-550) $) NIL)) (-2409 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1645 (($ $ (-550) (-1228 |#1|)) NIL)) (-4097 (($ $ (-550) (-1228 |#1|)) NIL)) (-3955 (($ (-749) |#1|) 22)) (-2991 (($) NIL T CONST)) (-4257 (($ $) 31 (|has| |#1| (-300)))) (-1297 (((-1228 |#1|) $ (-550)) NIL)) (-3398 (((-749) $) 33 (|has| |#1| (-542)))) (-3317 ((|#1| $ (-550) (-550) |#1|) 51)) (-3263 ((|#1| $ (-550) (-550)) NIL)) (-2971 (((-623 |#1|) $) NIL)) (-1436 (((-749) $) 35 (|has| |#1| (-542)))) (-3113 (((-623 (-1228 |#1|)) $) 38 (|has| |#1| (-542)))) (-2050 (((-749) $) 20)) (-3375 (($ (-749) (-749) |#1|) 16)) (-2063 (((-749) $) 21)) (-1445 (((-112) $ (-749)) NIL)) (-1517 ((|#1| $) 29 (|has| |#1| (-6 (-4346 "*"))))) (-3397 (((-550) $) 9)) (-2415 (((-550) $) 10)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1630 (((-550) $) 11)) (-2964 (((-550) $) 48)) (-4224 (($ (-623 (-623 |#1|))) NIL)) (-3311 (($ (-1 |#1| |#1|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3380 (((-623 (-623 |#1|)) $) 60)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3765 (((-3 $ "failed") $) 45 (|has| |#1| (-356)))) (-2458 (($ $ $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2491 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4000 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL) (($ (-1228 |#1|)) 52)) (-2418 (((-112) $) NIL)) (-4270 ((|#1| $) 27 (|has| |#1| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2451 (((-526) $) 64 (|has| |#1| (-596 (-526))))) (-1457 (((-1228 |#1|) $ (-550)) NIL)) (-2233 (($ (-1228 |#1|)) NIL) (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $ $) NIL) (($ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) 23) (($ $ (-550)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1228 |#1|) $ (-1228 |#1|)) NIL) (((-1228 |#1|) (-1228 |#1|) $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-667 |#1|) (-13 (-665 |#1| (-1228 |#1|) (-1228 |#1|)) (-10 -8 (-15 -4000 ($ (-1228 |#1|))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3765 ((-3 $ "failed") $)) |%noBranch|))) (-1021)) (T -667)) -((-3765 (*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1021)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1021)) (-5 *1 (-667 *3))))) -(-13 (-665 |#1| (-1228 |#1|) (-1228 |#1|)) (-10 -8 (-15 -4000 ($ (-1228 |#1|))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3765 ((-3 $ "failed") $)) |%noBranch|))) -((-3337 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 25)) (-1773 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 21)) (-3036 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749)) 26)) (-2760 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 14)) (-2385 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 18) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 16)) (-2118 (((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|)) 20)) (-4191 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 12)) (** (((-667 |#1|) (-667 |#1|) (-749)) 30))) -(((-668 |#1|) (-10 -7 (-15 -4191 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2760 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2118 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -1773 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -3337 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3036 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) (-1021)) (T -668)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1021)) (-5 *1 (-668 *4)))) (-3036 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1021)) (-5 *1 (-668 *4)))) (-3337 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-1773 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-2118 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-2385 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-2385 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-2760 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) (-4191 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(-10 -7 (-15 -4191 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2760 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2118 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -1773 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -3337 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3036 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) -((-3733 (($) 8 T CONST)) (-2233 (((-837) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2676 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3733)) 16)) (-2469 ((|#1| $) 11))) -(((-669 |#1|) (-13 (-1223) (-595 (-837)) (-10 -8 (-15 -2676 ((-112) $ (|[\|\|]| |#1|))) (-15 -2676 ((-112) $ (|[\|\|]| -3733))) (-15 -2233 ($ |#1|)) (-15 -2233 (|#1| $)) (-15 -2469 (|#1| $)) (-15 -3733 ($) -4165))) (-595 (-837))) (T -669)) -((-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-837))) (-5 *2 (-112)) (-5 *1 (-669 *4)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3733)) (-5 *2 (-112)) (-5 *1 (-669 *4)) (-4 *4 (-595 (-837))))) (-2233 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) (-2233 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) (-2469 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) (-3733 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837)))))) -(-13 (-1223) (-595 (-837)) (-10 -8 (-15 -2676 ((-112) $ (|[\|\|]| |#1|))) (-15 -2676 ((-112) $ (|[\|\|]| -3733))) (-15 -2233 ($ |#1|)) (-15 -2233 (|#1| $)) (-15 -2469 (|#1| $)) (-15 -3733 ($) -4165))) -((-2138 ((|#2| |#2| |#4|) 25)) (-1407 (((-667 |#2|) |#3| |#4|) 31)) (-4001 (((-667 |#2|) |#2| |#4|) 30)) (-1417 (((-1228 |#2|) |#2| |#4|) 16)) (-2695 ((|#2| |#3| |#4|) 24)) (-3244 (((-667 |#2|) |#3| |#4| (-749) (-749)) 38)) (-2828 (((-667 |#2|) |#2| |#4| (-749)) 37))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1417 ((-1228 |#2|) |#2| |#4|)) (-15 -2695 (|#2| |#3| |#4|)) (-15 -2138 (|#2| |#2| |#4|)) (-15 -4001 ((-667 |#2|) |#2| |#4|)) (-15 -2828 ((-667 |#2|) |#2| |#4| (-749))) (-15 -1407 ((-667 |#2|) |#3| |#4|)) (-15 -3244 ((-667 |#2|) |#3| |#4| (-749) (-749)))) (-1069) (-874 |#1|) (-366 |#2|) (-13 (-366 |#1|) (-10 -7 (-6 -4344)))) (T -670)) -((-3244 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1069)) (-4 *7 (-874 *6)) (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-366 *7)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4344)))))) (-1407 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-366 *6)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344)))))) (-2828 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1069)) (-4 *3 (-874 *6)) (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-366 *3)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4344)))))) (-4001 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344)))))) (-2138 (*1 *2 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4344)))))) (-2695 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344)))))) (-1417 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-4 *3 (-874 *5)) (-5 *2 (-1228 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344))))))) -(-10 -7 (-15 -1417 ((-1228 |#2|) |#2| |#4|)) (-15 -2695 (|#2| |#3| |#4|)) (-15 -2138 (|#2| |#2| |#4|)) (-15 -4001 ((-667 |#2|) |#2| |#4|)) (-15 -2828 ((-667 |#2|) |#2| |#4| (-749))) (-15 -1407 ((-667 |#2|) |#3| |#4|)) (-15 -3244 ((-667 |#2|) |#3| |#4| (-749) (-749)))) -((-3805 (((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)) 20)) (-2543 ((|#1| (-667 |#2|)) 9)) (-4054 (((-667 |#1|) (-667 |#2|)) 18))) -(((-671 |#1| |#2|) (-10 -7 (-15 -2543 (|#1| (-667 |#2|))) (-15 -4054 ((-667 |#1|) (-667 |#2|))) (-15 -3805 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) (-542) (-966 |#1|)) (T -671)) -((-3805 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-966 *4)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-966 *4)) (-4 *4 (-542)) (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-671 *2 *4))))) -(-10 -7 (-15 -2543 (|#1| (-667 |#2|))) (-15 -4054 ((-667 |#1|) (-667 |#2|))) (-15 -3805 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-3992 (((-667 (-677))) NIL) (((-667 (-677)) (-1228 $)) NIL)) (-2223 (((-677) $) NIL)) (-4160 (($ $) NIL (|has| (-677) (-1167)))) (-2820 (($ $) NIL (|has| (-677) (-1167)))) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-677) (-342)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-883))))) (-2318 (($ $) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| (-677) (-883))) (|has| (-677) (-356))))) (-2207 (((-411 $) $) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| (-677) (-883))) (|has| (-677) (-356))))) (-1745 (($ $) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1167))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-883))))) (-1611 (((-112) $ $) NIL (|has| (-677) (-300)))) (-3828 (((-749)) NIL (|has| (-677) (-361)))) (-4137 (($ $) NIL (|has| (-677) (-1167)))) (-2796 (($ $) NIL (|has| (-677) (-1167)))) (-4183 (($ $) NIL (|has| (-677) (-1167)))) (-2844 (($ $) NIL (|has| (-677) (-1167)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-677) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-677) (-1012 (-400 (-550)))))) (-2202 (((-550) $) NIL) (((-677) $) NIL) (((-400 (-550)) $) NIL (|has| (-677) (-1012 (-400 (-550)))))) (-2821 (($ (-1228 (-677))) NIL) (($ (-1228 (-677)) (-1228 $)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-677) (-342)))) (-3455 (($ $ $) NIL (|has| (-677) (-300)))) (-2766 (((-667 (-677)) $) NIL) (((-667 (-677)) $ (-1228 $)) NIL)) (-3756 (((-667 (-677)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-677))) (|:| |vec| (-1228 (-677)))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-677) (-619 (-550)))) (((-667 (-550)) (-667 $)) NIL (|has| (-677) (-619 (-550))))) (-2924 (((-3 $ "failed") (-400 (-1141 (-677)))) NIL (|has| (-677) (-356))) (($ (-1141 (-677))) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1406 (((-677) $) 29)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL (|has| (-677) (-535)))) (-2593 (((-112) $) NIL (|has| (-677) (-535)))) (-3169 (((-400 (-550)) $) NIL (|has| (-677) (-535)))) (-3398 (((-895)) NIL)) (-1864 (($) NIL (|has| (-677) (-361)))) (-3429 (($ $ $) NIL (|has| (-677) (-300)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| (-677) (-300)))) (-2664 (($) NIL (|has| (-677) (-342)))) (-4139 (((-112) $) NIL (|has| (-677) (-342)))) (-4322 (($ $) NIL (|has| (-677) (-342))) (($ $ (-749)) NIL (|has| (-677) (-342)))) (-1568 (((-112) $) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| (-677) (-883))) (|has| (-677) (-356))))) (-1771 (((-2 (|:| |r| (-677)) (|:| |phi| (-677))) $) NIL (-12 (|has| (-677) (-1030)) (|has| (-677) (-1167))))) (-4187 (($) NIL (|has| (-677) (-1167)))) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-677) (-860 (-372)))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-677) (-860 (-550))))) (-2603 (((-811 (-895)) $) NIL (|has| (-677) (-342))) (((-895) $) NIL (|has| (-677) (-342)))) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1167))))) (-1571 (((-677) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-677) (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-677) (-300)))) (-2835 (((-1141 (-677)) $) NIL (|has| (-677) (-356)))) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2392 (($ (-1 (-677) (-677)) $) NIL)) (-4073 (((-895) $) NIL (|has| (-677) (-361)))) (-3080 (($ $) NIL (|has| (-677) (-1167)))) (-2910 (((-1141 (-677)) $) NIL)) (-3231 (($ (-623 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| (-677) (-356)))) (-2463 (($) NIL (|has| (-677) (-342)) CONST)) (-3690 (($ (-895)) NIL (|has| (-677) (-361)))) (-3538 (($) NIL)) (-1415 (((-677) $) 31)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-677) (-300)))) (-3260 (($ (-623 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-677) (-342)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-883))))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-883))))) (-1735 (((-411 $) $) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| (-677) (-883))) (|has| (-677) (-356))))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-677) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| (-677) (-300)))) (-3409 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-677)) NIL (|has| (-677) (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-677) (-300)))) (-1644 (($ $) NIL (|has| (-677) (-1167)))) (-1553 (($ $ (-1145) (-677)) NIL (|has| (-677) (-505 (-1145) (-677)))) (($ $ (-623 (-1145)) (-623 (-677))) NIL (|has| (-677) (-505 (-1145) (-677)))) (($ $ (-623 (-287 (-677)))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-287 (-677))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-677) (-677)) NIL (|has| (-677) (-302 (-677)))) (($ $ (-623 (-677)) (-623 (-677))) NIL (|has| (-677) (-302 (-677))))) (-1988 (((-749) $) NIL (|has| (-677) (-300)))) (-2757 (($ $ (-677)) NIL (|has| (-677) (-279 (-677) (-677))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| (-677) (-300)))) (-3563 (((-677)) NIL) (((-677) (-1228 $)) NIL)) (-2899 (((-3 (-749) "failed") $ $) NIL (|has| (-677) (-342))) (((-749) $) NIL (|has| (-677) (-342)))) (-2798 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-1145)) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2871 (((-667 (-677)) (-1228 $) (-1 (-677) (-677))) NIL (|has| (-677) (-356)))) (-3832 (((-1141 (-677))) NIL)) (-4194 (($ $) NIL (|has| (-677) (-1167)))) (-2856 (($ $) NIL (|has| (-677) (-1167)))) (-2038 (($) NIL (|has| (-677) (-342)))) (-4171 (($ $) NIL (|has| (-677) (-1167)))) (-2832 (($ $) NIL (|has| (-677) (-1167)))) (-4149 (($ $) NIL (|has| (-677) (-1167)))) (-2807 (($ $) NIL (|has| (-677) (-1167)))) (-2999 (((-667 (-677)) (-1228 $)) NIL) (((-1228 (-677)) $) NIL) (((-667 (-677)) (-1228 $) (-1228 $)) NIL) (((-1228 (-677)) $ (-1228 $)) NIL)) (-2451 (((-526) $) NIL (|has| (-677) (-596 (-526)))) (((-167 (-219)) $) NIL (|has| (-677) (-996))) (((-167 (-372)) $) NIL (|has| (-677) (-996))) (((-866 (-372)) $) NIL (|has| (-677) (-596 (-866 (-372))))) (((-866 (-550)) $) NIL (|has| (-677) (-596 (-866 (-550))))) (($ (-1141 (-677))) NIL) (((-1141 (-677)) $) NIL) (($ (-1228 (-677))) NIL) (((-1228 (-677)) $) NIL)) (-3018 (($ $) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-883))) (|has| (-677) (-342))))) (-2167 (($ (-677) (-677)) 12)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-677)) NIL) (($ (-167 (-372))) 13) (($ (-167 (-550))) 19) (($ (-167 (-677))) 28) (($ (-167 (-679))) 25) (((-167 (-372)) $) 33) (($ (-400 (-550))) NIL (-1489 (|has| (-677) (-1012 (-400 (-550)))) (|has| (-677) (-356))))) (-1613 (($ $) NIL (|has| (-677) (-342))) (((-3 $ "failed") $) NIL (-1489 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-883))) (|has| (-677) (-143))))) (-3359 (((-1141 (-677)) $) NIL)) (-3091 (((-749)) NIL)) (-2206 (((-1228 $)) NIL)) (-4233 (($ $) NIL (|has| (-677) (-1167)))) (-2893 (($ $) NIL (|has| (-677) (-1167)))) (-1819 (((-112) $ $) NIL)) (-4206 (($ $) NIL (|has| (-677) (-1167)))) (-2869 (($ $) NIL (|has| (-677) (-1167)))) (-4255 (($ $) NIL (|has| (-677) (-1167)))) (-4117 (($ $) NIL (|has| (-677) (-1167)))) (-2963 (((-677) $) NIL (|has| (-677) (-1167)))) (-3363 (($ $) NIL (|has| (-677) (-1167)))) (-4127 (($ $) NIL (|has| (-677) (-1167)))) (-4244 (($ $) NIL (|has| (-677) (-1167)))) (-2905 (($ $) NIL (|has| (-677) (-1167)))) (-4218 (($ $) NIL (|has| (-677) (-1167)))) (-2880 (($ $) NIL (|has| (-677) (-1167)))) (-4188 (($ $) NIL (|has| (-677) (-1030)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-1145)) NIL (|has| (-677) (-874 (-1145)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL (|has| (-677) (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| (-677) (-1167))) (($ $ (-400 (-550))) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1167)))) (($ $ (-550)) NIL (|has| (-677) (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-677) $) NIL) (($ $ (-677)) NIL) (($ (-400 (-550)) $) NIL (|has| (-677) (-356))) (($ $ (-400 (-550))) NIL (|has| (-677) (-356))))) -(((-672) (-13 (-380) (-164 (-677)) (-10 -8 (-15 -2233 ($ (-167 (-372)))) (-15 -2233 ($ (-167 (-550)))) (-15 -2233 ($ (-167 (-677)))) (-15 -2233 ($ (-167 (-679)))) (-15 -2233 ((-167 (-372)) $))))) (T -672)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-167 (-550))) (-5 *1 (-672)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-672)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-672)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672))))) -(-13 (-380) (-164 (-677)) (-10 -8 (-15 -2233 ($ (-167 (-372)))) (-15 -2233 ($ (-167 (-550)))) (-15 -2233 ($ (-167 (-677)))) (-15 -2233 ($ (-167 (-679)))) (-15 -2233 ((-167 (-372)) $)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2599 (($ $) 62)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3009 (((-623 (-2 (|:| -3859 |#1|) (|:| -3457 (-749)))) $) 61)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-673 |#1|) (-138) (-1069)) (T -673)) -((-1715 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1069)))) (-2599 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1069)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1069)) (-5 *2 (-623 (-2 (|:| -3859 *3) (|:| -3457 (-749)))))))) -(-13 (-229 |t#1|) (-10 -8 (-15 -1715 ($ |t#1| $ (-749))) (-15 -2599 ($ $)) (-15 -3009 ((-623 (-2 (|:| -3859 |t#1|) (|:| -3457 (-749)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-1663 (((-623 |#1|) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) (-550)) 47)) (-4289 ((|#1| |#1| (-550)) 46)) (-3260 ((|#1| |#1| |#1| (-550)) 36)) (-1735 (((-623 |#1|) |#1| (-550)) 39)) (-3159 ((|#1| |#1| (-550) |#1| (-550)) 32)) (-3013 (((-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) |#1| (-550)) 45))) -(((-674 |#1|) (-10 -7 (-15 -3260 (|#1| |#1| |#1| (-550))) (-15 -4289 (|#1| |#1| (-550))) (-15 -1735 ((-623 |#1|) |#1| (-550))) (-15 -3013 ((-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) |#1| (-550))) (-15 -1663 ((-623 |#1|) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) (-550))) (-15 -3159 (|#1| |#1| (-550) |#1| (-550)))) (-1204 (-550))) (T -674)) -((-3159 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| -1735 *5) (|:| -3661 (-550))))) (-5 *4 (-550)) (-4 *5 (-1204 *4)) (-5 *2 (-623 *5)) (-5 *1 (-674 *5)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-623 (-2 (|:| -1735 *3) (|:| -3661 *4)))) (-5 *1 (-674 *3)) (-4 *3 (-1204 *4)))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-623 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1204 *4)))) (-4289 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3)))) (-3260 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3))))) -(-10 -7 (-15 -3260 (|#1| |#1| |#1| (-550))) (-15 -4289 (|#1| |#1| (-550))) (-15 -1735 ((-623 |#1|) |#1| (-550))) (-15 -3013 ((-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) |#1| (-550))) (-15 -1663 ((-623 |#1|) (-623 (-2 (|:| -1735 |#1|) (|:| -3661 (-550)))) (-550))) (-15 -3159 (|#1| |#1| (-550) |#1| (-550)))) -((-3973 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-2075 (((-1102 (-219)) (-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256))) 40) (((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256))) 42) (((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256))) 44)) (-2579 (((-1102 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-623 (-256))) NIL)) (-1731 (((-1102 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256))) 45))) -(((-675) (-10 -7 (-15 -2075 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2075 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2075 ((-1102 (-219)) (-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -1731 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2579 ((-1102 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -3973 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -675)) -((-3973 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675)))) (-2579 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-675)))) (-1731 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-675)))) (-2075 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-219))) (-5 *5 (-623 (-256))) (-5 *1 (-675)))) (-2075 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-219))) (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-675)))) (-2075 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-675))))) -(-10 -7 (-15 -2075 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2075 ((-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2075 ((-1102 (-219)) (-1102 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -1731 ((-1102 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1063 (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -2579 ((-1102 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1063 (-219)) (-623 (-256)))) (-15 -3973 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-1735 (((-411 (-1141 |#4|)) (-1141 |#4|)) 73) (((-411 |#4|) |#4|) 221))) -(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4|)) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-342) (-923 |#3| |#2| |#1|)) (T -676)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-923 *6 *5 *4))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4|)) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 84)) (-3104 (((-550) $) 30)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2879 (($ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL)) (-2991 (($) NIL T CONST)) (-3878 (($ $) NIL)) (-2288 (((-3 (-550) "failed") $) 73) (((-3 (-400 (-550)) "failed") $) 26) (((-3 (-372) "failed") $) 70)) (-2202 (((-550) $) 75) (((-400 (-550)) $) 67) (((-372) $) 68)) (-3455 (($ $ $) 96)) (-1537 (((-3 $ "failed") $) 87)) (-3429 (($ $ $) 95)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1578 (((-895)) 77) (((-895) (-895)) 76)) (-2694 (((-112) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL)) (-2603 (((-550) $) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL)) (-1571 (($ $) NIL)) (-1712 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3650 (((-550) (-550)) 81) (((-550)) 82)) (-2793 (($ $ $) NIL) (($) NIL (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-3015 (((-550) (-550)) 79) (((-550)) 80)) (-2173 (($ $ $) NIL) (($) NIL (-12 (-3548 (|has| $ (-6 -4327))) (-3548 (|has| $ (-6 -4335)))))) (-4136 (((-550) $) 16)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 91)) (-1566 (((-895) (-550)) NIL (|has| $ (-6 -4335)))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL)) (-3925 (($ $) NIL)) (-2795 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-895)) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 92)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3068 (((-550) $) 22)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 94)) (-4051 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4335)))) (-3202 (((-895) (-550)) NIL (|has| $ (-6 -4335)))) (-2451 (((-372) $) NIL) (((-219) $) NIL) (((-866 (-372)) $) NIL)) (-2233 (((-837) $) 52) (($ (-550)) 63) (($ $) NIL) (($ (-400 (-550))) 66) (($ (-550)) 63) (($ (-400 (-550))) 66) (($ (-372)) 60) (((-372) $) 50) (($ (-679)) 55)) (-3091 (((-749)) 103)) (-1400 (($ (-550) (-550) (-895)) 44)) (-2967 (($ $) NIL)) (-4319 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4335)))) (-4300 (((-895)) 35) (((-895) (-895)) 78)) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL)) (-2688 (($) 32 T CONST)) (-2700 (($) 17 T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 83)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 101)) (-2382 (($ $ $) 65)) (-2370 (($ $) 99) (($ $ $) 100)) (-2358 (($ $ $) 98)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) 90)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 97) (($ $ $) 88) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-677) (-13 (-397) (-380) (-356) (-1012 (-372)) (-1012 (-400 (-550))) (-145) (-10 -8 (-15 -1578 ((-895) (-895))) (-15 -1578 ((-895))) (-15 -4300 ((-895) (-895))) (-15 -3015 ((-550) (-550))) (-15 -3015 ((-550))) (-15 -3650 ((-550) (-550))) (-15 -3650 ((-550))) (-15 -2233 ((-372) $)) (-15 -2233 ($ (-679))) (-15 -4136 ((-550) $)) (-15 -3068 ((-550) $)) (-15 -1400 ($ (-550) (-550) (-895)))))) (T -677)) -((-3068 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-1578 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677)))) (-4300 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-3015 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-3650 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-677)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) (-1400 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-895)) (-5 *1 (-677))))) -(-13 (-397) (-380) (-356) (-1012 (-372)) (-1012 (-400 (-550))) (-145) (-10 -8 (-15 -1578 ((-895) (-895))) (-15 -1578 ((-895))) (-15 -4300 ((-895) (-895))) (-15 -3015 ((-550) (-550))) (-15 -3015 ((-550))) (-15 -3650 ((-550) (-550))) (-15 -3650 ((-550))) (-15 -2233 ((-372) $)) (-15 -2233 ($ (-679))) (-15 -4136 ((-550) $)) (-15 -3068 ((-550) $)) (-15 -1400 ($ (-550) (-550) (-895))))) -((-3892 (((-667 |#1|) (-667 |#1|) |#1| |#1|) 65)) (-4257 (((-667 |#1|) (-667 |#1|) |#1|) 48)) (-2551 (((-667 |#1|) (-667 |#1|) |#1|) 66)) (-2596 (((-667 |#1|) (-667 |#1|)) 49)) (-3492 (((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|) 64))) -(((-678 |#1|) (-10 -7 (-15 -2596 ((-667 |#1|) (-667 |#1|))) (-15 -4257 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2551 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -3892 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -3492 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|))) (-300)) (T -678)) -((-3492 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-678 *3)) (-4 *3 (-300)))) (-3892 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2551 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-4257 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(-10 -7 (-15 -2596 ((-667 |#1|) (-667 |#1|))) (-15 -4257 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2551 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -3892 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -3492 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2633 (($ $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1534 (($ $ $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL)) (-1538 (($ $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) 27)) (-2202 (((-550) $) 25)) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL)) (-2593 (((-112) $) NIL)) (-3169 (((-400 (-550)) $) NIL)) (-1864 (($ $) NIL) (($) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2083 (($ $ $ $) NIL)) (-2181 (($ $ $) NIL)) (-2694 (((-112) $) NIL)) (-4083 (($ $ $) NIL)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL)) (-2419 (((-112) $) NIL)) (-1286 (((-112) $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-1712 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2960 (($ $ $ $) NIL)) (-2793 (($ $ $) NIL)) (-3124 (((-895) (-895)) 10) (((-895)) 9)) (-2173 (($ $ $) NIL)) (-1673 (($ $) NIL)) (-3839 (($ $) NIL)) (-3231 (($ (-623 $)) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2711 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-2486 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ (-623 $)) NIL) (($ $ $) NIL)) (-3643 (($ $) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL) (($ $ (-749)) NIL)) (-2417 (($ $) NIL)) (-2435 (($ $) NIL)) (-2451 (((-219) $) NIL) (((-372) $) NIL) (((-866 (-550)) $) NIL) (((-526) $) NIL) (((-550) $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) 24) (($ $) NIL) (($ (-550)) 24) (((-309 $) (-309 (-550))) 18)) (-3091 (((-749)) NIL)) (-1796 (((-112) $ $) NIL)) (-1437 (($ $ $) NIL)) (-4300 (($) NIL)) (-1819 (((-112) $ $) NIL)) (-4133 (($ $ $ $) NIL)) (-4188 (($ $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL) (($ $ (-749)) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) -(((-679) (-13 (-380) (-535) (-10 -8 (-15 -3124 ((-895) (-895))) (-15 -3124 ((-895))) (-15 -2233 ((-309 $) (-309 (-550))))))) (T -679)) -((-3124 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-3124 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-309 (-550))) (-5 *2 (-309 (-679))) (-5 *1 (-679))))) -(-13 (-380) (-535) (-10 -8 (-15 -3124 ((-895) (-895))) (-15 -3124 ((-895))) (-15 -2233 ((-309 $) (-309 (-550)))))) -((-1740 (((-1 |#4| |#2| |#3|) |#1| (-1145) (-1145)) 19)) (-1399 (((-1 |#4| |#2| |#3|) (-1145)) 12))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1399 ((-1 |#4| |#2| |#3|) (-1145))) (-15 -1740 ((-1 |#4| |#2| |#3|) |#1| (-1145) (-1145)))) (-596 (-526)) (-1182) (-1182) (-1182)) (T -680)) -((-1740 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1145)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) (-4 *3 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182)) (-4 *7 (-1182)))) (-1399 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *4 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182)) (-4 *7 (-1182))))) -(-10 -7 (-15 -1399 ((-1 |#4| |#2| |#3|) (-1145))) (-15 -1740 ((-1 |#4| |#2| |#3|) |#1| (-1145) (-1145)))) -((-2221 (((-112) $ $) NIL)) (-4195 (((-1233) $ (-749)) 14)) (-3088 (((-749) $) 12)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 25)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 24))) -(((-681 |#1|) (-13 (-131) (-595 |#1|) (-10 -8 (-15 -2233 ($ |#1|)))) (-1069)) (T -681)) -((-2233 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1069))))) -(-13 (-131) (-595 |#1|) (-10 -8 (-15 -2233 ($ |#1|)))) -((-4098 (((-1 (-219) (-219) (-219)) |#1| (-1145) (-1145)) 34) (((-1 (-219) (-219)) |#1| (-1145)) 39))) -(((-682 |#1|) (-10 -7 (-15 -4098 ((-1 (-219) (-219)) |#1| (-1145))) (-15 -4098 ((-1 (-219) (-219) (-219)) |#1| (-1145) (-1145)))) (-596 (-526))) (T -682)) -((-4098 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1145)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-526))))) (-4098 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-526)))))) -(-10 -7 (-15 -4098 ((-1 (-219) (-219)) |#1| (-1145))) (-15 -4098 ((-1 (-219) (-219) (-219)) |#1| (-1145) (-1145)))) -((-3112 (((-1145) |#1| (-1145) (-623 (-1145))) 9) (((-1145) |#1| (-1145) (-1145) (-1145)) 12) (((-1145) |#1| (-1145) (-1145)) 11) (((-1145) |#1| (-1145)) 10))) -(((-683 |#1|) (-10 -7 (-15 -3112 ((-1145) |#1| (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-1145) (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-623 (-1145))))) (-596 (-526))) (T -683)) -((-3112 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-623 (-1145))) (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-3112 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-3112 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-3112 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526)))))) -(-10 -7 (-15 -3112 ((-1145) |#1| (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-1145) (-1145))) (-15 -3112 ((-1145) |#1| (-1145) (-623 (-1145))))) -((-2161 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-684 |#1| |#2|) (-10 -7 (-15 -2161 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1182) (-1182)) (T -684)) -((-2161 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-1182)) (-4 *4 (-1182))))) -(-10 -7 (-15 -2161 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3655 (((-1 |#3| |#2|) (-1145)) 11)) (-1740 (((-1 |#3| |#2|) |#1| (-1145)) 21))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3655 ((-1 |#3| |#2|) (-1145))) (-15 -1740 ((-1 |#3| |#2|) |#1| (-1145)))) (-596 (-526)) (-1182) (-1182)) (T -685)) -((-1740 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) (-4 *3 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182))))) -(-10 -7 (-15 -3655 ((-1 |#3| |#2|) (-1145))) (-15 -1740 ((-1 |#3| |#2|) |#1| (-1145)))) -((-3818 (((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1228 (-623 (-1141 |#3|))) |#3|) 62)) (-2122 (((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|) 75)) (-3509 (((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1141 |#4|)) (-1228 (-623 (-1141 |#3|))) |#3|) 34))) -(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3509 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1141 |#4|)) (-1228 (-623 (-1141 |#3|))) |#3|)) (-15 -2122 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|)) (-15 -3818 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1228 (-623 (-1141 |#3|))) |#3|))) (-771) (-825) (-300) (-923 |#3| |#1| |#2|)) (T -686)) -((-3818 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-623 (-1141 *13))) (-5 *3 (-1141 *13)) (-5 *4 (-623 *12)) (-5 *5 (-623 *10)) (-5 *6 (-623 *13)) (-5 *7 (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| *13))))) (-5 *8 (-623 (-749))) (-5 *9 (-1228 (-623 (-1141 *10)))) (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-923 *10 *11 *12)) (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13)))) (-2122 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-623 *11)) (-5 *5 (-623 (-1141 *9))) (-5 *6 (-623 *9)) (-5 *7 (-623 *12)) (-5 *8 (-623 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-923 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-623 (-1141 *12))) (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12)))) (-3509 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-623 (-1141 *11))) (-5 *3 (-1141 *11)) (-5 *4 (-623 *10)) (-5 *5 (-623 *8)) (-5 *6 (-623 (-749))) (-5 *7 (-1228 (-623 (-1141 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) (-4 *11 (-923 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) -(-10 -7 (-15 -3509 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1141 |#4|)) (-1228 (-623 (-1141 |#3|))) |#3|)) (-15 -2122 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|)) (-15 -3818 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-623 |#2|) (-623 (-1141 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1228 (-623 (-1141 |#3|))) |#3|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1693 (($ $) 39)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-1488 (($ |#1| (-749)) 37)) (-3346 (((-749) $) 41)) (-1670 ((|#1| $) 40)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3661 (((-749) $) 42)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-1708 ((|#1| $ (-749)) 38)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-687 |#1|) (-138) (-1021)) (T -687)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1021)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1021)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1021)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1021))))) -(-13 (-1021) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3661 ((-749) $)) (-15 -3346 ((-749) $)) (-15 -1670 (|t#1| $)) (-15 -1693 ($ $)) (-15 -1708 (|t#1| $ (-749))) (-15 -1488 ($ |t#1| (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2392 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-688 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2392 (|#6| (-1 |#4| |#1|) |#3|))) (-542) (-1204 |#1|) (-1204 (-400 |#2|)) (-542) (-1204 |#4|) (-1204 (-400 |#5|))) (T -688)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1204 *5)) (-4 *2 (-1204 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1204 (-400 *6))) (-4 *8 (-1204 *7))))) -(-10 -7 (-15 -2392 (|#6| (-1 |#4| |#1|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3626 (((-1127) (-837)) 31)) (-1970 (((-1233) (-1127)) 28)) (-1640 (((-1127) (-837)) 24)) (-2016 (((-1127) (-837)) 25)) (-2233 (((-837) $) NIL) (((-1127) (-837)) 23)) (-2264 (((-112) $ $) NIL))) -(((-689) (-13 (-1069) (-10 -7 (-15 -2233 ((-1127) (-837))) (-15 -1640 ((-1127) (-837))) (-15 -2016 ((-1127) (-837))) (-15 -3626 ((-1127) (-837))) (-15 -1970 ((-1233) (-1127)))))) (T -689)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-689))))) -(-13 (-1069) (-10 -7 (-15 -2233 ((-1127) (-837))) (-15 -1640 ((-1127) (-837))) (-15 -2016 ((-1127) (-837))) (-15 -3626 ((-1127) (-837))) (-15 -1970 ((-1233) (-1127))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL)) (-2924 (($ |#1| |#2|) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2351 ((|#2| $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1507 (((-3 $ "failed") $ $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) ((|#1| $) NIL)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2351 (|#2| $)) (-15 -2233 (|#1| $)) (-15 -2924 ($ |#1| |#2|)) (-15 -1507 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) -((-2351 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2924 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1507 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-356) (-10 -8 (-15 -2351 (|#2| $)) (-15 -2233 (|#1| $)) (-15 -2924 ($ |#1| |#2|)) (-15 -1507 ((-3 $ "failed") $ $)))) -((-2221 (((-112) $ $) 78)) (-3378 (((-112) $) 30)) (-1431 (((-1228 |#1|) $ (-749)) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-3297 (($ (-1141 |#1|)) NIL)) (-1705 (((-1141 $) $ (-1051)) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1051))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2129 (($ $ $) NIL (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3828 (((-749)) 47 (|has| |#1| (-361)))) (-2887 (($ $ (-749)) NIL)) (-4069 (($ $ (-749)) NIL)) (-3286 ((|#2| |#2|) 44)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-1051) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-1051) $) NIL)) (-1792 (($ $ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) 34)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-2924 (($ |#2|) 42)) (-1537 (((-3 $ "failed") $) 86)) (-1864 (($) 51 (|has| |#1| (-361)))) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-2193 (($ $ $) NIL)) (-1509 (($ $ $) NIL (|has| |#1| (-542)))) (-2858 (((-2 (|:| -4304 |#1|) (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-1635 (((-932 $)) 80)) (-3401 (($ $ |#1| (-749) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1051) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1051) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ $) NIL (|has| |#1| (-542)))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1120)))) (-1501 (($ (-1141 |#1|) (-1051)) NIL) (($ (-1141 $) (-1051)) NIL)) (-1937 (($ $ (-749)) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) 77) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1051)) NIL) (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2351 ((|#2|) 45)) (-3346 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-749) (-749)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2838 (((-1141 |#1|) $) NIL)) (-4059 (((-3 (-1051) "failed") $) NIL)) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-2910 ((|#2| $) 41)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) 28)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1051)) (|:| -3068 (-749))) "failed") $) NIL)) (-2149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) NIL (|has| |#1| (-1120)) CONST)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3332 (($ $) 79 (|has| |#1| (-342)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1051) |#1|) NIL) (($ $ (-623 (-1051)) (-623 |#1|)) NIL) (($ $ (-1051) $) NIL) (($ $ (-623 (-1051)) (-623 $)) NIL)) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-3522 (((-3 $ "failed") $ (-749)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 87 (|has| |#1| (-356)))) (-3563 (($ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2798 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3661 (((-749) $) 32) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1051) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-3102 (((-932 $)) 36)) (-3674 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-2233 (((-837) $) 61) (($ (-550)) NIL) (($ |#1|) 58) (($ (-1051)) NIL) (($ |#2|) 68) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) 63) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 20 T CONST)) (-1594 (((-1228 |#1|) $) 75)) (-2574 (($ (-1228 |#1|)) 50)) (-2700 (($) 8 T CONST)) (-1901 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3656 (((-1228 |#1|) $) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 69)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) 72) (($ $ $) NIL)) (-2358 (($ $ $) 33)) (** (($ $ (-895)) NIL) (($ $ (-749)) 81)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 57) (($ $ $) 74) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-691 |#1| |#2|) (-13 (-1204 |#1|) (-10 -8 (-15 -3286 (|#2| |#2|)) (-15 -2351 (|#2|)) (-15 -2924 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2233 ($ |#2|)) (-15 -1594 ((-1228 |#1|) $)) (-15 -2574 ($ (-1228 |#1|))) (-15 -3656 ((-1228 |#1|) $)) (-15 -1635 ((-932 $))) (-15 -3102 ((-932 $))) (IF (|has| |#1| (-342)) (-15 -3332 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1021) (-1204 |#1|)) (T -691)) -((-3286 (*1 *2 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3)))) (-2351 (*1 *2) (-12 (-4 *2 (-1204 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1021)))) (-2924 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3)))) (-2910 (*1 *2 *1) (-12 (-4 *2 (-1204 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1021)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3)))) (-1594 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-5 *2 (-1228 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1204 *3)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1021)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1204 *3)))) (-3656 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-5 *2 (-1228 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1204 *3)))) (-1635 (*1 *2) (-12 (-4 *3 (-1021)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1204 *3)))) (-3102 (*1 *2) (-12 (-4 *3 (-1021)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1204 *3)))) (-3332 (*1 *1 *1) (-12 (-4 *2 (-342)) (-4 *2 (-1021)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1204 *2))))) -(-13 (-1204 |#1|) (-10 -8 (-15 -3286 (|#2| |#2|)) (-15 -2351 (|#2|)) (-15 -2924 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2233 ($ |#2|)) (-15 -1594 ((-1228 |#1|) $)) (-15 -2574 ($ (-1228 |#1|))) (-15 -3656 ((-1228 |#1|) $)) (-15 -1635 ((-932 $))) (-15 -3102 ((-932 $))) (IF (|has| |#1| (-342)) (-15 -3332 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3690 ((|#1| $) 13)) (-3445 (((-1089) $) NIL)) (-3068 ((|#2| $) 12)) (-2245 (($ |#1| |#2|) 16)) (-2233 (((-837) $) NIL) (($ (-2 (|:| -3690 |#1|) (|:| -3068 |#2|))) 15) (((-2 (|:| -3690 |#1|) (|:| -3068 |#2|)) $) 14)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 11))) -(((-692 |#1| |#2| |#3|) (-13 (-825) (-10 -8 (-15 -3068 (|#2| $)) (-15 -3690 (|#1| $)) (-15 -2233 ($ (-2 (|:| -3690 |#1|) (|:| -3068 |#2|)))) (-15 -2233 ((-2 (|:| -3690 |#1|) (|:| -3068 |#2|)) $)) (-15 -2245 ($ |#1| |#2|)))) (-825) (-1069) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -3068 |#2|)) (-2 (|:| -3690 |#1|) (|:| -3068 |#2|)))) (T -692)) -((-3068 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) (-14 *4 (-1 (-112) (-2 (|:| -3690 *3) (|:| -3068 *2)) (-2 (|:| -3690 *3) (|:| -3068 *2)))))) (-3690 (*1 *2 *1) (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *3)) (-2 (|:| -3690 *2) (|:| -3068 *3)))))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3690 *3) (|:| -3068 *4))) (-4 *3 (-825)) (-4 *4 (-1069)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3690 *3) (|:| -3068 *4))) (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1069)) (-14 *5 (-1 (-112) *2 *2)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1069)) (-14 *4 (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *3)) (-2 (|:| -3690 *2) (|:| -3068 *3))))))) -(-13 (-825) (-10 -8 (-15 -3068 (|#2| $)) (-15 -3690 (|#1| $)) (-15 -2233 ($ (-2 (|:| -3690 |#1|) (|:| -3068 |#2|)))) (-15 -2233 ((-2 (|:| -3690 |#1|) (|:| -3068 |#2|)) $)) (-15 -2245 ($ |#1| |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 59)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2202 ((|#1| $) NIL) (((-114) $) 39)) (-1537 (((-3 $ "failed") $) 90)) (-3262 ((|#2| (-114) |#2|) 82)) (-2419 (((-112) $) NIL)) (-1660 (($ |#1| (-354 (-114))) 14)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2874 (($ $ (-1 |#2| |#2|)) 58)) (-2322 (($ $ (-1 |#2| |#2|)) 44)) (-2757 ((|#2| $ |#2|) 33)) (-1887 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-2233 (((-837) $) 66) (($ (-550)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) 37)) (-3557 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2688 (($) 21 T CONST)) (-2700 (($) 9 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) 48) (($ $ $) NIL)) (-2358 (($ $ $) 73)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ (-114) (-550)) NIL) (($ $ (-550)) 57)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) -(((-693 |#1| |#2|) (-13 (-1021) (-1012 |#1|) (-1012 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -1887 (|#1| |#1|))) |%noBranch|) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 -2874 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -3262 (|#2| (-114) |#2|)) (-15 -1660 ($ |#1| (-354 (-114)))))) (-1021) (-626 |#1|)) (T -693)) -((-3557 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-3557 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-1887 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1021)) (-5 *1 (-693 *3 *4)))) (-2874 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1021)) (-5 *1 (-693 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-4 *4 (-1021)) (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *3 (-1021)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1021)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) (-1660 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1021)) (-5 *1 (-693 *2 *4)) (-4 *4 (-626 *2))))) -(-13 (-1021) (-1012 |#1|) (-1012 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -1887 (|#1| |#1|))) |%noBranch|) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 -2874 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -3262 (|#2| (-114) |#2|)) (-15 -1660 ($ |#1| (-354 (-114)))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 33)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2924 (($ |#1| |#2|) 25)) (-1537 (((-3 $ "failed") $) 48)) (-2419 (((-112) $) 35)) (-2351 ((|#2| $) 12)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 49)) (-3445 (((-1089) $) NIL)) (-1507 (((-3 $ "failed") $ $) 47)) (-2233 (((-837) $) 24) (($ (-550)) 19) ((|#1| $) 13)) (-3091 (((-749)) 28)) (-2688 (($) 16 T CONST)) (-2700 (($) 30 T CONST)) (-2264 (((-112) $ $) 38)) (-2370 (($ $) 43) (($ $ $) 37)) (-2358 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 21) (($ $ $) 20))) -(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-1021) (-10 -8 (-15 -2351 (|#2| $)) (-15 -2233 (|#1| $)) (-15 -2924 ($ |#1| |#2|)) (-15 -1507 ((-3 $ "failed") $ $)) (-15 -1537 ((-3 $ "failed") $)) (-15 -1619 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) -((-1537 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2351 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2924 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1507 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1021) (-10 -8 (-15 -2351 (|#2| $)) (-15 -2233 (|#1| $)) (-15 -2924 ($ |#1| |#2|)) (-15 -1507 ((-3 $ "failed") $ $)) (-15 -1537 ((-3 $ "failed") $)) (-15 -1619 ($ $)))) -((* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-695 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) (-696 |#2|) (-170)) (T -695)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-2384 (((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)) 33))) +(((-641 |#1|) (-10 -7 (-15 -2384 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)))) (-884)) (T -641)) +((-2384 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *4))) (-5 *3 (-1141 *4)) (-4 *4 (-884)) (-5 *1 (-641 *4))))) +(-10 -7 (-15 -2384 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 82)) (-4301 (($ $ (-749)) 90)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4294 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 48)) (-3503 (((-3 (-650 |#1|) "failed") $) NIL)) (-3502 (((-650 |#1|) $) NIL)) (-4314 (($ $) 89)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-650 |#1|) |#2|) 68)) (-4291 (($ $) 86)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 47)) (-1860 (((-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-650 |#1|) $) NIL)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ |#1| $) 30) (($ $ (-620 |#1|) (-620 $)) 32)) (-4302 (((-749) $) 88)) (-3879 (($ $ $) 20) (($ (-650 |#1|) (-650 |#1|)) 77) (($ (-650 |#1|) $) 75) (($ $ (-650 |#1|)) 76)) (-4312 (((-838) $) NIL) (($ |#1|) 74) (((-1245 |#1| |#2|) $) 58) (((-1254 |#1| |#2|) $) 41) (($ (-650 |#1|)) 25)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-650 |#1|)) NIL)) (-4308 ((|#2| (-1254 |#1| |#2|) $) 43)) (-2986 (($) 23 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4300 (((-3 $ "failed") (-1245 |#1| |#2|)) 60)) (-1844 (($ (-650 |#1|)) 14)) (-3382 (((-112) $ $) 44)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) 66) (($ $ $) NIL)) (-4194 (($ $ $) 29)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-650 |#1|)) NIL))) +(((-642 |#1| |#2|) (-13 (-367 |#1| |#2|) (-377 |#2| (-650 |#1|)) (-10 -8 (-15 -4300 ((-3 $ "failed") (-1245 |#1| |#2|))) (-15 -3879 ($ (-650 |#1|) (-650 |#1|))) (-15 -3879 ($ (-650 |#1|) $)) (-15 -3879 ($ $ (-650 |#1|))))) (-825) (-170)) (T -642)) +((-4300 (*1 *1 *2) (|partial| -12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-642 *3 *4)))) (-3879 (*1 *1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170))))) +(-13 (-367 |#1| |#2|) (-377 |#2| (-650 |#1|)) (-10 -8 (-15 -4300 ((-3 $ "failed") (-1245 |#1| |#2|))) (-15 -3879 ($ (-650 |#1|) (-650 |#1|))) (-15 -3879 ($ (-650 |#1|) $)) (-15 -3879 ($ $ (-650 |#1|))))) +((-1843 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1841 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1626 (($ (-1 (-112) |#2|) $) 28)) (-2372 (($ $) 56)) (-2450 (($ $) 64)) (-3759 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3773 (((-536) |#2| $ (-536)) 61) (((-536) |#2| $) NIL) (((-536) (-1 (-112) |#2|) $) 47)) (-3972 (($ (-749) |#2|) 54)) (-3187 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3867 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3892 (($ |#2|) 15)) (-3965 (($ $ $ (-536)) 36) (($ |#2| $ (-536)) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1627 (($ $ (-1196 (-536))) 44) (($ $ (-536)) 38)) (-1842 (($ $ $ (-536)) 60)) (-3754 (($ $) 58)) (-3013 (((-112) $ $) 66))) +(((-643 |#1| |#2|) (-10 -8 (-15 -3892 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-536))) (-15 -1627 (|#1| |#1| (-1196 (-536)))) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3965 (|#1| |#2| |#1| (-536))) (-15 -3965 (|#1| |#1| |#1| (-536))) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -2372 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-749) |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) (-644 |#2|) (-1183)) (T -643)) +NIL +(-10 -8 (-15 -3892 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-536))) (-15 -1627 (|#1| |#1| (-1196 (-536)))) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3965 (|#1| |#2| |#1| (-536))) (-15 -3965 (|#1| |#1| |#1| (-536))) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -2372 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-749) |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1843 (((-112) $) 142 (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1841 (($ $) 146 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4349)))) (-3237 (($ $) 141 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 129)) (-4068 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4348)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-2372 (($ $) 144 (|has| $ (-6 -4349)))) (-2373 (($ $) 134)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-2450 (($ $) 131 (|has| |#1| (-1072)))) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 130 (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) 125)) (-3760 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4348))) (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-3773 (((-536) |#1| $ (-536)) 139 (|has| |#1| (-1072))) (((-536) |#1| $) 138 (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) 137)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-3672 (($ $ $) 147 (|has| |#1| (-825)))) (-3187 (($ $ $) 132 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3867 (($ $ $) 140 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-3673 (($ $ $) 148 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3892 (($ |#1|) 122)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-3965 (($ $ $ (-536)) 127) (($ |#1| $ (-536)) 126)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-3797 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-1627 (($ $ (-1196 (-536))) 124) (($ $ (-536)) 123)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 143 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61) (($ $ |#1|) 60)) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 150 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 151 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 149 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 152 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-644 |#1|) (-138) (-1183)) (T -644)) +((-3892 (*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1183))))) +(-13 (-1120 |t#1|) (-365 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3892 ($ |t#1|)))) +(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-275 |#1|) . T) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-984 |#1|) . T) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1120 |#1|) . T) ((-1183) . T) ((-1218 |#1|) . T)) +((-3931 (((-620 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|))) |#4| |#3|) 45)) (-3439 (((-749) |#4| |#3|) 17)) (-3694 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2385 (((-112) |#4| |#3|) 13))) +(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|)) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|))) (-15 -3694 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2385 ((-112) |#4| |#3|)) (-15 -3439 ((-749) |#4| |#3|))) (-356) (-13 (-365 |#1|) (-10 -7 (-6 -4349))) (-13 (-365 |#1|) (-10 -7 (-6 -4349))) (-664 |#1| |#2| |#3|)) (T -645)) +((-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-749)) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-2385 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-112)) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-3694 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-5 *1 (-645 *4 *5 *2 *3)) (-4 *3 (-664 *4 *5 *2)))) (-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-620 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2123 (-620 *7))))) (-5 *1 (-645 *5 *6 *7 *3)) (-5 *4 (-620 *7)) (-4 *3 (-664 *5 *6 *7)))) (-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4))))) +(-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|)) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|))) (-15 -3694 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2385 ((-112) |#4| |#3|)) (-15 -3439 ((-749) |#4| |#3|))) +((-3931 (((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|))) 22) (((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)) 14)) (-3439 (((-749) (-667 |#1|) (-1229 |#1|)) 30)) (-3694 (((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|)) 24)) (-2385 (((-112) (-667 |#1|) (-1229 |#1|)) 27))) +(((-646 |#1|) (-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|))) (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|)))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|)))) (-15 -3694 ((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|))) (-15 -2385 ((-112) (-667 |#1|) (-1229 |#1|))) (-15 -3439 ((-749) (-667 |#1|) (-1229 |#1|)))) (-356)) (T -646)) +((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-646 *5)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-646 *5)))) (-3694 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1229 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *1 (-646 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| |particular| (-3 (-1229 *5) #1="failed")) (|:| -2123 (-620 (-1229 *5)))))) (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5)))))) (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5))))) (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5))))) (-5 *1 (-646 *5)) (-5 *4 (-1229 *5))))) +(-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|))) (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|)))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|)))) (-15 -3694 ((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|))) (-15 -2385 ((-112) (-667 |#1|) (-1229 |#1|))) (-15 -3439 ((-749) (-667 |#1|) (-1229 |#1|)))) +((-2386 (((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)) 45))) +(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2386 ((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)))) (-543) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -647)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *7)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 (-400 *8)) "failed")) (|:| -2123 (-620 (-1229 (-400 *8)))))) (-5 *1 (-647 *5 *6 *7 *8))))) +(-10 -7 (-15 -2386 ((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#2| (-543)))) (-3684 ((|#2| $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#2|))) NIL) (((-1229 (-667 |#2|)) (-1229 $)) NIL)) (-3453 (((-112) $) NIL)) (-1840 (((-1229 $)) 37)) (-1269 (((-112) $ (-749)) NIL)) (-3687 (($ |#2|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) NIL (|has| |#2| (-300)))) (-3442 (((-233 |#1| |#2|) $ (-536)) NIL)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#2| (-543)))) (-1814 (((-3 $ #1#)) NIL (|has| |#2| (-543)))) (-1902 (((-667 |#2|)) NIL) (((-667 |#2|) (-1229 $)) NIL)) (-1838 ((|#2| $) NIL)) (-1900 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1229 $)) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| |#2| (-543)))) (-2017 (((-1141 (-920 |#2|))) NIL (|has| |#2| (-356)))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#2| $) NIL)) (-1816 (((-1141 |#2|) $) NIL (|has| |#2| (-543)))) (-1904 ((|#2|) NIL) ((|#2| (-1229 $)) NIL)) (-1834 (((-1141 |#2|) $) NIL)) (-1828 (((-112)) NIL)) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-1906 (($ (-1229 |#2|)) NIL) (($ (-1229 |#2|) (-1229 $)) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3439 (((-749) $) NIL (|has| |#2| (-543))) (((-893)) 38)) (-3443 ((|#2| $ (-536) (-536)) NIL)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL)) (-3438 (((-749) $) NIL (|has| |#2| (-543)))) (-3437 (((-620 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-543)))) (-3445 (((-749) $) NIL)) (-1821 (((-112)) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#2| $) NIL (|has| |#2| (-6 (-4350 #3="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#2|))) NIL)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3951 (((-620 (-620 |#2|)) $) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#2| (-543)))) (-1815 (((-3 $ #1#)) NIL (|has| |#2| (-543)))) (-1903 (((-667 |#2|)) NIL) (((-667 |#2|) (-1229 $)) NIL)) (-1839 ((|#2| $) NIL)) (-1901 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1229 $)) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| |#2| (-543)))) (-2021 (((-1141 (-920 |#2|))) NIL (|has| |#2| (-356)))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#2| $) NIL)) (-1817 (((-1141 |#2|) $) NIL (|has| |#2| (-543)))) (-1905 ((|#2|) NIL) ((|#2| (-1229 $)) NIL)) (-1835 (((-1141 |#2|) $) NIL)) (-1829 (((-112)) NIL)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3947 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL)) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) (-536) |#2|) NIL) ((|#2| $ (-536) (-536)) 22) ((|#2| $ (-536)) NIL)) (-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3683 ((|#2| $) NIL)) (-3686 (($ (-620 |#2|)) NIL)) (-3452 (((-112) $) NIL)) (-3685 (((-233 |#1| |#2|) $) NIL)) (-3682 ((|#2| $) NIL (|has| |#2| (-6 (-4350 #3#))))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-3570 (((-667 |#2|) (-1229 $)) NIL) (((-1229 |#2|) $) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $ (-1229 $)) 25)) (-4325 (($ (-1229 |#2|)) NIL) (((-1229 |#2|) $) NIL)) (-2009 (((-620 (-920 |#2|))) NIL) (((-620 (-920 |#2|)) (-1229 $)) NIL)) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-3441 (((-233 |#1| |#2|) $ (-536)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (((-667 |#2|) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) 36)) (-1818 (((-620 (-1229 |#2|))) NIL (|has| |#2| (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2875 (($ (-667 |#2|) $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-648 |#1| |#2|) (-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-411 |#2|)) (-893) (-170)) (T -648)) +NIL +(-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-411 |#2|)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3594 (((-620 (-1106)) $) 10)) (-4312 (((-838) $) 18) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-649) (-13 (-1054) (-10 -8 (-15 -3594 ((-620 (-1106)) $))))) (T -649)) +((-3594 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-649))))) +(-13 (-1054) (-10 -8 (-15 -3594 ((-620 (-1106)) $)))) +((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) NIL)) (-3467 (($ $) 52)) (-2990 (((-112) $) NIL)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2389 (((-3 $ "failed") (-797 |#1|)) 23)) (-2391 (((-112) (-797 |#1|)) 15)) (-2390 (($ (-797 |#1|)) 24)) (-2768 (((-112) $ $) 30)) (-4188 (((-893) $) 37)) (-3468 (($ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4087 (((-620 $) (-797 |#1|)) 17)) (-4312 (((-838) $) 43) (($ |#1|) 34) (((-797 |#1|) $) 39) (((-655 |#1|) $) 44)) (-2388 (((-57 (-620 $)) (-620 |#1|) (-893)) 57)) (-2387 (((-620 $) (-620 |#1|) (-893)) 60)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 53)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 38))) +(((-650 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2990 ((-112) $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ((-655 |#1|) $)) (-15 -4087 ((-620 $) (-797 |#1|))) (-15 -2391 ((-112) (-797 |#1|))) (-15 -2390 ($ (-797 |#1|))) (-15 -2389 ((-3 $ "failed") (-797 |#1|))) (-15 -4289 ((-620 |#1|) $)) (-15 -2388 ((-57 (-620 $)) (-620 |#1|) (-893))) (-15 -2387 ((-620 $) (-620 |#1|) (-893))))) (-825)) (T -650)) +((-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-650 *4))) (-5 *1 (-650 *4)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-2389 (*1 *1 *2) (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-57 (-620 (-650 *5)))) (-5 *1 (-650 *5)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-620 (-650 *5))) (-5 *1 (-650 *5))))) +(-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2990 ((-112) $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ((-655 |#1|) $)) (-15 -4087 ((-620 $) (-797 |#1|))) (-15 -2391 ((-112) (-797 |#1|))) (-15 -2390 ($ (-797 |#1|))) (-15 -2389 ((-3 $ "failed") (-797 |#1|))) (-15 -4289 ((-620 |#1|) $)) (-15 -2388 ((-57 (-620 $)) (-620 |#1|) (-893))) (-15 -2387 ((-620 $) (-620 |#1|) (-893))))) +((-3756 ((|#2| $) 76)) (-4151 (($ $) 96)) (-1269 (((-112) $ (-749)) 26)) (-4153 (($ $) 85) (($ $ (-749)) 88)) (-3796 (((-112) $) 97)) (-3359 (((-620 $) $) 72)) (-3355 (((-112) $ $) 71)) (-4077 (((-112) $ (-749)) 24)) (-2302 (((-536) $) 46)) (-2303 (((-536) $) 45)) (-4074 (((-112) $ (-749)) 22)) (-3876 (((-112) $) 74)) (-4152 ((|#2| $) 89) (($ $ (-749)) 92)) (-2377 (($ $ $ (-536)) 62) (($ |#2| $ (-536)) 61)) (-2305 (((-620 (-536)) $) 44)) (-2306 (((-112) (-536) $) 42)) (-4155 ((|#2| $) NIL) (($ $ (-749)) 84)) (-4123 (($ $ (-536)) 100)) (-3797 (((-112) $) 99)) (-2065 (((-112) (-1 (-112) |#2|) $) 32)) (-2307 (((-620 |#2|) $) 33)) (-4154 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1196 (-536))) 58) ((|#2| $ (-536)) 40) ((|#2| $ (-536) |#2|) 41)) (-3357 (((-536) $ $) 70)) (-2378 (($ $ (-1196 (-536))) 57) (($ $ (-536)) 51)) (-3991 (((-112) $) 66)) (-4146 (($ $) 81)) (-4147 (((-749) $) 80)) (-4148 (($ $) 79)) (-3879 (($ (-620 |#2|)) 37)) (-3219 (($ $) 101)) (-3871 (((-620 $) $) 69)) (-3356 (((-112) $ $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 31)) (-3382 (((-112) $ $) 18)) (-4311 (((-749) $) 29))) +(((-651 |#1| |#2|) (-10 -8 (-15 -3219 (|#1| |#1|)) (-15 -4123 (|#1| |#1| (-536))) (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2307 ((-620 |#2|) |#1|)) (-15 -2306 ((-112) (-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2303 ((-536) |#1|)) (-15 -2302 ((-536) |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "first")) (-15 -4155 (|#2| |#1|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -3357 ((-536) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| "value")) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) (-652 |#2|) (-1183)) (T -651)) +NIL +(-10 -8 (-15 -3219 (|#1| |#1|)) (-15 -4123 (|#1| |#1| (-536))) (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2307 ((-620 |#2|) |#1|)) (-15 -2306 ((-112) (-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2303 ((-536) |#1|)) (-15 -2302 ((-536) |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "first")) (-15 -4155 (|#2| |#1|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -3357 ((-536) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| "value")) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 102)) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-2393 (($ $) 124)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 103)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-2392 (((-749) $) 123)) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-2395 (($ $) 126)) (-2396 (((-112) $) 127)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2394 ((|#1| $) 125)) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-4123 (($ $ (-536)) 122)) (-3797 (((-112) $) 84)) (-2397 (((-112) $) 128)) (-2398 (((-112) $) 129)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-3219 (($ $) 121)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-652 |#1|) (-138) (-1183)) (T -652)) +((-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) +(-13 (-1120 |t#1|) (-10 -8 (-15 -3760 ($ (-1 (-112) |t#1|) $)) (-15 -4068 ($ (-1 (-112) |t#1|) $)) (-15 -2398 ((-112) $)) (-15 -2397 ((-112) $)) (-15 -2396 ((-112) $)) (-15 -2395 ($ $)) (-15 -2394 (|t#1| $)) (-15 -2393 ($ $)) (-15 -2392 ((-749) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1120 |#1|) . T) ((-1183) . T) ((-1218 |#1|) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2404 (($ (-749) (-749) (-749)) 33 (|has| |#1| (-1023)))) (-1269 (((-112) $ (-749)) NIL)) (-2401 ((|#1| $ (-749) (-749) (-749) |#1|) 27)) (-3891 (($) NIL T CONST)) (-2402 (($ $ $) 37 (|has| |#1| (-1023)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2399 (((-1229 (-749)) $) 9)) (-2400 (($ (-1147) $ $) 22)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2403 (($ (-749)) 35 (|has| |#1| (-1023)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-749) (-749) (-749)) 25)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3879 (($ (-620 (-620 (-620 |#1|)))) 44)) (-4312 (($ (-932 (-932 (-932 |#1|)))) 15) (((-932 (-932 (-932 |#1|))) $) 12) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-653 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1023)) (PROGN (-15 -2404 ($ (-749) (-749) (-749))) (-15 -2403 ($ (-749))) (-15 -2402 ($ $ $))) |%noBranch|) (-15 -3879 ($ (-620 (-620 (-620 |#1|))))) (-15 -4154 (|#1| $ (-749) (-749) (-749))) (-15 -2401 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -4312 ($ (-932 (-932 (-932 |#1|))))) (-15 -4312 ((-932 (-932 (-932 |#1|))) $)) (-15 -2400 ($ (-1147) $ $)) (-15 -2399 ((-1229 (-749)) $)))) (-1072)) (T -653)) +((-2404 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072)))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1023)) (-4 *2 (-1072)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-620 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) (-4154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) (-2401 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) (-2400 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1229 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) +(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1023)) (PROGN (-15 -2404 ($ (-749) (-749) (-749))) (-15 -2403 ($ (-749))) (-15 -2402 ($ $ $))) |%noBranch|) (-15 -3879 ($ (-620 (-620 (-620 |#1|))))) (-15 -4154 (|#1| $ (-749) (-749) (-749))) (-15 -2401 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -4312 ($ (-932 (-932 (-932 |#1|))))) (-15 -4312 ((-932 (-932 (-932 |#1|))) $)) (-15 -2400 ($ (-1147) $ $)) (-15 -2399 ((-1229 (-749)) $)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3524 (((-475) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 12)) (-3382 (((-112) $ $) NIL))) +(((-654) (-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3579 ((-1106) $))))) (T -654)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-654))))) +(-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3579 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 14)) (-3467 (($ $) 18)) (-2990 (((-112) $) 19)) (-3503 (((-3 |#1| "failed") $) 22)) (-3502 ((|#1| $) 20)) (-4153 (($ $) 36)) (-4291 (($ $) 24)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2768 (((-112) $ $) 42)) (-4188 (((-893) $) 38)) (-3468 (($ $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) 35)) (-4312 (((-838) $) 31) (($ |#1|) 23) (((-797 |#1|) $) 27)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 12)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-655 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4155 (|#1| $)) (-15 -3468 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4291 ($ $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -3467 ($ $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -655)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4155 (|#1| $)) (-15 -3468 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4291 ($ $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -3467 ($ $)) (-15 -4289 ((-620 |#1|) $)))) +((-2413 ((|#1| (-1 |#1| (-749) |#1|) (-749) |#1|) 11)) (-2405 ((|#1| (-1 |#1| |#1|) (-749) |#1|) 9))) +(((-656 |#1|) (-10 -7 (-15 -2405 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -2413 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) (-1072)) (T -656)) +((-2413 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2)))) (-2405 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2))))) +(-10 -7 (-15 -2405 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -2413 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) +((-2407 ((|#2| |#1| |#2|) 9)) (-2406 ((|#1| |#1| |#2|) 8))) +(((-657 |#1| |#2|) (-10 -7 (-15 -2406 (|#1| |#1| |#2|)) (-15 -2407 (|#2| |#1| |#2|))) (-1072) (-1072)) (T -657)) +((-2407 (*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-2406 (*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(-10 -7 (-15 -2406 (|#1| |#1| |#2|)) (-15 -2407 (|#2| |#1| |#2|))) +((-2408 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -2408 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1072) (-1072) (-1072)) (T -658)) +((-2408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)) (-5 *1 (-658 *5 *6 *2))))) +(-10 -7 (-15 -2408 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 20)) (-3663 (((-620 (-1184)) $) 18)) (-2409 (($ (-620 (-1184)) (-1184)) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 29) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1184) $) 21) (($ (-1086)) 10)) (-3382 (((-112) $ $) NIL))) +(((-659) (-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-1086))) (-15 -2409 ($ (-620 (-1184)) (-1184))) (-15 -3663 ((-620 (-1184)) $)) (-15 -3664 ((-1184) $))))) (T -659)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) (-2409 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1184))) (-5 *3 (-1184)) (-5 *1 (-659)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-659)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-659))))) +(-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-1086))) (-15 -2409 ($ (-620 (-1184)) (-1184))) (-15 -3663 ((-620 (-1184)) $)) (-15 -3664 ((-1184) $)))) +((-2413 (((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)) 23)) (-2410 (((-1 |#1|) |#1|) 8)) (-2412 ((|#1| |#1|) 16)) (-2411 (((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4312 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-749)) 20))) +(((-660 |#1|) (-10 -7 (-15 -2410 ((-1 |#1|) |#1|)) (-15 -4312 ((-1 |#1|) |#1|)) (-15 -2411 (|#1| (-1 |#1| |#1|))) (-15 -2411 ((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536))) (-15 -2412 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -2413 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) (-1072)) (T -660)) +((-2413 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1072)) (-5 *1 (-660 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1072)) (-5 *1 (-660 *4)))) (-2412 (*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1072)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-620 *5) (-620 *5))) (-5 *4 (-536)) (-5 *2 (-620 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1072)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1072)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072))))) +(-10 -7 (-15 -2410 ((-1 |#1|) |#1|)) (-15 -4312 ((-1 |#1|) |#1|)) (-15 -2411 (|#1| (-1 |#1| |#1|))) (-15 -2411 ((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536))) (-15 -2412 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -2413 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) +((-2416 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2415 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4306 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2414 (((-1 |#2| |#1|) |#2|) 11))) +(((-661 |#1| |#2|) (-10 -7 (-15 -2414 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4306 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2416 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1072) (-1072)) (T -661)) +((-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) (-4 *4 (-1072)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1072)) (-4 *3 (-1072))))) +(-10 -7 (-15 -2414 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4306 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2416 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2421 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2417 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2418 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2419 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2420 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -2417 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2418 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2419 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2420 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2421 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1072) (-1072) (-1072)) (T -662)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1072)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1072)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1072)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) +(-10 -7 (-15 -2417 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2418 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2419 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2420 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2421 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4193 (($ (-749) (-749)) 33)) (-2426 (($ $ $) 56)) (-3768 (($ |#3|) 52) (($ $) 53)) (-3451 (((-112) $) 28)) (-2425 (($ $ (-536) (-536)) 58)) (-2424 (($ $ (-536) (-536)) 59)) (-2423 (($ $ (-536) (-536) (-536) (-536)) 63)) (-2428 (($ $) 54)) (-3453 (((-112) $) 14)) (-2422 (($ $ (-536) (-536) $) 64)) (-4142 ((|#2| $ (-536) (-536) |#2|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) 62)) (-3687 (($ (-749) |#2|) 39)) (-3454 (($ (-620 (-620 |#2|))) 37)) (-3951 (((-620 (-620 |#2|)) $) 57)) (-2427 (($ $ $) 55)) (-3815 (((-3 $ "failed") $ |#2|) 91)) (-4154 ((|#2| $ (-536) (-536)) NIL) ((|#2| $ (-536) (-536) |#2|) NIL) (($ $ (-620 (-536)) (-620 (-536))) 61)) (-3686 (($ (-620 |#2|)) 40) (($ (-620 $)) 42)) (-3452 (((-112) $) 24)) (-4312 (($ |#4|) 47) (((-838) $) NIL)) (-3450 (((-112) $) 30)) (-4303 (($ $ |#2|) 93)) (-4192 (($ $ $) 68) (($ $) 71)) (-4194 (($ $ $) 66)) (** (($ $ (-749)) 80) (($ $ (-536)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-536) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-663 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#2|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1| (-536) (-536) |#1|)) (-15 -2423 (|#1| |#1| (-536) (-536) (-536) (-536))) (-15 -2424 (|#1| |#1| (-536) (-536))) (-15 -2425 (|#1| |#1| (-536) (-536))) (-15 -4142 (|#1| |#1| (-620 (-536)) (-620 (-536)) |#1|)) (-15 -4154 (|#1| |#1| (-620 (-536)) (-620 (-536)))) (-15 -3951 ((-620 (-620 |#2|)) |#1|)) (-15 -2426 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#3|)) (-15 -4312 (|#1| |#4|)) (-15 -3686 (|#1| (-620 |#1|))) (-15 -3686 (|#1| (-620 |#2|))) (-15 -3687 (|#1| (-749) |#2|)) (-15 -3454 (|#1| (-620 (-620 |#2|)))) (-15 -4193 (|#1| (-749) (-749))) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536)))) (-664 |#2| |#3| |#4|) (-1023) (-365 |#2|) (-365 |#2|)) (T -663)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#2|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1| (-536) (-536) |#1|)) (-15 -2423 (|#1| |#1| (-536) (-536) (-536) (-536))) (-15 -2424 (|#1| |#1| (-536) (-536))) (-15 -2425 (|#1| |#1| (-536) (-536))) (-15 -4142 (|#1| |#1| (-620 (-536)) (-620 (-536)) |#1|)) (-15 -4154 (|#1| |#1| (-620 (-536)) (-620 (-536)))) (-15 -3951 ((-620 (-620 |#2|)) |#1|)) (-15 -2426 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#3|)) (-15 -4312 (|#1| |#4|)) (-15 -3686 (|#1| (-620 |#1|))) (-15 -3686 (|#1| (-620 |#2|))) (-15 -3687 (|#1| (-749) |#2|)) (-15 -3454 (|#1| (-620 (-620 |#2|)))) (-15 -4193 (|#1| (-749) (-749))) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) 97)) (-2426 (($ $ $) 87)) (-3768 (($ |#2|) 91) (($ $) 90)) (-3451 (((-112) $) 99)) (-2425 (($ $ (-536) (-536)) 83)) (-2424 (($ $ (-536) (-536)) 82)) (-2423 (($ $ (-536) (-536) (-536) (-536)) 81)) (-2428 (($ $) 89)) (-3453 (((-112) $) 101)) (-1269 (((-112) $ (-749)) 8)) (-2422 (($ $ (-536) (-536) $) 80)) (-4142 ((|#1| $ (-536) (-536) |#1|) 44) (($ $ (-620 (-536)) (-620 (-536)) $) 84)) (-1307 (($ $ (-536) |#2|) 42)) (-1306 (($ $ (-536) |#3|) 41)) (-3687 (($ (-749) |#1|) 95)) (-3891 (($) 7 T CONST)) (-3440 (($ $) 67 (|has| |#1| (-300)))) (-3442 ((|#2| $ (-536)) 46)) (-3439 (((-749) $) 66 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) 43)) (-3443 ((|#1| $ (-536) (-536)) 48)) (-2063 (((-620 |#1|) $) 30)) (-3438 (((-749) $) 65 (|has| |#1| (-543)))) (-3437 (((-620 |#3|) $) 64 (|has| |#1| (-543)))) (-3445 (((-749) $) 51)) (-3972 (($ (-749) (-749) |#1|) 57)) (-3444 (((-749) $) 50)) (-4077 (((-112) $ (-749)) 9)) (-3681 ((|#1| $) 62 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 55)) (-3447 (((-536) $) 53)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 54)) (-3446 (((-536) $) 52)) (-3454 (($ (-620 (-620 |#1|))) 96)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3951 (((-620 (-620 |#1|)) $) 86)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3947 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-2427 (($ $ $) 88)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) 56)) (-3815 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) (-536)) 49) ((|#1| $ (-536) (-536) |#1|) 47) (($ $ (-620 (-536)) (-620 (-536))) 85)) (-3686 (($ (-620 |#1|)) 94) (($ (-620 $)) 93)) (-3452 (((-112) $) 100)) (-3682 ((|#1| $) 63 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-3441 ((|#3| $ (-536)) 45)) (-4312 (($ |#3|) 92) (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 98)) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-4192 (($ $ $) 78) (($ $) 77)) (-4194 (($ $ $) 79)) (** (($ $ (-749)) 70) (($ $ (-536)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-536) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-664 |#1| |#2| |#3|) (-138) (-1023) (-365 |t#1|) (-365 |t#1|)) (T -664)) +((-3453 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-4193 (*1 *1 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3768 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2428 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2427 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2426 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-620 (-620 *3))))) (-4154 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4142 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2425 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2424 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2423 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2422 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-664 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-664 *3 *2 *4)) (-4 *3 (-1023)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-543)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-300)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-620 *5)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4350 #1="*"))) (-4 *2 (-1023)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4350 #1#))) (-4 *2 (-1023)))) (-3947 (*1 *1 *1) (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-356))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3453 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -4193 ($ (-749) (-749))) (-15 -3454 ($ (-620 (-620 |t#1|)))) (-15 -3687 ($ (-749) |t#1|)) (-15 -3686 ($ (-620 |t#1|))) (-15 -3686 ($ (-620 $))) (-15 -4312 ($ |t#3|)) (-15 -3768 ($ |t#2|)) (-15 -3768 ($ $)) (-15 -2428 ($ $)) (-15 -2427 ($ $ $)) (-15 -2426 ($ $ $)) (-15 -3951 ((-620 (-620 |t#1|)) $)) (-15 -4154 ($ $ (-620 (-536)) (-620 (-536)))) (-15 -4142 ($ $ (-620 (-536)) (-620 (-536)) $)) (-15 -2425 ($ $ (-536) (-536))) (-15 -2424 ($ $ (-536) (-536))) (-15 -2423 ($ $ (-536) (-536) (-536) (-536))) (-15 -2422 ($ $ (-536) (-536) $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-536) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-749))) (IF (|has| |t#1| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3440 ($ $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3439 ((-749) $)) (-15 -3438 ((-749) $)) (-15 -3437 ((-620 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4350 "*"))) (PROGN (-15 -3682 (|t#1| $)) (-15 -3681 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3947 ((-3 $ "failed") $)) (-15 ** ($ $ (-536)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-56 |#1| |#2| |#3|) . T) ((-1183) . T)) +((-4197 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4313 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4197 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1023) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|) (-1023) (-365 |#5|) (-365 |#5|) (-664 |#5| |#6| |#7|)) (T -665)) +((-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-664 *5 *6 *7)) (-4 *10 (-664 *2 *8 *9)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))) +(-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4197 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3440 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3439 (((-749) |#4|) 99 (|has| |#1| (-543)))) (-3438 (((-749) |#4|) 76 (|has| |#1| (-543)))) (-3437 (((-620 |#3|) |#4|) 83 (|has| |#1| (-543)))) (-2466 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-3681 ((|#1| |#4|) 35)) (-2433 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-543)))) (-3947 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2432 ((|#4| |#4|) 68 (|has| |#1| (-543)))) (-2430 ((|#4| |#4| |#1| (-536) (-536)) 43)) (-2429 ((|#4| |#4| (-536) (-536)) 38)) (-2431 ((|#4| |#4| |#1| (-536) (-536)) 48)) (-3682 ((|#1| |#4|) 78)) (-2849 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-543))))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#1| |#4|)) (-15 -3681 (|#1| |#4|)) (-15 -2429 (|#4| |#4| (-536) (-536))) (-15 -2430 (|#4| |#4| |#1| (-536) (-536))) (-15 -2431 (|#4| |#4| |#1| (-536) (-536))) (IF (|has| |#1| (-543)) (PROGN (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (-15 -3437 ((-620 |#3|) |#4|)) (-15 -2432 (|#4| |#4|)) (-15 -2433 ((-3 |#4| "failed") |#4|)) (-15 -2849 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3440 (|#4| |#4|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -666)) +((-3947 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-664 *3 *4 *5)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-2433 (*1 *2 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3437 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-620 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-2431 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6)))) (-2430 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6)))) (-2429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-664 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5))))) +(-10 -7 (-15 -3682 (|#1| |#4|)) (-15 -3681 (|#1| |#4|)) (-15 -2429 (|#4| |#4| (-536) (-536))) (-15 -2430 (|#4| |#4| |#1| (-536) (-536))) (-15 -2431 (|#4| |#4| |#1| (-536) (-536))) (IF (|has| |#1| (-543)) (PROGN (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (-15 -3437 ((-620 |#3|) |#4|)) (-15 -2432 (|#4| |#4|)) (-15 -2433 ((-3 |#4| "failed") |#4|)) (-15 -2849 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3440 (|#4| |#4|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) 47)) (-2426 (($ $ $) NIL)) (-3768 (($ (-1229 |#1|)) NIL) (($ $) NIL)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) 12)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-1229 |#1|)) NIL)) (-1306 (($ $ (-536) (-1229 |#1|)) NIL)) (-3687 (($ (-749) |#1|) 22)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 31 (|has| |#1| (-300)))) (-3442 (((-1229 |#1|) $ (-536)) NIL)) (-3439 (((-749) $) 33 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) 51)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) 35 (|has| |#1| (-543)))) (-3437 (((-620 (-1229 |#1|)) $) 38 (|has| |#1| (-543)))) (-3445 (((-749) $) 20)) (-3972 (($ (-749) (-749) |#1|) 16)) (-3444 (((-749) $) 21)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) 29 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 9)) (-3447 (((-536) $) 10)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 11)) (-3446 (((-536) $) 48)) (-3454 (($ (-620 (-620 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) 60)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) 45 (|has| |#1| (-356)))) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL) (($ (-1229 |#1|)) 52)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) 27 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 64 (|has| |#1| (-596 (-525))))) (-3441 (((-1229 |#1|) $ (-536)) NIL)) (-4312 (($ (-1229 |#1|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) 23) (($ $ (-536)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-1229 |#1|) $ (-1229 |#1|)) NIL) (((-1229 |#1|) (-1229 |#1|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-667 |#1|) (-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 -3686 ($ (-1229 |#1|))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 $ "failed") $)) |%noBranch|))) (-1023)) (T -667)) +((-3947 (*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1023)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-667 *3))))) +(-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 -3686 ($ (-1229 |#1|))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 $ "failed") $)) |%noBranch|))) +((-2439 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 25)) (-2438 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 21)) (-2440 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749)) 26)) (-2435 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 14)) (-2436 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 18) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 16)) (-2437 (((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|)) 20)) (-2434 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 12)) (** (((-667 |#1|) (-667 |#1|) (-749)) 30))) +(((-668 |#1|) (-10 -7 (-15 -2434 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2435 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2437 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2438 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2439 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2440 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) (-1023)) (T -668)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) (-2440 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) (-2439 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2438 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2437 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2436 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2436 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2435 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(-10 -7 (-15 -2434 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2435 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2437 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2438 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2439 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2440 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) +((-2441 (($) 8 T CONST)) (-4312 (((-838) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3924 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2441)) 16)) (-3930 ((|#1| $) 11))) +(((-669 |#1|) (-13 (-1225) (-595 (-838)) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| |#1|))) (-15 -3924 ((-112) $ (|[\|\|]| -2441))) (-15 -4312 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -3930 (|#1| $)) (-15 -2441 ($) -4306))) (-595 (-838))) (T -669)) +((-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-838))) (-5 *2 (-112)) (-5 *1 (-669 *4)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2441)) (-5 *2 (-112)) (-5 *1 (-669 *4)) (-4 *4 (-595 (-838))))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-4312 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-3930 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-2441 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838)))))) +(-13 (-1225) (-595 (-838)) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| |#1|))) (-15 -3924 ((-112) $ (|[\|\|]| -2441))) (-15 -4312 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -3930 (|#1| $)) (-15 -2441 ($) -4306))) +((-2444 ((|#2| |#2| |#4|) 25)) (-2447 (((-667 |#2|) |#3| |#4|) 31)) (-2445 (((-667 |#2|) |#2| |#4|) 30)) (-2442 (((-1229 |#2|) |#2| |#4|) 16)) (-2443 ((|#2| |#3| |#4|) 24)) (-2448 (((-667 |#2|) |#3| |#4| (-749) (-749)) 38)) (-2446 (((-667 |#2|) |#2| |#4| (-749)) 37))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2442 ((-1229 |#2|) |#2| |#4|)) (-15 -2443 (|#2| |#3| |#4|)) (-15 -2444 (|#2| |#2| |#4|)) (-15 -2445 ((-667 |#2|) |#2| |#4|)) (-15 -2446 ((-667 |#2|) |#2| |#4| (-749))) (-15 -2447 ((-667 |#2|) |#3| |#4|)) (-15 -2448 ((-667 |#2|) |#3| |#4| (-749) (-749)))) (-1072) (-874 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4348)))) (T -670)) +((-2448 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *7 (-874 *6)) (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348)))))) (-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *3 (-874 *6)) (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348)))))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2444 (*1 *2 *2 *3) (-12 (-4 *4 (-1072)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4348)))))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-1229 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) +(-10 -7 (-15 -2442 ((-1229 |#2|) |#2| |#4|)) (-15 -2443 (|#2| |#3| |#4|)) (-15 -2444 (|#2| |#2| |#4|)) (-15 -2445 ((-667 |#2|) |#2| |#4|)) (-15 -2446 ((-667 |#2|) |#2| |#4| (-749))) (-15 -2447 ((-667 |#2|) |#3| |#4|)) (-15 -2448 ((-667 |#2|) |#3| |#4| (-749) (-749)))) +((-4096 (((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)) 20)) (-4094 ((|#1| (-667 |#2|)) 9)) (-4095 (((-667 |#1|) (-667 |#2|)) 18))) +(((-671 |#1| |#2|) (-10 -7 (-15 -4094 (|#1| (-667 |#2|))) (-15 -4095 ((-667 |#1|) (-667 |#2|))) (-15 -4096 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) (-543) (-965 |#1|)) (T -671)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-671 *2 *4))))) +(-10 -7 (-15 -4094 (|#1| (-667 |#2|))) (-15 -4095 ((-667 |#1|) (-667 |#2|))) (-15 -4096 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1896 (((-667 (-677))) NIL) (((-667 (-677)) (-1229 $)) NIL)) (-3684 (((-677) $) NIL)) (-3841 (($ $) NIL (|has| (-677) (-1169)))) (-3997 (($ $) NIL (|has| (-677) (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-677) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-4129 (($ $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-4324 (((-398 $) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-3365 (($ $) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-1700 (((-112) $ $) NIL (|has| (-677) (-300)))) (-3466 (((-749)) NIL (|has| (-677) (-361)))) (-3839 (($ $) NIL (|has| (-677) (-1169)))) (-3996 (($ $) NIL (|has| (-677) (-1169)))) (-3843 (($ $) NIL (|has| (-677) (-1169)))) (-3995 (($ $) NIL (|has| (-677) (-1169)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-677) #2#) $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-677) (-1012 (-400 (-536)))))) (-3502 (((-536) $) NIL) (((-677) $) NIL) (((-400 (-536)) $) NIL (|has| (-677) (-1012 (-400 (-536)))))) (-1906 (($ (-1229 (-677))) NIL) (($ (-1229 (-677)) (-1229 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-677) (-343)))) (-2889 (($ $ $) NIL (|has| (-677) (-300)))) (-1895 (((-667 (-677)) $) NIL) (((-667 (-677)) $ (-1229 $)) NIL)) (-2357 (((-667 (-677)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-677))) (|:| |vec| (-1229 (-677)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-677) (-619 (-536)))) (((-667 (-536)) (-667 $)) NIL (|has| (-677) (-619 (-536))))) (-4197 (((-3 $ "failed") (-400 (-1141 (-677)))) NIL (|has| (-677) (-356))) (($ (-1141 (-677))) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4001 (((-677) $) 29)) (-3352 (((-3 (-400 (-536)) #3="failed") $) NIL (|has| (-677) (-535)))) (-3351 (((-112) $) NIL (|has| (-677) (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| (-677) (-535)))) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-677) (-361)))) (-2888 (($ $ $) NIL (|has| (-677) (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-677) (-300)))) (-3161 (($) NIL (|has| (-677) (-343)))) (-1791 (((-112) $) NIL (|has| (-677) (-343)))) (-1881 (($ $) NIL (|has| (-677) (-343))) (($ $ (-749)) NIL (|has| (-677) (-343)))) (-4081 (((-112) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-1420 (((-2 (|:| |r| (-677)) (|:| |phi| (-677))) $) NIL (-12 (|has| (-677) (-1032)) (|has| (-677) (-1169))))) (-3985 (($) NIL (|has| (-677) (-1169)))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-677) (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-677) (-860 (-536))))) (-4126 (((-810 (-893)) $) NIL (|has| (-677) (-343))) (((-893) $) NIL (|has| (-677) (-343)))) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169))))) (-3462 (((-677) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-677) (-343)))) (-1697 (((-3 (-620 $) #4="failed") (-620 $) $) NIL (|has| (-677) (-300)))) (-2125 (((-1141 (-677)) $) NIL (|has| (-677) (-356)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 (-677) (-677)) $) NIL)) (-2121 (((-893) $) NIL (|has| (-677) (-361)))) (-4297 (($ $) NIL (|has| (-677) (-1169)))) (-3408 (((-1141 (-677)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| (-677) (-356)))) (-3799 (($) NIL (|has| (-677) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-677) (-361)))) (-1422 (($) NIL)) (-4002 (((-677) $) 31)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-677) (-300)))) (-3490 (($ (-620 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-677) (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-4087 (((-398 $) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-677) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-677) (-300)))) (-3815 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-677)) NIL (|has| (-677) (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-677) (-300)))) (-4298 (($ $) NIL (|has| (-677) (-1169)))) (-4122 (($ $ (-1147) (-677)) NIL (|has| (-677) (-505 (-1147) (-677)))) (($ $ (-620 (-1147)) (-620 (-677))) NIL (|has| (-677) (-505 (-1147) (-677)))) (($ $ (-620 (-286 (-677)))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-286 (-677))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-677) (-677)) NIL (|has| (-677) (-302 (-677)))) (($ $ (-620 (-677)) (-620 (-677))) NIL (|has| (-677) (-302 (-677))))) (-1699 (((-749) $) NIL (|has| (-677) (-300)))) (-4154 (($ $ (-677)) NIL (|has| (-677) (-279 (-677) (-677))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-677) (-300)))) (-4112 (((-677)) NIL) (((-677) (-1229 $)) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL (|has| (-677) (-343))) (((-749) $) NIL (|has| (-677) (-343)))) (-4165 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2495 (((-667 (-677)) (-1229 $) (-1 (-677) (-677))) NIL (|has| (-677) (-356)))) (-3531 (((-1141 (-677))) NIL)) (-3844 (($ $) NIL (|has| (-677) (-1169)))) (-3994 (($ $) NIL (|has| (-677) (-1169)))) (-1785 (($) NIL (|has| (-677) (-343)))) (-3842 (($ $) NIL (|has| (-677) (-1169)))) (-3993 (($ $) NIL (|has| (-677) (-1169)))) (-3840 (($ $) NIL (|has| (-677) (-1169)))) (-3992 (($ $) NIL (|has| (-677) (-1169)))) (-3570 (((-667 (-677)) (-1229 $)) NIL) (((-1229 (-677)) $) NIL) (((-667 (-677)) (-1229 $) (-1229 $)) NIL) (((-1229 (-677)) $ (-1229 $)) NIL)) (-4325 (((-525) $) NIL (|has| (-677) (-596 (-525)))) (((-166 (-219)) $) NIL (|has| (-677) (-994))) (((-166 (-371)) $) NIL (|has| (-677) (-994))) (((-864 (-371)) $) NIL (|has| (-677) (-596 (-864 (-371))))) (((-864 (-536)) $) NIL (|has| (-677) (-596 (-864 (-536))))) (($ (-1141 (-677))) NIL) (((-1141 (-677)) $) NIL) (($ (-1229 (-677))) NIL) (((-1229 (-677)) $) NIL)) (-3337 (($ $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-884))) (|has| (-677) (-343))))) (-1421 (($ (-677) (-677)) 12)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-677)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-536))) 19) (($ (-166 (-677))) 28) (($ (-166 (-679))) 25) (((-166 (-371)) $) 33) (($ (-400 (-536))) NIL (-3886 (|has| (-677) (-356)) (|has| (-677) (-1012 (-400 (-536))))))) (-3030 (($ $) NIL (|has| (-677) (-343))) (((-3 $ #1#) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-884))) (|has| (-677) (-143))))) (-2693 (((-1141 (-677)) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL)) (-3847 (($ $) NIL (|has| (-677) (-1169)))) (-3835 (($ $) NIL (|has| (-677) (-1169)))) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) NIL (|has| (-677) (-1169)))) (-3833 (($ $) NIL (|has| (-677) (-1169)))) (-3849 (($ $) NIL (|has| (-677) (-1169)))) (-3837 (($ $) NIL (|has| (-677) (-1169)))) (-2313 (((-677) $) NIL (|has| (-677) (-1169)))) (-3850 (($ $) NIL (|has| (-677) (-1169)))) (-3838 (($ $) NIL (|has| (-677) (-1169)))) (-3848 (($ $) NIL (|has| (-677) (-1169)))) (-3836 (($ $) NIL (|has| (-677) (-1169)))) (-3846 (($ $) NIL (|has| (-677) (-1169)))) (-3834 (($ $) NIL (|has| (-677) (-1169)))) (-3737 (($ $) NIL (|has| (-677) (-1032)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-677) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| (-677) (-1169))) (($ $ (-400 (-536))) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169)))) (($ $ (-536)) NIL (|has| (-677) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ (-677) $) NIL) (($ $ (-677)) NIL) (($ (-400 (-536)) $) NIL (|has| (-677) (-356))) (($ $ (-400 (-536))) NIL (|has| (-677) (-356))))) +(((-672) (-13 (-380) (-164 (-677)) (-10 -8 (-15 -4312 ($ (-166 (-371)))) (-15 -4312 ($ (-166 (-536)))) (-15 -4312 ($ (-166 (-677)))) (-15 -4312 ($ (-166 (-679)))) (-15 -4312 ((-166 (-371)) $))))) (T -672)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-536))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-672)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672))))) +(-13 (-380) (-164 (-677)) (-10 -8 (-15 -4312 ($ (-166 (-371)))) (-15 -4312 ($ (-166 (-536)))) (-15 -4312 ($ (-166 (-677)))) (-15 -4312 ($ (-166 (-679)))) (-15 -4312 ((-166 (-371)) $)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-673 |#1|) (-138) (-1072)) (T -673)) +((-3965 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1072)))) (-2450 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1072)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1072)) (-5 *2 (-620 (-2 (|:| -2186 *3) (|:| -2064 (-749)))))))) +(-13 (-229 |t#1|) (-10 -8 (-15 -3965 ($ |t#1| $ (-749))) (-15 -2450 ($ $)) (-15 -2449 ((-620 (-2 (|:| -2186 |t#1|) (|:| -2064 (-749)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2453 (((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536)) 47)) (-2451 ((|#1| |#1| (-536)) 46)) (-3490 ((|#1| |#1| |#1| (-536)) 36)) (-4087 (((-620 |#1|) |#1| (-536)) 39)) (-2454 ((|#1| |#1| (-536) |#1| (-536)) 32)) (-2452 (((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536)) 45))) +(((-674 |#1|) (-10 -7 (-15 -3490 (|#1| |#1| |#1| (-536))) (-15 -2451 (|#1| |#1| (-536))) (-15 -4087 ((-620 |#1|) |#1| (-536))) (-15 -2452 ((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536))) (-15 -2453 ((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536))) (-15 -2454 (|#1| |#1| (-536) |#1| (-536)))) (-1205 (-536))) (T -674)) +((-2454 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| -4087 *5) (|:| -4302 (-536))))) (-5 *4 (-536)) (-4 *5 (-1205 *4)) (-5 *2 (-620 *5)) (-5 *1 (-674 *5)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -4302 *4)))) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-620 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) (-2451 (*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) (-3490 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) +(-10 -7 (-15 -3490 (|#1| |#1| |#1| (-536))) (-15 -2451 (|#1| |#1| (-536))) (-15 -4087 ((-620 |#1|) |#1| (-536))) (-15 -2452 ((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536))) (-15 -2453 ((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536))) (-15 -2454 (|#1| |#1| (-536) |#1| (-536)))) +((-2458 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-2455 (((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 40) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 42) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 44)) (-2457 (((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254))) NIL)) (-2456 (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 45))) +(((-675) (-10 -7 (-15 -2455 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2456 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2457 ((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2458 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -675)) +((-2458 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675)))) (-2457 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2456 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined")) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2455 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *1 (-675)))) (-2455 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2455 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1#)) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675))))) +(-10 -7 (-15 -2455 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2456 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2457 ((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2458 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) +((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|)) 73) (((-398 |#4|) |#4|) 221))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-343) (-924 |#3| |#2| |#1|)) (T -676)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 84)) (-3459 (((-536) $) 30)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-3891 (($) NIL T CONST)) (-3457 (($ $) NIL)) (-3503 (((-3 (-536) #1="failed") $) 73) (((-3 (-400 (-536)) #1#) $) 26) (((-3 (-371) #1#) $) 70)) (-3502 (((-536) $) 75) (((-400 (-536)) $) 67) (((-371) $) 68)) (-2889 (($ $ $) 96)) (-3816 (((-3 $ "failed") $) 87)) (-2888 (($ $ $) 95)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 77) (((-893) (-893)) 76)) (-3532 (((-112) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-4126 (((-536) $) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (($ $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-2459 (((-536) (-536)) 81) (((-536)) 82)) (-3672 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2460 (((-536) (-536)) 79) (((-536)) 80)) (-3673 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 16)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 91)) (-1884 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL)) (-3460 (($ $) NIL)) (-3600 (($ (-536) (-536)) NIL) (($ (-536) (-536) (-893)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 92)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 22)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 94)) (-2939 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-1883 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-864 (-371)) $) NIL)) (-4312 (((-838) $) 52) (($ (-536)) 63) (($ $) NIL) (($ (-400 (-536))) 66) (($ (-536)) 63) (($ (-400 (-536))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-679)) 55)) (-3456 (((-749)) 103)) (-3275 (($ (-536) (-536) (-893)) 44)) (-3461 (($ $) NIL)) (-1885 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3022 (((-893)) 35) (((-893) (-893)) 78)) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) 32 T CONST)) (-2992 (($) 17 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 83)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 101)) (-4303 (($ $ $) 65)) (-4192 (($ $) 99) (($ $ $) 100)) (-4194 (($ $ $) 98)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) 90)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 97) (($ $ $) 88) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-677) (-13 (-397) (-380) (-356) (-1012 (-371)) (-1012 (-400 (-536))) (-145) (-10 -8 (-15 -2461 ((-893) (-893))) (-15 -2461 ((-893))) (-15 -3022 ((-893) (-893))) (-15 -2460 ((-536) (-536))) (-15 -2460 ((-536))) (-15 -2459 ((-536) (-536))) (-15 -2459 ((-536))) (-15 -4312 ((-371) $)) (-15 -4312 ($ (-679))) (-15 -2462 ((-536) $)) (-15 -2488 ((-536) $)) (-15 -3275 ($ (-536) (-536) (-893)))))) (T -677)) +((-2488 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2461 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2460 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2459 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-677)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) (-3275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-5 *1 (-677))))) +(-13 (-397) (-380) (-356) (-1012 (-371)) (-1012 (-400 (-536))) (-145) (-10 -8 (-15 -2461 ((-893) (-893))) (-15 -2461 ((-893))) (-15 -3022 ((-893) (-893))) (-15 -2460 ((-536) (-536))) (-15 -2460 ((-536))) (-15 -2459 ((-536) (-536))) (-15 -2459 ((-536))) (-15 -4312 ((-371) $)) (-15 -4312 ($ (-679))) (-15 -2462 ((-536) $)) (-15 -2488 ((-536) $)) (-15 -3275 ($ (-536) (-536) (-893))))) +((-2465 (((-667 |#1|) (-667 |#1|) |#1| |#1|) 65)) (-3440 (((-667 |#1|) (-667 |#1|) |#1|) 48)) (-2464 (((-667 |#1|) (-667 |#1|) |#1|) 66)) (-2463 (((-667 |#1|) (-667 |#1|)) 49)) (-2466 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 64))) +(((-678 |#1|) (-10 -7 (-15 -2463 ((-667 |#1|) (-667 |#1|))) (-15 -3440 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2464 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2465 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) (-300)) (T -678)) +((-2466 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-678 *3)) (-4 *3 (-300)))) (-2465 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2464 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-3440 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(-10 -7 (-15 -2463 ((-667 |#1|) (-667 |#1|))) (-15 -3440 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2464 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2465 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) 27)) (-3502 (((-536) $) 25)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($ $) NIL) (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) NIL)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) NIL)) (-3672 (($ $ $) NIL)) (-2467 (((-893) (-893)) 10) (((-893)) 9)) (-3673 (($ $ $) NIL)) (-2154 (($ $) NIL)) (-4188 (($ $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-2155 (($ $) NIL)) (-3754 (($ $) NIL)) (-4325 (((-219) $) NIL) (((-371) $) NIL) (((-864 (-536)) $) NIL) (((-525) $) NIL) (((-536) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) 24) (($ $) NIL) (($ (-536)) 24) (((-307 $) (-307 (-536))) 18)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) NIL)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL) (($ $ (-749)) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) +(((-679) (-13 (-380) (-535) (-10 -8 (-15 -2467 ((-893) (-893))) (-15 -2467 ((-893))) (-15 -4312 ((-307 $) (-307 (-536))))))) (T -679)) +((-2467 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) (-2467 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-307 (-536))) (-5 *2 (-307 (-679))) (-5 *1 (-679))))) +(-13 (-380) (-535) (-10 -8 (-15 -2467 ((-893) (-893))) (-15 -2467 ((-893))) (-15 -4312 ((-307 $) (-307 (-536)))))) +((-2473 (((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)) 19)) (-2468 (((-1 |#4| |#2| |#3|) (-1147)) 12))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 ((-1 |#4| |#2| |#3|) (-1147))) (-15 -2473 ((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)))) (-596 (-525)) (-1183) (-1183) (-1183)) (T -680)) +((-2473 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183))))) +(-10 -7 (-15 -2468 ((-1 |#4| |#2| |#3|) (-1147))) (-15 -2473 ((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)))) +((-2893 (((-112) $ $) NIL)) (-1368 (((-1235) $ (-749)) 14)) (-3773 (((-749) $) 12)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 25)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 24))) +(((-681 |#1|) (-13 (-131) (-595 |#1|) (-10 -8 (-15 -4312 ($ |#1|)))) (-1072)) (T -681)) +((-4312 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1072))))) +(-13 (-131) (-595 |#1|) (-10 -8 (-15 -4312 ($ |#1|)))) +((-2469 (((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)) 34) (((-1 (-219) (-219)) |#1| (-1147)) 39))) +(((-682 |#1|) (-10 -7 (-15 -2469 ((-1 (-219) (-219)) |#1| (-1147))) (-15 -2469 ((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)))) (-596 (-525))) (T -682)) +((-2469 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-525))))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-525)))))) +(-10 -7 (-15 -2469 ((-1 (-219) (-219)) |#1| (-1147))) (-15 -2469 ((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)))) +((-2470 (((-1147) |#1| (-1147) (-620 (-1147))) 9) (((-1147) |#1| (-1147) (-1147) (-1147)) 12) (((-1147) |#1| (-1147) (-1147)) 11) (((-1147) |#1| (-1147)) 10))) +(((-683 |#1|) (-10 -7 (-15 -2470 ((-1147) |#1| (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-620 (-1147))))) (-596 (-525))) (T -683)) +((-2470 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525)))))) +(-10 -7 (-15 -2470 ((-1147) |#1| (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-620 (-1147))))) +((-2471 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-684 |#1| |#2|) (-10 -7 (-15 -2471 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1183) (-1183)) (T -684)) +((-2471 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-1183)) (-4 *4 (-1183))))) +(-10 -7 (-15 -2471 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2472 (((-1 |#3| |#2|) (-1147)) 11)) (-2473 (((-1 |#3| |#2|) |#1| (-1147)) 21))) +(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -2472 ((-1 |#3| |#2|) (-1147))) (-15 -2473 ((-1 |#3| |#2|) |#1| (-1147)))) (-596 (-525)) (-1183) (-1183)) (T -685)) +((-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) +(-10 -7 (-15 -2472 ((-1 |#3| |#2|) (-1147))) (-15 -2473 ((-1 |#3| |#2|) |#1| (-1147)))) +((-2476 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|) 62)) (-2475 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|) 75)) (-2474 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|) 34))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|)) (-15 -2475 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|)) (-15 -2476 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -686)) +((-2476 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-620 (-1141 *13))) (-5 *3 (-1141 *13)) (-5 *4 (-620 *12)) (-5 *5 (-620 *10)) (-5 *6 (-620 *13)) (-5 *7 (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *13))))) (-5 *8 (-620 (-749))) (-5 *9 (-1229 (-620 (-1141 *10)))) (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-924 *10 *11 *12)) (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13)))) (-2475 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-620 *11)) (-5 *5 (-620 (-1141 *9))) (-5 *6 (-620 *9)) (-5 *7 (-620 *12)) (-5 *8 (-620 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-924 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-620 (-1141 *12))) (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12)))) (-2474 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-620 (-1141 *11))) (-5 *3 (-1141 *11)) (-5 *4 (-620 *10)) (-5 *5 (-620 *8)) (-5 *6 (-620 (-749))) (-5 *7 (-1229 (-620 (-1141 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) (-4 *11 (-924 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) +(-10 -7 (-15 -2474 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|)) (-15 -2475 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|)) (-15 -2476 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 39)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 37)) (-3148 (((-749) $) 41)) (-3520 ((|#1| $) 40)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 (((-749) $) 42)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4035 ((|#1| $ (-749)) 38)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-687 |#1|) (-138) (-1023)) (T -687)) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023))))) +(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4302 ((-749) $)) (-15 -3148 ((-749) $)) (-15 -3520 (|t#1| $)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ (-749))) (-15 -3221 ($ |t#1| (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-4313 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-688 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 (|#6| (-1 |#4| |#1|) |#3|))) (-543) (-1205 |#1|) (-1205 (-400 |#2|)) (-543) (-1205 |#4|) (-1205 (-400 |#5|))) (T -688)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-543)) (-4 *7 (-543)) (-4 *6 (-1205 *5)) (-4 *2 (-1205 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1205 (-400 *6))) (-4 *8 (-1205 *7))))) +(-10 -7 (-15 -4313 (|#6| (-1 |#4| |#1|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2477 (((-1129) (-838)) 31)) (-3975 (((-1235) (-1129)) 28)) (-2479 (((-1129) (-838)) 24)) (-2478 (((-1129) (-838)) 25)) (-4312 (((-838) $) NIL) (((-1129) (-838)) 23)) (-3382 (((-112) $ $) NIL))) +(((-689) (-13 (-1072) (-10 -7 (-15 -4312 ((-1129) (-838))) (-15 -2479 ((-1129) (-838))) (-15 -2478 ((-1129) (-838))) (-15 -2477 ((-1129) (-838))) (-15 -3975 ((-1235) (-1129)))))) (T -689)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-689))))) +(-13 (-1072) (-10 -7 (-15 -4312 ((-1129) (-838))) (-15 -2479 ((-1129) (-838))) (-15 -2478 ((-1129) (-838))) (-15 -2477 ((-1129) (-838))) (-15 -3975 ((-1235) (-1129))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-4197 (($ |#1| |#2|) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 ((|#2| $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) ((|#1| $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) +((-2938 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4197 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-356) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)))) +((-2893 (((-112) $ $) 78)) (-3534 (((-112) $) 30)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) NIL (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3466 (((-749)) 47 (|has| |#1| (-361)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-2486 ((|#2| |#2|) 44)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 34)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4197 (($ |#2|) 42)) (-3816 (((-3 $ "failed") $) 86)) (-3322 (($) 51 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) NIL (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-2482 (((-932 $)) 80)) (-1716 (($ $ |#1| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 77) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2938 ((|#2|) 45)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-3408 ((|#2| $) 41)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) 28)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2480 (($ $) 79 (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 87 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) 32) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-2481 (((-932 $)) 36)) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) 61) (($ (-536)) NIL) (($ |#1|) 58) (($ (-1053)) NIL) (($ |#2|) 68) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) 63) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 20 T CONST)) (-2485 (((-1229 |#1|) $) 75)) (-2484 (($ (-1229 |#1|)) 50)) (-2992 (($) 8 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2483 (((-1229 |#1|) $) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 69)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 72) (($ $ $) NIL)) (-4194 (($ $ $) 33)) (** (($ $ (-893)) NIL) (($ $ (-749)) 81)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 57) (($ $ $) 74) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-691 |#1| |#2|) (-13 (-1205 |#1|) (-10 -8 (-15 -2486 (|#2| |#2|)) (-15 -2938 (|#2|)) (-15 -4197 ($ |#2|)) (-15 -3408 (|#2| $)) (-15 -4312 ($ |#2|)) (-15 -2485 ((-1229 |#1|) $)) (-15 -2484 ($ (-1229 |#1|))) (-15 -2483 ((-1229 |#1|) $)) (-15 -2482 ((-932 $))) (-15 -2481 ((-932 $))) (IF (|has| |#1| (-343)) (-15 -2480 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1023) (-1205 |#1|)) (T -691)) +((-2486 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-2938 (*1 *2) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) (-4197 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-2485 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2483 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2482 (*1 *2) (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2481 (*1 *2) (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2480 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1023)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1205 *2))))) +(-13 (-1205 |#1|) (-10 -8 (-15 -2486 (|#2| |#2|)) (-15 -2938 (|#2|)) (-15 -4197 ($ |#2|)) (-15 -3408 (|#2| $)) (-15 -4312 ($ |#2|)) (-15 -2485 ((-1229 |#1|) $)) (-15 -2484 ($ (-1229 |#1|))) (-15 -2483 ((-1229 |#1|) $)) (-15 -2482 ((-932 $))) (-15 -2481 ((-932 $))) (IF (|has| |#1| (-343)) (-15 -2480 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2487 ((|#1| $) 13)) (-3589 (((-1091) $) NIL)) (-2488 ((|#2| $) 12)) (-3879 (($ |#1| |#2|) 16)) (-4312 (((-838) $) NIL) (($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|))) 15) (((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $) 14)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 11))) +(((-692 |#1| |#2| |#3|) (-13 (-825) (-10 -8 (-15 -2488 (|#2| $)) (-15 -2487 (|#1| $)) (-15 -4312 ($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (-15 -4312 ((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $)) (-15 -3879 ($ |#1| |#2|)))) (-825) (-1072) (-1 (-112) (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (T -692)) +((-2488 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *2)) (-2 (|:| -2487 *3) (|:| -2488 *2)))))) (-2487 (*1 *2 *1) (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1072)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) (-2 (|:| -2487 *2) (|:| -2488 *3)))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-4 *3 (-825)) (-4 *4 (-1072)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1072)) (-14 *5 (-1 (-112) *2 *2)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1072)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) (-2 (|:| -2487 *2) (|:| -2488 *3))))))) +(-13 (-825) (-10 -8 (-15 -2488 (|#2| $)) (-15 -2487 (|#1| $)) (-15 -4312 ($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (-15 -4312 ((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $)) (-15 -3879 ($ |#1| |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 59)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3502 ((|#1| $) NIL) (((-113) $) 39)) (-3816 (((-3 $ "failed") $) 90)) (-2845 ((|#2| (-113) |#2|) 82)) (-2497 (((-112) $) NIL)) (-2844 (($ |#1| (-354 (-113))) 14)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2846 (($ $ (-1 |#2| |#2|)) 58)) (-2847 (($ $ (-1 |#2| |#2|)) 44)) (-4154 ((|#2| $ |#2|) 33)) (-2848 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4312 (((-838) $) 66) (($ (-536)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 37)) (-2849 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2986 (($) 21 T CONST)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 48) (($ $ $) NIL)) (-4194 (($ $ $) 73)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ (-113) (-536)) NIL) (($ $ (-536)) 57)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) +(((-693 |#1| |#2|) (-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#2| |#2|))) (-15 -2846 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#2| (-113) |#2|)) (-15 -2844 ($ |#1| (-354 (-113)))))) (-1023) (-626 |#1|)) (T -693)) +((-2849 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2848 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)))) (-2846 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) (-2845 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1023)) (-5 *1 (-693 *2 *4)) (-4 *4 (-626 *2))))) +(-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#2| |#2|))) (-15 -2846 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#2| (-113) |#2|)) (-15 -2844 ($ |#1| (-354 (-113)))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ |#1| |#2|) 25)) (-3816 (((-3 $ "failed") $) 48)) (-2497 (((-112) $) 35)) (-2938 ((|#2| $) 12)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 49)) (-3589 (((-1091) $) NIL)) (-2489 (((-3 $ "failed") $ $) 47)) (-4312 (((-838) $) 24) (($ (-536)) 19) ((|#1| $) 13)) (-3456 (((-749)) 28)) (-2986 (($) 16 T CONST)) (-2992 (($) 30 T CONST)) (-3382 (((-112) $ $) 38)) (-4192 (($ $) 43) (($ $ $) 37)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 21) (($ $ $) 20))) +(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-1023) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) +((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2938 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4197 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2729 (*1 *1 *1) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1023) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)))) +((* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-695 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-696 |#2|) (-170)) (T -695)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-696 |#1|) (-138) (-170)) (T -696)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-1538 (($ |#1|) 17) (($ $ |#1|) 20)) (-3173 (($ |#1|) 18) (($ $ |#1|) 21)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2419 (((-112) $) NIL)) (-1343 (($ |#1| |#1| |#1| |#1|) 8)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 16)) (-3445 (((-1089) $) NIL)) (-1553 ((|#1| $ |#1|) 24) (((-811 |#1|) $ (-811 |#1|)) 32)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-2233 (((-837) $) 39)) (-2700 (($) 9 T CONST)) (-2264 (((-112) $ $) 44)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 14))) -(((-697 |#1|) (-13 (-465) (-10 -8 (-15 -1343 ($ |#1| |#1| |#1| |#1|)) (-15 -1538 ($ |#1|)) (-15 -3173 ($ |#1|)) (-15 -1537 ($)) (-15 -1538 ($ $ |#1|)) (-15 -3173 ($ $ |#1|)) (-15 -1537 ($ $)) (-15 -1553 (|#1| $ |#1|)) (-15 -1553 ((-811 |#1|) $ (-811 |#1|))))) (-356)) (T -697)) -((-1343 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1538 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3173 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1537 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3173 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1553 (*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1553 (*1 *2 *1 *2) (-12 (-5 *2 (-811 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3))))) -(-13 (-465) (-10 -8 (-15 -1343 ($ |#1| |#1| |#1| |#1|)) (-15 -1538 ($ |#1|)) (-15 -3173 ($ |#1|)) (-15 -1537 ($)) (-15 -1538 ($ $ |#1|)) (-15 -3173 ($ $ |#1|)) (-15 -1537 ($ $)) (-15 -1553 (|#1| $ |#1|)) (-15 -1553 ((-811 |#1|) $ (-811 |#1|))))) -((-1339 (($ $ (-895)) 12)) (-1692 (($ $ (-895)) 13)) (** (($ $ (-895)) 10))) -(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -1692 (|#1| |#1| (-895))) (-15 -1339 (|#1| |#1| (-895)))) (-699)) (T -698)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -1692 (|#1| |#1| (-895))) (-15 -1339 (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-1339 (($ $ (-895)) 15)) (-1692 (($ $ (-895)) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 16))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-2685 (($ |#1|) 17) (($ $ |#1|) 20)) (-4202 (($ |#1|) 18) (($ $ |#1|) 21)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2497 (((-112) $) NIL)) (-2490 (($ |#1| |#1| |#1| |#1|) 8)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 16)) (-3589 (((-1091) $) NIL)) (-4122 ((|#1| $ |#1|) 24) (((-810 |#1|) $ (-810 |#1|)) 32)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 39)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) 44)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 14))) +(((-697 |#1|) (-13 (-465) (-10 -8 (-15 -2490 ($ |#1| |#1| |#1| |#1|)) (-15 -2685 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -3816 ($)) (-15 -2685 ($ $ |#1|)) (-15 -4202 ($ $ |#1|)) (-15 -3816 ($ $)) (-15 -4122 (|#1| $ |#1|)) (-15 -4122 ((-810 |#1|) $ (-810 |#1|))))) (-356)) (T -697)) +((-2490 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2685 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4202 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3816 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4122 (*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4122 (*1 *2 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3))))) +(-13 (-465) (-10 -8 (-15 -2490 ($ |#1| |#1| |#1| |#1|)) (-15 -2685 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -3816 ($)) (-15 -2685 ($ $ |#1|)) (-15 -4202 ($ $ |#1|)) (-15 -3816 ($ $)) (-15 -4122 (|#1| $ |#1|)) (-15 -4122 ((-810 |#1|) $ (-810 |#1|))))) +((-2494 (($ $ (-893)) 12)) (-2493 (($ $ (-893)) 13)) (** (($ $ (-893)) 10))) +(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) (-699)) (T -698)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-2494 (($ $ (-893)) 15)) (-2493 (($ $ (-893)) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13)) (* (($ $ $) 16))) (((-699) (-138)) (T -699)) -((* (*1 *1 *1 *1) (-4 *1 (-699))) (-1339 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895))))) -(-13 (-1069) (-10 -8 (-15 * ($ $ $)) (-15 -1339 ($ $ (-895))) (-15 -1692 ($ $ (-895))) (-15 ** ($ $ (-895))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-1339 (($ $ (-895)) NIL) (($ $ (-749)) 17)) (-2419 (((-112) $) 10)) (-1692 (($ $ (-895)) NIL) (($ $ (-749)) 18)) (** (($ $ (-895)) NIL) (($ $ (-749)) 15))) -(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -1692 (|#1| |#1| (-749))) (-15 -1339 (|#1| |#1| (-749))) (-15 -2419 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -1692 (|#1| |#1| (-895))) (-15 -1339 (|#1| |#1| (-895)))) (-701)) (T -700)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -1692 (|#1| |#1| (-749))) (-15 -1339 (|#1| |#1| (-749))) (-15 -2419 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -1692 (|#1| |#1| (-895))) (-15 -1339 (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-2988 (((-3 $ "failed") $) 17)) (-1339 (($ $ (-895)) 15) (($ $ (-749)) 22)) (-1537 (((-3 $ "failed") $) 19)) (-2419 (((-112) $) 23)) (-3274 (((-3 $ "failed") $) 18)) (-1692 (($ $ (-895)) 14) (($ $ (-749)) 21)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2700 (($) 24 T CONST)) (-2264 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-749)) 20)) (* (($ $ $) 16))) +((* (*1 *1 *1 *1) (-4 *1 (-699))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) (-2493 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893))))) +(-13 (-1072) (-10 -8 (-15 * ($ $ $)) (-15 -2494 ($ $ (-893))) (-15 -2493 ($ $ (-893))) (-15 ** ($ $ (-893))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2494 (($ $ (-893)) NIL) (($ $ (-749)) 17)) (-2497 (((-112) $) 10)) (-2493 (($ $ (-893)) NIL) (($ $ (-749)) 18)) (** (($ $ (-893)) NIL) (($ $ (-749)) 15))) +(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2493 (|#1| |#1| (-749))) (-15 -2494 (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) (-701)) (T -700)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2493 (|#1| |#1| (-749))) (-15 -2494 (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-2491 (((-3 $ "failed") $) 17)) (-2494 (($ $ (-893)) 15) (($ $ (-749)) 22)) (-3816 (((-3 $ "failed") $) 19)) (-2497 (((-112) $) 23)) (-2492 (((-3 $ "failed") $) 18)) (-2493 (($ $ (-893)) 14) (($ $ (-749)) 21)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13) (($ $ (-749)) 20)) (* (($ $ $) 16))) (((-701) (-138)) (T -701)) -((-2700 (*1 *1) (-4 *1 (-701))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (-1339 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-1537 (*1 *1 *1) (|partial| -4 *1 (-701))) (-3274 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2988 (*1 *1 *1) (|partial| -4 *1 (-701)))) -(-13 (-699) (-10 -8 (-15 (-2700) ($) -4165) (-15 -2419 ((-112) $)) (-15 -1339 ($ $ (-749))) (-15 -1692 ($ $ (-749))) (-15 ** ($ $ (-749))) (-15 -1537 ((-3 $ "failed") $)) (-15 -3274 ((-3 $ "failed") $)) (-15 -2988 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-837)) . T) ((-699) . T) ((-1069) . T)) -((-3828 (((-749)) 34)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 22)) (-2924 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-1537 (((-3 $ "failed") $) 64)) (-1864 (($) 38)) (-1571 ((|#2| $) 20)) (-2256 (($) 17)) (-2798 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2871 (((-667 |#2|) (-1228 $) (-1 |#2| |#2|)) 59)) (-2451 (((-1228 |#2|) $) NIL) (($ (-1228 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3359 ((|#3| $) 32)) (-2206 (((-1228 $)) 29))) -(((-702 |#1| |#2| |#3|) (-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1864 (|#1|)) (-15 -3828 ((-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2871 ((-667 |#2|) (-1228 |#1|) (-1 |#2| |#2|))) (-15 -2924 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2451 (|#1| |#3|)) (-15 -2924 (|#1| |#3|)) (-15 -2256 (|#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2206 ((-1228 |#1|))) (-15 -3359 (|#3| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|))) (-703 |#2| |#3|) (-170) (-1204 |#2|)) (T -702)) -((-3828 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5))))) -(-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -1864 (|#1|)) (-15 -3828 ((-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2871 ((-667 |#2|) (-1228 |#1|) (-1 |#2| |#2|))) (-15 -2924 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2451 (|#1| |#3|)) (-15 -2924 (|#1| |#3|)) (-15 -2256 (|#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -2451 (|#1| (-1228 |#2|))) (-15 -2451 ((-1228 |#2|) |#1|)) (-15 -2206 ((-1228 |#1|))) (-15 -3359 (|#3| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -1537 ((-3 |#1| "failed") |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-3050 (($ $) 92 (|has| |#1| (-356)))) (-3953 (((-112) $) 94 (|has| |#1| (-356)))) (-3992 (((-667 |#1|) (-1228 $)) 44) (((-667 |#1|)) 59)) (-2223 ((|#1| $) 50)) (-3435 (((-1155 (-895) (-749)) (-550)) 144 (|has| |#1| (-342)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 111 (|has| |#1| (-356)))) (-2207 (((-411 $) $) 112 (|has| |#1| (-356)))) (-1611 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3828 (((-749)) 85 (|has| |#1| (-361)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 166 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 163)) (-2202 (((-550) $) 167 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 165 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 162)) (-2821 (($ (-1228 |#1|) (-1228 $)) 46) (($ (-1228 |#1|)) 62)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-3455 (($ $ $) 106 (|has| |#1| (-356)))) (-2766 (((-667 |#1|) $ (-1228 $)) 51) (((-667 |#1|) $) 57)) (-3756 (((-667 (-550)) (-667 $)) 161 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 160 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-2924 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-1537 (((-3 $ "failed") $) 32)) (-3398 (((-895)) 52)) (-1864 (($) 88 (|has| |#1| (-361)))) (-3429 (($ $ $) 105 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 100 (|has| |#1| (-356)))) (-2664 (($) 146 (|has| |#1| (-342)))) (-4139 (((-112) $) 147 (|has| |#1| (-342)))) (-4322 (($ $ (-749)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-1568 (((-112) $) 113 (|has| |#1| (-356)))) (-2603 (((-895) $) 149 (|has| |#1| (-342))) (((-811 (-895)) $) 135 (|has| |#1| (-342)))) (-2419 (((-112) $) 30)) (-1571 ((|#1| $) 49)) (-1620 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| |#1| (-356)))) (-2835 ((|#2| $) 42 (|has| |#1| (-356)))) (-4073 (((-895) $) 87 (|has| |#1| (-361)))) (-2910 ((|#2| $) 153)) (-3231 (($ (-623 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 114 (|has| |#1| (-356)))) (-2463 (($) 140 (|has| |#1| (-342)) CONST)) (-3690 (($ (-895)) 86 (|has| |#1| (-361)))) (-3445 (((-1089) $) 10)) (-2256 (($) 157)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| |#1| (-356)))) (-3260 (($ (-623 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) 143 (|has| |#1| (-342)))) (-1735 (((-411 $) $) 110 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 107 (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| |#1| (-356)))) (-1988 (((-749) $) 103 (|has| |#1| (-356)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 104 (|has| |#1| (-356)))) (-3563 ((|#1| (-1228 $)) 45) ((|#1|) 58)) (-2899 (((-749) $) 148 (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-342)))) (-2798 (($ $) 134 (-1489 (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) 132 (-1489 (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1145)) 130 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-623 (-1145))) 129 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-1145) (-749)) 128 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 (-749))) 127 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2871 (((-667 |#1|) (-1228 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3832 ((|#2|) 156)) (-2038 (($) 145 (|has| |#1| (-342)))) (-2999 (((-1228 |#1|) $ (-1228 $)) 48) (((-667 |#1|) (-1228 $) (-1228 $)) 47) (((-1228 |#1|) $) 64) (((-667 |#1|) (-1228 $)) 63)) (-2451 (((-1228 |#1|) $) 61) (($ (-1228 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 142 (|has| |#1| (-342)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-550))) 84 (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550))))))) (-1613 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3359 ((|#2| $) 43)) (-3091 (((-749)) 28)) (-2206 (((-1228 $)) 65)) (-1819 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $) 133 (-1489 (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) 131 (-1489 (-1304 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1145)) 126 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-623 (-1145))) 125 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-1145) (-749)) 124 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 (-749))) 123 (-1304 (|has| |#1| (-874 (-1145))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 118 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 115 (|has| |#1| (-356)))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-550)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-550))) 116 (|has| |#1| (-356))))) -(((-703 |#1| |#2|) (-138) (-170) (-1204 |t#1|)) (T -703)) -((-2256 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1204 *2)))) (-3832 (*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) (-2924 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1204 *3)))) (-2451 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1204 *3)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) (-2924 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-1228 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1204 *5)) (-5 *2 (-667 *5))))) -(-13 (-402 |t#1| |t#2|) (-170) (-596 |t#2|) (-404 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2256 ($)) (-15 -3832 (|t#2|)) (-15 -2924 ($ |t#2|)) (-15 -2451 ($ |t#2|)) (-15 -2910 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -2924 ((-3 $ "failed") (-400 |t#2|))) (-15 -2871 ((-667 |t#1|) (-1228 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-101) . T) ((-111 #0# #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1489 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-596 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -1489 (|has| |#1| (-342)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-283) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-300) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-356) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1489 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| |#2|) . T) ((-402 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-542) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145)))) ((-894) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 #0#) -1489 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1027 |#1|) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| |#1| (-342)) ((-1186) -1489 (|has| |#1| (-342)) (|has| |#1| (-356)))) -((-2991 (($) 11)) (-1537 (((-3 $ "failed") $) 13)) (-2419 (((-112) $) 10)) (** (($ $ (-895)) NIL) (($ $ (-749)) 18))) -(((-704 |#1|) (-10 -8 (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2419 ((-112) |#1|)) (-15 -2991 (|#1|)) (-15 ** (|#1| |#1| (-895)))) (-705)) (T -704)) -NIL -(-10 -8 (-15 -1537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2419 ((-112) |#1|)) (-15 -2991 (|#1|)) (-15 ** (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-2991 (($) 18 T CONST)) (-1537 (((-3 $ "failed") $) 15)) (-2419 (((-112) $) 17)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2700 (($) 19 T CONST)) (-2264 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-749)) 16)) (* (($ $ $) 14))) +((-2992 (*1 *1) (-4 *1 (-701))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-2493 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-3816 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2492 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2491 (*1 *1 *1) (|partial| -4 *1 (-701)))) +(-13 (-699) (-10 -8 (-15 (-2992) ($) -4306) (-15 -2497 ((-112) $)) (-15 -2494 ($ $ (-749))) (-15 -2493 ($ $ (-749))) (-15 ** ($ $ (-749))) (-15 -3816 ((-3 $ "failed") $)) (-15 -2492 ((-3 $ "failed") $)) (-15 -2491 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-838)) . T) ((-699) . T) ((-1072) . T)) +((-3466 (((-749)) 34)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 22)) (-4197 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-3816 (((-3 $ "failed") $) 64)) (-3322 (($) 38)) (-3462 ((|#2| $) 20)) (-2496 (($) 17)) (-4165 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2495 (((-667 |#2|) (-1229 $) (-1 |#2| |#2|)) 59)) (-4325 (((-1229 |#2|) $) NIL) (($ (-1229 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2693 ((|#3| $) 32)) (-2123 (((-1229 $)) 29))) +(((-702 |#1| |#2| |#3|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -3322 (|#1|)) (-15 -3466 ((-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2495 ((-667 |#2|) (-1229 |#1|) (-1 |#2| |#2|))) (-15 -4197 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4325 (|#1| |#3|)) (-15 -4197 (|#1| |#3|)) (-15 -2496 (|#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 (|#3| |#1|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -2123 ((-1229 |#1|))) (-15 -2693 (|#3| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) (-703 |#2| |#3|) (-170) (-1205 |#2|)) (T -702)) +((-3466 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5))))) +(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -3322 (|#1|)) (-15 -3466 ((-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2495 ((-667 |#2|) (-1229 |#1|) (-1 |#2| |#2|))) (-15 -4197 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4325 (|#1| |#3|)) (-15 -4197 (|#1| |#3|)) (-15 -2496 (|#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 (|#3| |#1|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -2123 ((-1229 |#1|))) (-15 -2693 (|#3| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2173 (($ $) 92 (|has| |#1| (-356)))) (-2171 (((-112) $) 94 (|has| |#1| (-356)))) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 111 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 112 (|has| |#1| (-356)))) (-1700 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3466 (((-749)) 85 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 163)) (-3502 (((-536) $) 167 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 162)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2889 (($ $ $) 106 (|has| |#1| (-356)))) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-4197 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| |#1| (-361)))) (-2888 (($ $ $) 105 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| |#1| (-356)))) (-3161 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-749)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4081 (((-112) $) 113 (|has| |#1| (-356)))) (-4126 (((-893) $) 149 (|has| |#1| (-343))) (((-810 (-893)) $) 135 (|has| |#1| (-343)))) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-3798 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| |#1| (-356)))) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-2121 (((-893) $) 87 (|has| |#1| (-361)))) (-3408 ((|#2| $) 153)) (-2008 (($ (-620 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 114 (|has| |#1| (-356)))) (-3799 (($) 140 (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| |#1| (-361)))) (-3589 (((-1091) $) 10)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| |#1| (-343)))) (-4087 (((-398 $) $) 110 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| |#1| (-356)))) (-1699 (((-749) $) 103 (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| |#1| (-356)))) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-1882 (((-749) $) 148 (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-343)))) (-4165 (($ $) 134 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) 132 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) 130 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147))) 129 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1147) (-749)) 128 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-749))) 127 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3531 ((|#2|) 156)) (-1785 (($) 145 (|has| |#1| (-343)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (|has| |#1| (-343)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-536))) 84 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-2172 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 133 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) 131 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) 126 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147))) 125 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1147) (-749)) 124 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-749))) 123 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 118 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 115 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-536)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-536))) 116 (|has| |#1| (-356))))) +(((-703 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -703)) +((-2496 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1205 *2)))) (-3531 (*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-4197 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) (-4325 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-4197 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *5))))) +(-13 (-403 |t#1| |t#2|) (-170) (-596 |t#2|) (-405 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2496 ($)) (-15 -3531 (|t#2|)) (-15 -4197 ($ |t#2|)) (-15 -4325 ($ |t#2|)) (-15 -3408 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -4197 ((-3 $ "failed") (-400 |t#2|))) (-15 -2495 ((-667 |t#1|) (-1229 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -3886 (|has| |#1| (-343)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-283) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-300) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-356) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3886 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-543) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147)))) ((-895) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-343)) ((-1188) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)))) +((-3891 (($) 11)) (-3816 (((-3 $ "failed") $) 13)) (-2497 (((-112) $) 10)) (** (($ $ (-893)) NIL) (($ $ (-749)) 18))) +(((-704 |#1|) (-10 -8 (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 ** (|#1| |#1| (-893)))) (-705)) (T -704)) +NIL +(-10 -8 (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 ** (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-2497 (((-112) $) 17)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13) (($ $ (-749)) 16)) (* (($ $ $) 14))) (((-705) (-138)) (T -705)) -((-2700 (*1 *1) (-4 *1 (-705))) (-2991 (*1 *1) (-4 *1 (-705))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) (-1537 (*1 *1 *1) (|partial| -4 *1 (-705)))) -(-13 (-1081) (-10 -8 (-15 (-2700) ($) -4165) (-15 -2991 ($) -4165) (-15 -2419 ((-112) $)) (-15 ** ($ $ (-749))) (-15 -1537 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1081) . T) ((-1069) . T)) -((-3118 (((-2 (|:| -2714 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2590 (((-2 (|:| -2714 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1617 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-1301 (((-2 (|:| |poly| |#2|) (|:| -2714 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47))) -(((-706 |#1| |#2|) (-10 -7 (-15 -2590 ((-2 (|:| -2714 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3118 ((-2 (|:| -2714 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1617 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -1301 ((-2 (|:| |poly| |#2|) (|:| -2714 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1204 |#1|)) (T -706)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2714 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1204 *5)) (-5 *1 (-706 *5 *2)) (-4 *5 (-356)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2714 (-411 *3)) (|:| |special| (-411 *3)))) (-5 *1 (-706 *5 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2714 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3))))) -(-10 -7 (-15 -2590 ((-2 (|:| -2714 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3118 ((-2 (|:| -2714 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1617 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -1301 ((-2 (|:| |poly| |#2|) (|:| -2714 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) -((-2965 ((|#7| (-623 |#5|) |#6|) NIL)) (-2392 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2392 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2965 (|#7| (-623 |#5|) |#6|))) (-825) (-771) (-771) (-1021) (-1021) (-923 |#4| |#2| |#1|) (-923 |#5| |#3| |#1|)) (T -707)) -((-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *9)) (-4 *9 (-1021)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-1021)) (-4 *2 (-923 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-923 *8 *6 *5)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1021)) (-4 *9 (-1021)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-923 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-923 *8 *6 *5))))) -(-10 -7 (-15 -2392 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2965 (|#7| (-623 |#5|) |#6|))) -((-2392 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-708 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2392 (|#7| (-1 |#2| |#1|) |#6|))) (-825) (-825) (-771) (-771) (-1021) (-923 |#5| |#3| |#1|) (-923 |#5| |#4| |#2|)) (T -708)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) (-4 *9 (-1021)) (-4 *2 (-923 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) (-4 *4 (-923 *9 *7 *5))))) -(-10 -7 (-15 -2392 (|#7| (-1 |#2| |#1|) |#6|))) -((-1735 (((-411 |#4|) |#4|) 41))) -(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145))))) (-300) (-923 (-926 |#3|) |#1| |#2|)) (T -709)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-923 (-926 *6) *4 *5))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-839 |#1|)) $) NIL)) (-1705 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-3050 (($ $) NIL (|has| |#2| (-542)))) (-3953 (((-112) $) NIL (|has| |#2| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-839 |#1|))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL (|has| |#2| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-839 |#1|) "failed") $) NIL)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-839 |#1|) $) NIL)) (-1792 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#2| (-883)))) (-3401 (($ $ |#2| (-522 (-839 |#1|)) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#2| (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-839 |#1|)) NIL)) (-3346 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2863 (($ (-1 (-522 (-839 |#1|)) (-522 (-839 |#1|))) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4059 (((-3 (-839 |#1|) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#2| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -3068 (-749))) "failed") $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#2| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-883)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-623 (-839 |#1|)) (-623 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-623 (-839 |#1|)) (-623 $)) NIL)) (-3563 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2798 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-3661 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-623 (-749)) $ (-623 (-839 |#1|))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-839 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ $) NIL (|has| |#2| (-542))) (($ (-400 (-550))) NIL (-1489 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1012 (-400 (-550))))))) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-839 |#1|)) NIL) (($ $ (-623 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-623 (-839 |#1|)) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-710 |#1| |#2|) (-923 |#2| (-522 (-839 |#1|)) (-839 |#1|)) (-623 (-1145)) (-1021)) (T -710)) -NIL -(-923 |#2| (-522 (-839 |#1|)) (-839 |#1|)) -((-4278 (((-2 (|:| -4250 (-926 |#3|)) (|:| -3947 (-926 |#3|))) |#4|) 14)) (-2549 ((|#4| |#4| |#2|) 33)) (-1838 ((|#4| (-400 (-926 |#3|)) |#2|) 64)) (-2254 ((|#4| (-1141 (-926 |#3|)) |#2|) 77)) (-2689 ((|#4| (-1141 |#4|) |#2|) 51)) (-3028 ((|#4| |#4| |#2|) 54)) (-1735 (((-411 |#4|) |#4|) 40))) -(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4278 ((-2 (|:| -4250 (-926 |#3|)) (|:| -3947 (-926 |#3|))) |#4|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2689 (|#4| (-1141 |#4|) |#2|)) (-15 -2549 (|#4| |#4| |#2|)) (-15 -2254 (|#4| (-1141 (-926 |#3|)) |#2|)) (-15 -1838 (|#4| (-400 (-926 |#3|)) |#2|)) (-15 -1735 ((-411 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)))) (-542) (-923 (-400 (-926 |#3|)) |#1| |#2|)) (T -711)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *6 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-923 (-400 (-926 *6)) *4 *5)))) (-1838 (*1 *2 *3 *4) (-12 (-4 *6 (-542)) (-4 *2 (-923 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-926 *6))) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 (-926 *6))) (-4 *6 (-542)) (-4 *2 (-923 (-400 (-926 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))))) (-2549 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *5 (-542)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-923 (-400 (-926 *5)) *4 *3)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-923 (-400 (-926 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *6 (-542)))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *5 (-542)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-923 (-400 (-926 *5)) *4 *3)))) (-4278 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *6 (-542)) (-5 *2 (-2 (|:| -4250 (-926 *6)) (|:| -3947 (-926 *6)))) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-923 (-400 (-926 *6)) *4 *5))))) -(-10 -7 (-15 -4278 ((-2 (|:| -4250 (-926 |#3|)) (|:| -3947 (-926 |#3|))) |#4|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2689 (|#4| (-1141 |#4|) |#2|)) (-15 -2549 (|#4| |#4| |#2|)) (-15 -2254 (|#4| (-1141 (-926 |#3|)) |#2|)) (-15 -1838 (|#4| (-400 (-926 |#3|)) |#2|)) (-15 -1735 ((-411 |#4|) |#4|))) -((-1735 (((-411 |#4|) |#4|) 52))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4|))) (-771) (-825) (-13 (-300) (-145)) (-923 (-400 |#3|) |#1| |#2|)) (T -712)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-923 (-400 *6) *4 *5))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4|))) -((-2392 (((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)) 18))) -(((-713 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) (-1021) (-1021) (-705)) (T -713)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7))))) -(-10 -7 (-15 -2392 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 28)) (-4222 (((-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|))) $) 29)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2202 ((|#2| $) NIL) ((|#1| $) NIL)) (-1693 (($ $) 79 (|has| |#2| (-825)))) (-1537 (((-3 $ "failed") $) 65)) (-1864 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) 55)) (-2336 (((-623 $) $) 39)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| |#2|) 16)) (-2392 (($ (-1 |#1| |#1|) $) 54)) (-4073 (((-895) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-1657 ((|#2| $) 78 (|has| |#2| (-825)))) (-1670 ((|#1| $) 77 (|has| |#2| (-825)))) (-2369 (((-1127) $) NIL)) (-3690 (($ (-895)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 76) (($ (-550)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|)))) 11)) (-2969 (((-623 |#1|) $) 41)) (-1708 ((|#1| $ |#2|) 88)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-2688 (($) 12 T CONST)) (-2700 (($) 33 T CONST)) (-2264 (((-112) $ $) 80)) (-2370 (($ $) 47) (($ $ $) NIL)) (-2358 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-714 |#1| |#2|) (-13 (-1021) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -1488 ($ |#1| |#2|)) (-15 -1708 (|#1| $ |#2|)) (-15 -2233 ($ (-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|))))) (-15 -4222 ((-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|))) $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (-15 -3438 ((-112) $)) (-15 -2969 ((-623 |#1|) $)) (-15 -2336 ((-623 $) $)) (-15 -3324 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -1657 (|#2| $)) (-15 -1670 (|#1| $)) (-15 -1693 ($ $))) |%noBranch|))) (-1021) (-705)) (T -714)) -((-1488 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-705)))) (-1708 (*1 *2 *1 *3) (-12 (-4 *2 (-1021)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -4304 *3) (|:| -3227 *4)))) (-4 *3 (-1021)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -4304 *3) (|:| -3227 *4)))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-623 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) (-1657 (*1 *2 *1) (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1021)))) (-1670 (*1 *2 *1) (-12 (-4 *2 (-1021)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1021)) (-4 *3 (-705))))) -(-13 (-1021) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -1488 ($ |#1| |#2|)) (-15 -1708 (|#1| $ |#2|)) (-15 -2233 ($ (-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|))))) (-15 -4222 ((-623 (-2 (|:| -4304 |#1|) (|:| -3227 |#2|))) $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (-15 -3438 ((-112) $)) (-15 -2969 ((-623 |#1|) $)) (-15 -2336 ((-623 $) $)) (-15 -3324 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -1657 (|#2| $)) (-15 -1670 (|#1| $)) (-15 -1693 ($ $))) |%noBranch|))) -((-2221 (((-112) $ $) 19)) (-4045 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3029 (($ $ $) 72)) (-1952 (((-112) $ $) 73)) (-3368 (((-112) $ (-749)) 8)) (-2085 (($ (-623 |#1|)) 68) (($) 67)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2599 (($ $) 62)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) 64)) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22)) (-4072 (($ $ $) 69)) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3445 (((-1089) $) 21)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3009 (((-623 (-2 (|:| -3859 |#1|) (|:| -3457 (-749)))) $) 61)) (-1287 (($ $ |#1|) 71) (($ $ $) 70)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-2233 (((-837) $) 18)) (-1299 (($ (-623 |#1|)) 66) (($) 65)) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20)) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-715 |#1|) (-138) (-1069)) (T -715)) -NIL -(-13 (-673 |t#1|) (-1067 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-673 |#1|) . T) ((-1067 |#1|) . T) ((-1069) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-4045 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3029 (($ $ $) 79)) (-1952 (((-112) $ $) 83)) (-3368 (((-112) $ (-749)) NIL)) (-2085 (($ (-623 |#1|)) 24) (($) 16)) (-3994 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-2599 (($ $) 71)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) 61 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4344))) (($ |#1| $ (-550)) 62) (($ (-1 (-112) |#1|) $ (-550)) 65)) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (($ |#1| $ (-550)) 67) (($ (-1 (-112) |#1|) $ (-550)) 68)) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 32 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) 82)) (-4101 (($) 14) (($ |#1|) 26) (($ (-623 |#1|)) 21)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) 38)) (-3922 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 75)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-4072 (($ $ $) 77)) (-1696 ((|#1| $) 55)) (-1715 (($ |#1| $) 56) (($ |#1| $ (-749)) 72)) (-3445 (((-1089) $) NIL)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3576 ((|#1| $) 54)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 50)) (-2819 (($) 13)) (-3009 (((-623 (-2 (|:| -3859 |#1|) (|:| -3457 (-749)))) $) 48)) (-1287 (($ $ |#1|) NIL) (($ $ $) 78)) (-3246 (($) 15) (($ (-623 |#1|)) 23)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) 60 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 66)) (-2451 (((-526) $) 36 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 20)) (-2233 (((-837) $) 44)) (-1299 (($ (-623 |#1|)) 25) (($) 17)) (-4017 (($ (-623 |#1|)) 22)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 81)) (-3307 (((-749) $) 59 (|has| $ (-6 -4344))))) -(((-716 |#1|) (-13 (-715 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -4101 ($)) (-15 -4101 ($ |#1|)) (-15 -4101 ($ (-623 |#1|))) (-15 -2876 ((-623 |#1|) $)) (-15 -1979 ($ |#1| $ (-550))) (-15 -1979 ($ (-1 (-112) |#1|) $ (-550))) (-15 -2505 ($ |#1| $ (-550))) (-15 -2505 ($ (-1 (-112) |#1|) $ (-550))))) (-1069)) (T -716)) -((-4101 (*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1069)))) (-4101 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1069)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-716 *3)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1069)))) (-1979 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1069)))) (-1979 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1069)) (-5 *1 (-716 *4)))) (-2505 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1069)))) (-2505 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1069)) (-5 *1 (-716 *4))))) -(-13 (-715 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -4101 ($)) (-15 -4101 ($ |#1|)) (-15 -4101 ($ (-623 |#1|))) (-15 -2876 ((-623 |#1|) $)) (-15 -1979 ($ |#1| $ (-550))) (-15 -1979 ($ (-1 (-112) |#1|) $ (-550))) (-15 -2505 ($ |#1| $ (-550))) (-15 -2505 ($ (-1 (-112) |#1|) $ (-550))))) -((-2677 (((-1233) (-1127)) 8))) -(((-717) (-10 -7 (-15 -2677 ((-1233) (-1127))))) (T -717)) -((-2677 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-717))))) -(-10 -7 (-15 -2677 ((-1233) (-1127)))) -((-2865 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 10))) -(((-718 |#1|) (-10 -7 (-15 -2865 ((-623 |#1|) (-623 |#1|) (-623 |#1|)))) (-825)) (T -718)) -((-2865 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) -(-10 -7 (-15 -2865 ((-623 |#1|) (-623 |#1|) (-623 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 |#2|) $) 134)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 127 (|has| |#1| (-542)))) (-3050 (($ $) 126 (|has| |#1| (-542)))) (-3953 (((-112) $) 124 (|has| |#1| (-542)))) (-4160 (($ $) 83 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 66 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-1745 (($ $) 65 (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) 82 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 67 (|has| |#1| (-38 (-400 (-550)))))) (-4183 (($ $) 81 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 68 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-1693 (($ $) 118)) (-1537 (((-3 $ "failed") $) 32)) (-2666 (((-926 |#1|) $ (-749)) 96) (((-926 |#1|) $ (-749) (-749)) 95)) (-3771 (((-112) $) 135)) (-4187 (($) 93 (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $ |#2|) 98) (((-749) $ |#2| (-749)) 97)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 64 (|has| |#1| (-38 (-400 (-550)))))) (-3438 (((-112) $) 116)) (-1488 (($ $ (-623 |#2|) (-623 (-522 |#2|))) 133) (($ $ |#2| (-522 |#2|)) 132) (($ |#1| (-522 |#2|)) 117) (($ $ |#2| (-749)) 100) (($ $ (-623 |#2|) (-623 (-749))) 99)) (-2392 (($ (-1 |#1| |#1|) $) 115)) (-3080 (($ $) 90 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 113)) (-1670 ((|#1| $) 112)) (-2369 (((-1127) $) 9)) (-2149 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) 10)) (-4268 (($ $ (-749)) 101)) (-3409 (((-3 $ "failed") $ $) 128 (|has| |#1| (-542)))) (-1644 (($ $) 91 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (($ $ |#2| $) 109) (($ $ (-623 |#2|) (-623 $)) 108) (($ $ (-623 (-287 $))) 107) (($ $ (-287 $)) 106) (($ $ $ $) 105) (($ $ (-623 $) (-623 $)) 104)) (-2798 (($ $ |#2|) 40) (($ $ (-623 |#2|)) 39) (($ $ |#2| (-749)) 38) (($ $ (-623 |#2|) (-623 (-749))) 37)) (-3661 (((-522 |#2|) $) 114)) (-4194 (($ $) 80 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 69 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 79 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 70 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 78 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 71 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 136)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-542))) (($ (-400 (-550))) 121 (|has| |#1| (-38 (-400 (-550)))))) (-1708 ((|#1| $ (-522 |#2|)) 119) (($ $ |#2| (-749)) 103) (($ $ (-623 |#2|) (-623 (-749))) 102)) (-1613 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-4233 (($ $) 89 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 77 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 125 (|has| |#1| (-542)))) (-4206 (($ $) 88 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 76 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 87 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 75 (|has| |#1| (-38 (-400 (-550)))))) (-3363 (($ $) 86 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 74 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 85 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 73 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 84 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 72 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ |#2|) 36) (($ $ (-623 |#2|)) 35) (($ $ |#2| (-749)) 34) (($ $ (-623 |#2|) (-623 (-749))) 33)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 63 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 123 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 122 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-719 |#1| |#2|) (-138) (-1021) (-825)) (T -719)) -((-1708 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1021)) (-4 *2 (-825)))) (-1708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) (-4 *5 (-825)))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-825)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1021)) (-4 *2 (-825)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) (-4 *5 (-825)))) (-2603 (*1 *2 *1 *3) (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1021)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2603 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1021)) (-4 *3 (-825)))) (-2666 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) (-4 *5 (-825)) (-5 *2 (-926 *4)))) (-2666 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) (-4 *5 (-825)) (-5 *2 (-926 *4)))) (-2149 (*1 *1 *1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-825)) (-4 *3 (-38 (-400 (-550))))))) -(-13 (-874 |t#2|) (-947 |t#1| (-522 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -1708 ($ $ |t#2| (-749))) (-15 -1708 ($ $ (-623 |t#2|) (-623 (-749)))) (-15 -4268 ($ $ (-749))) (-15 -1488 ($ $ |t#2| (-749))) (-15 -1488 ($ $ (-623 |t#2|) (-623 (-749)))) (-15 -2603 ((-749) $ |t#2|)) (-15 -2603 ((-749) $ |t#2| (-749))) (-15 -2666 ((-926 |t#1|) $ (-749))) (-15 -2666 ((-926 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $ |t#2|)) (-6 (-976)) (-6 (-1167))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-522 |#2|)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-283) |has| |#1| (-542)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-874 |#2|) . T) ((-947 |#1| #0# |#2|) . T) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-1027 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550))))) -((-1735 (((-411 (-1141 |#4|)) (-1141 |#4|)) 30) (((-411 |#4|) |#4|) 26))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 |#4|) |#4|)) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-13 (-300) (-145)) (-923 |#3| |#2| |#1|)) (T -720)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-923 *6 *5 *4))))) -(-10 -7 (-15 -1735 ((-411 |#4|) |#4|)) (-15 -1735 ((-411 (-1141 |#4|)) (-1141 |#4|)))) -((-2787 (((-411 |#4|) |#4| |#2|) 120)) (-1434 (((-411 |#4|) |#4|) NIL)) (-2207 (((-411 (-1141 |#4|)) (-1141 |#4|)) 111) (((-411 |#4|) |#4|) 41)) (-1907 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -1735 (-1141 |#4|)) (|:| -3068 (-550)))))) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|))) 69)) (-1373 (((-1141 |#3|) (-1141 |#3|) (-550)) 139)) (-4152 (((-623 (-749)) (-1141 |#4|) (-623 |#2|) (-749)) 61)) (-2910 (((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|)) 65)) (-3660 (((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|))) 26)) (-2331 (((-2 (|:| -2054 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-550)) 57)) (-4205 (((-550) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550))))) 136)) (-2340 ((|#4| (-550) (-411 |#4|)) 58)) (-3909 (((-112) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550))))) NIL))) -(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-411 |#4|) |#4|)) (-15 -2207 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -1434 ((-411 |#4|) |#4|)) (-15 -4205 ((-550) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))))) (-15 -2787 ((-411 |#4|) |#4| |#2|)) (-15 -2331 ((-2 (|:| -2054 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-550))) (-15 -1907 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -1735 (-1141 |#4|)) (|:| -3068 (-550)))))) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -3660 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -2340 (|#4| (-550) (-411 |#4|))) (-15 -3909 ((-112) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))))) (-15 -2910 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|))) (-15 -4152 ((-623 (-749)) (-1141 |#4|) (-623 |#2|) (-749))) (-15 -1373 ((-1141 |#3|) (-1141 |#3|) (-550)))) (-771) (-825) (-300) (-923 |#3| |#1| |#2|)) (T -721)) -((-1373 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *6)) (-5 *3 (-550)) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-4 *7 (-825)) (-4 *9 (-923 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-623 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749)))) (-2910 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-623 *10)) (-5 *7 (-623 (-749))) (-5 *8 (-623 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-923 *11 *9 *10)) (-5 *2 (-623 (-1141 *5))) (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1141 *5)))) (-3909 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-2 (|:| -1735 (-1141 *6)) (|:| -3068 (-550))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-411 *2)) (-4 *2 (-923 *7 *5 *6)) (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300)))) (-3660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-923 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-623 *8)) (|:| |Lfact| (-623 (-2 (|:| -1735 (-1141 *8)) (|:| -3068 (-550))))) (|:| |ctpol| *8))) (-5 *1 (-721 *6 *7 *8 *9)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-923 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-623 (-2 (|:| -1735 (-1141 *9)) (|:| -3068 (-550))))))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)))) (-2331 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-550)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-923 *8 *6 *7)) (-5 *2 (-2 (|:| -2054 (-1141 *9)) (|:| |polval| (-1141 *8)))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8)))) (-2787 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-923 *6 *5 *4)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -1735 (-1141 *6)) (|:| -3068 (-550))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-923 *6 *4 *5)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-923 *6 *4 *5))))) -(-10 -7 (-15 -2207 ((-411 |#4|) |#4|)) (-15 -2207 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -1434 ((-411 |#4|) |#4|)) (-15 -4205 ((-550) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))))) (-15 -2787 ((-411 |#4|) |#4| |#2|)) (-15 -2331 ((-2 (|:| -2054 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-550))) (-15 -1907 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -1735 (-1141 |#4|)) (|:| -3068 (-550)))))) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -3660 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -2340 (|#4| (-550) (-411 |#4|))) (-15 -3909 ((-112) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))) (-623 (-2 (|:| -1735 (-1141 |#3|)) (|:| -3068 (-550)))))) (-15 -2910 ((-3 (-623 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|))) (-15 -4152 ((-623 (-749)) (-1141 |#4|) (-623 |#2|) (-749))) (-15 -1373 ((-1141 |#3|) (-1141 |#3|) (-550)))) -((-2210 (($ $ (-895)) 12))) -(((-722 |#1| |#2|) (-10 -8 (-15 -2210 (|#1| |#1| (-895)))) (-723 |#2|) (-170)) (T -722)) -NIL -(-10 -8 (-15 -2210 (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1339 (($ $ (-895)) 28)) (-2210 (($ $ (-895)) 33)) (-1692 (($ $ (-895)) 29)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1353 (($ $ $) 25)) (-2233 (((-837) $) 11)) (-4143 (($ $ $ $) 26)) (-1923 (($ $ $) 24)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-2992 (*1 *1) (-4 *1 (-705))) (-3891 (*1 *1) (-4 *1 (-705))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) (-3816 (*1 *1 *1) (|partial| -4 *1 (-705)))) +(-13 (-1083) (-10 -8 (-15 (-2992) ($) -4306) (-15 -3891 ($) -4306) (-15 -2497 ((-112) $)) (-15 ** ($ $ (-749))) (-15 -3816 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1083) . T) ((-1072) . T)) +((-2498 (((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3772 (((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2499 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3789 (((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3772 ((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2498 ((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2499 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3789 ((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -706)) +((-3789 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3420 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-706 *5 *2)) (-4 *5 (-356)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3420 (-398 *3)) (|:| |special| (-398 *3)))) (-5 *1 (-706 *5 *3)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3420 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3))))) +(-10 -7 (-15 -3772 ((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2498 ((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2499 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3789 ((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) +((-2500 ((|#7| (-620 |#5|) |#6|) NIL)) (-4313 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-620 |#5|) |#6|))) (-825) (-771) (-771) (-1023) (-1023) (-924 |#4| |#2| |#1|) (-924 |#5| |#3| |#1|)) (T -707)) +((-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *9)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-1023)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1023)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5))))) +(-10 -7 (-15 -4313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-620 |#5|) |#6|))) +((-4313 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-708 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4313 (|#7| (-1 |#2| |#1|) |#6|))) (-825) (-825) (-771) (-771) (-1023) (-924 |#5| |#3| |#1|) (-924 |#5| |#4| |#2|)) (T -708)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) (-4 *9 (-1023)) (-4 *2 (-924 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) (-4 *4 (-924 *9 *7 *5))))) +(-10 -7 (-15 -4313 (|#7| (-1 |#2| |#1|) |#6|))) +((-4087 (((-398 |#4|) |#4|) 41))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-300) (-924 (-920 |#3|) |#1| |#2|)) (T -709)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-924 (-920 *6) *4 *5))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-522 (-839 |#1|)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-522 (-839 |#1|)) (-522 (-839 |#1|))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ $) NIL (|has| |#2| (-543))) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536))))))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-710 |#1| |#2|) (-924 |#2| (-522 (-839 |#1|)) (-839 |#1|)) (-620 (-1147)) (-1023)) (T -710)) +NIL +(-924 |#2| (-522 (-839 |#1|)) (-839 |#1|)) +((-2501 (((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|) 14)) (-3314 ((|#4| |#4| |#2|) 33)) (-2504 ((|#4| (-400 (-920 |#3|)) |#2|) 64)) (-2503 ((|#4| (-1141 (-920 |#3|)) |#2|) 77)) (-2502 ((|#4| (-1141 |#4|) |#2|) 51)) (-3313 ((|#4| |#4| |#2|) 54)) (-4087 (((-398 |#4|) |#4|) 40))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2501 ((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|)) (-15 -3313 (|#4| |#4| |#2|)) (-15 -2502 (|#4| (-1141 |#4|) |#2|)) (-15 -3314 (|#4| |#4| |#2|)) (-15 -2503 (|#4| (-1141 (-920 |#3|)) |#2|)) (-15 -2504 (|#4| (-400 (-920 |#3|)) |#2|)) (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))) (-543) (-924 (-400 (-920 |#3|)) |#1| |#2|)) (T -711)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-4 *6 (-543)) (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-920 *6))) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 (-920 *6))) (-4 *6 (-543)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))))) (-3314 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)))) (-3313 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)) (-5 *2 (-2 (|:| -2728 (-920 *6)) (|:| -2168 (-920 *6)))) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5))))) +(-10 -7 (-15 -2501 ((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|)) (-15 -3313 (|#4| |#4| |#2|)) (-15 -2502 (|#4| (-1141 |#4|) |#2|)) (-15 -3314 (|#4| |#4| |#2|)) (-15 -2503 (|#4| (-1141 (-920 |#3|)) |#2|)) (-15 -2504 (|#4| (-400 (-920 |#3|)) |#2|)) (-15 -4087 ((-398 |#4|) |#4|))) +((-4087 (((-398 |#4|) |#4|) 52))) +(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-825) (-13 (-300) (-145)) (-924 (-400 |#3|) |#1| |#2|)) (T -712)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-924 (-400 *6) *4 *5))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) +((-4313 (((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)) 18))) +(((-713 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) (-1023) (-1023) (-705)) (T -713)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7))))) +(-10 -7 (-15 -4313 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 28)) (-4128 (((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $) 29)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3502 ((|#2| $) NIL) ((|#1| $) NIL)) (-4314 (($ $) 79 (|has| |#2| (-825)))) (-3816 (((-3 $ "failed") $) 65)) (-3322 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 55)) (-3149 (((-620 $) $) 39)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| |#2|) 16)) (-4313 (($ (-1 |#1| |#1|) $) 54)) (-2121 (((-893) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3222 ((|#2| $) 78 (|has| |#2| (-825)))) (-3520 ((|#1| $) 77 (|has| |#2| (-825)))) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 76) (($ (-536)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|)))) 11)) (-4172 (((-620 |#1|) $) 41)) (-4035 ((|#1| $ |#2|) 88)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-2986 (($) 12 T CONST)) (-2992 (($) 33 T CONST)) (-3382 (((-112) $ $) 80)) (-4192 (($ $) 47) (($ $ $) NIL)) (-4194 (($ $ $) 26)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-714 |#1| |#2|) (-13 (-1023) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -3221 ($ |#1| |#2|)) (-15 -4035 (|#1| $ |#2|)) (-15 -4312 ($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))))) (-15 -4128 ((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -4292 ((-112) $)) (-15 -4172 ((-620 |#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3222 (|#2| $)) (-15 -3520 (|#1| $)) (-15 -4314 ($ $))) |%noBranch|))) (-1023) (-705)) (T -714)) +((-3221 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-705)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-4 *3 (-1023)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-620 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-3222 (*1 *2 *1) (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1023)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1023)) (-4 *3 (-705))))) +(-13 (-1023) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -3221 ($ |#1| |#2|)) (-15 -4035 (|#1| $ |#2|)) (-15 -4312 ($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))))) (-15 -4128 ((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -4292 ((-112) $)) (-15 -4172 ((-620 |#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3222 (|#2| $)) (-15 -3520 (|#1| $)) (-15 -4314 ($ $))) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3580 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3582 (($ $ $) 79)) (-3581 (((-112) $ $) 83)) (-1269 (((-112) $ (-749)) NIL)) (-3585 (($ (-620 |#1|)) 24) (($) 16)) (-1626 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2450 (($ $) 71)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 61 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4348))) (($ |#1| $ (-536)) 62) (($ (-1 (-112) |#1|) $ (-536)) 65)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $ (-536)) 67) (($ (-1 (-112) |#1|) $ (-536)) 68)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 32 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 82)) (-2507 (($) 14) (($ |#1|) 26) (($ (-620 |#1|)) 21)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) 38)) (-3591 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 75)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 77)) (-1331 ((|#1| $) 55)) (-3965 (($ |#1| $) 56) (($ |#1| $ (-749)) 72)) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1332 ((|#1| $) 54)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 50)) (-3923 (($) 13)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 48)) (-3583 (($ $ |#1|) NIL) (($ $ $) 78)) (-1518 (($) 15) (($ (-620 |#1|)) 23)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) 60 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 66)) (-4325 (((-525) $) 36 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 20)) (-4312 (((-838) $) 44)) (-3586 (($ (-620 |#1|)) 25) (($) 17)) (-1333 (($ (-620 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 81)) (-4311 (((-749) $) 59 (|has| $ (-6 -4348))))) +(((-715 |#1|) (-13 (-716 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -2507 ($)) (-15 -2507 ($ |#1|)) (-15 -2507 ($ (-620 |#1|))) (-15 -2506 ((-620 |#1|) $)) (-15 -3760 ($ |#1| $ (-536))) (-15 -3760 ($ (-1 (-112) |#1|) $ (-536))) (-15 -3759 ($ |#1| $ (-536))) (-15 -3759 ($ (-1 (-112) |#1|) $ (-536))))) (-1072)) (T -715)) +((-2507 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-2507 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-2507 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-715 *3)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1072)))) (-3760 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-3760 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) (-5 *1 (-715 *4)))) (-3759 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-3759 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) (-5 *1 (-715 *4))))) +(-13 (-716 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -2507 ($)) (-15 -2507 ($ |#1|)) (-15 -2507 ($ (-620 |#1|))) (-15 -2506 ((-620 |#1|) $)) (-15 -3760 ($ |#1| $ (-536))) (-15 -3760 ($ (-1 (-112) |#1|) $ (-536))) (-15 -3759 ($ |#1| $ (-536))) (-15 -3759 ($ (-1 (-112) |#1|) $ (-536))))) +((-2893 (((-112) $ $) 19)) (-3580 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) 8)) (-3585 (($ (-620 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 64)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 69)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-3583 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18)) (-3586 (($ (-620 |#1|)) 66) (($) 65)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-716 |#1|) (-138) (-1072)) (T -716)) +NIL +(-13 (-673 |t#1|) (-1070 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-673 |#1|) . T) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) +((-2508 (((-1235) (-1129)) 8))) +(((-717) (-10 -7 (-15 -2508 ((-1235) (-1129))))) (T -717)) +((-2508 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-717))))) +(-10 -7 (-15 -2508 ((-1235) (-1129)))) +((-2509 (((-620 |#1|) (-620 |#1|) (-620 |#1|)) 10))) +(((-718 |#1|) (-10 -7 (-15 -2509 ((-620 |#1|) (-620 |#1|) (-620 |#1|)))) (-825)) (T -718)) +((-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) +(-10 -7 (-15 -2509 ((-620 |#1|) (-620 |#1|) (-620 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#2|) $) 134)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 127 (|has| |#1| (-543)))) (-2173 (($ $) 126 (|has| |#1| (-543)))) (-2171 (((-112) $) 124 (|has| |#1| (-543)))) (-3841 (($ $) 83 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 66 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 65 (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 82 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 67 (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) 81 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 68 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-4314 (($ $) 118)) (-3816 (((-3 $ "failed") $) 32)) (-4169 (((-920 |#1|) $ (-749)) 96) (((-920 |#1|) $ (-749) (-749)) 95)) (-3220 (((-112) $) 135)) (-3985 (($) 93 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ |#2|) 98) (((-749) $ |#2| (-749)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 64 (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) 116)) (-3221 (($ $ (-620 |#2|) (-620 (-522 |#2|))) 133) (($ $ |#2| (-522 |#2|)) 132) (($ |#1| (-522 |#2|)) 117) (($ $ |#2| (-749)) 100) (($ $ (-620 |#2|) (-620 (-749))) 99)) (-4313 (($ (-1 |#1| |#1|) $) 115)) (-4297 (($ $) 90 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 113)) (-3520 ((|#1| $) 112)) (-3588 (((-1129) $) 9)) (-4167 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) 10)) (-4123 (($ $ (-749)) 101)) (-3815 (((-3 $ "failed") $ $) 128 (|has| |#1| (-543)))) (-4298 (($ $) 91 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ |#2| $) 109) (($ $ (-620 |#2|) (-620 $)) 108) (($ $ (-620 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-620 $) (-620 $)) 104)) (-4165 (($ $ |#2|) 40) (($ $ (-620 |#2|)) 39) (($ $ |#2| (-749)) 38) (($ $ (-620 |#2|) (-620 (-749))) 37)) (-4302 (((-522 |#2|) $) 114)) (-3844 (($ $) 80 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 69 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 79 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 70 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 78 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 71 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 136)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-543))) (($ (-400 (-536))) 121 (|has| |#1| (-38 (-400 (-536)))))) (-4035 ((|#1| $ (-522 |#2|)) 119) (($ $ |#2| (-749)) 103) (($ $ (-620 |#2|) (-620 (-749))) 102)) (-3030 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3847 (($ $) 89 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 77 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 125 (|has| |#1| (-543)))) (-3845 (($ $) 88 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 76 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 87 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 75 (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) 86 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 74 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 85 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 73 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 84 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 72 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#2|) 36) (($ $ (-620 |#2|)) 35) (($ $ |#2| (-749)) 34) (($ $ (-620 |#2|) (-620 (-749))) 33)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 63 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 123 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 122 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-719 |#1| |#2|) (-138) (-1023) (-825)) (T -719)) +((-4035 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4126 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) (-5 *2 (-920 *4)))) (-4169 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) (-5 *2 (-920 *4)))) (-4167 (*1 *1 *1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)) (-4 *3 (-38 (-400 (-536))))))) +(-13 (-874 |t#2|) (-947 |t#1| (-522 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -4035 ($ $ |t#2| (-749))) (-15 -4035 ($ $ (-620 |t#2|) (-620 (-749)))) (-15 -4123 ($ $ (-749))) (-15 -3221 ($ $ |t#2| (-749))) (-15 -3221 ($ $ (-620 |t#2|) (-620 (-749)))) (-15 -4126 ((-749) $ |t#2|)) (-15 -4126 ((-749) $ |t#2| (-749))) (-15 -4169 ((-920 |t#1|) $ (-749))) (-15 -4169 ((-920 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |t#2|)) (-6 (-976)) (-6 (-1169))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-522 |#2|)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-283) |has| |#1| (-543)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-543) |has| |#1| (-543)) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 |#2|) . T) ((-947 |#1| #1# |#2|) . T) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536))))) +((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|)) 30) (((-398 |#4|) |#4|) 26))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-13 (-300) (-145)) (-924 |#3| |#2| |#1|)) (T -720)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) +(-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) +((-2512 (((-398 |#4|) |#4| |#2|) 120)) (-2510 (((-398 |#4|) |#4|) NIL)) (-4324 (((-398 (-1141 |#4|)) (-1141 |#4|)) 111) (((-398 |#4|) |#4|) 41)) (-2514 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|))) 69)) (-2518 (((-1141 |#3|) (-1141 |#3|) (-536)) 139)) (-2517 (((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749)) 61)) (-3408 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|)) 65)) (-2515 (((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|))) 26)) (-2513 (((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536)) 57)) (-2511 (((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) 136)) (-2516 ((|#4| (-536) (-398 |#4|)) 58)) (-3711 (((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) NIL))) +(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4324 ((-398 |#4|) |#4|)) (-15 -4324 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -2510 ((-398 |#4|) |#4|)) (-15 -2511 ((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -2512 ((-398 |#4|) |#4| |#2|)) (-15 -2513 ((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536))) (-15 -2514 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2515 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2516 (|#4| (-536) (-398 |#4|))) (-15 -3711 ((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -3408 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|))) (-15 -2517 ((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749))) (-15 -2518 ((-1141 |#3|) (-1141 |#3|) (-536)))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -721)) +((-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *6)) (-5 *3 (-536)) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-4 *7 (-825)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-620 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-620 *10)) (-5 *7 (-620 (-749))) (-5 *8 (-620 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-924 *11 *9 *10)) (-5 *2 (-620 (-1141 *5))) (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1141 *5)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-398 *2)) (-4 *2 (-924 *7 *5 *6)) (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-620 *8)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 *8)) (|:| -2488 (-536))))) (|:| |ctpol| *8))) (-5 *1 (-721 *6 *7 *8 *9)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-924 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 *9)) (|:| -2488 (-536))))))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-536)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-5 *2 (-2 (|:| -2115 (-1141 *9)) (|:| |polval| (-1141 *8)))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8)))) (-2512 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5)))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5))))) +(-10 -7 (-15 -4324 ((-398 |#4|) |#4|)) (-15 -4324 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -2510 ((-398 |#4|) |#4|)) (-15 -2511 ((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -2512 ((-398 |#4|) |#4| |#2|)) (-15 -2513 ((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536))) (-15 -2514 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2515 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2516 (|#4| (-536) (-398 |#4|))) (-15 -3711 ((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -3408 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|))) (-15 -2517 ((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749))) (-15 -2518 ((-1141 |#3|) (-1141 |#3|) (-536)))) +((-2519 (($ $ (-893)) 12))) +(((-722 |#1| |#2|) (-10 -8 (-15 -2519 (|#1| |#1| (-893)))) (-723 |#2|) (-170)) (T -722)) +NIL +(-10 -8 (-15 -2519 (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2494 (($ $ (-893)) 28)) (-2519 (($ $ (-893)) 33)) (-2493 (($ $ (-893)) 29)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-723 |#1|) (-138) (-170)) (T -723)) -((-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) -(-13 (-740) (-696 |t#1|) (-10 -8 (-15 -2210 ($ $ (-895))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-740) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-3800 (((-1009) (-667 (-219)) (-550) (-112) (-550)) 25)) (-1310 (((-1009) (-667 (-219)) (-550) (-112) (-550)) 24))) -(((-724) (-10 -7 (-15 -1310 ((-1009) (-667 (-219)) (-550) (-112) (-550))) (-15 -3800 ((-1009) (-667 (-219)) (-550) (-112) (-550))))) (T -724)) -((-3800 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724)))) (-1310 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724))))) -(-10 -7 (-15 -1310 ((-1009) (-667 (-219)) (-550) (-112) (-550))) (-15 -3800 ((-1009) (-667 (-219)) (-550) (-112) (-550)))) -((-2375 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-2921 (((-1009) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-3116 (((-1009) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) 32))) -(((-725) (-10 -7 (-15 -3116 ((-1009) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -2921 ((-1009) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2375 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -725)) -((-2375 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-2921 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-3116 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *2 (-1009)) (-5 *1 (-725))))) -(-10 -7 (-15 -3116 ((-1009) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -2921 ((-1009) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2375 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))))) -((-2225 (((-1009) (-550) (-550) (-667 (-219)) (-550)) 34)) (-3979 (((-1009) (-550) (-550) (-667 (-219)) (-550)) 33)) (-1849 (((-1009) (-550) (-667 (-219)) (-550)) 32)) (-3185 (((-1009) (-550) (-667 (-219)) (-550)) 31)) (-1371 (((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 30)) (-1604 (((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-3247 (((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-3606 (((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550)) 27)) (-3809 (((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 24)) (-2228 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550)) 23)) (-3707 (((-1009) (-550) (-667 (-219)) (-550)) 22)) (-3954 (((-1009) (-550) (-667 (-219)) (-550)) 21))) -(((-726) (-10 -7 (-15 -3954 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -3707 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -2228 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3809 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3606 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3247 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1604 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1371 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3185 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -1849 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -3979 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -2225 ((-1009) (-550) (-550) (-667 (-219)) (-550))))) (T -726)) -((-2225 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3979 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-1849 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3185 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-1371 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-1604 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3247 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3606 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3809 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2228 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3707 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-3954 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) -(-10 -7 (-15 -3954 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -3707 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -2228 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3809 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3606 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3247 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1604 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1371 ((-1009) (-550) (-550) (-1127) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3185 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -1849 ((-1009) (-550) (-667 (-219)) (-550))) (-15 -3979 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -2225 ((-1009) (-550) (-550) (-667 (-219)) (-550)))) -((-2812 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 52)) (-2125 (((-1009) (-667 (-219)) (-667 (-219)) (-550) (-550)) 51)) (-3772 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 50)) (-4203 (((-1009) (-219) (-219) (-550) (-550) (-550) (-550)) 46)) (-1548 (((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 45)) (-3256 (((-1009) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 44)) (-3692 (((-1009) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 43)) (-3326 (((-1009) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 42)) (-1707 (((-1009) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) 38)) (-3251 (((-1009) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) 37)) (-3462 (((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) 33)) (-1782 (((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) 32))) -(((-727) (-10 -7 (-15 -1782 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3462 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3251 ((-1009) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -1707 ((-1009) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3326 ((-1009) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3692 ((-1009) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3256 ((-1009) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -1548 ((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4203 ((-1009) (-219) (-219) (-550) (-550) (-550) (-550))) (-15 -3772 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -2125 ((-1009) (-667 (-219)) (-667 (-219)) (-550) (-550))) (-15 -2812 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))) (T -727)) -((-2812 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2125 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3772 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-4203 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-1548 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3256 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3692 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3326 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-1707 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3251 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-3462 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-1782 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *2 (-1009)) (-5 *1 (-727))))) -(-10 -7 (-15 -1782 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3462 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3251 ((-1009) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -1707 ((-1009) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327))))) (-15 -3326 ((-1009) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3692 ((-1009) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3256 ((-1009) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -1548 ((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4203 ((-1009) (-219) (-219) (-550) (-550) (-550) (-550))) (-15 -3772 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -2125 ((-1009) (-667 (-219)) (-667 (-219)) (-550) (-550))) (-15 -2812 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))))) -((-2446 (((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3383 (((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381)) 69) (((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) 68)) (-3884 (((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) 57)) (-2503 (((-1009) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 50)) (-3056 (((-1009) (-219) (-550) (-550) (-1127) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 49)) (-3510 (((-1009) (-219) (-550) (-550) (-219) (-1127) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3926 (((-1009) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 42)) (-2497 (((-1009) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-728) (-10 -7 (-15 -2497 ((-1009) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3926 ((-1009) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -3510 ((-1009) (-219) (-550) (-550) (-219) (-1127) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3056 ((-1009) (-219) (-550) (-550) (-1127) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2503 ((-1009) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -3884 ((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -3383 ((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -3383 ((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -2446 ((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -728)) -((-2446 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3383 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3383 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3884 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2503 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3056 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-550)) (-5 *5 (-1127)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3510 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-550)) (-5 *5 (-1127)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-3926 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2497 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(-10 -7 (-15 -2497 ((-1009) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3926 ((-1009) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -3510 ((-1009) (-219) (-550) (-550) (-219) (-1127) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3056 ((-1009) (-219) (-550) (-550) (-1127) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2503 ((-1009) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -3884 ((-1009) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -3383 ((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -3383 ((-1009) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -2446 ((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-2323 (((-1009) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550)) 45)) (-2568 (((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1127) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) 41)) (-4011 (((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 23))) -(((-729) (-10 -7 (-15 -4011 ((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2568 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1127) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -2323 ((-1009) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550))))) (T -729)) -((-2323 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729)))) (-2568 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-1127)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1009)) (-5 *1 (-729)))) (-4011 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) -(-10 -7 (-15 -4011 ((-1009) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2568 ((-1009) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1127) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -2323 ((-1009) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550)))) -((-2606 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550)) 35)) (-3863 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550)) 34)) (-1912 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550)) 33)) (-2316 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-3856 (((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-4192 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550)) 27)) (-2610 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550)) 24)) (-3170 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550)) 23)) (-3558 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550)) 22)) (-3860 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 21))) -(((-730) (-10 -7 (-15 -3860 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -3558 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3170 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -2610 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -4192 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550))) (-15 -3856 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2316 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1912 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550))) (-15 -3863 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550))) (-15 -2606 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550))))) (T -730)) -((-2606 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-3863 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-1912 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2316 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-3856 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-4192 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2610 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-3170 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-3558 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-3860 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) -(-10 -7 (-15 -3860 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -3558 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3170 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -2610 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -4192 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550))) (-15 -3856 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2316 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1912 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550))) (-15 -3863 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550))) (-15 -2606 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550)))) -((-2270 (((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 45)) (-1358 (((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550)) 44)) (-1871 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 43)) (-2371 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 42)) (-2916 (((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550)) 41)) (-3329 (((-1009) (-1127) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550)) 40)) (-1925 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550)) 39)) (-2186 (((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550))) 38)) (-2884 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550)) 35)) (-2159 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550)) 34)) (-3826 (((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550)) 33)) (-3033 (((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 32)) (-3468 (((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550)) 31)) (-1930 (((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550)) 30)) (-2615 (((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550)) 29)) (-2866 (((-1009) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550)) 28)) (-1289 (((-1009) (-550) (-667 (-219)) (-219) (-550)) 24)) (-1525 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 21))) -(((-731) (-10 -7 (-15 -1525 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1289 ((-1009) (-550) (-667 (-219)) (-219) (-550))) (-15 -2866 ((-1009) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550))) (-15 -2615 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -1930 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550))) (-15 -3468 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550))) (-15 -3033 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3826 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550))) (-15 -2159 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550))) (-15 -2884 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2186 ((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)))) (-15 -1925 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550))) (-15 -3329 ((-1009) (-1127) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -2916 ((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2371 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1871 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -1358 ((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2270 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))))) (T -731)) -((-2270 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1358 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2371 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2916 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-3329 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1925 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2186 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2884 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2159 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-3826 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-3033 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-3468 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1930 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2615 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2866 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1289 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-1525 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) -(-10 -7 (-15 -1525 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1289 ((-1009) (-550) (-667 (-219)) (-219) (-550))) (-15 -2866 ((-1009) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550))) (-15 -2615 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -1930 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550))) (-15 -3468 ((-1009) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550))) (-15 -3033 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3826 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550))) (-15 -2159 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550))) (-15 -2884 ((-1009) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2186 ((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)))) (-15 -1925 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550))) (-15 -3329 ((-1009) (-1127) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -2916 ((-1009) (-1127) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2371 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1871 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -1358 ((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2270 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)))) -((-4158 (((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550)) 63)) (-1411 (((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 62)) (-3128 (((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-3421 (((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550)) 51)) (-1836 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2133 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) 46)) (-3600 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-3853 (((-1009) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-732) (-10 -7 (-15 -3853 ((-1009) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3600 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2133 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1836 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -3421 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550))) (-15 -3128 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -1411 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4158 ((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550))))) (T -732)) -((-4158 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-1411 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-3128 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-550))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-3421 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-1836 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2133 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-3600 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-3853 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) -(-10 -7 (-15 -3853 ((-1009) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3600 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2133 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1836 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -3421 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550))) (-15 -3128 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -1411 ((-1009) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4158 ((-1009) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550)))) -((-4078 (((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)) 47)) (-1418 (((-1009) (-1127) (-1127) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550)) 46)) (-3079 (((-1009) (-550) (-550) (-550) (-667 (-167 (-219))) (-550)) 45)) (-3295 (((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 40)) (-1605 (((-1009) (-1127) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550)) 39)) (-2682 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-550)) 36)) (-3052 (((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550)) 35)) (-1980 (((-1009) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550)) 34)) (-2280 (((-1009) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550)) 33)) (-3816 (((-1009) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550)) 32))) -(((-733) (-10 -7 (-15 -3816 ((-1009) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550))) (-15 -2280 ((-1009) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550))) (-15 -1980 ((-1009) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550))) (-15 -3052 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550))) (-15 -2682 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -1605 ((-1009) (-1127) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550))) (-15 -3295 ((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3079 ((-1009) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -1418 ((-1009) (-1127) (-1127) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -4078 ((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550))))) (T -733)) -((-4078 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-1418 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-3079 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-3295 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-1605 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2682 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-3052 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-1980 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-623 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *7 (-219)) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2280 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-667 (-550))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) (-5 *3 (-550)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-3816 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-623 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-733))))) -(-10 -7 (-15 -3816 ((-1009) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550))) (-15 -2280 ((-1009) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550))) (-15 -1980 ((-1009) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550))) (-15 -3052 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550))) (-15 -2682 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -1605 ((-1009) (-1127) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550))) (-15 -3295 ((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3079 ((-1009) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -1418 ((-1009) (-1127) (-1127) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -4078 ((-1009) (-1127) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)))) -((-1335 (((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)) 65)) (-1847 (((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550)) 60)) (-2337 (((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2842 (((-1009) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550)) 37)) (-3377 (((-1009) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550)) 33)) (-3866 (((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550)) 30)) (-2235 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-2824 (((-1009) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-2209 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 27)) (-2791 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550)) 26)) (-1347 (((-1009) (-550) (-550) (-667 (-219)) (-550)) 25)) (-1775 (((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 24)) (-2201 (((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 23)) (-3275 (((-1009) (-667 (-219)) (-550) (-550) (-550) (-550)) 22)) (-3683 (((-1009) (-550) (-550) (-667 (-219)) (-550)) 21))) -(((-734) (-10 -7 (-15 -3683 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -3275 ((-1009) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2201 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1775 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1347 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -2791 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -2209 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2824 ((-1009) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2235 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3866 ((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -3377 ((-1009) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550))) (-15 -2842 ((-1009) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2337 ((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2337 ((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -1847 ((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1335 ((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550))))) (T -734)) -((-1335 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-1847 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2337 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2337 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2842 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-3377 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-3866 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2235 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2824 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2209 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2791 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-1347 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-1775 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2201 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-3275 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-3683 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) -(-10 -7 (-15 -3683 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -3275 ((-1009) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2201 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1775 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1347 ((-1009) (-550) (-550) (-667 (-219)) (-550))) (-15 -2791 ((-1009) (-550) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -2209 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2824 ((-1009) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2235 ((-1009) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3866 ((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -3377 ((-1009) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550))) (-15 -2842 ((-1009) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2337 ((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2337 ((-1009) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -1847 ((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1335 ((-1009) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)))) -((-2944 (((-1009) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-4320 (((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550)) 57)) (-1803 (((-1009) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2236 (((-1009) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550)) 37)) (-2800 (((-1009) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550)) 36)) (-4312 (((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 33)) (-1674 (((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219))) 32)) (-1948 (((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550)) 28)) (-3449 (((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550)) 27)) (-3801 (((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550)) 26)) (-2697 (((-1009) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550)) 22))) -(((-735) (-10 -7 (-15 -2697 ((-1009) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3801 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -3449 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1948 ((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550))) (-15 -1674 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)))) (-15 -4312 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2800 ((-1009) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2236 ((-1009) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -1803 ((-1009) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -4320 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2944 ((-1009) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -735)) -((-2944 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-4320 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-1803 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2236 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2800 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-4312 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-1674 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-1948 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-3449 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-3801 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2697 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1009)) (-5 *1 (-735))))) -(-10 -7 (-15 -2697 ((-1009) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3801 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -3449 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1948 ((-1009) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550))) (-15 -1674 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)))) (-15 -4312 ((-1009) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2800 ((-1009) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2236 ((-1009) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -1803 ((-1009) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -4320 ((-1009) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2944 ((-1009) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))))) -((-3817 (((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219))) 29)) (-4056 (((-1009) (-1127) (-550) (-550) (-667 (-219))) 28)) (-2449 (((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219))) 27)) (-1458 (((-1009) (-550) (-550) (-550) (-667 (-219))) 21))) -(((-736) (-10 -7 (-15 -1458 ((-1009) (-550) (-550) (-550) (-667 (-219)))) (-15 -2449 ((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219)))) (-15 -4056 ((-1009) (-1127) (-550) (-550) (-667 (-219)))) (-15 -3817 ((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)))))) (T -736)) -((-3817 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-4056 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2449 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-736)))) (-1458 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736))))) -(-10 -7 (-15 -1458 ((-1009) (-550) (-550) (-550) (-667 (-219)))) (-15 -2449 ((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219)))) (-15 -4056 ((-1009) (-1127) (-550) (-550) (-667 (-219)))) (-15 -3817 ((-1009) (-1127) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219))))) -((-3477 (((-1009) (-219) (-219) (-219) (-219) (-550)) 62)) (-1426 (((-1009) (-219) (-219) (-219) (-550)) 61)) (-3657 (((-1009) (-219) (-219) (-219) (-550)) 60)) (-1667 (((-1009) (-219) (-219) (-550)) 59)) (-3476 (((-1009) (-219) (-550)) 58)) (-1817 (((-1009) (-219) (-550)) 57)) (-2047 (((-1009) (-219) (-550)) 56)) (-3520 (((-1009) (-219) (-550)) 55)) (-1783 (((-1009) (-219) (-550)) 54)) (-3106 (((-1009) (-219) (-550)) 53)) (-2317 (((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550)) 52)) (-2781 (((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550)) 51)) (-4114 (((-1009) (-219) (-550)) 50)) (-2412 (((-1009) (-219) (-550)) 49)) (-2753 (((-1009) (-219) (-550)) 48)) (-3412 (((-1009) (-219) (-550)) 47)) (-1479 (((-1009) (-550) (-219) (-167 (-219)) (-550) (-1127) (-550)) 46)) (-2792 (((-1009) (-1127) (-167 (-219)) (-1127) (-550)) 45)) (-4102 (((-1009) (-1127) (-167 (-219)) (-1127) (-550)) 44)) (-2483 (((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550)) 43)) (-1513 (((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550)) 42)) (-1961 (((-1009) (-219) (-550)) 39)) (-3280 (((-1009) (-219) (-550)) 38)) (-3396 (((-1009) (-219) (-550)) 37)) (-1618 (((-1009) (-219) (-550)) 36)) (-3172 (((-1009) (-219) (-550)) 35)) (-3400 (((-1009) (-219) (-550)) 34)) (-1585 (((-1009) (-219) (-550)) 33)) (-2915 (((-1009) (-219) (-550)) 32)) (-4061 (((-1009) (-219) (-550)) 31)) (-2247 (((-1009) (-219) (-550)) 30)) (-4174 (((-1009) (-219) (-219) (-219) (-550)) 29)) (-1467 (((-1009) (-219) (-550)) 28)) (-3002 (((-1009) (-219) (-550)) 27)) (-1311 (((-1009) (-219) (-550)) 26)) (-1641 (((-1009) (-219) (-550)) 25)) (-1994 (((-1009) (-219) (-550)) 24)) (-2148 (((-1009) (-167 (-219)) (-550)) 21))) -(((-737) (-10 -7 (-15 -2148 ((-1009) (-167 (-219)) (-550))) (-15 -1994 ((-1009) (-219) (-550))) (-15 -1641 ((-1009) (-219) (-550))) (-15 -1311 ((-1009) (-219) (-550))) (-15 -3002 ((-1009) (-219) (-550))) (-15 -1467 ((-1009) (-219) (-550))) (-15 -4174 ((-1009) (-219) (-219) (-219) (-550))) (-15 -2247 ((-1009) (-219) (-550))) (-15 -4061 ((-1009) (-219) (-550))) (-15 -2915 ((-1009) (-219) (-550))) (-15 -1585 ((-1009) (-219) (-550))) (-15 -3400 ((-1009) (-219) (-550))) (-15 -3172 ((-1009) (-219) (-550))) (-15 -1618 ((-1009) (-219) (-550))) (-15 -3396 ((-1009) (-219) (-550))) (-15 -3280 ((-1009) (-219) (-550))) (-15 -1961 ((-1009) (-219) (-550))) (-15 -1513 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -2483 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -4102 ((-1009) (-1127) (-167 (-219)) (-1127) (-550))) (-15 -2792 ((-1009) (-1127) (-167 (-219)) (-1127) (-550))) (-15 -1479 ((-1009) (-550) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -3412 ((-1009) (-219) (-550))) (-15 -2753 ((-1009) (-219) (-550))) (-15 -2412 ((-1009) (-219) (-550))) (-15 -4114 ((-1009) (-219) (-550))) (-15 -2781 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -2317 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -3106 ((-1009) (-219) (-550))) (-15 -1783 ((-1009) (-219) (-550))) (-15 -3520 ((-1009) (-219) (-550))) (-15 -2047 ((-1009) (-219) (-550))) (-15 -1817 ((-1009) (-219) (-550))) (-15 -3476 ((-1009) (-219) (-550))) (-15 -1667 ((-1009) (-219) (-219) (-550))) (-15 -3657 ((-1009) (-219) (-219) (-219) (-550))) (-15 -1426 ((-1009) (-219) (-219) (-219) (-550))) (-15 -3477 ((-1009) (-219) (-219) (-219) (-219) (-550))))) (T -737)) -((-3477 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1426 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3657 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1667 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2317 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2781 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1479 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-167 (-219))) (-5 *6 (-1127)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2792 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1127)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-4102 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1127)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2483 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1513 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2247 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-4174 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(-10 -7 (-15 -2148 ((-1009) (-167 (-219)) (-550))) (-15 -1994 ((-1009) (-219) (-550))) (-15 -1641 ((-1009) (-219) (-550))) (-15 -1311 ((-1009) (-219) (-550))) (-15 -3002 ((-1009) (-219) (-550))) (-15 -1467 ((-1009) (-219) (-550))) (-15 -4174 ((-1009) (-219) (-219) (-219) (-550))) (-15 -2247 ((-1009) (-219) (-550))) (-15 -4061 ((-1009) (-219) (-550))) (-15 -2915 ((-1009) (-219) (-550))) (-15 -1585 ((-1009) (-219) (-550))) (-15 -3400 ((-1009) (-219) (-550))) (-15 -3172 ((-1009) (-219) (-550))) (-15 -1618 ((-1009) (-219) (-550))) (-15 -3396 ((-1009) (-219) (-550))) (-15 -3280 ((-1009) (-219) (-550))) (-15 -1961 ((-1009) (-219) (-550))) (-15 -1513 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -2483 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -4102 ((-1009) (-1127) (-167 (-219)) (-1127) (-550))) (-15 -2792 ((-1009) (-1127) (-167 (-219)) (-1127) (-550))) (-15 -1479 ((-1009) (-550) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -3412 ((-1009) (-219) (-550))) (-15 -2753 ((-1009) (-219) (-550))) (-15 -2412 ((-1009) (-219) (-550))) (-15 -4114 ((-1009) (-219) (-550))) (-15 -2781 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -2317 ((-1009) (-219) (-167 (-219)) (-550) (-1127) (-550))) (-15 -3106 ((-1009) (-219) (-550))) (-15 -1783 ((-1009) (-219) (-550))) (-15 -3520 ((-1009) (-219) (-550))) (-15 -2047 ((-1009) (-219) (-550))) (-15 -1817 ((-1009) (-219) (-550))) (-15 -3476 ((-1009) (-219) (-550))) (-15 -1667 ((-1009) (-219) (-219) (-550))) (-15 -3657 ((-1009) (-219) (-219) (-219) (-550))) (-15 -1426 ((-1009) (-219) (-219) (-219) (-550))) (-15 -3477 ((-1009) (-219) (-219) (-219) (-219) (-550)))) -((-2013 (((-1233)) 18)) (-1784 (((-1127)) 22)) (-2053 (((-1127)) 21)) (-2060 (((-1073) (-1145) (-667 (-550))) 37) (((-1073) (-1145) (-667 (-219))) 32)) (-2867 (((-112)) 16)) (-3547 (((-1127) (-1127)) 25))) -(((-738) (-10 -7 (-15 -2053 ((-1127))) (-15 -1784 ((-1127))) (-15 -3547 ((-1127) (-1127))) (-15 -2060 ((-1073) (-1145) (-667 (-219)))) (-15 -2060 ((-1073) (-1145) (-667 (-550)))) (-15 -2867 ((-112))) (-15 -2013 ((-1233))))) (T -738)) -((-2013 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-738)))) (-2867 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738)))) (-2060 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-667 (-550))) (-5 *2 (-1073)) (-5 *1 (-738)))) (-2060 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-667 (-219))) (-5 *2 (-1073)) (-5 *1 (-738)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738)))) (-1784 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738)))) (-2053 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738))))) -(-10 -7 (-15 -2053 ((-1127))) (-15 -1784 ((-1127))) (-15 -3547 ((-1127) (-1127))) (-15 -2060 ((-1073) (-1145) (-667 (-219)))) (-15 -2060 ((-1073) (-1145) (-667 (-550)))) (-15 -2867 ((-112))) (-15 -2013 ((-1233)))) -((-1353 (($ $ $) 10)) (-4143 (($ $ $ $) 9)) (-1923 (($ $ $) 12))) -(((-739 |#1|) (-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -4143 (|#1| |#1| |#1| |#1|))) (-740)) (T -739)) -NIL -(-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -4143 (|#1| |#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1339 (($ $ (-895)) 28)) (-1692 (($ $ (-895)) 29)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1353 (($ $ $) 25)) (-2233 (((-837) $) 11)) (-4143 (($ $ $ $) 26)) (-1923 (($ $ $) 24)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27))) +((-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) +(-13 (-740) (-696 |t#1|) (-10 -8 (-15 -2519 ($ $ (-893))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-2521 (((-1009) (-667 (-219)) (-536) (-112) (-536)) 25)) (-2520 (((-1009) (-667 (-219)) (-536) (-112) (-536)) 24))) +(((-724) (-10 -7 (-15 -2520 ((-1009) (-667 (-219)) (-536) (-112) (-536))) (-15 -2521 ((-1009) (-667 (-219)) (-536) (-112) (-536))))) (T -724)) +((-2521 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724)))) (-2520 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724))))) +(-10 -7 (-15 -2520 ((-1009) (-667 (-219)) (-536) (-112) (-536))) (-15 -2521 ((-1009) (-667 (-219)) (-536) (-112) (-536)))) +((-2524 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-2523 (((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-2522 (((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 32))) +(((-725) (-10 -7 (-15 -2522 ((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2523 ((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2524 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -725)) +((-2524 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-2523 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-2522 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-725))))) +(-10 -7 (-15 -2522 ((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2523 ((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2524 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))))) +((-2536 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 34)) (-2535 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 33)) (-2534 (((-1009) (-536) (-667 (-219)) (-536)) 32)) (-2533 (((-1009) (-536) (-667 (-219)) (-536)) 31)) (-2532 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 30)) (-2531 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2530 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2529 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536)) 27)) (-2528 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 24)) (-2527 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 23)) (-2526 (((-1009) (-536) (-667 (-219)) (-536)) 22)) (-2525 (((-1009) (-536) (-667 (-219)) (-536)) 21))) +(((-726) (-10 -7 (-15 -2525 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2526 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2527 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2528 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2529 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2530 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2531 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2532 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2533 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2534 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2535 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2536 ((-1009) (-536) (-536) (-667 (-219)) (-536))))) (T -726)) +((-2536 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2535 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2534 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2533 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2532 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2531 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2530 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2529 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2528 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2527 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2526 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2525 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(-10 -7 (-15 -2525 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2526 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2527 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2528 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2529 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2530 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2531 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2532 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2533 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2534 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2535 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2536 ((-1009) (-536) (-536) (-667 (-219)) (-536)))) +((-2548 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2547 (((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536)) 51)) (-2546 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2545 (((-1009) (-219) (-219) (-536) (-536) (-536) (-536)) 46)) (-2544 (((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 45)) (-2543 (((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 44)) (-2542 (((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 43)) (-2541 (((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 42)) (-2540 (((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 38)) (-2539 (((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 37)) (-2538 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 33)) (-2537 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 32))) +(((-727) (-10 -7 (-15 -2537 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2538 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2539 ((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2540 ((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2541 ((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2542 ((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2543 ((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2544 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2545 ((-1009) (-219) (-219) (-536) (-536) (-536) (-536))) (-15 -2546 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2547 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536))) (-15 -2548 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))))) (T -727)) +((-2548 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2547 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2546 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2545 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2544 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2543 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2541 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2540 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2539 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2538 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2537 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727))))) +(-10 -7 (-15 -2537 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2538 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2539 ((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2540 ((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2541 ((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2542 ((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2543 ((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2544 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2545 ((-1009) (-219) (-219) (-536) (-536) (-536) (-536))) (-15 -2546 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2547 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536))) (-15 -2548 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))))) +((-2556 (((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2555 (((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381)) 69) (((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2554 (((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) 57)) (-2553 (((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 50)) (-2552 (((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2551 (((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2550 (((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 42)) (-2549 (((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-728) (-10 -7 (-15 -2549 ((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2550 ((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2551 ((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2552 ((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2553 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2554 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2556 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -728)) +((-2556 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2555 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2555 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2554 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2553 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2552 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2550 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2549 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) +(-10 -7 (-15 -2549 ((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2550 ((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2551 ((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2552 ((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2553 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2554 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2556 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2559 (((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536)) 45)) (-2558 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) 41)) (-2557 (((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 23))) +(((-729) (-10 -7 (-15 -2557 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2558 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2559 ((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536))))) (T -729)) +((-2559 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729)))) (-2558 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1009)) (-5 *1 (-729)))) (-2557 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) +(-10 -7 (-15 -2557 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2558 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2559 ((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536)))) +((-2569 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536)) 35)) (-2568 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536)) 34)) (-2567 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536)) 33)) (-2566 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2565 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2564 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536)) 27)) (-2563 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536)) 24)) (-2562 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536)) 23)) (-2561 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 22)) (-2560 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 21))) +(((-730) (-10 -7 (-15 -2560 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2561 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2562 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2563 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2564 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2565 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2566 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2567 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2568 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536))) (-15 -2569 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536))))) (T -730)) +((-2569 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2568 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2567 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2566 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2565 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2564 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2563 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2562 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2561 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(-10 -7 (-15 -2560 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2561 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2562 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2563 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2564 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2565 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2566 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2567 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2568 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536))) (-15 -2569 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536)))) +((-2587 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 45)) (-2586 (((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536)) 44)) (-2585 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 43)) (-2584 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 42)) (-2583 (((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536)) 41)) (-2582 (((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536)) 40)) (-2581 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536)) 39)) (-2580 (((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536))) 38)) (-2579 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 35)) (-2578 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536)) 34)) (-2577 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536)) 33)) (-2576 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 32)) (-2575 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536)) 31)) (-2574 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536)) 30)) (-2573 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536)) 29)) (-2572 (((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536)) 28)) (-2571 (((-1009) (-536) (-667 (-219)) (-219) (-536)) 24)) (-2570 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 21))) +(((-731) (-10 -7 (-15 -2570 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2571 ((-1009) (-536) (-667 (-219)) (-219) (-536))) (-15 -2572 ((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536))) (-15 -2573 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2574 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536))) (-15 -2575 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536))) (-15 -2576 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2577 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536))) (-15 -2578 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536))) (-15 -2579 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2580 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)))) (-15 -2581 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536))) (-15 -2582 ((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2583 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2584 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2585 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2586 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2587 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))))) (T -731)) +((-2587 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2586 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2584 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2583 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2582 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2581 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2580 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2579 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2578 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2577 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2576 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2575 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2574 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2573 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2572 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2571 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2570 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(-10 -7 (-15 -2570 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2571 ((-1009) (-536) (-667 (-219)) (-219) (-536))) (-15 -2572 ((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536))) (-15 -2573 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2574 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536))) (-15 -2575 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536))) (-15 -2576 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2577 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536))) (-15 -2578 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536))) (-15 -2579 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2580 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)))) (-15 -2581 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536))) (-15 -2582 ((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2583 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2584 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2585 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2586 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2587 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)))) +((-2595 (((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536)) 63)) (-2594 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2593 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-2592 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536)) 51)) (-2591 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2590 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2589 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2588 (((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-732) (-10 -7 (-15 -2588 ((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2589 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2590 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2591 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2592 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536))) (-15 -2593 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2594 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2595 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536))))) (T -732)) +((-2595 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2594 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2593 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2592 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2591 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2589 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2588 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) +(-10 -7 (-15 -2588 ((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2589 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2590 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2591 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2592 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536))) (-15 -2593 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2594 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2595 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536)))) +((-2605 (((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)) 47)) (-2604 (((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536)) 46)) (-2603 (((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536)) 45)) (-2602 (((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 40)) (-2601 (((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536)) 39)) (-2600 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-536)) 36)) (-2599 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536)) 35)) (-2598 (((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536)) 34)) (-2597 (((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536)) 33)) (-2596 (((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536)) 32))) +(((-733) (-10 -7 (-15 -2596 ((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536))) (-15 -2597 ((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536))) (-15 -2598 ((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536))) (-15 -2599 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536))) (-15 -2600 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2601 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536))) (-15 -2602 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2603 ((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2604 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2605 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536))))) (T -733)) +((-2605 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2604 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2603 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2602 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2601 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2600 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2599 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2598 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-620 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *7 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2597 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-667 (-536))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) (-5 *3 (-536)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2596 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-620 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-536))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-733))))) +(-10 -7 (-15 -2596 ((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536))) (-15 -2597 ((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536))) (-15 -2598 ((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536))) (-15 -2599 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536))) (-15 -2600 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2601 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536))) (-15 -2602 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2603 ((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2604 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2605 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)))) +((-2620 (((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)) 65)) (-2619 (((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536)) 60)) (-2618 (((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2617 (((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536)) 37)) (-2616 (((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536)) 33)) (-2615 (((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536)) 30)) (-2614 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2613 (((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2612 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 27)) (-2611 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536)) 26)) (-2610 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 25)) (-2609 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 24)) (-2608 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 23)) (-2607 (((-1009) (-667 (-219)) (-536) (-536) (-536) (-536)) 22)) (-2606 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 21))) +(((-734) (-10 -7 (-15 -2606 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2607 ((-1009) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2608 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2609 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2610 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2611 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2612 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2613 ((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2614 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2615 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2616 ((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536))) (-15 -2617 ((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2619 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2620 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536))))) (T -734)) +((-2620 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2619 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2617 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2616 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2615 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2614 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2613 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2612 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2611 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2610 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2609 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2608 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2607 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2606 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(-10 -7 (-15 -2606 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2607 ((-1009) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2608 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2609 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2610 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2611 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2612 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2613 ((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2614 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2615 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2616 ((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536))) (-15 -2617 ((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2619 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2620 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)))) +((-2631 (((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-2630 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536)) 57)) (-2629 (((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2628 (((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536)) 37)) (-2627 (((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536)) 36)) (-2626 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 33)) (-2625 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219))) 32)) (-2624 (((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536)) 28)) (-2623 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536)) 27)) (-2622 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536)) 26)) (-2621 (((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536)) 22))) +(((-735) (-10 -7 (-15 -2621 ((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2622 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2623 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2624 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536))) (-15 -2625 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)))) (-15 -2626 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2627 ((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2628 ((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2629 ((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2630 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2631 ((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -735)) +((-2631 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2630 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2629 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2628 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2627 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2626 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2625 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2624 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2623 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2622 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2621 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-735))))) +(-10 -7 (-15 -2621 ((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2622 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2623 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2624 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536))) (-15 -2625 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)))) (-15 -2626 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2627 ((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2628 ((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2629 ((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2630 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2631 ((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))))) +((-2635 (((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219))) 29)) (-2634 (((-1009) (-1129) (-536) (-536) (-667 (-219))) 28)) (-2633 (((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219))) 27)) (-2632 (((-1009) (-536) (-536) (-536) (-667 (-219))) 21))) +(((-736) (-10 -7 (-15 -2632 ((-1009) (-536) (-536) (-536) (-667 (-219)))) (-15 -2633 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219)))) (-15 -2634 ((-1009) (-1129) (-536) (-536) (-667 (-219)))) (-15 -2635 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)))))) (T -736)) +((-2635 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2633 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2632 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736))))) +(-10 -7 (-15 -2632 ((-1009) (-536) (-536) (-536) (-667 (-219)))) (-15 -2633 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219)))) (-15 -2634 ((-1009) (-1129) (-536) (-536) (-667 (-219)))) (-15 -2635 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219))))) +((-2673 (((-1009) (-219) (-219) (-219) (-219) (-536)) 62)) (-2672 (((-1009) (-219) (-219) (-219) (-536)) 61)) (-2671 (((-1009) (-219) (-219) (-219) (-536)) 60)) (-2670 (((-1009) (-219) (-219) (-536)) 59)) (-2669 (((-1009) (-219) (-536)) 58)) (-2668 (((-1009) (-219) (-536)) 57)) (-2667 (((-1009) (-219) (-536)) 56)) (-2666 (((-1009) (-219) (-536)) 55)) (-2665 (((-1009) (-219) (-536)) 54)) (-2664 (((-1009) (-219) (-536)) 53)) (-2663 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 52)) (-2662 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 51)) (-2661 (((-1009) (-219) (-536)) 50)) (-2660 (((-1009) (-219) (-536)) 49)) (-2659 (((-1009) (-219) (-536)) 48)) (-2658 (((-1009) (-219) (-536)) 47)) (-2657 (((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536)) 46)) (-2656 (((-1009) (-1129) (-166 (-219)) (-1129) (-536)) 45)) (-2655 (((-1009) (-1129) (-166 (-219)) (-1129) (-536)) 44)) (-2654 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 43)) (-2653 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 42)) (-2652 (((-1009) (-219) (-536)) 39)) (-2651 (((-1009) (-219) (-536)) 38)) (-2650 (((-1009) (-219) (-536)) 37)) (-2649 (((-1009) (-219) (-536)) 36)) (-2648 (((-1009) (-219) (-536)) 35)) (-2647 (((-1009) (-219) (-536)) 34)) (-2646 (((-1009) (-219) (-536)) 33)) (-2645 (((-1009) (-219) (-536)) 32)) (-2644 (((-1009) (-219) (-536)) 31)) (-2643 (((-1009) (-219) (-536)) 30)) (-2642 (((-1009) (-219) (-219) (-219) (-536)) 29)) (-2641 (((-1009) (-219) (-536)) 28)) (-2640 (((-1009) (-219) (-536)) 27)) (-2639 (((-1009) (-219) (-536)) 26)) (-2638 (((-1009) (-219) (-536)) 25)) (-2637 (((-1009) (-219) (-536)) 24)) (-2636 (((-1009) (-166 (-219)) (-536)) 21))) +(((-737) (-10 -7 (-15 -2636 ((-1009) (-166 (-219)) (-536))) (-15 -2637 ((-1009) (-219) (-536))) (-15 -2638 ((-1009) (-219) (-536))) (-15 -2639 ((-1009) (-219) (-536))) (-15 -2640 ((-1009) (-219) (-536))) (-15 -2641 ((-1009) (-219) (-536))) (-15 -2642 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2643 ((-1009) (-219) (-536))) (-15 -2644 ((-1009) (-219) (-536))) (-15 -2645 ((-1009) (-219) (-536))) (-15 -2646 ((-1009) (-219) (-536))) (-15 -2647 ((-1009) (-219) (-536))) (-15 -2648 ((-1009) (-219) (-536))) (-15 -2649 ((-1009) (-219) (-536))) (-15 -2650 ((-1009) (-219) (-536))) (-15 -2651 ((-1009) (-219) (-536))) (-15 -2652 ((-1009) (-219) (-536))) (-15 -2653 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2654 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2655 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2656 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2657 ((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2658 ((-1009) (-219) (-536))) (-15 -2659 ((-1009) (-219) (-536))) (-15 -2660 ((-1009) (-219) (-536))) (-15 -2661 ((-1009) (-219) (-536))) (-15 -2662 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2663 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2664 ((-1009) (-219) (-536))) (-15 -2665 ((-1009) (-219) (-536))) (-15 -2666 ((-1009) (-219) (-536))) (-15 -2667 ((-1009) (-219) (-536))) (-15 -2668 ((-1009) (-219) (-536))) (-15 -2669 ((-1009) (-219) (-536))) (-15 -2670 ((-1009) (-219) (-219) (-536))) (-15 -2671 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2672 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2673 ((-1009) (-219) (-219) (-219) (-219) (-536))))) (T -737)) +((-2673 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2672 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2671 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2670 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2663 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2662 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2657 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-536)) (-5 *5 (-166 (-219))) (-5 *6 (-1129)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2656 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2655 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2654 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2653 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2642 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(-10 -7 (-15 -2636 ((-1009) (-166 (-219)) (-536))) (-15 -2637 ((-1009) (-219) (-536))) (-15 -2638 ((-1009) (-219) (-536))) (-15 -2639 ((-1009) (-219) (-536))) (-15 -2640 ((-1009) (-219) (-536))) (-15 -2641 ((-1009) (-219) (-536))) (-15 -2642 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2643 ((-1009) (-219) (-536))) (-15 -2644 ((-1009) (-219) (-536))) (-15 -2645 ((-1009) (-219) (-536))) (-15 -2646 ((-1009) (-219) (-536))) (-15 -2647 ((-1009) (-219) (-536))) (-15 -2648 ((-1009) (-219) (-536))) (-15 -2649 ((-1009) (-219) (-536))) (-15 -2650 ((-1009) (-219) (-536))) (-15 -2651 ((-1009) (-219) (-536))) (-15 -2652 ((-1009) (-219) (-536))) (-15 -2653 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2654 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2655 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2656 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2657 ((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2658 ((-1009) (-219) (-536))) (-15 -2659 ((-1009) (-219) (-536))) (-15 -2660 ((-1009) (-219) (-536))) (-15 -2661 ((-1009) (-219) (-536))) (-15 -2662 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2663 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2664 ((-1009) (-219) (-536))) (-15 -2665 ((-1009) (-219) (-536))) (-15 -2666 ((-1009) (-219) (-536))) (-15 -2667 ((-1009) (-219) (-536))) (-15 -2668 ((-1009) (-219) (-536))) (-15 -2669 ((-1009) (-219) (-536))) (-15 -2670 ((-1009) (-219) (-219) (-536))) (-15 -2671 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2672 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2673 ((-1009) (-219) (-219) (-219) (-219) (-536)))) +((-2679 (((-1235)) 18)) (-2675 (((-1129)) 22)) (-2674 (((-1129)) 21)) (-2677 (((-1074) (-1147) (-667 (-536))) 37) (((-1074) (-1147) (-667 (-219))) 32)) (-2678 (((-112)) 16)) (-2676 (((-1129) (-1129)) 25))) +(((-738) (-10 -7 (-15 -2674 ((-1129))) (-15 -2675 ((-1129))) (-15 -2676 ((-1129) (-1129))) (-15 -2677 ((-1074) (-1147) (-667 (-219)))) (-15 -2677 ((-1074) (-1147) (-667 (-536)))) (-15 -2678 ((-112))) (-15 -2679 ((-1235))))) (T -738)) +((-2679 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-738)))) (-2678 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-536))) (-5 *2 (-1074)) (-5 *1 (-738)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-219))) (-5 *2 (-1074)) (-5 *1 (-738)))) (-2676 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738)))) (-2675 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738)))) (-2674 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) +(-10 -7 (-15 -2674 ((-1129))) (-15 -2675 ((-1129))) (-15 -2676 ((-1129) (-1129))) (-15 -2677 ((-1074) (-1147) (-667 (-219)))) (-15 -2677 ((-1074) (-1147) (-667 (-536)))) (-15 -2678 ((-112))) (-15 -2679 ((-1235)))) +((-2681 (($ $ $) 10)) (-2682 (($ $ $ $) 9)) (-2680 (($ $ $) 12))) +(((-739 |#1|) (-10 -8 (-15 -2680 (|#1| |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1| |#1|))) (-740)) (T -739)) +NIL +(-10 -8 (-15 -2680 (|#1| |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2494 (($ $ (-893)) 28)) (-2493 (($ $ (-893)) 29)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27))) (((-740) (-138)) (T -740)) -((-4143 (*1 *1 *1 *1 *1) (-4 *1 (-740))) (-1353 (*1 *1 *1 *1) (-4 *1 (-740))) (-1923 (*1 *1 *1 *1) (-4 *1 (-740)))) -(-13 (-21) (-699) (-10 -8 (-15 -4143 ($ $ $ $)) (-15 -1353 ($ $ $)) (-15 -1923 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-699) . T) ((-1069) . T)) -((-2233 (((-837) $) NIL) (($ (-550)) 10))) -(((-741 |#1|) (-10 -8 (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-742)) (T -741)) -NIL -(-10 -8 (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2988 (((-3 $ "failed") $) 40)) (-1339 (($ $ (-895)) 28) (($ $ (-749)) 35)) (-1537 (((-3 $ "failed") $) 38)) (-2419 (((-112) $) 34)) (-3274 (((-3 $ "failed") $) 39)) (-1692 (($ $ (-895)) 29) (($ $ (-749)) 36)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1353 (($ $ $) 25)) (-2233 (((-837) $) 11) (($ (-550)) 31)) (-3091 (((-749)) 32)) (-4143 (($ $ $ $) 26)) (-1923 (($ $ $) 24)) (-2688 (($) 18 T CONST)) (-2700 (($) 33 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 30) (($ $ (-749)) 37)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27))) +((-2682 (*1 *1 *1 *1 *1) (-4 *1 (-740))) (-2681 (*1 *1 *1 *1) (-4 *1 (-740))) (-2680 (*1 *1 *1 *1) (-4 *1 (-740)))) +(-13 (-21) (-699) (-10 -8 (-15 -2682 ($ $ $ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-699) . T) ((-1072) . T)) +((-4312 (((-838) $) NIL) (($ (-536)) 10))) +(((-741 |#1|) (-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-742)) (T -741)) +NIL +(-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2491 (((-3 $ #1="failed") $) 40)) (-2494 (($ $ (-893)) 28) (($ $ (-749)) 35)) (-3816 (((-3 $ #1#) $) 38)) (-2497 (((-112) $) 34)) (-2492 (((-3 $ #1#) $) 39)) (-2493 (($ $ (-893)) 29) (($ $ (-749)) 36)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11) (($ (-536)) 31)) (-3456 (((-749)) 32)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-2992 (($) 33 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30) (($ $ (-749)) 37)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27))) (((-742) (-138)) (T -742)) -((-3091 (*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-742))))) -(-13 (-740) (-701) (-10 -8 (-15 -3091 ((-749))) (-15 -2233 ($ (-550))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-699) . T) ((-701) . T) ((-740) . T) ((-1069) . T)) -((-2255 (((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|) 33)) (-3804 (((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|) 23)) (-3359 (((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1145)) 20) (((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550))))) 19))) -(((-743 |#1|) (-10 -7 (-15 -3359 ((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))))) (-15 -3359 ((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1145))) (-15 -3804 ((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|)) (-15 -2255 ((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|))) (-13 (-356) (-823))) (T -743)) -((-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 *4))))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *4 (-1145)) (-5 *2 (-926 (-167 (-400 (-550))))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-356) (-823))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-926 (-167 (-400 (-550))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -3359 ((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))))) (-15 -3359 ((-926 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1145))) (-15 -3804 ((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|)) (-15 -2255 ((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|))) -((-3470 (((-172 (-550)) |#1|) 25))) -(((-744 |#1|) (-10 -7 (-15 -3470 ((-172 (-550)) |#1|))) (-397)) (T -744)) -((-3470 (*1 *2 *3) (-12 (-5 *2 (-172 (-550))) (-5 *1 (-744 *3)) (-4 *3 (-397))))) -(-10 -7 (-15 -3470 ((-172 (-550)) |#1|))) -((-1587 ((|#1| |#1| |#1|) 24)) (-4184 ((|#1| |#1| |#1|) 23)) (-1276 ((|#1| |#1| |#1|) 32)) (-3728 ((|#1| |#1| |#1|) 28)) (-2104 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3285 (((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|) 22))) -(((-745 |#1| |#2|) (-10 -7 (-15 -3285 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 -2104 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -1276 (|#1| |#1| |#1|))) (-687 |#2|) (-356)) (T -745)) -((-1276 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-3728 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2104 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-1587 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-4184 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-3285 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4))))) -(-10 -7 (-15 -3285 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 -2104 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -1276 (|#1| |#1| |#1|))) -((-2443 (((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)) 59)) (-2892 (((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550))))) 57)) (-3563 (((-550)) 71))) -(((-746 |#1| |#2|) (-10 -7 (-15 -3563 ((-550))) (-15 -2892 ((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))))) (-15 -2443 ((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)))) (-1204 (-550)) (-402 (-550) |#1|)) (T -746)) -((-2443 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1204 *3)) (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-746 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2892 (*1 *2) (-12 (-4 *3 (-1204 (-550))) (-5 *2 (-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550))))) (-5 *1 (-746 *3 *4)) (-4 *4 (-402 (-550) *3)))) (-3563 (*1 *2) (-12 (-4 *3 (-1204 *2)) (-5 *2 (-550)) (-5 *1 (-746 *3 *4)) (-4 *4 (-402 *2 *3))))) -(-10 -7 (-15 -3563 ((-550))) (-15 -2892 ((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))))) (-15 -2443 ((-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)))) -((-2221 (((-112) $ $) NIL)) (-2202 (((-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20) (($ (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-2264 (((-112) $ $) NIL))) -(((-747) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -747)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-747)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-3 (|:| |nia| (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $)))) -((-1386 (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|))) 18) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145))) 17)) (-4229 (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|))) 20) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145))) 19))) -(((-748 |#1|) (-10 -7 (-15 -1386 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -1386 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|))))) (-542)) (T -748)) -((-4229 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-748 *4)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-748 *5)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-748 *4)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-748 *5))))) -(-10 -7 (-15 -1386 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -1386 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-926 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-4250 (($ $ $) 6)) (-1993 (((-3 $ "failed") $ $) 9)) (-1538 (($ $ (-550)) 7)) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-2419 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3260 (($ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2233 (((-837) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ $ $) NIL))) -(((-749) (-13 (-771) (-705) (-10 -8 (-15 -3429 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3260 ($ $ $)) (-15 -1505 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -3409 ((-3 $ "failed") $ $)) (-15 -1538 ($ $ (-550))) (-15 -1864 ($ $)) (-6 (-4346 "*"))))) (T -749)) -((-3429 (*1 *1 *1 *1) (-5 *1 (-749))) (-3455 (*1 *1 *1 *1) (-5 *1 (-749))) (-3260 (*1 *1 *1 *1) (-5 *1 (-749))) (-1505 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3123 (-749)) (|:| -2545 (-749)))) (-5 *1 (-749)))) (-3409 (*1 *1 *1 *1) (|partial| -5 *1 (-749))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-749)))) (-1864 (*1 *1 *1) (-5 *1 (-749)))) -(-13 (-771) (-705) (-10 -8 (-15 -3429 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3260 ($ $ $)) (-15 -1505 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -3409 ((-3 $ "failed") $ $)) (-15 -1538 ($ $ (-550))) (-15 -1864 ($ $)) (-6 (-4346 "*")))) -((-4229 (((-3 |#2| "failed") |#2| |#2| (-114) (-1145)) 35))) -(((-750 |#1| |#2|) (-10 -7 (-15 -4229 ((-3 |#2| "failed") |#2| |#2| (-114) (-1145)))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1167) (-933))) (T -750)) -((-4229 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1145)) (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1167) (-933)))))) -(-10 -7 (-15 -4229 ((-3 |#2| "failed") |#2| |#2| (-114) (-1145)))) -((-2233 (((-752) |#1|) 8))) -(((-751 |#1|) (-10 -7 (-15 -2233 ((-752) |#1|))) (-1182)) (T -751)) -((-2233 (*1 *2 *3) (-12 (-5 *2 (-752)) (-5 *1 (-751 *3)) (-4 *3 (-1182))))) -(-10 -7 (-15 -2233 ((-752) |#1|))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 7)) (-2264 (((-112) $ $) 9))) -(((-752) (-1069)) (T -752)) -NIL -(-1069) -((-1571 ((|#2| |#4|) 35))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1571 (|#2| |#4|))) (-444) (-1204 |#1|) (-703 |#1| |#2|) (-1204 |#3|)) (T -753)) -((-1571 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1204 *5))))) -(-10 -7 (-15 -1571 (|#2| |#4|))) -((-1537 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2827 (((-1233) (-1127) (-1127) |#4| |#5|) 33)) (-1848 ((|#4| |#4| |#5|) 73)) (-3478 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|) 77)) (-3054 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|) 16))) -(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1537 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1848 (|#4| |#4| |#5|)) (-15 -3478 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2827 ((-1233) (-1127) (-1127) |#4| |#5|)) (-15 -3054 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -754)) -((-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2827 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1127)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *4 (-1035 *6 *7 *8)) (-5 *2 (-1233)) (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1041 *6 *7 *8 *4)))) (-3478 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1035 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1041 *4 *5 *6 *2)))) (-1537 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(-10 -7 (-15 -1537 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1848 (|#4| |#4| |#5|)) (-15 -3478 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2827 ((-1233) (-1127) (-1127) |#4| |#5|)) (-15 -3054 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|))) -((-2288 (((-3 (-1141 (-1141 |#1|)) "failed") |#4|) 43)) (-1514 (((-623 |#4|) |#4|) 15)) (-3020 ((|#4| |#4|) 11))) -(((-755 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1514 ((-623 |#4|) |#4|)) (-15 -2288 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -3020 (|#4| |#4|))) (-342) (-322 |#1|) (-1204 |#2|) (-1204 |#3|) (-895)) (T -755)) -((-3020 (*1 *2 *2) (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1204 *4)) (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1204 *5)) (-14 *6 (-895)))) (-2288 (*1 *2 *3) (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1204 *5)) (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1204 *6)) (-14 *7 (-895)))) (-1514 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1204 *5)) (-5 *2 (-623 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1204 *6)) (-14 *7 (-895))))) -(-10 -7 (-15 -1514 ((-623 |#4|) |#4|)) (-15 -2288 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -3020 (|#4| |#4|))) -((-2485 (((-2 (|:| |deter| (-623 (-1141 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1141 |#5|) (-623 |#1|) (-623 |#5|)) 54)) (-4181 (((-623 (-749)) |#1|) 13))) -(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2485 ((-2 (|:| |deter| (-623 (-1141 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1141 |#5|) (-623 |#1|) (-623 |#5|))) (-15 -4181 ((-623 (-749)) |#1|))) (-1204 |#4|) (-771) (-825) (-300) (-923 |#4| |#2| |#3|)) (T -756)) -((-4181 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-623 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1204 *6)) (-4 *7 (-923 *6 *4 *5)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1204 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) (-4 *10 (-923 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-623 (-1141 *10))) (|:| |dterm| (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| *10))))) (|:| |nfacts| (-623 *6)) (|:| |nlead| (-623 *10)))) (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-623 *6)) (-5 *5 (-623 *10))))) -(-10 -7 (-15 -2485 ((-2 (|:| |deter| (-623 (-1141 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1141 |#5|) (-623 |#1|) (-623 |#5|))) (-15 -4181 ((-623 (-749)) |#1|))) -((-4178 (((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|) 31)) (-3991 (((-623 |#1|) (-667 (-400 (-550))) |#1|) 21)) (-3359 (((-926 (-400 (-550))) (-667 (-400 (-550))) (-1145)) 18) (((-926 (-400 (-550))) (-667 (-400 (-550)))) 17))) -(((-757 |#1|) (-10 -7 (-15 -3359 ((-926 (-400 (-550))) (-667 (-400 (-550))))) (-15 -3359 ((-926 (-400 (-550))) (-667 (-400 (-550))) (-1145))) (-15 -3991 ((-623 |#1|) (-667 (-400 (-550))) |#1|)) (-15 -4178 ((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|))) (-13 (-356) (-823))) (T -757)) -((-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 (-2 (|:| |outval| *4) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 *4)))))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-3991 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *4 (-1145)) (-5 *2 (-926 (-400 (-550)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-926 (-400 (-550)))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -3359 ((-926 (-400 (-550))) (-667 (-400 (-550))))) (-15 -3359 ((-926 (-400 (-550))) (-667 (-400 (-550))) (-1145))) (-15 -3991 ((-623 |#1|) (-667 (-400 (-550))) |#1|)) (-15 -4178 ((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 34)) (-1516 (((-623 |#2|) $) NIL)) (-1705 (((-1141 $) $ |#2|) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 |#2|)) NIL)) (-2470 (($ $) 28)) (-1403 (((-112) $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2129 (($ $ $) 93 (|has| |#1| (-542)))) (-3099 (((-623 $) $ $) 106 (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-926 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145))))) (((-3 $ "failed") (-926 (-550))) NIL (-1489 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145)))))) (((-3 $ "failed") (-926 |#1|)) NIL (-1489 (-12 (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-966 (-550))))))) (((-3 (-1094 |#1| |#2|) "failed") $) 18)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) ((|#2| $) NIL) (($ (-926 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145))))) (($ (-926 (-550))) NIL (-1489 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145)))))) (($ (-926 |#1|)) NIL (-1489 (-12 (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-966 (-550))))))) (((-1094 |#1| |#2|) $) NIL)) (-1792 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-542)))) (-1693 (($ $) NIL) (($ $ |#2|) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4240 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3736 (((-112) $) NIL)) (-2858 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 70)) (-1519 (($ $) 119 (|has| |#1| (-444)))) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3126 (($ $) NIL (|has| |#1| (-542)))) (-1780 (($ $) NIL (|has| |#1| (-542)))) (-2696 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3115 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3401 (($ $ |#1| (-522 |#2|) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| |#1| (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| |#1| (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-2831 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-1502 (($ $ $ $ $) 90 (|has| |#1| (-542)))) (-1765 ((|#2| $) 19)) (-1501 (($ (-1141 |#1|) |#2|) NIL) (($ (-1141 $) |#2|) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 36) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2164 (($ $ $) 60)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#2|) NIL)) (-3748 (((-112) $) NIL)) (-3346 (((-522 |#2|) $) NIL) (((-749) $ |#2|) NIL) (((-623 (-749)) $ (-623 |#2|)) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2109 (((-749) $) 20)) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-4059 (((-3 |#2| "failed") $) NIL)) (-3825 (($ $) NIL (|has| |#1| (-444)))) (-3416 (($ $) NIL (|has| |#1| (-444)))) (-3562 (((-623 $) $) NIL)) (-4196 (($ $) 37)) (-3146 (($ $) NIL (|has| |#1| (-444)))) (-3215 (((-623 $) $) 41)) (-1491 (($ $) 39)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3726 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3867 (-749))) $ $) 82)) (-1842 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $) 67) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $ |#2|) NIL)) (-1414 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $) NIL) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $ |#2|) NIL)) (-3742 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-4065 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2369 (((-1127) $) NIL)) (-1623 (($ $ $) 108 (|has| |#1| (-542)))) (-2253 (((-623 $) $) 30)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| |#2|) (|:| -3068 (-749))) "failed") $) NIL)) (-3705 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-2474 (($ $ $) NIL)) (-2463 (($ $) 21)) (-3098 (((-112) $ $) NIL)) (-1631 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-3959 (($ $ $) NIL)) (-3724 (($ $) 23)) (-3445 (((-1089) $) NIL)) (-1518 (((-2 (|:| -3260 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-542)))) (-3342 (((-2 (|:| -3260 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-542)))) (-1628 (((-112) $) 52)) (-1639 ((|#1| $) 55)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3107 (((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-542)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-1433 (($ $ |#1|) 112 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1323 (($ $ |#1|) 111 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-623 |#2|) (-623 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-623 |#2|) (-623 $)) NIL)) (-3563 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2798 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-3661 (((-522 |#2|) $) NIL) (((-749) $ |#2|) 43) (((-623 (-749)) $ (-623 |#2|)) NIL)) (-3939 (($ $) NIL)) (-3610 (($ $) 33)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526))))) (($ (-926 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145))))) (($ (-926 (-550))) NIL (-1489 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1145))) (-3548 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1145)))))) (($ (-926 |#1|)) NIL (|has| |#2| (-596 (-1145)))) (((-1127) $) NIL (-12 (|has| |#1| (-1012 (-550))) (|has| |#2| (-596 (-1145))))) (((-926 |#1|) $) NIL (|has| |#2| (-596 (-1145))))) (-1622 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-926 |#1|) $) NIL (|has| |#2| (-596 (-1145)))) (((-1094 |#1| |#2|) $) 15) (($ (-1094 |#1| |#2|)) 16) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) 44) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 13 T CONST)) (-3984 (((-3 (-112) "failed") $ $) NIL)) (-2700 (($) 35 T CONST)) (-2436 (($ $ $ $ (-749)) 88 (|has| |#1| (-542)))) (-4121 (($ $ $ (-749)) 87 (|has| |#1| (-542)))) (-1901 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 54)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) 64)) (-2358 (($ $ $) 74)) (** (($ $ (-895)) NIL) (($ $ (-749)) 61)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 59) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-758 |#1| |#2|) (-13 (-1035 |#1| (-522 |#2|) |#2|) (-595 (-1094 |#1| |#2|)) (-1012 (-1094 |#1| |#2|))) (-1021) (-825)) (T -758)) -NIL -(-13 (-1035 |#1| (-522 |#2|) |#2|) (-595 (-1094 |#1| |#2|)) (-1012 (-1094 |#1| |#2|))) -((-2392 (((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)) 13))) -(((-759 |#1| |#2|) (-10 -7 (-15 -2392 ((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)))) (-1021) (-1021)) (T -759)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-760 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-5 *2 (-760 *6)) (-5 *1 (-759 *5 *6))))) -(-10 -7 (-15 -2392 ((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 12)) (-1431 (((-1228 |#1|) $ (-749)) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-3297 (($ (-1141 |#1|)) NIL)) (-1705 (((-1141 $) $ (-1051)) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1051))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3838 (((-623 $) $ $) 39 (|has| |#1| (-542)))) (-2129 (($ $ $) 35 (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2887 (($ $ (-749)) NIL)) (-4069 (($ $ (-749)) NIL)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-1051) "failed") $) NIL) (((-3 (-1141 |#1|) "failed") $) 10)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-1051) $) NIL) (((-1141 |#1|) $) NIL)) (-1792 (($ $ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-2193 (($ $ $) NIL)) (-1509 (($ $ $) 71 (|has| |#1| (-542)))) (-2858 (((-2 (|:| -4304 |#1|) (|:| -3123 $) (|:| -2545 $)) $ $) 70 (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-749) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1051) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1051) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ $) NIL (|has| |#1| (-542)))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1120)))) (-1501 (($ (-1141 |#1|) (-1051)) NIL) (($ (-1141 $) (-1051)) NIL)) (-1937 (($ $ (-749)) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-2164 (($ $ $) 20)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1051)) NIL) (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-3346 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-749) (-749)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2838 (((-1141 |#1|) $) NIL)) (-4059 (((-3 (-1051) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3726 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3867 (-749))) $ $) 26)) (-1717 (($ $ $) 29)) (-1486 (($ $ $) 32)) (-1842 (((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $) 31)) (-2369 (((-1127) $) NIL)) (-1623 (($ $ $) 41 (|has| |#1| (-542)))) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1051)) (|:| -3068 (-749))) "failed") $) NIL)) (-2149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) NIL (|has| |#1| (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-1518 (((-2 (|:| -3260 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-542)))) (-3342 (((-2 (|:| -3260 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-542)))) (-1321 (((-2 (|:| -1792 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-542)))) (-2057 (((-2 (|:| -1792 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-542)))) (-1628 (((-112) $) 13)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2607 (($ $ (-749) |#1| $) 19)) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3107 (((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-542)))) (-2274 (((-2 (|:| -1792 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-542)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1051) |#1|) NIL) (($ $ (-623 (-1051)) (-623 |#1|)) NIL) (($ $ (-1051) $) NIL) (($ $ (-623 (-1051)) (-623 $)) NIL)) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-3522 (((-3 $ "failed") $ (-749)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-3563 (($ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2798 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3661 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1051) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-3674 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1051)) NIL) (((-1141 |#1|) $) 7) (($ (-1141 |#1|)) 8) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 21 T CONST)) (-2700 (($) 24 T CONST)) (-1901 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) 28) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-760 |#1|) (-13 (-1204 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -2607 ($ $ (-749) |#1| $)) (-15 -2164 ($ $ $)) (-15 -3726 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3867 (-749))) $ $)) (-15 -1717 ($ $ $)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -1486 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -3838 ((-623 $) $ $)) (-15 -1623 ($ $ $)) (-15 -3107 ((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3342 ((-2 (|:| -3260 $) (|:| |coef1| $)) $ $)) (-15 -1518 ((-2 (|:| -3260 $) (|:| |coef2| $)) $ $)) (-15 -2274 ((-2 (|:| -1792 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2057 ((-2 (|:| -1792 |#1|) (|:| |coef1| $)) $ $)) (-15 -1321 ((-2 (|:| -1792 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1021)) (T -760)) -((-2607 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-760 *3)) (-4 *3 (-1021)))) (-2164 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021)))) (-3726 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-760 *3)) (|:| |polden| *3) (|:| -3867 (-749)))) (-5 *1 (-760 *3)) (-4 *3 (-1021)))) (-1717 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021)))) (-1842 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4304 *3) (|:| |gap| (-749)) (|:| -3123 (-760 *3)) (|:| -2545 (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-1021)))) (-1486 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021)))) (-3838 (*1 *2 *1 *1) (-12 (-5 *2 (-623 (-760 *3))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-1623 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-542)) (-4 *2 (-1021)))) (-3107 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3260 (-760 *3)) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-3342 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3260 (-760 *3)) (|:| |coef1| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-1518 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3260 (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-2274 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-2057 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| |coef1| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) (-1321 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021))))) -(-13 (-1204 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -2607 ($ $ (-749) |#1| $)) (-15 -2164 ($ $ $)) (-15 -3726 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3867 (-749))) $ $)) (-15 -1717 ($ $ $)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -1486 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -3838 ((-623 $) $ $)) (-15 -1623 ($ $ $)) (-15 -3107 ((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3342 ((-2 (|:| -3260 $) (|:| |coef1| $)) $ $)) (-15 -1518 ((-2 (|:| -3260 $) (|:| |coef2| $)) $ $)) (-15 -2274 ((-2 (|:| -1792 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2057 ((-2 (|:| -1792 |#1|) (|:| |coef1| $)) $ $)) (-15 -1321 ((-2 (|:| -1792 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3461 ((|#1| (-749) |#1|) 32 (|has| |#1| (-38 (-400 (-550)))))) (-3855 ((|#1| (-749) |#1|) 22)) (-1344 ((|#1| (-749) |#1|) 34 (|has| |#1| (-38 (-400 (-550))))))) -(((-761 |#1|) (-10 -7 (-15 -3855 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1344 (|#1| (-749) |#1|)) (-15 -3461 (|#1| (-749) |#1|))) |%noBranch|)) (-170)) (T -761)) -((-3461 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-1344 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-3855 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3855 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1344 (|#1| (-749) |#1|)) (-15 -3461 (|#1| (-749) |#1|))) |%noBranch|)) -((-2221 (((-112) $ $) 7)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) 85)) (-3186 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) 101) (((-112) $) 97)) (-3624 ((|#4| |#4| $) 92)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 126)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 79)) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-3870 (((-3 $ "failed") $) 82)) (-2962 ((|#4| |#4| $) 89)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1621 ((|#4| |#4| $) 87)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) 105)) (-2515 (((-112) |#4| $) 136)) (-3350 (((-112) |#4| $) 133)) (-3201 (((-112) |#4| $) 137) (((-112) $) 134)) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) 104) (((-112) $) 103)) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 127)) (-2001 (((-3 |#4| "failed") $) 83)) (-3087 (((-623 $) |#4| $) 129)) (-1785 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4072 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3552 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3896 (((-623 |#4|) $) 107)) (-3705 (((-112) |#4| $) 99) (((-112) $) 95)) (-2474 ((|#4| |#4| $) 90)) (-3098 (((-112) $ $) 110)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) 100) (((-112) $) 96)) (-3959 ((|#4| |#4| $) 91)) (-3445 (((-1089) $) 10)) (-3858 (((-3 |#4| "failed") $) 84)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3747 (((-3 $ "failed") $ |#4|) 78)) (-4268 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3661 (((-749) $) 106)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3236 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-4265 (((-749) $) 76 (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3176 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) 81)) (-2993 (((-112) |#4| $) 135)) (-3636 (((-112) |#3| $) 80)) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-762 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -762)) -NIL -(-13 (-1041 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1041 |#1| |#2| |#3| |#4|) . T) ((-1069) . T) ((-1175 |#1| |#2| |#3| |#4|) . T) ((-1182) . T)) -((-2452 (((-3 (-372) "failed") (-309 |#1|) (-895)) 62 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-372) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-372) "failed") (-400 (-926 |#1|)) (-895)) 41 (|has| |#1| (-542))) (((-3 (-372) "failed") (-400 (-926 |#1|))) 40 (|has| |#1| (-542))) (((-3 (-372) "failed") (-926 |#1|) (-895)) 31 (|has| |#1| (-1021))) (((-3 (-372) "failed") (-926 |#1|)) 30 (|has| |#1| (-1021)))) (-2854 (((-372) (-309 |#1|) (-895)) 99 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-372) (-309 |#1|)) 94 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-372) (-400 (-926 |#1|)) (-895)) 91 (|has| |#1| (-542))) (((-372) (-400 (-926 |#1|))) 90 (|has| |#1| (-542))) (((-372) (-926 |#1|) (-895)) 86 (|has| |#1| (-1021))) (((-372) (-926 |#1|)) 85 (|has| |#1| (-1021))) (((-372) |#1| (-895)) 76) (((-372) |#1|) 22)) (-3137 (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-895)) 71 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|))) 70 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 |#1|) (-895)) 63 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|))) (-895)) 46 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|)))) 45 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-926 |#1|)) (-895)) 39 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-926 |#1|))) 38 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-926 |#1|) (-895)) 28 (|has| |#1| (-1021))) (((-3 (-167 (-372)) "failed") (-926 |#1|)) 26 (|has| |#1| (-1021))) (((-3 (-167 (-372)) "failed") (-926 (-167 |#1|)) (-895)) 18 (|has| |#1| (-170))) (((-3 (-167 (-372)) "failed") (-926 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-1672 (((-167 (-372)) (-309 (-167 |#1|)) (-895)) 102 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 (-167 |#1|))) 101 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 |#1|) (-895)) 100 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 |#1|)) 98 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-400 (-926 (-167 |#1|))) (-895)) 93 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-926 (-167 |#1|)))) 92 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-926 |#1|)) (-895)) 89 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-926 |#1|))) 88 (|has| |#1| (-542))) (((-167 (-372)) (-926 |#1|) (-895)) 84 (|has| |#1| (-1021))) (((-167 (-372)) (-926 |#1|)) 83 (|has| |#1| (-1021))) (((-167 (-372)) (-926 (-167 |#1|)) (-895)) 78 (|has| |#1| (-170))) (((-167 (-372)) (-926 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|) (-895)) 80 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-372)) |#1| (-895)) 27) (((-167 (-372)) |#1|) 25))) -(((-763 |#1|) (-10 -7 (-15 -2854 ((-372) |#1|)) (-15 -2854 ((-372) |#1| (-895))) (-15 -1672 ((-167 (-372)) |#1|)) (-15 -1672 ((-167 (-372)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -1672 ((-167 (-372)) (-167 |#1|))) (-15 -1672 ((-167 (-372)) (-167 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-926 (-167 |#1|)))) (-15 -1672 ((-167 (-372)) (-926 (-167 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-15 -2854 ((-372) (-926 |#1|))) (-15 -2854 ((-372) (-926 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-926 |#1|))) (-15 -1672 ((-167 (-372)) (-926 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2854 ((-372) (-400 (-926 |#1|)))) (-15 -2854 ((-372) (-400 (-926 |#1|)) (-895))) (-15 -1672 ((-167 (-372)) (-400 (-926 |#1|)))) (-15 -1672 ((-167 (-372)) (-400 (-926 |#1|)) (-895))) (-15 -1672 ((-167 (-372)) (-400 (-926 (-167 |#1|))))) (-15 -1672 ((-167 (-372)) (-400 (-926 (-167 |#1|))) (-895))) (IF (|has| |#1| (-825)) (PROGN (-15 -2854 ((-372) (-309 |#1|))) (-15 -2854 ((-372) (-309 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-309 |#1|))) (-15 -1672 ((-167 (-372)) (-309 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -1672 ((-167 (-372)) (-309 (-167 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 (-167 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 (-167 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-926 |#1|))) (-15 -2452 ((-3 (-372) "failed") (-926 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 |#1|))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-400 (-926 |#1|)))) (-15 -2452 ((-3 (-372) "failed") (-400 (-926 |#1|)) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 |#1|)) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|))))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|))) (-895))) (IF (|has| |#1| (-825)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-309 |#1|))) (-15 -2452 ((-3 (-372) "failed") (-309 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-895)))) |%noBranch|)) |%noBranch|)) (-596 (-372))) (T -763)) -((-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-926 (-167 *5)))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-926 (-167 *4)))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3137 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-926 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-926 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 (-167 *5)))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 (-167 *4)))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-926 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-926 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) (-1672 (*1 *2 *3) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) (-2854 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2))))) -(-10 -7 (-15 -2854 ((-372) |#1|)) (-15 -2854 ((-372) |#1| (-895))) (-15 -1672 ((-167 (-372)) |#1|)) (-15 -1672 ((-167 (-372)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -1672 ((-167 (-372)) (-167 |#1|))) (-15 -1672 ((-167 (-372)) (-167 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-926 (-167 |#1|)))) (-15 -1672 ((-167 (-372)) (-926 (-167 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-15 -2854 ((-372) (-926 |#1|))) (-15 -2854 ((-372) (-926 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-926 |#1|))) (-15 -1672 ((-167 (-372)) (-926 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2854 ((-372) (-400 (-926 |#1|)))) (-15 -2854 ((-372) (-400 (-926 |#1|)) (-895))) (-15 -1672 ((-167 (-372)) (-400 (-926 |#1|)))) (-15 -1672 ((-167 (-372)) (-400 (-926 |#1|)) (-895))) (-15 -1672 ((-167 (-372)) (-400 (-926 (-167 |#1|))))) (-15 -1672 ((-167 (-372)) (-400 (-926 (-167 |#1|))) (-895))) (IF (|has| |#1| (-825)) (PROGN (-15 -2854 ((-372) (-309 |#1|))) (-15 -2854 ((-372) (-309 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-309 |#1|))) (-15 -1672 ((-167 (-372)) (-309 |#1|) (-895))) (-15 -1672 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -1672 ((-167 (-372)) (-309 (-167 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 (-167 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 (-167 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1021)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-926 |#1|))) (-15 -2452 ((-3 (-372) "failed") (-926 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 |#1|))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-926 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-400 (-926 |#1|)))) (-15 -2452 ((-3 (-372) "failed") (-400 (-926 |#1|)) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 |#1|)) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|))))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-400 (-926 (-167 |#1|))) (-895))) (IF (|has| |#1| (-825)) (PROGN (-15 -2452 ((-3 (-372) "failed") (-309 |#1|))) (-15 -2452 ((-3 (-372) "failed") (-309 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-895))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -3137 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-895)))) |%noBranch|)) |%noBranch|)) -((-3746 (((-895) (-1127)) 66)) (-1283 (((-3 (-372) "failed") (-1127)) 33)) (-2426 (((-372) (-1127)) 31)) (-3024 (((-895) (-1127)) 54)) (-3783 (((-1127) (-895)) 56)) (-3944 (((-1127) (-895)) 53))) -(((-764) (-10 -7 (-15 -3944 ((-1127) (-895))) (-15 -3024 ((-895) (-1127))) (-15 -3783 ((-1127) (-895))) (-15 -3746 ((-895) (-1127))) (-15 -2426 ((-372) (-1127))) (-15 -1283 ((-3 (-372) "failed") (-1127))))) (T -764)) -((-1283 (*1 *2 *3) (|partial| -12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-764)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-764)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-895)) (-5 *1 (-764)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1127)) (-5 *1 (-764)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-895)) (-5 *1 (-764)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1127)) (-5 *1 (-764))))) -(-10 -7 (-15 -3944 ((-1127) (-895))) (-15 -3024 ((-895) (-1127))) (-15 -3783 ((-1127) (-895))) (-15 -3746 ((-895) (-1127))) (-15 -2426 ((-372) (-1127))) (-15 -1283 ((-3 (-372) "failed") (-1127)))) -((-2221 (((-112) $ $) 7)) (-2105 (((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 15) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 13)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) +((-3456 (*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-742))))) +(-13 (-740) (-701) (-10 -8 (-15 -3456 ((-749))) (-15 -4312 ($ (-536))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-699) . T) ((-701) . T) ((-740) . T) ((-1072) . T)) +((-2684 (((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|) 33)) (-2683 (((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|) 23)) (-2693 (((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147)) 20) (((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536))))) 19))) +(((-743 |#1|) (-10 -7 (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))))) (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147))) (-15 -2683 ((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|)) (-15 -2684 ((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|))) (-13 (-356) (-823))) (T -743)) +((-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 *4))))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *4 (-1147)) (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-356) (-823))))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))))) (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147))) (-15 -2683 ((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|)) (-15 -2684 ((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|))) +((-2940 (((-172 (-536)) |#1|) 25))) +(((-744 |#1|) (-10 -7 (-15 -2940 ((-172 (-536)) |#1|))) (-397)) (T -744)) +((-2940 (*1 *2 *3) (-12 (-5 *2 (-172 (-536))) (-5 *1 (-744 *3)) (-4 *3 (-397))))) +(-10 -7 (-15 -2940 ((-172 (-536)) |#1|))) +((-2872 ((|#1| |#1| |#1|) 24)) (-2873 ((|#1| |#1| |#1|) 23)) (-2862 ((|#1| |#1| |#1|) 32)) (-2870 ((|#1| |#1| |#1|) 28)) (-2871 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2878 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 22))) +(((-745 |#1| |#2|) (-10 -7 (-15 -2878 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|))) (-687 |#2|) (-356)) (T -745)) +((-2862 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2870 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2871 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2873 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4))))) +(-10 -7 (-15 -2878 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|))) +((-4274 (((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)) 59)) (-4273 (((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536))))) 57)) (-4112 (((-536)) 71))) +(((-746 |#1| |#2|) (-10 -7 (-15 -4112 ((-536))) (-15 -4273 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))))) (-15 -4274 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)))) (-1205 (-536)) (-403 (-536) |#1|)) (T -746)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-746 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4273 (*1 *2) (-12 (-4 *3 (-1205 (-536))) (-5 *2 (-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536))))) (-5 *1 (-746 *3 *4)) (-4 *4 (-403 (-536) *3)))) (-4112 (*1 *2) (-12 (-4 *3 (-1205 *2)) (-5 *2 (-536)) (-5 *1 (-746 *3 *4)) (-4 *4 (-403 *2 *3))))) +(-10 -7 (-15 -4112 ((-536))) (-15 -4273 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))))) (-15 -4274 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)))) +((-2893 (((-112) $ $) NIL)) (-3502 (((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-3382 (((-112) $ $) NIL))) +(((-747) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -747)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $)))) +((-2759 (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))) 18) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147))) 17)) (-3931 (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))) 20) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147))) 19))) +(((-748 |#1|) (-10 -7 (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))))) (-543)) (T -748)) +((-3931 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5))))) +(-10 -7 (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) 6)) (-1367 (((-3 $ "failed") $ $) 9)) (-2685 (($ $ (-536)) 7)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3490 (($ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ $ $) NIL))) +(((-749) (-13 (-771) (-705) (-10 -8 (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2685 ($ $ (-536))) (-15 -3322 ($ $)) (-6 (-4350 "*"))))) (T -749)) +((-2888 (*1 *1 *1 *1) (-5 *1 (-749))) (-2889 (*1 *1 *1 *1) (-5 *1 (-749))) (-3490 (*1 *1 *1 *1) (-5 *1 (-749))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 (-749)) (|:| -3230 (-749)))) (-5 *1 (-749)))) (-3815 (*1 *1 *1 *1) (|partial| -5 *1 (-749))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-749)))) (-3322 (*1 *1 *1) (-5 *1 (-749)))) +(-13 (-771) (-705) (-10 -8 (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2685 ($ $ (-536))) (-15 -3322 ($ $)) (-6 (-4350 "*")))) +((-3931 (((-3 |#2| "failed") |#2| |#2| (-113) (-1147)) 35))) +(((-750 |#1| |#2|) (-10 -7 (-15 -3931 ((-3 |#2| "failed") |#2| |#2| (-113) (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -750)) +((-3931 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1169) (-934)))))) +(-10 -7 (-15 -3931 ((-3 |#2| "failed") |#2| |#2| (-113) (-1147)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 9))) +(((-751) (-1072)) (T -751)) +NIL +(-1072) +((-4312 (((-751) |#1|) 8))) +(((-752 |#1|) (-10 -7 (-15 -4312 ((-751) |#1|))) (-1183)) (T -752)) +((-4312 (*1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-752 *3)) (-4 *3 (-1183))))) +(-10 -7 (-15 -4312 ((-751) |#1|))) +((-3462 ((|#2| |#4|) 35))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3462 (|#2| |#4|))) (-444) (-1205 |#1|) (-703 |#1| |#2|) (-1205 |#3|)) (T -753)) +((-3462 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1205 *5))))) +(-10 -7 (-15 -3462 (|#2| |#4|))) +((-3816 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2688 (((-1235) (-1129) (-1129) |#4| |#5|) 33)) (-2686 ((|#4| |#4| |#5|) 73)) (-2687 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 77)) (-2689 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 16))) +(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3816 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2686 (|#4| |#4| |#5|)) (-15 -2687 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2688 ((-1235) (-1129) (-1129) |#4| |#5|)) (-15 -2689 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -754)) +((-2689 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-2688 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1129)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *4 (-1037 *6 *7 *8)) (-5 *2 (-1235)) (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1043 *6 *7 *8 *4)))) (-2687 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-2686 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1037 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1043 *4 *5 *6 *2)))) (-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(-10 -7 (-15 -3816 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2686 (|#4| |#4| |#5|)) (-15 -2687 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2688 ((-1235) (-1129) (-1129) |#4| |#5|)) (-15 -2689 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) +((-3503 (((-3 (-1141 (-1141 |#1|)) "failed") |#4|) 43)) (-2690 (((-620 |#4|) |#4|) 15)) (-4283 ((|#4| |#4|) 11))) +(((-755 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2690 ((-620 |#4|) |#4|)) (-15 -3503 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -4283 (|#4| |#4|))) (-343) (-322 |#1|) (-1205 |#2|) (-1205 |#3|) (-893)) (T -755)) +((-4283 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1205 *4)) (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1205 *5)) (-14 *6 (-893)))) (-3503 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893)))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-620 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893))))) +(-10 -7 (-15 -2690 ((-620 |#4|) |#4|)) (-15 -3503 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -4283 (|#4| |#4|))) +((-2691 (((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|)) 54)) (-2692 (((-620 (-749)) |#1|) 13))) +(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2691 ((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|))) (-15 -2692 ((-620 (-749)) |#1|))) (-1205 |#4|) (-771) (-825) (-300) (-924 |#4| |#2| |#3|)) (T -756)) +((-2692 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-620 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *6)) (-4 *7 (-924 *6 *4 *5)))) (-2691 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1205 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) (-4 *10 (-924 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-620 (-1141 *10))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *10))))) (|:| |nfacts| (-620 *6)) (|:| |nlead| (-620 *10)))) (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-620 *6)) (-5 *5 (-620 *10))))) +(-10 -7 (-15 -2691 ((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|))) (-15 -2692 ((-620 (-749)) |#1|))) +((-2695 (((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|) 31)) (-2694 (((-620 |#1|) (-667 (-400 (-536))) |#1|) 21)) (-2693 (((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147)) 18) (((-920 (-400 (-536))) (-667 (-400 (-536)))) 17))) +(((-757 |#1|) (-10 -7 (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))))) (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147))) (-15 -2694 ((-620 |#1|) (-667 (-400 (-536))) |#1|)) (-15 -2695 ((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|))) (-13 (-356) (-823))) (T -757)) +((-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 (-2 (|:| |outval| *4) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 *4)))))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *4 (-1147)) (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823))))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))))) (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147))) (-15 -2694 ((-620 |#1|) (-667 (-400 (-536))) |#1|)) (-15 -2695 ((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 34)) (-3412 (((-620 |#2|) $) NIL)) (-3414 (((-1141 $) $ |#2|) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#2|)) NIL)) (-4151 (($ $) 28)) (-3512 (((-112) $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) 93 (|has| |#1| (-543)))) (-3494 (((-620 $) $ $) 106 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (((-3 $ #3#) (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (((-3 $ #3#) (-920 |#1|)) NIL (-3886 (-12 (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536))))) (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-965 (-536))))))) (((-3 (-1096 |#1| |#2|) #2#) $) 18)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#2| $) NIL) (($ (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (($ (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (($ (-920 |#1|)) NIL (-3886 (-12 (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536))))) (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-965 (-536))))))) (((-1096 |#1| |#2|) $) NIL)) (-4111 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-543)))) (-4314 (($ $) NIL) (($ $ |#2|) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4052 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3518 (((-112) $) NIL)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 70)) (-3489 (($ $) 119 (|has| |#1| (-444)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-3500 (($ $) NIL (|has| |#1| (-543)))) (-3501 (($ $) NIL (|has| |#1| (-543)))) (-3511 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3510 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1716 (($ $ |#1| (-522 |#2|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-4053 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-3491 (($ $ $ $ $) 90 (|has| |#1| (-543)))) (-3526 ((|#2| $) 19)) (-3415 (($ (-1141 |#1|) |#2|) NIL) (($ (-1141 $) |#2|) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 36) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3505 (($ $ $) 60)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3519 (((-112) $) NIL)) (-3148 (((-522 |#2|) $) NIL) (((-749) $ |#2|) NIL) (((-620 (-749)) $ (-620 |#2|)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3525 (((-749) $) 20)) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3413 (((-3 |#2| #4="failed") $) NIL)) (-3486 (($ $) NIL (|has| |#1| (-444)))) (-3487 (($ $) NIL (|has| |#1| (-444)))) (-3514 (((-620 $) $) NIL)) (-3517 (($ $) 37)) (-3488 (($ $) NIL (|has| |#1| (-444)))) (-3515 (((-620 $) $) 41)) (-3516 (($ $) 39)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 82)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 67) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) NIL) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#2|) NIL)) (-3509 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3508 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3588 (((-1129) $) NIL)) (-3536 (($ $ $) 108 (|has| |#1| (-543)))) (-3522 (((-620 $) $) 30)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-749))) #4#) $) NIL)) (-4049 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-4044 (($ $ $) NIL)) (-3799 (($ $) 21)) (-4057 (((-112) $ $) NIL)) (-4050 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-4045 (($ $ $) NIL)) (-3524 (($ $) 23)) (-3589 (((-1091) $) NIL)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-543)))) (-1911 (((-112) $) 52)) (-1910 ((|#1| $) 55)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3498 (($ $ |#1|) 112 (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-3499 (($ $ |#1|) 111 (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-620 |#2|) (-620 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-620 |#2|) (-620 $)) NIL)) (-4112 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) NIL) (((-749) $ |#2|) 43) (((-620 (-749)) $ (-620 |#2|)) NIL)) (-3523 (($ $) NIL)) (-3521 (($ $) 33)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525))))) (($ (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (($ (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (($ (-920 |#1|)) NIL (|has| |#2| (-596 (-1147)))) (((-1129) $) NIL (-12 (|has| |#1| (-1012 (-536))) (|has| |#2| (-596 (-1147))))) (((-920 |#1|) $) NIL (|has| |#2| (-596 (-1147))))) (-3145 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-920 |#1|) $) NIL (|has| |#2| (-596 (-1147)))) (((-1096 |#1| |#2|) $) 15) (($ (-1096 |#1| |#2|)) 16) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) 44) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 13 T CONST)) (-3513 (((-3 (-112) #3#) $ $) NIL)) (-2992 (($) 35 T CONST)) (-3492 (($ $ $ $ (-749)) 88 (|has| |#1| (-543)))) (-3493 (($ $ $ (-749)) 87 (|has| |#1| (-543)))) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 54)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 64)) (-4194 (($ $ $) 74)) (** (($ $ (-893)) NIL) (($ $ (-749)) 61)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 59) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-758 |#1| |#2|) (-13 (-1037 |#1| (-522 |#2|) |#2|) (-595 (-1096 |#1| |#2|)) (-1012 (-1096 |#1| |#2|))) (-1023) (-825)) (T -758)) +NIL +(-13 (-1037 |#1| (-522 |#2|) |#2|) (-595 (-1096 |#1| |#2|)) (-1012 (-1096 |#1| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 12)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2699 (((-620 $) $ $) 39 (|has| |#1| (-543)))) (-4110 (($ $ $) 35 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL) (((-3 (-1141 |#1|) #2#) $) 10)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL) (((-1141 |#1|) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) 71 (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) 70 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3505 (($ $ $) 20)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $) 26)) (-2701 (($ $ $) 29)) (-2700 (($ $ $) 32)) (-3506 (((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 31)) (-3588 (((-1129) $) NIL)) (-3536 (($ $ $) 41 (|has| |#1| (-543)))) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-543)))) (-2696 (((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-543)))) (-2697 (((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-543)))) (-1911 (((-112) $) 13)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4093 (($ $ (-749) |#1| $) 19)) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-543)))) (-2698 (((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1053)) NIL) (((-1141 |#1|) $) 7) (($ (-1141 |#1|)) 8) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 21 T CONST)) (-2992 (($) 24 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 28) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-759 |#1|) (-13 (-1205 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -4093 ($ $ (-749) |#1| $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $)) (-15 -2701 ($ $ $)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2700 ($ $ $)) (IF (|has| |#1| (-543)) (PROGN (-15 -2699 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -2698 ((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $)) (-15 -2696 ((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1023)) (T -759)) +((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-3505 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-3504 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-759 *3)) (|:| |polden| *3) (|:| -3830 (-749)))) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-2701 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-3506 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4308 *3) (|:| |gap| (-749)) (|:| -2091 (-759 *3)) (|:| -3230 (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-2700 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-2699 (*1 *2 *1 *1) (-12 (-5 *2 (-620 (-759 *3))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3536 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-543)) (-4 *2 (-1023)))) (-3497 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3495 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2697 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2696 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) +(-13 (-1205 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -4093 ($ $ (-749) |#1| $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $)) (-15 -2701 ($ $ $)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2700 ($ $ $)) (IF (|has| |#1| (-543)) (PROGN (-15 -2699 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -2698 ((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $)) (-15 -2696 ((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4313 (((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)) 13))) +(((-760 |#1| |#2|) (-10 -7 (-15 -4313 ((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)))) (-1023) (-1023)) (T -760)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-759 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-759 *6)) (-5 *1 (-760 *5 *6))))) +(-10 -7 (-15 -4313 ((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)))) +((-2703 ((|#1| (-749) |#1|) 32 (|has| |#1| (-38 (-400 (-536)))))) (-3129 ((|#1| (-749) |#1|) 22)) (-2702 ((|#1| (-749) |#1|) 34 (|has| |#1| (-38 (-400 (-536))))))) +(((-761 |#1|) (-10 -7 (-15 -3129 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -2702 (|#1| (-749) |#1|)) (-15 -2703 (|#1| (-749) |#1|))) |%noBranch|)) (-170)) (T -761)) +((-2703 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-2702 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-3129 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3129 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -2702 (|#1| (-749) |#1|)) (-15 -2703 (|#1| (-749) |#1|))) |%noBranch|)) +((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-762 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -762)) +NIL +(-13 (-1043 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) +((-2706 (((-3 (-371) "failed") (-307 |#1|) (-893)) 62 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-371) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-371) "failed") (-400 (-920 |#1|)) (-893)) 41 (|has| |#1| (-543))) (((-3 (-371) "failed") (-400 (-920 |#1|))) 40 (|has| |#1| (-543))) (((-3 (-371) "failed") (-920 |#1|) (-893)) 31 (|has| |#1| (-1023))) (((-3 (-371) "failed") (-920 |#1|)) 30 (|has| |#1| (-1023)))) (-2704 (((-371) (-307 |#1|) (-893)) 99 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-371) (-307 |#1|)) 94 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-371) (-400 (-920 |#1|)) (-893)) 91 (|has| |#1| (-543))) (((-371) (-400 (-920 |#1|))) 90 (|has| |#1| (-543))) (((-371) (-920 |#1|) (-893)) 86 (|has| |#1| (-1023))) (((-371) (-920 |#1|)) 85 (|has| |#1| (-1023))) (((-371) |#1| (-893)) 76) (((-371) |#1|) 22)) (-2707 (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)) 71 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 |#1|) (-893)) 63 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893)) 46 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|)))) 45 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893)) 39 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 |#1|))) 38 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)) 28 (|has| |#1| (-1023))) (((-3 (-166 (-371)) "failed") (-920 |#1|)) 26 (|has| |#1| (-1023))) (((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)) 18 (|has| |#1| (-170))) (((-3 (-166 (-371)) "failed") (-920 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2705 (((-166 (-371)) (-307 (-166 |#1|)) (-893)) 102 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 |#1|) (-893)) 100 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 |#1|)) 98 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893)) 93 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 (-166 |#1|)))) 92 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 |#1|)) (-893)) 89 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 |#1|))) 88 (|has| |#1| (-543))) (((-166 (-371)) (-920 |#1|) (-893)) 84 (|has| |#1| (-1023))) (((-166 (-371)) (-920 |#1|)) 83 (|has| |#1| (-1023))) (((-166 (-371)) (-920 (-166 |#1|)) (-893)) 78 (|has| |#1| (-170))) (((-166 (-371)) (-920 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|) (-893)) 80 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-371)) |#1| (-893)) 27) (((-166 (-371)) |#1|) 25))) +(((-763 |#1|) (-10 -7 (-15 -2704 ((-371) |#1|)) (-15 -2704 ((-371) |#1| (-893))) (-15 -2705 ((-166 (-371)) |#1|)) (-15 -2705 ((-166 (-371)) |#1| (-893))) (IF (|has| |#1| (-170)) (PROGN (-15 -2705 ((-166 (-371)) (-166 |#1|))) (-15 -2705 ((-166 (-371)) (-166 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2704 ((-371) (-920 |#1|))) (-15 -2704 ((-371) (-920 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 |#1|))) (-15 -2705 ((-166 (-371)) (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2704 ((-371) (-400 (-920 |#1|)))) (-15 -2704 ((-371) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2704 ((-371) (-307 |#1|))) (-15 -2704 ((-371) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 |#1|))) (-15 -2705 ((-166 (-371)) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-920 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-920 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)))) (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|)) (-596 (-371))) (T -763)) +((-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) (-2704 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2))))) +(-10 -7 (-15 -2704 ((-371) |#1|)) (-15 -2704 ((-371) |#1| (-893))) (-15 -2705 ((-166 (-371)) |#1|)) (-15 -2705 ((-166 (-371)) |#1| (-893))) (IF (|has| |#1| (-170)) (PROGN (-15 -2705 ((-166 (-371)) (-166 |#1|))) (-15 -2705 ((-166 (-371)) (-166 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2704 ((-371) (-920 |#1|))) (-15 -2704 ((-371) (-920 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 |#1|))) (-15 -2705 ((-166 (-371)) (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2704 ((-371) (-400 (-920 |#1|)))) (-15 -2704 ((-371) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2704 ((-371) (-307 |#1|))) (-15 -2704 ((-371) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 |#1|))) (-15 -2705 ((-166 (-371)) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-920 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-920 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)))) (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|)) +((-2711 (((-893) (-1129)) 66)) (-2713 (((-3 (-371) "failed") (-1129)) 33)) (-2712 (((-371) (-1129)) 31)) (-2709 (((-893) (-1129)) 54)) (-2710 (((-1129) (-893)) 56)) (-2708 (((-1129) (-893)) 53))) +(((-764) (-10 -7 (-15 -2708 ((-1129) (-893))) (-15 -2709 ((-893) (-1129))) (-15 -2710 ((-1129) (-893))) (-15 -2711 ((-893) (-1129))) (-15 -2712 ((-371) (-1129))) (-15 -2713 ((-3 (-371) "failed") (-1129))))) (T -764)) +((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) +(-10 -7 (-15 -2708 ((-1129) (-893))) (-15 -2709 ((-893) (-1129))) (-15 -2710 ((-1129) (-893))) (-15 -2711 ((-893) (-1129))) (-15 -2712 ((-371) (-1129))) (-15 -2713 ((-3 (-371) "failed") (-1129)))) +((-2893 (((-112) $ $) 7)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 15) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 13)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) (((-765) (-138)) (T -765)) -((-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009)))))) (-2105 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009)))))) (-2105 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(-13 (-1069) (-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2105 ((-1009) (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) (|:| |extra| (-1009))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2105 ((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-1885 (((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372))) 44) (((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372))) 43)) (-3740 (((-1233) (-1228 (-372)) (-550) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372))) 50)) (-2031 (((-1233) (-1228 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372))) 41)) (-4071 (((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372))) 52) (((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372))) 51))) -(((-766) (-10 -7 (-15 -4071 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -4071 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)))) (-15 -2031 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -1885 ((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -1885 ((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)))) (-15 -3740 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))))) (T -766)) -((-3740 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766)))) (-1885 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372)))) (-5 *7 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766)))) (-1885 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372)))) (-5 *7 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766)))) (-2031 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766)))) (-4071 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766)))) (-4071 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) (-5 *1 (-766))))) -(-10 -7 (-15 -4071 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -4071 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)))) (-15 -2031 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -1885 ((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)))) (-15 -1885 ((-1233) (-1228 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372))) (-372) (-1228 (-372)) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)) (-1228 (-372)))) (-15 -3740 ((-1233) (-1228 (-372)) (-550) (-372) (-372) (-550) (-1 (-1233) (-1228 (-372)) (-1228 (-372)) (-372))))) -((-1500 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 53)) (-3679 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 31)) (-3151 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 52)) (-3920 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 29)) (-2106 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 51)) (-2298 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 19)) (-3840 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 32)) (-3320 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 30)) (-1384 (((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 28))) -(((-767) (-10 -7 (-15 -1384 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3320 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3840 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2298 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3920 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3679 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2106 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3151 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -1500 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))))) (T -767)) -((-1500 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3151 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2106 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3679 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3920 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2298 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3840 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3320 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-1384 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550))))) -(-10 -7 (-15 -1384 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3320 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3840 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2298 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3920 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3679 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2106 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3151 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -1500 ((-2 (|:| -1337 (-372)) (|:| -2511 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)))) -((-2661 (((-1177 |#1|) |#1| (-219) (-550)) 46))) -(((-768 |#1|) (-10 -7 (-15 -2661 ((-1177 |#1|) |#1| (-219) (-550)))) (-948)) (T -768)) -((-2661 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-550)) (-5 *2 (-1177 *3)) (-5 *1 (-768 *3)) (-4 *3 (-948))))) -(-10 -7 (-15 -2661 ((-1177 |#1|) |#1| (-219) (-550)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 24)) (-1993 (((-3 $ "failed") $ $) 26)) (-2991 (($) 23 T CONST)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 22 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2370 (($ $ $) 28) (($ $) 27)) (-2358 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-749) $) 25) (($ (-550) $) 29))) +((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009)))))) (-2714 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009)))))) (-2714 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) +(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2714 ((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2714 ((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2717 (((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371))) 44) (((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 43)) (-2718 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 50)) (-2716 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 41)) (-2715 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371))) 52) (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 51))) +(((-766) (-10 -7 (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2716 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2718 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))))) (T -766)) +((-2718 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2717 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-536)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2717 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-536)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2716 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2715 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2715 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) +(-10 -7 (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2716 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2718 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))))) +((-2727 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 53)) (-2724 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 31)) (-2726 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 52)) (-2723 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 29)) (-2725 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 51)) (-2722 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 19)) (-2721 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 32)) (-2720 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 30)) (-2719 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 28))) +(((-767) (-10 -7 (-15 -2719 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2720 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2721 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2722 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2723 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2724 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2725 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2726 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2727 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))))) (T -767)) +((-2727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2726 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2725 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2724 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2723 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2722 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2721 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2720 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2719 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536))))) +(-10 -7 (-15 -2719 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2720 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2721 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2722 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2723 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2724 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2725 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2726 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2727 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)))) +((-4063 (((-1179 |#1|) |#1| (-219) (-536)) 46))) +(((-768 |#1|) (-10 -7 (-15 -4063 ((-1179 |#1|) |#1| (-219) (-536)))) (-948)) (T -768)) +((-4063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-536)) (-5 *2 (-1179 *3)) (-5 *1 (-768 *3)) (-4 *3 (-948))))) +(-10 -7 (-15 -4063 ((-1179 |#1|) |#1| (-219) (-536)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4192 (($ $ $) 28) (($ $) 27)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25) (($ (-536) $) 29))) (((-769) (-138)) (T -769)) NIL -(-13 (-773) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 24)) (-2991 (($) 23 T CONST)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 22 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2358 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-749) $) 25))) +(-13 (-775) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) (((-770) (-138)) (T -770)) NIL (-13 (-772) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-837)) . T) ((-772) . T) ((-825) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 24)) (-4250 (($ $ $) 27)) (-1993 (((-3 $ "failed") $ $) 26)) (-2991 (($) 23 T CONST)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 22 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2358 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-749) $) 25))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-772) . T) ((-825) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-2728 (($ $ $) 27)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) (((-771) (-138)) (T -771)) -((-4250 (*1 *1 *1 *1) (-4 *1 (-771)))) -(-13 (-773) (-10 -8 (-15 -4250 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2358 (($ $ $) 20)) (* (($ (-895) $) 21))) +((-2728 (*1 *1 *1 *1) (-4 *1 (-771)))) +(-13 (-775) (-10 -8 (-15 -2728 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21))) (((-772) (-138)) (T -772)) NIL (-13 (-825) (-25)) -(((-25) . T) ((-101) . T) ((-595 (-837)) . T) ((-825) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 24)) (-1993 (((-3 $ "failed") $ $) 26)) (-2991 (($) 23 T CONST)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 22 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2358 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-749) $) 25))) -(((-773) (-138)) (T -773)) +(((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1072) . T)) +((-3534 (((-112) $) 41)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 42)) (-3352 (((-3 (-400 (-536)) "failed") $) 78)) (-3351 (((-112) $) 72)) (-3350 (((-400 (-536)) $) 76)) (-3462 ((|#2| $) 26)) (-4313 (($ (-1 |#2| |#2|) $) 23)) (-2729 (($ $) 61)) (-4325 (((-525) $) 67)) (-3337 (($ $) 21)) (-4312 (((-838) $) 56) (($ (-536)) 39) (($ |#2|) 37) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 10)) (-3737 ((|#2| $) 71)) (-3382 (((-112) $ $) 29)) (-3013 (((-112) $ $) 69)) (-4192 (($ $) 31) (($ $ $) NIL)) (-4194 (($ $ $) 30)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-773 |#1| |#2|) (-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-774 |#2|) (-170)) (T -773)) +((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-773 *3 *4)) (-4 *3 (-774 *4))))) +(-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3466 (((-749)) 51 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 92 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 90 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 88)) (-3502 (((-536) $) 93 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 91 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 87)) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 77)) (-3352 (((-3 (-400 (-536)) "failed") $) 64 (|has| |#1| (-535)))) (-3351 (((-112) $) 66 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 65 (|has| |#1| (-535)))) (-3322 (($) 54 (|has| |#1| (-361)))) (-2497 (((-112) $) 30)) (-2734 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3462 ((|#1| $) 69)) (-3672 (($ $ $) 60 (|has| |#1| (-825)))) (-3673 (($ $ $) 59 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 79)) (-2121 (((-893) $) 53 (|has| |#1| (-361)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 63 (|has| |#1| (-356)))) (-2487 (($ (-893)) 52 (|has| |#1| (-361)))) (-2731 ((|#1| $) 74)) (-2732 ((|#1| $) 75)) (-2733 ((|#1| $) 76)) (-3334 ((|#1| $) 70)) (-3335 ((|#1| $) 71)) (-3336 ((|#1| $) 72)) (-2730 ((|#1| $) 73)) (-3589 (((-1091) $) 10)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 81 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 80 (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-4325 (((-525) $) 61 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 78)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 89 (|has| |#1| (-1012 (-400 (-536)))))) (-3030 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3737 ((|#1| $) 67 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 57 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 56 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 58 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 55 (|has| |#1| (-825)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-774 |#1|) (-138) (-170)) (T -774)) +((-3337 (*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2734 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-2729 (*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3337 ($ $)) (-15 -4001 (|t#1| $)) (-15 -2733 (|t#1| $)) (-15 -2732 (|t#1| $)) (-15 -2731 (|t#1| $)) (-15 -2730 (|t#1| $)) (-15 -3336 (|t#1| $)) (-15 -3335 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -2734 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2729 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) +(((-775) (-138)) (T -775)) NIL (-13 (-770) (-130)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-770) . T) ((-772) . T) ((-825) . T) ((-1069) . T)) -((-3378 (((-112) $) 41)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 42)) (-3192 (((-3 (-400 (-550)) "failed") $) 78)) (-2593 (((-112) $) 72)) (-3169 (((-400 (-550)) $) 76)) (-1571 ((|#2| $) 26)) (-2392 (($ (-1 |#2| |#2|) $) 23)) (-1619 (($ $) 61)) (-2451 (((-526) $) 67)) (-3018 (($ $) 21)) (-2233 (((-837) $) 56) (($ (-550)) 39) (($ |#2|) 37) (($ (-400 (-550))) NIL)) (-3091 (((-749)) 10)) (-4188 ((|#2| $) 71)) (-2264 (((-112) $ $) 29)) (-2290 (((-112) $ $) 69)) (-2370 (($ $) 31) (($ $ $) NIL)) (-2358 (($ $ $) 30)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-774 |#1| |#2|) (-10 -8 (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3018 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-775 |#2|) (-170)) (T -774)) -((-3091 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-774 *3 *4)) (-4 *3 (-775 *4))))) -(-10 -8 (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3018 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-3828 (((-749)) 51 (|has| |#1| (-361)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 92 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 90 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 88)) (-2202 (((-550) $) 93 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 91 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 87)) (-1537 (((-3 $ "failed") $) 32)) (-1406 ((|#1| $) 77)) (-3192 (((-3 (-400 (-550)) "failed") $) 64 (|has| |#1| (-535)))) (-2593 (((-112) $) 66 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 65 (|has| |#1| (-535)))) (-1864 (($) 54 (|has| |#1| (-361)))) (-2419 (((-112) $) 30)) (-1772 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-1571 ((|#1| $) 69)) (-2793 (($ $ $) 60 (|has| |#1| (-825)))) (-2173 (($ $ $) 59 (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) 79)) (-4073 (((-895) $) 53 (|has| |#1| (-361)))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 63 (|has| |#1| (-356)))) (-3690 (($ (-895)) 52 (|has| |#1| (-361)))) (-2395 ((|#1| $) 74)) (-3952 ((|#1| $) 75)) (-3083 ((|#1| $) 76)) (-3418 ((|#1| $) 70)) (-3114 ((|#1| $) 71)) (-1531 ((|#1| $) 72)) (-2746 ((|#1| $) 73)) (-3445 (((-1089) $) 10)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 81 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) 80 (|has| |#1| (-505 (-1145) |#1|)))) (-2757 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-2451 (((-526) $) 61 (|has| |#1| (-596 (-526))))) (-3018 (($ $) 78)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 89 (|has| |#1| (-1012 (-400 (-550)))))) (-1613 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-4188 ((|#1| $) 67 (|has| |#1| (-1030)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 57 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 56 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 58 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 55 (|has| |#1| (-825)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-775 |#1|) (-138) (-170)) (T -775)) -((-3018 (*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1772 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3192 (*1 *2 *1) (|partial| -12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-38 |t#1|) (-404 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3018 ($ $)) (-15 -1406 (|t#1| $)) (-15 -3083 (|t#1| $)) (-15 -3952 (|t#1| $)) (-15 -2395 (|t#1| $)) (-15 -2746 (|t#1| $)) (-15 -1531 (|t#1| $)) (-15 -3114 (|t#1| $)) (-15 -3418 (|t#1| $)) (-15 -1571 (|t#1| $)) (-15 -1772 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1030)) (-15 -4188 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -1619 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2392 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) (-775 |#2|) (-170) (-775 |#4|) (-170)) (T -776)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-775 *6)) (-5 *1 (-776 *4 *5 *2 *6)) (-4 *4 (-775 *5))))) -(-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-973 |#1|) "failed") $) 35) (((-3 (-550) "failed") $) NIL (-1489 (|has| (-973 |#1|) (-1012 (-550))) (|has| |#1| (-1012 (-550))))) (((-3 (-400 (-550)) "failed") $) NIL (-1489 (|has| (-973 |#1|) (-1012 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-2202 ((|#1| $) NIL) (((-973 |#1|) $) 33) (((-550) $) NIL (-1489 (|has| (-973 |#1|) (-1012 (-550))) (|has| |#1| (-1012 (-550))))) (((-400 (-550)) $) NIL (-1489 (|has| (-973 |#1|) (-1012 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-1537 (((-3 $ "failed") $) NIL)) (-1406 ((|#1| $) 16)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-2593 (((-112) $) NIL (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-1864 (($) NIL (|has| |#1| (-361)))) (-2419 (((-112) $) NIL)) (-1772 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-973 |#1|) (-973 |#1|)) 29)) (-1571 ((|#1| $) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-2395 ((|#1| $) 22)) (-3952 ((|#1| $) 20)) (-3083 ((|#1| $) 18)) (-3418 ((|#1| $) 26)) (-3114 ((|#1| $) 25)) (-1531 ((|#1| $) 24)) (-2746 ((|#1| $) 23)) (-3445 (((-1089) $) NIL)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-505 (-1145) |#1|)))) (-2757 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-3018 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-973 |#1|)) 30) (($ (-400 (-550))) NIL (-1489 (|has| (-973 |#1|) (-1012 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-4188 ((|#1| $) NIL (|has| |#1| (-1030)))) (-2688 (($) 8 T CONST)) (-2700 (($) 12 T CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-777 |#1|) (-13 (-775 |#1|) (-404 (-973 |#1|)) (-10 -8 (-15 -1772 ($ (-973 |#1|) (-973 |#1|))))) (-170)) (T -777)) -((-1772 (*1 *1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-170)) (-5 *1 (-777 *3))))) -(-13 (-775 |#1|) (-404 (-973 |#1|)) (-10 -8 (-15 -1772 ($ (-973 |#1|) (-973 |#1|))))) -((-2221 (((-112) $ $) 7)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-3647 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-2264 (((-112) $ $) 6))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-825) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) NIL) (((-3 (-970 |#1|) #1#) $) 35) (((-3 (-536) #1#) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-536))) (|has| |#1| (-1012 (-536))))) (((-3 (-400 (-536)) #1#) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 ((|#1| $) NIL) (((-970 |#1|) $) 33) (((-536) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-536))) (|has| |#1| (-1012 (-536))))) (((-400 (-536)) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 16)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3322 (($) NIL (|has| |#1| (-361)))) (-2497 (((-112) $) NIL)) (-2734 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-970 |#1|) (-970 |#1|)) 29)) (-3462 ((|#1| $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-2731 ((|#1| $) 22)) (-2732 ((|#1| $) 20)) (-2733 ((|#1| $) 18)) (-3334 ((|#1| $) 26)) (-3335 ((|#1| $) 25)) (-3336 ((|#1| $) 24)) (-2730 ((|#1| $) 23)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-970 |#1|)) 30) (($ (-400 (-536))) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3737 ((|#1| $) NIL (|has| |#1| (-1032)))) (-2986 (($) 8 T CONST)) (-2992 (($) 12 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-776 |#1|) (-13 (-774 |#1|) (-405 (-970 |#1|)) (-10 -8 (-15 -2734 ($ (-970 |#1|) (-970 |#1|))))) (-170)) (T -776)) +((-2734 (*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-776 *3))))) +(-13 (-774 |#1|) (-405 (-970 |#1|)) (-10 -8 (-15 -2734 ($ (-970 |#1|) (-970 |#1|))))) +((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-777 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-774 |#2|) (-170) (-774 |#4|) (-170)) (T -777)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-774 *6)) (-5 *1 (-777 *4 *5 *2 *6)) (-4 *4 (-774 *5))))) +(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) +((-2893 (((-112) $ $) 7)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-3382 (((-112) $ $) 6))) (((-778) (-138)) (T -778)) -((-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) (-3647 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1009))))) -(-13 (-1069) (-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3647 ((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2301 (((-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#3| |#2| (-1145)) 19))) -(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2301 ((-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#3| |#2| (-1145)))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1167) (-933)) (-634 |#2|)) (T -779)) -((-2301 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1145)) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-4 *4 (-13 (-29 *6) (-1167) (-933))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2206 (-623 *4)))) (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -2301 ((-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#3| |#2| (-1145)))) -((-4229 (((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)) 28) (((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1145)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1145)) 18) (((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1145)) 24) (((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1145)) 26) (((-3 (-623 (-1228 |#2|)) "failed") (-667 |#2|) (-1145)) 37) (((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-667 |#2|) (-1228 |#2|) (-1145)) 35))) -(((-780 |#1| |#2|) (-10 -7 (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-667 |#2|) (-1228 |#2|) (-1145))) (-15 -4229 ((-3 (-623 (-1228 |#2|)) "failed") (-667 |#2|) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1145))) (-15 -4229 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -4229 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1167) (-933))) (T -780)) -((-4229 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *1 (-780 *6 *2)))) (-4229 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1167) (-933))) (-5 *1 (-780 *6 *2)) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))))) (-4229 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1145)) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2206 (-623 *3))) *3 "failed")) (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1167) (-933))))) (-4229 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2206 (-623 *7))) *7 "failed")) (-5 *1 (-780 *6 *7)))) (-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) (-5 *1 (-780 *6 *7)))) (-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) (-5 *1 (-780 *6 *7)))) (-4229 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1145)) (-4 *6 (-13 (-29 *5) (-1167) (-933))) (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-1228 *6))) (-5 *1 (-780 *5 *6)))) (-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) (-5 *1 (-780 *6 *7)) (-5 *4 (-1228 *7))))) -(-10 -7 (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-667 |#2|) (-1228 |#2|) (-1145))) (-15 -4229 ((-3 (-623 (-1228 |#2|)) "failed") (-667 |#2|) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#2|)) (|:| -2206 (-623 (-1228 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1145))) (-15 -4229 ((-3 (-2 (|:| |particular| |#2|) (|:| -2206 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1145))) (-15 -4229 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -4229 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)))) -((-4066 (($) 9)) (-3974 (((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-4212 (((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-1715 (($ (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) 25)) (-2378 (($ (-623 (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) 23)) (-2706 (((-1233)) 12))) -(((-781) (-10 -8 (-15 -4066 ($)) (-15 -2706 ((-1233))) (-15 -4212 ((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2378 ($ (-623 (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1715 ($ (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -3974 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -781)) -((-3974 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *1 (-781)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) (-5 *1 (-781)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-5 *1 (-781)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-781)))) (-2706 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-781)))) (-4066 (*1 *1) (-5 *1 (-781)))) -(-10 -8 (-15 -4066 ($)) (-15 -2706 ((-1233))) (-15 -4212 ((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2378 ($ (-623 (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1715 ($ (-2 (|:| -3549 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -3859 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -3974 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-3489 ((|#2| |#2| (-1145)) 16)) (-3847 ((|#2| |#2| (-1145)) 51)) (-2548 (((-1 |#2| |#2|) (-1145)) 11))) -(((-782 |#1| |#2|) (-10 -7 (-15 -3489 (|#2| |#2| (-1145))) (-15 -3847 (|#2| |#2| (-1145))) (-15 -2548 ((-1 |#2| |#2|) (-1145)))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1167) (-933))) (T -782)) -((-2548 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) (-4 *5 (-13 (-29 *4) (-1167) (-933))))) (-3847 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1167) (-933))))) (-3489 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1167) (-933)))))) -(-10 -7 (-15 -3489 (|#2| |#2| (-1145))) (-15 -3847 (|#2| |#2| (-1145))) (-15 -2548 ((-1 |#2| |#2|) (-1145)))) -((-4229 (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372)) 116) (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372)) 117) (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372)) 119) (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372)) 120) (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372)) 121) (((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372))) 122) (((-1009) (-786) (-1033)) 108) (((-1009) (-786)) 109)) (-3612 (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786) (-1033)) 75) (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786)) 77))) -(((-783) (-10 -7 (-15 -4229 ((-1009) (-786))) (-15 -4229 ((-1009) (-786) (-1033))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786) (-1033))))) (T -783)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1033)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-783)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783))))) -(-10 -7 (-15 -4229 ((-1009) (-786))) (-15 -4229 ((-1009) (-786) (-1033))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372))) (-15 -4229 ((-1009) (-1228 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-786) (-1033)))) -((-4130 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2206 (-623 |#4|))) (-631 |#4|) |#4|) 35))) -(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4130 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2206 (-623 |#4|))) (-631 |#4|) |#4|))) (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550)))) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -784)) -((-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-784 *5 *6 *7 *4))))) -(-10 -7 (-15 -4130 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2206 (-623 |#4|))) (-631 |#4|) |#4|))) -((-3805 (((-2 (|:| -1309 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))) 52)) (-1412 (((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4| |#2|) 60) (((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4|) 59) (((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3| |#2|) 20) (((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3|) 21)) (-1280 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3129 ((|#2| |#3| (-623 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3129 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -3129 (|#2| |#3| (-623 (-400 |#2|)))) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3| |#2|)) (-15 -1280 (|#2| |#3| |#1|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4| |#2|)) (-15 -1280 (|#2| |#4| |#1|)) (-15 -3805 ((-2 (|:| -1309 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-400 (-550)))) (-1204 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -785)) -((-3805 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-2 (|:| -1309 *7) (|:| |rh| (-623 (-400 *6))))) (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-623 (-400 *6))) (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) (-1280 (*1 *2 *3 *4) (-12 (-4 *2 (-1204 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-634 *2)) (-4 *3 (-634 (-400 *2))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *4 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -1808 *4) (|:| -2589 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4))))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-2 (|:| -1808 *5) (|:| -2589 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5))))) (-1280 (*1 *2 *3 *4) (-12 (-4 *2 (-1204 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *4 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -1808 *4) (|:| -2589 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4))))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-2 (|:| -1808 *5) (|:| -2589 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-400 *2))) (-4 *2 (-1204 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *6 (-634 (-400 *2))))) (-3129 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1204 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *6 (-634 *4))))) -(-10 -7 (-15 -3129 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -3129 (|#2| |#3| (-623 (-400 |#2|)))) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#3| |#2|)) (-15 -1280 (|#2| |#3| |#1|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4|)) (-15 -1412 ((-623 (-2 (|:| -1808 |#2|) (|:| -2589 |#2|))) |#4| |#2|)) (-15 -1280 (|#2| |#4| |#1|)) (-15 -3805 ((-2 (|:| -1309 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))))) -((-2221 (((-112) $ $) NIL)) (-2202 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-2264 (((-112) $ $) NIL))) -(((-786) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -786)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-786)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $)))) -((-2830 (((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1141 |#2|)) (-1 (-411 |#2|) |#2|)) 118)) (-2383 (((-623 (-2 (|:| |poly| |#2|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|)) 46)) (-1634 (((-623 (-2 (|:| |deg| (-749)) (|:| -1309 |#2|))) |#3|) 95)) (-2843 ((|#2| |#3|) 37)) (-3533 (((-623 (-2 (|:| -4165 |#1|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|)) 82)) (-2257 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2843 (|#2| |#3|)) (-15 -1634 ((-623 (-2 (|:| |deg| (-749)) (|:| -1309 |#2|))) |#3|)) (-15 -3533 ((-623 (-2 (|:| -4165 |#1|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2383 ((-623 (-2 (|:| |poly| |#2|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2830 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1141 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2257 (|#3| |#3| |#2|)) (-15 -2257 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-400 (-550)))) (-1204 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -787)) -((-2257 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3)))) (-2257 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-1204 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3))))) (-2830 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-623 *7) *7 (-1141 *7))) (-5 *5 (-1 (-411 *7) *7)) (-4 *7 (-1204 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |frac| (-400 *7)) (|:| -1309 *3)))) (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1309 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -4165 *5) (|:| -1309 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -1309 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-2843 (*1 *2 *3) (-12 (-4 *2 (-1204 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2)))))) -(-10 -7 (-15 -2843 (|#2| |#3|)) (-15 -1634 ((-623 (-2 (|:| |deg| (-749)) (|:| -1309 |#2|))) |#3|)) (-15 -3533 ((-623 (-2 (|:| -4165 |#1|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2383 ((-623 (-2 (|:| |poly| |#2|) (|:| -1309 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2830 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1141 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2257 (|#3| |#3| |#2|)) (-15 -2257 (|#3| |#3| (-400 |#2|)))) -((-3152 (((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|)) 113)) (-1742 ((|#2| (-632 |#2| (-400 |#2|))) 80) ((|#2| (-631 (-400 |#2|))) 83))) -(((-788 |#1| |#2|) (-10 -7 (-15 -3152 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -3152 ((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -3152 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -3152 ((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -1742 (|#2| (-631 (-400 |#2|)))) (-15 -1742 (|#2| (-632 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550)))) (-1204 |#1|)) (T -788)) -((-1742 (*1 *2 *3) (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1204 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1204 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-2 (|:| -2206 (-623 (-400 *6))) (|:| -3121 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-788 *5 *6)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-2 (|:| -2206 (-623 (-400 *6))) (|:| -3121 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-788 *5 *6))))) -(-10 -7 (-15 -3152 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -3152 ((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -3152 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2206 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -3152 ((-2 (|:| -2206 (-623 (-400 |#2|))) (|:| -3121 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -1742 (|#2| (-631 (-400 |#2|)))) (-15 -1742 (|#2| (-632 |#2| (-400 |#2|))))) -((-4308 (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) |#5| |#4|) 48))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4308 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) |#5| |#4|))) (-356) (-634 |#1|) (-1204 |#1|) (-703 |#1| |#3|) (-634 |#4|)) (T -789)) -((-4308 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1204 *5)) (-4 *4 (-703 *5 *7)) (-5 *2 (-2 (|:| -3121 (-667 *6)) (|:| |vec| (-1228 *5)))) (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -4308 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) |#5| |#4|))) -((-2830 (((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 47)) (-1949 (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-631 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 38) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 39) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 36) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 37)) (-2383 (((-623 (-2 (|:| |poly| |#2|) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 83))) -(((-790 |#1| |#2|) (-10 -7 (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2830 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2383 ((-623 (-2 (|:| |poly| |#2|) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550)))) (-1204 |#1|)) (T -790)) -((-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1204 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1204 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1309 (-632 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2830 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |frac| (-400 *6)) (|:| -1309 (-632 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *7 (-1204 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *7 (-1204 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6))))) -(-10 -7 (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2830 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2383 ((-623 (-2 (|:| |poly| |#2|) (|:| -1309 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -1949 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -1949 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) -((-3446 (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) (-667 |#2|) (-1228 |#1|)) 85) (((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)) (|:| -1309 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1228 |#1|)) 15)) (-1386 (((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#2|) (-1228 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2206 (-623 |#1|))) |#2| |#1|)) 92)) (-4229 (((-3 (-2 (|:| |particular| (-1228 |#1|)) (|:| -2206 (-667 |#1|))) "failed") (-667 |#1|) (-1228 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed") |#2| |#1|)) 43))) -(((-791 |#1| |#2|) (-10 -7 (-15 -3446 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)) (|:| -1309 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1228 |#1|))) (-15 -3446 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) (-667 |#2|) (-1228 |#1|))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#1|)) (|:| -2206 (-667 |#1|))) "failed") (-667 |#1|) (-1228 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed") |#2| |#1|))) (-15 -1386 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#2|) (-1228 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2206 (-623 |#1|))) |#2| |#1|)))) (-356) (-634 |#1|)) (T -791)) -((-1386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2206 (-623 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1228 *6) "failed")) (|:| -2206 (-623 (-1228 *6))))) (-5 *1 (-791 *6 *7)) (-5 *4 (-1228 *6)))) (-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2206 (-623 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-1228 *6)) (|:| -2206 (-667 *6)))) (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1228 *6)))) (-3446 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) (-5 *2 (-2 (|:| -3121 (-667 *6)) (|:| |vec| (-1228 *5)))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1228 *5)))) (-3446 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-667 *5)) (|:| |eqs| (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1228 *5)) (|:| -1309 *6) (|:| |rh| *5)))))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) (-4 *6 (-634 *5))))) -(-10 -7 (-15 -3446 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)) (|:| -1309 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1228 |#1|))) (-15 -3446 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#1|))) (-667 |#2|) (-1228 |#1|))) (-15 -4229 ((-3 (-2 (|:| |particular| (-1228 |#1|)) (|:| -2206 (-667 |#1|))) "failed") (-667 |#1|) (-1228 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2206 (-623 |#1|))) "failed") |#2| |#1|))) (-15 -1386 ((-2 (|:| |particular| (-3 (-1228 |#1|) "failed")) (|:| -2206 (-623 (-1228 |#1|)))) (-667 |#2|) (-1228 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2206 (-623 |#1|))) |#2| |#1|)))) -((-4316 (((-667 |#1|) (-623 |#1|) (-749)) 13) (((-667 |#1|) (-623 |#1|)) 14)) (-3055 (((-3 (-1228 |#1|) "failed") |#2| |#1| (-623 |#1|)) 34)) (-3786 (((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)) 42))) -(((-792 |#1| |#2|) (-10 -7 (-15 -4316 ((-667 |#1|) (-623 |#1|))) (-15 -4316 ((-667 |#1|) (-623 |#1|) (-749))) (-15 -3055 ((-3 (-1228 |#1|) "failed") |#2| |#1| (-623 |#1|))) (-15 -3786 ((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -792)) -((-3786 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-623 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-792 *2 *3)) (-4 *3 (-634 *2)))) (-3055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-1228 *4)) (-5 *1 (-792 *4 *3)) (-4 *3 (-634 *4)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-634 *5)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) (-4 *5 (-634 *4))))) -(-10 -7 (-15 -4316 ((-667 |#1|) (-623 |#1|))) (-15 -4316 ((-667 |#1|) (-623 |#1|) (-749))) (-15 -3055 ((-3 (-1228 |#1|) "failed") |#2| |#1| (-623 |#1|))) (-15 -3786 ((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#2| (-1069)))) (-3378 (((-112) $) NIL (|has| |#2| (-130)))) (-2065 (($ (-895)) NIL (|has| |#2| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) NIL (|has| |#2| (-771)))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#2| (-361)))) (-4303 (((-550) $) NIL (|has| |#2| (-823)))) (-2409 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1069)))) (-2202 (((-550) $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) ((|#2| $) NIL (|has| |#2| (-1069)))) (-3756 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1021)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL (|has| |#2| (-1021))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1021)))) (-1537 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-1864 (($) NIL (|has| |#2| (-361)))) (-3317 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ (-550)) NIL)) (-2694 (((-112) $) NIL (|has| |#2| (-823)))) (-2971 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (|has| |#2| (-705)))) (-1712 (((-112) $) NIL (|has| |#2| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2876 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3311 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#2| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#2| (-1069)))) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#2| (-361)))) (-3445 (((-1089) $) NIL (|has| |#2| (-1069)))) (-3858 ((|#2| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-3451 ((|#2| $ $) NIL (|has| |#2| (-1021)))) (-1422 (($ (-1228 |#2|)) NIL)) (-1877 (((-133)) NIL (|has| |#2| (-356)))) (-2798 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-3457 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#2|) $) NIL) (($ (-550)) NIL (-1489 (-12 (|has| |#2| (-1012 (-550))) (|has| |#2| (-1069))) (|has| |#2| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1012 (-400 (-550)))) (|has| |#2| (-1069)))) (($ |#2|) NIL (|has| |#2| (-1069))) (((-837) $) NIL (|has| |#2| (-595 (-837))))) (-3091 (((-749)) NIL (|has| |#2| (-1021)))) (-3404 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#2| (-823)))) (-2688 (($) NIL (|has| |#2| (-130)) CONST)) (-2700 (($) NIL (|has| |#2| (-705)) CONST)) (-1901 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#2| (-874 (-1145))) (|has| |#2| (-1021)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1021))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1021)))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2264 (((-112) $ $) NIL (|has| |#2| (-1069)))) (-2313 (((-112) $ $) NIL (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2290 (((-112) $ $) 11 (-1489 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $ $) NIL (|has| |#2| (-1021))) (($ $) NIL (|has| |#2| (-1021)))) (-2358 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-895)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1021))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-793 |#1| |#2| |#3|) (-232 |#1| |#2|) (-749) (-771) (-1 (-112) (-1228 |#2|) (-1228 |#2|))) (T -793)) +((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2735 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1009))))) +(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2735 ((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2736 (((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)) 19))) +(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934)) (-636 |#2|)) (T -779)) +((-2736 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-4 *4 (-13 (-29 *6) (-1169) (-934))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-636 *4))))) +(-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)))) +((-3931 (((-3 |#2| #1="failed") |#2| (-113) (-286 |#2|) (-620 |#2|)) 28) (((-3 |#2| #1#) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #2="failed") |#2| (-113) (-1147)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #2#) (-286 |#2|) (-113) (-1147)) 18) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147)) 24) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147)) 26) (((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147)) 37) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147)) 35))) +(((-780 |#1| |#2|) (-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147))) (-15 -3931 ((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1#) |#2| (-113) (-1147))) (-15 -3931 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -3931 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-620 |#2|)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -780)) +((-3931 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-780 *6 *2)))) (-3931 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-5 *1 (-780 *6 *2)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-620 *3))) *3 #1="failed")) (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1169) (-934))))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-620 *7))) *7 #1#)) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1147)) (-4 *6 (-13 (-29 *5) (-1169) (-934))) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-1229 *6))) (-5 *1 (-780 *5 *6)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)) (-5 *4 (-1229 *7))))) +(-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147))) (-15 -3931 ((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1#) |#2| (-113) (-1147))) (-15 -3931 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -3931 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-620 |#2|)))) +((-2737 (($) 9)) (-2741 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-2739 (((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-3965 (($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2740 (($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2738 (((-1235)) 12))) +(((-781) (-10 -8 (-15 -2737 ($)) (-15 -2738 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2740 ($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2741 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -781)) +((-2741 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-781)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-781)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-781)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-781)))) (-2738 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-781)))) (-2737 (*1 *1) (-5 *1 (-781)))) +(-10 -8 (-15 -2737 ($)) (-15 -2738 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2740 ($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2741 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-3819 ((|#2| |#2| (-1147)) 16)) (-2742 ((|#2| |#2| (-1147)) 51)) (-2743 (((-1 |#2| |#2|) (-1147)) 11))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3819 (|#2| |#2| (-1147))) (-15 -2742 (|#2| |#2| (-1147))) (-15 -2743 ((-1 |#2| |#2|) (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -782)) +((-2743 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) (-4 *5 (-13 (-29 *4) (-1169) (-934))))) (-2742 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934))))) (-3819 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934)))))) +(-10 -7 (-15 -3819 (|#2| |#2| (-1147))) (-15 -2742 (|#2| |#2| (-1147))) (-15 -2743 ((-1 |#2| |#2|) (-1147)))) +((-3931 (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371)) 116) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371)) 117) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371)) 119) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371)) 120) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371)) 121) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371))) 122) (((-1009) (-786) (-1035)) 108) (((-1009) (-786)) 109)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035)) 75) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786)) 77))) +(((-783) (-10 -7 (-15 -3931 ((-1009) (-786))) (-15 -3931 ((-1009) (-786) (-1035))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035))))) (T -783)) +((-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-783)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783))))) +(-10 -7 (-15 -3931 ((-1009) (-786))) (-15 -3931 ((-1009) (-786) (-1035))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035)))) +((-2744 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|) 35))) +(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|))) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -784)) +((-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-633 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-784 *5 *6 *7 *4))))) +(-10 -7 (-15 -2744 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|))) +((-4096 (((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))) 52)) (-2746 (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|) 60) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|) 59) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|) 20) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|) 21)) (-2747 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2745 ((|#2| |#3| (-620 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90))) +(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2745 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2745 (|#2| |#3| (-620 (-400 |#2|)))) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|)) (-15 -2747 (|#2| |#3| |#1|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|)) (-15 -2747 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-400 (-536)))) (-1205 |#1|) (-636 |#2|) (-636 (-400 |#2|))) (T -785)) +((-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-2 (|:| -3612 *7) (|:| |rh| (-620 (-400 *6))))) (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-620 (-400 *6))) (-4 *7 (-636 *6)) (-4 *3 (-636 (-400 *6))))) (-2747 (*1 *2 *3 *4) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-636 *2)) (-4 *3 (-636 (-400 *2))))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-636 *4)) (-4 *3 (-636 (-400 *4))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 (-400 *5))))) (-2747 (*1 *2 *3 *4) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-400 *2))))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-636 *4)) (-4 *6 (-636 (-400 *4))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *6 (-636 (-400 *2))))) (-2745 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *6 (-636 *4))))) +(-10 -7 (-15 -2745 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2745 (|#2| |#3| (-620 (-400 |#2|)))) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|)) (-15 -2747 (|#2| |#3| |#1|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|)) (-15 -2747 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))))) +((-2893 (((-112) $ $) NIL)) (-3502 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-3382 (((-112) $ $) NIL))) +(((-786) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -786)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-786)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $)))) +((-2755 (((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|)) 118)) (-2756 (((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|)) 46)) (-2749 (((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|) 95)) (-2748 ((|#2| |#3|) 37)) (-2750 (((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|)) 82)) (-2751 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2748 (|#2| |#3|)) (-15 -2749 ((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|)) (-15 -2750 ((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2751 (|#3| |#3| |#2|)) (-15 -2751 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-400 (-536)))) (-1205 |#1|) (-636 |#2|) (-636 (-400 |#2|))) (T -787)) +((-2751 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3)))) (-2751 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-1205 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-400 *3))))) (-2755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-620 *7) *7 (-1141 *7))) (-5 *5 (-1 (-398 *7) *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |frac| (-400 *7)) (|:| -3612 *3)))) (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-400 *7))))) (-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4306 *5) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -3612 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) (-2748 (*1 *2 *3) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-400 *2)))))) +(-10 -7 (-15 -2748 (|#2| |#3|)) (-15 -2749 ((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|)) (-15 -2750 ((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2751 (|#3| |#3| |#2|)) (-15 -2751 (|#3| |#3| (-400 |#2|)))) +((-2752 (((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|)) 113)) (-2753 ((|#2| (-634 |#2| (-400 |#2|))) 80) ((|#2| (-633 (-400 |#2|))) 83))) +(((-788 |#1| |#2|) (-10 -7 (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2753 (|#2| (-633 (-400 |#2|)))) (-15 -2753 (|#2| (-634 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -788)) +((-2753 (*1 *2 *3) (-12 (-5 *3 (-634 *2 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-633 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-788 *5 *6)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-788 *5 *6))))) +(-10 -7 (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2753 (|#2| (-633 (-400 |#2|)))) (-15 -2753 (|#2| (-634 |#2| (-400 |#2|))))) +((-2754 (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|) 48))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2754 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|))) (-356) (-636 |#1|) (-1205 |#1|) (-703 |#1| |#3|) (-636 |#4|)) (T -789)) +((-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1205 *5)) (-4 *4 (-703 *5 *7)) (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) +(-10 -7 (-15 -2754 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|))) +((-2755 (((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 47)) (-2757 (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-633 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 38) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 39) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 36) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 37)) (-2756 (((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 83))) +(((-790 |#1| |#2|) (-10 -7 (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -790)) +((-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-634 *5 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-633 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 (-634 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6))))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |frac| (-400 *6)) (|:| -3612 (-634 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6))))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *7 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-633 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6))))) +(-10 -7 (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) +((-2758 (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|)) 85) (((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|)) 15)) (-2759 (((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)) 92)) (-3931 (((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|)) 43))) +(((-791 |#1| |#2|) (-10 -7 (-15 -2758 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|))) (-15 -2758 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|))) (-15 -2759 ((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)))) (-356) (-636 |#1|)) (T -791)) +((-2759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-620 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *6) "failed")) (|:| -2123 (-620 (-1229 *6))))) (-5 *1 (-791 *6 *7)) (-5 *4 (-1229 *6)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-620 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-1229 *6)) (|:| -2123 (-667 *6)))) (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *6)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-636 *5)) (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *5)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-667 *5)) (|:| |eqs| (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5)) (|:| -3612 *6) (|:| |rh| *5)))))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *6 (-636 *5))))) +(-10 -7 (-15 -2758 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|))) (-15 -2758 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|))) (-15 -2759 ((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)))) +((-2760 (((-667 |#1|) (-620 |#1|) (-749)) 13) (((-667 |#1|) (-620 |#1|)) 14)) (-2761 (((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|)) 34)) (-3694 (((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)) 42))) +(((-792 |#1| |#2|) (-10 -7 (-15 -2760 ((-667 |#1|) (-620 |#1|))) (-15 -2760 ((-667 |#1|) (-620 |#1|) (-749))) (-15 -2761 ((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|))) (-15 -3694 ((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)))) (-356) (-636 |#1|)) (T -792)) +((-3694 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-620 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-792 *2 *3)) (-4 *3 (-636 *2)))) (-2761 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-1229 *4)) (-5 *1 (-792 *4 *3)) (-4 *3 (-636 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-636 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) (-4 *5 (-636 *4))))) +(-10 -7 (-15 -2760 ((-667 |#1|) (-620 |#1|))) (-15 -2760 ((-667 |#1|) (-620 |#1|) (-749))) (-15 -2761 ((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|))) (-15 -3694 ((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)))) +((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) NIL (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) NIL (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) NIL)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) NIL (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) NIL (|has| |#2| (-130)) CONST)) (-2992 (($) NIL (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 11 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-793 |#1| |#2| |#3|) (-232 |#1| |#2|) (-749) (-771) (-1 (-112) (-1229 |#2|) (-1229 |#2|))) (T -793)) NIL (-232 |#1| |#2|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3312 (((-623 (-749)) $) NIL) (((-623 (-749)) $ (-1145)) NIL)) (-3609 (((-749) $) NIL) (((-749) $ (-1145)) NIL)) (-1516 (((-623 (-796 (-1145))) $) NIL)) (-1705 (((-1141 $) $ (-796 (-1145))) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-796 (-1145)))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2703 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-796 (-1145)) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL) (((-3 (-1094 |#1| (-1145)) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-796 (-1145)) $) NIL) (((-1145) $) NIL) (((-1094 |#1| (-1145)) $) NIL)) (-1792 (($ $ $ (-796 (-1145))) NIL (|has| |#1| (-170)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1145))) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-522 (-796 (-1145))) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-796 (-1145)) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-796 (-1145)) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ (-1145)) NIL) (((-749) $) NIL)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#1|) (-796 (-1145))) NIL) (($ (-1141 $) (-796 (-1145))) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-522 (-796 (-1145)))) NIL) (($ $ (-796 (-1145)) (-749)) NIL) (($ $ (-623 (-796 (-1145))) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-796 (-1145))) NIL)) (-3346 (((-522 (-796 (-1145))) $) NIL) (((-749) $ (-796 (-1145))) NIL) (((-623 (-749)) $ (-623 (-796 (-1145)))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 (-796 (-1145))) (-522 (-796 (-1145)))) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2136 (((-1 $ (-749)) (-1145)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-4059 (((-3 (-796 (-1145)) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3968 (((-796 (-1145)) $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-1395 (((-112) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-796 (-1145))) (|:| -3068 (-749))) "failed") $) NIL)) (-3888 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-796 (-1145)) |#1|) NIL) (($ $ (-623 (-796 (-1145))) (-623 |#1|)) NIL) (($ $ (-796 (-1145)) $) NIL) (($ $ (-623 (-796 (-1145))) (-623 $)) NIL) (($ $ (-1145) $) NIL (|has| |#1| (-227))) (($ $ (-623 (-1145)) (-623 $)) NIL (|has| |#1| (-227))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3563 (($ $ (-796 (-1145))) NIL (|has| |#1| (-170)))) (-2798 (($ $ (-796 (-1145))) NIL) (($ $ (-623 (-796 (-1145)))) NIL) (($ $ (-796 (-1145)) (-749)) NIL) (($ $ (-623 (-796 (-1145))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4019 (((-623 (-1145)) $) NIL)) (-3661 (((-522 (-796 (-1145))) $) NIL) (((-749) $ (-796 (-1145))) NIL) (((-623 (-749)) $ (-623 (-796 (-1145)))) NIL) (((-749) $ (-1145)) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-796 (-1145)) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-796 (-1145)) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-796 (-1145)) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1145))) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-796 (-1145))) NIL) (($ (-1145)) NIL) (($ (-1094 |#1| (-1145))) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-522 (-796 (-1145)))) NIL) (($ $ (-796 (-1145)) (-749)) NIL) (($ $ (-623 (-796 (-1145))) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-796 (-1145))) NIL) (($ $ (-623 (-796 (-1145)))) NIL) (($ $ (-796 (-1145)) (-749)) NIL) (($ $ (-623 (-796 (-1145))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-246 |#1| (-1145) (-796 (-1145)) (-522 (-796 (-1145)))) (-1012 (-1094 |#1| (-1145)))) (-1021)) (T -794)) -NIL -(-13 (-246 |#1| (-1145) (-796 (-1145)) (-522 (-796 (-1145)))) (-1012 (-1094 |#1| (-1145)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-3050 (($ $) NIL (|has| |#2| (-356)))) (-3953 (((-112) $) NIL (|has| |#2| (-356)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#2| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-356)))) (-1611 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL (|has| |#2| (-356)))) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#2| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#2| (-356)))) (-1568 (((-112) $) NIL (|has| |#2| (-356)))) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-3231 (($ (-623 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 20 (|has| |#2| (-356)))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#2| (-356)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-1988 (((-749) $) NIL (|has| |#2| (-356)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-356)))) (-2798 (($ $ (-749)) NIL) (($ $) 13)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-550))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) 15 (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL) (($ $ (-550)) 18 (|has| |#2| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-550)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-550))) NIL (|has| |#2| (-356))))) -(((-795 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -2233 ($ |#2|)) (-15 -2233 (|#2| $)))) (-1069) (-874 |#1|) |#1|) (T -795)) -((-2233 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-874 *3)))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1069)) (-14 *4 *3)))) -(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -2233 ($ |#2|)) (-15 -2233 (|#2| $)))) -((-2221 (((-112) $ $) NIL)) (-3609 (((-749) $) NIL)) (-2564 ((|#1| $) 10)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2603 (((-749) $) 11)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2136 (($ |#1| (-749)) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2798 (($ $) NIL) (($ $ (-749)) NIL)) (-2233 (((-837) $) NIL) (($ |#1|) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ (-1147)) NIL)) (-1572 (((-749) $) NIL) (((-749) $ (-1147)) NIL)) (-3412 (((-620 (-796 (-1147))) $) NIL)) (-3414 (((-1141 $) $ (-796 (-1147))) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-796 (-1147)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-796 (-1147)) #2#) $) NIL) (((-3 (-1147) #2#) $) NIL) (((-3 (-1096 |#1| (-1147)) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-796 (-1147)) $) NIL) (((-1147) $) NIL) (((-1096 |#1| (-1147)) $) NIL)) (-4111 (($ $ $ (-796 (-1147))) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1147))) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-796 (-1147))) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-796 (-1147)) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-796 (-1147)) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-796 (-1147))) NIL) (($ (-1141 $) (-796 (-1147))) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-796 (-1147))) NIL)) (-3148 (((-522 (-796 (-1147))) $) NIL) (((-749) $ (-796 (-1147))) NIL) (((-620 (-749)) $ (-620 (-796 (-1147)))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-796 (-1147))) (-522 (-796 (-1147)))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) (-1147)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 (-796 (-1147)) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 (((-796 (-1147)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-796 (-1147))) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-796 (-1147)) |#1|) NIL) (($ $ (-620 (-796 (-1147))) (-620 |#1|)) NIL) (($ $ (-796 (-1147)) $) NIL) (($ $ (-620 (-796 (-1147))) (-620 $)) NIL) (($ $ (-1147) $) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 $)) NIL (|has| |#1| (-227))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ (-796 (-1147))) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-796 (-1147))) NIL) (($ $ (-620 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 (-1147)) $) NIL)) (-4302 (((-522 (-796 (-1147))) $) NIL) (((-749) $ (-796 (-1147))) NIL) (((-620 (-749)) $ (-620 (-796 (-1147)))) NIL) (((-749) $ (-1147)) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1147))) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-796 (-1147))) NIL) (($ (-1147)) NIL) (($ (-1096 |#1| (-1147))) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-796 (-1147))) NIL) (($ $ (-620 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-794 |#1|) (-13 (-246 |#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) (-1012 (-1096 |#1| (-1147)))) (-1023)) (T -794)) +NIL +(-13 (-246 |#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) (-1012 (-1096 |#1| (-1147)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2173 (($ $) NIL (|has| |#2| (-356)))) (-2171 (((-112) $) NIL (|has| |#2| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#2| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#2| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#2| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#2| (-356)))) (-4081 (((-112) $) NIL (|has| |#2| (-356)))) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-2008 (($ (-620 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 20 (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-1699 (((-749) $) NIL (|has| |#2| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-4165 (($ $ (-749)) NIL) (($ $) 13)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-536))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) 15 (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL) (($ $ (-536)) 18 (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-536)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-536))) NIL (|has| |#2| (-356))))) +(((-795 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4312 ($ |#2|)) (-15 -4312 (|#2| $)))) (-1072) (-874 |#1|) |#1|) (T -795)) +((-4312 (*1 *1 *2) (-12 (-4 *3 (-1072)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-874 *3)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1072)) (-14 *4 *3)))) +(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4312 ($ |#2|)) (-15 -4312 (|#2| $)))) +((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) NIL)) (-4186 ((|#1| $) 10)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4126 (((-749) $) 11)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1573 (($ |#1| (-749)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL))) (((-796 |#1|) (-259 |#1|) (-825)) (T -796)) NIL (-259 |#1|) -((-2221 (((-112) $ $) NIL)) (-3016 (((-623 |#1|) $) 29)) (-3828 (((-749) $) NIL)) (-2991 (($) NIL T CONST)) (-3134 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-3870 (($ $) 31)) (-1537 (((-3 $ "failed") $) NIL)) (-2587 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2419 (((-112) $) NIL)) (-3325 ((|#1| $ (-550)) NIL)) (-3062 (((-749) $ (-550)) NIL)) (-2481 (($ $) 36)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-1676 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2526 (((-112) $ $) 34)) (-3839 (((-749) $) 25)) (-2369 (((-1127) $) NIL)) (-4170 (($ $ $) NIL)) (-2749 (($ $ $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 ((|#1| $) 30)) (-1610 (((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $) NIL)) (-3419 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2233 (((-837) $) NIL) (($ |#1|) NIL)) (-2700 (($) 15 T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 35)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-797 |#1|) (-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -3858 (|#1| $)) (-15 -3870 ($ $)) (-15 -2481 ($ $)) (-15 -2526 ((-112) $ $)) (-15 -2749 ($ $ $)) (-15 -4170 ($ $ $)) (-15 -1676 ((-3 $ "failed") $ $)) (-15 -3134 ((-3 $ "failed") $ $)) (-15 -1676 ((-3 $ "failed") $ |#1|)) (-15 -3134 ((-3 $ "failed") $ |#1|)) (-15 -3419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2587 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3828 ((-749) $)) (-15 -3062 ((-749) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $)) (-15 -3839 ((-749) $)) (-15 -3016 ((-623 |#1|) $)))) (-825)) (T -797)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3858 (*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2526 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2749 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4170 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1676 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3134 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1676 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3134 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3419 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2587 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-749))))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -3858 (|#1| $)) (-15 -3870 ($ $)) (-15 -2481 ($ $)) (-15 -2526 ((-112) $ $)) (-15 -2749 ($ $ $)) (-15 -4170 ($ $ $)) (-15 -1676 ((-3 $ "failed") $ $)) (-15 -3134 ((-3 $ "failed") $ $)) (-15 -1676 ((-3 $ "failed") $ |#1|)) (-15 -3134 ((-3 $ "failed") $ |#1|)) (-15 -3419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2587 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3828 ((-749) $)) (-15 -3062 ((-749) $ (-550))) (-15 -3325 (|#1| $ (-550))) (-15 -1610 ((-623 (-2 (|:| |gen| |#1|) (|:| -1644 (-749)))) $)) (-15 -3839 ((-749) $)) (-15 -3016 ((-623 |#1|) $)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-4303 (((-550) $) 51)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2694 (((-112) $) 49)) (-2419 (((-112) $) 30)) (-1712 (((-112) $) 50)) (-2793 (($ $ $) 48)) (-2173 (($ $ $) 47)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ $) 40)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-4188 (($ $) 52)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 45)) (-2302 (((-112) $ $) 44)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 46)) (-2290 (((-112) $ $) 43)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 29)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-4294 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4153 (($ $) 31)) (-3816 (((-3 $ "failed") $) NIL)) (-2765 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2497 (((-112) $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-749) $ (-536)) NIL)) (-4291 (($ $) 36)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4295 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2768 (((-112) $ $) 34)) (-4188 (((-749) $) 25)) (-3588 (((-1129) $) NIL)) (-2766 (($ $ $) NIL)) (-2767 (($ $ $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) 30)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) NIL)) (-2890 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2992 (($) 15 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-797 |#1|) (-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4155 (|#1| $)) (-15 -4153 ($ $)) (-15 -4291 ($ $)) (-15 -2768 ((-112) $ $)) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -4295 ((-3 $ "failed") $ |#1|)) (-15 -4294 ((-3 $ "failed") $ |#1|)) (-15 -2890 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -4188 ((-749) $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -797)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2767 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4295 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4294 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4295 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4294 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2890 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2765 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4155 (|#1| $)) (-15 -4153 ($ $)) (-15 -4291 ($ $)) (-15 -2768 ((-112) $ $)) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -4295 ((-3 $ "failed") $ |#1|)) (-15 -4294 ((-3 $ "failed") $ |#1|)) (-15 -2890 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -4188 ((-749) $)) (-15 -4289 ((-620 |#1|) $)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3981 (((-536) $) 51)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-3532 (((-112) $) 49)) (-2497 (((-112) $) 30)) (-3533 (((-112) $) 50)) (-3672 (($ $ $) 48)) (-3673 (($ $ $) 47)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 52)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 45)) (-2892 (((-112) $ $) 44)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 46)) (-3013 (((-112) $ $) 43)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-798) (-138)) (T -798)) NIL -(-13 (-542) (-823)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-4236 (($ (-1089)) 7)) (-2701 (((-112) $ (-1127) (-1089)) 15)) (-4112 (((-800) $) 12)) (-1992 (((-800) $) 11)) (-4200 (((-1233) $) 9)) (-2454 (((-112) $ (-1089)) 16))) -(((-799) (-10 -8 (-15 -4236 ($ (-1089))) (-15 -4200 ((-1233) $)) (-15 -1992 ((-800) $)) (-15 -4112 ((-800) $)) (-15 -2701 ((-112) $ (-1127) (-1089))) (-15 -2454 ((-112) $ (-1089))))) (T -799)) -((-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-112)) (-5 *1 (-799)))) (-2701 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-1089)) (-5 *2 (-112)) (-5 *1 (-799)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-799)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-799))))) -(-10 -8 (-15 -4236 ($ (-1089))) (-15 -4200 ((-1233) $)) (-15 -1992 ((-800) $)) (-15 -4112 ((-800) $)) (-15 -2701 ((-112) $ (-1127) (-1089))) (-15 -2454 ((-112) $ (-1089)))) -((-2630 (((-1233) $ (-801)) 12)) (-2064 (((-1233) $ (-1145)) 32)) (-1348 (((-1233) $ (-1127) (-1127)) 34)) (-1704 (((-1233) $ (-1127)) 33)) (-3621 (((-1233) $) 19)) (-3894 (((-1233) $ (-550)) 28)) (-3663 (((-1233) $ (-219)) 30)) (-4033 (((-1233) $) 18)) (-2347 (((-1233) $) 26)) (-3675 (((-1233) $) 25)) (-3797 (((-1233) $) 23)) (-3815 (((-1233) $) 24)) (-4234 (((-1233) $) 22)) (-1550 (((-1233) $) 21)) (-3252 (((-1233) $) 20)) (-2848 (((-1233) $) 16)) (-2309 (((-1233) $) 17)) (-2137 (((-1233) $) 15)) (-3782 (((-1233) $) 14)) (-4125 (((-1233) $) 13)) (-3775 (($ (-1127) (-801)) 9)) (-3999 (($ (-1127) (-1127) (-801)) 8)) (-4134 (((-1145) $) 51)) (-2984 (((-1145) $) 55)) (-2492 (((-2 (|:| |cd| (-1127)) (|:| -1856 (-1127))) $) 54)) (-3793 (((-1127) $) 52)) (-2291 (((-1233) $) 41)) (-3040 (((-550) $) 49)) (-2566 (((-219) $) 50)) (-2655 (((-1233) $) 40)) (-3299 (((-1233) $) 48)) (-1466 (((-1233) $) 47)) (-3276 (((-1233) $) 45)) (-3034 (((-1233) $) 46)) (-1719 (((-1233) $) 44)) (-3735 (((-1233) $) 43)) (-3942 (((-1233) $) 42)) (-3005 (((-1233) $) 38)) (-3972 (((-1233) $) 39)) (-3874 (((-1233) $) 37)) (-1820 (((-1233) $) 36)) (-3168 (((-1233) $) 35)) (-2286 (((-1233) $) 11))) -(((-800) (-10 -8 (-15 -3999 ($ (-1127) (-1127) (-801))) (-15 -3775 ($ (-1127) (-801))) (-15 -2286 ((-1233) $)) (-15 -2630 ((-1233) $ (-801))) (-15 -4125 ((-1233) $)) (-15 -3782 ((-1233) $)) (-15 -2137 ((-1233) $)) (-15 -2848 ((-1233) $)) (-15 -2309 ((-1233) $)) (-15 -4033 ((-1233) $)) (-15 -3621 ((-1233) $)) (-15 -3252 ((-1233) $)) (-15 -1550 ((-1233) $)) (-15 -4234 ((-1233) $)) (-15 -3797 ((-1233) $)) (-15 -3815 ((-1233) $)) (-15 -3675 ((-1233) $)) (-15 -2347 ((-1233) $)) (-15 -3894 ((-1233) $ (-550))) (-15 -3663 ((-1233) $ (-219))) (-15 -2064 ((-1233) $ (-1145))) (-15 -1704 ((-1233) $ (-1127))) (-15 -1348 ((-1233) $ (-1127) (-1127))) (-15 -3168 ((-1233) $)) (-15 -1820 ((-1233) $)) (-15 -3874 ((-1233) $)) (-15 -3005 ((-1233) $)) (-15 -3972 ((-1233) $)) (-15 -2655 ((-1233) $)) (-15 -2291 ((-1233) $)) (-15 -3942 ((-1233) $)) (-15 -3735 ((-1233) $)) (-15 -1719 ((-1233) $)) (-15 -3276 ((-1233) $)) (-15 -3034 ((-1233) $)) (-15 -1466 ((-1233) $)) (-15 -3299 ((-1233) $)) (-15 -3040 ((-550) $)) (-15 -2566 ((-219) $)) (-15 -4134 ((-1145) $)) (-15 -3793 ((-1127) $)) (-15 -2492 ((-2 (|:| |cd| (-1127)) (|:| -1856 (-1127))) $)) (-15 -2984 ((-1145) $)))) (T -800)) -((-2984 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-800)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1127)) (|:| -1856 (-1127)))) (-5 *1 (-800)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-800)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-800)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-800)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-800)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-1348 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-1704 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-3663 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-4234 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-2630 (*1 *2 *1 *3) (-12 (-5 *3 (-801)) (-5 *2 (-1233)) (-5 *1 (-800)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800)))) (-3775 (*1 *1 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-801)) (-5 *1 (-800)))) (-3999 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-801)) (-5 *1 (-800))))) -(-10 -8 (-15 -3999 ($ (-1127) (-1127) (-801))) (-15 -3775 ($ (-1127) (-801))) (-15 -2286 ((-1233) $)) (-15 -2630 ((-1233) $ (-801))) (-15 -4125 ((-1233) $)) (-15 -3782 ((-1233) $)) (-15 -2137 ((-1233) $)) (-15 -2848 ((-1233) $)) (-15 -2309 ((-1233) $)) (-15 -4033 ((-1233) $)) (-15 -3621 ((-1233) $)) (-15 -3252 ((-1233) $)) (-15 -1550 ((-1233) $)) (-15 -4234 ((-1233) $)) (-15 -3797 ((-1233) $)) (-15 -3815 ((-1233) $)) (-15 -3675 ((-1233) $)) (-15 -2347 ((-1233) $)) (-15 -3894 ((-1233) $ (-550))) (-15 -3663 ((-1233) $ (-219))) (-15 -2064 ((-1233) $ (-1145))) (-15 -1704 ((-1233) $ (-1127))) (-15 -1348 ((-1233) $ (-1127) (-1127))) (-15 -3168 ((-1233) $)) (-15 -1820 ((-1233) $)) (-15 -3874 ((-1233) $)) (-15 -3005 ((-1233) $)) (-15 -3972 ((-1233) $)) (-15 -2655 ((-1233) $)) (-15 -2291 ((-1233) $)) (-15 -3942 ((-1233) $)) (-15 -3735 ((-1233) $)) (-15 -1719 ((-1233) $)) (-15 -3276 ((-1233) $)) (-15 -3034 ((-1233) $)) (-15 -1466 ((-1233) $)) (-15 -3299 ((-1233) $)) (-15 -3040 ((-550) $)) (-15 -2566 ((-219) $)) (-15 -4134 ((-1145) $)) (-15 -3793 ((-1127) $)) (-15 -2492 ((-2 (|:| |cd| (-1127)) (|:| -1856 (-1127))) $)) (-15 -2984 ((-1145) $))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 12)) (-4317 (($) 15)) (-2917 (($) 13)) (-1463 (($) 16)) (-1596 (($) 14)) (-2264 (((-112) $ $) 8))) -(((-801) (-13 (-1069) (-10 -8 (-15 -2917 ($)) (-15 -4317 ($)) (-15 -1463 ($)) (-15 -1596 ($))))) (T -801)) -((-2917 (*1 *1) (-5 *1 (-801))) (-4317 (*1 *1) (-5 *1 (-801))) (-1463 (*1 *1) (-5 *1 (-801))) (-1596 (*1 *1) (-5 *1 (-801)))) -(-13 (-1069) (-10 -8 (-15 -2917 ($)) (-15 -4317 ($)) (-15 -1463 ($)) (-15 -1596 ($)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21) (($ (-1145)) 17)) (-2508 (((-112) $) 10)) (-3929 (((-112) $) 9)) (-2949 (((-112) $) 11)) (-3512 (((-112) $) 8)) (-2264 (((-112) $ $) 19))) -(((-802) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-1145))) (-15 -3512 ((-112) $)) (-15 -3929 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -2949 ((-112) $))))) (T -802)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-802)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-1145))) (-15 -3512 ((-112) $)) (-15 -3929 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -2949 ((-112) $)))) -((-2221 (((-112) $ $) NIL)) (-2571 (($ (-802) (-623 (-1145))) 24)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3767 (((-802) $) 25)) (-4058 (((-623 (-1145)) $) 26)) (-2233 (((-837) $) 23)) (-2264 (((-112) $ $) NIL))) -(((-803) (-13 (-1069) (-10 -8 (-15 -3767 ((-802) $)) (-15 -4058 ((-623 (-1145)) $)) (-15 -2571 ($ (-802) (-623 (-1145))))))) (T -803)) -((-3767 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-803)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-803)))) (-2571 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-623 (-1145))) (-5 *1 (-803))))) -(-13 (-1069) (-10 -8 (-15 -3767 ((-802) $)) (-15 -4058 ((-623 (-1145)) $)) (-15 -2571 ($ (-802) (-623 (-1145)))))) -((-3145 (((-1233) (-800) (-309 |#1|) (-112)) 23) (((-1233) (-800) (-309 |#1|)) 79) (((-1127) (-309 |#1|) (-112)) 78) (((-1127) (-309 |#1|)) 77))) -(((-804 |#1|) (-10 -7 (-15 -3145 ((-1127) (-309 |#1|))) (-15 -3145 ((-1127) (-309 |#1|) (-112))) (-15 -3145 ((-1233) (-800) (-309 |#1|))) (-15 -3145 ((-1233) (-800) (-309 |#1|) (-112)))) (-13 (-806) (-825) (-1021))) (T -804)) -((-3145 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-806) (-825) (-1021))) (-5 *2 (-1233)) (-5 *1 (-804 *6)))) (-3145 (*1 *2 *3 *4) (-12 (-5 *3 (-800)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-806) (-825) (-1021))) (-5 *2 (-1233)) (-5 *1 (-804 *5)))) (-3145 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-806) (-825) (-1021))) (-5 *2 (-1127)) (-5 *1 (-804 *5)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-806) (-825) (-1021))) (-5 *2 (-1127)) (-5 *1 (-804 *4))))) -(-10 -7 (-15 -3145 ((-1127) (-309 |#1|))) (-15 -3145 ((-1127) (-309 |#1|) (-112))) (-15 -3145 ((-1233) (-800) (-309 |#1|))) (-15 -3145 ((-1233) (-800) (-309 |#1|) (-112)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2679 ((|#1| $) 10)) (-3985 (($ |#1|) 9)) (-2419 (((-112) $) NIL)) (-1488 (($ |#2| (-749)) NIL)) (-3346 (((-749) $) NIL)) (-1670 ((|#2| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2798 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3661 (((-749) $) NIL)) (-2233 (((-837) $) 17) (($ (-550)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-1708 ((|#2| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-805 |#1| |#2|) (-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -3985 ($ |#1|)) (-15 -2679 (|#1| $)))) (-687 |#2|) (-1021)) (T -805)) -((-3985 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-805 *2 *3)) (-4 *2 (-687 *3)))) (-2679 (*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-805 *2 *3)) (-4 *3 (-1021))))) -(-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -3985 ($ |#1|)) (-15 -2679 (|#1| $)))) -((-3145 (((-1233) (-800) $ (-112)) 9) (((-1233) (-800) $) 8) (((-1127) $ (-112)) 7) (((-1127) $) 6))) -(((-806) (-138)) (T -806)) -((-3145 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *4 (-112)) (-5 *2 (-1233)))) (-3145 (*1 *2 *3 *1) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *2 (-1233)))) (-3145 (*1 *2 *1 *3) (-12 (-4 *1 (-806)) (-5 *3 (-112)) (-5 *2 (-1127)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-806)) (-5 *2 (-1127))))) -(-13 (-10 -8 (-15 -3145 ((-1127) $)) (-15 -3145 ((-1127) $ (-112))) (-15 -3145 ((-1233) (-800) $)) (-15 -3145 ((-1233) (-800) $ (-112))))) -((-2040 (((-305) (-1127) (-1127)) 12)) (-4302 (((-112) (-1127) (-1127)) 34)) (-1737 (((-112) (-1127)) 33)) (-3287 (((-52) (-1127)) 25)) (-1791 (((-52) (-1127)) 23)) (-2200 (((-52) (-800)) 17)) (-2229 (((-623 (-1127)) (-1127)) 28)) (-2758 (((-623 (-1127))) 27))) -(((-807) (-10 -7 (-15 -2200 ((-52) (-800))) (-15 -1791 ((-52) (-1127))) (-15 -3287 ((-52) (-1127))) (-15 -2758 ((-623 (-1127)))) (-15 -2229 ((-623 (-1127)) (-1127))) (-15 -1737 ((-112) (-1127))) (-15 -4302 ((-112) (-1127) (-1127))) (-15 -2040 ((-305) (-1127) (-1127))))) (T -807)) -((-2040 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-807)))) (-4302 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-807)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2229 (*1 *2 *3) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-807)) (-5 *3 (-1127)))) (-2758 (*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-807)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-807)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-807)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-52)) (-5 *1 (-807))))) -(-10 -7 (-15 -2200 ((-52) (-800))) (-15 -1791 ((-52) (-1127))) (-15 -3287 ((-52) (-1127))) (-15 -2758 ((-623 (-1127)))) (-15 -2229 ((-623 (-1127)) (-1127))) (-15 -1737 ((-112) (-1127))) (-15 -4302 ((-112) (-1127) (-1127))) (-15 -2040 ((-305) (-1127) (-1127)))) -((-2221 (((-112) $ $) 19)) (-4045 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3029 (($ $ $) 72)) (-1952 (((-112) $ $) 73)) (-3368 (((-112) $ (-749)) 8)) (-2085 (($ (-623 |#1|)) 68) (($) 67)) (-3994 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-2599 (($ $) 62)) (-2708 (($ $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ |#1| $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) 64)) (-1445 (((-112) $ (-749)) 9)) (-2793 ((|#1| $) 78)) (-2299 (($ $ $) 81)) (-2441 (($ $ $) 80)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2173 ((|#1| $) 79)) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22)) (-4072 (($ $ $) 69)) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3445 (((-1089) $) 21)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3009 (((-623 (-2 (|:| -3859 |#1|) (|:| -3457 (-749)))) $) 61)) (-1287 (($ $ |#1|) 71) (($ $ $) 70)) (-3246 (($) 49) (($ (-623 |#1|)) 48)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 50)) (-2233 (((-837) $) 18)) (-1299 (($ (-623 |#1|)) 66) (($) 65)) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20)) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) +(-13 (-543) (-823)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2829 (((-1235) (-801) $ (-112)) 9) (((-1235) (-801) $) 8) (((-1129) $ (-112)) 7) (((-1129) $) 6))) +(((-799) (-138)) (T -799)) +((-2829 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *4 (-112)) (-5 *2 (-1235)))) (-2829 (*1 *2 *3 *1) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *2 (-1235)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *1 (-799)) (-5 *3 (-112)) (-5 *2 (-1129)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-799)) (-5 *2 (-1129))))) +(-13 (-10 -8 (-15 -2829 ((-1129) $)) (-15 -2829 ((-1129) $ (-112))) (-15 -2829 ((-1235) (-801) $)) (-15 -2829 ((-1235) (-801) $ (-112))))) +((-2769 (($ (-1091)) 7)) (-2773 (((-112) $ (-1129) (-1091)) 15)) (-2772 (((-801) $) 12)) (-2771 (((-801) $) 11)) (-2770 (((-1235) $) 9)) (-2774 (((-112) $ (-1091)) 16))) +(((-800) (-10 -8 (-15 -2769 ($ (-1091))) (-15 -2770 ((-1235) $)) (-15 -2771 ((-801) $)) (-15 -2772 ((-801) $)) (-15 -2773 ((-112) $ (-1129) (-1091))) (-15 -2774 ((-112) $ (-1091))))) (T -800)) +((-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-800)))) (-2773 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-800)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-800)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-800))))) +(-10 -8 (-15 -2769 ($ (-1091))) (-15 -2770 ((-1235) $)) (-15 -2771 ((-801) $)) (-15 -2772 ((-801) $)) (-15 -2773 ((-112) $ (-1129) (-1091))) (-15 -2774 ((-112) $ (-1091)))) +((-2778 (((-1235) $ (-802)) 12)) (-2795 (((-1235) $ (-1147)) 32)) (-2797 (((-1235) $ (-1129) (-1129)) 34)) (-2796 (((-1235) $ (-1129)) 33)) (-2785 (((-1235) $) 19)) (-2793 (((-1235) $ (-536)) 28)) (-2794 (((-1235) $ (-219)) 30)) (-2784 (((-1235) $) 18)) (-2792 (((-1235) $) 26)) (-2791 (((-1235) $) 25)) (-2789 (((-1235) $) 23)) (-2790 (((-1235) $) 24)) (-2788 (((-1235) $) 22)) (-2787 (((-1235) $) 21)) (-2786 (((-1235) $) 20)) (-2782 (((-1235) $) 16)) (-2783 (((-1235) $) 17)) (-2781 (((-1235) $) 15)) (-2780 (((-1235) $) 14)) (-2779 (((-1235) $) 13)) (-2776 (($ (-1129) (-802)) 9)) (-2775 (($ (-1129) (-1129) (-802)) 8)) (-2814 (((-1147) $) 51)) (-2817 (((-1147) $) 55)) (-2816 (((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $) 54)) (-2815 (((-1129) $) 52)) (-2804 (((-1235) $) 41)) (-2812 (((-536) $) 49)) (-2813 (((-219) $) 50)) (-2803 (((-1235) $) 40)) (-2811 (((-1235) $) 48)) (-2810 (((-1235) $) 47)) (-2808 (((-1235) $) 45)) (-2809 (((-1235) $) 46)) (-2807 (((-1235) $) 44)) (-2806 (((-1235) $) 43)) (-2805 (((-1235) $) 42)) (-2801 (((-1235) $) 38)) (-2802 (((-1235) $) 39)) (-2800 (((-1235) $) 37)) (-2799 (((-1235) $) 36)) (-2798 (((-1235) $) 35)) (-2777 (((-1235) $) 11))) +(((-801) (-10 -8 (-15 -2775 ($ (-1129) (-1129) (-802))) (-15 -2776 ($ (-1129) (-802))) (-15 -2777 ((-1235) $)) (-15 -2778 ((-1235) $ (-802))) (-15 -2779 ((-1235) $)) (-15 -2780 ((-1235) $)) (-15 -2781 ((-1235) $)) (-15 -2782 ((-1235) $)) (-15 -2783 ((-1235) $)) (-15 -2784 ((-1235) $)) (-15 -2785 ((-1235) $)) (-15 -2786 ((-1235) $)) (-15 -2787 ((-1235) $)) (-15 -2788 ((-1235) $)) (-15 -2789 ((-1235) $)) (-15 -2790 ((-1235) $)) (-15 -2791 ((-1235) $)) (-15 -2792 ((-1235) $)) (-15 -2793 ((-1235) $ (-536))) (-15 -2794 ((-1235) $ (-219))) (-15 -2795 ((-1235) $ (-1147))) (-15 -2796 ((-1235) $ (-1129))) (-15 -2797 ((-1235) $ (-1129) (-1129))) (-15 -2798 ((-1235) $)) (-15 -2799 ((-1235) $)) (-15 -2800 ((-1235) $)) (-15 -2801 ((-1235) $)) (-15 -2802 ((-1235) $)) (-15 -2803 ((-1235) $)) (-15 -2804 ((-1235) $)) (-15 -2805 ((-1235) $)) (-15 -2806 ((-1235) $)) (-15 -2807 ((-1235) $)) (-15 -2808 ((-1235) $)) (-15 -2809 ((-1235) $)) (-15 -2810 ((-1235) $)) (-15 -2811 ((-1235) $)) (-15 -2812 ((-536) $)) (-15 -2813 ((-219) $)) (-15 -2814 ((-1147) $)) (-15 -2815 ((-1129) $)) (-15 -2816 ((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $)) (-15 -2817 ((-1147) $)))) (T -801)) +((-2817 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1129)) (|:| -3900 (-1129)))) (-5 *1 (-801)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-801)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-801)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-801)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2795 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801)))) (-2775 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) +(-10 -8 (-15 -2775 ($ (-1129) (-1129) (-802))) (-15 -2776 ($ (-1129) (-802))) (-15 -2777 ((-1235) $)) (-15 -2778 ((-1235) $ (-802))) (-15 -2779 ((-1235) $)) (-15 -2780 ((-1235) $)) (-15 -2781 ((-1235) $)) (-15 -2782 ((-1235) $)) (-15 -2783 ((-1235) $)) (-15 -2784 ((-1235) $)) (-15 -2785 ((-1235) $)) (-15 -2786 ((-1235) $)) (-15 -2787 ((-1235) $)) (-15 -2788 ((-1235) $)) (-15 -2789 ((-1235) $)) (-15 -2790 ((-1235) $)) (-15 -2791 ((-1235) $)) (-15 -2792 ((-1235) $)) (-15 -2793 ((-1235) $ (-536))) (-15 -2794 ((-1235) $ (-219))) (-15 -2795 ((-1235) $ (-1147))) (-15 -2796 ((-1235) $ (-1129))) (-15 -2797 ((-1235) $ (-1129) (-1129))) (-15 -2798 ((-1235) $)) (-15 -2799 ((-1235) $)) (-15 -2800 ((-1235) $)) (-15 -2801 ((-1235) $)) (-15 -2802 ((-1235) $)) (-15 -2803 ((-1235) $)) (-15 -2804 ((-1235) $)) (-15 -2805 ((-1235) $)) (-15 -2806 ((-1235) $)) (-15 -2807 ((-1235) $)) (-15 -2808 ((-1235) $)) (-15 -2809 ((-1235) $)) (-15 -2810 ((-1235) $)) (-15 -2811 ((-1235) $)) (-15 -2812 ((-536) $)) (-15 -2813 ((-219) $)) (-15 -2814 ((-1147) $)) (-15 -2815 ((-1129) $)) (-15 -2816 ((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $)) (-15 -2817 ((-1147) $))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 12)) (-2820 (($) 15)) (-2821 (($) 13)) (-2819 (($) 16)) (-2818 (($) 14)) (-3382 (((-112) $ $) 8))) +(((-802) (-13 (-1072) (-10 -8 (-15 -2821 ($)) (-15 -2820 ($)) (-15 -2819 ($)) (-15 -2818 ($))))) (T -802)) +((-2821 (*1 *1) (-5 *1 (-802))) (-2820 (*1 *1) (-5 *1 (-802))) (-2819 (*1 *1) (-5 *1 (-802))) (-2818 (*1 *1) (-5 *1 (-802)))) +(-13 (-1072) (-10 -8 (-15 -2821 ($)) (-15 -2820 ($)) (-15 -2819 ($)) (-15 -2818 ($)))) +((-2893 (((-112) $ $) NIL)) (-2822 (($ (-804) (-620 (-1147))) 24)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2824 (((-804) $) 25)) (-2823 (((-620 (-1147)) $) 26)) (-4312 (((-838) $) 23)) (-3382 (((-112) $ $) NIL))) +(((-803) (-13 (-1072) (-10 -8 (-15 -2824 ((-804) $)) (-15 -2823 ((-620 (-1147)) $)) (-15 -2822 ($ (-804) (-620 (-1147))))))) (T -803)) +((-2824 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-803)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-803)))) (-2822 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-620 (-1147))) (-5 *1 (-803))))) +(-13 (-1072) (-10 -8 (-15 -2824 ((-804) $)) (-15 -2823 ((-620 (-1147)) $)) (-15 -2822 ($ (-804) (-620 (-1147)))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (($ (-1147)) 17)) (-2826 (((-112) $) 10)) (-2827 (((-112) $) 9)) (-2825 (((-112) $) 11)) (-2828 (((-112) $) 8)) (-3382 (((-112) $ $) 19))) +(((-804) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -2828 ((-112) $)) (-15 -2827 ((-112) $)) (-15 -2826 ((-112) $)) (-15 -2825 ((-112) $))))) (T -804)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-804)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -2828 ((-112) $)) (-15 -2827 ((-112) $)) (-15 -2826 ((-112) $)) (-15 -2825 ((-112) $)))) +((-2829 (((-1235) (-801) (-307 |#1|) (-112)) 23) (((-1235) (-801) (-307 |#1|)) 79) (((-1129) (-307 |#1|) (-112)) 78) (((-1129) (-307 |#1|)) 77))) +(((-805 |#1|) (-10 -7 (-15 -2829 ((-1129) (-307 |#1|))) (-15 -2829 ((-1129) (-307 |#1|) (-112))) (-15 -2829 ((-1235) (-801) (-307 |#1|))) (-15 -2829 ((-1235) (-801) (-307 |#1|) (-112)))) (-13 (-799) (-825) (-1023))) (T -805)) +((-2829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-801)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *5)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) (-5 *1 (-805 *5)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) (-5 *1 (-805 *4))))) +(-10 -7 (-15 -2829 ((-1129) (-307 |#1|))) (-15 -2829 ((-1129) (-307 |#1|) (-112))) (-15 -2829 ((-1235) (-801) (-307 |#1|))) (-15 -2829 ((-1235) (-801) (-307 |#1|) (-112)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2830 ((|#1| $) 10)) (-2831 (($ |#1|) 9)) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) NIL)) (-3148 (((-749) $) NIL)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-4302 (((-749) $) NIL)) (-4312 (((-838) $) 17) (($ (-536)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4035 ((|#2| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-806 |#1| |#2|) (-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2831 ($ |#1|)) (-15 -2830 (|#1| $)))) (-687 |#2|) (-1023)) (T -806)) +((-2831 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-806 *2 *3)) (-4 *2 (-687 *3)))) (-2830 (*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1023))))) +(-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2831 ($ |#1|)) (-15 -2830 (|#1| $)))) +((-2839 (((-304) (-1129) (-1129)) 12)) (-2838 (((-112) (-1129) (-1129)) 34)) (-2837 (((-112) (-1129)) 33)) (-2834 (((-51) (-1129)) 25)) (-2833 (((-51) (-1129)) 23)) (-2832 (((-51) (-801)) 17)) (-2836 (((-620 (-1129)) (-1129)) 28)) (-2835 (((-620 (-1129))) 27))) +(((-807) (-10 -7 (-15 -2832 ((-51) (-801))) (-15 -2833 ((-51) (-1129))) (-15 -2834 ((-51) (-1129))) (-15 -2835 ((-620 (-1129)))) (-15 -2836 ((-620 (-1129)) (-1129))) (-15 -2837 ((-112) (-1129))) (-15 -2838 ((-112) (-1129) (-1129))) (-15 -2839 ((-304) (-1129) (-1129))))) (T -807)) +((-2839 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-807)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2836 (*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)) (-5 *3 (-1129)))) (-2835 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-51)) (-5 *1 (-807))))) +(-10 -7 (-15 -2832 ((-51) (-801))) (-15 -2833 ((-51) (-1129))) (-15 -2834 ((-51) (-1129))) (-15 -2835 ((-620 (-1129)))) (-15 -2836 ((-620 (-1129)) (-1129))) (-15 -2837 ((-112) (-1129))) (-15 -2838 ((-112) (-1129) (-1129))) (-15 -2839 ((-304) (-1129) (-1129)))) +((-2893 (((-112) $ $) 19)) (-3580 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) 8)) (-3585 (($ (-620 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 64)) (-4077 (((-112) $ (-749)) 9)) (-3672 ((|#1| $) 78)) (-3187 (($ $ $) 81)) (-3867 (($ $ $) 80)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 79)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 69)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-3583 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18)) (-3586 (($ (-620 |#1|)) 66) (($) 65)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) (((-808 |#1|) (-138) (-825)) (T -808)) -((-2793 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825))))) -(-13 (-715 |t#1|) (-942 |t#1|) (-10 -8 (-15 -2793 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-673 |#1|) . T) ((-715 |#1|) . T) ((-942 |#1|) . T) ((-1067 |#1|) . T) ((-1069) . T) ((-1182) . T)) -((-1929 (((-1233) (-1089) (-1089)) 47)) (-3436 (((-1233) (-799) (-52)) 44)) (-1781 (((-52) (-799)) 16))) -(((-809) (-10 -7 (-15 -1781 ((-52) (-799))) (-15 -3436 ((-1233) (-799) (-52))) (-15 -1929 ((-1233) (-1089) (-1089))))) (T -809)) -((-1929 (*1 *2 *3 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1233)) (-5 *1 (-809)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-52)) (-5 *2 (-1233)) (-5 *1 (-809)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-52)) (-5 *1 (-809))))) -(-10 -7 (-15 -1781 ((-52) (-799))) (-15 -3436 ((-1233) (-799) (-52))) (-15 -1929 ((-1233) (-1089) (-1089)))) -((-2392 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)) 12) (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 13))) -(((-810 |#1| |#2|) (-10 -7 (-15 -2392 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))) (-15 -2392 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)))) (-1069) (-1069)) (T -810)) -((-2392 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *1 (-810 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))) -(-10 -7 (-15 -2392 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))) (-15 -2392 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL (|has| |#1| (-21)))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4303 (((-550) $) NIL (|has| |#1| (-823)))) (-2991 (($) NIL (|has| |#1| (-21)) CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 15)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 9)) (-1537 (((-3 $ "failed") $) 40 (|has| |#1| (-823)))) (-3192 (((-3 (-400 (-550)) "failed") $) 49 (|has| |#1| (-535)))) (-2593 (((-112) $) 43 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 46 (|has| |#1| (-535)))) (-2694 (((-112) $) NIL (|has| |#1| (-823)))) (-2419 (((-112) $) NIL (|has| |#1| (-823)))) (-1712 (((-112) $) NIL (|has| |#1| (-823)))) (-2793 (($ $ $) NIL (|has| |#1| (-823)))) (-2173 (($ $ $) NIL (|has| |#1| (-823)))) (-2369 (((-1127) $) NIL)) (-4197 (($) 13)) (-1362 (((-112) $) 12)) (-3445 (((-1089) $) NIL)) (-4053 (((-112) $) 11)) (-2233 (((-837) $) 18) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-1489 (|has| |#1| (-823)) (|has| |#1| (-1012 (-550)))))) (-3091 (((-749)) 34 (|has| |#1| (-823)))) (-4188 (($ $) NIL (|has| |#1| (-823)))) (-2688 (($) 22 (|has| |#1| (-21)) CONST)) (-2700 (($) 31 (|has| |#1| (-823)) CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2264 (((-112) $ $) 20)) (-2313 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2290 (((-112) $ $) 42 (|has| |#1| (-823)))) (-2370 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2358 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 37 (|has| |#1| (-823))) (($ (-550) $) 25 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21))))) -(((-811 |#1|) (-13 (-1069) (-404 |#1|) (-10 -8 (-15 -4197 ($)) (-15 -4053 ((-112) $)) (-15 -1362 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) (-1069)) (T -811)) -((-4197 (*1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1069)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1069)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1069)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) (-3192 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1069))))) -(-13 (-1069) (-404 |#1|) (-10 -8 (-15 -4197 ($)) (-15 -4053 ((-112) $)) (-15 -1362 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-114) $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3262 ((|#1| (-114) |#1|) NIL)) (-2419 (((-112) $) NIL)) (-1660 (($ |#1| (-354 (-114))) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2874 (($ $ (-1 |#1| |#1|)) NIL)) (-2322 (($ $ (-1 |#1| |#1|)) NIL)) (-2757 ((|#1| $ |#1|) NIL)) (-1887 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-3557 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ (-114) (-550)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-812 |#1|) (-13 (-1021) (-1012 |#1|) (-1012 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -1887 (|#1| |#1|))) |%noBranch|) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 -2874 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -3262 (|#1| (-114) |#1|)) (-15 -1660 ($ |#1| (-354 (-114)))))) (-1021)) (T -812)) -((-3557 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021)))) (-3557 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021)))) (-1887 (*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-812 *3)))) (-2874 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-812 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-5 *1 (-812 *4)) (-4 *4 (-1021)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-812 *3)) (-4 *3 (-1021)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-812 *2)) (-4 *2 (-1021)))) (-1660 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-5 *1 (-812 *2)) (-4 *2 (-1021))))) -(-13 (-1021) (-1012 |#1|) (-1012 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -1887 (|#1| |#1|))) |%noBranch|) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 -2874 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -3262 (|#1| (-114) |#1|)) (-15 -1660 ($ |#1| (-354 (-114)))))) -((-3242 (((-208 (-493)) (-1127)) 9))) -(((-813) (-10 -7 (-15 -3242 ((-208 (-493)) (-1127))))) (T -813)) -((-3242 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) -(-10 -7 (-15 -3242 ((-208 (-493)) (-1127)))) -((-2221 (((-112) $ $) 7)) (-1552 (((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 14) (((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 13)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 16) (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 15)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) +((-3672 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825))))) +(-13 (-716 |t#1|) (-942 |t#1|) (-10 -8 (-15 -3672 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-673 |#1|) . T) ((-716 |#1|) . T) ((-942 |#1|) . T) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) +((-2842 (((-1235) (-1091) (-1091)) 47)) (-2841 (((-1235) (-800) (-51)) 44)) (-2840 (((-51) (-800)) 16))) +(((-809) (-10 -7 (-15 -2840 ((-51) (-800))) (-15 -2841 ((-1235) (-800) (-51))) (-15 -2842 ((-1235) (-1091) (-1091))))) (T -809)) +((-2842 (*1 *2 *3 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1235)) (-5 *1 (-809)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-800)) (-5 *4 (-51)) (-5 *2 (-1235)) (-5 *1 (-809)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-51)) (-5 *1 (-809))))) +(-10 -7 (-15 -2840 ((-51) (-800))) (-15 -2841 ((-1235) (-800) (-51))) (-15 -2842 ((-1235) (-1091) (-1091)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL (|has| |#1| (-21)) CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 15)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 9)) (-3816 (((-3 $ "failed") $) 40 (|has| |#1| (-823)))) (-3352 (((-3 (-400 (-536)) "failed") $) 49 (|has| |#1| (-535)))) (-3351 (((-112) $) 43 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 46 (|has| |#1| (-535)))) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2497 (((-112) $) NIL (|has| |#1| (-823)))) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-2843 (($) 13)) (-2855 (((-112) $) 12)) (-3589 (((-1091) $) NIL)) (-2856 (((-112) $) 11)) (-4312 (((-838) $) 18) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 8) (($ (-536)) NIL (-3886 (|has| |#1| (-823)) (|has| |#1| (-1012 (-536)))))) (-3456 (((-749)) 34 (|has| |#1| (-823)))) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) 22 (|has| |#1| (-21)) CONST)) (-2992 (($) 31 (|has| |#1| (-823)) CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) 42 (|has| |#1| (-823)))) (-4192 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4194 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-893)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 37 (|has| |#1| (-823))) (($ (-536) $) 25 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-21))))) +(((-810 |#1|) (-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2843 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) (-1072)) (T -810)) +((-2843 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1072)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072))))) +(-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2843 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) +((-4313 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)) 12) (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 13))) +(((-811 |#1| |#2|) (-10 -7 (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))) (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)))) (-1072) (-1072)) (T -811)) +((-4313 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-810 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *1 (-811 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-810 *6)) (-5 *1 (-811 *5 *6))))) +(-10 -7 (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))) (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3502 ((|#1| $) NIL) (((-113) $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2845 ((|#1| (-113) |#1|) NIL)) (-2497 (((-112) $) NIL)) (-2844 (($ |#1| (-354 (-113))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2846 (($ $ (-1 |#1| |#1|)) NIL)) (-2847 (($ $ (-1 |#1| |#1|)) NIL)) (-4154 ((|#1| $ |#1|) NIL)) (-2848 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-2849 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ (-113) (-536)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-812 |#1|) (-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#1| |#1|))) (-15 -2846 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#1| (-113) |#1|)) (-15 -2844 ($ |#1| (-354 (-113)))))) (-1023)) (T -812)) +((-2849 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2849 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2848 (*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3)))) (-2846 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-5 *1 (-812 *4)) (-4 *4 (-1023)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-812 *3)) (-4 *3 (-1023)))) (-2845 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-812 *2)) (-4 *2 (-1023)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) +(-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#1| |#1|))) (-15 -2846 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#1| (-113) |#1|)) (-15 -2844 ($ |#1| (-354 (-113)))))) +((-2850 (((-208 (-493)) (-1129)) 9))) +(((-813) (-10 -7 (-15 -2850 ((-208 (-493)) (-1129))))) (T -813)) +((-2850 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) +(-10 -7 (-15 -2850 ((-208 (-493)) (-1129)))) +((-2893 (((-112) $ $) 7)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 14) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 13)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 16) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 15)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) (((-814) (-138)) (T -814)) -((-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) (-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) (-1552 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) (-5 *2 (-1009)))) (-1552 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *2 (-1009))))) -(-13 (-1069) (-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -1552 ((-1009) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -1552 ((-1009) (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-4237 (((-1009) (-623 (-309 (-372))) (-623 (-372))) 147) (((-1009) (-309 (-372)) (-623 (-372))) 145) (((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372)))) 144) (((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372)))) 143) (((-1009) (-816)) 117) (((-1009) (-816) (-1033)) 116)) (-3612 (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816) (-1033)) 82) (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816)) 84)) (-3990 (((-1009) (-623 (-309 (-372))) (-623 (-372))) 148) (((-1009) (-816)) 133))) -(((-815) (-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816) (-1033))) (-15 -4237 ((-1009) (-816) (-1033))) (-15 -4237 ((-1009) (-816))) (-15 -3990 ((-1009) (-816))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372))))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372))))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)))) (-15 -4237 ((-1009) (-623 (-309 (-372))) (-623 (-372)))) (-15 -3990 ((-1009) (-623 (-309 (-372))) (-623 (-372)))))) (T -815)) -((-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) (-5 *6 (-623 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-4237 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1033)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-815)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-815))))) -(-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-816) (-1033))) (-15 -4237 ((-1009) (-816) (-1033))) (-15 -4237 ((-1009) (-816))) (-15 -3990 ((-1009) (-816))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372))))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372))))) (-15 -4237 ((-1009) (-309 (-372)) (-623 (-372)))) (-15 -4237 ((-1009) (-623 (-309 (-372))) (-623 (-372)))) (-15 -3990 ((-1009) (-623 (-309 (-372))) (-623 (-372))))) -((-2221 (((-112) $ $) NIL)) (-2202 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) $) 21)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 14) (($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))) 18)) (-2264 (((-112) $ $) NIL))) -(((-816) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -2233 ($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -2233 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) $))))) (T -816)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-816)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *1 (-816)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) (-5 *1 (-816)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))) (-5 *1 (-816)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))))) (-5 *1 (-816))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -2233 ($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) (-15 -2233 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219)))))) $)))) -((-2392 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)) 13) (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14))) -(((-817 |#1| |#2|) (-10 -7 (-15 -2392 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -2392 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)))) (-1069) (-1069)) (T -817)) -((-2392 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *1 (-817 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))) -(-10 -7 (-15 -2392 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -2392 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL (|has| |#1| (-21)))) (-4207 (((-1089) $) 24)) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4303 (((-550) $) NIL (|has| |#1| (-823)))) (-2991 (($) NIL (|has| |#1| (-21)) CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 16)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 9)) (-1537 (((-3 $ "failed") $) 47 (|has| |#1| (-823)))) (-3192 (((-3 (-400 (-550)) "failed") $) 54 (|has| |#1| (-535)))) (-2593 (((-112) $) 49 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 52 (|has| |#1| (-535)))) (-2694 (((-112) $) NIL (|has| |#1| (-823)))) (-2414 (($) 13)) (-2419 (((-112) $) NIL (|has| |#1| (-823)))) (-1712 (((-112) $) NIL (|has| |#1| (-823)))) (-2427 (($) 14)) (-2793 (($ $ $) NIL (|has| |#1| (-823)))) (-2173 (($ $ $) NIL (|has| |#1| (-823)))) (-2369 (((-1127) $) NIL)) (-1362 (((-112) $) 12)) (-3445 (((-1089) $) NIL)) (-4053 (((-112) $) 11)) (-2233 (((-837) $) 22) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-1489 (|has| |#1| (-823)) (|has| |#1| (-1012 (-550)))))) (-3091 (((-749)) 41 (|has| |#1| (-823)))) (-4188 (($ $) NIL (|has| |#1| (-823)))) (-2688 (($) 29 (|has| |#1| (-21)) CONST)) (-2700 (($) 38 (|has| |#1| (-823)) CONST)) (-2324 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2264 (((-112) $ $) 27)) (-2313 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2290 (((-112) $ $) 48 (|has| |#1| (-823)))) (-2370 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2358 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 44 (|has| |#1| (-823))) (($ (-550) $) 32 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21))))) -(((-818 |#1|) (-13 (-1069) (-404 |#1|) (-10 -8 (-15 -2414 ($)) (-15 -2427 ($)) (-15 -4053 ((-112) $)) (-15 -1362 ((-112) $)) (-15 -4207 ((-1089) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) (-1069)) (T -818)) -((-2414 (*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1069)))) (-2427 (*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1069)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1069)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1069)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-818 *3)) (-4 *3 (-1069)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) (-3192 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1069))))) -(-13 (-1069) (-404 |#1|) (-10 -8 (-15 -2414 ($)) (-15 -2427 ($)) (-15 -4053 ((-112) $)) (-15 -1362 ((-112) $)) (-15 -4207 ((-1089) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) -((-2221 (((-112) $ $) 7)) (-3828 (((-749)) 20)) (-1864 (($) 23)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-4073 (((-895) $) 22)) (-2369 (((-1127) $) 9)) (-3690 (($ (-895)) 21)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18))) +((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2851 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-1009)))) (-2851 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *2 (-1009))))) +(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -2851 ((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -2851 ((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2852 (((-1009) (-620 (-307 (-371))) (-620 (-371))) 147) (((-1009) (-307 (-371)) (-620 (-371))) 145) (((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371)))) 144) (((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371)))) 143) (((-1009) (-816)) 117) (((-1009) (-816) (-1035)) 116)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035)) 82) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816)) 84)) (-2853 (((-1009) (-620 (-307 (-371))) (-620 (-371))) 148) (((-1009) (-816)) 133))) +(((-815) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035))) (-15 -2852 ((-1009) (-816) (-1035))) (-15 -2852 ((-1009) (-816))) (-15 -2853 ((-1009) (-816))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)))) (-15 -2852 ((-1009) (-620 (-307 (-371))) (-620 (-371)))) (-15 -2853 ((-1009) (-620 (-307 (-371))) (-620 (-371)))))) (T -815)) +((-2853 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) (-5 *6 (-620 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-815)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-815))))) +(-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035))) (-15 -2852 ((-1009) (-816) (-1035))) (-15 -2852 ((-1009) (-816))) (-15 -2853 ((-1009) (-816))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)))) (-15 -2852 ((-1009) (-620 (-307 (-371))) (-620 (-371)))) (-15 -2853 ((-1009) (-620 (-307 (-371))) (-620 (-371))))) +((-2893 (((-112) $ $) NIL)) (-3502 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 14) (($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) 18)) (-3382 (((-112) $ $) NIL))) +(((-816) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -4312 ($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4312 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $))))) (T -816)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *1 (-816)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *1 (-816))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -4312 ($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4312 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-2854 (((-1091) $) 24)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL (|has| |#1| (-21)) CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 16)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 9)) (-3816 (((-3 $ "failed") $) 47 (|has| |#1| (-823)))) (-3352 (((-3 (-400 (-536)) "failed") $) 54 (|has| |#1| (-535)))) (-3351 (((-112) $) 49 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 52 (|has| |#1| (-535)))) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2858 (($) 13)) (-2497 (((-112) $) NIL (|has| |#1| (-823)))) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-2857 (($) 14)) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-2855 (((-112) $) 12)) (-3589 (((-1091) $) NIL)) (-2856 (((-112) $) 11)) (-4312 (((-838) $) 22) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 8) (($ (-536)) NIL (-3886 (|has| |#1| (-823)) (|has| |#1| (-1012 (-536)))))) (-3456 (((-749)) 41 (|has| |#1| (-823)))) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) 29 (|has| |#1| (-21)) CONST)) (-2992 (($) 38 (|has| |#1| (-823)) CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) 27)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) 48 (|has| |#1| (-823)))) (-4192 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4194 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-893)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 44 (|has| |#1| (-823))) (($ (-536) $) 32 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-21))))) +(((-817 |#1|) (-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2858 ($)) (-15 -2857 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (-15 -2854 ((-1091) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) (-1072)) (T -817)) +((-2858 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072)))) (-2857 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072))))) +(-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2858 ($)) (-15 -2857 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (-15 -2854 ((-1091) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) +((-4313 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)) 13) (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 14))) +(((-818 |#1| |#2|) (-10 -7 (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))) (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)))) (-1072) (-1072)) (T -818)) +((-4313 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-817 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *1 (-818 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-817 *6)) (-5 *1 (-818 *5 *6))))) +(-10 -7 (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))) (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)))) +((-2893 (((-112) $ $) 7)) (-3466 (((-749)) 20)) (-3322 (($) 23)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-2121 (((-893) $) 22)) (-3588 (((-1129) $) 9)) (-2487 (($ (-893)) 21)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) (((-819) (-138)) (T -819)) NIL (-13 (-825) (-361)) -(((-101) . T) ((-595 (-837)) . T) ((-361) . T) ((-825) . T) ((-1069) . T)) -((-2266 (((-112) (-1228 |#2|) (-1228 |#2|)) 17)) (-1647 (((-112) (-1228 |#2|) (-1228 |#2|)) 18)) (-3698 (((-112) (-1228 |#2|) (-1228 |#2|)) 14))) -(((-820 |#1| |#2|) (-10 -7 (-15 -3698 ((-112) (-1228 |#2|) (-1228 |#2|))) (-15 -2266 ((-112) (-1228 |#2|) (-1228 |#2|))) (-15 -1647 ((-112) (-1228 |#2|) (-1228 |#2|)))) (-749) (-770)) (T -820)) -((-1647 (*1 *2 *3 *3) (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-2266 (*1 *2 *3 *3) (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) -(-10 -7 (-15 -3698 ((-112) (-1228 |#2|) (-1228 |#2|))) (-15 -2266 ((-112) (-1228 |#2|) (-1228 |#2|))) (-15 -1647 ((-112) (-1228 |#2|) (-1228 |#2|)))) -((-2221 (((-112) $ $) 7)) (-2991 (($) 23 T CONST)) (-1537 (((-3 $ "failed") $) 26)) (-2419 (((-112) $) 24)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2700 (($) 22 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (** (($ $ (-895)) 21) (($ $ (-749)) 25)) (* (($ $ $) 20))) +(((-101) . T) ((-595 (-838)) . T) ((-361) . T) ((-825) . T) ((-1072) . T)) +((-2860 (((-112) (-1229 |#2|) (-1229 |#2|)) 17)) (-2861 (((-112) (-1229 |#2|) (-1229 |#2|)) 18)) (-2859 (((-112) (-1229 |#2|) (-1229 |#2|)) 14))) +(((-820 |#1| |#2|) (-10 -7 (-15 -2859 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2860 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2861 ((-112) (-1229 |#2|) (-1229 |#2|)))) (-749) (-770)) (T -820)) +((-2861 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-2860 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-2859 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) +(-10 -7 (-15 -2859 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2860 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2861 ((-112) (-1229 |#2|) (-1229 |#2|)))) +((-2893 (((-112) $ $) 7)) (-3891 (($) 23 T CONST)) (-3816 (((-3 $ "failed") $) 26)) (-2497 (((-112) $) 24)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (** (($ $ (-893)) 21) (($ $ (-749)) 25)) (* (($ $ $) 20))) (((-821) (-138)) (T -821)) NIL (-13 (-832) (-705)) -(((-101) . T) ((-595 (-837)) . T) ((-705) . T) ((-832) . T) ((-825) . T) ((-1081) . T) ((-1069) . T)) -((-4303 (((-550) $) 17)) (-2694 (((-112) $) 10)) (-1712 (((-112) $) 11)) (-4188 (($ $) 19))) -(((-822 |#1|) (-10 -8 (-15 -4188 (|#1| |#1|)) (-15 -4303 ((-550) |#1|)) (-15 -1712 ((-112) |#1|)) (-15 -2694 ((-112) |#1|))) (-823)) (T -822)) +(((-101) . T) ((-595 (-838)) . T) ((-705) . T) ((-832) . T) ((-825) . T) ((-1083) . T) ((-1072) . T)) +((-3981 (((-536) $) 17)) (-3532 (((-112) $) 10)) (-3533 (((-112) $) 11)) (-3737 (($ $) 19))) +(((-822 |#1|) (-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3981 ((-536) |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -3532 ((-112) |#1|))) (-823)) (T -822)) NIL -(-10 -8 (-15 -4188 (|#1| |#1|)) (-15 -4303 ((-550) |#1|)) (-15 -1712 ((-112) |#1|)) (-15 -2694 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 24)) (-1993 (((-3 $ "failed") $ $) 26)) (-4303 (((-550) $) 33)) (-2991 (($) 23 T CONST)) (-1537 (((-3 $ "failed") $) 38)) (-2694 (((-112) $) 35)) (-2419 (((-112) $) 40)) (-1712 (((-112) $) 34)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 43)) (-3091 (((-749)) 42)) (-4188 (($ $) 32)) (-2688 (($) 22 T CONST)) (-2700 (($) 41 T CONST)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (-2370 (($ $ $) 28) (($ $) 27)) (-2358 (($ $ $) 20)) (** (($ $ (-749)) 39) (($ $ (-895)) 36)) (* (($ (-895) $) 21) (($ (-749) $) 25) (($ (-550) $) 29) (($ $ $) 37))) +(-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3981 ((-536) |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -3532 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3981 (((-536) $) 33)) (-3891 (($) 23 T CONST)) (-3816 (((-3 $ "failed") $) 38)) (-3532 (((-112) $) 35)) (-2497 (((-112) $) 40)) (-3533 (((-112) $) 34)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 43)) (-3456 (((-749)) 42)) (-3737 (($ $) 32)) (-2986 (($) 22 T CONST)) (-2992 (($) 41 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4192 (($ $ $) 28) (($ $) 27)) (-4194 (($ $ $) 20)) (** (($ $ (-749)) 39) (($ $ (-893)) 36)) (* (($ (-893) $) 21) (($ (-749) $) 25) (($ (-536) $) 29) (($ $ $) 37))) (((-823) (-138)) (T -823)) -((-2694 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-550)))) (-4188 (*1 *1 *1) (-4 *1 (-823)))) -(-13 (-769) (-1021) (-705) (-10 -8 (-15 -2694 ((-112) $)) (-15 -1712 ((-112) $)) (-15 -4303 ((-550) $)) (-15 -4188 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2793 (($ $ $) 10)) (-2173 (($ $ $) 9)) (-2324 (((-112) $ $) 13)) (-2302 (((-112) $ $) 11)) (-2313 (((-112) $ $) 14))) -(((-824 |#1|) (-10 -8 (-15 -2793 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2313 ((-112) |#1| |#1|)) (-15 -2324 ((-112) |#1| |#1|)) (-15 -2302 ((-112) |#1| |#1|))) (-825)) (T -824)) -NIL -(-10 -8 (-15 -2793 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2313 ((-112) |#1| |#1|)) (-15 -2324 ((-112) |#1| |#1|)) (-15 -2302 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18))) +((-3532 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-536)))) (-3737 (*1 *1 *1) (-4 *1 (-823)))) +(-13 (-769) (-1023) (-705) (-10 -8 (-15 -3532 ((-112) $)) (-15 -3533 ((-112) $)) (-15 -3981 ((-536) $)) (-15 -3737 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3672 (($ $ $) 10)) (-3673 (($ $ $) 9)) (-2891 (((-112) $ $) 13)) (-2892 (((-112) $ $) 11)) (-3012 (((-112) $ $) 14))) +(((-824 |#1|) (-10 -8 (-15 -3672 (|#1| |#1| |#1|)) (-15 -3673 (|#1| |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -2891 ((-112) |#1| |#1|)) (-15 -2892 ((-112) |#1| |#1|))) (-825)) (T -824)) +NIL +(-10 -8 (-15 -3672 (|#1| |#1| |#1|)) (-15 -3673 (|#1| |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -2891 ((-112) |#1| |#1|)) (-15 -2892 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) (((-825) (-138)) (T -825)) -((-2290 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2302 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2324 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2313 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2173 (*1 *1 *1 *1) (-4 *1 (-825))) (-2793 (*1 *1 *1 *1) (-4 *1 (-825)))) -(-13 (-1069) (-10 -8 (-15 -2290 ((-112) $ $)) (-15 -2302 ((-112) $ $)) (-15 -2324 ((-112) $ $)) (-15 -2313 ((-112) $ $)) (-15 -2173 ($ $ $)) (-15 -2793 ($ $ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-1810 (($ $ $) 45)) (-3379 (($ $ $) 44)) (-1655 (($ $ $) 42)) (-3010 (($ $ $) 51)) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 46)) (-2238 (((-3 $ "failed") $ $) 49)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2731 (($ $) 35)) (-1587 (($ $ $) 39)) (-4184 (($ $ $) 38)) (-1276 (($ $ $) 47)) (-3728 (($ $ $) 53)) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 41)) (-2104 (((-3 $ "failed") $ $) 48)) (-3409 (((-3 $ "failed") $ |#2|) 28)) (-1622 ((|#2| $) 32)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#2|) 12)) (-2969 (((-623 |#2|) $) 18)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-826 |#1| |#2|) (-10 -8 (-15 -1276 (|#1| |#1| |#1|)) (-15 -2730 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3010 (|#1| |#1| |#1|)) (-15 -2238 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3379 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -4226 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -2104 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2969 ((-623 |#2|) |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2233 ((-837) |#1|))) (-827 |#2|) (-1021)) (T -826)) -NIL -(-10 -8 (-15 -1276 (|#1| |#1| |#1|)) (-15 -2730 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3010 (|#1| |#1| |#1|)) (-15 -2238 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3379 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -4226 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2256 |#1|)) |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -2104 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2969 ((-623 |#2|) |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1810 (($ $ $) 43 (|has| |#1| (-356)))) (-3379 (($ $ $) 44 (|has| |#1| (-356)))) (-1655 (($ $ $) 46 (|has| |#1| (-356)))) (-3010 (($ $ $) 41 (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 40 (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 45 (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) 72 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 67)) (-2202 (((-550) $) 73 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 71 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 66)) (-1693 (($ $) 62)) (-1537 (((-3 $ "failed") $) 32)) (-2731 (($ $) 53 (|has| |#1| (-444)))) (-2419 (((-112) $) 30)) (-1488 (($ |#1| (-749)) 60)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55 (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 56 (|has| |#1| (-542)))) (-3346 (((-749) $) 64)) (-1587 (($ $ $) 50 (|has| |#1| (-356)))) (-4184 (($ $ $) 51 (|has| |#1| (-356)))) (-1276 (($ $ $) 39 (|has| |#1| (-356)))) (-3728 (($ $ $) 48 (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 47 (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 52 (|has| |#1| (-356)))) (-1670 ((|#1| $) 63)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-3661 (((-749) $) 65)) (-1622 ((|#1| $) 54 (|has| |#1| (-444)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 69 (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) 68)) (-2969 (((-623 |#1|) $) 59)) (-1708 ((|#1| $ (-749)) 61)) (-3091 (((-749)) 28)) (-3806 ((|#1| $ |#1| |#1|) 58)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-827 |#1|) (-138) (-1021)) (T -827)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1021)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1021)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-623 *3)))) (-3806 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-542)))) (-3665 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) (-1627 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-444)))) (-2731 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-444)))) (-3285 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) (-4184 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-1587 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2104 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-3728 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-4226 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) (-4 *1 (-827 *3)))) (-1655 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-3066 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) (-3379 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2238 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-3010 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2730 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) (-4 *1 (-827 *3)))) (-1276 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(-13 (-1021) (-111 |t#1| |t#1|) (-404 |t#1|) (-10 -8 (-15 -3661 ((-749) $)) (-15 -3346 ((-749) $)) (-15 -1670 (|t#1| $)) (-15 -1693 ($ $)) (-15 -1708 (|t#1| $ (-749))) (-15 -1488 ($ |t#1| (-749))) (-15 -2969 ((-623 |t#1|) $)) (-15 -3806 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3409 ((-3 $ "failed") $ |t#1|)) (-15 -3665 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -1627 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -1622 (|t#1| $)) (-15 -2731 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3285 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -4184 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -2104 ((-3 $ "failed") $ $)) (-15 -3728 ($ $ $)) (-15 -4226 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $)) (-15 -1655 ($ $ $)) (-15 -3066 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -3379 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2238 ((-3 $ "failed") $ $)) (-15 -3010 ($ $ $)) (-15 -2730 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $)) (-15 -1276 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-404 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-3189 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3066 (((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-1627 (((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-542)))) (-3285 (((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-3806 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-828 |#1| |#2|) (-10 -7 (-15 -3189 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3806 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -3665 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1627 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3285 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3066 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1021) (-827 |#1|)) (T -828)) -((-3066 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-3285 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-1627 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1021)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-3665 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1021)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-3806 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1021)) (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2)))) (-3189 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1021)) (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) -(-10 -7 (-15 -3189 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3806 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -3665 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1627 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3285 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3066 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-356)))) (-3379 (($ $ $) NIL (|has| |#1| (-356)))) (-1655 (($ $ $) NIL (|has| |#1| (-356)))) (-3010 (($ $ $) NIL (|has| |#1| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2238 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 32 (|has| |#1| (-356)))) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-3303 (((-837) $ (-837)) NIL)) (-2419 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) NIL)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 28 (|has| |#1| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 26 (|has| |#1| (-542)))) (-3346 (((-749) $) NIL)) (-1587 (($ $ $) NIL (|has| |#1| (-356)))) (-4184 (($ $ $) NIL (|has| |#1| (-356)))) (-1276 (($ $ $) NIL (|has| |#1| (-356)))) (-3728 (($ $ $) NIL (|has| |#1| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-2104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 30 (|has| |#1| (-356)))) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-3661 (((-749) $) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1012 (-400 (-550))))) (($ |#1|) NIL)) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-3806 ((|#1| $ |#1| |#1|) 15)) (-2688 (($) NIL T CONST)) (-2700 (($) 20 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) 19) (($ $ (-749)) 22)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-829 |#1| |#2| |#3|) (-13 (-827 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-837))))) (-1021) (-98 |#1|) (-1 |#1| |#1|)) (T -829)) -((-3303 (*1 *2 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-827 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-837))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#2| (-356)))) (-3379 (($ $ $) NIL (|has| |#2| (-356)))) (-1655 (($ $ $) NIL (|has| |#2| (-356)))) (-3010 (($ $ $) NIL (|has| |#2| (-356)))) (-2730 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#2| (-356)))) (-2238 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3066 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-356)))) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) ((|#2| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-444)))) (-2419 (((-112) $) NIL)) (-1488 (($ |#2| (-749)) 16)) (-1627 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-542)))) (-3665 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-542)))) (-3346 (((-749) $) NIL)) (-1587 (($ $ $) NIL (|has| |#2| (-356)))) (-4184 (($ $ $) NIL (|has| |#2| (-356)))) (-1276 (($ $ $) NIL (|has| |#2| (-356)))) (-3728 (($ $ $) NIL (|has| |#2| (-356)))) (-4226 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#2| (-356)))) (-2104 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3285 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-356)))) (-1670 ((|#2| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-3661 (((-749) $) NIL)) (-1622 ((|#2| $) NIL (|has| |#2| (-444)))) (-2233 (((-837) $) 23) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1012 (-400 (-550))))) (($ |#2|) NIL) (($ (-1224 |#1|)) 18)) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-749)) NIL)) (-3091 (((-749)) NIL)) (-3806 ((|#2| $ |#2| |#2|) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) 13 T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-830 |#1| |#2| |#3| |#4|) (-13 (-827 |#2|) (-10 -8 (-15 -2233 ($ (-1224 |#1|))))) (-1145) (-1021) (-98 |#2|) (-1 |#2| |#2|)) (T -830)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-14 *3 (-1145)) (-5 *1 (-830 *3 *4 *5 *6)) (-4 *4 (-1021)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-827 |#2|) (-10 -8 (-15 -2233 ($ (-1224 |#1|))))) -((-2849 ((|#1| (-749) |#1|) 35 (|has| |#1| (-38 (-400 (-550)))))) (-4272 ((|#1| (-749) (-749) |#1|) 27) ((|#1| (-749) |#1|) 20)) (-1490 ((|#1| (-749) |#1|) 31)) (-2883 ((|#1| (-749) |#1|) 29)) (-4267 ((|#1| (-749) |#1|) 28))) -(((-831 |#1|) (-10 -7 (-15 -4267 (|#1| (-749) |#1|)) (-15 -2883 (|#1| (-749) |#1|)) (-15 -1490 (|#1| (-749) |#1|)) (-15 -4272 (|#1| (-749) |#1|)) (-15 -4272 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2849 (|#1| (-749) |#1|)) |%noBranch|)) (-170)) (T -831)) -((-2849 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-4272 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-4272 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-1490 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-2883 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-4267 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -4267 (|#1| (-749) |#1|)) (-15 -2883 (|#1| (-749) |#1|)) (-15 -1490 (|#1| (-749) |#1|)) (-15 -4272 (|#1| (-749) |#1|)) (-15 -4272 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2849 (|#1| (-749) |#1|)) |%noBranch|)) -((-2221 (((-112) $ $) 7)) (-2793 (($ $ $) 13)) (-2173 (($ $ $) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2324 (((-112) $ $) 16)) (-2302 (((-112) $ $) 17)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 15)) (-2290 (((-112) $ $) 18)) (** (($ $ (-895)) 21)) (* (($ $ $) 20))) +((-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2892 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2891 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3012 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3673 (*1 *1 *1 *1) (-4 *1 (-825))) (-3672 (*1 *1 *1 *1) (-4 *1 (-825)))) +(-13 (-1072) (-10 -8 (-15 -3013 ((-112) $ $)) (-15 -2892 ((-112) $ $)) (-15 -2891 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2866 (($ $ $) 45)) (-2867 (($ $ $) 44)) (-2868 (($ $ $) 42)) (-2864 (($ $ $) 51)) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 46)) (-2865 (((-3 $ "failed") $ $) 49)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3852 (($ $) 35)) (-2872 (($ $ $) 39)) (-2873 (($ $ $) 38)) (-2862 (($ $ $) 47)) (-2870 (($ $ $) 53)) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 41)) (-2871 (((-3 $ "failed") $ $) 48)) (-3815 (((-3 $ "failed") $ |#2|) 28)) (-3145 ((|#2| $) 32)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#2|) 12)) (-4172 (((-620 |#2|) $) 18)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-826 |#1| |#2|) (-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4312 ((-838) |#1|))) (-827 |#2|) (-1023)) (T -826)) +NIL +(-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2866 (($ $ $) 43 (|has| |#1| (-356)))) (-2867 (($ $ $) 44 (|has| |#1| (-356)))) (-2868 (($ $ $) 46 (|has| |#1| (-356)))) (-2864 (($ $ $) 41 (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 40 (|has| |#1| (-356)))) (-2865 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 45 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #1="failed") $) 72 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 70 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 67)) (-3502 (((-536) $) 73 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 71 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 66)) (-4314 (($ $) 62)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 53 (|has| |#1| (-444)))) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 60)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 56 (|has| |#1| (-543)))) (-3148 (((-749) $) 64)) (-2872 (($ $ $) 50 (|has| |#1| (-356)))) (-2873 (($ $ $) 51 (|has| |#1| (-356)))) (-2862 (($ $ $) 39 (|has| |#1| (-356)))) (-2870 (($ $ $) 48 (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 47 (|has| |#1| (-356)))) (-2871 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 52 (|has| |#1| (-356)))) (-3520 ((|#1| $) 63)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-543)))) (-4302 (((-749) $) 65)) (-3145 ((|#1| $) 54 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 69 (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 68)) (-4172 (((-620 |#1|) $) 59)) (-4035 ((|#1| $ (-749)) 61)) (-3456 (((-749)) 28)) (-2875 ((|#1| $ |#1| |#1|) 58)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-827 |#1|) (-138) (-1023)) (T -827)) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-620 *3)))) (-2875 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-2876 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2877 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-2878 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2871 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2870 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2869 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-827 *3)))) (-2868 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2879 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2865 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2864 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2863 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-827 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(-13 (-1023) (-111 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -4302 ((-749) $)) (-15 -3148 ((-749) $)) (-15 -3520 (|t#1| $)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ (-749))) (-15 -3221 ($ |t#1| (-749))) (-15 -4172 ((-620 |t#1|) $)) (-15 -2875 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3815 ((-3 $ "failed") $ |t#1|)) (-15 -2876 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2877 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3145 (|t#1| $)) (-15 -3852 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2873 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -2871 ((-3 $ "failed") $ $)) (-15 -2870 ($ $ $)) (-15 -2869 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -2868 ($ $ $)) (-15 -2879 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2867 ($ $ $)) (-15 -2866 ($ $ $)) (-15 -2865 ((-3 $ "failed") $ $)) (-15 -2864 ($ $ $)) (-15 -2863 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -2862 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-405 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2874 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2879 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-2877 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-543)))) (-2878 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-2875 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-828 |#1| |#2|) (-10 -7 (-15 -2874 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2875 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-543)) (PROGN (-15 -2876 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2877 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2879 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1023) (-827 |#1|)) (T -828)) +((-2879 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2878 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2877 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2876 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2875 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2)))) (-2874 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1023)) (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) +(-10 -7 (-15 -2874 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2875 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-543)) (PROGN (-15 -2876 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2877 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2879 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 32 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-3882 (((-838) $ (-838)) NIL)) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 28 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 26 (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 30 (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) 15)) (-2986 (($) NIL T CONST)) (-2992 (($) 20 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 19) (($ $ (-749)) 22)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-829 |#1| |#2| |#3|) (-13 (-827 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))))) (-1023) (-98 |#1|) (-1 |#1| |#1|)) (T -829)) +((-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-827 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#2| (-356)))) (-2867 (($ $ $) NIL (|has| |#2| (-356)))) (-2868 (($ $ $) NIL (|has| |#2| (-356)))) (-2864 (($ $ $) NIL (|has| |#2| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) 16)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#2| (-356)))) (-2873 (($ $ $) NIL (|has| |#2| (-356)))) (-2862 (($ $ $) NIL (|has| |#2| (-356)))) (-2870 (($ $ $) NIL (|has| |#2| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#2| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-543)))) (-4302 (((-749) $) NIL)) (-3145 ((|#2| $) NIL (|has| |#2| (-444)))) (-4312 (((-838) $) 23) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (($ (-1226 |#1|)) 18)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#2| $ |#2| |#2|) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) 13 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-830 |#1| |#2| |#3| |#4|) (-13 (-827 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))))) (-1147) (-1023) (-98 |#2|) (-1 |#2| |#2|)) (T -830)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-830 *3 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-827 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))))) +((-2882 ((|#1| (-749) |#1|) 35 (|has| |#1| (-38 (-400 (-536)))))) (-2881 ((|#1| (-749) (-749) |#1|) 27) ((|#1| (-749) |#1|) 20)) (-2880 ((|#1| (-749) |#1|) 31)) (-3128 ((|#1| (-749) |#1|) 29)) (-3127 ((|#1| (-749) |#1|) 28))) +(((-831 |#1|) (-10 -7 (-15 -3127 (|#1| (-749) |#1|)) (-15 -3128 (|#1| (-749) |#1|)) (-15 -2880 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -2882 (|#1| (-749) |#1|)) |%noBranch|)) (-170)) (T -831)) +((-2882 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-2881 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-2881 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-2880 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-3128 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-3127 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3127 (|#1| (-749) |#1|)) (-15 -3128 (|#1| (-749) |#1|)) (-15 -2880 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -2882 (|#1| (-749) |#1|)) |%noBranch|)) +((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (** (($ $ (-893)) 21)) (* (($ $ $) 20))) (((-832) (-138)) (T -832)) NIL -(-13 (-825) (-1081)) -(((-101) . T) ((-595 (-837)) . T) ((-825) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-1337 (((-550) $) 12)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 18) (($ (-550)) 11)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 8)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 9))) -(((-833) (-13 (-825) (-10 -8 (-15 -2233 ($ (-550))) (-15 -1337 ((-550) $))))) (T -833)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-833))))) -(-13 (-825) (-10 -8 (-15 -2233 ($ (-550))) (-15 -1337 ((-550) $)))) -((-2376 (((-1089) $ (-128)) 17))) -(((-834 |#1|) (-10 -8 (-15 -2376 ((-1089) |#1| (-128)))) (-835)) (T -834)) -NIL -(-10 -8 (-15 -2376 ((-1089) |#1| (-128)))) -((-2376 (((-1089) $ (-128)) 7)) (-1966 (((-1089) $ (-129)) 8)) (-4231 (($ $) 6))) -(((-835) (-138)) (T -835)) -((-1966 (*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-129)) (-5 *2 (-1089)))) (-2376 (*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-128)) (-5 *2 (-1089))))) -(-13 (-171) (-10 -8 (-15 -1966 ((-1089) $ (-129))) (-15 -2376 ((-1089) $ (-128))))) +(-13 (-825) (-1083)) +(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3756 (((-536) $) 12)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) (($ (-536)) 11)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 8)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 9))) +(((-833) (-13 (-825) (-10 -8 (-15 -4312 ($ (-536))) (-15 -3756 ((-536) $))))) (T -833)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-833))))) +(-13 (-825) (-10 -8 (-15 -4312 ($ (-536))) (-15 -3756 ((-536) $)))) +((-2883 (((-1235) (-620 (-51))) 24)) (-3809 (((-1235) (-1129) (-838)) 14) (((-1235) (-838)) 9) (((-1235) (-1129)) 11))) +(((-834) (-10 -7 (-15 -3809 ((-1235) (-1129))) (-15 -3809 ((-1235) (-838))) (-15 -3809 ((-1235) (-1129) (-838))) (-15 -2883 ((-1235) (-620 (-51)))))) (T -834)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-620 (-51))) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-834))))) +(-10 -7 (-15 -3809 ((-1235) (-1129))) (-15 -3809 ((-1235) (-838))) (-15 -3809 ((-1235) (-1129) (-838))) (-15 -2883 ((-1235) (-620 (-51))))) +((-2884 (((-1091) $ (-129)) 17))) +(((-835 |#1|) (-10 -8 (-15 -2884 ((-1091) |#1| (-129)))) (-836)) (T -835)) +NIL +(-10 -8 (-15 -2884 ((-1091) |#1| (-129)))) +((-2884 (((-1091) $ (-129)) 7)) (-2885 (((-1091) $ (-128)) 8)) (-1811 (($ $) 6))) +(((-836) (-138)) (T -836)) +((-2885 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-128)) (-5 *2 (-1091)))) (-2884 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-129)) (-5 *2 (-1091))))) +(-13 (-171) (-10 -8 (-15 -2885 ((-1091) $ (-128))) (-15 -2884 ((-1091) $ (-129))))) (((-171) . T)) -((-2376 (((-1089) $ (-128)) NIL)) (-1966 (((-1089) $ (-129)) 22)) (-3882 (($ (-381)) 12) (($ (-1127)) 14)) (-3572 (((-112) $) 19)) (-2233 (((-837) $) 26)) (-4231 (($ $) 23))) -(((-836) (-13 (-835) (-595 (-837)) (-10 -8 (-15 -3882 ($ (-381))) (-15 -3882 ($ (-1127))) (-15 -3572 ((-112) $))))) (T -836)) -((-3882 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-836)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-836)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-835) (-595 (-837)) (-10 -8 (-15 -3882 ($ (-381))) (-15 -3882 ($ (-1127))) (-15 -3572 ((-112) $)))) -((-2221 (((-112) $ $) NIL) (($ $ $) 77)) (-4287 (($ $ $) 114)) (-2500 (((-550) $) 31) (((-550)) 36)) (-1567 (($ (-550)) 45)) (-1563 (($ $ $) 46) (($ (-623 $)) 76)) (-2998 (($ $ (-623 $)) 74)) (-2878 (((-550) $) 34)) (-4135 (($ $ $) 65)) (-3405 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1357 (((-550) $) 33)) (-3701 (($ $ $) 64)) (-1755 (($ $) 104)) (-1963 (($ $ $) 118)) (-3208 (($ (-623 $)) 53)) (-3850 (($ $ (-623 $)) 71)) (-3637 (($ (-550) (-550)) 47)) (-1451 (($ $) 115) (($ $ $) 116)) (-3490 (($ $ (-550)) 41) (($ $) 44)) (-3455 (($ $ $) 89)) (-3243 (($ $ $) 121)) (-3433 (($ $) 105)) (-3429 (($ $ $) 90)) (-4123 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1990 (((-1233) $) 10)) (-1910 (($ $) 108) (($ $ (-749)) 111)) (-3212 (($ $ $) 67)) (-1464 (($ $ $) 66)) (-3578 (($ $ (-623 $)) 100)) (-3792 (($ $ $) 103)) (-3148 (($ (-623 $)) 51)) (-1465 (($ $) 62) (($ (-623 $)) 63)) (-2713 (($ $ $) 112)) (-2338 (($ $) 106)) (-1721 (($ $ $) 117)) (-3303 (($ (-550)) 21) (($ (-1145)) 23) (($ (-1127)) 30) (($ (-219)) 25)) (-3741 (($ $ $) 93)) (-3548 (($ $) 94)) (-4106 (((-1233) (-1127)) 15)) (-2715 (($ (-1127)) 14)) (-4224 (($ (-623 (-623 $))) 50)) (-3480 (($ $ (-550)) 40) (($ $) 43)) (-2369 (((-1127) $) NIL)) (-3614 (($ $ $) 120)) (-3489 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-1659 (((-112) $) 98)) (-2058 (($ $ (-623 $)) 101) (($ $ $ $) 102)) (-4266 (($ (-550)) 37)) (-1293 (((-550) $) 32) (((-550)) 35)) (-4151 (($ $ $) 38) (($ (-623 $)) 75)) (-3445 (((-1089) $) NIL)) (-3409 (($ $ $) 91)) (-2819 (($) 13)) (-2757 (($ $ (-623 $)) 99)) (-1941 (((-1127) (-1127)) 8)) (-3451 (($ $) 107) (($ $ (-749)) 110)) (-3419 (($ $ $) 88)) (-2798 (($ $ (-749)) 126)) (-1650 (($ (-623 $)) 52)) (-2233 (((-837) $) 19)) (-1808 (($ $ (-550)) 39) (($ $) 42)) (-2005 (($ $) 60) (($ (-623 $)) 61)) (-1299 (($ $) 58) (($ (-623 $)) 59)) (-3790 (($ $) 113)) (-3521 (($ (-623 $)) 57)) (-1437 (($ $ $) 97)) (-2691 (($ $ $) 119)) (-1304 (($ $ $) 92)) (-2051 (($ $ $) 95) (($ $) 96)) (-2324 (($ $ $) 81)) (-2302 (($ $ $) 79)) (-2264 (((-112) $ $) 16) (($ $ $) 17)) (-2313 (($ $ $) 80)) (-2290 (($ $ $) 78)) (-2382 (($ $ $) 86)) (-2370 (($ $ $) 83) (($ $) 84)) (-2358 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-837) (-13 (-1069) (-10 -8 (-15 -1990 ((-1233) $)) (-15 -2715 ($ (-1127))) (-15 -4106 ((-1233) (-1127))) (-15 -3303 ($ (-550))) (-15 -3303 ($ (-1145))) (-15 -3303 ($ (-1127))) (-15 -3303 ($ (-219))) (-15 -2819 ($)) (-15 -1941 ((-1127) (-1127))) (-15 -2500 ((-550) $)) (-15 -1293 ((-550) $)) (-15 -2500 ((-550))) (-15 -1293 ((-550))) (-15 -1357 ((-550) $)) (-15 -2878 ((-550) $)) (-15 -4266 ($ (-550))) (-15 -1567 ($ (-550))) (-15 -3637 ($ (-550) (-550))) (-15 -3480 ($ $ (-550))) (-15 -3490 ($ $ (-550))) (-15 -1808 ($ $ (-550))) (-15 -3480 ($ $)) (-15 -3490 ($ $)) (-15 -1808 ($ $)) (-15 -4151 ($ $ $)) (-15 -1563 ($ $ $)) (-15 -4151 ($ (-623 $))) (-15 -1563 ($ (-623 $))) (-15 -3578 ($ $ (-623 $))) (-15 -2058 ($ $ (-623 $))) (-15 -2058 ($ $ $ $)) (-15 -3792 ($ $ $)) (-15 -1659 ((-112) $)) (-15 -2757 ($ $ (-623 $))) (-15 -1755 ($ $)) (-15 -3614 ($ $ $)) (-15 -3790 ($ $)) (-15 -4224 ($ (-623 (-623 $)))) (-15 -4287 ($ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1721 ($ $ $)) (-15 -1963 ($ $ $)) (-15 -2691 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -2798 ($ $ (-749))) (-15 -1437 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -1464 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3850 ($ $ (-623 $))) (-15 -2998 ($ $ (-623 $))) (-15 -3433 ($ $)) (-15 -3451 ($ $)) (-15 -3451 ($ $ (-749))) (-15 -1910 ($ $)) (-15 -1910 ($ $ (-749))) (-15 -2338 ($ $)) (-15 -2713 ($ $ $)) (-15 -3405 ($ $)) (-15 -3405 ($ $ $)) (-15 -3405 ($ $ $ $)) (-15 -4123 ($ $)) (-15 -4123 ($ $ $)) (-15 -4123 ($ $ $ $)) (-15 -3489 ($ $)) (-15 -3489 ($ $ $)) (-15 -3489 ($ $ $ $)) (-15 -1299 ($ $)) (-15 -1299 ($ (-623 $))) (-15 -2005 ($ $)) (-15 -2005 ($ (-623 $))) (-15 -1465 ($ $)) (-15 -1465 ($ (-623 $))) (-15 -3148 ($ (-623 $))) (-15 -1650 ($ (-623 $))) (-15 -3208 ($ (-623 $))) (-15 -3521 ($ (-623 $))) (-15 -2264 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2313 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ $)) (-15 * ($ $ $)) (-15 -2382 ($ $ $)) (-15 ** ($ $ $)) (-15 -3419 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3409 ($ $ $)) (-15 -1304 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3548 ($ $)) (-15 -2051 ($ $ $)) (-15 -2051 ($ $))))) (T -837)) -((-1990 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-837)))) (-2715 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-837)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-837)))) (-2819 (*1 *1) (-5 *1 (-837))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-2500 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-1293 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-3637 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-3480 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) (-3480 (*1 *1 *1) (-5 *1 (-837))) (-3490 (*1 *1 *1) (-5 *1 (-837))) (-1808 (*1 *1 *1) (-5 *1 (-837))) (-4151 (*1 *1 *1 *1) (-5 *1 (-837))) (-1563 (*1 *1 *1 *1) (-5 *1 (-837))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-2058 (*1 *1 *1 *1 *1) (-5 *1 (-837))) (-3792 (*1 *1 *1 *1) (-5 *1 (-837))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-1755 (*1 *1 *1) (-5 *1 (-837))) (-3614 (*1 *1 *1 *1) (-5 *1 (-837))) (-3790 (*1 *1 *1) (-5 *1 (-837))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-837)))) (-5 *1 (-837)))) (-4287 (*1 *1 *1 *1) (-5 *1 (-837))) (-1451 (*1 *1 *1) (-5 *1 (-837))) (-1451 (*1 *1 *1 *1) (-5 *1 (-837))) (-1721 (*1 *1 *1 *1) (-5 *1 (-837))) (-1963 (*1 *1 *1 *1) (-5 *1 (-837))) (-2691 (*1 *1 *1 *1) (-5 *1 (-837))) (-3243 (*1 *1 *1 *1) (-5 *1 (-837))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) (-1437 (*1 *1 *1 *1) (-5 *1 (-837))) (-3701 (*1 *1 *1 *1) (-5 *1 (-837))) (-4135 (*1 *1 *1 *1) (-5 *1 (-837))) (-1464 (*1 *1 *1 *1) (-5 *1 (-837))) (-3212 (*1 *1 *1 *1) (-5 *1 (-837))) (-3850 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-3433 (*1 *1 *1) (-5 *1 (-837))) (-3451 (*1 *1 *1) (-5 *1 (-837))) (-3451 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) (-1910 (*1 *1 *1) (-5 *1 (-837))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) (-2338 (*1 *1 *1) (-5 *1 (-837))) (-2713 (*1 *1 *1 *1) (-5 *1 (-837))) (-3405 (*1 *1 *1) (-5 *1 (-837))) (-3405 (*1 *1 *1 *1) (-5 *1 (-837))) (-3405 (*1 *1 *1 *1 *1) (-5 *1 (-837))) (-4123 (*1 *1 *1) (-5 *1 (-837))) (-4123 (*1 *1 *1 *1) (-5 *1 (-837))) (-4123 (*1 *1 *1 *1 *1) (-5 *1 (-837))) (-3489 (*1 *1 *1) (-5 *1 (-837))) (-3489 (*1 *1 *1 *1) (-5 *1 (-837))) (-3489 (*1 *1 *1 *1 *1) (-5 *1 (-837))) (-1299 (*1 *1 *1) (-5 *1 (-837))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-2005 (*1 *1 *1) (-5 *1 (-837))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-1465 (*1 *1 *1) (-5 *1 (-837))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) (-2264 (*1 *1 *1 *1) (-5 *1 (-837))) (-2221 (*1 *1 *1 *1) (-5 *1 (-837))) (-2290 (*1 *1 *1 *1) (-5 *1 (-837))) (-2302 (*1 *1 *1 *1) (-5 *1 (-837))) (-2313 (*1 *1 *1 *1) (-5 *1 (-837))) (-2324 (*1 *1 *1 *1) (-5 *1 (-837))) (-2358 (*1 *1 *1 *1) (-5 *1 (-837))) (-2370 (*1 *1 *1 *1) (-5 *1 (-837))) (-2370 (*1 *1 *1) (-5 *1 (-837))) (* (*1 *1 *1 *1) (-5 *1 (-837))) (-2382 (*1 *1 *1 *1) (-5 *1 (-837))) (** (*1 *1 *1 *1) (-5 *1 (-837))) (-3419 (*1 *1 *1 *1) (-5 *1 (-837))) (-3455 (*1 *1 *1 *1) (-5 *1 (-837))) (-3429 (*1 *1 *1 *1) (-5 *1 (-837))) (-3409 (*1 *1 *1 *1) (-5 *1 (-837))) (-1304 (*1 *1 *1 *1) (-5 *1 (-837))) (-3741 (*1 *1 *1 *1) (-5 *1 (-837))) (-3548 (*1 *1 *1) (-5 *1 (-837))) (-2051 (*1 *1 *1 *1) (-5 *1 (-837))) (-2051 (*1 *1 *1) (-5 *1 (-837)))) -(-13 (-1069) (-10 -8 (-15 -1990 ((-1233) $)) (-15 -2715 ($ (-1127))) (-15 -4106 ((-1233) (-1127))) (-15 -3303 ($ (-550))) (-15 -3303 ($ (-1145))) (-15 -3303 ($ (-1127))) (-15 -3303 ($ (-219))) (-15 -2819 ($)) (-15 -1941 ((-1127) (-1127))) (-15 -2500 ((-550) $)) (-15 -1293 ((-550) $)) (-15 -2500 ((-550))) (-15 -1293 ((-550))) (-15 -1357 ((-550) $)) (-15 -2878 ((-550) $)) (-15 -4266 ($ (-550))) (-15 -1567 ($ (-550))) (-15 -3637 ($ (-550) (-550))) (-15 -3480 ($ $ (-550))) (-15 -3490 ($ $ (-550))) (-15 -1808 ($ $ (-550))) (-15 -3480 ($ $)) (-15 -3490 ($ $)) (-15 -1808 ($ $)) (-15 -4151 ($ $ $)) (-15 -1563 ($ $ $)) (-15 -4151 ($ (-623 $))) (-15 -1563 ($ (-623 $))) (-15 -3578 ($ $ (-623 $))) (-15 -2058 ($ $ (-623 $))) (-15 -2058 ($ $ $ $)) (-15 -3792 ($ $ $)) (-15 -1659 ((-112) $)) (-15 -2757 ($ $ (-623 $))) (-15 -1755 ($ $)) (-15 -3614 ($ $ $)) (-15 -3790 ($ $)) (-15 -4224 ($ (-623 (-623 $)))) (-15 -4287 ($ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1721 ($ $ $)) (-15 -1963 ($ $ $)) (-15 -2691 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -2798 ($ $ (-749))) (-15 -1437 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -1464 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3850 ($ $ (-623 $))) (-15 -2998 ($ $ (-623 $))) (-15 -3433 ($ $)) (-15 -3451 ($ $)) (-15 -3451 ($ $ (-749))) (-15 -1910 ($ $)) (-15 -1910 ($ $ (-749))) (-15 -2338 ($ $)) (-15 -2713 ($ $ $)) (-15 -3405 ($ $)) (-15 -3405 ($ $ $)) (-15 -3405 ($ $ $ $)) (-15 -4123 ($ $)) (-15 -4123 ($ $ $)) (-15 -4123 ($ $ $ $)) (-15 -3489 ($ $)) (-15 -3489 ($ $ $)) (-15 -3489 ($ $ $ $)) (-15 -1299 ($ $)) (-15 -1299 ($ (-623 $))) (-15 -2005 ($ $)) (-15 -2005 ($ (-623 $))) (-15 -1465 ($ $)) (-15 -1465 ($ (-623 $))) (-15 -3148 ($ (-623 $))) (-15 -1650 ($ (-623 $))) (-15 -3208 ($ (-623 $))) (-15 -3521 ($ (-623 $))) (-15 -2264 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2313 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ $)) (-15 * ($ $ $)) (-15 -2382 ($ $ $)) (-15 ** ($ $ $)) (-15 -3419 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3409 ($ $ $)) (-15 -1304 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3548 ($ $)) (-15 -2051 ($ $ $)) (-15 -2051 ($ $)))) -((-3362 (((-1233) (-623 (-52))) 24)) (-2346 (((-1233) (-1127) (-837)) 14) (((-1233) (-837)) 9) (((-1233) (-1127)) 11))) -(((-838) (-10 -7 (-15 -2346 ((-1233) (-1127))) (-15 -2346 ((-1233) (-837))) (-15 -2346 ((-1233) (-1127) (-837))) (-15 -3362 ((-1233) (-623 (-52)))))) (T -838)) -((-3362 (*1 *2 *3) (-12 (-5 *3 (-623 (-52))) (-5 *2 (-1233)) (-5 *1 (-838)))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-837)) (-5 *2 (-1233)) (-5 *1 (-838)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-838)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-838))))) -(-10 -7 (-15 -2346 ((-1233) (-1127))) (-15 -2346 ((-1233) (-837))) (-15 -2346 ((-1233) (-1127) (-837))) (-15 -3362 ((-1233) (-623 (-52))))) -((-2221 (((-112) $ $) NIL)) (-2564 (((-3 $ "failed") (-1145)) 33)) (-3828 (((-749)) 31)) (-1864 (($) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-4073 (((-895) $) 29)) (-2369 (((-1127) $) 39)) (-3690 (($ (-895)) 28)) (-3445 (((-1089) $) NIL)) (-2451 (((-1145) $) 13) (((-526) $) 19) (((-866 (-372)) $) 26) (((-866 (-550)) $) 22)) (-2233 (((-837) $) 16)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 36)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 35))) -(((-839 |#1|) (-13 (-819) (-596 (-1145)) (-596 (-526)) (-596 (-866 (-372))) (-596 (-866 (-550))) (-10 -8 (-15 -2564 ((-3 $ "failed") (-1145))))) (-623 (-1145))) (T -839)) -((-2564 (*1 *1 *2) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-839 *3)) (-14 *3 (-623 *2))))) -(-13 (-819) (-596 (-1145)) (-596 (-526)) (-596 (-866 (-372))) (-596 (-866 (-550))) (-10 -8 (-15 -2564 ((-3 $ "failed") (-1145))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (((-926 |#1|) $) NIL) (($ (-926 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3091 (((-749)) NIL)) (-1429 (((-1233) (-749)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-840 |#1| |#2| |#3| |#4|) (-13 (-1021) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -2233 ((-926 |#1|) $)) (-15 -2233 ($ (-926 |#1|))) (IF (|has| |#1| (-356)) (-15 -2382 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1429 ((-1233) (-749))))) (-1021) (-623 (-1145)) (-623 (-749)) (-749)) (T -840)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-926 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1021)) (-14 *4 (-623 (-1145))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-5 *1 (-840 *3 *4 *5 *6)) (-14 *4 (-623 (-1145))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) (-2382 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1021)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-749))) (-14 *5 (-749)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-840 *4 *5 *6 *7)) (-4 *4 (-1021)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 *3)) (-14 *7 *3)))) -(-13 (-1021) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -2233 ((-926 |#1|) $)) (-15 -2233 ($ (-926 |#1|))) (IF (|has| |#1| (-356)) (-15 -2382 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1429 ((-1233) (-749))))) -((-3672 (((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|) 31)) (-1971 (((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|) 24))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -1971 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -3672 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) (-356) (-1219 |#1|) (-1204 |#1|)) (T -841)) -((-3672 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1219 *5)) (-4 *6 (-1204 *5)))) (-1971 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1219 *5)) (-4 *6 (-1204 *5))))) -(-10 -7 (-15 -1971 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -3672 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) -((-1971 (((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) 26))) -(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -1971 ((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) (-15 -1971 ((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|)))) (-356) (-1145) |#1|) (T -842)) -((-1971 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1220 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1145)) (-14 *7 *5) (-5 *2 (-400 (-1201 *6 *5))) (-5 *1 (-842 *5 *6 *7)))) (-1971 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1220 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1145)) (-14 *7 *5) (-5 *2 (-400 (-1201 *6 *5))) (-5 *1 (-842 *5 *6 *7))))) -(-10 -7 (-15 -1971 ((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) (-15 -1971 ((-3 (-400 (-1201 |#2| |#1|)) "failed") (-749) (-749) (-1220 |#1| |#2| |#3|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-1745 (($ $ (-550)) 60)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-1451 (($ (-1141 (-550)) (-550)) 59)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-4004 (($ $) 62)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-2603 (((-749) $) 67)) (-2419 (((-112) $) 30)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2351 (((-550)) 64)) (-3761 (((-550) $) 63)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-4268 (($ $ (-550)) 66)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-4051 (((-1125 (-550)) $) 68)) (-4012 (($ $) 65)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2154 (((-550) $ (-550)) 61)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-843 |#1|) (-138) (-550)) (T -843)) -((-4051 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-1125 (-550))))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-749)))) (-4268 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) (-4012 (*1 *1 *1) (-4 *1 (-843 *2))) (-2351 (*1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) (-4004 (*1 *1 *1) (-4 *1 (-843 *2))) (-2154 (*1 *2 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) (-1745 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) (-1451 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *3 (-550)) (-4 *1 (-843 *4))))) -(-13 (-300) (-145) (-10 -8 (-15 -4051 ((-1125 (-550)) $)) (-15 -2603 ((-749) $)) (-15 -4268 ($ $ (-550))) (-15 -4012 ($ $)) (-15 -2351 ((-550))) (-15 -3761 ((-550) $)) (-15 -4004 ($ $)) (-15 -2154 ((-550) $ (-550))) (-15 -1745 ($ $ (-550))) (-15 -1451 ($ (-1141 (-550)) (-550))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $ (-550)) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1451 (($ (-1141 (-550)) (-550)) NIL)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-4004 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2603 (((-749) $) NIL)) (-2419 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2351 (((-550)) NIL)) (-3761 (((-550) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4268 (($ $ (-550)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-4051 (((-1125 (-550)) $) NIL)) (-4012 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2154 (((-550) $ (-550)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) -(((-844 |#1|) (-843 |#1|) (-550)) (T -844)) -NIL -(-843 |#1|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-844 |#1|) $) NIL (|has| (-844 |#1|) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-844 |#1|) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-844 |#1|) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-844 |#1|) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-844 |#1|) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| (-844 |#1|) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-844 |#1|) (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-844 |#1|) (-1012 (-550))))) (-2202 (((-844 |#1|) $) NIL) (((-1145) $) NIL (|has| (-844 |#1|) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-844 |#1|) (-1012 (-550)))) (((-550) $) NIL (|has| (-844 |#1|) (-1012 (-550))))) (-2468 (($ $) NIL) (($ (-550) $) NIL)) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-844 |#1|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-844 |#1|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-844 |#1|))) (|:| |vec| (-1228 (-844 |#1|)))) (-667 $) (-1228 $)) NIL) (((-667 (-844 |#1|)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-844 |#1|) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| (-844 |#1|) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-844 |#1|) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-844 |#1|) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-844 |#1|) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-1120)))) (-1712 (((-112) $) NIL (|has| (-844 |#1|) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-844 |#1|) (-825)))) (-2173 (($ $ $) NIL (|has| (-844 |#1|) (-825)))) (-2392 (($ (-1 (-844 |#1|) (-844 |#1|)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-844 |#1|) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-844 |#1|) (-300)))) (-3925 (((-844 |#1|) $) NIL (|has| (-844 |#1|) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-844 |#1|) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-844 |#1|) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-844 |#1|)) (-623 (-844 |#1|))) NIL (|has| (-844 |#1|) (-302 (-844 |#1|)))) (($ $ (-844 |#1|) (-844 |#1|)) NIL (|has| (-844 |#1|) (-302 (-844 |#1|)))) (($ $ (-287 (-844 |#1|))) NIL (|has| (-844 |#1|) (-302 (-844 |#1|)))) (($ $ (-623 (-287 (-844 |#1|)))) NIL (|has| (-844 |#1|) (-302 (-844 |#1|)))) (($ $ (-623 (-1145)) (-623 (-844 |#1|))) NIL (|has| (-844 |#1|) (-505 (-1145) (-844 |#1|)))) (($ $ (-1145) (-844 |#1|)) NIL (|has| (-844 |#1|) (-505 (-1145) (-844 |#1|))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-844 |#1|)) NIL (|has| (-844 |#1|) (-279 (-844 |#1|) (-844 |#1|))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| (-844 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-844 |#1|) (-227))) (($ $ (-1145)) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-1 (-844 |#1|) (-844 |#1|)) (-749)) NIL) (($ $ (-1 (-844 |#1|) (-844 |#1|))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-844 |#1|) $) NIL)) (-2451 (((-866 (-550)) $) NIL (|has| (-844 |#1|) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-844 |#1|) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-844 |#1|) (-596 (-526)))) (((-372) $) NIL (|has| (-844 |#1|) (-996))) (((-219) $) NIL (|has| (-844 |#1|) (-996)))) (-3470 (((-172 (-400 (-550))) $) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-844 |#1|) (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-844 |#1|)) NIL) (($ (-1145)) NIL (|has| (-844 |#1|) (-1012 (-1145))))) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-844 |#1|) (-883))) (|has| (-844 |#1|) (-143))))) (-3091 (((-749)) NIL)) (-2967 (((-844 |#1|) $) NIL (|has| (-844 |#1|) (-535)))) (-1819 (((-112) $ $) NIL)) (-2154 (((-400 (-550)) $ (-550)) NIL)) (-4188 (($ $) NIL (|has| (-844 |#1|) (-798)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $) NIL (|has| (-844 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-844 |#1|) (-227))) (($ $ (-1145)) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-844 |#1|) (-874 (-1145)))) (($ $ (-1 (-844 |#1|) (-844 |#1|)) (-749)) NIL) (($ $ (-1 (-844 |#1|) (-844 |#1|))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-844 |#1|) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-844 |#1|) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-844 |#1|) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-844 |#1|) (-825)))) (-2382 (($ $ $) NIL) (($ (-844 |#1|) (-844 |#1|)) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-844 |#1|) $) NIL) (($ $ (-844 |#1|)) NIL))) -(((-845 |#1|) (-13 (-966 (-844 |#1|)) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) (-550)) (T -845)) -((-2154 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-845 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-845 *3)) (-14 *3 (-550)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-550)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-845 *3)) (-14 *3 *2)))) -(-13 (-966 (-844 |#1|)) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 ((|#2| $) NIL (|has| |#2| (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| |#2| (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (|has| |#2| (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550))))) (-2202 ((|#2| $) NIL) (((-1145) $) NIL (|has| |#2| (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-550)))) (((-550) $) NIL (|has| |#2| (-1012 (-550))))) (-2468 (($ $) 31) (($ (-550) $) 32)) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) 53)) (-1864 (($) NIL (|has| |#2| (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) NIL (|has| |#2| (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| |#2| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| |#2| (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 ((|#2| $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#2| (-1120)))) (-1712 (((-112) $) NIL (|has| |#2| (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 49)) (-2463 (($) NIL (|has| |#2| (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| |#2| (-300)))) (-3925 ((|#2| $) NIL (|has| |#2| (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 |#2|) (-623 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-287 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-623 (-287 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-623 (-1145)) (-623 |#2|)) NIL (|has| |#2| (-505 (-1145) |#2|))) (($ $ (-1145) |#2|) NIL (|has| |#2| (-505 (-1145) |#2|)))) (-1988 (((-749) $) NIL)) (-2757 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3608 (($ $) NIL)) (-4163 ((|#2| $) NIL)) (-2451 (((-866 (-550)) $) NIL (|has| |#2| (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| |#2| (-596 (-866 (-372))))) (((-526) $) NIL (|has| |#2| (-596 (-526)))) (((-372) $) NIL (|has| |#2| (-996))) (((-219) $) NIL (|has| |#2| (-996)))) (-3470 (((-172 (-400 (-550))) $) 68)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-2233 (((-837) $) 87) (($ (-550)) 19) (($ $) NIL) (($ (-400 (-550))) 24) (($ |#2|) 18) (($ (-1145)) NIL (|has| |#2| (-1012 (-1145))))) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-2967 ((|#2| $) NIL (|has| |#2| (-535)))) (-1819 (((-112) $ $) NIL)) (-2154 (((-400 (-550)) $ (-550)) 60)) (-4188 (($ $) NIL (|has| |#2| (-798)))) (-2688 (($) 14 T CONST)) (-2700 (($) 16 T CONST)) (-1901 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) 35)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2370 (($ $) 39) (($ $ $) 41)) (-2358 (($ $ $) 37)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 50)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 42) (($ $ $) 44) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-846 |#1| |#2|) (-13 (-966 |#2|) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) (-550) (-843 |#1|)) (T -846)) -((-2154 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-550))) (-5 *1 (-846 *4 *5)) (-5 *3 (-550)) (-4 *5 (-843 *4)))) (-3470 (*1 *2 *1) (-12 (-14 *3 (-550)) (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-846 *3 *4)) (-4 *4 (-843 *3)))) (-2468 (*1 *1 *1) (-12 (-14 *2 (-550)) (-5 *1 (-846 *2 *3)) (-4 *3 (-843 *2)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) (-4 *4 (-843 *3))))) -(-13 (-966 |#2|) (-10 -8 (-15 -2154 ((-400 (-550)) $ (-550))) (-15 -3470 ((-172 (-400 (-550))) $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)))) -((-2221 (((-112) $ $) NIL (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))))) (-2408 ((|#2| $) 12)) (-3721 (($ |#1| |#2|) 9)) (-2369 (((-1127) $) NIL (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))))) (-3445 (((-1089) $) NIL (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#1| $) 11)) (-2245 (($ |#1| |#2|) 10)) (-2233 (((-837) $) 18 (-1489 (-12 (|has| |#1| (-595 (-837))) (|has| |#2| (-595 (-837)))) (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069)))))) (-2264 (((-112) $ $) 22 (-12 (|has| |#1| (-1069)) (|has| |#2| (-1069)))))) -(((-847 |#1| |#2|) (-13 (-1182) (-10 -8 (IF (|has| |#1| (-595 (-837))) (IF (|has| |#2| (-595 (-837))) (-6 (-595 (-837))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1069)) (IF (|has| |#2| (-1069)) (-6 (-1069)) |%noBranch|) |%noBranch|) (-15 -3721 ($ |#1| |#2|)) (-15 -2245 ($ |#1| |#2|)) (-15 -3858 (|#1| $)) (-15 -2408 (|#2| $)))) (-1182) (-1182)) (T -847)) -((-3721 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1182)) (-4 *3 (-1182)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1182)) (-4 *3 (-1182)))) (-3858 (*1 *2 *1) (-12 (-4 *2 (-1182)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1182)))) (-2408 (*1 *2 *1) (-12 (-4 *2 (-1182)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1182))))) -(-13 (-1182) (-10 -8 (IF (|has| |#1| (-595 (-837))) (IF (|has| |#2| (-595 (-837))) (-6 (-595 (-837))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1069)) (IF (|has| |#2| (-1069)) (-6 (-1069)) |%noBranch|) |%noBranch|) (-15 -3721 ($ |#1| |#2|)) (-15 -2245 ($ |#1| |#2|)) (-15 -3858 (|#1| $)) (-15 -2408 (|#2| $)))) -((-2221 (((-112) $ $) NIL)) (-1711 (((-550) $) 15)) (-2471 (($ (-155)) 11)) (-2762 (($ (-155)) 12)) (-2369 (((-1127) $) NIL)) (-3181 (((-155) $) 13)) (-3445 (((-1089) $) NIL)) (-2281 (($ (-155)) 9)) (-2625 (($ (-155)) 8)) (-2233 (((-837) $) 23) (($ (-155)) 16)) (-1441 (($ (-155)) 10)) (-2264 (((-112) $ $) NIL))) -(((-848) (-13 (-1069) (-10 -8 (-15 -2625 ($ (-155))) (-15 -2281 ($ (-155))) (-15 -1441 ($ (-155))) (-15 -2471 ($ (-155))) (-15 -2762 ($ (-155))) (-15 -3181 ((-155) $)) (-15 -1711 ((-550) $)) (-15 -2233 ($ (-155)))))) (T -848)) -((-2625 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2471 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-848)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(-13 (-1069) (-10 -8 (-15 -2625 ($ (-155))) (-15 -2281 ($ (-155))) (-15 -1441 ($ (-155))) (-15 -2471 ($ (-155))) (-15 -2762 ($ (-155))) (-15 -3181 ((-155) $)) (-15 -1711 ((-550) $)) (-15 -2233 ($ (-155))))) -((-2233 (((-309 (-550)) (-400 (-926 (-48)))) 23) (((-309 (-550)) (-926 (-48))) 18))) -(((-849) (-10 -7 (-15 -2233 ((-309 (-550)) (-926 (-48)))) (-15 -2233 ((-309 (-550)) (-400 (-926 (-48))))))) (T -849)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 (-48)))) (-5 *2 (-309 (-550))) (-5 *1 (-849)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-926 (-48))) (-5 *2 (-309 (-550))) (-5 *1 (-849))))) -(-10 -7 (-15 -2233 ((-309 (-550)) (-926 (-48)))) (-15 -2233 ((-309 (-550)) (-400 (-926 (-48)))))) -((-2392 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) -(((-850 |#1| |#2|) (-10 -7 (-15 -2392 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1182) (-1182)) (T -850)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) -(-10 -7 (-15 -2392 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) -((-4145 (($ |#1| |#1|) 8)) (-3708 ((|#1| $ (-749)) 10))) -(((-851 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) (-1182)) (T -851)) -((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1182)))) (-4145 (*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1182))))) -(-10 -8 (-15 -4145 ($ |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) -((-2392 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -2392 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1182) (-1182)) (T -852)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -2392 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) -((-4145 (($ |#1| |#1| |#1|) 8)) (-3708 ((|#1| $ (-749)) 10))) -(((-853 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) (-1182)) (T -853)) -((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1182)))) (-4145 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1182))))) -(-10 -8 (-15 -4145 ($ |#1| |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) -((-2459 (((-623 (-1150)) (-1127)) 9))) -(((-854) (-10 -7 (-15 -2459 ((-623 (-1150)) (-1127))))) (T -854)) -((-2459 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-623 (-1150))) (-5 *1 (-854))))) -(-10 -7 (-15 -2459 ((-623 (-1150)) (-1127)))) -((-2392 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) -(((-855 |#1| |#2|) (-10 -7 (-15 -2392 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-1182) (-1182)) (T -855)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) -(-10 -7 (-15 -2392 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) -((-3956 (($ |#1| |#1| |#1|) 8)) (-3708 ((|#1| $ (-749)) 10))) -(((-856 |#1|) (-10 -8 (-15 -3956 ($ |#1| |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) (-1182)) (T -856)) -((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1182)))) (-3956 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1182))))) -(-10 -8 (-15 -3956 ($ |#1| |#1| |#1|)) (-15 -3708 (|#1| $ (-749)))) -((-1592 (((-1125 (-623 (-550))) (-623 (-550)) (-1125 (-623 (-550)))) 32)) (-2935 (((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550))) 28)) (-3481 (((-1125 (-623 (-550))) (-623 (-550))) 41) (((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550))) 40)) (-2240 (((-1125 (-623 (-550))) (-550)) 42)) (-2169 (((-1125 (-623 (-550))) (-550) (-550)) 22) (((-1125 (-623 (-550))) (-550)) 16) (((-1125 (-623 (-550))) (-550) (-550) (-550)) 12)) (-1938 (((-1125 (-623 (-550))) (-1125 (-623 (-550)))) 26)) (-3018 (((-623 (-550)) (-623 (-550))) 25))) -(((-857) (-10 -7 (-15 -2169 ((-1125 (-623 (-550))) (-550) (-550) (-550))) (-15 -2169 ((-1125 (-623 (-550))) (-550))) (-15 -2169 ((-1125 (-623 (-550))) (-550) (-550))) (-15 -3018 ((-623 (-550)) (-623 (-550)))) (-15 -1938 ((-1125 (-623 (-550))) (-1125 (-623 (-550))))) (-15 -2935 ((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1592 ((-1125 (-623 (-550))) (-623 (-550)) (-1125 (-623 (-550))))) (-15 -3481 ((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -3481 ((-1125 (-623 (-550))) (-623 (-550)))) (-15 -2240 ((-1125 (-623 (-550))) (-550))))) (T -857)) -((-2240 (*1 *2 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-623 (-550))))) (-3481 (*1 *2 *3 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-623 (-550))))) (-1592 (*1 *2 *3 *2) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *3 (-623 (-550))) (-5 *1 (-857)))) (-2935 (*1 *2 *3 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-623 (-550))))) (-1938 (*1 *2 *2) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-857)))) (-2169 (*1 *2 *3 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550)))) (-2169 (*1 *2 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550)))) (-2169 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550))))) -(-10 -7 (-15 -2169 ((-1125 (-623 (-550))) (-550) (-550) (-550))) (-15 -2169 ((-1125 (-623 (-550))) (-550))) (-15 -2169 ((-1125 (-623 (-550))) (-550) (-550))) (-15 -3018 ((-623 (-550)) (-623 (-550)))) (-15 -1938 ((-1125 (-623 (-550))) (-1125 (-623 (-550))))) (-15 -2935 ((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1592 ((-1125 (-623 (-550))) (-623 (-550)) (-1125 (-623 (-550))))) (-15 -3481 ((-1125 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -3481 ((-1125 (-623 (-550))) (-623 (-550)))) (-15 -2240 ((-1125 (-623 (-550))) (-550)))) -((-2451 (((-866 (-372)) $) 9 (|has| |#1| (-596 (-866 (-372))))) (((-866 (-550)) $) 8 (|has| |#1| (-596 (-866 (-550))))))) -(((-858 |#1|) (-138) (-1182)) (T -858)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-596 (-866 (-550)))) (-6 (-596 (-866 (-550)))) |%noBranch|) (IF (|has| |t#1| (-596 (-866 (-372)))) (-6 (-596 (-866 (-372)))) |%noBranch|))) -(((-596 (-866 (-372))) |has| |#1| (-596 (-866 (-372)))) ((-596 (-866 (-550))) |has| |#1| (-596 (-866 (-550))))) -((-2221 (((-112) $ $) NIL)) (-3375 (($) 14)) (-2729 (($ (-863 |#1| |#2|) (-863 |#1| |#3|)) 27)) (-3466 (((-863 |#1| |#3|) $) 16)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1702 (((-112) $) 22)) (-3585 (($) 19)) (-2233 (((-837) $) 30)) (-4027 (((-863 |#1| |#2|) $) 15)) (-2264 (((-112) $ $) 25))) -(((-859 |#1| |#2| |#3|) (-13 (-1069) (-10 -8 (-15 -1702 ((-112) $)) (-15 -3585 ($)) (-15 -3375 ($)) (-15 -2729 ($ (-863 |#1| |#2|) (-863 |#1| |#3|))) (-15 -4027 ((-863 |#1| |#2|) $)) (-15 -3466 ((-863 |#1| |#3|) $)))) (-1069) (-1069) (-644 |#2|)) (T -859)) -((-1702 (*1 *2 *1) (-12 (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1069)) (-4 *5 (-644 *4)))) (-3585 (*1 *1) (-12 (-4 *3 (-1069)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1069)) (-4 *4 (-644 *3)))) (-3375 (*1 *1) (-12 (-4 *3 (-1069)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1069)) (-4 *4 (-644 *3)))) (-2729 (*1 *1 *2 *3) (-12 (-5 *2 (-863 *4 *5)) (-5 *3 (-863 *4 *6)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6)))) (-4027 (*1 *2 *1) (-12 (-4 *4 (-1069)) (-5 *2 (-863 *3 *4)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1069)) (-4 *5 (-644 *4)))) (-3466 (*1 *2 *1) (-12 (-4 *4 (-1069)) (-5 *2 (-863 *3 *5)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1069)) (-4 *5 (-644 *4))))) -(-13 (-1069) (-10 -8 (-15 -1702 ((-112) $)) (-15 -3585 ($)) (-15 -3375 ($)) (-15 -2729 ($ (-863 |#1| |#2|) (-863 |#1| |#3|))) (-15 -4027 ((-863 |#1| |#2|) $)) (-15 -3466 ((-863 |#1| |#3|) $)))) -((-2221 (((-112) $ $) 7)) (-4141 (((-863 |#1| $) $ (-866 |#1|) (-863 |#1| $)) 13)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) -(((-860 |#1|) (-138) (-1069)) (T -860)) -((-4141 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-863 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-860 *4)) (-4 *4 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -4141 ((-863 |t#1| $) $ (-866 |t#1|) (-863 |t#1| $))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2366 (((-112) (-623 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4034 (((-863 |#1| |#2|) |#2| |#3|) 43 (-12 (-3548 (|has| |#2| (-1012 (-1145)))) (-3548 (|has| |#2| (-1021))))) (((-623 (-287 (-926 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1021)) (-3548 (|has| |#2| (-1012 (-1145)))))) (((-623 (-287 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1012 (-1145)))) (((-859 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|) 21))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -2366 ((-112) |#2| |#3|)) (-15 -2366 ((-112) (-623 |#2|) |#3|)) (-15 -4034 ((-859 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1145))) (-15 -4034 ((-623 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1021)) (-15 -4034 ((-623 (-287 (-926 |#2|))) |#2| |#3|)) (-15 -4034 ((-863 |#1| |#2|) |#2| |#3|))))) (-1069) (-860 |#1|) (-596 (-866 |#1|))) (T -861)) -((-4034 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-5 *2 (-863 *5 *3)) (-5 *1 (-861 *5 *3 *4)) (-3548 (-4 *3 (-1012 (-1145)))) (-3548 (-4 *3 (-1021))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5))))) (-4034 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-5 *2 (-623 (-287 (-926 *3)))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1021)) (-3548 (-4 *3 (-1012 (-1145)))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5))))) (-4034 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-5 *2 (-623 (-287 *3))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1012 (-1145))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5))))) (-4034 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-623 *6))) (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-623 *6)) (-4 *4 (-596 (-866 *5))))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-866 *5))))) (-2366 (*1 *2 *3 *4) (-12 (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5)))))) -(-10 -7 (-15 -2366 ((-112) |#2| |#3|)) (-15 -2366 ((-112) (-623 |#2|) |#3|)) (-15 -4034 ((-859 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1145))) (-15 -4034 ((-623 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1021)) (-15 -4034 ((-623 (-287 (-926 |#2|))) |#2| |#3|)) (-15 -4034 ((-863 |#1| |#2|) |#2| |#3|))))) -((-2392 (((-863 |#1| |#3|) (-1 |#3| |#2|) (-863 |#1| |#2|)) 22))) -(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-863 |#1| |#3|) (-1 |#3| |#2|) (-863 |#1| |#2|)))) (-1069) (-1069) (-1069)) (T -862)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-863 *5 *6)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-863 *5 *7)) (-5 *1 (-862 *5 *6 *7))))) -(-10 -7 (-15 -2392 ((-863 |#1| |#3|) (-1 |#3| |#2|) (-863 |#1| |#2|)))) -((-2221 (((-112) $ $) NIL)) (-4045 (($ $ $) 39)) (-2765 (((-3 (-112) "failed") $ (-866 |#1|)) 36)) (-3375 (($) 12)) (-2369 (((-1127) $) NIL)) (-2626 (($ (-866 |#1|) |#2| $) 20)) (-3445 (((-1089) $) NIL)) (-2017 (((-3 |#2| "failed") (-866 |#1|) $) 50)) (-1702 (((-112) $) 15)) (-3585 (($) 13)) (-1444 (((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|))) $) 25)) (-2245 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|)))) 23)) (-2233 (((-837) $) 44)) (-2725 (($ (-866 |#1|) |#2| $ |#2|) 48)) (-3693 (($ (-866 |#1|) |#2| $) 47)) (-2264 (((-112) $ $) 41))) -(((-863 |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -1702 ((-112) $)) (-15 -3585 ($)) (-15 -3375 ($)) (-15 -4045 ($ $ $)) (-15 -2017 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -3693 ($ (-866 |#1|) |#2| $)) (-15 -2626 ($ (-866 |#1|) |#2| $)) (-15 -2725 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -1444 ((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|))) $)) (-15 -2245 ($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|))))) (-15 -2765 ((-3 (-112) "failed") $ (-866 |#1|))))) (-1069) (-1069)) (T -863)) -((-1702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-3585 (*1 *1) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-3375 (*1 *1) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-2017 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-4 *2 (-1069)) (-5 *1 (-863 *4 *2)))) (-3693 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) (-4 *3 (-1069)))) (-2626 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) (-4 *3 (-1069)))) (-2725 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) (-4 *3 (-1069)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 *4)))) (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 *4)))) (-4 *4 (-1069)) (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)))) (-2765 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-863 *4 *5)) (-4 *5 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -1702 ((-112) $)) (-15 -3585 ($)) (-15 -3375 ($)) (-15 -4045 ($ $ $)) (-15 -2017 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -3693 ($ (-866 |#1|) |#2| $)) (-15 -2626 ($ (-866 |#1|) |#2| $)) (-15 -2725 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -1444 ((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|))) $)) (-15 -2245 ($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 |#2|))))) (-15 -2765 ((-3 (-112) "failed") $ (-866 |#1|))))) -((-1275 (((-866 |#1|) (-866 |#1|) (-623 (-1145)) (-1 (-112) (-623 |#2|))) 32) (((-866 |#1|) (-866 |#1|) (-623 (-1 (-112) |#2|))) 43) (((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|)) 35)) (-2765 (((-112) (-623 |#2|) (-866 |#1|)) 40) (((-112) |#2| (-866 |#1|)) 36)) (-4067 (((-1 (-112) |#2|) (-866 |#1|)) 16)) (-4204 (((-623 |#2|) (-866 |#1|)) 24)) (-2509 (((-866 |#1|) (-866 |#1|) |#2|) 20))) -(((-864 |#1| |#2|) (-10 -7 (-15 -1275 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -1275 ((-866 |#1|) (-866 |#1|) (-623 (-1 (-112) |#2|)))) (-15 -1275 ((-866 |#1|) (-866 |#1|) (-623 (-1145)) (-1 (-112) (-623 |#2|)))) (-15 -4067 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2765 ((-112) |#2| (-866 |#1|))) (-15 -2765 ((-112) (-623 |#2|) (-866 |#1|))) (-15 -2509 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -4204 ((-623 |#2|) (-866 |#1|)))) (-1069) (-1182)) (T -864)) -((-4204 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-623 *5)) (-5 *1 (-864 *4 *5)) (-4 *5 (-1182)))) (-2509 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1182)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-4 *6 (-1182)) (-5 *2 (-112)) (-5 *1 (-864 *5 *6)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-864 *5 *3)) (-4 *3 (-1182)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-864 *4 *5)) (-4 *5 (-1182)))) (-1275 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-866 *5)) (-5 *3 (-623 (-1145))) (-5 *4 (-1 (-112) (-623 *6))) (-4 *5 (-1069)) (-4 *6 (-1182)) (-5 *1 (-864 *5 *6)))) (-1275 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-623 (-1 (-112) *5))) (-4 *4 (-1069)) (-4 *5 (-1182)) (-5 *1 (-864 *4 *5)))) (-1275 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1069)) (-4 *5 (-1182)) (-5 *1 (-864 *4 *5))))) -(-10 -7 (-15 -1275 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -1275 ((-866 |#1|) (-866 |#1|) (-623 (-1 (-112) |#2|)))) (-15 -1275 ((-866 |#1|) (-866 |#1|) (-623 (-1145)) (-1 (-112) (-623 |#2|)))) (-15 -4067 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2765 ((-112) |#2| (-866 |#1|))) (-15 -2765 ((-112) (-623 |#2|) (-866 |#1|))) (-15 -2509 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -4204 ((-623 |#2|) (-866 |#1|)))) -((-2392 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 19))) -(((-865 |#1| |#2|) (-10 -7 (-15 -2392 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-1069) (-1069)) (T -865)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-866 *6)) (-5 *1 (-865 *5 *6))))) -(-10 -7 (-15 -2392 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3226 (($ $ (-623 (-52))) 64)) (-1516 (((-623 $) $) 118)) (-3194 (((-2 (|:| |var| (-623 (-1145))) (|:| |pred| (-52))) $) 24)) (-2297 (((-112) $) 30)) (-1654 (($ $ (-623 (-1145)) (-52)) 25)) (-2740 (($ $ (-623 (-52))) 63)) (-2288 (((-3 |#1| "failed") $) 61) (((-3 (-1145) "failed") $) 140)) (-2202 ((|#1| $) 58) (((-1145) $) NIL)) (-3977 (($ $) 108)) (-2162 (((-112) $) 47)) (-1354 (((-623 (-52)) $) 45)) (-3427 (($ (-1145) (-112) (-112) (-112)) 65)) (-3473 (((-3 (-623 $) "failed") (-623 $)) 72)) (-2769 (((-112) $) 50)) (-2513 (((-112) $) 49)) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) 36)) (-4311 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1795 (((-3 (-2 (|:| |val| $) (|:| -3068 $)) "failed") $) 83)) (-3017 (((-3 (-623 $) "failed") $) 33)) (-3871 (((-3 (-623 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -3985 (-114)) (|:| |arg| (-623 $))) "failed") $) 95)) (-3089 (((-3 (-623 $) "failed") $) 37)) (-2891 (((-3 (-2 (|:| |val| $) (|:| -3068 (-749))) "failed") $) 40)) (-4111 (((-112) $) 29)) (-3445 (((-1089) $) NIL)) (-2767 (((-112) $) 21)) (-4179 (((-112) $) 46)) (-2081 (((-623 (-52)) $) 111)) (-4140 (((-112) $) 48)) (-2757 (($ (-114) (-623 $)) 92)) (-3072 (((-749) $) 28)) (-2435 (($ $) 62)) (-2451 (($ (-623 $)) 59)) (-2153 (((-112) $) 26)) (-2233 (((-837) $) 53) (($ |#1|) 18) (($ (-1145)) 66)) (-2509 (($ $ (-52)) 110)) (-2688 (($) 91 T CONST)) (-2700 (($) 73 T CONST)) (-2264 (((-112) $ $) 79)) (-2382 (($ $ $) 100)) (-2358 (($ $ $) 104)) (** (($ $ (-749)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-866 |#1|) (-13 (-1069) (-1012 |#1|) (-1012 (-1145)) (-10 -8 (-15 0 ($) -4165) (-15 1 ($) -4165) (-15 -3017 ((-3 (-623 $) "failed") $)) (-15 -3833 ((-3 (-623 $) "failed") $)) (-15 -3871 ((-3 (-623 $) "failed") $ (-114))) (-15 -3871 ((-3 (-2 (|:| -3985 (-114)) (|:| |arg| (-623 $))) "failed") $)) (-15 -2891 ((-3 (-2 (|:| |val| $) (|:| -3068 (-749))) "failed") $)) (-15 -4311 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3089 ((-3 (-623 $) "failed") $)) (-15 -1795 ((-3 (-2 (|:| |val| $) (|:| -3068 $)) "failed") $)) (-15 -2757 ($ (-114) (-623 $))) (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -2382 ($ $ $)) (-15 -3072 ((-749) $)) (-15 -2451 ($ (-623 $))) (-15 -2435 ($ $)) (-15 -4111 ((-112) $)) (-15 -2162 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -2153 ((-112) $)) (-15 -4140 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -2769 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -1354 ((-623 (-52)) $)) (-15 -2740 ($ $ (-623 (-52)))) (-15 -3226 ($ $ (-623 (-52)))) (-15 -3427 ($ (-1145) (-112) (-112) (-112))) (-15 -1654 ($ $ (-623 (-1145)) (-52))) (-15 -3194 ((-2 (|:| |var| (-623 (-1145))) (|:| |pred| (-52))) $)) (-15 -2767 ((-112) $)) (-15 -3977 ($ $)) (-15 -2509 ($ $ (-52))) (-15 -2081 ((-623 (-52)) $)) (-15 -1516 ((-623 $) $)) (-15 -3473 ((-3 (-623 $) "failed") (-623 $))))) (-1069)) (T -866)) -((-2688 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-2700 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-3017 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3833 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3871 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1069)))) (-3871 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3985 (-114)) (|:| |arg| (-623 (-866 *3))))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2891 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -3068 (-749)))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-4311 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3089 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-1795 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -3068 (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2757 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1069)))) (-2358 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2740 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3427 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-112)) (-5 *1 (-866 *4)) (-4 *4 (-1069)))) (-1654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-52)) (-5 *1 (-866 *4)) (-4 *4 (-1069)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-623 (-1145))) (|:| |pred| (-52)))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3977 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) (-2509 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) (-3473 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(-13 (-1069) (-1012 |#1|) (-1012 (-1145)) (-10 -8 (-15 (-2688) ($) -4165) (-15 (-2700) ($) -4165) (-15 -3017 ((-3 (-623 $) "failed") $)) (-15 -3833 ((-3 (-623 $) "failed") $)) (-15 -3871 ((-3 (-623 $) "failed") $ (-114))) (-15 -3871 ((-3 (-2 (|:| -3985 (-114)) (|:| |arg| (-623 $))) "failed") $)) (-15 -2891 ((-3 (-2 (|:| |val| $) (|:| -3068 (-749))) "failed") $)) (-15 -4311 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3089 ((-3 (-623 $) "failed") $)) (-15 -1795 ((-3 (-2 (|:| |val| $) (|:| -3068 $)) "failed") $)) (-15 -2757 ($ (-114) (-623 $))) (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -2382 ($ $ $)) (-15 -3072 ((-749) $)) (-15 -2451 ($ (-623 $))) (-15 -2435 ($ $)) (-15 -4111 ((-112) $)) (-15 -2162 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -2153 ((-112) $)) (-15 -4140 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -2769 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -1354 ((-623 (-52)) $)) (-15 -2740 ($ $ (-623 (-52)))) (-15 -3226 ($ $ (-623 (-52)))) (-15 -3427 ($ (-1145) (-112) (-112) (-112))) (-15 -1654 ($ $ (-623 (-1145)) (-52))) (-15 -3194 ((-2 (|:| |var| (-623 (-1145))) (|:| |pred| (-52))) $)) (-15 -2767 ((-112) $)) (-15 -3977 ($ $)) (-15 -2509 ($ $ (-52))) (-15 -2081 ((-623 (-52)) $)) (-15 -1516 ((-623 $) $)) (-15 -3473 ((-3 (-623 $) "failed") (-623 $))))) -((-2221 (((-112) $ $) NIL)) (-3016 (((-623 |#1|) $) 16)) (-2918 (((-112) $) 38)) (-2288 (((-3 (-650 |#1|) "failed") $) 43)) (-2202 (((-650 |#1|) $) 41)) (-3870 (($ $) 18)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-3839 (((-749) $) 46)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-650 |#1|) $) 17)) (-2233 (((-837) $) 37) (($ (-650 |#1|)) 21) (((-797 |#1|) $) 27) (($ |#1|) 20)) (-2700 (($) 8 T CONST)) (-1564 (((-623 (-650 |#1|)) $) 23)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 11)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 49))) -(((-867 |#1|) (-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 1 ($) -4165) (-15 -2233 ((-797 |#1|) $)) (-15 -2233 ($ |#1|)) (-15 -3858 ((-650 |#1|) $)) (-15 -3839 ((-749) $)) (-15 -1564 ((-623 (-650 |#1|)) $)) (-15 -3870 ($ $)) (-15 -2918 ((-112) $)) (-15 -3016 ((-623 |#1|) $)))) (-825)) (T -867)) -((-2700 (*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-2233 (*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-623 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 (-2700) ($) -4165) (-15 -2233 ((-797 |#1|) $)) (-15 -2233 ($ |#1|)) (-15 -3858 ((-650 |#1|) $)) (-15 -3839 ((-749) $)) (-15 -1564 ((-623 (-650 |#1|)) $)) (-15 -3870 ($ $)) (-15 -2918 ((-112) $)) (-15 -3016 ((-623 |#1|) $)))) -((-3904 ((|#1| |#1| |#1|) 19))) -(((-868 |#1| |#2|) (-10 -7 (-15 -3904 (|#1| |#1| |#1|))) (-1204 |#2|) (-1021)) (T -868)) -((-3904 (*1 *2 *2 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1204 *3))))) -(-10 -7 (-15 -3904 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3612 (((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 14)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-3607 (((-1009) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 13)) (-2264 (((-112) $ $) 6))) +((-2884 (((-1091) $ (-129)) NIL)) (-2885 (((-1091) $ (-128)) 22)) (-2887 (($ (-381)) 12) (($ (-1129)) 14)) (-2886 (((-112) $) 19)) (-4312 (((-838) $) 26)) (-1811 (($ $) 23))) +(((-837) (-13 (-836) (-595 (-838)) (-10 -8 (-15 -2887 ($ (-381))) (-15 -2887 ($ (-1129))) (-15 -2886 ((-112) $))))) (T -837)) +((-2887 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-837)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-837)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(-13 (-836) (-595 (-838)) (-10 -8 (-15 -2887 ($ (-381))) (-15 -2887 ($ (-1129))) (-15 -2886 ((-112) $)))) +((-2893 (((-112) $ $) NIL) (($ $ $) 77)) (-2914 (($ $ $) 114)) (-2929 (((-536) $) 31) (((-536)) 36)) (-2924 (($ (-536)) 45)) (-2921 (($ $ $) 46) (($ (-620 $)) 76)) (-2905 (($ $ (-620 $)) 74)) (-2926 (((-536) $) 34)) (-2908 (($ $ $) 65)) (-3881 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2927 (((-536) $) 33)) (-2909 (($ $ $) 64)) (-3893 (($ $) 104)) (-2912 (($ $ $) 118)) (-2895 (($ (-620 $)) 53)) (-3898 (($ $ (-620 $)) 71)) (-2923 (($ (-536) (-536)) 47)) (-2935 (($ $) 115) (($ $ $) 116)) (-3467 (($ $ (-536)) 41) (($ $) 44)) (-2889 (($ $ $) 89)) (-2910 (($ $ $) 121)) (-2904 (($ $) 105)) (-2888 (($ $ $) 90)) (-2900 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3165 (((-1235) $) 10)) (-2903 (($ $) 108) (($ $ (-749)) 111)) (-2906 (($ $ $) 67)) (-2907 (($ $ $) 66)) (-2920 (($ $ (-620 $)) 100)) (-2918 (($ $ $) 103)) (-2897 (($ (-620 $)) 51)) (-2898 (($ $) 62) (($ (-620 $)) 63)) (-2901 (($ $ $) 112)) (-2902 (($ $) 106)) (-2913 (($ $ $) 117)) (-3882 (($ (-536)) 21) (($ (-1147)) 23) (($ (-1129)) 30) (($ (-219)) 25)) (-3185 (($ $ $) 93)) (-3671 (($ $) 94)) (-2931 (((-1235) (-1129)) 15)) (-2932 (($ (-1129)) 14)) (-3454 (($ (-620 (-620 $))) 50)) (-3468 (($ $ (-536)) 40) (($ $) 43)) (-3588 (((-1129) $) NIL)) (-2916 (($ $ $) 120)) (-3819 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2917 (((-112) $) 98)) (-2919 (($ $ (-620 $)) 101) (($ $ $ $) 102)) (-2925 (($ (-536)) 37)) (-2928 (((-536) $) 32) (((-536)) 35)) (-2922 (($ $ $) 38) (($ (-620 $)) 75)) (-3589 (((-1091) $) NIL)) (-3815 (($ $ $) 91)) (-3923 (($) 13)) (-4154 (($ $ (-620 $)) 99)) (-2930 (((-1129) (-1129)) 8)) (-4191 (($ $) 107) (($ $ (-749)) 110)) (-2890 (($ $ $) 88)) (-4165 (($ $ (-749)) 126)) (-2896 (($ (-620 $)) 52)) (-4312 (((-838) $) 19)) (-4127 (($ $ (-536)) 39) (($ $) 42)) (-2899 (($ $) 60) (($ (-620 $)) 61)) (-3586 (($ $) 58) (($ (-620 $)) 59)) (-2915 (($ $) 113)) (-2894 (($ (-620 $)) 57)) (-3432 (($ $ $) 97)) (-2911 (($ $ $) 119)) (-3186 (($ $ $) 92)) (-4092 (($ $ $) 95) (($ $) 96)) (-2891 (($ $ $) 81)) (-2892 (($ $ $) 79)) (-3382 (((-112) $ $) 16) (($ $ $) 17)) (-3012 (($ $ $) 80)) (-3013 (($ $ $) 78)) (-4303 (($ $ $) 86)) (-4192 (($ $ $) 83) (($ $) 84)) (-4194 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-838) (-13 (-1072) (-10 -8 (-15 -3165 ((-1235) $)) (-15 -2932 ($ (-1129))) (-15 -2931 ((-1235) (-1129))) (-15 -3882 ($ (-536))) (-15 -3882 ($ (-1147))) (-15 -3882 ($ (-1129))) (-15 -3882 ($ (-219))) (-15 -3923 ($)) (-15 -2930 ((-1129) (-1129))) (-15 -2929 ((-536) $)) (-15 -2928 ((-536) $)) (-15 -2929 ((-536))) (-15 -2928 ((-536))) (-15 -2927 ((-536) $)) (-15 -2926 ((-536) $)) (-15 -2925 ($ (-536))) (-15 -2924 ($ (-536))) (-15 -2923 ($ (-536) (-536))) (-15 -3468 ($ $ (-536))) (-15 -3467 ($ $ (-536))) (-15 -4127 ($ $ (-536))) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4127 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 ($ $ $)) (-15 -2922 ($ (-620 $))) (-15 -2921 ($ (-620 $))) (-15 -2920 ($ $ (-620 $))) (-15 -2919 ($ $ (-620 $))) (-15 -2919 ($ $ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-112) $)) (-15 -4154 ($ $ (-620 $))) (-15 -3893 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $)) (-15 -3454 ($ (-620 (-620 $)))) (-15 -2914 ($ $ $)) (-15 -2935 ($ $)) (-15 -2935 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -2910 ($ $ $)) (-15 -4165 ($ $ (-749))) (-15 -3432 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3898 ($ $ (-620 $))) (-15 -2905 ($ $ (-620 $))) (-15 -2904 ($ $)) (-15 -4191 ($ $)) (-15 -4191 ($ $ (-749))) (-15 -2903 ($ $)) (-15 -2903 ($ $ (-749))) (-15 -2902 ($ $)) (-15 -2901 ($ $ $)) (-15 -3881 ($ $)) (-15 -3881 ($ $ $)) (-15 -3881 ($ $ $ $)) (-15 -2900 ($ $)) (-15 -2900 ($ $ $)) (-15 -2900 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -3586 ($ $)) (-15 -3586 ($ (-620 $))) (-15 -2899 ($ $)) (-15 -2899 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -2897 ($ (-620 $))) (-15 -2896 ($ (-620 $))) (-15 -2895 ($ (-620 $))) (-15 -2894 ($ (-620 $))) (-15 -3382 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3013 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2891 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3671 ($ $)) (-15 -4092 ($ $ $)) (-15 -4092 ($ $))))) (T -838)) +((-3165 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-838)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-838)))) (-3923 (*1 *1) (-5 *1 (-838))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2929 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2928 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2923 (*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3468 (*1 *1 *1) (-5 *1 (-838))) (-3467 (*1 *1 *1) (-5 *1 (-838))) (-4127 (*1 *1 *1) (-5 *1 (-838))) (-2922 (*1 *1 *1 *1) (-5 *1 (-838))) (-2921 (*1 *1 *1 *1) (-5 *1 (-838))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2920 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2919 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-2918 (*1 *1 *1 *1) (-5 *1 (-838))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-3893 (*1 *1 *1) (-5 *1 (-838))) (-2916 (*1 *1 *1 *1) (-5 *1 (-838))) (-2915 (*1 *1 *1) (-5 *1 (-838))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-838)))) (-2914 (*1 *1 *1 *1) (-5 *1 (-838))) (-2935 (*1 *1 *1) (-5 *1 (-838))) (-2935 (*1 *1 *1 *1) (-5 *1 (-838))) (-2913 (*1 *1 *1 *1) (-5 *1 (-838))) (-2912 (*1 *1 *1 *1) (-5 *1 (-838))) (-2911 (*1 *1 *1 *1) (-5 *1 (-838))) (-2910 (*1 *1 *1 *1) (-5 *1 (-838))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-3432 (*1 *1 *1 *1) (-5 *1 (-838))) (-2909 (*1 *1 *1 *1) (-5 *1 (-838))) (-2908 (*1 *1 *1 *1) (-5 *1 (-838))) (-2907 (*1 *1 *1 *1) (-5 *1 (-838))) (-2906 (*1 *1 *1 *1) (-5 *1 (-838))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2905 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2904 (*1 *1 *1) (-5 *1 (-838))) (-4191 (*1 *1 *1) (-5 *1 (-838))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-2903 (*1 *1 *1) (-5 *1 (-838))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-2902 (*1 *1 *1) (-5 *1 (-838))) (-2901 (*1 *1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-3586 (*1 *1 *1) (-5 *1 (-838))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2899 (*1 *1 *1) (-5 *1 (-838))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2898 (*1 *1 *1) (-5 *1 (-838))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-3382 (*1 *1 *1 *1) (-5 *1 (-838))) (-2893 (*1 *1 *1 *1) (-5 *1 (-838))) (-3013 (*1 *1 *1 *1) (-5 *1 (-838))) (-2892 (*1 *1 *1 *1) (-5 *1 (-838))) (-3012 (*1 *1 *1 *1) (-5 *1 (-838))) (-2891 (*1 *1 *1 *1) (-5 *1 (-838))) (-4194 (*1 *1 *1 *1) (-5 *1 (-838))) (-4192 (*1 *1 *1 *1) (-5 *1 (-838))) (-4192 (*1 *1 *1) (-5 *1 (-838))) (* (*1 *1 *1 *1) (-5 *1 (-838))) (-4303 (*1 *1 *1 *1) (-5 *1 (-838))) (** (*1 *1 *1 *1) (-5 *1 (-838))) (-2890 (*1 *1 *1 *1) (-5 *1 (-838))) (-2889 (*1 *1 *1 *1) (-5 *1 (-838))) (-2888 (*1 *1 *1 *1) (-5 *1 (-838))) (-3815 (*1 *1 *1 *1) (-5 *1 (-838))) (-3186 (*1 *1 *1 *1) (-5 *1 (-838))) (-3185 (*1 *1 *1 *1) (-5 *1 (-838))) (-3671 (*1 *1 *1) (-5 *1 (-838))) (-4092 (*1 *1 *1 *1) (-5 *1 (-838))) (-4092 (*1 *1 *1) (-5 *1 (-838)))) +(-13 (-1072) (-10 -8 (-15 -3165 ((-1235) $)) (-15 -2932 ($ (-1129))) (-15 -2931 ((-1235) (-1129))) (-15 -3882 ($ (-536))) (-15 -3882 ($ (-1147))) (-15 -3882 ($ (-1129))) (-15 -3882 ($ (-219))) (-15 -3923 ($)) (-15 -2930 ((-1129) (-1129))) (-15 -2929 ((-536) $)) (-15 -2928 ((-536) $)) (-15 -2929 ((-536))) (-15 -2928 ((-536))) (-15 -2927 ((-536) $)) (-15 -2926 ((-536) $)) (-15 -2925 ($ (-536))) (-15 -2924 ($ (-536))) (-15 -2923 ($ (-536) (-536))) (-15 -3468 ($ $ (-536))) (-15 -3467 ($ $ (-536))) (-15 -4127 ($ $ (-536))) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4127 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 ($ $ $)) (-15 -2922 ($ (-620 $))) (-15 -2921 ($ (-620 $))) (-15 -2920 ($ $ (-620 $))) (-15 -2919 ($ $ (-620 $))) (-15 -2919 ($ $ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-112) $)) (-15 -4154 ($ $ (-620 $))) (-15 -3893 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $)) (-15 -3454 ($ (-620 (-620 $)))) (-15 -2914 ($ $ $)) (-15 -2935 ($ $)) (-15 -2935 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -2910 ($ $ $)) (-15 -4165 ($ $ (-749))) (-15 -3432 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3898 ($ $ (-620 $))) (-15 -2905 ($ $ (-620 $))) (-15 -2904 ($ $)) (-15 -4191 ($ $)) (-15 -4191 ($ $ (-749))) (-15 -2903 ($ $)) (-15 -2903 ($ $ (-749))) (-15 -2902 ($ $)) (-15 -2901 ($ $ $)) (-15 -3881 ($ $)) (-15 -3881 ($ $ $)) (-15 -3881 ($ $ $ $)) (-15 -2900 ($ $)) (-15 -2900 ($ $ $)) (-15 -2900 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -3586 ($ $)) (-15 -3586 ($ (-620 $))) (-15 -2899 ($ $)) (-15 -2899 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -2897 ($ (-620 $))) (-15 -2896 ($ (-620 $))) (-15 -2895 ($ (-620 $))) (-15 -2894 ($ (-620 $))) (-15 -3382 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3013 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2891 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3671 ($ $)) (-15 -4092 ($ $ $)) (-15 -4092 ($ $)))) +((-2893 (((-112) $ $) NIL)) (-4186 (((-3 $ "failed") (-1147)) 33)) (-3466 (((-749)) 31)) (-3322 (($) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2121 (((-893) $) 29)) (-3588 (((-1129) $) 39)) (-2487 (($ (-893)) 28)) (-3589 (((-1091) $) NIL)) (-4325 (((-1147) $) 13) (((-525) $) 19) (((-864 (-371)) $) 26) (((-864 (-536)) $) 22)) (-4312 (((-838) $) 16)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 36)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35))) +(((-839 |#1|) (-13 (-819) (-596 (-1147)) (-596 (-525)) (-596 (-864 (-371))) (-596 (-864 (-536))) (-10 -8 (-15 -4186 ((-3 $ "failed") (-1147))))) (-620 (-1147))) (T -839)) +((-4186 (*1 *1 *2) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-839 *3)) (-14 *3 (-620 *2))))) +(-13 (-819) (-596 (-1147)) (-596 (-525)) (-596 (-864 (-371))) (-596 (-864 (-536))) (-10 -8 (-15 -4186 ((-3 $ "failed") (-1147))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (((-920 |#1|) $) NIL) (($ (-920 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3456 (((-749)) NIL)) (-4278 (((-1235) (-749)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-840 |#1| |#2| |#3| |#4|) (-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 ((-920 |#1|) $)) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4278 ((-1235) (-749))))) (-1023) (-620 (-1147)) (-620 (-749)) (-749)) (T -840)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-840 *3 *4 *5 *6)) (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) (-4303 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-749))) (-14 *5 (-749)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-840 *4 *5 *6 *7)) (-4 *4 (-1023)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 *3)) (-14 *7 *3)))) +(-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 ((-920 |#1|) $)) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4278 ((-1235) (-749))))) +((-2933 (((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|) 31)) (-2934 (((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|) 24))) +(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2934 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2933 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) (-356) (-1222 |#1|) (-1205 |#1|)) (T -841)) +((-2933 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5)))) (-2934 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5))))) +(-10 -7 (-15 -2934 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2933 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) +((-2934 (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) 26))) +(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) (-356) (-1147) |#1|) (T -842)) +((-2934 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-842 *5 *6 *7)))) (-2934 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-842 *5 *6 *7))))) +(-10 -7 (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2936 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) NIL)) (-2937 (((-536) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-1124 (-536)) $) NIL)) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) +(((-843 |#1|) (-844 |#1|) (-536)) (T -843)) +NIL +(-844 |#1|) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $ (-536)) 60)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2935 (($ (-1141 (-536)) (-536)) 59)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2936 (($ $) 62)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4126 (((-749) $) 67)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2938 (((-536)) 64)) (-2937 (((-536) $) 63)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4123 (($ $ (-536)) 66)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-2939 (((-1124 (-536)) $) 68)) (-3219 (($ $) 65)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-4124 (((-536) $ (-536)) 61)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-844 |#1|) (-138) (-536)) (T -844)) +((-2939 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-1124 (-536))))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-749)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-3219 (*1 *1 *1) (-4 *1 (-844 *2))) (-2938 (*1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2936 (*1 *1 *1) (-4 *1 (-844 *2))) (-4124 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2935 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *3 (-536)) (-4 *1 (-844 *4))))) +(-13 (-300) (-145) (-10 -8 (-15 -2939 ((-1124 (-536)) $)) (-15 -4126 ((-749) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)) (-15 -2938 ((-536))) (-15 -2937 ((-536) $)) (-15 -2936 ($ $)) (-15 -4124 ((-536) $ (-536))) (-15 -3365 ($ $ (-536))) (-15 -2935 ($ (-1141 (-536)) (-536))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-843 |#1|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-843 |#1|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-536))))) (-3502 (((-843 |#1|) $) NIL) (((-1147) $) NIL (|has| (-843 |#1|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-843 |#1|) (-1012 (-536)))) (((-536) $) NIL (|has| (-843 |#1|) (-1012 (-536))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-843 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-843 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-843 |#1|))) (|:| |vec| (-1229 (-843 |#1|)))) (-667 $) (-1229 $)) NIL) (((-667 (-843 |#1|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-843 |#1|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-843 |#1|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-843 |#1|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-843 |#1|) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-3673 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-4313 (($ (-1 (-843 |#1|) (-843 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-843 |#1|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-843 |#1|) (-300)))) (-3460 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-843 |#1|)) (-620 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-843 |#1|) (-843 |#1|)) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-286 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-620 (-286 (-843 |#1|)))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-620 (-1147)) (-620 (-843 |#1|))) NIL (|has| (-843 |#1|) (-505 (-1147) (-843 |#1|)))) (($ $ (-1147) (-843 |#1|)) NIL (|has| (-843 |#1|) (-505 (-1147) (-843 |#1|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-843 |#1|)) NIL (|has| (-843 |#1|) (-279 (-843 |#1|) (-843 |#1|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-843 |#1|) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-843 |#1|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-843 |#1|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-843 |#1|) (-596 (-525)))) (((-371) $) NIL (|has| (-843 |#1|) (-994))) (((-219) $) NIL (|has| (-843 |#1|) (-994)))) (-2940 (((-172 (-400 (-536))) $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-843 |#1|)) NIL) (($ (-1147)) NIL (|has| (-843 |#1|) (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-884))) (|has| (-843 |#1|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) NIL)) (-3737 (($ $) NIL (|has| (-843 |#1|) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-4303 (($ $ $) NIL) (($ (-843 |#1|) (-843 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-843 |#1|) $) NIL) (($ $ (-843 |#1|)) NIL))) +(((-845 |#1|) (-13 (-965 (-843 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536)) (T -845)) +((-4124 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-845 *4)) (-14 *4 *3) (-5 *3 (-536)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-845 *3)) (-14 *3 (-536)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-536)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-845 *3)) (-14 *3 *2)))) +(-13 (-965 (-843 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#2| $) NIL (|has| |#2| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#2| (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| |#2| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536))))) (-3502 ((|#2| $) NIL) (((-1147) $) NIL (|has| |#2| (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-536)))) (((-536) $) NIL (|has| |#2| (-1012 (-536))))) (-4085 (($ $) 31) (($ (-536) $) 32)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 53)) (-3322 (($) NIL (|has| |#2| (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| |#2| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#2| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#2| (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 ((|#2| $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#2| (-1122)))) (-3533 (((-112) $) NIL (|has| |#2| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 49)) (-3799 (($) NIL (|has| |#2| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| |#2| (-300)))) (-3460 ((|#2| $) NIL (|has| |#2| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 |#2|) (-620 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-620 (-286 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-620 (-1147)) (-620 |#2|)) NIL (|has| |#2| (-505 (-1147) |#2|))) (($ $ (-1147) |#2|) NIL (|has| |#2| (-505 (-1147) |#2|)))) (-1699 (((-749) $) NIL)) (-4154 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3323 (($ $) NIL)) (-3325 ((|#2| $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| |#2| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#2| (-596 (-864 (-371))))) (((-525) $) NIL (|has| |#2| (-596 (-525)))) (((-371) $) NIL (|has| |#2| (-994))) (((-219) $) NIL (|has| |#2| (-994)))) (-2940 (((-172 (-400 (-536))) $) 68)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) 87) (($ (-536)) 19) (($ $) NIL) (($ (-400 (-536))) 24) (($ |#2|) 18) (($ (-1147)) NIL (|has| |#2| (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-3461 ((|#2| $) NIL (|has| |#2| (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) 60)) (-3737 (($ $) NIL (|has| |#2| (-798)))) (-2986 (($) 14 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) 35)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4192 (($ $) 39) (($ $ $) 41)) (-4194 (($ $ $) 37)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 50)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 42) (($ $ $) 44) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-846 |#1| |#2|) (-13 (-965 |#2|) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536) (-844 |#1|)) (T -846)) +((-4124 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-536))) (-5 *1 (-846 *4 *5)) (-5 *3 (-536)) (-4 *5 (-844 *4)))) (-2940 (*1 *2 *1) (-12 (-14 *3 (-536)) (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3)))) (-4085 (*1 *1 *1) (-12 (-14 *2 (-536)) (-5 *1 (-846 *2 *3)) (-4 *3 (-844 *2)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3))))) +(-13 (-965 |#2|) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) +((-2893 (((-112) $ $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-4150 ((|#2| $) 12)) (-2941 (($ |#1| |#2|) 9)) (-3588 (((-1129) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-3589 (((-1091) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#1| $) 11)) (-3879 (($ |#1| |#2|) 10)) (-4312 (((-838) $) 18 (-3886 (-12 (|has| |#1| (-595 (-838))) (|has| |#2| (-595 (-838)))) (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072)))))) (-3382 (((-112) $ $) 22 (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072)))))) +(((-847 |#1| |#2|) (-13 (-1183) (-10 -8 (IF (|has| |#1| (-595 (-838))) (IF (|has| |#2| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1072)) (IF (|has| |#2| (-1072)) (-6 (-1072)) |%noBranch|) |%noBranch|) (-15 -2941 ($ |#1| |#2|)) (-15 -3879 ($ |#1| |#2|)) (-15 -4155 (|#1| $)) (-15 -4150 (|#2| $)))) (-1183) (-1183)) (T -847)) +((-2941 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) (-4155 (*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1183)))) (-4150 (*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1183))))) +(-13 (-1183) (-10 -8 (IF (|has| |#1| (-595 (-838))) (IF (|has| |#2| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1072)) (IF (|has| |#2| (-1072)) (-6 (-1072)) |%noBranch|) |%noBranch|) (-15 -2941 ($ |#1| |#2|)) (-15 -3879 ($ |#1| |#2|)) (-15 -4155 (|#1| $)) (-15 -4150 (|#2| $)))) +((-2893 (((-112) $ $) NIL)) (-3285 (((-536) $) 15)) (-2943 (($ (-155)) 11)) (-2942 (($ (-155)) 12)) (-3588 (((-1129) $) NIL)) (-3284 (((-155) $) 13)) (-3589 (((-1091) $) NIL)) (-2945 (($ (-155)) 9)) (-2946 (($ (-155)) 8)) (-4312 (((-838) $) 23) (($ (-155)) 16)) (-2944 (($ (-155)) 10)) (-3382 (((-112) $ $) NIL))) +(((-848) (-13 (-1072) (-10 -8 (-15 -2946 ($ (-155))) (-15 -2945 ($ (-155))) (-15 -2944 ($ (-155))) (-15 -2943 ($ (-155))) (-15 -2942 ($ (-155))) (-15 -3284 ((-155) $)) (-15 -3285 ((-536) $)) (-15 -4312 ($ (-155)))))) (T -848)) +((-2946 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-848)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(-13 (-1072) (-10 -8 (-15 -2946 ($ (-155))) (-15 -2945 ($ (-155))) (-15 -2944 ($ (-155))) (-15 -2943 ($ (-155))) (-15 -2942 ($ (-155))) (-15 -3284 ((-155) $)) (-15 -3285 ((-536) $)) (-15 -4312 ($ (-155))))) +((-4312 (((-307 (-536)) (-400 (-920 (-48)))) 23) (((-307 (-536)) (-920 (-48))) 18))) +(((-849) (-10 -7 (-15 -4312 ((-307 (-536)) (-920 (-48)))) (-15 -4312 ((-307 (-536)) (-400 (-920 (-48))))))) (T -849)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 (-48)))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-920 (-48))) (-5 *2 (-307 (-536))) (-5 *1 (-849))))) +(-10 -7 (-15 -4312 ((-307 (-536)) (-920 (-48)))) (-15 -4312 ((-307 (-536)) (-400 (-920 (-48)))))) +((-4313 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) +(((-850 |#1| |#2|) (-10 -7 (-15 -4313 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1183) (-1183)) (T -850)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) +(-10 -7 (-15 -4313 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) +((-3725 (($ |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) +(((-851 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -851)) +((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1183)))) (-3725 (*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1183))))) +(-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) +((-4313 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) +(((-852 |#1| |#2|) (-10 -7 (-15 -4313 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1183) (-1183)) (T -852)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) +(-10 -7 (-15 -4313 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) +((-3725 (($ |#1| |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) +(((-853 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -853)) +((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1183)))) (-3725 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1183))))) +(-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) +((-2947 (((-620 (-1152)) (-1129)) 9))) +(((-854) (-10 -7 (-15 -2947 ((-620 (-1152)) (-1129))))) (T -854)) +((-2947 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-854))))) +(-10 -7 (-15 -2947 ((-620 (-1152)) (-1129)))) +((-4313 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) +(((-855 |#1| |#2|) (-10 -7 (-15 -4313 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-1183) (-1183)) (T -855)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) +(-10 -7 (-15 -4313 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) +((-2948 (($ |#1| |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) +(((-856 |#1|) (-10 -8 (-15 -2948 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -856)) +((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1183)))) (-2948 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1183))))) +(-10 -8 (-15 -2948 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) +((-2953 (((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536)))) 32)) (-2952 (((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536))) 28)) (-2954 (((-1124 (-620 (-536))) (-620 (-536))) 41) (((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536))) 40)) (-2955 (((-1124 (-620 (-536))) (-536)) 42)) (-2950 (((-1124 (-620 (-536))) (-536) (-536)) 22) (((-1124 (-620 (-536))) (-536)) 16) (((-1124 (-620 (-536))) (-536) (-536) (-536)) 12)) (-2951 (((-1124 (-620 (-536))) (-1124 (-620 (-536)))) 26)) (-3337 (((-620 (-536)) (-620 (-536))) 25))) +(((-857) (-10 -7 (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536))) (-15 -3337 ((-620 (-536)) (-620 (-536)))) (-15 -2951 ((-1124 (-620 (-536))) (-1124 (-620 (-536))))) (-15 -2952 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2953 ((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536))))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)))) (-15 -2955 ((-1124 (-620 (-536))) (-536))))) (T -857)) +((-2955 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2954 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2954 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2953 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *3 (-620 (-536))) (-5 *1 (-857)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-857)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2950 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) +(-10 -7 (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536))) (-15 -3337 ((-620 (-536)) (-620 (-536)))) (-15 -2951 ((-1124 (-620 (-536))) (-1124 (-620 (-536))))) (-15 -2952 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2953 ((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536))))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)))) (-15 -2955 ((-1124 (-620 (-536))) (-536)))) +((-4325 (((-864 (-371)) $) 9 (|has| |#1| (-596 (-864 (-371))))) (((-864 (-536)) $) 8 (|has| |#1| (-596 (-864 (-536))))))) +(((-858 |#1|) (-138) (-1183)) (T -858)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-596 (-864 (-536)))) (-6 (-596 (-864 (-536)))) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-371)))) (-6 (-596 (-864 (-371)))) |%noBranch|))) +(((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536))))) +((-2893 (((-112) $ $) NIL)) (-3972 (($) 14)) (-2958 (($ (-862 |#1| |#2|) (-862 |#1| |#3|)) 27)) (-2956 (((-862 |#1| |#3|) $) 16)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2966 (((-112) $) 22)) (-2965 (($) 19)) (-4312 (((-838) $) 30)) (-2957 (((-862 |#1| |#2|) $) 15)) (-3382 (((-112) $ $) 25))) +(((-859 |#1| |#2| |#3|) (-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -2958 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -2957 ((-862 |#1| |#2|) $)) (-15 -2956 ((-862 |#1| |#3|) $)))) (-1072) (-1072) (-644 |#2|)) (T -859)) +((-2966 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4)))) (-2965 (*1 *1) (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) (-4 *4 (-644 *3)))) (-3972 (*1 *1) (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) (-4 *4 (-644 *3)))) (-2958 (*1 *1 *2 *3) (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6)))) (-2957 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *4)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4)))) (-2956 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *5)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4))))) +(-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -2958 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -2957 ((-862 |#1| |#2|) $)) (-15 -2956 ((-862 |#1| |#3|) $)))) +((-2893 (((-112) $ $) 7)) (-3124 (((-862 |#1| $) $ (-864 |#1|) (-862 |#1| $)) 13)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) +(((-860 |#1|) (-138) (-1072)) (T -860)) +((-3124 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-864 *4)) (-4 *1 (-860 *4)) (-4 *4 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -3124 ((-862 |t#1| $) $ (-864 |t#1|) (-862 |t#1| $))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2959 (((-112) (-620 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2960 (((-862 |#1| |#2|) |#2| |#3|) 43 (-12 (-3671 (|has| |#2| (-1012 (-1147)))) (-3671 (|has| |#2| (-1023))))) (((-620 (-286 (-920 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1023)) (-3671 (|has| |#2| (-1012 (-1147)))))) (((-620 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1012 (-1147)))) (((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|) 21))) +(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-112) |#2| |#3|)) (-15 -2959 ((-112) (-620 |#2|) |#3|)) (-15 -2960 ((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2960 ((-620 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1023)) (-15 -2960 ((-620 (-286 (-920 |#2|))) |#2| |#3|)) (-15 -2960 ((-862 |#1| |#2|) |#2| |#3|))))) (-1072) (-860 |#1|) (-596 (-864 |#1|))) (T -861)) +((-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-862 *5 *3)) (-5 *1 (-861 *5 *3 *4)) (-3671 (-4 *3 (-1012 (-1147)))) (-3671 (-4 *3 (-1023))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 (-920 *3)))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1023)) (-3671 (-4 *3 (-1012 (-1147)))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 *3))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1012 (-1147))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-620 *6))) (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-620 *6)) (-4 *4 (-596 (-864 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-864 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5)))))) +(-10 -7 (-15 -2959 ((-112) |#2| |#3|)) (-15 -2959 ((-112) (-620 |#2|) |#3|)) (-15 -2960 ((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2960 ((-620 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1023)) (-15 -2960 ((-620 (-286 (-920 |#2|))) |#2| |#3|)) (-15 -2960 ((-862 |#1| |#2|) |#2| |#3|))))) +((-2893 (((-112) $ $) NIL)) (-3580 (($ $ $) 39)) (-2987 (((-3 (-112) "failed") $ (-864 |#1|)) 36)) (-3972 (($) 12)) (-3588 (((-1129) $) NIL)) (-2962 (($ (-864 |#1|) |#2| $) 20)) (-3589 (((-1091) $) NIL)) (-2964 (((-3 |#2| "failed") (-864 |#1|) $) 50)) (-2966 (((-112) $) 15)) (-2965 (($) 13)) (-3603 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $) 25)) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|)))) 23)) (-4312 (((-838) $) 44)) (-2961 (($ (-864 |#1|) |#2| $ |#2|) 48)) (-2963 (($ (-864 |#1|) |#2| $) 47)) (-3382 (((-112) $ $) 41))) +(((-862 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -3580 ($ $ $)) (-15 -2964 ((-3 |#2| "failed") (-864 |#1|) $)) (-15 -2963 ($ (-864 |#1|) |#2| $)) (-15 -2962 ($ (-864 |#1|) |#2| $)) (-15 -2961 ($ (-864 |#1|) |#2| $ |#2|)) (-15 -3603 ((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))))) (-15 -2987 ((-3 (-112) "failed") $ (-864 |#1|))))) (-1072) (-1072)) (T -862)) +((-2966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-2965 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3972 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3580 (*1 *1 *1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-2964 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-4 *2 (-1072)) (-5 *1 (-862 *4 *2)))) (-2963 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-2962 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-2961 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-4 *4 (-1072)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)))) (-2987 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -3580 ($ $ $)) (-15 -2964 ((-3 |#2| "failed") (-864 |#1|) $)) (-15 -2963 ($ (-864 |#1|) |#2| $)) (-15 -2962 ($ (-864 |#1|) |#2| $)) (-15 -2961 ($ (-864 |#1|) |#2| $ |#2|)) (-15 -3603 ((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))))) (-15 -2987 ((-3 (-112) "failed") $ (-864 |#1|))))) +((-4313 (((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)) 22))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) (-1072) (-1072) (-1072)) (T -863)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-862 *5 *7)) (-5 *1 (-863 *5 *6 *7))))) +(-10 -7 (-15 -4313 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) +((-2893 (((-112) $ $) NIL)) (-2974 (($ $ (-620 (-51))) 64)) (-3412 (((-620 $) $) 118)) (-2971 (((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $) 24)) (-3606 (((-112) $) 30)) (-2972 (($ $ (-620 (-1147)) (-51)) 25)) (-2975 (($ $ (-620 (-51))) 63)) (-3503 (((-3 |#1| #1="failed") $) 61) (((-3 (-1147) #1#) $) 140)) (-3502 ((|#1| $) 58) (((-1147) $) NIL)) (-2969 (($ $) 108)) (-2981 (((-112) $) 47)) (-2976 (((-620 (-51)) $) 45)) (-2973 (($ (-1147) (-112) (-112) (-112)) 65)) (-2967 (((-3 (-620 $) "failed") (-620 $)) 72)) (-2978 (((-112) $) 50)) (-2979 (((-112) $) 49)) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) "failed") $) 36)) (-2984 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $) 83)) (-3150 (((-3 (-620 $) "failed") $) 33)) (-2985 (((-3 (-620 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $) 95)) (-2983 (((-3 (-620 $) "failed") $) 37)) (-3152 (((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $) 40)) (-2982 (((-112) $) 29)) (-3589 (((-1091) $) NIL)) (-2970 (((-112) $) 21)) (-2977 (((-112) $) 46)) (-2968 (((-620 (-51)) $) 111)) (-2980 (((-112) $) 48)) (-4154 (($ (-113) (-620 $)) 92)) (-3677 (((-749) $) 28)) (-3754 (($ $) 62)) (-4325 (($ (-620 $)) 59)) (-4307 (((-112) $) 26)) (-4312 (((-838) $) 53) (($ |#1|) 18) (($ (-1147)) 66)) (-2988 (($ $ (-51)) 110)) (-2986 (($) 91 T CONST)) (-2992 (($) 73 T CONST)) (-3382 (((-112) $ $) 79)) (-4303 (($ $ $) 100)) (-4194 (($ $ $) 104)) (** (($ $ (-749)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-864 |#1|) (-13 (-1072) (-1012 |#1|) (-1012 (-1147)) (-10 -8 (-15 0 ($) -4306) (-15 1 ($) -4306) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -2985 ((-3 (-620 $) "failed") $ (-113))) (-15 -2985 ((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $)) (-15 -2984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2983 ((-3 (-620 $) "failed") $)) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -4303 ($ $ $)) (-15 -3677 ((-749) $)) (-15 -4325 ($ (-620 $))) (-15 -3754 ($ $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -2978 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2976 ((-620 (-51)) $)) (-15 -2975 ($ $ (-620 (-51)))) (-15 -2974 ($ $ (-620 (-51)))) (-15 -2973 ($ (-1147) (-112) (-112) (-112))) (-15 -2972 ($ $ (-620 (-1147)) (-51))) (-15 -2971 ((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $)) (-15 -2970 ((-112) $)) (-15 -2969 ($ $)) (-15 -2988 ($ $ (-51))) (-15 -2968 ((-620 (-51)) $)) (-15 -3412 ((-620 $) $)) (-15 -2967 ((-3 (-620 $) "failed") (-620 $))))) (-1072)) (T -864)) +((-2986 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2992 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-3150 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3151 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2985 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-864 *4))) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2985 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 (-864 *3))))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3152 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-749)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2984 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-864 *3)) (|:| |den| (-864 *3)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2983 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3153 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-864 *3)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4154 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 (-864 *4))) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-4194 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-4303 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2973 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-112)) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2972 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-51)) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2969 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2967 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(-13 (-1072) (-1012 |#1|) (-1012 (-1147)) (-10 -8 (-15 (-2986) ($) -4306) (-15 (-2992) ($) -4306) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -2985 ((-3 (-620 $) "failed") $ (-113))) (-15 -2985 ((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $)) (-15 -2984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2983 ((-3 (-620 $) "failed") $)) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -4303 ($ $ $)) (-15 -3677 ((-749) $)) (-15 -4325 ($ (-620 $))) (-15 -3754 ($ $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -2978 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2976 ((-620 (-51)) $)) (-15 -2975 ($ $ (-620 (-51)))) (-15 -2974 ($ $ (-620 (-51)))) (-15 -2973 ($ (-1147) (-112) (-112) (-112))) (-15 -2972 ($ $ (-620 (-1147)) (-51))) (-15 -2971 ((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $)) (-15 -2970 ((-112) $)) (-15 -2969 ($ $)) (-15 -2988 ($ $ (-51))) (-15 -2968 ((-620 (-51)) $)) (-15 -3412 ((-620 $) $)) (-15 -2967 ((-3 (-620 $) "failed") (-620 $))))) +((-3555 (((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|))) 32) (((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|))) 43) (((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|)) 35)) (-2987 (((-112) (-620 |#2|) (-864 |#1|)) 40) (((-112) |#2| (-864 |#1|)) 36)) (-3880 (((-1 (-112) |#2|) (-864 |#1|)) 16)) (-2989 (((-620 |#2|) (-864 |#1|)) 24)) (-2988 (((-864 |#1|) (-864 |#1|) |#2|) 20))) +(((-865 |#1| |#2|) (-10 -7 (-15 -3555 ((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|)))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|)))) (-15 -3880 ((-1 (-112) |#2|) (-864 |#1|))) (-15 -2987 ((-112) |#2| (-864 |#1|))) (-15 -2987 ((-112) (-620 |#2|) (-864 |#1|))) (-15 -2988 ((-864 |#1|) (-864 |#1|) |#2|)) (-15 -2989 ((-620 |#2|) (-864 |#1|)))) (-1072) (-1183)) (T -865)) +((-2989 (*1 *2 *3) (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-620 *5)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1183)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *2 (-112)) (-5 *1 (-865 *5 *6)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-865 *5 *3)) (-4 *3 (-1183)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) (-3555 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-864 *5)) (-5 *3 (-620 (-1147))) (-5 *4 (-1 (-112) (-620 *6))) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-865 *5 *6)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-5 *3 (-620 (-1 (-112) *5))) (-4 *4 (-1072)) (-4 *5 (-1183)) (-5 *1 (-865 *4 *5)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1072)) (-4 *5 (-1183)) (-5 *1 (-865 *4 *5))))) +(-10 -7 (-15 -3555 ((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|)))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|)))) (-15 -3880 ((-1 (-112) |#2|) (-864 |#1|))) (-15 -2987 ((-112) |#2| (-864 |#1|))) (-15 -2987 ((-112) (-620 |#2|) (-864 |#1|))) (-15 -2988 ((-864 |#1|) (-864 |#1|) |#2|)) (-15 -2989 ((-620 |#2|) (-864 |#1|)))) +((-4313 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 19))) +(((-866 |#1| |#2|) (-10 -7 (-15 -4313 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1072) (-1072)) (T -866)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-864 *6)) (-5 *1 (-866 *5 *6))))) +(-10 -7 (-15 -4313 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) +((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 16)) (-2990 (((-112) $) 38)) (-3503 (((-3 (-650 |#1|) "failed") $) 43)) (-3502 (((-650 |#1|) $) 41)) (-4153 (($ $) 18)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4188 (((-749) $) 46)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-650 |#1|) $) 17)) (-4312 (((-838) $) 37) (($ (-650 |#1|)) 21) (((-797 |#1|) $) 27) (($ |#1|) 20)) (-2992 (($) 8 T CONST)) (-2991 (((-620 (-650 |#1|)) $) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 11)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 49))) +(((-867 |#1|) (-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 1 ($) -4306) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ($ |#1|)) (-15 -4155 ((-650 |#1|) $)) (-15 -4188 ((-749) $)) (-15 -2991 ((-620 (-650 |#1|)) $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -867)) +((-2992 (*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-620 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 (-2992) ($) -4306) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ($ |#1|)) (-15 -4155 ((-650 |#1|) $)) (-15 -4188 ((-749) $)) (-15 -2991 ((-620 (-650 |#1|)) $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -4289 ((-620 |#1|) $)))) +((-3823 ((|#1| |#1| |#1|) 19))) +(((-868 |#1| |#2|) (-10 -7 (-15 -3823 (|#1| |#1| |#1|))) (-1205 |#2|) (-1023)) (T -868)) +((-3823 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1205 *3))))) +(-10 -7 (-15 -3823 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 13)) (-3382 (((-112) $ $) 6))) (((-869) (-138)) (T -869)) -((-3612 (*1 *2 *3 *4) (-12 (-4 *1 (-869)) (-5 *3 (-1033)) (-5 *4 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) (-3607 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *3 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) (-5 *2 (-1009))))) -(-13 (-1069) (-10 -7 (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| |explanations| (-1127))) (-1033) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))))) (-15 -3607 ((-1009) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-3835 ((|#1| |#1| (-749)) 24)) (-2727 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1301 (((-3 (-2 (|:| -3480 |#1|) (|:| -3490 |#1|)) "failed") |#1| (-749) (-749)) 27) (((-623 |#1|) |#1|) 29))) -(((-870 |#1| |#2|) (-10 -7 (-15 -1301 ((-623 |#1|) |#1|)) (-15 -1301 ((-3 (-2 (|:| -3480 |#1|) (|:| -3490 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3835 (|#1| |#1| (-749)))) (-1204 |#2|) (-356)) (T -870)) -((-3835 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) (-4 *2 (-1204 *4)))) (-2727 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1204 *3)))) (-1301 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3480 *3) (|:| -3490 *3))) (-5 *1 (-870 *3 *5)) (-4 *3 (-1204 *5)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -1301 ((-623 |#1|) |#1|)) (-15 -1301 ((-3 (-2 (|:| -3480 |#1|) (|:| -3490 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3835 (|#1| |#1| (-749)))) -((-4229 (((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127)) 96) (((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127) (-219)) 91) (((-1009) (-872) (-1033)) 83) (((-1009) (-872)) 84)) (-3612 (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872) (-1033)) 59) (((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872)) 61))) -(((-871) (-10 -7 (-15 -4229 ((-1009) (-872))) (-15 -4229 ((-1009) (-872) (-1033))) (-15 -4229 ((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127) (-219))) (-15 -4229 ((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872) (-1033))))) (T -871)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1033)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-871)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127))))) (-5 *1 (-871)))) (-4229 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1127)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-4229 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1127)) (-5 *8 (-219)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871))))) -(-10 -7 (-15 -4229 ((-1009) (-872))) (-15 -4229 ((-1009) (-872) (-1033))) (-15 -4229 ((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127) (-219))) (-15 -4229 ((-1009) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1127))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872))) (-15 -3612 ((-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) (|:| |explanations| (-623 (-1127)))) (-872) (-1033)))) -((-2221 (((-112) $ $) NIL)) (-2202 (((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))) $) 19)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 21) (($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) 18)) (-2264 (((-112) $ $) NIL))) -(((-872) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))) $))))) (T -872)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-872)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) (-5 *1 (-872)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219)))) (-5 *1 (-872))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))))) (-15 -2233 ((-837) $)) (-15 -2202 ((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) (|:| |tol| (-219))) $)))) -((-2798 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) 10) (($ $ |#2| (-749)) 12) (($ $ (-623 |#2|) (-623 (-749))) 15)) (-1901 (($ $ |#2|) 16) (($ $ (-623 |#2|)) 18) (($ $ |#2| (-749)) 19) (($ $ (-623 |#2|) (-623 (-749))) 21))) -(((-873 |#1| |#2|) (-10 -8 (-15 -1901 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -1901 (|#1| |#1| |#2| (-749))) (-15 -1901 (|#1| |#1| (-623 |#2|))) (-15 -1901 (|#1| |#1| |#2|)) (-15 -2798 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -2798 (|#1| |#1| |#2| (-749))) (-15 -2798 (|#1| |#1| (-623 |#2|))) (-15 -2798 (|#1| |#1| |#2|))) (-874 |#2|) (-1069)) (T -873)) -NIL -(-10 -8 (-15 -1901 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -1901 (|#1| |#1| |#2| (-749))) (-15 -1901 (|#1| |#1| (-623 |#2|))) (-15 -1901 (|#1| |#1| |#2|)) (-15 -2798 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -2798 (|#1| |#1| |#2| (-749))) (-15 -2798 (|#1| |#1| (-623 |#2|))) (-15 -2798 (|#1| |#1| |#2|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2798 (($ $ |#1|) 40) (($ $ (-623 |#1|)) 39) (($ $ |#1| (-749)) 38) (($ $ (-623 |#1|) (-623 (-749))) 37)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ |#1|) 36) (($ $ (-623 |#1|)) 35) (($ $ |#1| (-749)) 34) (($ $ (-623 |#1|) (-623 (-749))) 33)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-874 |#1|) (-138) (-1069)) (T -874)) -((-2798 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1069)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1069)))) (-2798 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1069)))) (-2798 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1069)))) (-1901 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1069)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1069)))) (-1901 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1069)))) (-1901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1069))))) -(-13 (-1021) (-10 -8 (-15 -2798 ($ $ |t#1|)) (-15 -2798 ($ $ (-623 |t#1|))) (-15 -2798 ($ $ |t#1| (-749))) (-15 -2798 ($ $ (-623 |t#1|) (-623 (-749)))) (-15 -1901 ($ $ |t#1|)) (-15 -1901 ($ $ (-623 |t#1|))) (-15 -1901 ($ $ |t#1| (-749))) (-15 -1901 ($ $ (-623 |t#1|) (-623 (-749)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) 26)) (-3368 (((-112) $ (-749)) NIL)) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-1419 (($ $ $) NIL (|has| $ (-6 -4345)))) (-4081 (($ $ $) NIL (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) (($ $ "left" $) NIL (|has| $ (-6 -4345))) (($ $ "right" $) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3490 (($ $) 25)) (-3190 (($ |#1|) 12) (($ $ $) 17)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3480 (($ $) 23)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) 20)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1168 |#1|) $) 9) (((-837) $) 29 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 21 (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-875 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -3190 ($ |#1|)) (-15 -3190 ($ $ $)) (-15 -2233 ((-1168 |#1|) $)))) (-1069)) (T -875)) -((-3190 (*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1069)))) (-3190 (*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1069)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1069))))) -(-13 (-119 |#1|) (-10 -8 (-15 -3190 ($ |#1|)) (-15 -3190 ($ $ $)) (-15 -2233 ((-1168 |#1|) $)))) -((-2635 ((|#2| (-1111 |#1| |#2|)) 40))) -(((-876 |#1| |#2|) (-10 -7 (-15 -2635 (|#2| (-1111 |#1| |#2|)))) (-895) (-13 (-1021) (-10 -7 (-6 (-4346 "*"))))) (T -876)) -((-2635 (*1 *2 *3) (-12 (-5 *3 (-1111 *4 *2)) (-14 *4 (-895)) (-4 *2 (-13 (-1021) (-10 -7 (-6 (-4346 "*"))))) (-5 *1 (-876 *4 *2))))) -(-10 -7 (-15 -2635 (|#2| (-1111 |#1| |#2|)))) -((-2221 (((-112) $ $) 7)) (-2991 (($) 18 T CONST)) (-1537 (((-3 $ "failed") $) 15)) (-1943 (((-1071 |#1|) $ |#1|) 32)) (-2419 (((-112) $) 17)) (-2793 (($ $ $) 30 (-1489 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2173 (($ $ $) 29 (-1489 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 24)) (-3445 (((-1089) $) 10)) (-1553 ((|#1| $ |#1|) 34)) (-2757 ((|#1| $ |#1|) 33)) (-3821 (($ (-623 (-623 |#1|))) 35)) (-3844 (($ (-623 |#1|)) 36)) (-3018 (($ $ $) 21)) (-1353 (($ $ $) 20)) (-2233 (((-837) $) 11)) (-2700 (($) 19 T CONST)) (-2324 (((-112) $ $) 27 (-1489 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2302 (((-112) $ $) 26 (-1489 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 28 (-1489 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2290 (((-112) $ $) 31)) (-2382 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-749)) 16) (($ $ (-550)) 22)) (* (($ $ $) 14))) -(((-877 |#1|) (-138) (-1069)) (T -877)) -((-3844 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-877 *3)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-4 *1 (-877 *3)))) (-1553 (*1 *2 *1 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1069)))) (-2757 (*1 *2 *1 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1069)))) (-1943 (*1 *2 *1 *3) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1069)) (-5 *2 (-1071 *3)))) (-2290 (*1 *2 *1 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(-13 (-465) (-10 -8 (-15 -3844 ($ (-623 |t#1|))) (-15 -3821 ($ (-623 (-623 |t#1|)))) (-15 -1553 (|t#1| $ |t#1|)) (-15 -2757 (|t#1| $ |t#1|)) (-15 -1943 ((-1071 |t#1|) $ |t#1|)) (-15 -2290 ((-112) $ $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-825)) |%noBranch|))) -(((-101) . T) ((-595 (-837)) . T) ((-465) . T) ((-705) . T) ((-825) -1489 (|has| |#1| (-825)) (|has| |#1| (-361))) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-3122 (((-623 (-623 (-749))) $) 108)) (-3682 (((-623 (-749)) (-879 |#1|) $) 130)) (-3187 (((-623 (-749)) (-879 |#1|) $) 131)) (-2550 (((-623 (-879 |#1|)) $) 98)) (-1864 (((-879 |#1|) $ (-550)) 103) (((-879 |#1|) $) 104)) (-4041 (($ (-623 (-879 |#1|))) 110)) (-2603 (((-749) $) 105)) (-3963 (((-1071 (-1071 |#1|)) $) 128)) (-1943 (((-1071 |#1|) $ |#1|) 121) (((-1071 (-1071 |#1|)) $ (-1071 |#1|)) 139) (((-1071 (-623 |#1|)) $ (-623 |#1|)) 142)) (-2028 (((-1071 |#1|) $) 101)) (-3922 (((-112) (-879 |#1|) $) 92)) (-2369 (((-1127) $) NIL)) (-2759 (((-1233) $) 95) (((-1233) $ (-550) (-550)) 143)) (-3445 (((-1089) $) NIL)) (-1461 (((-623 (-879 |#1|)) $) 96)) (-2757 (((-879 |#1|) $ (-749)) 99)) (-3661 (((-749) $) 106)) (-2233 (((-837) $) 119) (((-623 (-879 |#1|)) $) 23) (($ (-623 (-879 |#1|))) 109)) (-4300 (((-623 |#1|) $) 107)) (-2264 (((-112) $ $) 136)) (-2313 (((-112) $ $) 134)) (-2290 (((-112) $ $) 133))) -(((-878 |#1|) (-13 (-1069) (-10 -8 (-15 -2233 ((-623 (-879 |#1|)) $)) (-15 -1461 ((-623 (-879 |#1|)) $)) (-15 -2757 ((-879 |#1|) $ (-749))) (-15 -1864 ((-879 |#1|) $ (-550))) (-15 -1864 ((-879 |#1|) $)) (-15 -2603 ((-749) $)) (-15 -3661 ((-749) $)) (-15 -4300 ((-623 |#1|) $)) (-15 -2550 ((-623 (-879 |#1|)) $)) (-15 -3122 ((-623 (-623 (-749))) $)) (-15 -2233 ($ (-623 (-879 |#1|)))) (-15 -4041 ($ (-623 (-879 |#1|)))) (-15 -1943 ((-1071 |#1|) $ |#1|)) (-15 -3963 ((-1071 (-1071 |#1|)) $)) (-15 -1943 ((-1071 (-1071 |#1|)) $ (-1071 |#1|))) (-15 -1943 ((-1071 (-623 |#1|)) $ (-623 |#1|))) (-15 -3922 ((-112) (-879 |#1|) $)) (-15 -3682 ((-623 (-749)) (-879 |#1|) $)) (-15 -3187 ((-623 (-749)) (-879 |#1|) $)) (-15 -2028 ((-1071 |#1|) $)) (-15 -2290 ((-112) $ $)) (-15 -2313 ((-112) $ $)) (-15 -2759 ((-1233) $)) (-15 -2759 ((-1233) $ (-550) (-550))))) (-1069)) (T -878)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-879 *4)) (-5 *1 (-878 *4)) (-4 *4 (-1069)))) (-1864 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-879 *4)) (-5 *1 (-878 *4)) (-4 *4 (-1069)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-879 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-749)))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-879 *3))) (-4 *3 (-1069)) (-5 *1 (-878 *3)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-623 (-879 *3))) (-4 *3 (-1069)) (-5 *1 (-878 *3)))) (-1943 (*1 *2 *1 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1071 (-1071 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-1943 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-1071 (-1071 *4))) (-5 *1 (-878 *4)) (-5 *3 (-1071 *4)))) (-1943 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-1071 (-623 *4))) (-5 *1 (-878 *4)) (-5 *3 (-623 *4)))) (-3922 (*1 *2 *3 *1) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-878 *4)))) (-3682 (*1 *2 *3 *1) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-623 (-749))) (-5 *1 (-878 *4)))) (-3187 (*1 *2 *3 *1) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-623 (-749))) (-5 *1 (-878 *4)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2290 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2313 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) (-2759 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-878 *4)) (-4 *4 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -2233 ((-623 (-879 |#1|)) $)) (-15 -1461 ((-623 (-879 |#1|)) $)) (-15 -2757 ((-879 |#1|) $ (-749))) (-15 -1864 ((-879 |#1|) $ (-550))) (-15 -1864 ((-879 |#1|) $)) (-15 -2603 ((-749) $)) (-15 -3661 ((-749) $)) (-15 -4300 ((-623 |#1|) $)) (-15 -2550 ((-623 (-879 |#1|)) $)) (-15 -3122 ((-623 (-623 (-749))) $)) (-15 -2233 ($ (-623 (-879 |#1|)))) (-15 -4041 ($ (-623 (-879 |#1|)))) (-15 -1943 ((-1071 |#1|) $ |#1|)) (-15 -3963 ((-1071 (-1071 |#1|)) $)) (-15 -1943 ((-1071 (-1071 |#1|)) $ (-1071 |#1|))) (-15 -1943 ((-1071 (-623 |#1|)) $ (-623 |#1|))) (-15 -3922 ((-112) (-879 |#1|) $)) (-15 -3682 ((-623 (-749)) (-879 |#1|) $)) (-15 -3187 ((-623 (-749)) (-879 |#1|) $)) (-15 -2028 ((-1071 |#1|) $)) (-15 -2290 ((-112) $ $)) (-15 -2313 ((-112) $ $)) (-15 -2759 ((-1233) $)) (-15 -2759 ((-1233) $ (-550) (-550))))) -((-2221 (((-112) $ $) NIL)) (-1814 (((-623 $) (-623 $)) 77)) (-4303 (((-550) $) 60)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2603 (((-749) $) 58)) (-1943 (((-1071 |#1|) $ |#1|) 49)) (-2419 (((-112) $) NIL)) (-1286 (((-112) $) 63)) (-2813 (((-749) $) 61)) (-2028 (((-1071 |#1|) $) 42)) (-2793 (($ $ $) NIL (-1489 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2173 (($ $ $) NIL (-1489 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3103 (((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $) 37)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 93)) (-3445 (((-1089) $) NIL)) (-1551 (((-1071 |#1|) $) 100 (|has| |#1| (-361)))) (-3725 (((-112) $) 59)) (-1553 ((|#1| $ |#1|) 47)) (-2757 ((|#1| $ |#1|) 94)) (-3661 (((-749) $) 44)) (-3821 (($ (-623 (-623 |#1|))) 85)) (-2356 (((-945) $) 53)) (-3844 (($ (-623 |#1|)) 21)) (-3018 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-3475 (($ (-623 (-623 |#1|))) 39)) (-3986 (($ (-623 (-623 |#1|))) 88)) (-3214 (($ (-623 |#1|)) 96)) (-2233 (((-837) $) 84) (($ (-623 (-623 |#1|))) 66) (($ (-623 |#1|)) 67)) (-2700 (($) 16 T CONST)) (-2324 (((-112) $ $) NIL (-1489 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2264 (((-112) $ $) 45)) (-2313 (((-112) $ $) NIL (-1489 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2290 (((-112) $ $) 65)) (-2382 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 22))) -(((-879 |#1|) (-13 (-877 |#1|) (-10 -8 (-15 -3103 ((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $)) (-15 -3475 ($ (-623 (-623 |#1|)))) (-15 -2233 ($ (-623 (-623 |#1|)))) (-15 -2233 ($ (-623 |#1|))) (-15 -3986 ($ (-623 (-623 |#1|)))) (-15 -3661 ((-749) $)) (-15 -2028 ((-1071 |#1|) $)) (-15 -2356 ((-945) $)) (-15 -2603 ((-749) $)) (-15 -2813 ((-749) $)) (-15 -4303 ((-550) $)) (-15 -3725 ((-112) $)) (-15 -1286 ((-112) $)) (-15 -1814 ((-623 $) (-623 $))) (IF (|has| |#1| (-361)) (-15 -1551 ((-1071 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -3214 ($ (-623 |#1|))) (IF (|has| |#1| (-361)) (-15 -3214 ($ (-623 |#1|))) |%noBranch|)))) (-1069)) (T -879)) -((-3103 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-623 *3)) (|:| |image| (-623 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-3475 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) (-3986 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-879 *3)) (-4 *3 (-361)) (-4 *3 (-1069)))) (-3214 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-879 *3))))) -(-13 (-877 |#1|) (-10 -8 (-15 -3103 ((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $)) (-15 -3475 ($ (-623 (-623 |#1|)))) (-15 -2233 ($ (-623 (-623 |#1|)))) (-15 -2233 ($ (-623 |#1|))) (-15 -3986 ($ (-623 (-623 |#1|)))) (-15 -3661 ((-749) $)) (-15 -2028 ((-1071 |#1|) $)) (-15 -2356 ((-945) $)) (-15 -2603 ((-749) $)) (-15 -2813 ((-749) $)) (-15 -4303 ((-550) $)) (-15 -3725 ((-112) $)) (-15 -1286 ((-112) $)) (-15 -1814 ((-623 $) (-623 $))) (IF (|has| |#1| (-361)) (-15 -1551 ((-1071 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -3214 ($ (-623 |#1|))) (IF (|has| |#1| (-361)) (-15 -3214 ($ (-623 |#1|))) |%noBranch|)))) -((-1374 (((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|)) 128)) (-3921 ((|#1|) 77)) (-2033 (((-411 (-1141 |#4|)) (-1141 |#4|)) 137)) (-2833 (((-411 (-1141 |#4|)) (-623 |#3|) (-1141 |#4|)) 69)) (-3390 (((-411 (-1141 |#4|)) (-1141 |#4|)) 147)) (-3570 (((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|) |#3|) 92))) -(((-880 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 ((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|))) (-15 -3390 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -2033 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -3921 (|#1|)) (-15 -3570 ((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -2833 ((-411 (-1141 |#4|)) (-623 |#3|) (-1141 |#4|)))) (-883) (-771) (-825) (-923 |#1| |#2| |#3|)) (T -880)) -((-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *7)) (-4 *7 (-825)) (-4 *5 (-883)) (-4 *6 (-771)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-411 (-1141 *8))) (-5 *1 (-880 *5 *6 *7 *8)) (-5 *4 (-1141 *8)))) (-3570 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-623 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-923 *5 *6 *4)) (-4 *5 (-883)) (-4 *6 (-771)) (-4 *4 (-825)) (-5 *1 (-880 *5 *6 *4 *7)))) (-3921 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-883)) (-5 *1 (-880 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-883)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-880 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-3390 (*1 *2 *3) (-12 (-4 *4 (-883)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-411 (-1141 *7))) (-5 *1 (-880 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-1374 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-883)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-880 *4 *5 *6 *7))))) -(-10 -7 (-15 -1374 ((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|))) (-15 -3390 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -2033 ((-411 (-1141 |#4|)) (-1141 |#4|))) (-15 -3921 (|#1|)) (-15 -3570 ((-3 (-623 (-1141 |#4|)) "failed") (-623 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -2833 ((-411 (-1141 |#4|)) (-623 |#3|) (-1141 |#4|)))) -((-1374 (((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|)) 36)) (-3921 ((|#1|) 54)) (-2033 (((-411 (-1141 |#2|)) (-1141 |#2|)) 102)) (-2833 (((-411 (-1141 |#2|)) (-1141 |#2|)) 90)) (-3390 (((-411 (-1141 |#2|)) (-1141 |#2|)) 113))) -(((-881 |#1| |#2|) (-10 -7 (-15 -1374 ((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|))) (-15 -3390 ((-411 (-1141 |#2|)) (-1141 |#2|))) (-15 -2033 ((-411 (-1141 |#2|)) (-1141 |#2|))) (-15 -3921 (|#1|)) (-15 -2833 ((-411 (-1141 |#2|)) (-1141 |#2|)))) (-883) (-1204 |#1|)) (T -881)) -((-2833 (*1 *2 *3) (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5)))) (-3921 (*1 *2) (-12 (-4 *2 (-883)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1204 *2)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5)))) (-3390 (*1 *2 *3) (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5)))) (-1374 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-883)) (-5 *1 (-881 *4 *5))))) -(-10 -7 (-15 -1374 ((-3 (-623 (-1141 |#2|)) "failed") (-623 (-1141 |#2|)) (-1141 |#2|))) (-15 -3390 ((-411 (-1141 |#2|)) (-1141 |#2|))) (-15 -2033 ((-411 (-1141 |#2|)) (-1141 |#2|))) (-15 -3921 (|#1|)) (-15 -2833 ((-411 (-1141 |#2|)) (-1141 |#2|)))) -((-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 41)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 18)) (-1613 (((-3 $ "failed") $) 35))) -(((-882 |#1|) (-10 -8 (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-883)) (T -882)) -NIL -(-10 -8 (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 58)) (-2318 (($ $) 49)) (-2207 (((-411 $) $) 50)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 55)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-1568 (((-112) $) 51)) (-2419 (((-112) $) 30)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3348 (((-411 (-1141 $)) (-1141 $)) 56)) (-2182 (((-411 (-1141 $)) (-1141 $)) 57)) (-1735 (((-411 $) $) 48)) (-3409 (((-3 $ "failed") $ $) 40)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 54 (|has| $ (-143)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-1613 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-883) (-138)) (T -883)) -((-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-883)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1)))) (-2182 (*1 *2 *3) (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3348 (*1 *2 *3) (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1)))) (-1370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1141 *1))) (-5 *3 (-1141 *1)) (-4 *1 (-883)))) (-2897 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-883)) (-5 *2 (-1228 *1)))) (-1613 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-883))))) -(-13 (-1186) (-10 -8 (-15 -4050 ((-411 (-1141 $)) (-1141 $))) (-15 -2182 ((-411 (-1141 $)) (-1141 $))) (-15 -3348 ((-411 (-1141 $)) (-1141 $))) (-15 -3459 ((-1141 $) (-1141 $) (-1141 $))) (-15 -1370 ((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $))) (IF (|has| $ (-143)) (PROGN (-15 -2897 ((-3 (-1228 $) "failed") (-667 $))) (-15 -1613 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2594 (((-112) $) NIL)) (-2532 (((-749)) NIL)) (-2223 (($ $ (-895)) NIL (|has| $ (-361))) (($ $) NIL)) (-3435 (((-1155 (-895) (-749)) (-550)) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-3828 (((-749)) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 $ "failed") $) NIL)) (-2202 (($ $) NIL)) (-2821 (($ (-1228 $)) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-2664 (($) NIL)) (-4139 (((-112) $) NIL)) (-4322 (($ $) NIL) (($ $ (-749)) NIL)) (-1568 (((-112) $) NIL)) (-2603 (((-811 (-895)) $) NIL) (((-895) $) NIL)) (-2419 (((-112) $) NIL)) (-1888 (($) NIL (|has| $ (-361)))) (-3751 (((-112) $) NIL (|has| $ (-361)))) (-1571 (($ $ (-895)) NIL (|has| $ (-361))) (($ $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2835 (((-1141 $) $ (-895)) NIL (|has| $ (-361))) (((-1141 $) $) NIL)) (-4073 (((-895) $) NIL)) (-2888 (((-1141 $) $) NIL (|has| $ (-361)))) (-4180 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1542 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-3690 (($ (-895)) NIL)) (-3881 (((-112) $) NIL)) (-3445 (((-1089) $) NIL)) (-2256 (($) NIL (|has| $ (-361)))) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL)) (-1735 (((-411 $) $) NIL)) (-4015 (((-895)) NIL) (((-811 (-895))) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2899 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-1877 (((-133)) NIL)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-3661 (((-895) $) NIL) (((-811 (-895)) $) NIL)) (-3832 (((-1141 $)) NIL)) (-2038 (($) NIL)) (-3975 (($) NIL (|has| $ (-361)))) (-2999 (((-667 $) (-1228 $)) NIL) (((-1228 $) $) NIL)) (-2451 (((-550) $) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL)) (-1613 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3091 (((-749)) NIL)) (-2206 (((-1228 $) (-895)) NIL) (((-1228 $)) NIL)) (-1819 (((-112) $ $) NIL)) (-3636 (((-112) $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-3020 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-884 |#1|) (-13 (-342) (-322 $) (-596 (-550))) (-895)) (T -884)) -NIL -(-13 (-342) (-322 $) (-596 (-550))) -((-1536 (((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)) 79)) (-3086 (((-112) (-329 |#2| |#3| |#4| |#5|)) 17)) (-2603 (((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|)) 15))) -(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2603 ((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -3086 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -1536 ((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) (-13 (-825) (-542) (-1012 (-550))) (-423 |#1|) (-1204 |#2|) (-1204 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -885)) -((-1536 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-2 (|:| -2603 (-749)) (|:| -3112 *8))) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-112)) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-749)) (-5 *1 (-885 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2603 ((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -3086 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -1536 ((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) -((-1536 (((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)) 56)) (-3086 (((-112) (-329 (-400 (-550)) |#1| |#2| |#3|)) 16)) (-2603 (((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)) 14))) -(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -2603 ((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -3086 ((-112) (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -1536 ((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)))) (-1204 (-400 (-550))) (-1204 (-400 |#1|)) (-335 (-400 (-550)) |#1| |#2|)) (T -886)) -((-1536 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-2 (|:| -2603 (-749)) (|:| -3112 *6))) (-5 *1 (-886 *4 *5 *6)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5 *6)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-886 *4 *5 *6))))) -(-10 -7 (-15 -2603 ((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -3086 ((-112) (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -1536 ((-3 (-2 (|:| -2603 (-749)) (|:| -3112 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)))) -((-1853 ((|#2| |#2|) 26)) (-2573 (((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) 15)) (-1322 (((-895) (-550)) 35)) (-2296 (((-550) |#2|) 42)) (-2956 (((-550) |#2|) 21) (((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|) 20))) -(((-887 |#1| |#2|) (-10 -7 (-15 -1322 ((-895) (-550))) (-15 -2956 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -2956 ((-550) |#2|)) (-15 -2573 ((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -2296 ((-550) |#2|)) (-15 -1853 (|#2| |#2|))) (-1204 (-400 (-550))) (-1204 (-400 |#1|))) (T -887)) -((-1853 (*1 *2 *2) (-12 (-4 *3 (-1204 (-400 (-550)))) (-5 *1 (-887 *3 *2)) (-4 *2 (-1204 (-400 *3))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1204 (-400 *4))))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1204 (-400 *4))))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1204 (-400 *4))))) (-2956 (*1 *2 *3) (-12 (-4 *3 (-1204 (-400 (-550)))) (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) (-5 *1 (-887 *3 *4)) (-4 *4 (-1204 (-400 *3))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1204 (-400 *3))) (-5 *2 (-895)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1204 (-400 *4)))))) -(-10 -7 (-15 -1322 ((-895) (-550))) (-15 -2956 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -2956 ((-550) |#2|)) (-15 -2573 ((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -2296 ((-550) |#2|)) (-15 -1853 (|#2| |#2|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 ((|#1| $) 81)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-3455 (($ $ $) NIL)) (-1537 (((-3 $ "failed") $) 75)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1632 (($ |#1| (-411 |#1|)) 73)) (-3232 (((-1141 |#1|) |#1| |#1|) 41)) (-3502 (($ $) 49)) (-2419 (((-112) $) NIL)) (-1612 (((-550) $) 78)) (-1643 (($ $ (-550)) 80)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2307 ((|#1| $) 77)) (-4238 (((-411 |#1|) $) 76)) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 74)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2978 (($ $) 39)) (-2233 (((-837) $) 99) (($ (-550)) 54) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-411 |#1|))) 67)) (-3091 (((-749)) 52)) (-1819 (((-112) $ $) NIL)) (-2688 (($) 23 T CONST)) (-2700 (($) 12 T CONST)) (-2264 (((-112) $ $) 68)) (-2382 (($ $ $) NIL)) (-2370 (($ $) 88) (($ $ $) NIL)) (-2358 (($ $ $) 38)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 90) (($ $ $) 37) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-888 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -2233 ((-400 |#1|) $)) (-15 -2233 ($ (-400 (-411 |#1|)))) (-15 -2978 ($ $)) (-15 -4238 ((-411 |#1|) $)) (-15 -2307 (|#1| $)) (-15 -1643 ($ $ (-550))) (-15 -1612 ((-550) $)) (-15 -3232 ((-1141 |#1|) |#1| |#1|)) (-15 -3502 ($ $)) (-15 -1632 ($ |#1| (-411 |#1|))) (-15 -3104 (|#1| $)))) (-300)) (T -888)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-2307 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-1643 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3232 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3502 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-1632 (*1 *1 *2 *3) (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) (-3104 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(-13 (-356) (-38 |#1|) (-10 -8 (-15 -2233 ((-400 |#1|) $)) (-15 -2233 ($ (-400 (-411 |#1|)))) (-15 -2978 ($ $)) (-15 -4238 ((-411 |#1|) $)) (-15 -2307 (|#1| $)) (-15 -1643 ($ $ (-550))) (-15 -1612 ((-550) $)) (-15 -3232 ((-1141 |#1|) |#1| |#1|)) (-15 -3502 ($ $)) (-15 -1632 ($ |#1| (-411 |#1|))) (-15 -3104 (|#1| $)))) -((-1632 (((-52) (-926 |#1|) (-411 (-926 |#1|)) (-1145)) 17) (((-52) (-400 (-926 |#1|)) (-1145)) 18))) -(((-889 |#1|) (-10 -7 (-15 -1632 ((-52) (-400 (-926 |#1|)) (-1145))) (-15 -1632 ((-52) (-926 |#1|) (-411 (-926 |#1|)) (-1145)))) (-13 (-300) (-145))) (T -889)) -((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-411 (-926 *6))) (-5 *5 (-1145)) (-5 *3 (-926 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-889 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-889 *5))))) -(-10 -7 (-15 -1632 ((-52) (-400 (-926 |#1|)) (-1145))) (-15 -1632 ((-52) (-926 |#1|) (-411 (-926 |#1|)) (-1145)))) -((-3458 ((|#4| (-623 |#4|)) 121) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3260 (((-1141 |#4|) (-623 (-1141 |#4|))) 114) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 50) ((|#4| (-623 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3260 (|#4| |#4| |#4|)) (-15 -3260 (|#4| (-623 |#4|))) (-15 -3260 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3260 ((-1141 |#4|) (-623 (-1141 |#4|)))) (-15 -3458 (|#4| |#4| |#4|)) (-15 -3458 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3458 (|#4| (-623 |#4|)))) (-771) (-825) (-300) (-923 |#3| |#1| |#2|)) (T -890)) -((-3458 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3458 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3458 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-923 *5 *3 *4)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-623 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) (-3260 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3260 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-923 *5 *3 *4))))) -(-10 -7 (-15 -3260 (|#4| |#4| |#4|)) (-15 -3260 (|#4| (-623 |#4|))) (-15 -3260 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3260 ((-1141 |#4|) (-623 (-1141 |#4|)))) (-15 -3458 (|#4| |#4| |#4|)) (-15 -3458 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3458 (|#4| (-623 |#4|)))) -((-3140 (((-878 (-550)) (-945)) 23) (((-878 (-550)) (-623 (-550))) 20)) (-3203 (((-878 (-550)) (-623 (-550))) 48) (((-878 (-550)) (-895)) 49)) (-3589 (((-878 (-550))) 24)) (-2242 (((-878 (-550))) 38) (((-878 (-550)) (-623 (-550))) 37)) (-3511 (((-878 (-550))) 36) (((-878 (-550)) (-623 (-550))) 35)) (-1926 (((-878 (-550))) 34) (((-878 (-550)) (-623 (-550))) 33)) (-2260 (((-878 (-550))) 32) (((-878 (-550)) (-623 (-550))) 31)) (-3842 (((-878 (-550))) 30) (((-878 (-550)) (-623 (-550))) 29)) (-4107 (((-878 (-550))) 40) (((-878 (-550)) (-623 (-550))) 39)) (-1892 (((-878 (-550)) (-623 (-550))) 52) (((-878 (-550)) (-895)) 53)) (-3234 (((-878 (-550)) (-623 (-550))) 50) (((-878 (-550)) (-895)) 51)) (-1526 (((-878 (-550)) (-623 (-550))) 46) (((-878 (-550)) (-895)) 47)) (-3339 (((-878 (-550)) (-623 (-895))) 43))) -(((-891) (-10 -7 (-15 -3203 ((-878 (-550)) (-895))) (-15 -3203 ((-878 (-550)) (-623 (-550)))) (-15 -1526 ((-878 (-550)) (-895))) (-15 -1526 ((-878 (-550)) (-623 (-550)))) (-15 -3339 ((-878 (-550)) (-623 (-895)))) (-15 -3234 ((-878 (-550)) (-895))) (-15 -3234 ((-878 (-550)) (-623 (-550)))) (-15 -1892 ((-878 (-550)) (-895))) (-15 -1892 ((-878 (-550)) (-623 (-550)))) (-15 -3842 ((-878 (-550)) (-623 (-550)))) (-15 -3842 ((-878 (-550)))) (-15 -2260 ((-878 (-550)) (-623 (-550)))) (-15 -2260 ((-878 (-550)))) (-15 -1926 ((-878 (-550)) (-623 (-550)))) (-15 -1926 ((-878 (-550)))) (-15 -3511 ((-878 (-550)) (-623 (-550)))) (-15 -3511 ((-878 (-550)))) (-15 -2242 ((-878 (-550)) (-623 (-550)))) (-15 -2242 ((-878 (-550)))) (-15 -4107 ((-878 (-550)) (-623 (-550)))) (-15 -4107 ((-878 (-550)))) (-15 -3589 ((-878 (-550)))) (-15 -3140 ((-878 (-550)) (-623 (-550)))) (-15 -3140 ((-878 (-550)) (-945))))) (T -891)) -((-3140 (*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3589 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-4107 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-2242 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3511 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1926 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-2260 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3842 (*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-623 (-895))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(-10 -7 (-15 -3203 ((-878 (-550)) (-895))) (-15 -3203 ((-878 (-550)) (-623 (-550)))) (-15 -1526 ((-878 (-550)) (-895))) (-15 -1526 ((-878 (-550)) (-623 (-550)))) (-15 -3339 ((-878 (-550)) (-623 (-895)))) (-15 -3234 ((-878 (-550)) (-895))) (-15 -3234 ((-878 (-550)) (-623 (-550)))) (-15 -1892 ((-878 (-550)) (-895))) (-15 -1892 ((-878 (-550)) (-623 (-550)))) (-15 -3842 ((-878 (-550)) (-623 (-550)))) (-15 -3842 ((-878 (-550)))) (-15 -2260 ((-878 (-550)) (-623 (-550)))) (-15 -2260 ((-878 (-550)))) (-15 -1926 ((-878 (-550)) (-623 (-550)))) (-15 -1926 ((-878 (-550)))) (-15 -3511 ((-878 (-550)) (-623 (-550)))) (-15 -3511 ((-878 (-550)))) (-15 -2242 ((-878 (-550)) (-623 (-550)))) (-15 -2242 ((-878 (-550)))) (-15 -4107 ((-878 (-550)) (-623 (-550)))) (-15 -4107 ((-878 (-550)))) (-15 -3589 ((-878 (-550)))) (-15 -3140 ((-878 (-550)) (-623 (-550)))) (-15 -3140 ((-878 (-550)) (-945)))) -((-3369 (((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145))) 12)) (-1714 (((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145))) 11))) -(((-892 |#1|) (-10 -7 (-15 -1714 ((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -3369 ((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145))))) (-444)) (T -892)) -((-3369 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-926 *4))) (-5 *3 (-623 (-1145))) (-4 *4 (-444)) (-5 *1 (-892 *4)))) (-1714 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-926 *4))) (-5 *3 (-623 (-1145))) (-4 *4 (-444)) (-5 *1 (-892 *4))))) -(-10 -7 (-15 -1714 ((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -3369 ((-623 (-926 |#1|)) (-623 (-926 |#1|)) (-623 (-1145))))) -((-2233 (((-309 |#1|) (-469)) 16))) -(((-893 |#1|) (-10 -7 (-15 -2233 ((-309 |#1|) (-469)))) (-13 (-825) (-542))) (T -893)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-893 *4)) (-4 *4 (-13 (-825) (-542)))))) -(-10 -7 (-15 -2233 ((-309 |#1|) (-469)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-2419 (((-112) $) 30)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-894) (-138)) (T -894)) -((-1346 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-2 (|:| -4304 (-623 *1)) (|:| -2256 *1))) (-5 *3 (-623 *1)))) (-3041 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-894))))) -(-13 (-444) (-10 -8 (-15 -1346 ((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $))) (-15 -3041 ((-3 (-623 $) "failed") (-623 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3260 (($ $ $) NIL)) (-2233 (((-837) $) NIL)) (-2700 (($) NIL T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ $ $) NIL))) -(((-895) (-13 (-772) (-705) (-10 -8 (-15 -3260 ($ $ $)) (-6 (-4346 "*"))))) (T -895)) -((-3260 (*1 *1 *1 *1) (-5 *1 (-895)))) -(-13 (-772) (-705) (-10 -8 (-15 -3260 ($ $ $)) (-6 (-4346 "*")))) -((-4251 ((|#2| (-623 |#1|) (-623 |#1|)) 24))) -(((-896 |#1| |#2|) (-10 -7 (-15 -4251 (|#2| (-623 |#1|) (-623 |#1|)))) (-356) (-1204 |#1|)) (T -896)) -((-4251 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-4 *2 (-1204 *4)) (-5 *1 (-896 *4 *2))))) -(-10 -7 (-15 -4251 (|#2| (-623 |#1|) (-623 |#1|)))) -((-3529 (((-1141 |#2|) (-623 |#2|) (-623 |#2|)) 17) (((-1201 |#1| |#2|) (-1201 |#1| |#2|) (-623 |#2|) (-623 |#2|)) 13))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3529 ((-1201 |#1| |#2|) (-1201 |#1| |#2|) (-623 |#2|) (-623 |#2|))) (-15 -3529 ((-1141 |#2|) (-623 |#2|) (-623 |#2|)))) (-1145) (-356)) (T -897)) -((-3529 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) (-5 *1 (-897 *4 *5)) (-14 *4 (-1145)))) (-3529 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1201 *4 *5)) (-5 *3 (-623 *5)) (-14 *4 (-1145)) (-4 *5 (-356)) (-5 *1 (-897 *4 *5))))) -(-10 -7 (-15 -3529 ((-1201 |#1| |#2|) (-1201 |#1| |#2|) (-623 |#2|) (-623 |#2|))) (-15 -3529 ((-1141 |#2|) (-623 |#2|) (-623 |#2|)))) -((-1428 (((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127)) 139)) (-1487 ((|#4| |#4|) 155)) (-3958 (((-623 (-400 (-926 |#1|))) (-623 (-1145))) 118)) (-3064 (((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550)) 75)) (-1545 (((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-623 |#4|)) 59)) (-3309 (((-667 |#4|) (-667 |#4|) (-623 |#4|)) 55)) (-3361 (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127)) 151)) (-2724 (((-550) (-667 |#4|) (-895) (-1127)) 132) (((-550) (-667 |#4|) (-623 (-1145)) (-895) (-1127)) 131) (((-550) (-667 |#4|) (-623 |#4|) (-895) (-1127)) 130) (((-550) (-667 |#4|) (-1127)) 127) (((-550) (-667 |#4|) (-623 (-1145)) (-1127)) 126) (((-550) (-667 |#4|) (-623 |#4|) (-1127)) 125) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-895)) 124) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145)) (-895)) 123) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-895)) 122) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|)) 120) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145))) 119) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|)) 115)) (-3720 ((|#4| (-926 |#1|)) 68)) (-2780 (((-112) (-623 |#4|) (-623 (-623 |#4|))) 152)) (-3970 (((-623 (-623 (-550))) (-550) (-550)) 129)) (-2107 (((-623 (-623 |#4|)) (-623 (-623 |#4|))) 88)) (-4256 (((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|))))) 86)) (-1385 (((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|))))) 85)) (-1382 (((-112) (-623 (-926 |#1|))) 17) (((-112) (-623 |#4|)) 13)) (-2071 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|)) 71)) (-2904 (((-623 |#4|) |#4|) 49)) (-2345 (((-623 (-400 (-926 |#1|))) (-623 |#4|)) 114) (((-667 (-400 (-926 |#1|))) (-667 |#4|)) 56) (((-400 (-926 |#1|)) |#4|) 111)) (-2721 (((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-749) (-1127) (-550)) 93)) (-3200 (((-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749)) 84)) (-1478 (((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749)) 101)) (-4297 (((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| -3121 (-667 (-400 (-926 |#1|)))) (|:| |vec| (-623 (-400 (-926 |#1|)))) (|:| -3398 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) 48))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145)))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-895))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145)) (-895))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-895))) (-15 -2724 ((-550) (-667 |#4|) (-623 |#4|) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 (-1145)) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 |#4|) (-895) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 (-1145)) (-895) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-895) (-1127))) (-15 -1428 ((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127))) (-15 -3361 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127))) (-15 -2721 ((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-749) (-1127) (-550))) (-15 -2345 ((-400 (-926 |#1|)) |#4|)) (-15 -2345 ((-667 (-400 (-926 |#1|))) (-667 |#4|))) (-15 -2345 ((-623 (-400 (-926 |#1|))) (-623 |#4|))) (-15 -3958 ((-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -3720 (|#4| (-926 |#1|))) (-15 -2071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|))) (-15 -3200 ((-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749))) (-15 -1545 ((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-623 |#4|))) (-15 -4297 ((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| -3121 (-667 (-400 (-926 |#1|)))) (|:| |vec| (-623 (-400 (-926 |#1|)))) (|:| -3398 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-15 -2904 ((-623 |#4|) |#4|)) (-15 -1385 ((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -4256 ((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -2107 ((-623 (-623 |#4|)) (-623 (-623 |#4|)))) (-15 -3970 ((-623 (-623 (-550))) (-550) (-550))) (-15 -2780 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1478 ((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749))) (-15 -3309 ((-667 |#4|) (-667 |#4|) (-623 |#4|))) (-15 -3064 ((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550))) (-15 -1487 (|#4| |#4|)) (-15 -1382 ((-112) (-623 |#4|))) (-15 -1382 ((-112) (-623 (-926 |#1|))))) (-13 (-300) (-145)) (-13 (-825) (-596 (-1145))) (-771) (-923 |#1| |#3| |#2|)) (T -898)) -((-1382 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)))) (-1487 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1145)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-923 *3 *5 *4)))) (-3064 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-5 *4 (-667 *12)) (-5 *5 (-623 (-400 (-926 *9)))) (-5 *6 (-623 (-623 *12))) (-5 *7 (-749)) (-5 *8 (-550)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-923 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1145)))) (-4 *11 (-771)) (-5 *2 (-2 (|:| |eqzro| (-623 *12)) (|:| |neqzro| (-623 *12)) (|:| |wcond| (-623 (-926 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *9)))) (|:| -2206 (-623 (-1228 (-400 (-926 *9))))))))) (-5 *1 (-898 *9 *10 *11 *12)))) (-3309 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *7)) (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3970 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-550)) (-4 *7 (-923 *4 *6 *5)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-623 (-623 *6))) (-4 *6 (-923 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1145)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *7))))) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *7))))) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-2904 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 *3)) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-923 *4 *6 *5)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3121 (-667 (-400 (-926 *4)))) (|:| |vec| (-623 (-400 (-926 *4)))) (|:| -3398 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) (|:| -2206 (-623 (-1228 (-400 (-926 *4))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5)))) (-1545 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) (|:| -2206 (-623 (-1228 (-400 (-926 *4))))))) (-5 *3 (-623 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-923 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3200 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *8))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749)))) (-2071 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-4 *7 (-923 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-623 *7)) (|:| |n0| (-623 *7)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-926 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-923 *4 *6 *5)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 (-400 (-926 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 (-400 (-926 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-667 (-400 (-926 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-400 (-926 *4))) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-923 *4 *6 *5)))) (-2721 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-667 *11)) (-5 *4 (-623 (-400 (-926 *8)))) (-5 *5 (-749)) (-5 *6 (-1127)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-923 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1145)))) (-4 *10 (-771)) (-5 *2 (-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 *11)) (|:| |neqzro| (-623 *11)) (|:| |wcond| (-623 (-926 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *8)))) (|:| -2206 (-623 (-1228 (-400 (-926 *8)))))))))) (|:| |rgsz| (-550)))) (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-550)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) (|:| |wcond| (-623 (-926 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) (|:| -2206 (-623 (-1228 (-400 (-926 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-926 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) (-5 *4 (-1127)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-923 *5 *7 *6)) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-895)) (-5 *5 (-1127)) (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 (-1145))) (-5 *5 (-895)) (-5 *6 (-1127)) (-4 *10 (-923 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1145)))) (-4 *9 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *7 *8 *9 *10)))) (-2724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 *10)) (-5 *5 (-895)) (-5 *6 (-1127)) (-4 *10 (-923 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1145)))) (-4 *9 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *7 *8 *9 *10)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-1127)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1145))) (-5 *5 (-1127)) (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 *9)) (-5 *5 (-1127)) (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-895)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-926 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1145))) (-5 *5 (-895)) (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) (|:| |wcond| (-623 (-926 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *6)))) (|:| -2206 (-623 (-1228 (-400 (-926 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *5 (-895)) (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) (|:| |wcond| (-623 (-926 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *6)))) (|:| -2206 (-623 (-1228 (-400 (-926 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-623 *9)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) (|:| |wcond| (-623 (-926 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) (|:| -2206 (-623 (-1228 (-400 (-926 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-623 (-1145))) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-926 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-926 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) -(-10 -7 (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145)))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-895))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-623 (-1145)) (-895))) (-15 -2724 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-667 |#4|) (-895))) (-15 -2724 ((-550) (-667 |#4|) (-623 |#4|) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 (-1145)) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 |#4|) (-895) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-623 (-1145)) (-895) (-1127))) (-15 -2724 ((-550) (-667 |#4|) (-895) (-1127))) (-15 -1428 ((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127))) (-15 -3361 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|))))))))) (-1127))) (-15 -2721 ((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-749) (-1127) (-550))) (-15 -2345 ((-400 (-926 |#1|)) |#4|)) (-15 -2345 ((-667 (-400 (-926 |#1|))) (-667 |#4|))) (-15 -2345 ((-623 (-400 (-926 |#1|))) (-623 |#4|))) (-15 -3958 ((-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -3720 (|#4| (-926 |#1|))) (-15 -2071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|))) (-15 -3200 ((-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749))) (-15 -1545 ((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-623 |#4|))) (-15 -4297 ((-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))) (-2 (|:| -3121 (-667 (-400 (-926 |#1|)))) (|:| |vec| (-623 (-400 (-926 |#1|)))) (|:| -3398 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-15 -2904 ((-623 |#4|) |#4|)) (-15 -1385 ((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -4256 ((-749) (-623 (-2 (|:| -3398 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -2107 ((-623 (-623 |#4|)) (-623 (-623 |#4|)))) (-15 -3970 ((-623 (-623 (-550))) (-550) (-550))) (-15 -2780 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1478 ((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749))) (-15 -3309 ((-667 |#4|) (-667 |#4|) (-623 |#4|))) (-15 -3064 ((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-926 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1228 (-400 (-926 |#1|)))) (|:| -2206 (-623 (-1228 (-400 (-926 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-926 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550))) (-15 -1487 (|#4| |#4|)) (-15 -1382 ((-112) (-623 |#4|))) (-15 -1382 ((-112) (-623 (-926 |#1|))))) -((-4014 (((-901) |#1| (-1145)) 17) (((-901) |#1| (-1145) (-1063 (-219))) 21)) (-1954 (((-901) |#1| |#1| (-1145) (-1063 (-219))) 19) (((-901) |#1| (-1145) (-1063 (-219))) 15))) -(((-899 |#1|) (-10 -7 (-15 -1954 ((-901) |#1| (-1145) (-1063 (-219)))) (-15 -1954 ((-901) |#1| |#1| (-1145) (-1063 (-219)))) (-15 -4014 ((-901) |#1| (-1145) (-1063 (-219)))) (-15 -4014 ((-901) |#1| (-1145)))) (-596 (-526))) (T -899)) -((-4014 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-5 *2 (-901)) (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) (-4014 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) (-1954 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) (-1954 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) (-5 *1 (-899 *3)) (-4 *3 (-596 (-526)))))) -(-10 -7 (-15 -1954 ((-901) |#1| (-1145) (-1063 (-219)))) (-15 -1954 ((-901) |#1| |#1| (-1145) (-1063 (-219)))) (-15 -4014 ((-901) |#1| (-1145) (-1063 (-219)))) (-15 -4014 ((-901) |#1| (-1145)))) -((-3434 (($ $ (-1063 (-219)) (-1063 (-219)) (-1063 (-219))) 70)) (-3301 (((-1063 (-219)) $) 40)) (-3291 (((-1063 (-219)) $) 39)) (-3282 (((-1063 (-219)) $) 38)) (-1341 (((-623 (-623 (-219))) $) 43)) (-3351 (((-1063 (-219)) $) 41)) (-3437 (((-550) (-550)) 32)) (-1555 (((-550) (-550)) 28)) (-1748 (((-550) (-550)) 30)) (-3171 (((-112) (-112)) 35)) (-3241 (((-550)) 31)) (-3471 (($ $ (-1063 (-219))) 73) (($ $) 74)) (-1682 (($ (-1 (-917 (-219)) (-219)) (-1063 (-219))) 78) (($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219))) 79)) (-1954 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219))) 82) (($ $ (-1063 (-219))) 76)) (-2406 (((-550)) 36)) (-3535 (((-550)) 27)) (-3391 (((-550)) 29)) (-2348 (((-623 (-623 (-917 (-219)))) $) 95)) (-3857 (((-112) (-112)) 37)) (-2233 (((-837) $) 94)) (-1866 (((-112)) 34))) -(((-900) (-13 (-948) (-10 -8 (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ $ (-1063 (-219)))) (-15 -3434 ($ $ (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -3471 ($ $ (-1063 (-219)))) (-15 -3471 ($ $)) (-15 -3351 ((-1063 (-219)) $)) (-15 -1341 ((-623 (-623 (-219))) $)) (-15 -3535 ((-550))) (-15 -1555 ((-550) (-550))) (-15 -3391 ((-550))) (-15 -1748 ((-550) (-550))) (-15 -3241 ((-550))) (-15 -3437 ((-550) (-550))) (-15 -1866 ((-112))) (-15 -3171 ((-112) (-112))) (-15 -2406 ((-550))) (-15 -3857 ((-112) (-112)))))) (T -900)) -((-1682 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-900)))) (-1682 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-900)))) (-1954 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-900)))) (-1954 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-900)))) (-1954 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) (-3434 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) (-3471 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) (-3471 (*1 *1 *1) (-5 *1 (-900))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-900)))) (-3535 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3391 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3241 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-1866 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900)))) (-3171 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900)))) (-2406 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) -(-13 (-948) (-10 -8 (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ $ (-1063 (-219)))) (-15 -3434 ($ $ (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -3471 ($ $ (-1063 (-219)))) (-15 -3471 ($ $)) (-15 -3351 ((-1063 (-219)) $)) (-15 -1341 ((-623 (-623 (-219))) $)) (-15 -3535 ((-550))) (-15 -1555 ((-550) (-550))) (-15 -3391 ((-550))) (-15 -1748 ((-550) (-550))) (-15 -3241 ((-550))) (-15 -3437 ((-550) (-550))) (-15 -1866 ((-112))) (-15 -3171 ((-112) (-112))) (-15 -2406 ((-550))) (-15 -3857 ((-112) (-112))))) -((-3434 (($ $ (-1063 (-219))) 70) (($ $ (-1063 (-219)) (-1063 (-219))) 71)) (-3291 (((-1063 (-219)) $) 44)) (-3282 (((-1063 (-219)) $) 43)) (-3351 (((-1063 (-219)) $) 45)) (-2377 (((-550) (-550)) 37)) (-3334 (((-550) (-550)) 33)) (-2690 (((-550) (-550)) 35)) (-1860 (((-112) (-112)) 39)) (-4003 (((-550)) 36)) (-3471 (($ $ (-1063 (-219))) 74) (($ $) 75)) (-1682 (($ (-1 (-917 (-219)) (-219)) (-1063 (-219))) 84) (($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219))) 85)) (-4014 (($ (-1 (-219) (-219)) (-1063 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-1954 (($ (-1 (-219) (-219)) (-1063 (-219))) 79) (($ (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219))) 80) (($ (-623 (-1 (-219) (-219))) (-1063 (-219))) 87) (($ (-623 (-1 (-219) (-219))) (-1063 (-219)) (-1063 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219))) 82) (($ $ (-1063 (-219))) 76)) (-2311 (((-112) $) 40)) (-3198 (((-550)) 41)) (-2672 (((-550)) 32)) (-1394 (((-550)) 34)) (-2348 (((-623 (-623 (-917 (-219)))) $) 23)) (-1890 (((-112) (-112)) 42)) (-2233 (((-837) $) 106)) (-3508 (((-112)) 38))) -(((-901) (-13 (-929) (-10 -8 (-15 -1954 ($ (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-623 (-1 (-219) (-219))) (-1063 (-219)))) (-15 -1954 ($ (-623 (-1 (-219) (-219))) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -4014 ($ (-1 (-219) (-219)) (-1063 (-219)))) (-15 -4014 ($ (-1 (-219) (-219)))) (-15 -1954 ($ $ (-1063 (-219)))) (-15 -2311 ((-112) $)) (-15 -3434 ($ $ (-1063 (-219)))) (-15 -3434 ($ $ (-1063 (-219)) (-1063 (-219)))) (-15 -3471 ($ $ (-1063 (-219)))) (-15 -3471 ($ $)) (-15 -3351 ((-1063 (-219)) $)) (-15 -2672 ((-550))) (-15 -3334 ((-550) (-550))) (-15 -1394 ((-550))) (-15 -2690 ((-550) (-550))) (-15 -4003 ((-550))) (-15 -2377 ((-550) (-550))) (-15 -3508 ((-112))) (-15 -1860 ((-112) (-112))) (-15 -3198 ((-550))) (-15 -1890 ((-112) (-112)))))) (T -901)) -((-1954 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1682 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-1682 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-4014 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) (-5 *1 (-901)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-901)))) (-1954 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) (-3434 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) (-3471 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) (-3471 (*1 *1 *1) (-5 *1 (-901))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) (-2672 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-1394 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-4003 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-3508 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3198 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(-13 (-929) (-10 -8 (-15 -1954 ($ (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-623 (-1 (-219) (-219))) (-1063 (-219)))) (-15 -1954 ($ (-623 (-1 (-219) (-219))) (-1063 (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)))) (-15 -1954 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)))) (-15 -1682 ($ (-1 (-917 (-219)) (-219)) (-1063 (-219)) (-1063 (-219)) (-1063 (-219)))) (-15 -4014 ($ (-1 (-219) (-219)) (-1063 (-219)))) (-15 -4014 ($ (-1 (-219) (-219)))) (-15 -1954 ($ $ (-1063 (-219)))) (-15 -2311 ((-112) $)) (-15 -3434 ($ $ (-1063 (-219)))) (-15 -3434 ($ $ (-1063 (-219)) (-1063 (-219)))) (-15 -3471 ($ $ (-1063 (-219)))) (-15 -3471 ($ $)) (-15 -3351 ((-1063 (-219)) $)) (-15 -2672 ((-550))) (-15 -3334 ((-550) (-550))) (-15 -1394 ((-550))) (-15 -2690 ((-550) (-550))) (-15 -4003 ((-550))) (-15 -2377 ((-550) (-550))) (-15 -3508 ((-112))) (-15 -1860 ((-112) (-112))) (-15 -3198 ((-550))) (-15 -1890 ((-112) (-112))))) -((-3450 (((-623 (-1063 (-219))) (-623 (-623 (-917 (-219))))) 24))) -(((-902) (-10 -7 (-15 -3450 ((-623 (-1063 (-219))) (-623 (-623 (-917 (-219)))))))) (T -902)) -((-3450 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *2 (-623 (-1063 (-219)))) (-5 *1 (-902))))) -(-10 -7 (-15 -3450 ((-623 (-1063 (-219))) (-623 (-623 (-917 (-219))))))) -((-2569 ((|#2| |#2|) 26)) (-4271 ((|#2| |#2|) 27)) (-4165 ((|#2| |#2|) 25)) (-2527 ((|#2| |#2| (-1127)) 24))) -(((-903 |#1| |#2|) (-10 -7 (-15 -2527 (|#2| |#2| (-1127))) (-15 -4165 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -4271 (|#2| |#2|))) (-825) (-423 |#1|)) (T -903)) -((-4271 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) (-2569 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-825)) (-5 *1 (-903 *4 *2)) (-4 *2 (-423 *4))))) -(-10 -7 (-15 -2527 (|#2| |#2| (-1127))) (-15 -4165 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -4271 (|#2| |#2|))) -((-2569 (((-309 (-550)) (-1145)) 16)) (-4271 (((-309 (-550)) (-1145)) 14)) (-4165 (((-309 (-550)) (-1145)) 12)) (-2527 (((-309 (-550)) (-1145) (-1127)) 19))) -(((-904) (-10 -7 (-15 -2527 ((-309 (-550)) (-1145) (-1127))) (-15 -4165 ((-309 (-550)) (-1145))) (-15 -2569 ((-309 (-550)) (-1145))) (-15 -4271 ((-309 (-550)) (-1145))))) (T -904)) -((-4271 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-1127)) (-5 *2 (-309 (-550))) (-5 *1 (-904))))) -(-10 -7 (-15 -2527 ((-309 (-550)) (-1145) (-1127))) (-15 -4165 ((-309 (-550)) (-1145))) (-15 -2569 ((-309 (-550)) (-1145))) (-15 -4271 ((-309 (-550)) (-1145)))) -((-4141 (((-863 |#1| |#3|) |#2| (-866 |#1|) (-863 |#1| |#3|)) 25)) (-2183 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -2183 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4141 ((-863 |#1| |#3|) |#2| (-866 |#1|) (-863 |#1| |#3|)))) (-1069) (-860 |#1|) (-13 (-1069) (-1012 |#2|))) (T -905)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-4 *6 (-13 (-1069) (-1012 *3))) (-4 *3 (-860 *5)) (-5 *1 (-905 *5 *3 *6)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1069) (-1012 *5))) (-4 *5 (-860 *4)) (-4 *4 (-1069)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5 *6))))) -(-10 -7 (-15 -2183 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4141 ((-863 |#1| |#3|) |#2| (-866 |#1|) (-863 |#1| |#3|)))) -((-4141 (((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)) 30))) -(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) (-1069) (-13 (-542) (-825) (-860 |#1|)) (-13 (-423 |#2|) (-596 (-866 |#1|)) (-860 |#1|) (-1012 (-594 $)))) (T -906)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) (-4 *3 (-13 (-423 *6) (-596 *4) (-860 *5) (-1012 (-594 $)))) (-5 *4 (-866 *5)) (-4 *6 (-13 (-542) (-825) (-860 *5))) (-5 *1 (-906 *5 *6 *3))))) -(-10 -7 (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) -((-4141 (((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|)) 13))) -(((-907 |#1|) (-10 -7 (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|)))) (-535)) (T -907)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 (-550) *3)) (-5 *4 (-866 (-550))) (-4 *3 (-535)) (-5 *1 (-907 *3))))) -(-10 -7 (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|)))) -((-4141 (((-863 |#1| |#2|) (-594 |#2|) (-866 |#1|) (-863 |#1| |#2|)) 54))) -(((-908 |#1| |#2|) (-10 -7 (-15 -4141 ((-863 |#1| |#2|) (-594 |#2|) (-866 |#1|) (-863 |#1| |#2|)))) (-1069) (-13 (-825) (-1012 (-594 $)) (-596 (-866 |#1|)) (-860 |#1|))) (T -908)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *6)) (-5 *3 (-594 *6)) (-4 *5 (-1069)) (-4 *6 (-13 (-825) (-1012 (-594 $)) (-596 *4) (-860 *5))) (-5 *4 (-866 *5)) (-5 *1 (-908 *5 *6))))) -(-10 -7 (-15 -4141 ((-863 |#1| |#2|) (-594 |#2|) (-866 |#1|) (-863 |#1| |#2|)))) -((-4141 (((-859 |#1| |#2| |#3|) |#3| (-866 |#1|) (-859 |#1| |#2| |#3|)) 15))) -(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -4141 ((-859 |#1| |#2| |#3|) |#3| (-866 |#1|) (-859 |#1| |#2| |#3|)))) (-1069) (-860 |#1|) (-644 |#2|)) (T -909)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3))))) -(-10 -7 (-15 -4141 ((-859 |#1| |#2| |#3|) |#3| (-866 |#1|) (-859 |#1| |#2| |#3|)))) -((-4141 (((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|)) 17 (|has| |#3| (-860 |#1|))) (((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|) (-1 (-863 |#1| |#5|) |#3| (-866 |#1|) (-863 |#1| |#5|))) 16))) -(((-910 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4141 ((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|) (-1 (-863 |#1| |#5|) |#3| (-866 |#1|) (-863 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -4141 ((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|))) |%noBranch|)) (-1069) (-771) (-825) (-13 (-1021) (-825) (-860 |#1|)) (-13 (-923 |#4| |#2| |#3|) (-596 (-866 |#1|)))) (T -910)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) (-4 *3 (-13 (-923 *8 *6 *7) (-596 *4))) (-5 *4 (-866 *5)) (-4 *7 (-860 *5)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1021) (-825) (-860 *5))) (-5 *1 (-910 *5 *6 *7 *8 *3)))) (-4141 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-863 *6 *3) *8 (-866 *6) (-863 *6 *3))) (-4 *8 (-825)) (-5 *2 (-863 *6 *3)) (-5 *4 (-866 *6)) (-4 *6 (-1069)) (-4 *3 (-13 (-923 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) (-4 *9 (-13 (-1021) (-825) (-860 *6))) (-5 *1 (-910 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4141 ((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|) (-1 (-863 |#1| |#5|) |#3| (-866 |#1|) (-863 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -4141 ((-863 |#1| |#5|) |#5| (-866 |#1|) (-863 |#1| |#5|))) |%noBranch|)) -((-1275 ((|#2| |#2| (-623 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -1275 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1275 (|#2| |#2| (-623 (-1 (-112) |#3|))))) (-825) (-423 |#1|) (-1182)) (T -911)) -((-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-1 (-112) *5))) (-4 *5 (-1182)) (-4 *4 (-825)) (-5 *1 (-911 *4 *2 *5)) (-4 *2 (-423 *4)))) (-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1182)) (-4 *4 (-825)) (-5 *1 (-911 *4 *2 *5)) (-4 *2 (-423 *4))))) -(-10 -7 (-15 -1275 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1275 (|#2| |#2| (-623 (-1 (-112) |#3|))))) -((-1275 (((-309 (-550)) (-1145) (-623 (-1 (-112) |#1|))) 18) (((-309 (-550)) (-1145) (-1 (-112) |#1|)) 15))) -(((-912 |#1|) (-10 -7 (-15 -1275 ((-309 (-550)) (-1145) (-1 (-112) |#1|))) (-15 -1275 ((-309 (-550)) (-1145) (-623 (-1 (-112) |#1|))))) (-1182)) (T -912)) -((-1275 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-623 (-1 (-112) *5))) (-4 *5 (-1182)) (-5 *2 (-309 (-550))) (-5 *1 (-912 *5)))) (-1275 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1182)) (-5 *2 (-309 (-550))) (-5 *1 (-912 *5))))) -(-10 -7 (-15 -1275 ((-309 (-550)) (-1145) (-1 (-112) |#1|))) (-15 -1275 ((-309 (-550)) (-1145) (-623 (-1 (-112) |#1|))))) -((-4141 (((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)) 25))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) (-1069) (-13 (-542) (-860 |#1|) (-596 (-866 |#1|))) (-966 |#2|)) (T -913)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) (-4 *3 (-966 *6)) (-4 *6 (-13 (-542) (-860 *5) (-596 *4))) (-5 *4 (-866 *5)) (-5 *1 (-913 *5 *6 *3))))) -(-10 -7 (-15 -4141 ((-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) -((-4141 (((-863 |#1| (-1145)) (-1145) (-866 |#1|) (-863 |#1| (-1145))) 17))) -(((-914 |#1|) (-10 -7 (-15 -4141 ((-863 |#1| (-1145)) (-1145) (-866 |#1|) (-863 |#1| (-1145))))) (-1069)) (T -914)) -((-4141 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-863 *5 (-1145))) (-5 *3 (-1145)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-5 *1 (-914 *5))))) -(-10 -7 (-15 -4141 ((-863 |#1| (-1145)) (-1145) (-866 |#1|) (-863 |#1| (-1145))))) -((-2829 (((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))) 33)) (-4141 (((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-1 |#3| (-623 |#3|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))) 32))) -(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -4141 ((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-1 |#3| (-623 |#3|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) (-15 -2829 ((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))))) (-1069) (-13 (-1021) (-825)) (-13 (-1021) (-596 (-866 |#1|)) (-1012 |#2|))) (T -915)) -((-2829 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-866 *6))) (-5 *5 (-1 (-863 *6 *8) *8 (-866 *6) (-863 *6 *8))) (-4 *6 (-1069)) (-4 *8 (-13 (-1021) (-596 (-866 *6)) (-1012 *7))) (-5 *2 (-863 *6 *8)) (-4 *7 (-13 (-1021) (-825))) (-5 *1 (-915 *6 *7 *8)))) (-4141 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-623 (-866 *7))) (-5 *5 (-1 *9 (-623 *9))) (-5 *6 (-1 (-863 *7 *9) *9 (-866 *7) (-863 *7 *9))) (-4 *7 (-1069)) (-4 *9 (-13 (-1021) (-596 (-866 *7)) (-1012 *8))) (-5 *2 (-863 *7 *9)) (-5 *3 (-623 *9)) (-4 *8 (-13 (-1021) (-825))) (-5 *1 (-915 *7 *8 *9))))) -(-10 -7 (-15 -4141 ((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-1 |#3| (-623 |#3|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|)))) (-15 -2829 ((-863 |#1| |#3|) (-623 |#3|) (-623 (-866 |#1|)) (-863 |#1| |#3|) (-1 (-863 |#1| |#3|) |#3| (-866 |#1|) (-863 |#1| |#3|))))) -((-3645 (((-1141 (-400 (-550))) (-550)) 63)) (-1950 (((-1141 (-550)) (-550)) 66)) (-2810 (((-1141 (-550)) (-550)) 60)) (-2170 (((-550) (-1141 (-550))) 55)) (-3729 (((-1141 (-400 (-550))) (-550)) 49)) (-3855 (((-1141 (-550)) (-550)) 38)) (-2883 (((-1141 (-550)) (-550)) 68)) (-4267 (((-1141 (-550)) (-550)) 67)) (-1423 (((-1141 (-400 (-550))) (-550)) 51))) -(((-916) (-10 -7 (-15 -1423 ((-1141 (-400 (-550))) (-550))) (-15 -4267 ((-1141 (-550)) (-550))) (-15 -2883 ((-1141 (-550)) (-550))) (-15 -3855 ((-1141 (-550)) (-550))) (-15 -3729 ((-1141 (-400 (-550))) (-550))) (-15 -2170 ((-550) (-1141 (-550)))) (-15 -2810 ((-1141 (-550)) (-550))) (-15 -1950 ((-1141 (-550)) (-550))) (-15 -3645 ((-1141 (-400 (-550))) (-550))))) (T -916)) -((-3645 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550)))) (-1950 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) (-2810 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-1141 (-550))) (-5 *2 (-550)) (-5 *1 (-916)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550)))) (-3855 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) (-4267 (*1 *2 *3) (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550))))) -(-10 -7 (-15 -1423 ((-1141 (-400 (-550))) (-550))) (-15 -4267 ((-1141 (-550)) (-550))) (-15 -2883 ((-1141 (-550)) (-550))) (-15 -3855 ((-1141 (-550)) (-550))) (-15 -3729 ((-1141 (-400 (-550))) (-550))) (-15 -2170 ((-550) (-1141 (-550)))) (-15 -2810 ((-1141 (-550)) (-550))) (-15 -1950 ((-1141 (-550)) (-550))) (-15 -3645 ((-1141 (-400 (-550))) (-550)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749)) NIL (|has| |#1| (-23)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) 11 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2712 (($ (-623 |#1|)) 13)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-2755 (((-667 |#1|) $ $) NIL (|has| |#1| (-1021)))) (-3375 (($ (-749) |#1|) 8)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 10 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2986 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-1700 (((-112) $ (-749)) NIL)) (-3839 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-4268 (($ $ (-623 |#1|)) 26)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 20) (($ $ (-1195 (-550))) NIL)) (-3451 ((|#1| $ $) NIL (|has| |#1| (-1021)))) (-1877 (((-895) $) 16)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1442 (($ $ $) 24)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526)))) (($ (-623 |#1|)) 17)) (-2245 (($ (-623 |#1|)) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2370 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2358 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3307 (((-749) $) 14 (|has| $ (-6 -4344))))) -(((-917 |#1|) (-954 |#1|) (-1021)) (T -917)) +((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-869)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2993 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *3 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-1009))))) +(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -2993 ((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2995 ((|#1| |#1| (-749)) 24)) (-2994 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3789 (((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749)) 27) (((-620 |#1|) |#1|) 29))) +(((-870 |#1| |#2|) (-10 -7 (-15 -3789 ((-620 |#1|) |#1|)) (-15 -3789 ((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| (-749)))) (-1205 |#2|) (-356)) (T -870)) +((-2995 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) (-4 *2 (-1205 *4)))) (-2994 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1205 *3)))) (-3789 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-870 *3 *5)) (-4 *3 (-1205 *5)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -3789 ((-620 |#1|) |#1|)) (-15 -3789 ((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| (-749)))) +((-3931 (((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129)) 96) (((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219)) 91) (((-1009) (-872) (-1035)) 83) (((-1009) (-872)) 84)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035)) 59) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872)) 61))) +(((-871) (-10 -7 (-15 -3931 ((-1009) (-872))) (-15 -3931 ((-1009) (-872) (-1035))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035))))) (T -871)) +((-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-871)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) (-5 *8 (-219)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871))))) +(-10 -7 (-15 -3931 ((-1009) (-872))) (-15 -3931 ((-1009) (-872) (-1035))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035)))) +((-2893 (((-112) $ $) NIL)) (-3502 (((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $) 19)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 18)) (-3382 (((-112) $ $) NIL))) +(((-872) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $))))) (T -872)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-872)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *1 (-872)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *1 (-872))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $)))) +((-4165 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) 10) (($ $ |#2| (-749)) 12) (($ $ (-620 |#2|) (-620 (-749))) 15)) (-2997 (($ $ |#2|) 16) (($ $ (-620 |#2|)) 18) (($ $ |#2| (-749)) 19) (($ $ (-620 |#2|) (-620 (-749))) 21))) +(((-873 |#1| |#2|) (-10 -8 (-15 -2997 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -2997 (|#1| |#1| |#2| (-749))) (-15 -2997 (|#1| |#1| (-620 |#2|))) (-15 -2997 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#2| (-749))) (-15 -4165 (|#1| |#1| (-620 |#2|))) (-15 -4165 (|#1| |#1| |#2|))) (-874 |#2|) (-1072)) (T -873)) +NIL +(-10 -8 (-15 -2997 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -2997 (|#1| |#1| |#2| (-749))) (-15 -2997 (|#1| |#1| (-620 |#2|))) (-15 -2997 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#2| (-749))) (-15 -4165 (|#1| |#1| (-620 |#2|))) (-15 -4165 (|#1| |#1| |#2|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $ |#1|) 40) (($ $ (-620 |#1|)) 39) (($ $ |#1| (-749)) 38) (($ $ (-620 |#1|) (-620 (-749))) 37)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#1|) 36) (($ $ (-620 |#1|)) 35) (($ $ |#1| (-749)) 34) (($ $ (-620 |#1|) (-620 (-749))) 33)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-874 |#1|) (-138) (-1072)) (T -874)) +((-4165 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1072)))) (-2997 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1072))))) +(-13 (-1023) (-10 -8 (-15 -4165 ($ $ |t#1|)) (-15 -4165 ($ $ (-620 |t#1|))) (-15 -4165 ($ $ |t#1| (-749))) (-15 -4165 ($ $ (-620 |t#1|) (-620 (-749)))) (-15 -2997 ($ $ |t#1|)) (-15 -2997 ($ $ (-620 |t#1|))) (-15 -2997 ($ $ |t#1| (-749))) (-15 -2997 ($ $ (-620 |t#1|) (-620 (-749)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 26)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-1352 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 25)) (-2998 (($ |#1|) 12) (($ $ $) 17)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 23)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 20)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1170 |#1|) $) 9) (((-838) $) 29 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 21 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-875 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2998 ($ |#1|)) (-15 -2998 ($ $ $)) (-15 -4312 ((-1170 |#1|) $)))) (-1072)) (T -875)) +((-2998 (*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) (-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1072))))) +(-13 (-119 |#1|) (-10 -8 (-15 -2998 ($ |#1|)) (-15 -2998 ($ $ $)) (-15 -4312 ((-1170 |#1|) $)))) +((-2893 (((-112) $ $) NIL)) (-3237 (((-620 $) (-620 $)) 77)) (-3981 (((-536) $) 60)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-4126 (((-749) $) 58)) (-3018 (((-1068 |#1|) $ |#1|) 49)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) 63)) (-3003 (((-749) $) 61)) (-3014 (((-1068 |#1|) $) 42)) (-3672 (($ $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3673 (($ $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3007 (((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $) 37)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 93)) (-3589 (((-1091) $) NIL)) (-3000 (((-1068 |#1|) $) 100 (|has| |#1| (-361)))) (-3002 (((-112) $) 59)) (-4122 ((|#1| $ |#1|) 47)) (-4154 ((|#1| $ |#1|) 94)) (-4302 (((-749) $) 44)) (-3009 (($ (-620 (-620 |#1|))) 85)) (-3004 (((-945) $) 53)) (-3010 (($ (-620 |#1|)) 21)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-3006 (($ (-620 (-620 |#1|))) 39)) (-3005 (($ (-620 (-620 |#1|))) 88)) (-2999 (($ (-620 |#1|)) 96)) (-4312 (((-838) $) 84) (($ (-620 (-620 |#1|))) 66) (($ (-620 |#1|)) 67)) (-2992 (($) 16 T CONST)) (-2891 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3382 (((-112) $ $) 45)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3013 (((-112) $ $) 65)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 22))) +(((-876 |#1|) (-13 (-878 |#1|) (-10 -8 (-15 -3007 ((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $)) (-15 -3006 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 |#1|))) (-15 -3005 ($ (-620 (-620 |#1|)))) (-15 -4302 ((-749) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3004 ((-945) $)) (-15 -4126 ((-749) $)) (-15 -3003 ((-749) $)) (-15 -3981 ((-536) $)) (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $)) (-15 -3237 ((-620 $) (-620 $))) (IF (|has| |#1| (-361)) (-15 -3000 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -2999 ($ (-620 |#1|))) (IF (|has| |#1| (-361)) (-15 -2999 ($ (-620 |#1|))) |%noBranch|)))) (-1072)) (T -876)) +((-3007 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-620 *3)) (|:| |image| (-620 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1072)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) +(-13 (-878 |#1|) (-10 -8 (-15 -3007 ((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $)) (-15 -3006 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 |#1|))) (-15 -3005 ($ (-620 (-620 |#1|)))) (-15 -4302 ((-749) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3004 ((-945) $)) (-15 -4126 ((-749) $)) (-15 -3003 ((-749) $)) (-15 -3981 ((-536) $)) (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $)) (-15 -3237 ((-620 $) (-620 $))) (IF (|has| |#1| (-361)) (-15 -3000 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -2999 ($ (-620 |#1|))) (IF (|has| |#1| (-361)) (-15 -2999 ($ (-620 |#1|))) |%noBranch|)))) +((-3008 ((|#2| (-1113 |#1| |#2|)) 40))) +(((-877 |#1| |#2|) (-10 -7 (-15 -3008 (|#2| (-1113 |#1| |#2|)))) (-893) (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (T -877)) +((-3008 (*1 *2 *3) (-12 (-5 *3 (-1113 *4 *2)) (-14 *4 (-893)) (-4 *2 (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (-5 *1 (-877 *4 *2))))) +(-10 -7 (-15 -3008 (|#2| (-1113 |#1| |#2|)))) +((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-3018 (((-1068 |#1|) $ |#1|) 32)) (-2497 (((-112) $) 17)) (-3672 (($ $ $) 30 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3673 (($ $ $) 29 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 24)) (-3589 (((-1091) $) 10)) (-4122 ((|#1| $ |#1|) 34)) (-4154 ((|#1| $ |#1|) 33)) (-3009 (($ (-620 (-620 |#1|))) 35)) (-3010 (($ (-620 |#1|)) 36)) (-3337 (($ $ $) 21)) (-2681 (($ $ $) 20)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-2891 (((-112) $ $) 27 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2892 (((-112) $ $) 26 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 28 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3013 (((-112) $ $) 31)) (-4303 (($ $ $) 23)) (** (($ $ (-893)) 13) (($ $ (-749)) 16) (($ $ (-536)) 22)) (* (($ $ $) 14))) +(((-878 |#1|) (-138) (-1072)) (T -878)) +((-3010 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-878 *3)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-4 *1 (-878 *3)))) (-4122 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) (-4154 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-1068 *3)))) (-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(-13 (-465) (-10 -8 (-15 -3010 ($ (-620 |t#1|))) (-15 -3009 ($ (-620 (-620 |t#1|)))) (-15 -4122 (|t#1| $ |t#1|)) (-15 -4154 (|t#1| $ |t#1|)) (-15 -3018 ((-1068 |t#1|) $ |t#1|)) (-15 -3013 ((-112) $ $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-825)) |%noBranch|))) +(((-101) . T) ((-595 (-838)) . T) ((-465) . T) ((-705) . T) ((-825) -3886 (|has| |#1| (-825)) (|has| |#1| (-361))) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3020 (((-620 (-620 (-749))) $) 108)) (-3016 (((-620 (-749)) (-876 |#1|) $) 130)) (-3015 (((-620 (-749)) (-876 |#1|) $) 131)) (-3021 (((-620 (-876 |#1|)) $) 98)) (-3322 (((-876 |#1|) $ (-536)) 103) (((-876 |#1|) $) 104)) (-3019 (($ (-620 (-876 |#1|))) 110)) (-4126 (((-749) $) 105)) (-3017 (((-1068 (-1068 |#1|)) $) 128)) (-3018 (((-1068 |#1|) $ |#1|) 121) (((-1068 (-1068 |#1|)) $ (-1068 |#1|)) 139) (((-1068 (-620 |#1|)) $ (-620 |#1|)) 142)) (-3014 (((-1068 |#1|) $) 101)) (-3591 (((-112) (-876 |#1|) $) 92)) (-3588 (((-1129) $) NIL)) (-3011 (((-1235) $) 95) (((-1235) $ (-536) (-536)) 143)) (-3589 (((-1091) $) NIL)) (-3023 (((-620 (-876 |#1|)) $) 96)) (-4154 (((-876 |#1|) $ (-749)) 99)) (-4302 (((-749) $) 106)) (-4312 (((-838) $) 119) (((-620 (-876 |#1|)) $) 23) (($ (-620 (-876 |#1|))) 109)) (-3022 (((-620 |#1|) $) 107)) (-3382 (((-112) $ $) 136)) (-3012 (((-112) $ $) 134)) (-3013 (((-112) $ $) 133))) +(((-879 |#1|) (-13 (-1072) (-10 -8 (-15 -4312 ((-620 (-876 |#1|)) $)) (-15 -3023 ((-620 (-876 |#1|)) $)) (-15 -4154 ((-876 |#1|) $ (-749))) (-15 -3322 ((-876 |#1|) $ (-536))) (-15 -3322 ((-876 |#1|) $)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $)) (-15 -3022 ((-620 |#1|) $)) (-15 -3021 ((-620 (-876 |#1|)) $)) (-15 -3020 ((-620 (-620 (-749))) $)) (-15 -4312 ($ (-620 (-876 |#1|)))) (-15 -3019 ($ (-620 (-876 |#1|)))) (-15 -3018 ((-1068 |#1|) $ |#1|)) (-15 -3017 ((-1068 (-1068 |#1|)) $)) (-15 -3018 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -3018 ((-1068 (-620 |#1|)) $ (-620 |#1|))) (-15 -3591 ((-112) (-876 |#1|) $)) (-15 -3016 ((-620 (-749)) (-876 |#1|) $)) (-15 -3015 ((-620 (-749)) (-876 |#1|) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3013 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3011 ((-1235) $)) (-15 -3011 ((-1235) $ (-536) (-536))))) (-1072)) (T -879)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-749)))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) (-3018 (*1 *2 *1 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-879 *4)) (-5 *3 (-1068 *4)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-620 *4))) (-5 *1 (-879 *4)) (-5 *3 (-620 *4)))) (-3591 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-879 *4)))) (-3016 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) (-5 *1 (-879 *4)))) (-3015 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) (-5 *1 (-879 *4)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3013 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3012 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-879 *4)) (-4 *4 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -4312 ((-620 (-876 |#1|)) $)) (-15 -3023 ((-620 (-876 |#1|)) $)) (-15 -4154 ((-876 |#1|) $ (-749))) (-15 -3322 ((-876 |#1|) $ (-536))) (-15 -3322 ((-876 |#1|) $)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $)) (-15 -3022 ((-620 |#1|) $)) (-15 -3021 ((-620 (-876 |#1|)) $)) (-15 -3020 ((-620 (-620 (-749))) $)) (-15 -4312 ($ (-620 (-876 |#1|)))) (-15 -3019 ($ (-620 (-876 |#1|)))) (-15 -3018 ((-1068 |#1|) $ |#1|)) (-15 -3017 ((-1068 (-1068 |#1|)) $)) (-15 -3018 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -3018 ((-1068 (-620 |#1|)) $ (-620 |#1|))) (-15 -3591 ((-112) (-876 |#1|) $)) (-15 -3016 ((-620 (-749)) (-876 |#1|) $)) (-15 -3015 ((-620 (-749)) (-876 |#1|) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3013 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3011 ((-1235) $)) (-15 -3011 ((-1235) $ (-536) (-536))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 $ "failed") $) NIL)) (-3502 (($ $) NIL)) (-1906 (($ (-1229 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-749)) NIL)) (-4081 (((-112) $) NIL)) (-4126 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3462 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 $) $ (-893)) NIL (|has| $ (-361))) (((-1141 $) $) NIL)) (-2121 (((-893) $) NIL)) (-1719 (((-1141 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL T CONST)) (-2487 (($ (-893)) NIL)) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| $ (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL)) (-4087 (((-398 $) $) NIL)) (-4285 (((-893)) NIL) (((-810 (-893))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-4266 (((-133)) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-4302 (((-893) $) NIL) (((-810 (-893)) $) NIL)) (-3531 (((-1141 $)) NIL)) (-1785 (($) NIL)) (-1721 (($) NIL (|has| $ (-361)))) (-3570 (((-667 $) (-1229 $)) NIL) (((-1229 $) $) NIL)) (-4325 (((-536) $) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $) (-893)) NIL) (((-1229 $)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-880 |#1|) (-13 (-343) (-322 $) (-596 (-536))) (-893)) (T -880)) +NIL +(-13 (-343) (-322 $) (-596 (-536))) +((-3025 (((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|)) 128)) (-3028 ((|#1|) 77)) (-3027 (((-398 (-1141 |#4|)) (-1141 |#4|)) 137)) (-3029 (((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)) 69)) (-3026 (((-398 (-1141 |#4|)) (-1141 |#4|)) 147)) (-3024 (((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|) 92))) +(((-881 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|))) (-15 -3026 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3027 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3028 (|#1|)) (-15 -3024 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -3029 ((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)))) (-884) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -881)) +((-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *7)) (-4 *7 (-825)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-881 *5 *6 *7 *8)) (-5 *4 (-1141 *8)))) (-3024 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-924 *5 *6 *4)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *4 (-825)) (-5 *1 (-881 *5 *6 *4 *7)))) (-3028 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-881 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-881 *4 *5 *6 *7))))) +(-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|))) (-15 -3026 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3027 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3028 (|#1|)) (-15 -3024 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -3029 ((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)))) +((-3025 (((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)) 36)) (-3028 ((|#1|) 54)) (-3027 (((-398 (-1141 |#2|)) (-1141 |#2|)) 102)) (-3029 (((-398 (-1141 |#2|)) (-1141 |#2|)) 90)) (-3026 (((-398 (-1141 |#2|)) (-1141 |#2|)) 113))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|))) (-15 -3026 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3027 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3028 (|#1|)) (-15 -3029 ((-398 (-1141 |#2|)) (-1141 |#2|)))) (-884) (-1205 |#1|)) (T -882)) +((-3029 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3028 (*1 *2) (-12 (-4 *2 (-884)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1205 *2)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-884)) (-5 *1 (-882 *4 *5))))) +(-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|))) (-15 -3026 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3027 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3028 (|#1|)) (-15 -3029 ((-398 (-1141 |#2|)) (-1141 |#2|)))) +((-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 41)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 18)) (-3030 (((-3 $ "failed") $) 35))) +(((-883 |#1|) (-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-884)) (T -883)) +NIL +(-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 58)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 55)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-4081 (((-112) $) 51)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3033 (((-398 (-1141 $)) (-1141 $)) 56)) (-3034 (((-398 (-1141 $)) (-1141 $)) 57)) (-4087 (((-398 $) $) 48)) (-3815 (((-3 $ "failed") $ $) 40)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 54 (|has| $ (-143)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3030 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-884) (-138)) (T -884)) +((-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-884)))) (-3035 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3034 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3033 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *1))) (-5 *3 (-1141 *1)) (-4 *1 (-884)))) (-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-884)) (-5 *2 (-1229 *1)))) (-3030 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-884))))) +(-13 (-1188) (-10 -8 (-15 -3035 ((-398 (-1141 $)) (-1141 $))) (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3033 ((-398 (-1141 $)) (-1141 $))) (-15 -3036 ((-1141 $) (-1141 $) (-1141 $))) (-15 -3032 ((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $))) (IF (|has| $ (-143)) (PROGN (-15 -3031 ((-3 (-1229 $) "failed") (-667 $))) (-15 -3030 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-3038 (((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)) 79)) (-3037 (((-112) (-326 |#2| |#3| |#4| |#5|)) 17)) (-4126 (((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|)) 15))) +(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3037 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) (-13 (-825) (-543) (-1012 (-536))) (-414 |#1|) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -885)) +((-3038 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *8))) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-112)) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-4126 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-749)) (-5 *1 (-885 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3037 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) +((-3038 (((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)) 56)) (-3037 (((-112) (-326 (-400 (-536)) |#1| |#2| |#3|)) 16)) (-4126 (((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)) 14))) +(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3037 ((-112) (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)))) (-1205 (-400 (-536))) (-1205 (-400 |#1|)) (-335 (-400 (-536)) |#1| |#2|)) (T -886)) +((-3038 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *6))) (-5 *1 (-886 *4 *5 *6)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5 *6)))) (-4126 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-886 *4 *5 *6))))) +(-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3037 ((-112) (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)))) +((-3043 ((|#2| |#2|) 26)) (-3041 (((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) 15)) (-3039 (((-893) (-536)) 35)) (-3042 (((-536) |#2|) 42)) (-3040 (((-536) |#2|) 21) (((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|) 20))) +(((-887 |#1| |#2|) (-10 -7 (-15 -3039 ((-893) (-536))) (-15 -3040 ((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|)) (-15 -3040 ((-536) |#2|)) (-15 -3041 ((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))))) (-15 -3042 ((-536) |#2|)) (-15 -3043 (|#2| |#2|))) (-1205 (-400 (-536))) (-1205 (-400 |#1|))) (T -887)) +((-3043 (*1 *2 *2) (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *1 (-887 *3 *2)) (-4 *2 (-1205 (-400 *3))))) (-3042 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4))))) (-3040 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-3040 (*1 *2 *3) (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *2 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))) (-5 *1 (-887 *3 *4)) (-4 *4 (-1205 (-400 *3))))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-1205 (-400 *3))) (-5 *2 (-893)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4)))))) +(-10 -7 (-15 -3039 ((-893) (-536))) (-15 -3040 ((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|)) (-15 -3040 ((-536) |#2|)) (-15 -3041 ((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))))) (-15 -3042 ((-536) |#2|)) (-15 -3043 (|#2| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#1| $) 81)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 75)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3051 (($ |#1| (-398 |#1|)) 73)) (-3045 (((-1141 |#1|) |#1| |#1|) 41)) (-3044 (($ $) 49)) (-2497 (((-112) $) NIL)) (-3046 (((-536) $) 78)) (-3047 (($ $ (-536)) 80)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3048 ((|#1| $) 77)) (-3049 (((-398 |#1|) $) 76)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 74)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3050 (($ $) 39)) (-4312 (((-838) $) 99) (($ (-536)) 54) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-398 |#1|))) 67)) (-3456 (((-749)) 52)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 23 T CONST)) (-2992 (($) 12 T CONST)) (-3382 (((-112) $ $) 68)) (-4303 (($ $ $) NIL)) (-4192 (($ $) 88) (($ $ $) NIL)) (-4194 (($ $ $) 38)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 90) (($ $ $) 37) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-888 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -4312 ((-400 |#1|) $)) (-15 -4312 ($ (-400 (-398 |#1|)))) (-15 -3050 ($ $)) (-15 -3049 ((-398 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3047 ($ $ (-536))) (-15 -3046 ((-536) $)) (-15 -3045 ((-1141 |#1|) |#1| |#1|)) (-15 -3044 ($ $)) (-15 -3051 ($ |#1| (-398 |#1|))) (-15 -3459 (|#1| $)))) (-300)) (T -888)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3045 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3044 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3051 (*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) (-3459 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) +(-13 (-356) (-38 |#1|) (-10 -8 (-15 -4312 ((-400 |#1|) $)) (-15 -4312 ($ (-400 (-398 |#1|)))) (-15 -3050 ($ $)) (-15 -3049 ((-398 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3047 ($ $ (-536))) (-15 -3046 ((-536) $)) (-15 -3045 ((-1141 |#1|) |#1| |#1|)) (-15 -3044 ($ $)) (-15 -3051 ($ |#1| (-398 |#1|))) (-15 -3459 (|#1| $)))) +((-3051 (((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)) 17) (((-51) (-400 (-920 |#1|)) (-1147)) 18))) +(((-889 |#1|) (-10 -7 (-15 -3051 ((-51) (-400 (-920 |#1|)) (-1147))) (-15 -3051 ((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)))) (-13 (-300) (-145))) (T -889)) +((-3051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-398 (-920 *6))) (-5 *5 (-1147)) (-5 *3 (-920 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *6)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *5))))) +(-10 -7 (-15 -3051 ((-51) (-400 (-920 |#1|)) (-1147))) (-15 -3051 ((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)))) +((-3052 ((|#4| (-620 |#4|)) 121) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3490 (((-1141 |#4|) (-620 (-1141 |#4|))) 114) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 50) ((|#4| (-620 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 (|#4| |#4| |#4|)) (-15 -3490 (|#4| (-620 |#4|))) (-15 -3490 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3490 ((-1141 |#4|) (-620 (-1141 |#4|)))) (-15 -3052 (|#4| |#4| |#4|)) (-15 -3052 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3052 (|#4| (-620 |#4|)))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -890)) +((-3052 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3052 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-924 *5 *3 *4)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-3490 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-924 *5 *3 *4))))) +(-10 -7 (-15 -3490 (|#4| |#4| |#4|)) (-15 -3490 (|#4| (-620 |#4|))) (-15 -3490 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3490 ((-1141 |#4|) (-620 (-1141 |#4|)))) (-15 -3052 (|#4| |#4| |#4|)) (-15 -3052 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3052 (|#4| (-620 |#4|)))) +((-3065 (((-879 (-536)) (-945)) 23) (((-879 (-536)) (-620 (-536))) 20)) (-3053 (((-879 (-536)) (-620 (-536))) 48) (((-879 (-536)) (-893)) 49)) (-3064 (((-879 (-536))) 24)) (-3062 (((-879 (-536))) 38) (((-879 (-536)) (-620 (-536))) 37)) (-3061 (((-879 (-536))) 36) (((-879 (-536)) (-620 (-536))) 35)) (-3060 (((-879 (-536))) 34) (((-879 (-536)) (-620 (-536))) 33)) (-3059 (((-879 (-536))) 32) (((-879 (-536)) (-620 (-536))) 31)) (-3058 (((-879 (-536))) 30) (((-879 (-536)) (-620 (-536))) 29)) (-3063 (((-879 (-536))) 40) (((-879 (-536)) (-620 (-536))) 39)) (-3057 (((-879 (-536)) (-620 (-536))) 52) (((-879 (-536)) (-893)) 53)) (-3056 (((-879 (-536)) (-620 (-536))) 50) (((-879 (-536)) (-893)) 51)) (-3054 (((-879 (-536)) (-620 (-536))) 46) (((-879 (-536)) (-893)) 47)) (-3055 (((-879 (-536)) (-620 (-893))) 43))) +(((-891) (-10 -7 (-15 -3053 ((-879 (-536)) (-893))) (-15 -3053 ((-879 (-536)) (-620 (-536)))) (-15 -3054 ((-879 (-536)) (-893))) (-15 -3054 ((-879 (-536)) (-620 (-536)))) (-15 -3055 ((-879 (-536)) (-620 (-893)))) (-15 -3056 ((-879 (-536)) (-893))) (-15 -3056 ((-879 (-536)) (-620 (-536)))) (-15 -3057 ((-879 (-536)) (-893))) (-15 -3057 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)))) (-15 -3059 ((-879 (-536)) (-620 (-536)))) (-15 -3059 ((-879 (-536)))) (-15 -3060 ((-879 (-536)) (-620 (-536)))) (-15 -3060 ((-879 (-536)))) (-15 -3061 ((-879 (-536)) (-620 (-536)))) (-15 -3061 ((-879 (-536)))) (-15 -3062 ((-879 (-536)) (-620 (-536)))) (-15 -3062 ((-879 (-536)))) (-15 -3063 ((-879 (-536)) (-620 (-536)))) (-15 -3063 ((-879 (-536)))) (-15 -3064 ((-879 (-536)))) (-15 -3065 ((-879 (-536)) (-620 (-536)))) (-15 -3065 ((-879 (-536)) (-945))))) (T -891)) +((-3065 (*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3064 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3063 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3062 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3061 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3060 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3059 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3058 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(-10 -7 (-15 -3053 ((-879 (-536)) (-893))) (-15 -3053 ((-879 (-536)) (-620 (-536)))) (-15 -3054 ((-879 (-536)) (-893))) (-15 -3054 ((-879 (-536)) (-620 (-536)))) (-15 -3055 ((-879 (-536)) (-620 (-893)))) (-15 -3056 ((-879 (-536)) (-893))) (-15 -3056 ((-879 (-536)) (-620 (-536)))) (-15 -3057 ((-879 (-536)) (-893))) (-15 -3057 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)))) (-15 -3059 ((-879 (-536)) (-620 (-536)))) (-15 -3059 ((-879 (-536)))) (-15 -3060 ((-879 (-536)) (-620 (-536)))) (-15 -3060 ((-879 (-536)))) (-15 -3061 ((-879 (-536)) (-620 (-536)))) (-15 -3061 ((-879 (-536)))) (-15 -3062 ((-879 (-536)) (-620 (-536)))) (-15 -3062 ((-879 (-536)))) (-15 -3063 ((-879 (-536)) (-620 (-536)))) (-15 -3063 ((-879 (-536)))) (-15 -3064 ((-879 (-536)))) (-15 -3065 ((-879 (-536)) (-620 (-536)))) (-15 -3065 ((-879 (-536)) (-945)))) +((-3067 (((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))) 12)) (-3066 (((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))) 11))) +(((-892 |#1|) (-10 -7 (-15 -3066 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3067 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))))) (-444)) (T -892)) +((-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-892 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-892 *4))))) +(-10 -7 (-15 -3066 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3067 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))))) +((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3490 (($ $ $) NIL)) (-4312 (((-838) $) NIL)) (-2992 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ $ $) NIL))) +(((-893) (-13 (-772) (-705) (-10 -8 (-15 -3490 ($ $ $)) (-6 (-4350 "*"))))) (T -893)) +((-3490 (*1 *1 *1 *1) (-5 *1 (-893)))) +(-13 (-772) (-705) (-10 -8 (-15 -3490 ($ $ $)) (-6 (-4350 "*")))) +((-4312 (((-307 |#1|) (-469)) 16))) +(((-894 |#1|) (-10 -7 (-15 -4312 ((-307 |#1|) (-469)))) (-13 (-825) (-543))) (T -894)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-894 *4)) (-4 *4 (-13 (-825) (-543)))))) +(-10 -7 (-15 -4312 ((-307 |#1|) (-469)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-895) (-138)) (T -895)) +((-3069 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *2 (-2 (|:| -4308 (-620 *1)) (|:| -2496 *1))) (-5 *3 (-620 *1)))) (-3068 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-895))))) +(-13 (-444) (-10 -8 (-15 -3069 ((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $))) (-15 -3068 ((-3 (-620 $) "failed") (-620 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3436 (((-1141 |#2|) (-620 |#2|) (-620 |#2|)) 17) (((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|)) 13))) +(((-896 |#1| |#2|) (-10 -7 (-15 -3436 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|))) (-15 -3436 ((-1141 |#2|) (-620 |#2|) (-620 |#2|)))) (-1147) (-356)) (T -896)) +((-3436 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) (-5 *1 (-896 *4 *5)) (-14 *4 (-1147)))) (-3436 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-620 *5)) (-14 *4 (-1147)) (-4 *5 (-356)) (-5 *1 (-896 *4 *5))))) +(-10 -7 (-15 -3436 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|))) (-15 -3436 ((-1141 |#2|) (-620 |#2|) (-620 |#2|)))) +((-3070 ((|#2| (-620 |#1|) (-620 |#1|)) 24))) +(((-897 |#1| |#2|) (-10 -7 (-15 -3070 (|#2| (-620 |#1|) (-620 |#1|)))) (-356) (-1205 |#1|)) (T -897)) +((-3070 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-4 *2 (-1205 *4)) (-5 *1 (-897 *4 *2))))) +(-10 -7 (-15 -3070 (|#2| (-620 |#1|) (-620 |#1|)))) +((-3072 (((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129)) 139)) (-3091 ((|#4| |#4|) 155)) (-3076 (((-620 (-400 (-920 |#1|))) (-620 (-1147))) 118)) (-3090 (((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536)) 75)) (-3080 (((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|)) 59)) (-3089 (((-667 |#4|) (-667 |#4|) (-620 |#4|)) 55)) (-3073 (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129)) 151)) (-3071 (((-536) (-667 |#4|) (-893) (-1129)) 132) (((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129)) 131) (((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129)) 130) (((-536) (-667 |#4|) (-1129)) 127) (((-536) (-667 |#4|) (-620 (-1147)) (-1129)) 126) (((-536) (-667 |#4|) (-620 |#4|) (-1129)) 125) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893)) 124) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893)) 123) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893)) 122) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|)) 120) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147))) 119) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|)) 115)) (-3077 ((|#4| (-920 |#1|)) 68)) (-3087 (((-112) (-620 |#4|) (-620 (-620 |#4|))) 152)) (-3086 (((-620 (-620 (-536))) (-536) (-536)) 129)) (-3085 (((-620 (-620 |#4|)) (-620 (-620 |#4|))) 88)) (-3084 (((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|))))) 86)) (-3083 (((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|))))) 85)) (-3092 (((-112) (-620 (-920 |#1|))) 17) (((-112) (-620 |#4|)) 13)) (-3078 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|)) 71)) (-3082 (((-620 |#4|) |#4|) 49)) (-3075 (((-620 (-400 (-920 |#1|))) (-620 |#4|)) 114) (((-667 (-400 (-920 |#1|))) (-667 |#4|)) 56) (((-400 (-920 |#1|)) |#4|) 111)) (-3074 (((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536)) 93)) (-3079 (((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749)) 84)) (-3088 (((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749)) 101)) (-3081 (((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) 48))) +(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-893) (-1129))) (-15 -3072 ((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3073 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3074 ((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536))) (-15 -3075 ((-400 (-920 |#1|)) |#4|)) (-15 -3075 ((-667 (-400 (-920 |#1|))) (-667 |#4|))) (-15 -3075 ((-620 (-400 (-920 |#1|))) (-620 |#4|))) (-15 -3076 ((-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3077 (|#4| (-920 |#1|))) (-15 -3078 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|))) (-15 -3079 ((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749))) (-15 -3080 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|))) (-15 -3081 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-15 -3082 ((-620 |#4|) |#4|)) (-15 -3083 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3084 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3085 ((-620 (-620 |#4|)) (-620 (-620 |#4|)))) (-15 -3086 ((-620 (-620 (-536))) (-536) (-536))) (-15 -3087 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3088 ((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749))) (-15 -3089 ((-667 |#4|) (-667 |#4|) (-620 |#4|))) (-15 -3090 ((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536))) (-15 -3091 (|#4| |#4|)) (-15 -3092 ((-112) (-620 |#4|))) (-15 -3092 ((-112) (-620 (-920 |#1|))))) (-13 (-300) (-145)) (-13 (-825) (-596 (-1147))) (-771) (-924 |#1| |#3| |#2|)) (T -898)) +((-3092 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-924 *3 *5 *4)))) (-3090 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-5 *4 (-667 *12)) (-5 *5 (-620 (-400 (-920 *9)))) (-5 *6 (-620 (-620 *12))) (-5 *7 (-749)) (-5 *8 (-536)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-924 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1147)))) (-4 *11 (-771)) (-5 *2 (-2 (|:| |eqzro| (-620 *12)) (|:| |neqzro| (-620 *12)) (|:| |wcond| (-620 (-920 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *9)))) (|:| -2123 (-620 (-1229 (-400 (-920 *9))))))))) (-5 *1 (-898 *9 *10 *11 *12)))) (-3089 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *7)) (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *6 *5)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-620 (-620 *6))) (-4 *6 (-924 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *7))))) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *7))))) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 *3)) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-924 *4 *6 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1695 (-667 (-400 (-920 *4)))) (|:| |vec| (-620 (-400 (-920 *4)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3080 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) (-5 *3 (-620 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-924 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *8))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-4 *7 (-924 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-620 *7)) (|:| |n0| (-620 *7)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-924 *4 *6 *5)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-667 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-400 (-920 *4))) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-924 *4 *6 *5)))) (-3074 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-667 *11)) (-5 *4 (-620 (-400 (-920 *8)))) (-5 *5 (-749)) (-5 *6 (-1129)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-924 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1147)))) (-4 *10 (-771)) (-5 *2 (-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 *11)) (|:| |neqzro| (-620 *11)) (|:| |wcond| (-620 (-920 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *8)))) (|:| -2123 (-620 (-1229 (-400 (-920 *8)))))))))) (|:| |rgsz| (-536)))) (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-536)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) (|:| |wcond| (-620 (-920 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *4 (-1129)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-924 *5 *7 *6)) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-893)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-5 *6 (-1129)) (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) (-3071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 *10)) (-5 *5 (-893)) (-5 *6 (-1129)) (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-1129)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 *9)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-893)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-620 *9)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) (|:| |wcond| (-620 (-920 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-620 (-1147))) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) +(-10 -7 (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-893) (-1129))) (-15 -3072 ((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3073 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3074 ((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536))) (-15 -3075 ((-400 (-920 |#1|)) |#4|)) (-15 -3075 ((-667 (-400 (-920 |#1|))) (-667 |#4|))) (-15 -3075 ((-620 (-400 (-920 |#1|))) (-620 |#4|))) (-15 -3076 ((-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3077 (|#4| (-920 |#1|))) (-15 -3078 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|))) (-15 -3079 ((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749))) (-15 -3080 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|))) (-15 -3081 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-15 -3082 ((-620 |#4|) |#4|)) (-15 -3083 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3084 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3085 ((-620 (-620 |#4|)) (-620 (-620 |#4|)))) (-15 -3086 ((-620 (-620 (-536))) (-536) (-536))) (-15 -3087 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3088 ((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749))) (-15 -3089 ((-667 |#4|) (-667 |#4|) (-620 |#4|))) (-15 -3090 ((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536))) (-15 -3091 (|#4| |#4|)) (-15 -3092 ((-112) (-620 |#4|))) (-15 -3092 ((-112) (-620 (-920 |#1|))))) +((-4229 (($ $ (-1060 (-219))) 70) (($ $ (-1060 (-219)) (-1060 (-219))) 71)) (-3224 (((-1060 (-219)) $) 44)) (-3225 (((-1060 (-219)) $) 43)) (-3116 (((-1060 (-219)) $) 45)) (-3097 (((-536) (-536)) 37)) (-3101 (((-536) (-536)) 33)) (-3099 (((-536) (-536)) 35)) (-3095 (((-112) (-112)) 39)) (-3098 (((-536)) 36)) (-3464 (($ $ (-1060 (-219))) 74) (($ $) 75)) (-3118 (($ (-1 (-917 (-219)) (-219)) (-1060 (-219))) 84) (($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 85)) (-3104 (($ (-1 (-219) (-219)) (-1060 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-3117 (($ (-1 (-219) (-219)) (-1060 (-219))) 79) (($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219))) 80) (($ (-620 (-1 (-219) (-219))) (-1060 (-219))) 87) (($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-3103 (((-112) $) 40)) (-3094 (((-536)) 41)) (-3102 (((-536)) 32)) (-3100 (((-536)) 34)) (-3226 (((-620 (-620 (-917 (-219)))) $) 23)) (-3093 (((-112) (-112)) 42)) (-4312 (((-838) $) 106)) (-3096 (((-112)) 38))) +(((-899) (-13 (-929) (-10 -8 (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -3103 ((-112) $)) (-15 -4229 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3102 ((-536))) (-15 -3101 ((-536) (-536))) (-15 -3100 ((-536))) (-15 -3099 ((-536) (-536))) (-15 -3098 ((-536))) (-15 -3097 ((-536) (-536))) (-15 -3096 ((-112))) (-15 -3095 ((-112) (-112))) (-15 -3094 ((-536))) (-15 -3093 ((-112) (-112)))))) (T -899)) +((-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3118 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3104 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-4229 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3464 (*1 *1 *1) (-5 *1 (-899))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3102 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3100 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3098 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3096 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3094 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(-13 (-929) (-10 -8 (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -3103 ((-112) $)) (-15 -4229 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3102 ((-536))) (-15 -3101 ((-536) (-536))) (-15 -3100 ((-536))) (-15 -3099 ((-536) (-536))) (-15 -3098 ((-536))) (-15 -3097 ((-536) (-536))) (-15 -3096 ((-112))) (-15 -3095 ((-112) (-112))) (-15 -3094 ((-536))) (-15 -3093 ((-112) (-112))))) +((-3104 (((-899) |#1| (-1147)) 17) (((-899) |#1| (-1147) (-1060 (-219))) 21)) (-3117 (((-899) |#1| |#1| (-1147) (-1060 (-219))) 19) (((-899) |#1| (-1147) (-1060 (-219))) 15))) +(((-900 |#1|) (-10 -7 (-15 -3117 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3117 ((-899) |#1| |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147)))) (-596 (-525))) (T -900)) +((-3104 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3104 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3117 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3117 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525)))))) +(-10 -7 (-15 -3117 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3117 ((-899) |#1| |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147)))) +((-4229 (($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 70)) (-3223 (((-1060 (-219)) $) 40)) (-3224 (((-1060 (-219)) $) 39)) (-3225 (((-1060 (-219)) $) 38)) (-3115 (((-620 (-620 (-219))) $) 43)) (-3116 (((-1060 (-219)) $) 41)) (-3109 (((-536) (-536)) 32)) (-3113 (((-536) (-536)) 28)) (-3111 (((-536) (-536)) 30)) (-3107 (((-112) (-112)) 35)) (-3110 (((-536)) 31)) (-3464 (($ $ (-1060 (-219))) 73) (($ $) 74)) (-3118 (($ (-1 (-917 (-219)) (-219)) (-1060 (-219))) 78) (($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 79)) (-3117 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-3106 (((-536)) 36)) (-3114 (((-536)) 27)) (-3112 (((-536)) 29)) (-3226 (((-620 (-620 (-917 (-219)))) $) 95)) (-3105 (((-112) (-112)) 37)) (-4312 (((-838) $) 94)) (-3108 (((-112)) 34))) +(((-901) (-13 (-948) (-10 -8 (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3115 ((-620 (-620 (-219))) $)) (-15 -3114 ((-536))) (-15 -3113 ((-536) (-536))) (-15 -3112 ((-536))) (-15 -3111 ((-536) (-536))) (-15 -3110 ((-536))) (-15 -3109 ((-536) (-536))) (-15 -3108 ((-112))) (-15 -3107 ((-112) (-112))) (-15 -3106 ((-536))) (-15 -3105 ((-112) (-112)))))) (T -901)) +((-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3118 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-4229 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3464 (*1 *1 *1) (-5 *1 (-901))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-901)))) (-3114 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3112 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3110 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3109 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3108 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3106 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(-13 (-948) (-10 -8 (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3115 ((-620 (-620 (-219))) $)) (-15 -3114 ((-536))) (-15 -3113 ((-536) (-536))) (-15 -3112 ((-536))) (-15 -3111 ((-536) (-536))) (-15 -3110 ((-536))) (-15 -3109 ((-536) (-536))) (-15 -3108 ((-112))) (-15 -3107 ((-112) (-112))) (-15 -3106 ((-536))) (-15 -3105 ((-112) (-112))))) +((-3119 (((-620 (-1060 (-219))) (-620 (-620 (-917 (-219))))) 24))) +(((-902) (-10 -7 (-15 -3119 ((-620 (-1060 (-219))) (-620 (-620 (-917 (-219)))))))) (T -902)) +((-3119 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-1060 (-219)))) (-5 *1 (-902))))) +(-10 -7 (-15 -3119 ((-620 (-1060 (-219))) (-620 (-620 (-917 (-219))))))) +((-3121 (((-307 (-536)) (-1147)) 16)) (-3122 (((-307 (-536)) (-1147)) 14)) (-4306 (((-307 (-536)) (-1147)) 12)) (-3120 (((-307 (-536)) (-1147) (-1129)) 19))) +(((-903) (-10 -7 (-15 -3120 ((-307 (-536)) (-1147) (-1129))) (-15 -4306 ((-307 (-536)) (-1147))) (-15 -3121 ((-307 (-536)) (-1147))) (-15 -3122 ((-307 (-536)) (-1147))))) (T -903)) +((-3122 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-3120 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1129)) (-5 *2 (-307 (-536))) (-5 *1 (-903))))) +(-10 -7 (-15 -3120 ((-307 (-536)) (-1147) (-1129))) (-15 -4306 ((-307 (-536)) (-1147))) (-15 -3121 ((-307 (-536)) (-1147))) (-15 -3122 ((-307 (-536)) (-1147)))) +((-3121 ((|#2| |#2|) 26)) (-3122 ((|#2| |#2|) 27)) (-4306 ((|#2| |#2|) 25)) (-3120 ((|#2| |#2| (-1129)) 24))) +(((-904 |#1| |#2|) (-10 -7 (-15 -3120 (|#2| |#2| (-1129))) (-15 -4306 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -3122 (|#2| |#2|))) (-825) (-414 |#1|)) (T -904)) +((-3122 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-3121 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-3120 (*1 *2 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-825)) (-5 *1 (-904 *4 *2)) (-4 *2 (-414 *4))))) +(-10 -7 (-15 -3120 (|#2| |#2| (-1129))) (-15 -4306 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -3122 (|#2| |#2|))) +((-3124 (((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)) 25)) (-3123 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3124 ((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-860 |#1|) (-13 (-1072) (-1012 |#2|))) (T -905)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-13 (-1072) (-1012 *3))) (-4 *3 (-860 *5)) (-5 *1 (-905 *5 *3 *6)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1072) (-1012 *5))) (-4 *5 (-860 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5 *6))))) +(-10 -7 (-15 -3123 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3124 ((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)))) +((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 30))) +(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-13 (-543) (-825) (-860 |#1|)) (-13 (-414 |#2|) (-596 (-864 |#1|)) (-860 |#1|) (-1012 (-593 $)))) (T -906)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-13 (-414 *6) (-596 *4) (-860 *5) (-1012 (-593 $)))) (-5 *4 (-864 *5)) (-4 *6 (-13 (-543) (-825) (-860 *5))) (-5 *1 (-906 *5 *6 *3))))) +(-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) +((-3124 (((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)) 13))) +(((-907 |#1|) (-10 -7 (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)))) (-535)) (T -907)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 (-536) *3)) (-5 *4 (-864 (-536))) (-4 *3 (-535)) (-5 *1 (-907 *3))))) +(-10 -7 (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)))) +((-3124 (((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)) 54))) +(((-908 |#1| |#2|) (-10 -7 (-15 -3124 ((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)))) (-1072) (-13 (-825) (-1012 (-593 $)) (-596 (-864 |#1|)) (-860 |#1|))) (T -908)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-593 *6)) (-4 *5 (-1072)) (-4 *6 (-13 (-825) (-1012 (-593 $)) (-596 *4) (-860 *5))) (-5 *4 (-864 *5)) (-5 *1 (-908 *5 *6))))) +(-10 -7 (-15 -3124 ((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)))) +((-3124 (((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)) 15))) +(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)))) (-1072) (-860 |#1|) (-644 |#2|)) (T -909)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3))))) +(-10 -7 (-15 -3124 ((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)))) +((-3124 (((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|)) 17 (|has| |#3| (-860 |#1|))) (((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|))) 16))) +(((-910 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|))) |%noBranch|)) (-1072) (-771) (-825) (-13 (-1023) (-825) (-860 |#1|)) (-13 (-924 |#4| |#2| |#3|) (-596 (-864 |#1|)))) (T -910)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-13 (-924 *8 *6 *7) (-596 *4))) (-5 *4 (-864 *5)) (-4 *7 (-860 *5)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1023) (-825) (-860 *5))) (-5 *1 (-910 *5 *6 *7 *8 *3)))) (-3124 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-864 *6) (-862 *6 *3))) (-4 *8 (-825)) (-5 *2 (-862 *6 *3)) (-5 *4 (-864 *6)) (-4 *6 (-1072)) (-4 *3 (-13 (-924 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) (-4 *9 (-13 (-1023) (-825) (-860 *6))) (-5 *1 (-910 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|))) |%noBranch|)) +((-3555 (((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))) 18) (((-307 (-536)) (-1147) (-1 (-112) |#1|)) 15))) +(((-911 |#1|) (-10 -7 (-15 -3555 ((-307 (-536)) (-1147) (-1 (-112) |#1|))) (-15 -3555 ((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))))) (-1183)) (T -911)) +((-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1183)) (-5 *2 (-307 (-536))) (-5 *1 (-911 *5))))) +(-10 -7 (-15 -3555 ((-307 (-536)) (-1147) (-1 (-112) |#1|))) (-15 -3555 ((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))))) +((-3555 ((|#2| |#2| (-620 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3555 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3555 (|#2| |#2| (-620 (-1 (-112) |#3|))))) (-825) (-414 |#1|) (-1183)) (T -912)) +((-3555 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-4 *4 (-825)) (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1183)) (-4 *4 (-825)) (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4))))) +(-10 -7 (-15 -3555 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3555 (|#2| |#2| (-620 (-1 (-112) |#3|))))) +((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 25))) +(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-13 (-543) (-860 |#1|) (-596 (-864 |#1|))) (-965 |#2|)) (T -913)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-965 *6)) (-4 *6 (-13 (-543) (-860 *5) (-596 *4))) (-5 *4 (-864 *5)) (-5 *1 (-913 *5 *6 *3))))) +(-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) +((-3124 (((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))) 17))) +(((-914 |#1|) (-10 -7 (-15 -3124 ((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))))) (-1072)) (T -914)) +((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 (-1147))) (-5 *3 (-1147)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *1 (-914 *5))))) +(-10 -7 (-15 -3124 ((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))))) +((-3125 (((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) 33)) (-3124 (((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) 32))) +(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-15 -3125 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))))) (-1072) (-13 (-1023) (-825)) (-13 (-1023) (-596 (-864 |#1|)) (-1012 |#2|))) (T -915)) +((-3125 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-864 *6))) (-5 *5 (-1 (-862 *6 *8) *8 (-864 *6) (-862 *6 *8))) (-4 *6 (-1072)) (-4 *8 (-13 (-1023) (-596 (-864 *6)) (-1012 *7))) (-5 *2 (-862 *6 *8)) (-4 *7 (-13 (-1023) (-825))) (-5 *1 (-915 *6 *7 *8)))) (-3124 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-620 (-864 *7))) (-5 *5 (-1 *9 (-620 *9))) (-5 *6 (-1 (-862 *7 *9) *9 (-864 *7) (-862 *7 *9))) (-4 *7 (-1072)) (-4 *9 (-13 (-1023) (-596 (-864 *7)) (-1012 *8))) (-5 *2 (-862 *7 *9)) (-5 *3 (-620 *9)) (-4 *8 (-13 (-1023) (-825))) (-5 *1 (-915 *7 *8 *9))))) +(-10 -7 (-15 -3124 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-15 -3125 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))))) +((-3133 (((-1141 (-400 (-536))) (-536)) 63)) (-3132 (((-1141 (-536)) (-536)) 66)) (-3688 (((-1141 (-536)) (-536)) 60)) (-3131 (((-536) (-1141 (-536))) 55)) (-3130 (((-1141 (-400 (-536))) (-536)) 49)) (-3129 (((-1141 (-536)) (-536)) 38)) (-3128 (((-1141 (-536)) (-536)) 68)) (-3127 (((-1141 (-536)) (-536)) 67)) (-3126 (((-1141 (-400 (-536))) (-536)) 51))) +(((-916) (-10 -7 (-15 -3126 ((-1141 (-400 (-536))) (-536))) (-15 -3127 ((-1141 (-536)) (-536))) (-15 -3128 ((-1141 (-536)) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -3130 ((-1141 (-400 (-536))) (-536))) (-15 -3131 ((-536) (-1141 (-536)))) (-15 -3688 ((-1141 (-536)) (-536))) (-15 -3132 ((-1141 (-536)) (-536))) (-15 -3133 ((-1141 (-400 (-536))) (-536))))) (T -916)) +((-3133 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-536)) (-5 *1 (-916)))) (-3130 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3128 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3127 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3126 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) +(-10 -7 (-15 -3126 ((-1141 (-400 (-536))) (-536))) (-15 -3127 ((-1141 (-536)) (-536))) (-15 -3128 ((-1141 (-536)) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -3130 ((-1141 (-400 (-536))) (-536))) (-15 -3131 ((-536) (-1141 (-536)))) (-15 -3688 ((-1141 (-536)) (-536))) (-15 -3132 ((-1141 (-536)) (-536))) (-15 -3133 ((-1141 (-400 (-536))) (-536)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 11 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-4064 (($ (-620 |#1|)) 13)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 8)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 10 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-4123 (($ $ (-620 |#1|)) 26)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 20) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-4266 (((-893) $) 16)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) 24)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525)))) (($ (-620 |#1|)) 17)) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) 14 (|has| $ (-6 -4348))))) +(((-917 |#1|) (-954 |#1|) (-1023)) (T -917)) NIL (-954 |#1|) -((-4086 (((-473 |#1| |#2|) (-926 |#2|)) 20)) (-1862 (((-241 |#1| |#2|) (-926 |#2|)) 33)) (-2425 (((-926 |#2|) (-473 |#1| |#2|)) 25)) (-2379 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-1991 (((-926 |#2|) (-241 |#1| |#2|)) 30)) (-2121 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46))) -(((-918 |#1| |#2|) (-10 -7 (-15 -2121 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2379 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -4086 ((-473 |#1| |#2|) (-926 |#2|))) (-15 -2425 ((-926 |#2|) (-473 |#1| |#2|))) (-15 -1991 ((-926 |#2|) (-241 |#1| |#2|))) (-15 -1862 ((-241 |#1| |#2|) (-926 |#2|)))) (-623 (-1145)) (-1021)) (T -918)) -((-1862 (*1 *2 *3) (-12 (-5 *3 (-926 *5)) (-4 *5 (-1021)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-623 (-1145))))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) (-5 *2 (-926 *5)) (-5 *1 (-918 *4 *5)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) (-5 *2 (-926 *5)) (-5 *1 (-918 *4 *5)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-926 *5)) (-4 *5 (-1021)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-623 (-1145))))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) -(-10 -7 (-15 -2121 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2379 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -4086 ((-473 |#1| |#2|) (-926 |#2|))) (-15 -2425 ((-926 |#2|) (-473 |#1| |#2|))) (-15 -1991 ((-926 |#2|) (-241 |#1| |#2|))) (-15 -1862 ((-241 |#1| |#2|) (-926 |#2|)))) -((-4288 (((-623 |#2|) |#2| |#2|) 10)) (-1601 (((-749) (-623 |#1|)) 37 (|has| |#1| (-823)))) (-3233 (((-623 |#2|) |#2|) 11)) (-2683 (((-749) (-623 |#1|) (-550) (-550)) 39 (|has| |#1| (-823)))) (-2152 ((|#1| |#2|) 32 (|has| |#1| (-823))))) -(((-919 |#1| |#2|) (-10 -7 (-15 -4288 ((-623 |#2|) |#2| |#2|)) (-15 -3233 ((-623 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -2152 (|#1| |#2|)) (-15 -1601 ((-749) (-623 |#1|))) (-15 -2683 ((-749) (-623 |#1|) (-550) (-550)))) |%noBranch|)) (-356) (-1204 |#1|)) (T -919)) -((-2683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-550)) (-4 *5 (-823)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1204 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1204 *4)))) (-2152 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) (-4 *3 (-1204 *2)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1204 *4)))) (-4288 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -4288 ((-623 |#2|) |#2| |#2|)) (-15 -3233 ((-623 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -2152 (|#1| |#2|)) (-15 -1601 ((-749) (-623 |#1|))) (-15 -2683 ((-749) (-623 |#1|) (-550) (-550)))) |%noBranch|)) -((-2392 (((-926 |#2|) (-1 |#2| |#1|) (-926 |#1|)) 19))) -(((-920 |#1| |#2|) (-10 -7 (-15 -2392 ((-926 |#2|) (-1 |#2| |#1|) (-926 |#1|)))) (-1021) (-1021)) (T -920)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-926 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-5 *2 (-926 *6)) (-5 *1 (-920 *5 *6))))) -(-10 -7 (-15 -2392 ((-926 |#2|) (-1 |#2| |#1|) (-926 |#1|)))) -((-1705 (((-1201 |#1| (-926 |#2|)) (-926 |#2|) (-1224 |#1|)) 18))) -(((-921 |#1| |#2|) (-10 -7 (-15 -1705 ((-1201 |#1| (-926 |#2|)) (-926 |#2|) (-1224 |#1|)))) (-1145) (-1021)) (T -921)) -((-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-1224 *5)) (-14 *5 (-1145)) (-4 *6 (-1021)) (-5 *2 (-1201 *5 (-926 *6))) (-5 *1 (-921 *5 *6)) (-5 *3 (-926 *6))))) -(-10 -7 (-15 -1705 ((-1201 |#1| (-926 |#2|)) (-926 |#2|) (-1224 |#1|)))) -((-2457 (((-749) $) 71) (((-749) $ (-623 |#4|)) 74)) (-2318 (($ $) 173)) (-2207 (((-411 $) $) 165)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 116)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) 59)) (-1792 (($ $ $ |#4|) 76)) (-3756 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 106) (((-667 |#2|) (-667 $)) 99)) (-2731 (($ $) 180) (($ $ |#4|) 183)) (-1683 (((-623 $) $) 63)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 199) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 192)) (-2336 (((-623 $) $) 28)) (-1488 (($ |#2| |#3|) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-623 |#4|) (-623 (-749))) 57)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#4|) 162)) (-3833 (((-3 (-623 $) "failed") $) 42)) (-3017 (((-3 (-623 $) "failed") $) 31)) (-2891 (((-3 (-2 (|:| |var| |#4|) (|:| -3068 (-749))) "failed") $) 47)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 109)) (-3348 (((-411 (-1141 $)) (-1141 $)) 122)) (-2182 (((-411 (-1141 $)) (-1141 $)) 120)) (-1735 (((-411 $) $) 140)) (-1553 (($ $ (-623 (-287 $))) 21) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-623 |#4|) (-623 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-623 |#4|) (-623 $)) NIL)) (-3563 (($ $ |#4|) 78)) (-2451 (((-866 (-372)) $) 213) (((-866 (-550)) $) 206) (((-526) $) 221)) (-1622 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 154)) (-1708 ((|#2| $ |#3|) NIL) (($ $ |#4| (-749)) 52) (($ $ (-623 |#4|) (-623 (-749))) 55)) (-1613 (((-3 $ "failed") $) 156)) (-2290 (((-112) $ $) 186))) -(((-922 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -2897 ((-3 (-1228 |#1|) "failed") (-667 |#1|))) (-15 -2731 (|#1| |#1| |#4|)) (-15 -1622 (|#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#4|)) (-15 -1792 (|#1| |#1| |#1| |#4|)) (-15 -1683 ((-623 |#1|) |#1|)) (-15 -2457 ((-749) |#1| (-623 |#4|))) (-15 -2457 ((-749) |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| |#4|) (|:| -3068 (-749))) "failed") |#1|)) (-15 -3833 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3017 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1488 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -1488 (|#1| |#1| |#4| (-749))) (-15 -1766 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -2336 ((-623 |#1|) |#1|)) (-15 -1708 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -1708 (|#1| |#1| |#4| (-749))) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#4| |#1|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#4| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#4| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1488 (|#1| |#2| |#3|)) (-15 -1708 (|#2| |#1| |#3|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -2731 (|#1| |#1|))) (-923 |#2| |#3| |#4|) (-1021) (-771) (-825)) (T -922)) -NIL -(-10 -8 (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1613 ((-3 |#1| "failed") |#1|)) (-15 -2290 ((-112) |#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -2897 ((-3 (-1228 |#1|) "failed") (-667 |#1|))) (-15 -2731 (|#1| |#1| |#4|)) (-15 -1622 (|#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#4|)) (-15 -1792 (|#1| |#1| |#1| |#4|)) (-15 -1683 ((-623 |#1|) |#1|)) (-15 -2457 ((-749) |#1| (-623 |#4|))) (-15 -2457 ((-749) |#1|)) (-15 -2891 ((-3 (-2 (|:| |var| |#4|) (|:| -3068 (-749))) "failed") |#1|)) (-15 -3833 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3017 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1488 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -1488 (|#1| |#1| |#4| (-749))) (-15 -1766 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -2336 ((-623 |#1|) |#1|)) (-15 -1708 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -1708 (|#1| |#1| |#4| (-749))) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#4| |#1|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#4| |#1|)) (-15 -1553 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -1553 (|#1| |#1| |#4| |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1488 (|#1| |#2| |#3|)) (-15 -1708 (|#2| |#1| |#3|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -2731 (|#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 |#3|) $) 108)) (-1705 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-3050 (($ $) 86 (|has| |#1| (-542)))) (-3953 (((-112) $) 88 (|has| |#1| (-542)))) (-2457 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-883)))) (-2318 (($ $) 96 (|has| |#1| (-444)))) (-2207 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-883)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1012 (-550)))) (((-3 |#3| "failed") $) 134)) (-2202 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1012 (-550)))) ((|#3| $) 133)) (-1792 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-1693 (($ $) 152)) (-3756 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1537 (((-3 $ "failed") $) 32)) (-2731 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-1683 (((-623 $) $) 107)) (-1568 (((-112) $) 94 (|has| |#1| (-883)))) (-3401 (($ $ |#1| |#2| $) 170)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 82 (-12 (|has| |#3| (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 81 (-12 (|has| |#3| (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2419 (((-112) $) 30)) (-3324 (((-749) $) 167)) (-1501 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-2336 (((-623 $) $) 124)) (-3438 (((-112) $) 150)) (-1488 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#3|) 118)) (-3346 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2793 (($ $ $) 77 (|has| |#1| (-825)))) (-2173 (($ $ $) 76 (|has| |#1| (-825)))) (-2863 (($ (-1 |#2| |#2|) $) 169)) (-2392 (($ (-1 |#1| |#1|) $) 149)) (-4059 (((-3 |#3| "failed") $) 121)) (-1657 (($ $) 147)) (-1670 ((|#1| $) 146)) (-3231 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2369 (((-1127) $) 9)) (-3833 (((-3 (-623 $) "failed") $) 112)) (-3017 (((-3 (-623 $) "failed") $) 113)) (-2891 (((-3 (-2 (|:| |var| |#3|) (|:| -3068 (-749))) "failed") $) 111)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 164)) (-1639 ((|#1| $) 165)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3260 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 97 (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136)) (-3563 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2798 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37)) (-3661 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127)) (-2451 (((-866 (-372)) $) 80 (-12 (|has| |#3| (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) 79 (-12 (|has| |#3| (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 102 (-1304 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-542))) (($ (-400 (-550))) 70 (-1489 (|has| |#1| (-1012 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550))))))) (-2969 (((-623 |#1|) $) 166)) (-1708 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-1613 (((-3 $ "failed") $) 71 (-1489 (-1304 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 28)) (-3895 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33)) (-2324 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-923 |#1| |#2| |#3|) (-138) (-1021) (-771) (-825)) (T -923)) -((-2731 (*1 *1 *1) (-12 (-4 *1 (-923 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) (-1708 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-923 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *2 (-825)))) (-1708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) (-1705 (*1 *2 *1 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) (-4 *1 (-923 *4 *5 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *3)))) (-4059 (*1 *2 *1) (|partial| -12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3346 (*1 *2 *1 *3) (-12 (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) (-1766 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-923 *4 *5 *3)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-923 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *2 (-825)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)))) (-1501 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1021)) (-4 *1 (-923 *4 *5 *3)) (-4 *5 (-771)) (-4 *3 (-825)))) (-1501 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3017 (*1 *2 *1) (|partial| -12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) (-3833 (*1 *2 *1) (|partial| -12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) (-2891 (*1 *2 *1) (|partial| -12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -3068 (-749)))))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-2457 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *5)))) (-1683 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) (-1792 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-3563 (*1 *1 *1 *2) (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-1622 (*1 *1 *1 *2) (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-2318 (*1 *1 *1) (-12 (-4 *1 (-923 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2207 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-411 *1)) (-4 *1 (-923 *3 *4 *5))))) -(-13 (-874 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1012 |t#3|) (-370 |t#1|) (-10 -8 (-15 -3661 ((-749) $ |t#3|)) (-15 -3661 ((-623 (-749)) $ (-623 |t#3|))) (-15 -1708 ($ $ |t#3| (-749))) (-15 -1708 ($ $ (-623 |t#3|) (-623 (-749)))) (-15 -2336 ((-623 $) $)) (-15 -1705 ((-1141 $) $ |t#3|)) (-15 -1705 ((-1141 |t#1|) $)) (-15 -4059 ((-3 |t#3| "failed") $)) (-15 -3346 ((-749) $ |t#3|)) (-15 -3346 ((-623 (-749)) $ (-623 |t#3|))) (-15 -1766 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |t#3|)) (-15 -1488 ($ $ |t#3| (-749))) (-15 -1488 ($ $ (-623 |t#3|) (-623 (-749)))) (-15 -1501 ($ (-1141 |t#1|) |t#3|)) (-15 -1501 ($ (-1141 $) |t#3|)) (-15 -3017 ((-3 (-623 $) "failed") $)) (-15 -3833 ((-3 (-623 $) "failed") $)) (-15 -2891 ((-3 (-2 (|:| |var| |t#3|) (|:| -3068 (-749))) "failed") $)) (-15 -2457 ((-749) $)) (-15 -2457 ((-749) $ (-623 |t#3|))) (-15 -1516 ((-623 |t#3|) $)) (-15 -1683 ((-623 $) $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (IF (|has| |t#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-866 (-550)))) (IF (|has| |t#3| (-596 (-866 (-550)))) (-6 (-596 (-866 (-550)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-866 (-372)))) (IF (|has| |t#3| (-596 (-866 (-372)))) (-6 (-596 (-866 (-372)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-550))) (IF (|has| |t#3| (-860 (-550))) (-6 (-860 (-550))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-372))) (IF (|has| |t#3| (-860 (-372))) (-6 (-860 (-372))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -1792 ($ $ $ |t#3|)) (-15 -3563 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -1622 ($ $ |t#3|)) (-15 -2731 ($ $)) (-15 -2731 ($ $ |t#3|)) (-15 -2207 ((-411 $) $)) (-15 -2318 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4342)) (-6 -4342) |%noBranch|) (IF (|has| |t#1| (-883)) (-6 (-883)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#3| (-596 (-866 (-372))))) ((-596 (-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#3| (-596 (-866 (-550))))) ((-283) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-883)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#3| (-860 (-372)))) ((-860 (-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#3| (-860 (-550)))) ((-883) |has| |#1| (-883)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) |has| |#1| (-883))) -((-1516 (((-623 |#2|) |#5|) 36)) (-1705 (((-1141 |#5|) |#5| |#2| (-1141 |#5|)) 23) (((-400 (-1141 |#5|)) |#5| |#2|) 16)) (-1501 ((|#5| (-400 (-1141 |#5|)) |#2|) 30)) (-4059 (((-3 |#2| "failed") |#5|) 65)) (-3833 (((-3 (-623 |#5|) "failed") |#5|) 59)) (-1795 (((-3 (-2 (|:| |val| |#5|) (|:| -3068 (-550))) "failed") |#5|) 47)) (-3017 (((-3 (-623 |#5|) "failed") |#5|) 61)) (-2891 (((-3 (-2 (|:| |var| |#2|) (|:| -3068 (-550))) "failed") |#5|) 51))) -(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1516 ((-623 |#2|) |#5|)) (-15 -4059 ((-3 |#2| "failed") |#5|)) (-15 -1705 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -1501 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -1705 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3017 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -3833 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -2891 ((-3 (-2 (|:| |var| |#2|) (|:| -3068 (-550))) "failed") |#5|)) (-15 -1795 ((-3 (-2 (|:| |val| |#5|) (|:| -3068 (-550))) "failed") |#5|))) (-771) (-825) (-1021) (-923 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -2233 ($ |#4|)) (-15 -4153 (|#4| $)) (-15 -4163 (|#4| $))))) (T -924)) -((-1795 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3068 (-550)))) (-5 *1 (-924 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) (-2891 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3068 (-550)))) (-5 *1 (-924 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) (-3833 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *3)) (-5 *1 (-924 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) (-3017 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *3)) (-5 *1 (-924 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) (-1705 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))) (-4 *7 (-923 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1021)) (-5 *1 (-924 *5 *4 *6 *7 *3)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1021)) (-4 *2 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))) (-5 *1 (-924 *5 *4 *6 *7 *2)) (-4 *7 (-923 *6 *5 *4)))) (-1705 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-400 (-1141 *3))) (-5 *1 (-924 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) (-4059 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1021)) (-4 *6 (-923 *5 *4 *2)) (-4 *2 (-825)) (-5 *1 (-924 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *6)) (-15 -4153 (*6 $)) (-15 -4163 (*6 $))))))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *5)) (-5 *1 (-924 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $)))))))) -(-10 -7 (-15 -1516 ((-623 |#2|) |#5|)) (-15 -4059 ((-3 |#2| "failed") |#5|)) (-15 -1705 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -1501 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -1705 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3017 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -3833 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -2891 ((-3 (-2 (|:| |var| |#2|) (|:| -3068 (-550))) "failed") |#5|)) (-15 -1795 ((-3 (-2 (|:| |val| |#5|) (|:| -3068 (-550))) "failed") |#5|))) -((-2392 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2392 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-771) (-825) (-1021) (-923 |#3| |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (T -925)) -((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1021)) (-4 *6 (-771)) (-4 *2 (-13 (-1069) (-10 -8 (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (-5 *1 (-925 *6 *7 *8 *5 *2)) (-4 *5 (-923 *8 *6 *7))))) -(-10 -7 (-15 -2392 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1145)) $) 16)) (-1705 (((-1141 $) $ (-1145)) 21) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1145))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 8) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-1145) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-1145) $) NIL)) (-1792 (($ $ $ (-1145)) NIL (|has| |#1| (-170)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1145)) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-522 (-1145)) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1145) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1145) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#1|) (-1145)) NIL) (($ (-1141 $) (-1145)) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-522 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1145)) NIL)) (-3346 (((-522 (-1145)) $) NIL) (((-749) $ (-1145)) NIL) (((-623 (-749)) $ (-623 (-1145))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 (-1145)) (-522 (-1145))) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-4059 (((-3 (-1145) "failed") $) 19)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1145)) (|:| -3068 (-749))) "failed") $) NIL)) (-2149 (($ $ (-1145)) 29 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1145) |#1|) NIL) (($ $ (-623 (-1145)) (-623 |#1|)) NIL) (($ $ (-1145) $) NIL) (($ $ (-623 (-1145)) (-623 $)) NIL)) (-3563 (($ $ (-1145)) NIL (|has| |#1| (-170)))) (-2798 (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-3661 (((-522 (-1145)) $) NIL) (((-749) $ (-1145)) NIL) (((-623 (-749)) $ (-623 (-1145))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1145) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1145) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1145) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1145)) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 25) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1145)) 27) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-522 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-926 |#1|) (-13 (-923 |#1| (-522 (-1145)) (-1145)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1145))) |%noBranch|))) (-1021)) (T -926)) -((-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-926 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021))))) -(-13 (-923 |#1| (-522 (-1145)) (-1145)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1145))) |%noBranch|))) -((-3830 (((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#3| (-749)) 38)) (-2544 (((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749)) 34)) (-3272 (((-2 (|:| -3068 (-749)) (|:| -4304 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)) 54)) (-1365 (((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#5| (-749)) 64 (|has| |#3| (-444))))) -(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3830 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -2544 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749))) (IF (|has| |#3| (-444)) (-15 -1365 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3272 ((-2 (|:| -3068 (-749)) (|:| -4304 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)))) (-771) (-825) (-542) (-923 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -4153 (|#4| $)) (-15 -4163 (|#4| $)) (-15 -2233 ($ |#4|))))) (T -927)) -((-3272 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *3 (-923 *7 *5 *6)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| (-623 *3)))) (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -4153 (*3 $)) (-15 -4163 (*3 $)) (-15 -2233 ($ *3))))))) (-1365 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *8 (-923 *7 *5 *6)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| *3))) (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4153 (*8 $)) (-15 -4163 (*8 $)) (-15 -2233 ($ *8))))))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-550))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *8 (-923 *7 *5 *6)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *9) (|:| |radicand| *9))) (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) (-4 *9 (-13 (-356) (-10 -8 (-15 -4153 (*8 $)) (-15 -4163 (*8 $)) (-15 -2233 ($ *8))))))) (-3830 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-542)) (-4 *7 (-923 *3 *5 *6)) (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *8) (|:| |radicand| *8))) (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -4153 (*7 $)) (-15 -4163 (*7 $)) (-15 -2233 ($ *7)))))))) -(-10 -7 (-15 -3830 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -2544 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749))) (IF (|has| |#3| (-444)) (-15 -1365 ((-2 (|:| -3068 (-749)) (|:| -4304 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3272 ((-2 (|:| -3068 (-749)) (|:| -4304 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)))) -((-2221 (((-112) $ $) NIL)) (-4198 (($ (-1089)) 8)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 14) (((-1089) $) 11)) (-2264 (((-112) $ $) 10))) -(((-928) (-13 (-1069) (-595 (-1089)) (-10 -8 (-15 -4198 ($ (-1089)))))) (T -928)) -((-4198 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-928))))) -(-13 (-1069) (-595 (-1089)) (-10 -8 (-15 -4198 ($ (-1089))))) -((-3291 (((-1063 (-219)) $) 8)) (-3282 (((-1063 (-219)) $) 9)) (-2348 (((-623 (-623 (-917 (-219)))) $) 10)) (-2233 (((-837) $) 6))) +((-3136 (((-473 |#1| |#2|) (-920 |#2|)) 20)) (-3139 (((-241 |#1| |#2|) (-920 |#2|)) 33)) (-3137 (((-920 |#2|) (-473 |#1| |#2|)) 25)) (-3135 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-3138 (((-920 |#2|) (-241 |#1| |#2|)) 30)) (-3134 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46))) +(((-918 |#1| |#2|) (-10 -7 (-15 -3134 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3135 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3136 ((-473 |#1| |#2|) (-920 |#2|))) (-15 -3137 ((-920 |#2|) (-473 |#1| |#2|))) (-15 -3138 ((-920 |#2|) (-241 |#1| |#2|))) (-15 -3139 ((-241 |#1| |#2|) (-920 |#2|)))) (-620 (-1147)) (-1023)) (T -918)) +((-3139 (*1 *2 *3) (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147))))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147))))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) +(-10 -7 (-15 -3134 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3135 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3136 ((-473 |#1| |#2|) (-920 |#2|))) (-15 -3137 ((-920 |#2|) (-473 |#1| |#2|))) (-15 -3138 ((-920 |#2|) (-241 |#1| |#2|))) (-15 -3139 ((-241 |#1| |#2|) (-920 |#2|)))) +((-3140 (((-620 |#2|) |#2| |#2|) 10)) (-3143 (((-749) (-620 |#1|)) 37 (|has| |#1| (-823)))) (-3141 (((-620 |#2|) |#2|) 11)) (-3144 (((-749) (-620 |#1|) (-536) (-536)) 39 (|has| |#1| (-823)))) (-3142 ((|#1| |#2|) 32 (|has| |#1| (-823))))) +(((-919 |#1| |#2|) (-10 -7 (-15 -3140 ((-620 |#2|) |#2| |#2|)) (-15 -3141 ((-620 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -3142 (|#1| |#2|)) (-15 -3143 ((-749) (-620 |#1|))) (-15 -3144 ((-749) (-620 |#1|) (-536) (-536)))) |%noBranch|)) (-356) (-1205 |#1|)) (T -919)) +((-3144 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-536)) (-4 *5 (-823)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1205 *5)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1205 *4)))) (-3142 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) (-4 *3 (-1205 *2)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1205 *4)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -3140 ((-620 |#2|) |#2| |#2|)) (-15 -3141 ((-620 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -3142 (|#1| |#2|)) (-15 -3143 ((-749) (-620 |#1|))) (-15 -3144 ((-749) (-620 |#1|) (-536) (-536)))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) 16)) (-3414 (((-1141 $) $ (-1147)) 21) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1147))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 8) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1147) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1147) $) NIL)) (-4111 (($ $ $ (-1147)) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1147)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-1147)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1147) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1147) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-1147)) NIL) (($ (-1141 $) (-1147)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1147)) NIL)) (-3148 (((-522 (-1147)) $) NIL) (((-749) $ (-1147)) NIL) (((-620 (-749)) $ (-620 (-1147))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-1147)) (-522 (-1147))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3413 (((-3 (-1147) #3="failed") $) 19)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1147)) (|:| -2488 (-749))) #3#) $) NIL)) (-4167 (($ $ (-1147)) 29 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1147) |#1|) NIL) (($ $ (-620 (-1147)) (-620 |#1|)) NIL) (($ $ (-1147) $) NIL) (($ $ (-620 (-1147)) (-620 $)) NIL)) (-4112 (($ $ (-1147)) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4302 (((-522 (-1147)) $) NIL) (((-749) $ (-1147)) NIL) (((-620 (-749)) $ (-620 (-1147))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1147) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1147) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1147) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1147)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 25) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1147)) 27) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-920 |#1|) (-13 (-924 |#1| (-522 (-1147)) (-1147)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1147))) |%noBranch|))) (-1023)) (T -920)) +((-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-920 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023))))) +(-13 (-924 |#1| (-522 (-1147)) (-1147)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1147))) |%noBranch|))) +((-4313 (((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)) 19))) +(((-921 |#1| |#2|) (-10 -7 (-15 -4313 ((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)))) (-1023) (-1023)) (T -921)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-920 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-920 *6)) (-5 *1 (-921 *5 *6))))) +(-10 -7 (-15 -4313 ((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)))) +((-3414 (((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)) 18))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3414 ((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)))) (-1147) (-1023)) (T -922)) +((-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1226 *5)) (-14 *5 (-1147)) (-4 *6 (-1023)) (-5 *2 (-1198 *5 (-920 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-920 *6))))) +(-10 -7 (-15 -3414 ((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)))) +((-3147 (((-749) $) 71) (((-749) $ (-620 |#4|)) 74)) (-4129 (($ $) 173)) (-4324 (((-398 $) $) 165)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 116)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL) (((-3 (-536) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL) ((|#4| $) 59)) (-4111 (($ $ $ |#4|) 76)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 106) (((-667 |#2|) (-667 $)) 99)) (-3852 (($ $) 180) (($ $ |#4|) 183)) (-3146 (((-620 $) $) 63)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 199) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 192)) (-3149 (((-620 $) $) 28)) (-3221 (($ |#2| |#3|) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-620 |#4|) (-620 (-749))) 57)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#4|) 162)) (-3151 (((-3 (-620 $) "failed") $) 42)) (-3150 (((-3 (-620 $) "failed") $) 31)) (-3152 (((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") $) 47)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 109)) (-3033 (((-398 (-1141 $)) (-1141 $)) 122)) (-3034 (((-398 (-1141 $)) (-1141 $)) 120)) (-4087 (((-398 $) $) 140)) (-4122 (($ $ (-620 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-620 |#4|) (-620 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-620 |#4|) (-620 $)) NIL)) (-4112 (($ $ |#4|) 78)) (-4325 (((-864 (-371)) $) 213) (((-864 (-536)) $) 206) (((-525) $) 221)) (-3145 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 154)) (-4035 ((|#2| $ |#3|) NIL) (($ $ |#4| (-749)) 52) (($ $ (-620 |#4|) (-620 (-749))) 55)) (-3030 (((-3 $ #1#) $) 156)) (-3013 (((-112) $ $) 186))) +(((-923 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -3030 ((-3 |#1| #1="failed") |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) #1#) (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3031 ((-3 (-1229 |#1|) #1#) (-667 |#1|))) (-15 -3852 (|#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#4|)) (-15 -4112 (|#1| |#1| |#4|)) (-15 -4111 (|#1| |#1| |#1| |#4|)) (-15 -3146 ((-620 |#1|) |#1|)) (-15 -3147 ((-749) |#1| (-620 |#4|))) (-15 -3147 ((-749) |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3221 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -3221 (|#1| |#1| |#4| (-749))) (-15 -4117 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3149 ((-620 |#1|) |#1|)) (-15 -4035 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4035 (|#1| |#1| |#4| (-749))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #2="failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4035 (|#2| |#1| |#3|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #2#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #2#) |#1|)) (-15 -3503 ((-3 |#2| #2#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3852 (|#1| |#1|))) (-924 |#2| |#3| |#4|) (-1023) (-771) (-825)) (T -923)) +NIL +(-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -3030 ((-3 |#1| #1="failed") |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) #1#) (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3031 ((-3 (-1229 |#1|) #1#) (-667 |#1|))) (-15 -3852 (|#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#4|)) (-15 -4112 (|#1| |#1| |#4|)) (-15 -4111 (|#1| |#1| |#1| |#4|)) (-15 -3146 ((-620 |#1|) |#1|)) (-15 -3147 ((-749) |#1| (-620 |#4|))) (-15 -3147 ((-749) |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3221 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -3221 (|#1| |#1| |#4| (-749))) (-15 -4117 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3149 ((-620 |#1|) |#1|)) (-15 -4035 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4035 (|#1| |#1| |#4| (-749))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #2="failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4035 (|#2| |#1| |#3|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #2#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #2#) |#1|)) (-15 -3503 ((-3 |#2| #2#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3852 (|#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133)) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| |#2| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3148 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-3413 (((-3 |#3| "failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-3151 (((-3 (-620 $) "failed") $) 112)) (-3150 (((-3 (-620 $) "failed") $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) "failed") $) 111)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136)) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37)) (-4302 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-543))) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ "failed") $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-924 |#1| |#2| |#3|) (-138) (-1023) (-771) (-825)) (T -924)) +((-3852 (*1 *1 *1) (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-4302 (*1 *2 *1 *3) (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-749))))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *2 (-825)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3414 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *3)))) (-3413 (*1 *2 *1) (|partial| -12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3148 (*1 *2 *1 *3) (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-749))))) (-4117 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-924 *4 *5 *3)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) (-3415 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1023)) (-4 *1 (-924 *4 *5 *3)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3415 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3150 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3151 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3152 (*1 *2 *1) (|partial| -12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-749)))))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-3147 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *5)))) (-3146 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-4111 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4112 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-3145 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-3852 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-4324 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-398 *1)) (-4 *1 (-924 *3 *4 *5))))) +(-13 (-874 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1012 |t#3|) (-370 |t#1|) (-10 -8 (-15 -4302 ((-749) $ |t#3|)) (-15 -4302 ((-620 (-749)) $ (-620 |t#3|))) (-15 -4035 ($ $ |t#3| (-749))) (-15 -4035 ($ $ (-620 |t#3|) (-620 (-749)))) (-15 -3149 ((-620 $) $)) (-15 -3414 ((-1141 $) $ |t#3|)) (-15 -3414 ((-1141 |t#1|) $)) (-15 -3413 ((-3 |t#3| "failed") $)) (-15 -3148 ((-749) $ |t#3|)) (-15 -3148 ((-620 (-749)) $ (-620 |t#3|))) (-15 -4117 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |t#3|)) (-15 -3221 ($ $ |t#3| (-749))) (-15 -3221 ($ $ (-620 |t#3|) (-620 (-749)))) (-15 -3415 ($ (-1141 |t#1|) |t#3|)) (-15 -3415 ($ (-1141 $) |t#3|)) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |var| |t#3|) (|:| -2488 (-749))) "failed") $)) (-15 -3147 ((-749) $)) (-15 -3147 ((-749) $ (-620 |t#3|))) (-15 -3412 ((-620 |t#3|) $)) (-15 -3146 ((-620 $) $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (IF (|has| |t#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-536)))) (IF (|has| |t#3| (-596 (-864 (-536)))) (-6 (-596 (-864 (-536)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-371)))) (IF (|has| |t#3| (-596 (-864 (-371)))) (-6 (-596 (-864 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-536))) (IF (|has| |t#3| (-860 (-536))) (-6 (-860 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-371))) (IF (|has| |t#3| (-860 (-371))) (-6 (-860 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4111 ($ $ $ |t#3|)) (-15 -4112 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -3145 ($ $ |t#3|)) (-15 -3852 ($ $)) (-15 -3852 ($ $ |t#3|)) (-15 -4324 ((-398 $) $)) (-15 -4129 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |t#1| (-884)) (-6 (-884)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) +((-3412 (((-620 |#2|) |#5|) 36)) (-3414 (((-1141 |#5|) |#5| |#2| (-1141 |#5|)) 23) (((-400 (-1141 |#5|)) |#5| |#2|) 16)) (-3415 ((|#5| (-400 (-1141 |#5|)) |#2|) 30)) (-3413 (((-3 |#2| "failed") |#5|) 65)) (-3151 (((-3 (-620 |#5|) "failed") |#5|) 59)) (-3153 (((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|) 47)) (-3150 (((-3 (-620 |#5|) "failed") |#5|) 61)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|) 51))) +(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3412 ((-620 |#2|) |#5|)) (-15 -3413 ((-3 |#2| "failed") |#5|)) (-15 -3414 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -3415 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -3414 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3150 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3151 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|)) (-15 -3153 ((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -4312 ($ |#4|)) (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $))))) (T -925)) +((-3153 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2488 (-536)))) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3152 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-536)))) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3151 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3150 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3414 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) (-4 *7 (-924 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-5 *1 (-925 *5 *4 *6 *7 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *2 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) (-5 *1 (-925 *5 *4 *6 *7 *2)) (-4 *7 (-924 *6 *5 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-400 (-1141 *3))) (-5 *1 (-925 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3413 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1023)) (-4 *6 (-924 *5 *4 *2)) (-4 *2 (-825)) (-5 *1 (-925 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *6)) (-15 -3326 (*6 $)) (-15 -3325 (*6 $))))))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *5)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) +(-10 -7 (-15 -3412 ((-620 |#2|) |#5|)) (-15 -3413 ((-3 |#2| "failed") |#5|)) (-15 -3414 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -3415 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -3414 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3150 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3151 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|)) (-15 -3153 ((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|))) +((-4313 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (T -926)) +((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) (-4 *6 (-771)) (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (-5 *1 (-926 *6 *7 *8 *5 *2)) (-4 *5 (-924 *8 *6 *7))))) +(-10 -7 (-15 -4313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3154 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749)) 38)) (-3155 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749)) 34)) (-3157 (((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)) 54)) (-3156 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749)) 64 (|has| |#3| (-444))))) +(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3154 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3155 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749))) (IF (|has| |#3| (-444)) (-15 -3156 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3157 ((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $)) (-15 -4312 ($ |#4|))))) (T -927)) +((-3157 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *3 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| (-620 *3)))) (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3326 (*3 $)) (-15 -3325 (*3 $)) (-15 -4312 ($ *3))))))) (-3156 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *8 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *3))) (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8))))))) (-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-536))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *8 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *9) (|:| |radicand| *9))) (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) (-4 *9 (-13 (-356) (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8))))))) (-3154 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-543)) (-4 *7 (-924 *3 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *8) (|:| |radicand| *8))) (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3326 (*7 $)) (-15 -3325 (*7 $)) (-15 -4312 ($ *7)))))))) +(-10 -7 (-15 -3154 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3155 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749))) (IF (|has| |#3| (-444)) (-15 -3156 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3157 ((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)))) +((-2893 (((-112) $ $) NIL)) (-3158 (($ (-1091)) 8)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14) (((-1091) $) 11)) (-3382 (((-112) $ $) 10))) +(((-928) (-13 (-1072) (-595 (-1091)) (-10 -8 (-15 -3158 ($ (-1091)))))) (T -928)) +((-3158 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-928))))) +(-13 (-1072) (-595 (-1091)) (-10 -8 (-15 -3158 ($ (-1091))))) +((-3224 (((-1060 (-219)) $) 8)) (-3225 (((-1060 (-219)) $) 9)) (-3226 (((-620 (-620 (-917 (-219)))) $) 10)) (-4312 (((-838) $) 6))) (((-929) (-138)) (T -929)) -((-2348 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-623 (-623 (-917 (-219))))))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1063 (-219))))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1063 (-219)))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2348 ((-623 (-623 (-917 (-219)))) $)) (-15 -3282 ((-1063 (-219)) $)) (-15 -3291 ((-1063 (-219)) $)))) -(((-595 (-837)) . T)) -((-1955 (((-3 (-667 |#1|) "failed") |#2| (-895)) 15))) -(((-930 |#1| |#2|) (-10 -7 (-15 -1955 ((-3 (-667 |#1|) "failed") |#2| (-895)))) (-542) (-634 |#1|)) (T -930)) -((-1955 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-895)) (-4 *5 (-542)) (-5 *2 (-667 *5)) (-5 *1 (-930 *5 *3)) (-4 *3 (-634 *5))))) -(-10 -7 (-15 -1955 ((-3 (-667 |#1|) "failed") |#2| (-895)))) -((-2304 (((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 16)) (-2924 ((|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 18)) (-2392 (((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)) 13))) -(((-931 |#1| |#2|) (-10 -7 (-15 -2304 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -2392 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) (-1182) (-1182)) (T -931)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-932 *6)) (-5 *1 (-931 *5 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-931 *5 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1182)) (-4 *5 (-1182)) (-5 *2 (-932 *5)) (-5 *1 (-931 *6 *5))))) -(-10 -7 (-15 -2304 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -2392 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) 16 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 15 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 13)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) |#1|) 12)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) 10 (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) 17 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) 11)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 14) (($ $ (-1195 (-550))) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) NIL)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3307 (((-749) $) 8 (|has| $ (-6 -4344))))) -(((-932 |#1|) (-19 |#1|) (-1182)) (T -932)) +((-3226 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-620 (-620 (-917 (-219))))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219)))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3226 ((-620 (-620 (-917 (-219)))) $)) (-15 -3225 ((-1060 (-219)) $)) (-15 -3224 ((-1060 (-219)) $)))) +(((-595 (-838)) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 61 (|has| |#1| (-543)))) (-2173 (($ $) 62 (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 28)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) 24)) (-3816 (((-3 $ "failed") $) 35)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 48)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 16)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3148 ((|#2| $) 19)) (-1717 (($ (-1 |#2| |#2|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3222 (($ $) 23)) (-3520 ((|#1| $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#1| $) NIL)) (-4093 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-543))))) (-3815 (((-3 $ "failed") $ $) 74 (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-543)))) (-4302 ((|#2| $) 17)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) 39) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 34) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ |#2|) 31)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 15)) (-1715 (($ $ $ (-749)) 57 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 67 (|has| |#1| (-543)))) (-2986 (($) 22 T CONST)) (-2992 (($) 12 T CONST)) (-3382 (((-112) $ $) 66)) (-4303 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 54) (($ $ (-749)) 52)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-930 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| |#2| (-130)) (-15 -4093 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023) (-770)) (T -930)) +((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-930 *3 *2)) (-4 *2 (-130)) (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *2 (-770))))) +(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| |#2| (-130)) (-15 -4093 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) +((-3159 (((-3 (-667 |#1|) "failed") |#2| (-893)) 15))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3159 ((-3 (-667 |#1|) "failed") |#2| (-893)))) (-543) (-636 |#1|)) (T -931)) +((-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-893)) (-4 *5 (-543)) (-5 *2 (-667 *5)) (-5 *1 (-931 *5 *3)) (-4 *3 (-636 *5))))) +(-10 -7 (-15 -3159 ((-3 (-667 |#1|) "failed") |#2| (-893)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 16 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 15 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 13)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 12)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 10 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 17 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 11)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 14) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 8 (|has| $ (-6 -4348))))) +(((-932 |#1|) (-19 |#1|) (-1183)) (T -932)) NIL (-19 |#1|) -((-1774 (($ $ (-1061 $)) 7) (($ $ (-1145)) 6))) -(((-933) (-138)) (T -933)) -((-1774 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-933)))) (-1774 (*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-1145))))) -(-13 (-10 -8 (-15 -1774 ($ $ (-1145))) (-15 -1774 ($ $ (-1061 $))))) -((-2664 (((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145)) (-1145)) 25) (((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145))) 26) (((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1141 |#1|))) (-926 |#1|) (-1145) (-926 |#1|) (-1145)) 43))) -(((-934 |#1|) (-10 -7 (-15 -2664 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1141 |#1|))) (-926 |#1|) (-1145) (-926 |#1|) (-1145))) (-15 -2664 ((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -2664 ((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145)) (-1145)))) (-13 (-356) (-145))) (T -934)) -((-2664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) (-5 *5 (-1145)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 *6))) (|:| |prim| (-1141 *6)))) (-5 *1 (-934 *6)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-934 *5)))) (-2664 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-926 *5)) (-5 *4 (-1145)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1141 *5)))) (-5 *1 (-934 *5))))) -(-10 -7 (-15 -2664 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1141 |#1|))) (-926 |#1|) (-1145) (-926 |#1|) (-1145))) (-15 -2664 ((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145)))) (-15 -2664 ((-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-623 (-926 |#1|)) (-623 (-1145)) (-1145)))) -((-3757 (((-623 |#1|) |#1| |#1|) 42)) (-1568 (((-112) |#1|) 39)) (-3402 ((|#1| |#1|) 65)) (-1468 ((|#1| |#1|) 64))) -(((-935 |#1|) (-10 -7 (-15 -1568 ((-112) |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -3757 ((-623 |#1|) |#1| |#1|))) (-535)) (T -935)) -((-3757 (*1 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-5 *1 (-935 *3)) (-4 *3 (-535)))) (-3402 (*1 *2 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-535)))) (-1468 (*1 *2 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-535)))) (-1568 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -1568 ((-112) |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -3757 ((-623 |#1|) |#1| |#1|))) -((-1990 (((-1233) (-837)) 9))) -(((-936) (-10 -7 (-15 -1990 ((-1233) (-837))))) (T -936)) -((-1990 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-936))))) -(-10 -7 (-15 -1990 ((-1233) (-837)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 61 (|has| |#1| (-542)))) (-3050 (($ $) 62 (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 28)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) 24)) (-1537 (((-3 $ "failed") $) 35)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-3401 (($ $ |#1| |#2| $) 48)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) 16)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| |#2|) NIL)) (-3346 ((|#2| $) 19)) (-2863 (($ (-1 |#2| |#2|) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1657 (($ $) 23)) (-1670 ((|#1| $) 21)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) 40)) (-1639 ((|#1| $) NIL)) (-2607 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-542))))) (-3409 (((-3 $ "failed") $ $) 74 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-542)))) (-3661 ((|#2| $) 17)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) 39) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 34) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ |#2|) 31)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) 15)) (-3895 (($ $ $ (-749)) 57 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 67 (|has| |#1| (-542)))) (-2688 (($) 22 T CONST)) (-2700 (($) 12 T CONST)) (-2264 (((-112) $ $) 66)) (-2382 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) 54) (($ $ (-749)) 52)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-937 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -2607 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) (-1021) (-770)) (T -937)) -((-2607 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-937 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *2 (-770))))) -(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -2607 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-4250 (($ $ $) 63 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (-1993 (((-3 $ "failed") $ $) 50 (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-3828 (((-749)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2166 ((|#2| $) 21)) (-1935 ((|#1| $) 20)) (-2991 (($) NIL (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-1537 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-1864 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2419 (((-112) $) NIL (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-2793 (($ $ $) NIL (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2173 (($ $ $) NIL (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3584 (($ |#1| |#2|) 19)) (-4073 (((-895) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3690 (($ (-895)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3445 (((-1089) $) NIL)) (-3018 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-1353 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2233 (((-837) $) 14)) (-2688 (($) 40 (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-2700 (($) 24 (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) CONST)) (-2324 (((-112) $ $) NIL (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2302 (((-112) $ $) NIL (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2264 (((-112) $ $) 18)) (-2313 (((-112) $ $) NIL (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2290 (((-112) $ $) 66 (-1489 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2382 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2370 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2358 (($ $ $) 43 (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (** (($ $ (-550)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-749)) 31 (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))) (($ $ (-895)) NIL (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (* (($ (-550) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-749) $) 46 (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ (-895) $) NIL (-1489 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ $ $) 27 (-1489 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))))) -(((-938 |#1| |#2|) (-13 (-1069) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3584 ($ |#1| |#2|)) (-15 -1935 (|#1| $)) (-15 -2166 (|#2| $)))) (-1069) (-1069)) (T -938)) -((-3584 (*1 *1 *2 *3) (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-1935 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1069)))) (-2166 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1069))))) -(-13 (-1069) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3584 ($ |#1| |#2|)) (-15 -1935 (|#1| $)) (-15 -2166 (|#2| $)))) -((-1337 (((-1073) $) 12)) (-2184 (($ (-1145) (-1073)) 13)) (-1856 (((-1145) $) 10)) (-2233 (((-837) $) 22))) -(((-939) (-13 (-595 (-837)) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -1337 ((-1073) $)) (-15 -2184 ($ (-1145) (-1073)))))) (T -939)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-939)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-939)))) (-2184 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1073)) (-5 *1 (-939))))) -(-13 (-595 (-837)) (-10 -8 (-15 -1856 ((-1145) $)) (-15 -1337 ((-1073) $)) (-15 -2184 ($ (-1145) (-1073))))) -((-2221 (((-112) $ $) NIL)) (-1516 (((-1071 (-1145)) $) 19)) (-3527 (((-112) $) 26)) (-2564 (((-1145) $) 27)) (-3962 (((-112) $) 24)) (-2155 ((|#1| $) 25)) (-2656 (((-847 $ $) $) 34)) (-2303 (((-112) $) 33)) (-3741 (($ $ $) 12)) (-1653 (($ $) 29)) (-3575 (((-112) $) 28)) (-3548 (($ $) 10)) (-2369 (((-1127) $) NIL)) (-1413 (((-847 $ $) $) 36)) (-4155 (((-112) $) 35)) (-3852 (($ $ $) 13)) (-3445 (((-1089) $) NIL)) (-3288 (((-847 $ $) $) 38)) (-3074 (((-112) $) 37)) (-2660 (($ $ $) 14)) (-2233 (((-837) $) 40) (($ |#1|) 7) (($ (-1145)) 9)) (-3862 (((-847 $ $) $) 32)) (-2972 (((-112) $) 30)) (-1304 (($ $ $) 11)) (-2264 (((-112) $ $) NIL))) -(((-940 |#1|) (-13 (-941) (-10 -8 (-15 -2233 ($ |#1|)) (-15 -2233 ($ (-1145))) (-15 -1516 ((-1071 (-1145)) $)) (-15 -3962 ((-112) $)) (-15 -2155 (|#1| $)) (-15 -3527 ((-112) $)) (-15 -2564 ((-1145) $)) (-15 -3575 ((-112) $)) (-15 -1653 ($ $)) (-15 -2972 ((-112) $)) (-15 -3862 ((-847 $ $) $)) (-15 -2303 ((-112) $)) (-15 -2656 ((-847 $ $) $)) (-15 -4155 ((-112) $)) (-15 -1413 ((-847 $ $) $)) (-15 -3074 ((-112) $)) (-15 -3288 ((-847 $ $) $)))) (-941)) (T -940)) -((-2233 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-1071 (-1145))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-2155 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-1653 (*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(-13 (-941) (-10 -8 (-15 -2233 ($ |#1|)) (-15 -2233 ($ (-1145))) (-15 -1516 ((-1071 (-1145)) $)) (-15 -3962 ((-112) $)) (-15 -2155 (|#1| $)) (-15 -3527 ((-112) $)) (-15 -2564 ((-1145) $)) (-15 -3575 ((-112) $)) (-15 -1653 ($ $)) (-15 -2972 ((-112) $)) (-15 -3862 ((-847 $ $) $)) (-15 -2303 ((-112) $)) (-15 -2656 ((-847 $ $) $)) (-15 -4155 ((-112) $)) (-15 -1413 ((-847 $ $) $)) (-15 -3074 ((-112) $)) (-15 -3288 ((-847 $ $) $)))) -((-2221 (((-112) $ $) 7)) (-3741 (($ $ $) 15)) (-3548 (($ $) 17)) (-2369 (((-1127) $) 9)) (-3852 (($ $ $) 14)) (-3445 (((-1089) $) 10)) (-2660 (($ $ $) 13)) (-2233 (((-837) $) 11)) (-1304 (($ $ $) 16)) (-2264 (((-112) $ $) 6))) +((-4196 (((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 18)) (-4313 (((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)) 13))) +(((-933 |#1| |#2|) (-10 -7 (-15 -4196 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4313 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) (-1183) (-1183)) (T -933)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-932 *6)) (-5 *1 (-933 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-933 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-932 *5)) (-5 *1 (-933 *6 *5))))) +(-10 -7 (-15 -4196 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4313 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) +((-3160 (($ $ (-1063 $)) 7) (($ $ (-1147)) 6))) +(((-934) (-138)) (T -934)) +((-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-934)))) (-3160 (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-1147))))) +(-13 (-10 -8 (-15 -3160 ($ $ (-1147))) (-15 -3160 ($ $ (-1063 $))))) +((-3161 (((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)) 25) (((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147))) 26) (((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147)) 43))) +(((-935 |#1|) (-10 -7 (-15 -3161 ((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)))) (-13 (-356) (-145))) (T -935)) +((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-5 *5 (-1147)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *6))) (|:| |prim| (-1141 *6)))) (-5 *1 (-935 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-935 *5)))) (-3161 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-1147)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 *5)))) (-5 *1 (-935 *5))))) +(-10 -7 (-15 -3161 ((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)))) +((-3164 (((-620 |#1|) |#1| |#1|) 42)) (-4081 (((-112) |#1|) 39)) (-3163 ((|#1| |#1|) 65)) (-3162 ((|#1| |#1|) 64))) +(((-936 |#1|) (-10 -7 (-15 -4081 ((-112) |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3163 (|#1| |#1|)) (-15 -3164 ((-620 |#1|) |#1| |#1|))) (-535)) (T -936)) +((-3164 (*1 *2 *3 *3) (-12 (-5 *2 (-620 *3)) (-5 *1 (-936 *3)) (-4 *3 (-535)))) (-3163 (*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535)))) (-3162 (*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535)))) (-4081 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-936 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -4081 ((-112) |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3163 (|#1| |#1|)) (-15 -3164 ((-620 |#1|) |#1| |#1|))) +((-3165 (((-1235) (-838)) 9))) +(((-937) (-10 -7 (-15 -3165 ((-1235) (-838))))) (T -937)) +((-3165 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-937))))) +(-10 -7 (-15 -3165 ((-1235) (-838)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-2728 (($ $ $) 63 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (-1367 (((-3 $ "failed") $ $) 50 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-3466 (((-749)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3166 ((|#2| $) 21)) (-3167 ((|#1| $) 20)) (-3891 (($) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-3322 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-3672 (($ $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3168 (($ |#1| |#2|) 19)) (-2121 (((-893) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2487 (($ (-893)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3589 (((-1091) $) NIL)) (-3337 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2681 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4312 (((-838) $) 14)) (-2986 (($) 40 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-2992 (($) 24 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) CONST)) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3382 (((-112) $ $) 18)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3013 (((-112) $ $) 66 (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-4303 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4192 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4194 (($ $ $) 43 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (** (($ $ (-536)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-749)) 31 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (* (($ (-536) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-749) $) 46 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ (-893) $) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ $ $) 27 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))))) +(((-938 |#1| |#2|) (-13 (-1072) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3168 ($ |#1| |#2|)) (-15 -3167 (|#1| $)) (-15 -3166 (|#2| $)))) (-1072) (-1072)) (T -938)) +((-3168 (*1 *1 *2 *3) (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3167 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1072)))) (-3166 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1072))))) +(-13 (-1072) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3168 ($ |#1| |#2|)) (-15 -3167 (|#1| $)) (-15 -3166 (|#2| $)))) +((-3756 (((-1074) $) 12)) (-3169 (($ (-1147) (-1074)) 13)) (-3900 (((-1147) $) 10)) (-4312 (((-838) $) 22))) +(((-939) (-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3756 ((-1074) $)) (-15 -3169 ($ (-1147) (-1074)))))) (T -939)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-939)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-939)))) (-3169 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-939))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3756 ((-1074) $)) (-15 -3169 ($ (-1147) (-1074))))) +((-2893 (((-112) $ $) NIL)) (-3412 (((-1068 (-1147)) $) 19)) (-3180 (((-112) $) 26)) (-4186 (((-1147) $) 27)) (-3182 (((-112) $) 24)) (-3181 ((|#1| $) 25)) (-3174 (((-847 $ $) $) 34)) (-3175 (((-112) $) 33)) (-3185 (($ $ $) 12)) (-3178 (($ $) 29)) (-3179 (((-112) $) 28)) (-3671 (($ $) 10)) (-3588 (((-1129) $) NIL)) (-3172 (((-847 $ $) $) 36)) (-3173 (((-112) $) 35)) (-3184 (($ $ $) 13)) (-3589 (((-1091) $) NIL)) (-3170 (((-847 $ $) $) 38)) (-3171 (((-112) $) 37)) (-3183 (($ $ $) 14)) (-4312 (((-838) $) 40) (($ |#1|) 7) (($ (-1147)) 9)) (-3176 (((-847 $ $) $) 32)) (-3177 (((-112) $) 30)) (-3186 (($ $ $) 11)) (-3382 (((-112) $ $) NIL))) +(((-940 |#1|) (-13 (-941) (-10 -8 (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-1147))) (-15 -3412 ((-1068 (-1147)) $)) (-15 -3182 ((-112) $)) (-15 -3181 (|#1| $)) (-15 -3180 ((-112) $)) (-15 -4186 ((-1147) $)) (-15 -3179 ((-112) $)) (-15 -3178 ($ $)) (-15 -3177 ((-112) $)) (-15 -3176 ((-847 $ $) $)) (-15 -3175 ((-112) $)) (-15 -3174 ((-847 $ $) $)) (-15 -3173 ((-112) $)) (-15 -3172 ((-847 $ $) $)) (-15 -3171 ((-112) $)) (-15 -3170 ((-847 $ $) $)))) (-941)) (T -940)) +((-4312 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1147))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3181 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(-13 (-941) (-10 -8 (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-1147))) (-15 -3412 ((-1068 (-1147)) $)) (-15 -3182 ((-112) $)) (-15 -3181 (|#1| $)) (-15 -3180 ((-112) $)) (-15 -4186 ((-1147) $)) (-15 -3179 ((-112) $)) (-15 -3178 ($ $)) (-15 -3177 ((-112) $)) (-15 -3176 ((-847 $ $) $)) (-15 -3175 ((-112) $)) (-15 -3174 ((-847 $ $) $)) (-15 -3173 ((-112) $)) (-15 -3172 ((-847 $ $) $)) (-15 -3171 ((-112) $)) (-15 -3170 ((-847 $ $) $)))) +((-2893 (((-112) $ $) 7)) (-3185 (($ $ $) 15)) (-3671 (($ $) 17)) (-3588 (((-1129) $) 9)) (-3184 (($ $ $) 14)) (-3589 (((-1091) $) 10)) (-3183 (($ $ $) 13)) (-4312 (((-838) $) 11)) (-3186 (($ $ $) 16)) (-3382 (((-112) $ $) 6))) (((-941) (-138)) (T -941)) -((-3548 (*1 *1 *1) (-4 *1 (-941))) (-1304 (*1 *1 *1 *1) (-4 *1 (-941))) (-3741 (*1 *1 *1 *1) (-4 *1 (-941))) (-3852 (*1 *1 *1 *1) (-4 *1 (-941))) (-2660 (*1 *1 *1 *1) (-4 *1 (-941)))) -(-13 (-1069) (-10 -8 (-15 -3548 ($ $)) (-15 -1304 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3852 ($ $ $)) (-15 -2660 ($ $ $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2299 (($ $ $) 43)) (-2441 (($ $ $) 44)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2173 ((|#1| $) 45)) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) +((-3671 (*1 *1 *1) (-4 *1 (-941))) (-3186 (*1 *1 *1 *1) (-4 *1 (-941))) (-3185 (*1 *1 *1 *1) (-4 *1 (-941))) (-3184 (*1 *1 *1 *1) (-4 *1 (-941))) (-3183 (*1 *1 *1 *1) (-4 *1 (-941)))) +(-13 (-1072) (-10 -8 (-15 -3671 ($ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3184 ($ $ $)) (-15 -3183 ($ $ $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-3187 (($ $ $) 43)) (-3867 (($ $ $) 44)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 45)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) (((-942 |#1|) (-138) (-825)) (T -942)) -((-2173 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4344) (-15 -2173 (|t#1| $)) (-15 -2441 ($ $ $)) (-15 -2299 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-3063 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|) 85)) (-2129 ((|#2| |#2| |#2|) 83)) (-1669 (((-2 (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|) 87)) (-4239 (((-2 (|:| |coef1| |#2|) (|:| -3260 |#2|)) |#2| |#2|) 89)) (-2928 (((-2 (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-2397 (((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|) 46)) (-3731 (((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|) 64)) (-2421 (((-2 (|:| |coef1| |#2|) (|:| -1792 |#1|)) |#2| |#2|) 66)) (-2172 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2900 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 71)) (-2292 (((-2 (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|) 97)) (-1372 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 74)) (-3343 (((-623 (-749)) |#2| |#2|) 82)) (-4064 ((|#1| |#2| |#2|) 42)) (-4213 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-1308 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-3827 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|) 44)) (-1975 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|) 63)) (-1792 ((|#1| |#2| |#2|) 61)) (-2858 (((-2 (|:| -4304 |#1|) (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|) 35)) (-2461 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2834 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1623 ((|#2| |#2| |#2|) 75)) (-3798 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 69)) (-4245 ((|#2| |#2| |#2| (-749)) 67)) (-3260 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-3409 (((-1228 |#2|) (-1228 |#2|) |#1|) 21)) (-1505 (((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|) 39)) (-2735 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|) 95)) (-3563 ((|#1| |#2|) 92)) (-1720 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 73)) (-2130 ((|#2| |#2| |#2| (-749)) 72)) (-1880 (((-623 |#2|) |#2| |#2|) 80)) (-2947 ((|#2| |#2| |#1| |#1| (-749)) 50)) (-1295 ((|#1| |#1| |#1| (-749)) 49)) (* (((-1228 |#2|) |#1| (-1228 |#2|)) 16))) -(((-943 |#1| |#2|) (-10 -7 (-15 -1792 (|#1| |#2| |#2|)) (-15 -1975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -3731 ((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -2421 ((-2 (|:| |coef1| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -4245 (|#2| |#2| |#2| (-749))) (-15 -3798 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2900 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2130 (|#2| |#2| |#2| (-749))) (-15 -1720 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -1372 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -1623 (|#2| |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2172 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2129 (|#2| |#2| |#2|)) (-15 -3063 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -1669 ((-2 (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -4239 ((-2 (|:| |coef1| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -3563 (|#1| |#2|)) (-15 -2735 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|)) (-15 -2292 ((-2 (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|)) (-15 -1880 ((-623 |#2|) |#2| |#2|)) (-15 -3343 ((-623 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -1308 (|#1| |#2| |#2|)) (-15 -4213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|)) (-15 -3260 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1228 |#2|) |#1| (-1228 |#2|))) (-15 -3409 ((-1228 |#2|) (-1228 |#2|) |#1|)) (-15 -2858 ((-2 (|:| -4304 |#1|) (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|)) (-15 -1505 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|)) (-15 -1295 (|#1| |#1| |#1| (-749))) (-15 -2947 (|#2| |#2| |#1| |#1| (-749))) (-15 -2461 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4064 (|#1| |#2| |#2|)) (-15 -3827 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -2397 ((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|))) (-542) (-1204 |#1|)) (T -943)) -((-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1792 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-3827 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1792 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-4064 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2)))) (-2461 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) (-2947 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) (-1295 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *2 (-542)) (-5 *1 (-943 *2 *4)) (-4 *4 (-1204 *2)))) (-1505 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -4304 *4) (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-542)) (-5 *1 (-943 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-542)) (-5 *1 (-943 *3 *4)))) (-3260 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) (-2928 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1308 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-4213 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1308 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1308 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-749))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3563 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3563 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-3563 (*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2)))) (-4239 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3260 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1669 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3260 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-3063 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3260 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-2129 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1623 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) (-1372 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5)))) (-1720 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5)))) (-2130 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1204 *4)))) (-2900 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5)))) (-3798 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5)))) (-4245 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1204 *4)))) (-2421 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1792 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1792 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1975 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1792 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) (-1792 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2))))) -(-10 -7 (-15 -1792 (|#1| |#2| |#2|)) (-15 -1975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -3731 ((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -2421 ((-2 (|:| |coef1| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -4245 (|#2| |#2| |#2| (-749))) (-15 -3798 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2900 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2130 (|#2| |#2| |#2| (-749))) (-15 -1720 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -1372 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -1623 (|#2| |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2172 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2129 (|#2| |#2| |#2|)) (-15 -3063 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -1669 ((-2 (|:| |coef2| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -4239 ((-2 (|:| |coef1| |#2|) (|:| -3260 |#2|)) |#2| |#2|)) (-15 -3563 (|#1| |#2|)) (-15 -2735 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|)) (-15 -2292 ((-2 (|:| |coef2| |#2|) (|:| -3563 |#1|)) |#2|)) (-15 -1880 ((-623 |#2|) |#2| |#2|)) (-15 -3343 ((-623 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -1308 (|#1| |#2| |#2|)) (-15 -4213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef2| |#2|) (|:| -1308 |#1|)) |#2| |#2|)) (-15 -3260 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1228 |#2|) |#1| (-1228 |#2|))) (-15 -3409 ((-1228 |#2|) (-1228 |#2|) |#1|)) (-15 -2858 ((-2 (|:| -4304 |#1|) (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|)) (-15 -1505 ((-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) |#2| |#2|)) (-15 -1295 (|#1| |#1| |#1| (-749))) (-15 -2947 (|#2| |#2| |#1| |#1| (-749))) (-15 -2461 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4064 (|#1| |#2| |#2|)) (-15 -3827 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|)) (-15 -2397 ((-2 (|:| |coef2| |#2|) (|:| -1792 |#1|)) |#2| |#2|))) -((-2221 (((-112) $ $) NIL)) (-2263 (((-1181) $) 13)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 10)) (-2233 (((-837) $) 22) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-944) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $))))) (T -944)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-944)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-944))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) 27)) (-2991 (($) NIL T CONST)) (-1914 (((-623 (-623 (-550))) (-623 (-550))) 29)) (-4109 (((-550) $) 45)) (-1882 (($ (-623 (-550))) 17)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2451 (((-623 (-550)) $) 12)) (-3018 (($ $) 32)) (-2233 (((-837) $) 43) (((-623 (-550)) $) 10)) (-2688 (($) 7 T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 20)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 19)) (-2358 (($ $ $) 21)) (* (($ (-895) $) NIL) (($ (-749) $) 25))) -(((-945) (-13 (-773) (-596 (-623 (-550))) (-10 -8 (-15 -1882 ($ (-623 (-550)))) (-15 -1914 ((-623 (-623 (-550))) (-623 (-550)))) (-15 -4109 ((-550) $)) (-15 -3018 ($ $)) (-15 -2233 ((-623 (-550)) $))))) (T -945)) -((-1882 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-945)))) (-1914 (*1 *2 *3) (-12 (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-945)) (-5 *3 (-623 (-550))))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-945)))) (-3018 (*1 *1 *1) (-5 *1 (-945))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-945))))) -(-13 (-773) (-596 (-623 (-550))) (-10 -8 (-15 -1882 ($ (-623 (-550)))) (-15 -1914 ((-623 (-623 (-550))) (-623 (-550)))) (-15 -4109 ((-550) $)) (-15 -3018 ($ $)) (-15 -2233 ((-623 (-550)) $)))) -((-2382 (($ $ |#2|) 30)) (-2370 (($ $) 22) (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-550)) $) 26) (($ $ (-400 (-550))) 28))) -(((-946 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) (-947 |#2| |#3| |#4|) (-1021) (-770) (-825)) (T -946)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-895) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 |#3|) $) 72)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-3771 (((-112) $) 71)) (-2419 (((-112) $) 30)) (-3438 (((-112) $) 60)) (-1488 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-623 |#3|) (-623 |#2|)) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3661 ((|#2| $) 62)) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-1708 ((|#1| $ |#2|) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-947 |#1| |#2| |#3|) (-138) (-1021) (-770) (-825)) (T -947)) -((-1670 (*1 *2 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1021)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-770)) (-4 *4 (-825)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *2 (-770)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1021)) (-4 *3 (-770)) (-4 *2 (-825)))) (-1488 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 *5)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-770)) (-4 *6 (-825)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-623 *5)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-770)) (-4 *4 (-825))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1488 ($ $ |t#3| |t#2|)) (-15 -1488 ($ $ (-623 |t#3|) (-623 |t#2|))) (-15 -1657 ($ $)) (-15 -1670 (|t#1| $)) (-15 -3661 (|t#2| $)) (-15 -1516 ((-623 |t#3|) $)) (-15 -3771 ((-112) $)) (-15 -4012 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-3301 (((-1063 (-219)) $) 8)) (-3291 (((-1063 (-219)) $) 9)) (-3282 (((-1063 (-219)) $) 10)) (-2348 (((-623 (-623 (-917 (-219)))) $) 11)) (-2233 (((-837) $) 6))) +((-3673 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3673 (|t#1| $)) (-15 -3867 ($ $ $)) (-15 -3187 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-3199 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 85)) (-4110 ((|#2| |#2| |#2|) 83)) (-3200 (((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 87)) (-3201 (((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 89)) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-3215 (((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 46)) (-3189 (((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 64)) (-3190 (((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 66)) (-3198 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3193 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 71)) (-3203 (((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|) 97)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 74)) (-3205 (((-620 (-749)) |#2| |#2|) 82)) (-3213 ((|#1| |#2| |#2|) 42)) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-3206 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-3214 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 44)) (-3188 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 63)) (-4111 ((|#1| |#2| |#2|) 61)) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|) 35)) (-3212 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3197 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3536 ((|#2| |#2| |#2|) 75)) (-3192 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 69)) (-3191 ((|#2| |#2| |#2| (-749)) 67)) (-3490 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-3815 (((-1229 |#2|) (-1229 |#2|) |#1|) 21)) (-3209 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|) 39)) (-3202 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|) 95)) (-4112 ((|#1| |#2|) 92)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 73)) (-3194 ((|#2| |#2| |#2| (-749)) 72)) (-3204 (((-620 |#2|) |#2| |#2|) 80)) (-3211 ((|#2| |#2| |#1| |#1| (-749)) 50)) (-3210 ((|#1| |#1| |#1| (-749)) 49)) (* (((-1229 |#2|) |#1| (-1229 |#2|)) 16))) +(((-943 |#1| |#2|) (-10 -7 (-15 -4111 (|#1| |#2| |#2|)) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3191 (|#2| |#2| |#2| (-749))) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3194 (|#2| |#2| |#2| (-749))) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3536 (|#2| |#2| |#2|)) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3204 ((-620 |#2|) |#2| |#2|)) (-15 -3205 ((-620 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1229 |#2|) |#1| (-1229 |#2|))) (-15 -3815 ((-1229 |#2|) (-1229 |#2|) |#1|)) (-15 -4107 ((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3210 (|#1| |#1| |#1| (-749))) (-15 -3211 (|#2| |#2| |#1| |#1| (-749))) (-15 -3212 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3213 (|#1| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3215 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|))) (-543) (-1205 |#1|)) (T -943)) +((-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3212 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3211 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3210 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *2 (-543)) (-5 *1 (-943 *2 *4)) (-4 *4 (-1205 *2)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4107 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -4308 *4) (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3815 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) (-5 *1 (-943 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) (-5 *1 (-943 *3 *4)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3208 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-749))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3203 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4112 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4112 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4112 (*1 *2 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4110 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3198 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3536 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3195 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3194 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4)))) (-3193 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3192 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3191 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4)))) (-3190 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3189 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3188 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) +(-10 -7 (-15 -4111 (|#1| |#2| |#2|)) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3191 (|#2| |#2| |#2| (-749))) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3194 (|#2| |#2| |#2| (-749))) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3536 (|#2| |#2| |#2|)) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3204 ((-620 |#2|) |#2| |#2|)) (-15 -3205 ((-620 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1229 |#2|) |#1| (-1229 |#2|))) (-15 -3815 ((-1229 |#2|) (-1229 |#2|) |#1|)) (-15 -4107 ((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3210 (|#1| |#1| |#1| (-749))) (-15 -3211 (|#2| |#2| |#1| |#1| (-749))) (-15 -3212 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3213 (|#1| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3215 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|))) +((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-944) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -944)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-944)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-944))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) 27)) (-3891 (($) NIL T CONST)) (-3217 (((-620 (-620 (-536))) (-620 (-536))) 29)) (-3216 (((-536) $) 45)) (-3218 (($ (-620 (-536))) 17)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4325 (((-620 (-536)) $) 12)) (-3337 (($ $) 32)) (-4312 (((-838) $) 43) (((-620 (-536)) $) 10)) (-2986 (($) 7 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 19)) (-4194 (($ $ $) 21)) (* (($ (-893) $) NIL) (($ (-749) $) 25))) +(((-945) (-13 (-775) (-596 (-620 (-536))) (-10 -8 (-15 -3218 ($ (-620 (-536)))) (-15 -3217 ((-620 (-620 (-536))) (-620 (-536)))) (-15 -3216 ((-536) $)) (-15 -3337 ($ $)) (-15 -4312 ((-620 (-536)) $))))) (T -945)) +((-3218 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945)))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-945)) (-5 *3 (-620 (-536))))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-945)))) (-3337 (*1 *1 *1) (-5 *1 (-945))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945))))) +(-13 (-775) (-596 (-620 (-536))) (-10 -8 (-15 -3218 ($ (-620 (-536)))) (-15 -3217 ((-620 (-620 (-536))) (-620 (-536)))) (-15 -3216 ((-536) $)) (-15 -3337 ($ $)) (-15 -4312 ((-620 (-536)) $)))) +((-4303 (($ $ |#2|) 30)) (-4192 (($ $) 22) (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-536)) $) 26) (($ $ (-400 (-536))) 28))) +(((-946 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-947 |#2| |#3| |#4|) (-1023) (-770) (-825)) (T -946)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 72)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3220 (((-112) $) 71)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-620 |#3|) (-620 |#2|)) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-947 |#1| |#2| |#3|) (-138) (-1023) (-770) (-825)) (T -947)) +((-3520 (*1 *2 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1023)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *2 (-770)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1023)) (-4 *3 (-770)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 *5)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-770)) (-4 *6 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-620 *5)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3221 ($ $ |t#3| |t#2|)) (-15 -3221 ($ $ (-620 |t#3|) (-620 |t#2|))) (-15 -3222 ($ $)) (-15 -3520 (|t#1| $)) (-15 -4302 (|t#2| $)) (-15 -3412 ((-620 |t#3|) $)) (-15 -3220 ((-112) $)) (-15 -3219 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3223 (((-1060 (-219)) $) 8)) (-3224 (((-1060 (-219)) $) 9)) (-3225 (((-1060 (-219)) $) 10)) (-3226 (((-620 (-620 (-917 (-219)))) $) 11)) (-4312 (((-838) $) 6))) (((-948) (-138)) (T -948)) -((-2348 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-623 (-623 (-917 (-219))))))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219))))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219))))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219)))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2348 ((-623 (-623 (-917 (-219)))) $)) (-15 -3282 ((-1063 (-219)) $)) (-15 -3291 ((-1063 (-219)) $)) (-15 -3301 ((-1063 (-219)) $)))) -(((-595 (-837)) . T)) -((-1516 (((-623 |#4|) $) 23)) (-3935 (((-112) $) 48)) (-3885 (((-112) $) 47)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#4|) 36)) (-3711 (((-112) $) 49)) (-2751 (((-112) $ $) 55)) (-3305 (((-112) $ $) 58)) (-2248 (((-112) $) 53)) (-3694 (((-623 |#5|) (-623 |#5|) $) 90)) (-2178 (((-623 |#5|) (-623 |#5|) $) 87)) (-2545 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3704 (((-623 |#4|) $) 27)) (-4159 (((-112) |#4| $) 30)) (-4035 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3537 (($ $ |#4|) 33)) (-1446 (($ $ |#4|) 32)) (-3175 (($ $ |#4|) 34)) (-2264 (((-112) $ $) 40))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3885 ((-112) |#1|)) (-15 -3694 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2178 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2545 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4035 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -3305 ((-112) |#1| |#1|)) (-15 -2751 ((-112) |#1| |#1|)) (-15 -2248 ((-112) |#1|)) (-15 -3935 ((-112) |#1|)) (-15 -1814 ((-2 (|:| |under| |#1|) (|:| -3925 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#4|)) (-15 -4159 ((-112) |#4| |#1|)) (-15 -3704 ((-623 |#4|) |#1|)) (-15 -1516 ((-623 |#4|) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-950 |#2| |#3| |#4| |#5|) (-1021) (-771) (-825) (-1035 |#2| |#3| |#4|)) (T -949)) -NIL -(-10 -8 (-15 -3885 ((-112) |#1|)) (-15 -3694 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2178 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2545 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4035 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -3305 ((-112) |#1| |#1|)) (-15 -2751 ((-112) |#1| |#1|)) (-15 -2248 ((-112) |#1|)) (-15 -3935 ((-112) |#1|)) (-15 -1814 ((-2 (|:| |under| |#1|) (|:| -3925 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#4|)) (-15 -4159 ((-112) |#4| |#1|)) (-15 -3704 ((-623 |#4|) |#1|)) (-15 -1516 ((-623 |#4|) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344)))) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344)))) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-3445 (((-1089) $) 10)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-950 |#1| |#2| |#3| |#4|) (-138) (-1021) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -950)) -((-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-1035 *3 *4 *2)) (-4 *2 (-825)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5)))) (-4159 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1035 *4 *5 *3)) (-5 *2 (-112)))) (-1446 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2)))) (-3537 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2)))) (-1814 (*1 *2 *1 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1035 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3925 *1) (|:| |upper| *1))) (-4 *1 (-950 *4 *5 *3 *6)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-2751 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3305 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-4035 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2545 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2178 (*1 *2 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)))) (-3694 (*1 *2 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(-13 (-1069) (-149 |t#4|) (-595 (-623 |t#4|)) (-10 -8 (-6 -4344) (-15 -2288 ((-3 $ "failed") (-623 |t#4|))) (-15 -2202 ($ (-623 |t#4|))) (-15 -1765 (|t#3| $)) (-15 -1516 ((-623 |t#3|) $)) (-15 -3704 ((-623 |t#3|) $)) (-15 -4159 ((-112) |t#3| $)) (-15 -1446 ($ $ |t#3|)) (-15 -3175 ($ $ |t#3|)) (-15 -3537 ($ $ |t#3|)) (-15 -1814 ((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |t#3|)) (-15 -3935 ((-112) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -2248 ((-112) $)) (-15 -2751 ((-112) $ $)) (-15 -3305 ((-112) $ $)) (-15 -3711 ((-112) $)) (-15 -4035 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2545 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2178 ((-623 |t#4|) (-623 |t#4|) $)) (-15 -3694 ((-623 |t#4|) (-623 |t#4|) $)) (-15 -3885 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-1069) . T) ((-1182) . T)) -((-3553 (((-623 |#4|) |#4| |#4|) 118)) (-4043 (((-623 |#4|) (-623 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-623 |#4|) (-623 |#4|)) 108 (|has| |#1| (-444)))) (-2218 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 35)) (-3670 (((-112) |#4|) 34)) (-2440 (((-623 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-1558 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|)) 20)) (-1264 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|)) 22)) (-3047 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|)) 23)) (-3165 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|)) 73)) (-1284 (((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2936 (((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1811 (((-623 |#4|) (-623 |#4|)) 110)) (-2117 (((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112)) 48) (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 50)) (-1603 ((|#4| |#4| (-623 |#4|)) 49)) (-2736 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 114 (|has| |#1| (-444)))) (-3799 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 117 (|has| |#1| (-444)))) (-2636 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 116 (|has| |#1| (-444)))) (-2205 (((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|))) 87) (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 89) (((-623 |#4|) (-623 |#4|) |#4|) 121) (((-623 |#4|) |#4| |#4|) 119) (((-623 |#4|) (-623 |#4|)) 88)) (-4201 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-1709 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 41)) (-1983 (((-112) (-623 |#4|)) 62)) (-3577 (((-112) (-623 |#4|) (-623 (-623 |#4|))) 53)) (-3886 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 29)) (-3933 (((-112) |#4|) 28)) (-1388 (((-623 |#4|) (-623 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2541 (((-623 |#4|) (-623 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3365 (((-623 |#4|) (-623 |#4|)) 66)) (-1597 (((-623 |#4|) (-623 |#4|)) 79)) (-1889 (((-112) (-623 |#4|) (-623 |#4|)) 51)) (-2341 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 39)) (-2637 (((-112) |#4|) 36))) -(((-951 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2205 ((-623 |#4|) (-623 |#4|))) (-15 -2205 ((-623 |#4|) |#4| |#4|)) (-15 -1811 ((-623 |#4|) (-623 |#4|))) (-15 -3553 ((-623 |#4|) |#4| |#4|)) (-15 -2205 ((-623 |#4|) (-623 |#4|) |#4|)) (-15 -2205 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2205 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|)))) (-15 -1889 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3577 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1983 ((-112) (-623 |#4|))) (-15 -1558 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|))) (-15 -1264 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -3047 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -1709 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -3670 ((-112) |#4|)) (-15 -2218 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -3933 ((-112) |#4|)) (-15 -3886 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -2637 ((-112) |#4|)) (-15 -2341 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -2117 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2117 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1603 (|#4| |#4| (-623 |#4|))) (-15 -3365 ((-623 |#4|) (-623 |#4|))) (-15 -3165 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|))) (-15 -1597 ((-623 |#4|) (-623 |#4|))) (-15 -1284 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2936 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2440 ((-623 |#4|) |#4|)) (-15 -4043 ((-623 |#4|) (-623 |#4|))) (-15 -4043 ((-623 |#4|) (-623 |#4|) (-112))) (-15 -2736 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2636 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -3799 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2541 ((-623 |#4|) (-623 |#4|))) (-15 -1388 ((-623 |#4|) (-623 |#4|))) (-15 -4201 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) |%noBranch|)) (-542) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -951)) -((-4201 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2636 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2736 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-4043 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-2936 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-951 *5 *6 *7 *8)))) (-1284 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-623 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3165 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3940 (-623 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-1603 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2)))) (-2117 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-2117 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-2637 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-3886 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3933 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-2218 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-1709 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-1264 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *5 *6 *7 *8)))) (-1889 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-2205 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-623 *7) (-623 *7))) (-5 *2 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-2205 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2205 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) (-3553 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-2205 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) -(-10 -7 (-15 -2205 ((-623 |#4|) (-623 |#4|))) (-15 -2205 ((-623 |#4|) |#4| |#4|)) (-15 -1811 ((-623 |#4|) (-623 |#4|))) (-15 -3553 ((-623 |#4|) |#4| |#4|)) (-15 -2205 ((-623 |#4|) (-623 |#4|) |#4|)) (-15 -2205 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2205 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|)))) (-15 -1889 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3577 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1983 ((-112) (-623 |#4|))) (-15 -1558 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|))) (-15 -1264 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -3047 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -1709 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -3670 ((-112) |#4|)) (-15 -2218 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -3933 ((-112) |#4|)) (-15 -3886 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -2637 ((-112) |#4|)) (-15 -2341 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -2117 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2117 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1603 (|#4| |#4| (-623 |#4|))) (-15 -3365 ((-623 |#4|) (-623 |#4|))) (-15 -3165 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|))) (-15 -1597 ((-623 |#4|) (-623 |#4|))) (-15 -1284 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2936 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2440 ((-623 |#4|) |#4|)) (-15 -4043 ((-623 |#4|) (-623 |#4|))) (-15 -4043 ((-623 |#4|) (-623 |#4|) (-112))) (-15 -2736 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -2636 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -3799 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2541 ((-623 |#4|) (-623 |#4|))) (-15 -1388 ((-623 |#4|) (-623 |#4|))) (-15 -4201 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) |%noBranch|)) -((-2806 (((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-4185 (((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|)) 36)) (-1400 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-952 |#1|) (-10 -7 (-15 -2806 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1400 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4185 ((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|)))) (-356)) (T -952)) -((-4185 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1228 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)))) (-1400 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-952 *5)))) (-2806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) -(-10 -7 (-15 -2806 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1400 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4185 ((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1228 |#1|)))) (-667 |#1|) (-1228 |#1|)))) -((-2207 (((-411 |#4|) |#4|) 48))) -(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-411 |#4|) |#4|))) (-825) (-771) (-444) (-923 |#3| |#2| |#1|)) (T -953)) -((-2207 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-411 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-923 *6 *5 *4))))) -(-10 -7 (-15 -2207 ((-411 |#4|) |#4|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3370 (($ (-749)) 112 (|has| |#1| (-23)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-3088 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1069)))) (-2712 (($ (-623 |#1|)) 118)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2755 (((-667 |#1|) $ $) 105 (|has| |#1| (-1021)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2986 ((|#1| $) 102 (-12 (|has| |#1| (-1021)) (|has| |#1| (-976))))) (-1700 (((-112) $ (-749)) 10)) (-3839 ((|#1| $) 103 (-12 (|has| |#1| (-1021)) (|has| |#1| (-976))))) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-4268 (($ $ (-623 |#1|)) 115)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-3451 ((|#1| $ $) 106 (|has| |#1| (-1021)))) (-1877 (((-895) $) 117)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-1442 (($ $ $) 104)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526)))) (($ (-623 |#1|)) 116)) (-2245 (($ (-623 |#1|)) 70)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 82 (|has| |#1| (-825)))) (-2370 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2358 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-550) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-954 |#1|) (-138) (-1021)) (T -954)) -((-2712 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-954 *3)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1021)) (-5 *2 (-895)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-954 *3)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1021)))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1021))))) -(-13 (-1226 |t#1|) (-10 -8 (-15 -2712 ($ (-623 |t#1|))) (-15 -1877 ((-895) $)) (-15 -2451 ($ (-623 |t#1|))) (-15 -1442 ($ $ $)) (-15 -4268 ($ $ (-623 |t#1|))))) -(((-34) . T) ((-101) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1069) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-1182) . T) ((-1226 |#1|) . T)) -((-2392 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 17))) -(((-955 |#1| |#2|) (-10 -7 (-15 -2392 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1021) (-1021)) (T -955)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6))))) -(-10 -7 (-15 -2392 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) -((-2428 ((|#1| (-917 |#1|)) 13)) (-3043 ((|#1| (-917 |#1|)) 12)) (-3841 ((|#1| (-917 |#1|)) 11)) (-3439 ((|#1| (-917 |#1|)) 15)) (-1711 ((|#1| (-917 |#1|)) 21)) (-1947 ((|#1| (-917 |#1|)) 14)) (-3070 ((|#1| (-917 |#1|)) 16)) (-3181 ((|#1| (-917 |#1|)) 20)) (-2585 ((|#1| (-917 |#1|)) 19))) -(((-956 |#1|) (-10 -7 (-15 -3841 (|#1| (-917 |#1|))) (-15 -3043 (|#1| (-917 |#1|))) (-15 -2428 (|#1| (-917 |#1|))) (-15 -1947 (|#1| (-917 |#1|))) (-15 -3439 (|#1| (-917 |#1|))) (-15 -3070 (|#1| (-917 |#1|))) (-15 -2585 (|#1| (-917 |#1|))) (-15 -3181 (|#1| (-917 |#1|))) (-15 -1711 (|#1| (-917 |#1|)))) (-1021)) (T -956)) -((-1711 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(-10 -7 (-15 -3841 (|#1| (-917 |#1|))) (-15 -3043 (|#1| (-917 |#1|))) (-15 -2428 (|#1| (-917 |#1|))) (-15 -1947 (|#1| (-917 |#1|))) (-15 -3439 (|#1| (-917 |#1|))) (-15 -3070 (|#1| (-917 |#1|))) (-15 -2585 (|#1| (-917 |#1|))) (-15 -3181 (|#1| (-917 |#1|))) (-15 -1711 (|#1| (-917 |#1|)))) -((-2922 (((-3 |#1| "failed") |#1|) 18)) (-1924 (((-3 |#1| "failed") |#1|) 6)) (-3147 (((-3 |#1| "failed") |#1|) 16)) (-1648 (((-3 |#1| "failed") |#1|) 4)) (-2542 (((-3 |#1| "failed") |#1|) 20)) (-3328 (((-3 |#1| "failed") |#1|) 8)) (-1281 (((-3 |#1| "failed") |#1| (-749)) 1)) (-2124 (((-3 |#1| "failed") |#1|) 3)) (-2665 (((-3 |#1| "failed") |#1|) 2)) (-3936 (((-3 |#1| "failed") |#1|) 21)) (-3111 (((-3 |#1| "failed") |#1|) 9)) (-1366 (((-3 |#1| "failed") |#1|) 19)) (-1679 (((-3 |#1| "failed") |#1|) 7)) (-2692 (((-3 |#1| "failed") |#1|) 17)) (-4208 (((-3 |#1| "failed") |#1|) 5)) (-3220 (((-3 |#1| "failed") |#1|) 24)) (-2775 (((-3 |#1| "failed") |#1|) 12)) (-3622 (((-3 |#1| "failed") |#1|) 22)) (-1528 (((-3 |#1| "failed") |#1|) 10)) (-1995 (((-3 |#1| "failed") |#1|) 26)) (-1793 (((-3 |#1| "failed") |#1|) 14)) (-3387 (((-3 |#1| "failed") |#1|) 27)) (-3464 (((-3 |#1| "failed") |#1|) 15)) (-2251 (((-3 |#1| "failed") |#1|) 25)) (-2213 (((-3 |#1| "failed") |#1|) 13)) (-2156 (((-3 |#1| "failed") |#1|) 23)) (-4301 (((-3 |#1| "failed") |#1|) 11))) -(((-957 |#1|) (-138) (-1167)) (T -957)) -((-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1995 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2251 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3220 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2156 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3622 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3936 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2542 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1366 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2922 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2692 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3147 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3464 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1793 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2213 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2775 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-4301 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1528 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3111 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-3328 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1679 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1924 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-4208 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1648 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2124 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-2665 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167)))) (-1281 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(-13 (-10 -7 (-15 -1281 ((-3 |t#1| "failed") |t#1| (-749))) (-15 -2665 ((-3 |t#1| "failed") |t#1|)) (-15 -2124 ((-3 |t#1| "failed") |t#1|)) (-15 -1648 ((-3 |t#1| "failed") |t#1|)) (-15 -4208 ((-3 |t#1| "failed") |t#1|)) (-15 -1924 ((-3 |t#1| "failed") |t#1|)) (-15 -1679 ((-3 |t#1| "failed") |t#1|)) (-15 -3328 ((-3 |t#1| "failed") |t#1|)) (-15 -3111 ((-3 |t#1| "failed") |t#1|)) (-15 -1528 ((-3 |t#1| "failed") |t#1|)) (-15 -4301 ((-3 |t#1| "failed") |t#1|)) (-15 -2775 ((-3 |t#1| "failed") |t#1|)) (-15 -2213 ((-3 |t#1| "failed") |t#1|)) (-15 -1793 ((-3 |t#1| "failed") |t#1|)) (-15 -3464 ((-3 |t#1| "failed") |t#1|)) (-15 -3147 ((-3 |t#1| "failed") |t#1|)) (-15 -2692 ((-3 |t#1| "failed") |t#1|)) (-15 -2922 ((-3 |t#1| "failed") |t#1|)) (-15 -1366 ((-3 |t#1| "failed") |t#1|)) (-15 -2542 ((-3 |t#1| "failed") |t#1|)) (-15 -3936 ((-3 |t#1| "failed") |t#1|)) (-15 -3622 ((-3 |t#1| "failed") |t#1|)) (-15 -2156 ((-3 |t#1| "failed") |t#1|)) (-15 -3220 ((-3 |t#1| "failed") |t#1|)) (-15 -2251 ((-3 |t#1| "failed") |t#1|)) (-15 -1995 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)))) -((-2549 ((|#4| |#4| (-623 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3028 ((|#4| |#4| (-623 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2392 ((|#4| (-1 |#4| (-926 |#1|)) |#4|) 30))) -(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-623 |#3|))) (-15 -2549 (|#4| |#4| |#3|)) (-15 -2549 (|#4| |#4| (-623 |#3|))) (-15 -2392 (|#4| (-1 |#4| (-926 |#1|)) |#4|))) (-1021) (-771) (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145))))) (-923 (-926 |#1|) |#2| |#3|)) (T -958)) -((-2392 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-926 *4))) (-4 *4 (-1021)) (-4 *2 (-923 (-926 *4) *5 *6)) (-4 *5 (-771)) (-4 *6 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-5 *1 (-958 *4 *5 *6 *2)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-4 *4 (-1021)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-923 (-926 *4) *5 *6)))) (-2549 (*1 *2 *2 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-923 (-926 *4) *5 *3)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-4 *4 (-1021)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-923 (-926 *4) *5 *6)))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)) (-15 -2564 ((-3 $ "failed") (-1145)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-923 (-926 *4) *5 *3))))) -(-10 -7 (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-623 |#3|))) (-15 -2549 (|#4| |#4| |#3|)) (-15 -2549 (|#4| |#4| (-623 |#3|))) (-15 -2392 (|#4| (-1 |#4| (-926 |#1|)) |#4|))) -((-3218 ((|#2| |#3|) 35)) (-2443 (((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 73)) (-2892 (((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 89))) -(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3218 (|#2| |#3|))) (-342) (-1204 |#1|) (-1204 |#2|) (-703 |#2| |#3|)) (T -959)) -((-3218 (*1 *2 *3) (-12 (-4 *3 (-1204 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-959 *4 *2 *3 *5)) (-4 *4 (-342)) (-4 *5 (-703 *2 *3)))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 *3)) (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) (-2892 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| -2206 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5))))) -(-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3218 (|#2| |#3|))) -((-4108 (((-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))) 69))) -(((-960 |#1| |#2|) (-10 -7 (-15 -4108 ((-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))))) (-623 (-1145)) (-749)) (T -960)) -((-4108 (*1 *2 *2) (-12 (-5 *2 (-961 (-400 (-550)) (-839 *3) (-234 *4 (-749)) (-241 *3 (-400 (-550))))) (-14 *3 (-623 (-1145))) (-14 *4 (-749)) (-5 *1 (-960 *3 *4))))) -(-10 -7 (-15 -4108 ((-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-961 (-400 (-550)) (-839 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))))) -((-2221 (((-112) $ $) NIL)) (-1973 (((-3 (-112) "failed") $) 69)) (-3788 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2000 (($ $ (-3 (-112) "failed")) 70)) (-1480 (($ (-623 |#4|) |#4|) 25)) (-2369 (((-1127) $) NIL)) (-1557 (($ $) 67)) (-3445 (((-1089) $) NIL)) (-4217 (((-112) $) 68)) (-2819 (($) 30)) (-4144 ((|#4| $) 72)) (-3640 (((-623 |#4|) $) 71)) (-2233 (((-837) $) 66)) (-2264 (((-112) $ $) NIL))) -(((-961 |#1| |#2| |#3| |#4|) (-13 (-1069) (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -1480 ($ (-623 |#4|) |#4|)) (-15 -1973 ((-3 (-112) "failed") $)) (-15 -2000 ($ $ (-3 (-112) "failed"))) (-15 -4217 ((-112) $)) (-15 -3640 ((-623 |#4|) $)) (-15 -4144 (|#4| $)) (-15 -1557 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3788 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-825) (-771) (-923 |#1| |#3| |#2|)) (T -961)) -((-2819 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-923 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-961 *4 *5 *6 *3)))) (-1973 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4)))) (-2000 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4)))) (-4217 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4)))) (-3640 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-623 *6)) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-923 *3 *5 *4)) (-5 *1 (-961 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)))) (-1557 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3)))) (-3788 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3))))) -(-13 (-1069) (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -1480 ($ (-623 |#4|) |#4|)) (-15 -1973 ((-3 (-112) "failed") $)) (-15 -2000 ($ $ (-3 (-112) "failed"))) (-15 -4217 ((-112) $)) (-15 -3640 ((-623 |#4|) $)) (-15 -4144 (|#4| $)) (-15 -1557 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3788 ($ $)) |%noBranch|) |%noBranch|))) -((-1671 (((-112) |#5| |#5|) 38)) (-2219 (((-112) |#5| |#5|) 52)) (-3158 (((-112) |#5| (-623 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-2923 (((-112) (-623 |#4|) (-623 |#4|)) 58)) (-3978 (((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) 63)) (-2077 (((-1233)) 33)) (-3776 (((-1233) (-1127) (-1127) (-1127)) 29)) (-2592 (((-623 |#5|) (-623 |#5|)) 81)) (-3488 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) 79)) (-1336 (((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112)) 101)) (-3868 (((-112) |#5| |#5|) 47)) (-3594 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1363 (((-112) (-623 |#4|) (-623 |#4|)) 57)) (-4013 (((-112) (-623 |#4|) (-623 |#4|)) 59)) (-3098 (((-112) (-623 |#4|) (-623 |#4|)) 60)) (-4131 (((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-4309 (((-623 |#5|) (-623 |#5|)) 43))) -(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3776 ((-1233) (-1127) (-1127) (-1127))) (-15 -2077 ((-1233))) (-15 -1671 ((-112) |#5| |#5|)) (-15 -4309 ((-623 |#5|) (-623 |#5|))) (-15 -3868 ((-112) |#5| |#5|)) (-15 -2219 ((-112) |#5| |#5|)) (-15 -2923 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -1363 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -4013 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3098 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3594 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-623 |#5|))) (-15 -2592 ((-623 |#5|) (-623 |#5|))) (-15 -3978 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -3488 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-15 -1336 ((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -4131 ((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -962)) -((-4131 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| -1309 (-623 *9)) (|:| -1608 *4) (|:| |ineq| (-623 *9)))) (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) (-4 *4 (-1041 *6 *7 *8 *9)))) (-1336 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1041 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| -1309 (-623 *9)) (|:| -1608 *10) (|:| |ineq| (-623 *9))))) (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -1608 *7)))) (-4 *6 (-1035 *3 *4 *5)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3978 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8 *3)))) (-3158 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3594 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-4013 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-1363 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2923 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2219 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3868 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-1671 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-2077 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-3776 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(-10 -7 (-15 -3776 ((-1233) (-1127) (-1127) (-1127))) (-15 -2077 ((-1233))) (-15 -1671 ((-112) |#5| |#5|)) (-15 -4309 ((-623 |#5|) (-623 |#5|))) (-15 -3868 ((-112) |#5| |#5|)) (-15 -2219 ((-112) |#5| |#5|)) (-15 -2923 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -1363 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -4013 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3098 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3594 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-623 |#5|))) (-15 -2592 ((-623 |#5|) (-623 |#5|))) (-15 -3978 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -3488 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-15 -1336 ((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -4131 ((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2564 (((-1145) $) 15)) (-1337 (((-1127) $) 16)) (-2589 (($ (-1145) (-1127)) 14)) (-2233 (((-837) $) 13))) -(((-963) (-13 (-595 (-837)) (-10 -8 (-15 -2589 ($ (-1145) (-1127))) (-15 -2564 ((-1145) $)) (-15 -1337 ((-1127) $))))) (T -963)) -((-2589 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1127)) (-5 *1 (-963)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-963)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-963))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2589 ($ (-1145) (-1127))) (-15 -2564 ((-1145) $)) (-15 -1337 ((-1127) $)))) -((-2392 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-964 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#2| |#1|) |#3|))) (-542) (-542) (-966 |#1|) (-966 |#2|)) (T -964)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-966 *6)) (-5 *1 (-964 *5 *6 *4 *2)) (-4 *4 (-966 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#2| |#1|) |#3|))) -((-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-1145) "failed") $) 65) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) 95)) (-2202 ((|#2| $) NIL) (((-1145) $) 60) (((-400 (-550)) $) NIL) (((-550) $) 92)) (-3756 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 112) (((-667 |#2|) (-667 $)) 28)) (-1864 (($) 98)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 75) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 84)) (-1484 (($ $) 10)) (-1620 (((-3 $ "failed") $) 20)) (-2392 (($ (-1 |#2| |#2|) $) 22)) (-2463 (($) 16)) (-1724 (($ $) 54)) (-2798 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3608 (($ $) 12)) (-2451 (((-866 (-550)) $) 70) (((-866 (-372)) $) 79) (((-526) $) 40) (((-372) $) 44) (((-219) $) 47)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 90) (($ |#2|) NIL) (($ (-1145)) 57)) (-3091 (((-749)) 31)) (-2290 (((-112) $ $) 50))) -(((-965 |#1| |#2|) (-10 -8 (-15 -2290 ((-112) |#1| |#1|)) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2233 (|#1| (-1145))) (-15 -1864 (|#1|)) (-15 -1724 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2233 ((-837) |#1|))) (-966 |#2|) (-542)) (T -965)) -((-3091 (*1 *2) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-965 *3 *4)) (-4 *3 (-966 *4))))) -(-10 -8 (-15 -2290 ((-112) |#1| |#1|)) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2233 (|#1| (-1145))) (-15 -1864 (|#1|)) (-15 -1724 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -4141 ((-863 (-550) |#1|) |#1| (-866 (-550)) (-863 (-550) |#1|))) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -3756 ((-667 |#2|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3104 ((|#1| $) 136 (|has| |#1| (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 127 (|has| |#1| (-883)))) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 130 (|has| |#1| (-883)))) (-1611 (((-112) $ $) 57)) (-4303 (((-550) $) 117 (|has| |#1| (-798)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 175) (((-3 (-1145) "failed") $) 125 (|has| |#1| (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) 109 (|has| |#1| (-1012 (-550)))) (((-3 (-550) "failed") $) 107 (|has| |#1| (-1012 (-550))))) (-2202 ((|#1| $) 174) (((-1145) $) 124 (|has| |#1| (-1012 (-1145)))) (((-400 (-550)) $) 108 (|has| |#1| (-1012 (-550)))) (((-550) $) 106 (|has| |#1| (-1012 (-550))))) (-3455 (($ $ $) 53)) (-3756 (((-667 (-550)) (-667 $)) 149 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 148 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 147) (((-667 |#1|) (-667 $)) 146)) (-1537 (((-3 $ "failed") $) 32)) (-1864 (($) 134 (|has| |#1| (-535)))) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-2694 (((-112) $) 119 (|has| |#1| (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 143 (|has| |#1| (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 142 (|has| |#1| (-860 (-372))))) (-2419 (((-112) $) 30)) (-1484 (($ $) 138)) (-4153 ((|#1| $) 140)) (-1620 (((-3 $ "failed") $) 105 (|has| |#1| (-1120)))) (-1712 (((-112) $) 118 (|has| |#1| (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2793 (($ $ $) 115 (|has| |#1| (-825)))) (-2173 (($ $ $) 114 (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) 166)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-2463 (($) 104 (|has| |#1| (-1120)) CONST)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1724 (($ $) 135 (|has| |#1| (-300)))) (-3925 ((|#1| $) 132 (|has| |#1| (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 129 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 128 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 168 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) 167 (|has| |#1| (-505 (-1145) |#1|)))) (-1988 (((-749) $) 56)) (-2757 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2798 (($ $) 165 (|has| |#1| (-227))) (($ $ (-749)) 163 (|has| |#1| (-227))) (($ $ (-1145)) 161 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 160 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 159 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 158 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3608 (($ $) 137)) (-4163 ((|#1| $) 139)) (-2451 (((-866 (-550)) $) 145 (|has| |#1| (-596 (-866 (-550))))) (((-866 (-372)) $) 144 (|has| |#1| (-596 (-866 (-372))))) (((-526) $) 122 (|has| |#1| (-596 (-526)))) (((-372) $) 121 (|has| |#1| (-996))) (((-219) $) 120 (|has| |#1| (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 131 (-1304 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 178) (($ (-1145)) 126 (|has| |#1| (-1012 (-1145))))) (-1613 (((-3 $ "failed") $) 123 (-1489 (|has| |#1| (-143)) (-1304 (|has| $ (-143)) (|has| |#1| (-883)))))) (-3091 (((-749)) 28)) (-2967 ((|#1| $) 133 (|has| |#1| (-535)))) (-1819 (((-112) $ $) 37)) (-4188 (($ $) 116 (|has| |#1| (-798)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $) 164 (|has| |#1| (-227))) (($ $ (-749)) 162 (|has| |#1| (-227))) (($ $ (-1145)) 157 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 156 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 155 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 154 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2324 (((-112) $ $) 112 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 111 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 113 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 110 (|has| |#1| (-825)))) (-2382 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-966 |#1|) (-138) (-542)) (T -966)) -((-2382 (*1 *1 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-1724 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-1864 (*1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-535)) (-4 *2 (-542)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-535))))) -(-13 (-356) (-38 |t#1|) (-1012 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-858 |t#1|) (-393 |t#1|) (-10 -8 (-15 -2382 ($ |t#1| |t#1|)) (-15 -4153 (|t#1| $)) (-15 -4163 (|t#1| $)) (-15 -1484 ($ $)) (-15 -3608 ($ $)) (IF (|has| |t#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |t#1| (-1012 (-550))) (PROGN (-6 (-1012 (-550))) (-6 (-1012 (-400 (-550))))) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1012 (-1145))) (-6 (-1012 (-1145))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3104 (|t#1| $)) (-15 -1724 ($ $))) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -1864 ($)) (-15 -2967 (|t#1| $)) (-15 -3925 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-883)) (-6 (-883)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-596 (-219)) |has| |#1| (-996)) ((-596 (-372)) |has| |#1| (-996)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-866 (-372))) |has| |#1| (-596 (-866 (-372)))) ((-596 (-866 (-550))) |has| |#1| (-596 (-866 (-550)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-769) |has| |#1| (-798)) ((-770) |has| |#1| (-798)) ((-772) |has| |#1| (-798)) ((-773) |has| |#1| (-798)) ((-798) |has| |#1| (-798)) ((-823) |has| |#1| (-798)) ((-825) -1489 (|has| |#1| (-825)) (|has| |#1| (-798))) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-860 (-372)) |has| |#1| (-860 (-372))) ((-860 (-550)) |has| |#1| (-860 (-550))) ((-858 |#1|) . T) ((-883) |has| |#1| (-883)) ((-894) . T) ((-996) |has| |#1| (-996)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-550))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 (-1145)) |has| |#1| (-1012 (-1145))) ((-1012 |#1|) . T) ((-1027 #0#) . T) ((-1027 |#1|) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| |#1| (-1120)) ((-1182) . T) ((-1186) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-4324 (($ (-1111 |#1| |#2|)) 11)) (-4224 (((-1111 |#1| |#2|) $) 12)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2757 ((|#2| $ (-234 |#1| |#2|)) 16)) (-2233 (((-837) $) NIL)) (-2688 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL))) -(((-967 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4324 ($ (-1111 |#1| |#2|))) (-15 -4224 ((-1111 |#1| |#2|) $)) (-15 -2757 (|#2| $ (-234 |#1| |#2|))))) (-895) (-356)) (T -967)) -((-4324 (*1 *1 *2) (-12 (-5 *2 (-1111 *3 *4)) (-14 *3 (-895)) (-4 *4 (-356)) (-5 *1 (-967 *3 *4)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1111 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-895)) (-4 *4 (-356)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-895)) (-4 *2 (-356)) (-5 *1 (-967 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -4324 ($ (-1111 |#1| |#2|))) (-15 -4224 ((-1111 |#1| |#2|) $)) (-15 -2757 (|#2| $ (-234 |#1| |#2|))))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 9)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-968) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $))))) (T -968)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-968))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-4161 (($ $) 46)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-3839 (((-749) $) 45)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1398 ((|#1| $) 44)) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-2272 ((|#1| |#1| $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2752 ((|#1| $) 47)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-2940 ((|#1| $) 43)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-969 |#1|) (-138) (-1182)) (T -969)) -((-2272 (*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182)))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4344) (-15 -2272 (|t#1| |t#1| $)) (-15 -2752 (|t#1| $)) (-15 -4161 ($ $)) (-15 -3839 ((-749) $)) (-15 -1398 (|t#1| $)) (-15 -2940 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-3378 (((-112) $) 42)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 43)) (-3192 (((-3 (-400 (-550)) "failed") $) 78)) (-2593 (((-112) $) 72)) (-3169 (((-400 (-550)) $) 76)) (-2419 (((-112) $) 41)) (-1571 ((|#2| $) 22)) (-2392 (($ (-1 |#2| |#2|) $) 19)) (-1619 (($ $) 61)) (-2798 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2451 (((-526) $) 67)) (-3018 (($ $) 17)) (-2233 (((-837) $) 56) (($ (-550)) 38) (($ |#2|) 36) (($ (-400 (-550))) NIL)) (-3091 (((-749)) 10)) (-4188 ((|#2| $) 71)) (-2264 (((-112) $ $) 25)) (-2290 (((-112) $ $) 69)) (-2370 (($ $) 29) (($ $ $) 28)) (-2358 (($ $ $) 26)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) -(((-970 |#1| |#2|) (-10 -8 (-15 -2233 (|#1| (-400 (-550)))) (-15 -2290 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 -1619 (|#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3018 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2419 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-971 |#2|) (-170)) (T -970)) -((-3091 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-970 *3 *4)) (-4 *3 (-971 *4))))) -(-10 -8 (-15 -2233 (|#1| (-400 (-550)))) (-15 -2290 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 -1619 (|#1| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -1571 (|#2| |#1|)) (-15 -3018 (|#1| |#1|)) (-15 -2392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2419 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3378 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2288 (((-3 (-550) "failed") $) 116 (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 114 (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) 113)) (-2202 (((-550) $) 117 (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) 115 (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) 112)) (-3756 (((-667 (-550)) (-667 $)) 87 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 86 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 85) (((-667 |#1|) (-667 $)) 84)) (-1537 (((-3 $ "failed") $) 32)) (-1406 ((|#1| $) 77)) (-3192 (((-3 (-400 (-550)) "failed") $) 73 (|has| |#1| (-535)))) (-2593 (((-112) $) 75 (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) 74 (|has| |#1| (-535)))) (-1855 (($ |#1| |#1| |#1| |#1|) 78)) (-2419 (((-112) $) 30)) (-1571 ((|#1| $) 79)) (-2793 (($ $ $) 66 (|has| |#1| (-825)))) (-2173 (($ $ $) 65 (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) 88)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 70 (|has| |#1| (-356)))) (-3418 ((|#1| $) 80)) (-3114 ((|#1| $) 81)) (-1531 ((|#1| $) 82)) (-3445 (((-1089) $) 10)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) 90 (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) 89 (|has| |#1| (-505 (-1145) |#1|)))) (-2757 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-2798 (($ $) 111 (|has| |#1| (-227))) (($ $ (-749)) 109 (|has| |#1| (-227))) (($ $ (-1145)) 107 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 106 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 105 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 104 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2451 (((-526) $) 71 (|has| |#1| (-596 (-526))))) (-3018 (($ $) 83)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 60 (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550))))))) (-1613 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-4188 ((|#1| $) 76 (|has| |#1| (-1030)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $) 110 (|has| |#1| (-227))) (($ $ (-749)) 108 (|has| |#1| (-227))) (($ $ (-1145)) 103 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 102 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 101 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 100 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2324 (((-112) $ $) 63 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 62 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 64 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 61 (|has| |#1| (-825)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 69 (|has| |#1| (-356)))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-550))) 68 (|has| |#1| (-356))) (($ (-400 (-550)) $) 67 (|has| |#1| (-356))))) -(((-971 |#1|) (-138) (-170)) (T -971)) -((-3018 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-1855 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3192 (*1 *2 *1) (|partial| -12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550)))))) -(-13 (-38 |t#1|) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3018 ($ $)) (-15 -1531 (|t#1| $)) (-15 -3114 (|t#1| $)) (-15 -3418 (|t#1| $)) (-15 -1571 (|t#1| $)) (-15 -1855 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1406 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1030)) (-15 -4188 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -2593 ((-112) $)) (-15 -3169 ((-400 (-550)) $)) (-15 -3192 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1489 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1145) |#1|) |has| |#1| (-505 (-1145) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 #0#) |has| |#1| (-356)) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-356)) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1027 #0#) |has| |#1| (-356)) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2392 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) (-971 |#2|) (-170) (-971 |#4|) (-170)) (T -972)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-971 *6)) (-5 *1 (-972 *4 *5 *2 *6)) (-4 *4 (-971 *5))))) -(-10 -7 (-15 -2392 (|#3| (-1 |#4| |#2|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1406 ((|#1| $) 12)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-2593 (((-112) $) NIL (|has| |#1| (-535)))) (-3169 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-1855 (($ |#1| |#1| |#1| |#1|) 16)) (-2419 (((-112) $) NIL)) (-1571 ((|#1| $) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-3418 ((|#1| $) 15)) (-3114 ((|#1| $) 14)) (-1531 ((|#1| $) 13)) (-3445 (((-1089) $) NIL)) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1145) |#1|))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-505 (-1145) |#1|)))) (-2757 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-2798 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-3018 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550))))))) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-4188 ((|#1| $) NIL (|has| |#1| (-1030)))) (-2688 (($) 8 T CONST)) (-2700 (($) 10 T CONST)) (-1901 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))))) -(((-973 |#1|) (-971 |#1|) (-170)) (T -973)) -NIL -(-971 |#1|) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-4161 (($ $) 20)) (-4214 (($ (-623 |#1|)) 29)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3839 (((-749) $) 22)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) 24)) (-1715 (($ |#1| $) 15)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1398 ((|#1| $) 23)) (-3576 ((|#1| $) 19)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-2272 ((|#1| |#1| $) 14)) (-4217 (((-112) $) 17)) (-2819 (($) NIL)) (-2752 ((|#1| $) 18)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) NIL)) (-2940 ((|#1| $) 26)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-974 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -4214 ($ (-623 |#1|))))) (-1069)) (T -974)) -((-4214 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-974 *3))))) -(-13 (-969 |#1|) (-10 -8 (-15 -4214 ($ (-623 |#1|))))) -((-1745 (($ $) 12)) (-1893 (($ $ (-550)) 13))) -(((-975 |#1|) (-10 -8 (-15 -1745 (|#1| |#1|)) (-15 -1893 (|#1| |#1| (-550)))) (-976)) (T -975)) -NIL -(-10 -8 (-15 -1745 (|#1| |#1|)) (-15 -1893 (|#1| |#1| (-550)))) -((-1745 (($ $) 6)) (-1893 (($ $ (-550)) 7)) (** (($ $ (-400 (-550))) 8))) +((-3226 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-620 (-620 (-917 (-219))))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219))))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219))))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3226 ((-620 (-620 (-917 (-219)))) $)) (-15 -3225 ((-1060 (-219)) $)) (-15 -3224 ((-1060 (-219)) $)) (-15 -3223 ((-1060 (-219)) $)))) +(((-595 (-838)) . T)) +((-3412 (((-620 |#4|) $) 23)) (-3236 (((-112) $) 48)) (-3227 (((-112) $) 47)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#4|) 36)) (-3232 (((-112) $) 49)) (-3234 (((-112) $ $) 55)) (-3233 (((-112) $ $) 58)) (-3235 (((-112) $) 53)) (-3228 (((-620 |#5|) (-620 |#5|) $) 90)) (-3229 (((-620 |#5|) (-620 |#5|) $) 87)) (-3230 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3242 (((-620 |#4|) $) 27)) (-3241 (((-112) |#4| $) 30)) (-3231 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3238 (($ $ |#4|) 33)) (-3240 (($ $ |#4|) 32)) (-3239 (($ $ |#4|) 34)) (-3382 (((-112) $ $) 40))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3227 ((-112) |#1|)) (-15 -3228 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3229 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3230 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3231 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-112) |#1| |#1|)) (-15 -3234 ((-112) |#1| |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3236 ((-112) |#1|)) (-15 -3237 ((-2 (|:| |under| |#1|) (|:| -3460 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3239 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3241 ((-112) |#4| |#1|)) (-15 -3242 ((-620 |#4|) |#1|)) (-15 -3412 ((-620 |#4|) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-950 |#2| |#3| |#4| |#5|) (-1023) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -949)) +NIL +(-10 -8 (-15 -3227 ((-112) |#1|)) (-15 -3228 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3229 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3230 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3231 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-112) |#1| |#1|)) (-15 -3234 ((-112) |#1| |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3236 ((-112) |#1|)) (-15 -3237 ((-2 (|:| |under| |#1|) (|:| -3460 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3239 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3241 ((-112) |#4| |#1|)) (-15 -3242 ((-620 |#4|) |#1|)) (-15 -3412 ((-620 |#4|) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348)))) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348)))) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-3589 (((-1091) $) 10)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-950 |#1| |#2| |#3| |#4|) (-138) (-1023) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -950)) +((-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-1037 *3 *4 *2)) (-4 *2 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-3241 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) (-3240 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3239 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3237 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3460 *1) (|:| |upper| *1))) (-4 *1 (-950 *4 *5 *3 *6)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3234 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3233 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3231 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3230 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3229 (*1 *2 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)))) (-3228 (*1 *2 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(-13 (-1072) (-149 |t#4|) (-595 (-620 |t#4|)) (-10 -8 (-6 -4348) (-15 -3503 ((-3 $ "failed") (-620 |t#4|))) (-15 -3502 ($ (-620 |t#4|))) (-15 -3526 (|t#3| $)) (-15 -3412 ((-620 |t#3|) $)) (-15 -3242 ((-620 |t#3|) $)) (-15 -3241 ((-112) |t#3| $)) (-15 -3240 ($ $ |t#3|)) (-15 -3239 ($ $ |t#3|)) (-15 -3238 ($ $ |t#3|)) (-15 -3237 ((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |t#3|)) (-15 -3236 ((-112) $)) (IF (|has| |t#1| (-543)) (PROGN (-15 -3235 ((-112) $)) (-15 -3234 ((-112) $ $)) (-15 -3233 ((-112) $ $)) (-15 -3232 ((-112) $)) (-15 -3231 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3230 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3229 ((-620 |t#4|) (-620 |t#4|) $)) (-15 -3228 ((-620 |t#4|) (-620 |t#4|) $)) (-15 -3227 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-1072) . T) ((-1183) . T)) +((-3244 (((-620 |#4|) |#4| |#4|) 118)) (-3267 (((-620 |#4|) (-620 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-620 |#4|) (-620 |#4|)) 108 (|has| |#1| (-444)))) (-3254 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 35)) (-3253 (((-112) |#4|) 34)) (-3266 (((-620 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3249 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|)) 20)) (-3250 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|)) 22)) (-3251 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|)) 23)) (-3262 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|)) 73)) (-3264 (((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3265 (((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3243 (((-620 |#4|) (-620 |#4|)) 110)) (-3259 (((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112)) 48) (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 50)) (-3260 ((|#4| |#4| (-620 |#4|)) 49)) (-3268 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 114 (|has| |#1| (-444)))) (-3270 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 117 (|has| |#1| (-444)))) (-3269 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 116 (|has| |#1| (-444)))) (-3245 (((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|))) 87) (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 89) (((-620 |#4|) (-620 |#4|) |#4|) 121) (((-620 |#4|) |#4| |#4|) 119) (((-620 |#4|) (-620 |#4|)) 88)) (-3273 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3252 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 41)) (-3248 (((-112) (-620 |#4|)) 62)) (-3247 (((-112) (-620 |#4|) (-620 (-620 |#4|))) 53)) (-3256 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 29)) (-3255 (((-112) |#4|) 28)) (-3272 (((-620 |#4|) (-620 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3271 (((-620 |#4|) (-620 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3261 (((-620 |#4|) (-620 |#4|)) 66)) (-3263 (((-620 |#4|) (-620 |#4|)) 79)) (-3246 (((-112) (-620 |#4|) (-620 |#4|)) 51)) (-3258 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 39)) (-3257 (((-112) |#4|) 36))) +(((-951 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3245 ((-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) |#4| |#4|)) (-15 -3243 ((-620 |#4|) (-620 |#4|))) (-15 -3244 ((-620 |#4|) |#4| |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|)))) (-15 -3246 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3247 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3248 ((-112) (-620 |#4|))) (-15 -3249 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|))) (-15 -3250 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3252 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3253 ((-112) |#4|)) (-15 -3254 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3255 ((-112) |#4|)) (-15 -3256 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3257 ((-112) |#4|)) (-15 -3258 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112))) (-15 -3260 (|#4| |#4| (-620 |#4|))) (-15 -3261 ((-620 |#4|) (-620 |#4|))) (-15 -3262 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|))) (-15 -3263 ((-620 |#4|) (-620 |#4|))) (-15 -3264 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3265 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3266 ((-620 |#4|) |#4|)) (-15 -3267 ((-620 |#4|) (-620 |#4|))) (-15 -3267 ((-620 |#4|) (-620 |#4|) (-112))) (-15 -3268 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3269 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3270 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3271 ((-620 |#4|) (-620 |#4|))) (-15 -3272 ((-620 |#4|) (-620 |#4|))) (-15 -3273 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) |%noBranch|)) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -951)) +((-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3268 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3267 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3265 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-951 *5 *6 *7 *8)))) (-3264 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-620 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3262 (*1 *2 *3) (|partial| -12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3678 (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3260 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2)))) (-3259 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3256 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3254 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3252 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3245 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-620 *7) (-620 *7))) (-5 *2 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3245 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(-10 -7 (-15 -3245 ((-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) |#4| |#4|)) (-15 -3243 ((-620 |#4|) (-620 |#4|))) (-15 -3244 ((-620 |#4|) |#4| |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|)))) (-15 -3246 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3247 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3248 ((-112) (-620 |#4|))) (-15 -3249 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|))) (-15 -3250 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3252 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3253 ((-112) |#4|)) (-15 -3254 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3255 ((-112) |#4|)) (-15 -3256 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3257 ((-112) |#4|)) (-15 -3258 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112))) (-15 -3260 (|#4| |#4| (-620 |#4|))) (-15 -3261 ((-620 |#4|) (-620 |#4|))) (-15 -3262 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|))) (-15 -3263 ((-620 |#4|) (-620 |#4|))) (-15 -3264 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3265 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3266 ((-620 |#4|) |#4|)) (-15 -3267 ((-620 |#4|) (-620 |#4|))) (-15 -3267 ((-620 |#4|) (-620 |#4|) (-112))) (-15 -3268 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3269 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3270 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3271 ((-620 |#4|) (-620 |#4|))) (-15 -3272 ((-620 |#4|) (-620 |#4|))) (-15 -3273 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) |%noBranch|)) +((-3274 (((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3276 (((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)) 36)) (-3275 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-952 |#1|) (-10 -7 (-15 -3274 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3275 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)))) (-356)) (T -952)) +((-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)))) (-3275 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-952 *5)))) (-3274 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) +(-10 -7 (-15 -3274 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3275 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)))) +((-4324 (((-398 |#4|) |#4|) 48))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4324 ((-398 |#4|) |#4|))) (-825) (-771) (-444) (-924 |#3| |#2| |#1|)) (T -953)) +((-4324 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-398 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) +(-10 -7 (-15 -4324 ((-398 |#4|) |#4|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749)) 112 (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-4064 (($ (-620 |#1|)) 118)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) 105 (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4187 ((|#1| $) 102 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-4074 (((-112) $ (-749)) 10)) (-4188 ((|#1| $) 103 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-4123 (($ $ (-620 |#1|)) 115)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-4191 ((|#1| $ $) 106 (|has| |#1| (-1023)))) (-4266 (((-893) $) 117)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-4189 (($ $ $) 104)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525)))) (($ (-620 |#1|)) 116)) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4192 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4194 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-536) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-954 |#1|) (-138) (-1023)) (T -954)) +((-4064 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1023)) (-5 *2 (-893)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1023)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1023))))) +(-13 (-1228 |t#1|) (-10 -8 (-15 -4064 ($ (-620 |t#1|))) (-15 -4266 ((-893) $)) (-15 -4325 ($ (-620 |t#1|))) (-15 -4189 ($ $ $)) (-15 -4123 ($ $ (-620 |t#1|))))) +(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T) ((-1228 |#1|) . T)) +((-4313 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 17))) +(((-955 |#1| |#2|) (-10 -7 (-15 -4313 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1023) (-1023)) (T -955)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6))))) +(-10 -7 (-15 -4313 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) +((-3279 ((|#1| (-917 |#1|)) 13)) (-3278 ((|#1| (-917 |#1|)) 12)) (-3277 ((|#1| (-917 |#1|)) 11)) (-3281 ((|#1| (-917 |#1|)) 15)) (-3285 ((|#1| (-917 |#1|)) 21)) (-3280 ((|#1| (-917 |#1|)) 14)) (-3282 ((|#1| (-917 |#1|)) 16)) (-3284 ((|#1| (-917 |#1|)) 20)) (-3283 ((|#1| (-917 |#1|)) 19))) +(((-956 |#1|) (-10 -7 (-15 -3277 (|#1| (-917 |#1|))) (-15 -3278 (|#1| (-917 |#1|))) (-15 -3279 (|#1| (-917 |#1|))) (-15 -3280 (|#1| (-917 |#1|))) (-15 -3281 (|#1| (-917 |#1|))) (-15 -3282 (|#1| (-917 |#1|))) (-15 -3283 (|#1| (-917 |#1|))) (-15 -3284 (|#1| (-917 |#1|))) (-15 -3285 (|#1| (-917 |#1|)))) (-1023)) (T -956)) +((-3285 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(-10 -7 (-15 -3277 (|#1| (-917 |#1|))) (-15 -3278 (|#1| (-917 |#1|))) (-15 -3279 (|#1| (-917 |#1|))) (-15 -3280 (|#1| (-917 |#1|))) (-15 -3281 (|#1| (-917 |#1|))) (-15 -3282 (|#1| (-917 |#1|))) (-15 -3283 (|#1| (-917 |#1|))) (-15 -3284 (|#1| (-917 |#1|))) (-15 -3285 (|#1| (-917 |#1|)))) +((-3303 (((-3 |#1| "failed") |#1|) 18)) (-3291 (((-3 |#1| "failed") |#1|) 6)) (-3301 (((-3 |#1| "failed") |#1|) 16)) (-3289 (((-3 |#1| "failed") |#1|) 4)) (-3305 (((-3 |#1| "failed") |#1|) 20)) (-3293 (((-3 |#1| "failed") |#1|) 8)) (-3286 (((-3 |#1| "failed") |#1| (-749)) 1)) (-3288 (((-3 |#1| "failed") |#1|) 3)) (-3287 (((-3 |#1| "failed") |#1|) 2)) (-3306 (((-3 |#1| "failed") |#1|) 21)) (-3294 (((-3 |#1| "failed") |#1|) 9)) (-3304 (((-3 |#1| "failed") |#1|) 19)) (-3292 (((-3 |#1| "failed") |#1|) 7)) (-3302 (((-3 |#1| "failed") |#1|) 17)) (-3290 (((-3 |#1| "failed") |#1|) 5)) (-3309 (((-3 |#1| "failed") |#1|) 24)) (-3297 (((-3 |#1| "failed") |#1|) 12)) (-3307 (((-3 |#1| "failed") |#1|) 22)) (-3295 (((-3 |#1| "failed") |#1|) 10)) (-3311 (((-3 |#1| "failed") |#1|) 26)) (-3299 (((-3 |#1| "failed") |#1|) 14)) (-3312 (((-3 |#1| "failed") |#1|) 27)) (-3300 (((-3 |#1| "failed") |#1|) 15)) (-3310 (((-3 |#1| "failed") |#1|) 25)) (-3298 (((-3 |#1| "failed") |#1|) 13)) (-3308 (((-3 |#1| "failed") |#1|) 23)) (-3296 (((-3 |#1| "failed") |#1|) 11))) +(((-957 |#1|) (-138) (-1169)) (T -957)) +((-3312 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3310 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3309 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3307 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3306 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3289 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3288 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3287 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3286 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(-13 (-10 -7 (-15 -3286 ((-3 |t#1| "failed") |t#1| (-749))) (-15 -3287 ((-3 |t#1| "failed") |t#1|)) (-15 -3288 ((-3 |t#1| "failed") |t#1|)) (-15 -3289 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|)) (-15 -3306 ((-3 |t#1| "failed") |t#1|)) (-15 -3307 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -3309 ((-3 |t#1| "failed") |t#1|)) (-15 -3310 ((-3 |t#1| "failed") |t#1|)) (-15 -3311 ((-3 |t#1| "failed") |t#1|)) (-15 -3312 ((-3 |t#1| "failed") |t#1|)))) +((-3314 ((|#4| |#4| (-620 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3313 ((|#4| |#4| (-620 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4313 ((|#4| (-1 |#4| (-920 |#1|)) |#4|) 30))) +(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3313 (|#4| |#4| |#3|)) (-15 -3313 (|#4| |#4| (-620 |#3|))) (-15 -3314 (|#4| |#4| |#3|)) (-15 -3314 (|#4| |#4| (-620 |#3|))) (-15 -4313 (|#4| (-1 |#4| (-920 |#1|)) |#4|))) (-1023) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-924 (-920 |#1|) |#2| |#3|)) (T -958)) +((-4313 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-920 *4))) (-4 *4 (-1023)) (-4 *2 (-924 (-920 *4) *5 *6)) (-4 *5 (-771)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1="failed") (-1147)))))) (-5 *1 (-958 *4 *5 *6 *2)))) (-3314 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-924 (-920 *4) *5 *6)))) (-3314 (*1 *2 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-924 (-920 *4) *5 *6)))) (-3313 (*1 *2 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3))))) +(-10 -7 (-15 -3313 (|#4| |#4| |#3|)) (-15 -3313 (|#4| |#4| (-620 |#3|))) (-15 -3314 (|#4| |#4| |#3|)) (-15 -3314 (|#4| |#4| (-620 |#3|))) (-15 -4313 (|#4| (-1 |#4| (-920 |#1|)) |#4|))) +((-3315 ((|#2| |#3|) 35)) (-4274 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 73)) (-4273 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 89))) +(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3315 (|#2| |#3|))) (-343) (-1205 |#1|) (-1205 |#2|) (-703 |#2| |#3|)) (T -959)) +((-3315 (*1 *2 *3) (-12 (-4 *3 (-1205 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-959 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-703 *2 *3)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) (-4273 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5))))) +(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3315 (|#2| |#3|))) +((-2893 (((-112) $ $) NIL)) (-3755 (((-3 (-112) #1="failed") $) 69)) (-4007 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3319 (($ $ (-3 (-112) #1#)) 70)) (-3320 (($ (-620 |#4|) |#4|) 25)) (-3588 (((-1129) $) NIL)) (-3316 (($ $) 67)) (-3589 (((-1091) $) NIL)) (-3757 (((-112) $) 68)) (-3923 (($) 30)) (-3317 ((|#4| $) 72)) (-3318 (((-620 |#4|) $) 71)) (-4312 (((-838) $) 66)) (-3382 (((-112) $ $) NIL))) +(((-960 |#1| |#2| |#3| |#4|) (-13 (-1072) (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3320 ($ (-620 |#4|) |#4|)) (-15 -3755 ((-3 (-112) #1="failed") $)) (-15 -3319 ($ $ (-3 (-112) #1#))) (-15 -3757 ((-112) $)) (-15 -3318 ((-620 |#4|) $)) (-15 -3317 (|#4| $)) (-15 -3316 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4007 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-825) (-771) (-924 |#1| |#3| |#2|)) (T -960)) +((-3923 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) (-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-924 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3)))) (-3755 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3319 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-620 *6)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3317 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)))) (-3316 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) (-4007 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3))))) +(-13 (-1072) (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3320 ($ (-620 |#4|) |#4|)) (-15 -3755 ((-3 (-112) #1="failed") $)) (-15 -3319 ($ $ (-3 (-112) #1#))) (-15 -3757 ((-112) $)) (-15 -3318 ((-620 |#4|) $)) (-15 -3317 (|#4| $)) (-15 -3316 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4007 ($ $)) |%noBranch|) |%noBranch|))) +((-3321 (((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))) 69))) +(((-961 |#1| |#2|) (-10 -7 (-15 -3321 ((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))))) (-620 (-1147)) (-749)) (T -961)) +((-3321 (*1 *2 *2) (-12 (-5 *2 (-960 (-400 (-536)) (-839 *3) (-233 *4 (-749)) (-241 *3 (-400 (-536))))) (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-961 *3 *4))))) +(-10 -7 (-15 -3321 ((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))))) +((-3616 (((-112) |#5| |#5|) 38)) (-3619 (((-112) |#5| |#5|) 52)) (-3624 (((-112) |#5| (-620 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3620 (((-112) (-620 |#4|) (-620 |#4|)) 58)) (-3626 (((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 63)) (-3615 (((-1235)) 33)) (-3614 (((-1235) (-1129) (-1129) (-1129)) 29)) (-3625 (((-620 |#5|) (-620 |#5|)) 81)) (-3627 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) 79)) (-3628 (((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112)) 101)) (-3618 (((-112) |#5| |#5|) 47)) (-3623 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3621 (((-112) (-620 |#4|) (-620 |#4|)) 57)) (-3622 (((-112) (-620 |#4|) (-620 |#4|)) 59)) (-4057 (((-112) (-620 |#4|) (-620 |#4|)) 60)) (-3629 (((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3617 (((-620 |#5|) (-620 |#5|)) 43))) +(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -962)) +((-3629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) (-4 *4 (-1043 *6 *7 *8 *9)))) (-3628 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8 *3)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3622 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3620 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3614 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) +(-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4186 (((-1147) $) 15)) (-3756 (((-1129) $) 16)) (-3572 (($ (-1147) (-1129)) 14)) (-4312 (((-838) $) 13))) +(((-963) (-13 (-595 (-838)) (-10 -8 (-15 -3572 ($ (-1147) (-1129))) (-15 -4186 ((-1147) $)) (-15 -3756 ((-1129) $))))) (T -963)) +((-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-963)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-963)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-963))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3572 ($ (-1147) (-1129))) (-15 -4186 ((-1147) $)) (-15 -3756 ((-1129) $)))) +((-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1147) #1#) $) 65) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) 95)) (-3502 ((|#2| $) NIL) (((-1147) $) 60) (((-400 (-536)) $) NIL) (((-536) $) 92)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 112) (((-667 |#2|) (-667 $)) 28)) (-3322 (($) 98)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 75) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 84)) (-3324 (($ $) 10)) (-3798 (((-3 $ "failed") $) 20)) (-4313 (($ (-1 |#2| |#2|) $) 22)) (-3799 (($) 16)) (-3458 (($ $) 54)) (-4165 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3323 (($ $) 12)) (-4325 (((-864 (-536)) $) 70) (((-864 (-371)) $) 79) (((-525) $) 40) (((-371) $) 44) (((-219) $) 47)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 90) (($ |#2|) NIL) (($ (-1147)) 57)) (-3456 (((-749)) 31)) (-3013 (((-112) $ $) 50))) +(((-964 |#1| |#2|) (-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -3322 (|#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3324 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) (-965 |#2|) (-543)) (T -964)) +((-3456 (*1 *2) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) (-4 *3 (-965 *4))))) +(-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -3322 (|#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3324 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 ((|#1| $) 136 (|has| |#1| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 127 (|has| |#1| (-884)))) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 130 (|has| |#1| (-884)))) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 117 (|has| |#1| (-798)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 175) (((-3 (-1147) #2#) $) 125 (|has| |#1| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 109 (|has| |#1| (-1012 (-536)))) (((-3 (-536) #2#) $) 107 (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 174) (((-1147) $) 124 (|has| |#1| (-1012 (-1147)))) (((-400 (-536)) $) 108 (|has| |#1| (-1012 (-536)))) (((-536) $) 106 (|has| |#1| (-1012 (-536))))) (-2889 (($ $ $) 53)) (-2357 (((-667 (-536)) (-667 $)) 149 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 148 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 147) (((-667 |#1|) (-667 $)) 146)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 134 (|has| |#1| (-535)))) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3532 (((-112) $) 119 (|has| |#1| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 143 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 142 (|has| |#1| (-860 (-371))))) (-2497 (((-112) $) 30)) (-3324 (($ $) 138)) (-3326 ((|#1| $) 140)) (-3798 (((-3 $ "failed") $) 105 (|has| |#1| (-1122)))) (-3533 (((-112) $) 118 (|has| |#1| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 50)) (-3672 (($ $ $) 115 (|has| |#1| (-825)))) (-3673 (($ $ $) 114 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 166)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 104 (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 135 (|has| |#1| (-300)))) (-3460 ((|#1| $) 132 (|has| |#1| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 129 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 128 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 168 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 167 (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) 56)) (-4154 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4165 (($ $) 165 (|has| |#1| (-227))) (($ $ (-749)) 163 (|has| |#1| (-227))) (($ $ (-1147)) 161 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 160 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 159 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 158 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3323 (($ $) 137)) (-3325 ((|#1| $) 139)) (-4325 (((-864 (-536)) $) 145 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 144 (|has| |#1| (-596 (-864 (-371))))) (((-525) $) 122 (|has| |#1| (-596 (-525)))) (((-371) $) 121 (|has| |#1| (-994))) (((-219) $) 120 (|has| |#1| (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 131 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 178) (($ (-1147)) 126 (|has| |#1| (-1012 (-1147))))) (-3030 (((-3 $ "failed") $) 123 (-3886 (|has| |#1| (-143)) (-3186 (|has| $ (-143)) (|has| |#1| (-884)))))) (-3456 (((-749)) 28)) (-3461 ((|#1| $) 133 (|has| |#1| (-535)))) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 116 (|has| |#1| (-798)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 164 (|has| |#1| (-227))) (($ $ (-749)) 162 (|has| |#1| (-227))) (($ $ (-1147)) 157 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 156 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 155 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 154 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2891 (((-112) $ $) 112 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 111 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 113 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 110 (|has| |#1| (-825)))) (-4303 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-965 |#1|) (-138) (-543)) (T -965)) +((-4303 (*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) (-3322 (*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-543)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535))))) +(-13 (-356) (-38 |t#1|) (-1012 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-858 |t#1|) (-393 |t#1|) (-10 -8 (-15 -4303 ($ |t#1| |t#1|)) (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 ($ $)) (-15 -3323 ($ $)) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-1012 (-536))) (PROGN (-6 (-1012 (-536))) (-6 (-1012 (-400 (-536))))) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1012 (-1147))) (-6 (-1012 (-1147))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3459 (|t#1| $)) (-15 -3458 ($ $))) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3322 ($)) (-15 -3461 (|t#1| $)) (-15 -3460 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-884)) (-6 (-884)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) |has| |#1| (-994)) ((-596 (-371)) |has| |#1| (-994)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-769) |has| |#1| (-798)) ((-770) |has| |#1| (-798)) ((-772) |has| |#1| (-798)) ((-775) |has| |#1| (-798)) ((-798) |has| |#1| (-798)) ((-823) |has| |#1| (-798)) ((-825) -3886 (|has| |#1| (-825)) (|has| |#1| (-798))) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-884) |has| |#1| (-884)) ((-895) . T) ((-994) |has| |#1| (-994)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-536))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-1147)) |has| |#1| (-1012 (-1147))) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-1122)) ((-1183) . T) ((-1188) . T)) +((-4313 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) (-543) (-543) (-965 |#1|) (-965 |#2|)) (T -966)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-4 *2 (-965 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-965 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3327 (($ (-1113 |#1| |#2|)) 11)) (-3454 (((-1113 |#1| |#2|) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#2| $ (-233 |#1| |#2|)) 16)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL))) +(((-967 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3327 ($ (-1113 |#1| |#2|))) (-15 -3454 ((-1113 |#1| |#2|) $)) (-15 -4154 (|#2| $ (-233 |#1| |#2|))))) (-893) (-356)) (T -967)) +((-3327 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)) (-5 *1 (-967 *3 *4)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-893)) (-4 *2 (-356)) (-5 *1 (-967 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3327 ($ (-1113 |#1| |#2|))) (-15 -3454 ((-1113 |#1| |#2|) $)) (-15 -4154 (|#2| $ (-233 |#1| |#2|))))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-968) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $))))) (T -968)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3330 (($ $) 46)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-4188 (((-749) $) 45)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-3329 ((|#1| $) 44)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3332 ((|#1| |#1| $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3331 ((|#1| $) 47)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-3328 ((|#1| $) 43)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-969 |#1|) (-138) (-1183)) (T -969)) +((-3332 (*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3332 (|t#1| |t#1| $)) (-15 -3331 (|t#1| $)) (-15 -3330 ($ $)) (-15 -4188 ((-749) $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 12)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3333 (($ |#1| |#1| |#1| |#1|) 16)) (-2497 (((-112) $) NIL)) (-3462 ((|#1| $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3334 ((|#1| $) 15)) (-3335 ((|#1| $) 14)) (-3336 ((|#1| $) 13)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3737 ((|#1| $) NIL (|has| |#1| (-1032)))) (-2986 (($) 8 T CONST)) (-2992 (($) 10 T CONST)) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))))) +(((-970 |#1|) (-972 |#1|) (-170)) (T -970)) +NIL +(-972 |#1|) +((-3534 (((-112) $) 42)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 43)) (-3352 (((-3 (-400 (-536)) "failed") $) 78)) (-3351 (((-112) $) 72)) (-3350 (((-400 (-536)) $) 76)) (-2497 (((-112) $) 41)) (-3462 ((|#2| $) 22)) (-4313 (($ (-1 |#2| |#2|) $) 19)) (-2729 (($ $) 61)) (-4165 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4325 (((-525) $) 67)) (-3337 (($ $) 17)) (-4312 (((-838) $) 56) (($ (-536)) 38) (($ |#2|) 36) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 10)) (-3737 ((|#2| $) 71)) (-3382 (((-112) $ $) 25)) (-3013 (((-112) $ $) 69)) (-4192 (($ $) 29) (($ $ $) 28)) (-4194 (($ $ $) 26)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) +(((-971 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 -2729 (|#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -2497 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-972 |#2|) (-170)) (T -971)) +((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-971 *3 *4)) (-4 *3 (-972 *4))))) +(-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 -2729 (|#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -2497 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 116 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 114 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 113)) (-3502 (((-536) $) 117 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 115 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 112)) (-2357 (((-667 (-536)) (-667 $)) 87 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 86 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 85) (((-667 |#1|) (-667 $)) 84)) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 77)) (-3352 (((-3 (-400 (-536)) "failed") $) 73 (|has| |#1| (-535)))) (-3351 (((-112) $) 75 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 74 (|has| |#1| (-535)))) (-3333 (($ |#1| |#1| |#1| |#1|) 78)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 79)) (-3672 (($ $ $) 66 (|has| |#1| (-825)))) (-3673 (($ $ $) 65 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 88)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 70 (|has| |#1| (-356)))) (-3334 ((|#1| $) 80)) (-3335 ((|#1| $) 81)) (-3336 ((|#1| $) 82)) (-3589 (((-1091) $) 10)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 90 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 89 (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-4165 (($ $) 111 (|has| |#1| (-227))) (($ $ (-749)) 109 (|has| |#1| (-227))) (($ $ (-1147)) 107 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 106 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 105 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 104 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4325 (((-525) $) 71 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 83)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 60 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3737 ((|#1| $) 76 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 110 (|has| |#1| (-227))) (($ $ (-749)) 108 (|has| |#1| (-227))) (($ $ (-1147)) 103 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 102 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 101 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 100 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2891 (((-112) $ $) 63 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 62 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 64 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 61 (|has| |#1| (-825)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 69 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-536))) 68 (|has| |#1| (-356))) (($ (-400 (-536)) $) 67 (|has| |#1| (-356))))) +(((-972 |#1|) (-138) (-170)) (T -972)) +((-3337 (*1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3333 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536)))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3337 ($ $)) (-15 -3336 (|t#1| $)) (-15 -3335 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3333 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4001 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 #1#) |has| |#1| (-356)) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-356)) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-356)) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-972 |#2|) (-170) (-972 |#4|) (-170)) (T -973)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-972 *6)) (-5 *1 (-973 *4 *5 *2 *6)) (-4 *4 (-972 *5))))) +(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3330 (($ $) 20)) (-3338 (($ (-620 |#1|)) 29)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-4188 (((-749) $) 22)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 24)) (-3965 (($ |#1| $) 15)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3329 ((|#1| $) 23)) (-1332 ((|#1| $) 19)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3332 ((|#1| |#1| $) 14)) (-3757 (((-112) $) 17)) (-3923 (($) NIL)) (-3331 ((|#1| $) 18)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-3328 ((|#1| $) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-974 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -3338 ($ (-620 |#1|))))) (-1072)) (T -974)) +((-3338 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-974 *3))))) +(-13 (-969 |#1|) (-10 -8 (-15 -3338 ($ (-620 |#1|))))) +((-3365 (($ $) 12)) (-3339 (($ $ (-536)) 13))) +(((-975 |#1|) (-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -3339 (|#1| |#1| (-536)))) (-976)) (T -975)) +NIL +(-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -3339 (|#1| |#1| (-536)))) +((-3365 (($ $) 6)) (-3339 (($ $ (-536)) 7)) (** (($ $ (-400 (-536))) 8))) (((-976) (-138)) (T -976)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-550))))) (-1893 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-550)))) (-1745 (*1 *1 *1) (-4 *1 (-976)))) -(-13 (-10 -8 (-15 -1745 ($ $)) (-15 -1893 ($ $ (-550))) (-15 ** ($ $ (-400 (-550)))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3897 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-3050 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3953 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-3992 (((-667 (-400 |#2|)) (-1228 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-2223 (((-400 |#2|) $) NIL)) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| (-400 |#2|) (-342)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2207 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1611 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3828 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-2215 (((-112)) NIL)) (-3676 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| (-400 |#2|) (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| (-400 |#2|) (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-550))))) (((-400 |#2|) $) NIL)) (-2821 (($ (-1228 (-400 |#2|)) (-1228 $)) NIL) (($ (-1228 (-400 |#2|))) 70) (($ (-1228 |#2|) |#2|) NIL)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-3455 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2766 (((-667 (-400 |#2|)) $ (-1228 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-400 |#2|))) (|:| |vec| (-1228 (-400 |#2|)))) (-667 $) (-1228 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-3662 (((-1228 $) (-1228 $)) NIL)) (-2924 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-1537 (((-3 $ "failed") $) NIL)) (-3142 (((-623 (-623 |#1|))) NIL (|has| |#1| (-361)))) (-3758 (((-112) |#1| |#1|) NIL)) (-3398 (((-895)) NIL)) (-1864 (($) NIL (|has| (-400 |#2|) (-361)))) (-3910 (((-112)) NIL)) (-2283 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-3429 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| (-400 |#2|) (-356)))) (-2731 (($ $) NIL)) (-2664 (($) NIL (|has| (-400 |#2|) (-342)))) (-4139 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-4322 (($ $ (-749)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-1568 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2603 (((-895) $) NIL (|has| (-400 |#2|) (-342))) (((-811 (-895)) $) NIL (|has| (-400 |#2|) (-342)))) (-2419 (((-112) $) NIL)) (-3101 (((-749)) NIL)) (-2938 (((-1228 $) (-1228 $)) NIL)) (-1571 (((-400 |#2|) $) NIL)) (-1804 (((-623 (-926 |#1|)) (-1145)) NIL (|has| |#1| (-356)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2835 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-4073 (((-895) $) NIL (|has| (-400 |#2|) (-361)))) (-2910 ((|#3| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2369 (((-1127) $) NIL)) (-1379 (((-667 (-400 |#2|))) 52)) (-3046 (((-667 (-400 |#2|))) 51)) (-1619 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2252 (($ (-1228 |#2|) |#2|) 71)) (-4305 (((-667 (-400 |#2|))) 50)) (-1787 (((-667 (-400 |#2|))) 49)) (-3603 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4090 (((-2 (|:| |num| (-1228 |#2|)) (|:| |den| |#2|)) $) 77)) (-2560 (((-1228 $)) 46)) (-2892 (((-1228 $)) 45)) (-2970 (((-112) $) NIL)) (-4298 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2463 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3690 (($ (-895)) NIL (|has| (-400 |#2|) (-361)))) (-2043 (((-3 |#2| "failed")) 63)) (-3445 (((-1089) $) NIL)) (-1646 (((-749)) NIL)) (-2256 (($) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3260 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| (-400 |#2|) (-342)))) (-1735 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1988 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-2757 ((|#1| $ |#1| |#1|) NIL)) (-1834 (((-3 |#2| "failed")) 62)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3563 (((-400 |#2|) (-1228 $)) NIL) (((-400 |#2|)) 42)) (-2899 (((-749) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-2798 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2871 (((-667 (-400 |#2|)) (-1228 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3832 ((|#3|) 53)) (-2038 (($) NIL (|has| (-400 |#2|) (-342)))) (-2999 (((-1228 (-400 |#2|)) $ (-1228 $)) NIL) (((-667 (-400 |#2|)) (-1228 $) (-1228 $)) NIL) (((-1228 (-400 |#2|)) $) 72) (((-667 (-400 |#2|)) (-1228 $)) NIL)) (-2451 (((-1228 (-400 |#2|)) $) NIL) (($ (-1228 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-342)))) (-2598 (((-1228 $) (-1228 $)) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-550))) NIL (-1489 (|has| (-400 |#2|) (-1012 (-400 (-550)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1613 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-3359 ((|#3| $) NIL)) (-3091 (((-749)) NIL)) (-3071 (((-112)) 60)) (-3872 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2206 (((-1228 $)) 121)) (-1819 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3597 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2687 (((-112)) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1145))))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1489 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) NIL (|has| (-400 |#2|) (-356))))) -(((-977 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1186) (-1204 |#1|) (-1204 (-400 |#2|)) (-400 |#2|) (-749)) (T -977)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-536))))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-536)))) (-3365 (*1 *1 *1) (-4 *1 (-976)))) +(-13 (-10 -8 (-15 -3365 ($ $)) (-15 -3339 ($ $ (-536))) (-15 ** ($ $ (-400 (-536)))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2173 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-3684 (((-400 |#2|) $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) NIL) (($ (-1229 (-400 |#2|))) 70) (($ (-1229 |#2|) |#2|) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-1763 (((-1229 $) (-1229 $)) NIL)) (-4197 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-1750 (((-620 (-620 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2888 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-400 |#2|) (-356)))) (-3852 (($ $) NIL)) (-3161 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) NIL (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) NIL (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) NIL)) (-3731 (((-749)) NIL)) (-1764 (((-1229 $) (-1229 $)) NIL)) (-3462 (((-400 |#2|) $) NIL)) (-1751 (((-620 (-920 |#1|)) (-1147)) NIL (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) NIL (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) NIL)) (-1759 (((-667 (-400 |#2|))) 52)) (-1761 (((-667 (-400 |#2|))) 51)) (-2729 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 71)) (-1760 (((-667 (-400 |#2|))) 50)) (-1762 (((-667 (-400 |#2|))) 49)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 77)) (-1768 (((-1229 $)) 46)) (-4273 (((-1229 $)) 45)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3799 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) 63)) (-3589 (((-1091) $) NIL)) (-1777 (((-749)) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) 62)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) NIL) (((-400 |#2|)) 42)) (-1882 (((-749) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 53)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 |#2|)) $) 72) (((-667 (-400 |#2|)) (-1229 $)) NIL)) (-4325 (((-1229 (-400 |#2|)) $) NIL) (($ (-1229 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3030 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) NIL)) (-3456 (((-749)) NIL)) (-1774 (((-112)) 60)) (-1773 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2123 (((-1229 $)) 121)) (-2172 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) NIL (|has| (-400 |#2|) (-356))))) +(((-977 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1188) (-1205 |#1|) (-1205 (-400 |#2|)) (-400 |#2|) (-749)) (T -977)) NIL (-335 |#1| |#2| |#3|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-2912 (((-623 (-550)) $) 54)) (-3780 (($ (-623 (-550))) 62)) (-3104 (((-550) $) 40 (|has| (-550) (-300)))) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL (|has| (-550) (-798)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) 49) (((-3 (-1145) "failed") $) NIL (|has| (-550) (-1012 (-1145)))) (((-3 (-400 (-550)) "failed") $) 47 (|has| (-550) (-1012 (-550)))) (((-3 (-550) "failed") $) 49 (|has| (-550) (-1012 (-550))))) (-2202 (((-550) $) NIL) (((-1145) $) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) NIL (|has| (-550) (-1012 (-550)))) (((-550) $) NIL (|has| (-550) (-1012 (-550))))) (-3455 (($ $ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-1864 (($) NIL (|has| (-550) (-535)))) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-1818 (((-623 (-550)) $) 60)) (-2694 (((-112) $) NIL (|has| (-550) (-798)))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (|has| (-550) (-860 (-550)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (|has| (-550) (-860 (-372))))) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL)) (-4153 (((-550) $) 37)) (-1620 (((-3 $ "failed") $) NIL (|has| (-550) (-1120)))) (-1712 (((-112) $) NIL (|has| (-550) (-798)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-550) (-825)))) (-2392 (($ (-1 (-550) (-550)) $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL)) (-2463 (($) NIL (|has| (-550) (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1724 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) 42)) (-3344 (((-1125 (-550)) $) 59)) (-4023 (($ (-623 (-550)) (-623 (-550))) 63)) (-3925 (((-550) $) 53 (|has| (-550) (-535)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| (-550) (-883)))) (-1735 (((-411 $) $) NIL)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1553 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1145)) (-623 (-550))) NIL (|has| (-550) (-505 (-1145) (-550)))) (($ $ (-1145) (-550)) NIL (|has| (-550) (-505 (-1145) (-550))))) (-1988 (((-749) $) NIL)) (-2757 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $) 11 (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3608 (($ $) NIL)) (-4163 (((-550) $) 39)) (-2230 (((-623 (-550)) $) 61)) (-2451 (((-866 (-550)) $) NIL (|has| (-550) (-596 (-866 (-550))))) (((-866 (-372)) $) NIL (|has| (-550) (-596 (-866 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-996))) (((-219) $) NIL (|has| (-550) (-996)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-883))))) (-2233 (((-837) $) 77) (($ (-550)) 43) (($ $) NIL) (($ (-400 (-550))) 20) (($ (-550)) 43) (($ (-1145)) NIL (|has| (-550) (-1012 (-1145)))) (((-400 (-550)) $) 18)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-550) (-883))) (|has| (-550) (-143))))) (-3091 (((-749)) 9)) (-2967 (((-550) $) 51 (|has| (-550) (-535)))) (-1819 (((-112) $ $) NIL)) (-4188 (($ $) NIL (|has| (-550) (-798)))) (-2688 (($) 10 T CONST)) (-2700 (($) 12 T CONST)) (-1901 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1145)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| (-550) (-874 (-1145)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2324 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2264 (((-112) $ $) 14)) (-2313 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2290 (((-112) $ $) 33 (|has| (-550) (-825)))) (-2382 (($ $ $) 29) (($ (-550) (-550)) 31)) (-2370 (($ $) 15) (($ $ $) 23)) (-2358 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 25) (($ $ $) 27) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) 25) (($ $ (-550)) NIL))) -(((-978 |#1|) (-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -2912 ((-623 (-550)) $)) (-15 -3344 ((-1125 (-550)) $)) (-15 -1818 ((-623 (-550)) $)) (-15 -2230 ((-623 (-550)) $)) (-15 -3780 ($ (-623 (-550)))) (-15 -4023 ($ (-623 (-550)) (-623 (-550)))))) (-550)) (T -978)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) (-4023 (*1 *1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(-13 (-966 (-550)) (-10 -8 (-15 -2233 ((-400 (-550)) $)) (-15 -1724 ((-400 (-550)) $)) (-15 -2912 ((-623 (-550)) $)) (-15 -3344 ((-1125 (-550)) $)) (-15 -1818 ((-623 (-550)) $)) (-15 -2230 ((-623 (-550)) $)) (-15 -3780 ($ (-623 (-550)))) (-15 -4023 ($ (-623 (-550)) (-623 (-550)))))) -((-3120 (((-52) (-400 (-550)) (-550)) 9))) -(((-979) (-10 -7 (-15 -3120 ((-52) (-400 (-550)) (-550))))) (T -979)) -((-3120 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-550))) (-5 *4 (-550)) (-5 *2 (-52)) (-5 *1 (-979))))) -(-10 -7 (-15 -3120 ((-52) (-400 (-550)) (-550)))) -((-3828 (((-550)) 13)) (-3623 (((-550)) 16)) (-4044 (((-1233) (-550)) 15)) (-2640 (((-550) (-550)) 17) (((-550)) 12))) -(((-980) (-10 -7 (-15 -2640 ((-550))) (-15 -3828 ((-550))) (-15 -2640 ((-550) (-550))) (-15 -4044 ((-1233) (-550))) (-15 -3623 ((-550))))) (T -980)) -((-3623 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-980)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980)))) (-3828 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980)))) (-2640 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980))))) -(-10 -7 (-15 -2640 ((-550))) (-15 -3828 ((-550))) (-15 -2640 ((-550) (-550))) (-15 -4044 ((-1233) (-550))) (-15 -3623 ((-550)))) -((-3452 (((-411 |#1|) |#1|) 41)) (-1735 (((-411 |#1|) |#1|) 40))) -(((-981 |#1|) (-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1|))) (-1204 (-400 (-550)))) (T -981)) -((-3452 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1204 (-400 (-550)))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1204 (-400 (-550))))))) -(-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1|))) -((-3192 (((-3 (-400 (-550)) "failed") |#1|) 15)) (-2593 (((-112) |#1|) 14)) (-3169 (((-400 (-550)) |#1|) 10))) -(((-982 |#1|) (-10 -7 (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|))) (-1012 (-400 (-550)))) (T -982)) -((-3192 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2)))) (-2593 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-550)))))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) -(-10 -7 (-15 -3169 ((-400 (-550)) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -3192 ((-3 (-400 (-550)) "failed") |#1|))) -((-2409 ((|#2| $ "value" |#2|) 12)) (-2757 ((|#2| $ "value") 10)) (-1977 (((-112) $ $) 18))) -(((-983 |#1| |#2|) (-10 -8 (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -1977 ((-112) |#1| |#1|)) (-15 -2757 (|#2| |#1| "value"))) (-984 |#2|) (-1182)) (T -983)) -NIL -(-10 -8 (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -1977 ((-112) |#1| |#1|)) (-15 -2757 (|#2| |#1| "value"))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2991 (($) 7 T CONST)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47)) (-1456 (((-550) $ $) 44)) (-2320 (((-112) $) 46)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-984 |#1|) (-138) (-1182)) (T -984)) -((-4075 (*1 *2 *1) (-12 (-4 *3 (-1182)) (-5 *2 (-623 *1)) (-4 *1 (-984 *3)))) (-4079 (*1 *2 *1) (-12 (-4 *3 (-1182)) (-5 *2 (-623 *1)) (-4 *1 (-984 *3)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1182)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1182)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-623 *3)))) (-1456 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-550)))) (-1977 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-3687 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *1)) (|has| *1 (-6 -4345)) (-4 *1 (-984 *3)) (-4 *3 (-1182)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4345)) (-4 *1 (-984 *2)) (-4 *2 (-1182)))) (-1629 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-984 *2)) (-4 *2 (-1182))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -4075 ((-623 $) $)) (-15 -4079 ((-623 $) $)) (-15 -1515 ((-112) $)) (-15 -1337 (|t#1| $)) (-15 -2757 (|t#1| $ "value")) (-15 -2320 ((-112) $)) (-15 -2951 ((-623 |t#1|) $)) (-15 -1456 ((-550) $ $)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -1977 ((-112) $ $)) (-15 -3687 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4345)) (PROGN (-15 -4202 ($ $ (-623 $))) (-15 -2409 (|t#1| $ "value" |t#1|)) (-15 -1629 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-1745 (($ $) 9) (($ $ (-895)) 43) (($ (-400 (-550))) 13) (($ (-550)) 15)) (-3217 (((-3 $ "failed") (-1141 $) (-895) (-837)) 23) (((-3 $ "failed") (-1141 $) (-895)) 28)) (-1893 (($ $ (-550)) 49)) (-3091 (((-749)) 17)) (-1759 (((-623 $) (-1141 $)) NIL) (((-623 $) (-1141 (-400 (-550)))) 54) (((-623 $) (-1141 (-550))) 59) (((-623 $) (-926 $)) 63) (((-623 $) (-926 (-400 (-550)))) 67) (((-623 $) (-926 (-550))) 71)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) 47))) -(((-985 |#1|) (-10 -8 (-15 -1745 (|#1| (-550))) (-15 -1745 (|#1| (-400 (-550)))) (-15 -1745 (|#1| |#1| (-895))) (-15 -1759 ((-623 |#1|) (-926 (-550)))) (-15 -1759 ((-623 |#1|) (-926 (-400 (-550))))) (-15 -1759 ((-623 |#1|) (-926 |#1|))) (-15 -1759 ((-623 |#1|) (-1141 (-550)))) (-15 -1759 ((-623 |#1|) (-1141 (-400 (-550))))) (-15 -1759 ((-623 |#1|) (-1141 |#1|))) (-15 -3217 ((-3 |#1| "failed") (-1141 |#1|) (-895))) (-15 -3217 ((-3 |#1| "failed") (-1141 |#1|) (-895) (-837))) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -1893 (|#1| |#1| (-550))) (-15 -1745 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -3091 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895)))) (-986)) (T -985)) -((-3091 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-985 *3)) (-4 *3 (-986))))) -(-10 -8 (-15 -1745 (|#1| (-550))) (-15 -1745 (|#1| (-400 (-550)))) (-15 -1745 (|#1| |#1| (-895))) (-15 -1759 ((-623 |#1|) (-926 (-550)))) (-15 -1759 ((-623 |#1|) (-926 (-400 (-550))))) (-15 -1759 ((-623 |#1|) (-926 |#1|))) (-15 -1759 ((-623 |#1|) (-1141 (-550)))) (-15 -1759 ((-623 |#1|) (-1141 (-400 (-550))))) (-15 -1759 ((-623 |#1|) (-1141 |#1|))) (-15 -3217 ((-3 |#1| "failed") (-1141 |#1|) (-895))) (-15 -3217 ((-3 |#1| "failed") (-1141 |#1|) (-895) (-837))) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -1893 (|#1| |#1| (-550))) (-15 -1745 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -3091 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 87)) (-3050 (($ $) 88)) (-3953 (((-112) $) 90)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 107)) (-2207 (((-411 $) $) 108)) (-1745 (($ $) 71) (($ $ (-895)) 57) (($ (-400 (-550))) 56) (($ (-550)) 55)) (-1611 (((-112) $ $) 98)) (-4303 (((-550) $) 124)) (-2991 (($) 17 T CONST)) (-3217 (((-3 $ "failed") (-1141 $) (-895) (-837)) 65) (((-3 $ "failed") (-1141 $) (-895)) 64)) (-2288 (((-3 (-550) "failed") $) 83 (|has| (-400 (-550)) (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 81 (|has| (-400 (-550)) (-1012 (-400 (-550))))) (((-3 (-400 (-550)) "failed") $) 79)) (-2202 (((-550) $) 84 (|has| (-400 (-550)) (-1012 (-550)))) (((-400 (-550)) $) 82 (|has| (-400 (-550)) (-1012 (-400 (-550))))) (((-400 (-550)) $) 78)) (-1420 (($ $ (-837)) 54)) (-3579 (($ $ (-837)) 53)) (-3455 (($ $ $) 102)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 101)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 96)) (-1568 (((-112) $) 109)) (-2694 (((-112) $) 122)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 70)) (-1712 (((-112) $) 123)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 105)) (-2793 (($ $ $) 121)) (-2173 (($ $ $) 120)) (-4142 (((-3 (-1141 $) "failed") $) 66)) (-2476 (((-3 (-837) "failed") $) 68)) (-2745 (((-3 (-1141 $) "failed") $) 67)) (-3231 (($ (-623 $)) 94) (($ $ $) 93)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 110)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 95)) (-3260 (($ (-623 $)) 92) (($ $ $) 91)) (-1735 (((-411 $) $) 106)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 103)) (-3409 (((-3 $ "failed") $ $) 86)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 97)) (-1988 (((-749) $) 99)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 100)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 114) (($ $) 85) (($ (-400 (-550))) 80) (($ (-550)) 77) (($ (-400 (-550))) 74)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 89)) (-2154 (((-400 (-550)) $ $) 52)) (-1759 (((-623 $) (-1141 $)) 63) (((-623 $) (-1141 (-400 (-550)))) 62) (((-623 $) (-1141 (-550))) 61) (((-623 $) (-926 $)) 60) (((-623 $) (-926 (-400 (-550)))) 59) (((-623 $) (-926 (-550))) 58)) (-4188 (($ $) 125)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 118)) (-2302 (((-112) $ $) 117)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 119)) (-2290 (((-112) $ $) 116)) (-2382 (($ $ $) 115)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 111) (($ $ (-400 (-550))) 69)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ (-400 (-550)) $) 113) (($ $ (-400 (-550))) 112) (($ (-550) $) 76) (($ $ (-550)) 75) (($ (-400 (-550)) $) 73) (($ $ (-400 (-550))) 72))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3345 (((-620 (-536)) $) 54)) (-3341 (($ (-620 (-536))) 62)) (-3459 (((-536) $) 40 (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) 49) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 47 (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) 49 (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3343 (((-620 (-536)) $) 60)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) 37)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) 42)) (-3344 (((-1124 (-536)) $) 59)) (-3340 (($ (-620 (-536)) (-620 (-536))) 63)) (-3460 (((-536) $) 53 (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) 11 (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) 39)) (-3342 (((-620 (-536)) $) 61)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) 77) (($ (-536)) 43) (($ $) NIL) (($ (-400 (-536))) 20) (($ (-536)) 43) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) 18)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) 9)) (-3461 (((-536) $) 51 (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) 10 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) 14)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) 33 (|has| (-536) (-825)))) (-4303 (($ $ $) 29) (($ (-536) (-536)) 31)) (-4192 (($ $) 15) (($ $ $) 23)) (-4194 (($ $ $) 21)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 25) (($ $ $) 27) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) 25) (($ $ (-536)) NIL))) +(((-978 |#1|) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -3345 ((-620 (-536)) $)) (-15 -3344 ((-1124 (-536)) $)) (-15 -3343 ((-620 (-536)) $)) (-15 -3342 ((-620 (-536)) $)) (-15 -3341 ($ (-620 (-536)))) (-15 -3340 ($ (-620 (-536)) (-620 (-536)))))) (-536)) (T -978)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3340 (*1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -3345 ((-620 (-536)) $)) (-15 -3344 ((-1124 (-536)) $)) (-15 -3343 ((-620 (-536)) $)) (-15 -3342 ((-620 (-536)) $)) (-15 -3341 ($ (-620 (-536)))) (-15 -3340 ($ (-620 (-536)) (-620 (-536)))))) +((-3346 (((-51) (-400 (-536)) (-536)) 9))) +(((-979) (-10 -7 (-15 -3346 ((-51) (-400 (-536)) (-536))))) (T -979)) +((-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-536))) (-5 *4 (-536)) (-5 *2 (-51)) (-5 *1 (-979))))) +(-10 -7 (-15 -3346 ((-51) (-400 (-536)) (-536)))) +((-3466 (((-536)) 13)) (-3349 (((-536)) 16)) (-3348 (((-1235) (-536)) 15)) (-3347 (((-536) (-536)) 17) (((-536)) 12))) +(((-980) (-10 -7 (-15 -3347 ((-536))) (-15 -3466 ((-536))) (-15 -3347 ((-536) (-536))) (-15 -3348 ((-1235) (-536))) (-15 -3349 ((-536))))) (T -980)) +((-3349 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-980)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3466 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3347 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) +(-10 -7 (-15 -3347 ((-536))) (-15 -3466 ((-536))) (-15 -3347 ((-536) (-536))) (-15 -3348 ((-1235) (-536))) (-15 -3349 ((-536)))) +((-4088 (((-398 |#1|) |#1|) 41)) (-4087 (((-398 |#1|) |#1|) 40))) +(((-981 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|))) (-1205 (-400 (-536)))) (T -981)) +((-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536))))))) +(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|))) +((-3352 (((-3 (-400 (-536)) "failed") |#1|) 15)) (-3351 (((-112) |#1|) 14)) (-3350 (((-400 (-536)) |#1|) 10))) +(((-982 |#1|) (-10 -7 (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|))) (-1012 (-400 (-536)))) (T -982)) +((-3352 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2)))) (-3351 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-536)))))) (-3350 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) +(-10 -7 (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|))) +((-4142 ((|#2| $ "value" |#2|) 12)) (-4154 ((|#2| $ "value") 10)) (-3356 (((-112) $ $) 18))) +(((-983 |#1| |#2|) (-10 -8 (-15 -4142 (|#2| |#1| "value" |#2|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -4154 (|#2| |#1| "value"))) (-984 |#2|) (-1183)) (T -983)) +NIL +(-10 -8 (-15 -4142 (|#2| |#1| "value" |#2|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -4154 (|#2| |#1| "value"))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ "value") 47)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-984 |#1|) (-138) (-1183)) (T -984)) +((-3871 (*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-3357 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-536)))) (-3356 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3355 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *1)) (|has| *1 (-6 -4349)) (-4 *1 (-984 *3)) (-4 *3 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-3353 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183))))) +(-13 (-481 |t#1|) (-10 -8 (-15 -3871 ((-620 $) $)) (-15 -3359 ((-620 $) $)) (-15 -3876 ((-112) $)) (-15 -3756 (|t#1| $)) (-15 -4154 (|t#1| $ "value")) (-15 -3991 ((-112) $)) (-15 -3358 ((-620 |t#1|) $)) (-15 -3357 ((-536) $ $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3356 ((-112) $ $)) (-15 -3355 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -3354 ($ $ (-620 $))) (-15 -4142 (|t#1| $ "value" |t#1|)) (-15 -3353 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-3365 (($ $) 9) (($ $ (-893)) 43) (($ (-400 (-536))) 13) (($ (-536)) 15)) (-3529 (((-3 $ "failed") (-1141 $) (-893) (-838)) 23) (((-3 $ "failed") (-1141 $) (-893)) 28)) (-3339 (($ $ (-536)) 49)) (-3456 (((-749)) 17)) (-3530 (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 (-400 (-536)))) 54) (((-620 $) (-1141 (-536))) 59) (((-620 $) (-920 $)) 63) (((-620 $) (-920 (-400 (-536)))) 67) (((-620 $) (-920 (-536))) 71)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) 47))) +(((-985 |#1|) (-10 -8 (-15 -3365 (|#1| (-536))) (-15 -3365 (|#1| (-400 (-536)))) (-15 -3365 (|#1| |#1| (-893))) (-15 -3530 ((-620 |#1|) (-920 (-536)))) (-15 -3530 ((-620 |#1|) (-920 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-920 |#1|))) (-15 -3530 ((-620 |#1|) (-1141 (-536)))) (-15 -3530 ((-620 |#1|) (-1141 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-1141 |#1|))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893) (-838))) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3339 (|#1| |#1| (-536))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) (-986)) (T -985)) +((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-985 *3)) (-4 *3 (-986))))) +(-10 -8 (-15 -3365 (|#1| (-536))) (-15 -3365 (|#1| (-400 (-536)))) (-15 -3365 (|#1| |#1| (-893))) (-15 -3530 ((-620 |#1|) (-920 (-536)))) (-15 -3530 ((-620 |#1|) (-920 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-920 |#1|))) (-15 -3530 ((-620 |#1|) (-1141 (-536)))) (-15 -3530 ((-620 |#1|) (-1141 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-1141 |#1|))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893) (-838))) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3339 (|#1| |#1| (-536))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 87)) (-2173 (($ $) 88)) (-2171 (((-112) $) 90)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 107)) (-4324 (((-398 $) $) 108)) (-3365 (($ $) 71) (($ $ (-893)) 57) (($ (-400 (-536))) 56) (($ (-536)) 55)) (-1700 (((-112) $ $) 98)) (-3981 (((-536) $) 124)) (-3891 (($) 17 T CONST)) (-3529 (((-3 $ "failed") (-1141 $) (-893) (-838)) 65) (((-3 $ "failed") (-1141 $) (-893)) 64)) (-3503 (((-3 (-536) #1="failed") $) 83 (|has| (-400 (-536)) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 81 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-3 (-400 (-536)) #1#) $) 79)) (-3502 (((-536) $) 84 (|has| (-400 (-536)) (-1012 (-536)))) (((-400 (-536)) $) 82 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-400 (-536)) $) 78)) (-3361 (($ $ (-838)) 54)) (-3360 (($ $ (-838)) 53)) (-2889 (($ $ $) 102)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 101)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 96)) (-4081 (((-112) $) 109)) (-3532 (((-112) $) 122)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 70)) (-3533 (((-112) $) 123)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 105)) (-3672 (($ $ $) 121)) (-3673 (($ $ $) 120)) (-3362 (((-3 (-1141 $) "failed") $) 66)) (-3364 (((-3 (-838) "failed") $) 68)) (-3363 (((-3 (-1141 $) "failed") $) 67)) (-2008 (($ (-620 $)) 94) (($ $ $) 93)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 110)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 95)) (-3490 (($ (-620 $)) 92) (($ $ $) 91)) (-4087 (((-398 $) $) 106)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 103)) (-3815 (((-3 $ "failed") $ $) 86)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 97)) (-1699 (((-749) $) 99)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 100)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 114) (($ $) 85) (($ (-400 (-536))) 80) (($ (-536)) 77) (($ (-400 (-536))) 74)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 89)) (-4124 (((-400 (-536)) $ $) 52)) (-3530 (((-620 $) (-1141 $)) 63) (((-620 $) (-1141 (-400 (-536)))) 62) (((-620 $) (-1141 (-536))) 61) (((-620 $) (-920 $)) 60) (((-620 $) (-920 (-400 (-536)))) 59) (((-620 $) (-920 (-536))) 58)) (-3737 (($ $) 125)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 118)) (-2892 (((-112) $ $) 117)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 119)) (-3013 (((-112) $ $) 116)) (-4303 (($ $ $) 115)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 111) (($ $ (-400 (-536))) 69)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ (-400 (-536)) $) 113) (($ $ (-400 (-536))) 112) (($ (-536) $) 76) (($ $ (-536)) 75) (($ (-400 (-536)) $) 73) (($ $ (-400 (-536))) 72))) (((-986) (-138)) (T -986)) -((-1745 (*1 *1 *1) (-4 *1 (-986))) (-2476 (*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-837)))) (-2745 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-4142 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-3217 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-895)) (-5 *4 (-837)) (-4 *1 (-986)))) (-3217 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-895)) (-4 *1 (-986)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-623 *1)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1141 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1141 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-986)) (-5 *2 (-623 *1)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-926 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) (-1745 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-895)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-986)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-986)))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-837)))) (-3579 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-837)))) (-2154 (*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-550)))))) -(-13 (-145) (-823) (-170) (-356) (-404 (-400 (-550))) (-38 (-550)) (-38 (-400 (-550))) (-976) (-10 -8 (-15 -2476 ((-3 (-837) "failed") $)) (-15 -2745 ((-3 (-1141 $) "failed") $)) (-15 -4142 ((-3 (-1141 $) "failed") $)) (-15 -3217 ((-3 $ "failed") (-1141 $) (-895) (-837))) (-15 -3217 ((-3 $ "failed") (-1141 $) (-895))) (-15 -1759 ((-623 $) (-1141 $))) (-15 -1759 ((-623 $) (-1141 (-400 (-550))))) (-15 -1759 ((-623 $) (-1141 (-550)))) (-15 -1759 ((-623 $) (-926 $))) (-15 -1759 ((-623 $) (-926 (-400 (-550))))) (-15 -1759 ((-623 $) (-926 (-550)))) (-15 -1745 ($ $ (-895))) (-15 -1745 ($ $)) (-15 -1745 ($ (-400 (-550)))) (-15 -1745 ($ (-550))) (-15 -1420 ($ $ (-837))) (-15 -3579 ($ $ (-837))) (-15 -2154 ((-400 (-550)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 #1=(-550)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-837)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-404 (-400 (-550))) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-894) . T) ((-976) . T) ((-1012 (-400 (-550))) . T) ((-1012 (-550)) |has| (-400 (-550)) (-1012 (-550))) ((-1027 #0#) . T) ((-1027 #1#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-3997 (((-2 (|:| |ans| |#2|) (|:| -3490 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3997 ((-2 (|:| |ans| |#2|) (|:| -3490 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-27) (-423 |#1|))) (T -987)) -((-3997 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1145)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-623 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1167) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-550)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3490 *4) (|:| |sol?| (-112)))) (-5 *1 (-987 *8 *4))))) -(-10 -7 (-15 -3997 ((-2 (|:| |ans| |#2|) (|:| -3490 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3587 (((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-988 |#1| |#2|) (-10 -7 (-15 -3587 ((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550))) (-13 (-1167) (-27) (-423 |#1|))) (T -988)) -((-3587 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1145)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-623 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1167) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-550)) (-5 *2 (-623 *4)) (-5 *1 (-988 *8 *4))))) -(-10 -7 (-15 -3587 ((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1145) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -3230 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2010 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)) 30)) (-3193 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-1380 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63))) -(((-989 |#1| |#2|) (-10 -7 (-15 -3193 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -1380 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -2010 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1012 (-550))) (-1204 |#1|)) (T -989)) -((-2010 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1204 *6)) (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-550)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1309 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-989 *6 *3)))) (-1380 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-989 *4 *5)) (-5 *3 (-400 *5)))) (-3193 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -2815 *6))) (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3193 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -1380 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -2010 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) -((-3924 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3516 (((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3924 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3516 ((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-550))) (-1204 |#1|)) (T -990)) -((-3516 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) (-5 *2 (-623 (-400 *5))) (-5 *1 (-990 *4 *5)) (-5 *3 (-400 *5)))) (-3924 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2815 *6))) (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3924 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2815 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3516 ((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) -((-3065 (((-1 |#1|) (-623 (-2 (|:| -1337 |#1|) (|:| -3609 (-550))))) 37)) (-2783 (((-1 |#1|) (-1071 |#1|)) 45)) (-1606 (((-1 |#1|) (-1228 |#1|) (-1228 (-550)) (-550)) 34))) -(((-991 |#1|) (-10 -7 (-15 -2783 ((-1 |#1|) (-1071 |#1|))) (-15 -3065 ((-1 |#1|) (-623 (-2 (|:| -1337 |#1|) (|:| -3609 (-550)))))) (-15 -1606 ((-1 |#1|) (-1228 |#1|) (-1228 (-550)) (-550)))) (-1069)) (T -991)) -((-1606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1228 *6)) (-5 *4 (-1228 (-550))) (-5 *5 (-550)) (-4 *6 (-1069)) (-5 *2 (-1 *6)) (-5 *1 (-991 *6)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -1337 *4) (|:| -3609 (-550))))) (-4 *4 (-1069)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-1069)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) -(-10 -7 (-15 -2783 ((-1 |#1|) (-1071 |#1|))) (-15 -3065 ((-1 |#1|) (-623 (-2 (|:| -1337 |#1|) (|:| -3609 (-550)))))) (-15 -1606 ((-1 |#1|) (-1228 |#1|) (-1228 (-550)) (-550)))) -((-2603 (((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2603 ((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1204 |#1|) (-1204 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -992)) -((-2603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1204 *6)) (-4 *4 (-1204 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-992 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2603 ((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2221 (((-112) $ $) NIL)) (-1355 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) NIL) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 11)) (-2264 (((-112) $ $) NIL))) -(((-993) (-13 (-1052) (-10 -8 (-15 -1355 ((-1104) $)) (-15 -1865 ((-1104) $))))) (T -993)) -((-1355 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-993)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-993))))) -(-13 (-1052) (-10 -8 (-15 -1355 ((-1104) $)) (-15 -1865 ((-1104) $)))) -((-3471 (((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) 31) (((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550))) 28)) (-2354 (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550))) 33) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550))) 29) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) 32) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|) 27)) (-2528 (((-623 (-400 (-550))) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) 19)) (-3004 (((-400 (-550)) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) 16))) -(((-994 |#1|) (-10 -7 (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|)) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -3004 ((-400 (-550)) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2528 ((-623 (-400 (-550))) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))))) (-1204 (-550))) (T -994)) -((-2528 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *2 (-623 (-400 (-550)))) (-5 *1 (-994 *4)) (-4 *4 (-1204 (-550))))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) (-5 *2 (-400 (-550))) (-5 *1 (-994 *4)) (-4 *4 (-1204 (-550))))) (-3471 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))))) (-3471 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) (-5 *4 (-400 (-550))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -3480 *5) (|:| -3490 *5)))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))) (-5 *4 (-2 (|:| -3480 *5) (|:| -3490 *5))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))) (-5 *4 (-400 (-550))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))) (-5 *4 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550)))))) -(-10 -7 (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|)) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -3004 ((-400 (-550)) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2528 ((-623 (-400 (-550))) (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))))) -((-3471 (((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) 35) (((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550))) 32)) (-2354 (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550))) 30) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550))) 26) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) 28) (((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|) 24))) -(((-995 |#1|) (-10 -7 (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|)) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) (-1204 (-400 (-550)))) (T -995)) -((-3471 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550)))))) (-3471 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) (-5 *4 (-400 (-550))) (-5 *1 (-995 *3)) (-4 *3 (-1204 *4)))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -3480 *5) (|:| -3490 *5)))) (-5 *1 (-995 *3)) (-4 *3 (-1204 *5)) (-5 *4 (-2 (|:| -3480 *5) (|:| -3490 *5))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -3480 *4) (|:| -3490 *4)))) (-5 *1 (-995 *3)) (-4 *3 (-1204 *4)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550)))) (-5 *4 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550))))))) -(-10 -7 (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1|)) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2354 ((-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-400 (-550)))) (-15 -3471 ((-3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) "failed") |#1| (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))) (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) -((-2451 (((-219) $) 6) (((-372) $) 9))) -(((-996) (-138)) (T -996)) -NIL -(-13 (-596 (-219)) (-596 (-372))) -(((-596 (-219)) . T) ((-596 (-372)) . T)) -((-4229 (((-623 (-372)) (-926 (-550)) (-372)) 28) (((-623 (-372)) (-926 (-400 (-550))) (-372)) 27)) (-3900 (((-623 (-623 (-372))) (-623 (-926 (-550))) (-623 (-1145)) (-372)) 37))) -(((-997) (-10 -7 (-15 -4229 ((-623 (-372)) (-926 (-400 (-550))) (-372))) (-15 -4229 ((-623 (-372)) (-926 (-550)) (-372))) (-15 -3900 ((-623 (-623 (-372))) (-623 (-926 (-550))) (-623 (-1145)) (-372))))) (T -997)) -((-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-623 (-1145))) (-5 *2 (-623 (-623 (-372)))) (-5 *1 (-997)) (-5 *5 (-372)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-926 (-550))) (-5 *2 (-623 (-372))) (-5 *1 (-997)) (-5 *4 (-372)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *2 (-623 (-372))) (-5 *1 (-997)) (-5 *4 (-372))))) -(-10 -7 (-15 -4229 ((-623 (-372)) (-926 (-400 (-550))) (-372))) (-15 -4229 ((-623 (-372)) (-926 (-550)) (-372))) (-15 -3900 ((-623 (-623 (-372))) (-623 (-926 (-550))) (-623 (-1145)) (-372)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 70)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1745 (($ $) NIL) (($ $ (-895)) NIL) (($ (-400 (-550))) NIL) (($ (-550)) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) 65)) (-2991 (($) NIL T CONST)) (-3217 (((-3 $ "failed") (-1141 $) (-895) (-837)) NIL) (((-3 $ "failed") (-1141 $) (-895)) 50)) (-2288 (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 (-550)) (-1012 (-400 (-550))))) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-550) "failed") $) NIL (-1489 (|has| (-400 (-550)) (-1012 (-550))) (|has| |#1| (-1012 (-550)))))) (-2202 (((-400 (-550)) $) 15 (|has| (-400 (-550)) (-1012 (-400 (-550))))) (((-400 (-550)) $) 15) ((|#1| $) 108) (((-550) $) NIL (-1489 (|has| (-400 (-550)) (-1012 (-550))) (|has| |#1| (-1012 (-550)))))) (-1420 (($ $ (-837)) 42)) (-3579 (($ $ (-837)) 43)) (-3455 (($ $ $) NIL)) (-3428 (((-400 (-550)) $ $) 19)) (-1537 (((-3 $ "failed") $) 83)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2694 (((-112) $) 61)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL)) (-1712 (((-112) $) 64)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-4142 (((-3 (-1141 $) "failed") $) 78)) (-2476 (((-3 (-837) "failed") $) 77)) (-2745 (((-3 (-1141 $) "failed") $) 75)) (-3877 (((-3 (-1031 $ (-1141 $)) "failed") $) 73)) (-3231 (($ (-623 $)) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 84)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2233 (((-837) $) 82) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ $) 58) (($ (-400 (-550))) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 110)) (-3091 (((-749)) NIL)) (-1819 (((-112) $ $) NIL)) (-2154 (((-400 (-550)) $ $) 25)) (-1759 (((-623 $) (-1141 $)) 56) (((-623 $) (-1141 (-400 (-550)))) NIL) (((-623 $) (-1141 (-550))) NIL) (((-623 $) (-926 $)) NIL) (((-623 $) (-926 (-400 (-550)))) NIL) (((-623 $) (-926 (-550))) NIL)) (-3631 (($ (-1031 $ (-1141 $)) (-837)) 41)) (-4188 (($ $) 20)) (-2688 (($) 29 T CONST)) (-2700 (($) 35 T CONST)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 71)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 22)) (-2382 (($ $ $) 33)) (-2370 (($ $) 34) (($ $ $) 69)) (-2358 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 91) (($ $ $) 96) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ (-550) $) 91) (($ $ (-550)) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-998 |#1|) (-13 (-986) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -3631 ($ (-1031 $ (-1141 $)) (-837))) (-15 -3877 ((-3 (-1031 $ (-1141 $)) "failed") $)) (-15 -3428 ((-400 (-550)) $ $)))) (-13 (-823) (-356) (-996))) (T -998)) -((-3631 (*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-837)) (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-996))))) (-3877 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031 (-998 *3) (-1141 (-998 *3)))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-996))))) (-3428 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-996)))))) -(-13 (-986) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -3631 ($ (-1031 $ (-1141 $)) (-837))) (-15 -3877 ((-3 (-1031 $ (-1141 $)) "failed") $)) (-15 -3428 ((-400 (-550)) $ $)))) -((-2267 (((-2 (|:| -1309 |#2|) (|:| -3985 (-623 |#1|))) |#2| (-623 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-999 |#1| |#2|) (-10 -7 (-15 -2267 (|#2| |#2| |#1|)) (-15 -2267 ((-2 (|:| -1309 |#2|) (|:| -3985 (-623 |#1|))) |#2| (-623 |#1|)))) (-356) (-634 |#1|)) (T -999)) -((-2267 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -1309 *3) (|:| -3985 (-623 *5)))) (-5 *1 (-999 *5 *3)) (-5 *4 (-623 *5)) (-4 *3 (-634 *5)))) (-2267 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-634 *3))))) -(-10 -7 (-15 -2267 (|#2| |#2| |#1|)) (-15 -2267 ((-2 (|:| -1309 |#2|) (|:| -3985 (-623 |#1|))) |#2| (-623 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1859 ((|#1| $ |#1|) 14)) (-2409 ((|#1| $ |#1|) 12)) (-1471 (($ |#1|) 10)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2757 ((|#1| $) 11)) (-2799 ((|#1| $) 13)) (-2233 (((-837) $) 21 (|has| |#1| (-1069)))) (-2264 (((-112) $ $) 9))) -(((-1000 |#1|) (-13 (-1182) (-10 -8 (-15 -1471 ($ |#1|)) (-15 -2757 (|#1| $)) (-15 -2409 (|#1| $ |#1|)) (-15 -2799 (|#1| $)) (-15 -1859 (|#1| $ |#1|)) (-15 -2264 ((-112) $ $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) (-1182)) (T -1000)) -((-1471 (*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) (-2757 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) (-2409 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) (-2799 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) (-1859 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) (-2264 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1182))))) -(-13 (-1182) (-10 -8 (-15 -1471 ($ |#1|)) (-15 -2757 (|#1| $)) (-15 -2409 (|#1| $ |#1|)) (-15 -2799 (|#1| $)) (-15 -1859 (|#1| $ |#1|)) (-15 -2264 ((-112) $ $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) NIL)) (-3186 (((-623 $) (-623 |#4|)) 105) (((-623 $) (-623 |#4|) (-112)) 106) (((-623 $) (-623 |#4|) (-112) (-112)) 104) (((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112)) 107)) (-1516 (((-623 |#3|) $) NIL)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3624 ((|#4| |#4| $) NIL)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 99)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 54)) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) 26 (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3694 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2202 (($ (-623 |#4|)) NIL)) (-3870 (((-3 $ "failed") $) 39)) (-2962 ((|#4| |#4| $) 57)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1979 (($ |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) NIL)) (-2515 (((-112) |#4| $) NIL)) (-3350 (((-112) |#4| $) NIL)) (-3201 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2372 (((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112)) 119)) (-2971 (((-623 |#4|) $) 16 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1765 ((|#3| $) 33)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#4|) $) 17 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-3311 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 21)) (-3704 (((-623 |#3|) $) NIL)) (-4159 (((-112) |#3| $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) NIL)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 97)) (-2001 (((-3 |#4| "failed") $) 37)) (-3087 (((-623 $) |#4| $) 80)) (-1785 (((-3 (-112) (-623 $)) |#4| $) NIL)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-4072 (((-623 $) |#4| $) 102) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 103) (((-623 $) |#4| (-623 $)) NIL)) (-1939 (((-623 $) (-623 |#4|) (-112) (-112) (-112)) 114)) (-3552 (($ |#4| $) 70) (($ (-623 |#4|) $) 71) (((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-3896 (((-623 |#4|) $) NIL)) (-3705 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2474 ((|#4| |#4| $) NIL)) (-3098 (((-112) $ $) NIL)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3959 ((|#4| |#4| $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-3 |#4| "failed") $) 35)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3747 (((-3 $ "failed") $ |#4|) 48)) (-4268 (($ $ |#4|) NIL) (((-623 $) |#4| $) 82) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 77)) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 15)) (-2819 (($) 13)) (-3661 (((-749) $) NIL)) (-3457 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) 12)) (-2451 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 20)) (-3537 (($ $ |#3|) 42)) (-1446 (($ $ |#3|) 44)) (-3236 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-2233 (((-837) $) 31) (((-623 |#4|) $) 40)) (-4265 (((-749) $) NIL (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3176 (((-623 $) |#4| $) 79) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) NIL)) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) NIL)) (-2993 (((-112) |#4| $) NIL)) (-3636 (((-112) |#3| $) 53)) (-2264 (((-112) $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1001 |#1| |#2| |#3| |#4|) (-13 (-1041 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3552 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -1939 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -2372 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -1001)) -((-3552 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) (-4 *3 (-1035 *5 *6 *7)))) (-3186 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-1939 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-2372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-623 *8)) (|:| |towers| (-623 (-1001 *5 *6 *7 *8))))) (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) -(-13 (-1041 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3552 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -1939 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -2372 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) -((-1569 (((-623 (-667 |#1|)) (-623 (-667 |#1|))) 58) (((-667 |#1|) (-667 |#1|)) 57) (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|))) 56) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 53)) (-1607 (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895)) 52) (((-667 |#1|) (-667 |#1|) (-895)) 51)) (-3367 (((-623 (-667 (-550))) (-623 (-623 (-550)))) 68) (((-623 (-667 (-550))) (-623 (-879 (-550))) (-550)) 67) (((-667 (-550)) (-623 (-550))) 64) (((-667 (-550)) (-879 (-550)) (-550)) 63)) (-3006 (((-667 (-926 |#1|)) (-749)) 81)) (-2504 (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895)) 37 (|has| |#1| (-6 (-4346 "*")))) (((-667 |#1|) (-667 |#1|) (-895)) 35 (|has| |#1| (-6 (-4346 "*")))))) -(((-1002 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4346 "*"))) (-15 -2504 ((-667 |#1|) (-667 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4346 "*"))) (-15 -2504 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895))) |%noBranch|) (-15 -3006 ((-667 (-926 |#1|)) (-749))) (-15 -1607 ((-667 |#1|) (-667 |#1|) (-895))) (-15 -1607 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895))) (-15 -1569 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -1569 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1569 ((-667 |#1|) (-667 |#1|))) (-15 -1569 ((-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3367 ((-667 (-550)) (-879 (-550)) (-550))) (-15 -3367 ((-667 (-550)) (-623 (-550)))) (-15 -3367 ((-623 (-667 (-550))) (-623 (-879 (-550))) (-550))) (-15 -3367 ((-623 (-667 (-550))) (-623 (-623 (-550)))))) (-1021)) (T -1002)) -((-3367 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-550)))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-1002 *4)) (-4 *4 (-1021)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-879 (-550)))) (-5 *4 (-550)) (-5 *2 (-623 (-667 *4))) (-5 *1 (-1002 *5)) (-4 *5 (-1021)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1002 *4)) (-4 *4 (-1021)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-550))) (-5 *4 (-550)) (-5 *2 (-667 *4)) (-5 *1 (-1002 *5)) (-4 *5 (-1021)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) (-1569 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) (-1569 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) (-1607 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-895)) (-4 *4 (-1021)) (-5 *1 (-1002 *4)))) (-1607 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-895)) (-4 *4 (-1021)) (-5 *1 (-1002 *4)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-667 (-926 *4))) (-5 *1 (-1002 *4)) (-4 *4 (-1021)))) (-2504 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-895)) (|has| *4 (-6 (-4346 "*"))) (-4 *4 (-1021)) (-5 *1 (-1002 *4)))) (-2504 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4346 "*"))) (-4 *4 (-1021)) (-5 *1 (-1002 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4346 "*"))) (-15 -2504 ((-667 |#1|) (-667 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4346 "*"))) (-15 -2504 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895))) |%noBranch|) (-15 -3006 ((-667 (-926 |#1|)) (-749))) (-15 -1607 ((-667 |#1|) (-667 |#1|) (-895))) (-15 -1607 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-895))) (-15 -1569 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -1569 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1569 ((-667 |#1|) (-667 |#1|))) (-15 -1569 ((-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3367 ((-667 (-550)) (-879 (-550)) (-550))) (-15 -3367 ((-667 (-550)) (-623 (-550)))) (-15 -3367 ((-623 (-667 (-550))) (-623 (-879 (-550))) (-550))) (-15 -3367 ((-623 (-667 (-550))) (-623 (-623 (-550)))))) -((-3097 (((-667 |#1|) (-623 (-667 |#1|)) (-1228 |#1|)) 50 (|has| |#1| (-300)))) (-2590 (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 (-1228 |#1|))) 76 (|has| |#1| (-356))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 |#1|)) 79 (|has| |#1| (-356)))) (-2638 (((-1228 |#1|) (-623 (-1228 |#1|)) (-550)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3160 (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-895)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3340 (((-112) (-623 (-667 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-623 (-667 |#1|)) (-550)) 73 (|has| |#1| (-356)))) (-2673 (((-1228 (-1228 |#1|)) (-623 (-667 |#1|)) (-1228 |#1|)) 48 (|has| |#1| (-300)))) (-3873 (((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|)) 34)) (-1978 (((-667 |#1|) (-1228 (-1228 |#1|))) 31)) (-1559 (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550)) 65 (|has| |#1| (-356))) (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|))) 64 (|has| |#1| (-356))) (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550)) 69 (|has| |#1| (-356))))) -(((-1003 |#1|) (-10 -7 (-15 -1978 ((-667 |#1|) (-1228 (-1228 |#1|)))) (-15 -3873 ((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -2673 ((-1228 (-1228 |#1|)) (-623 (-667 |#1|)) (-1228 |#1|))) (-15 -3097 ((-667 |#1|) (-623 (-667 |#1|)) (-1228 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550))) (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550))) (-15 -3340 ((-112) (-623 (-667 |#1|)) (-550))) (-15 -3340 ((-112) (-623 (-667 |#1|)))) (-15 -2590 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 |#1|))) (-15 -2590 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 (-1228 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-895))) (-15 -2638 ((-1228 |#1|) (-623 (-1228 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) (-1021)) (T -1003)) -((-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1228 *5))) (-5 *4 (-550)) (-5 *2 (-1228 *5)) (-5 *1 (-1003 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) (-5 *3 (-623 (-667 *5))))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) (-5 *3 (-623 (-667 *5))))) (-3160 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1021)) (-5 *2 (-623 (-623 (-667 *4)))) (-5 *1 (-1003 *4)) (-5 *3 (-623 (-667 *4))))) (-3160 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1021)) (-5 *2 (-623 (-623 (-667 *6)))) (-5 *1 (-1003 *6)) (-5 *3 (-623 (-667 *6))))) (-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 (-1228 *5))) (-4 *5 (-356)) (-4 *5 (-1021)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) (-5 *3 (-623 (-667 *5))))) (-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) (-5 *3 (-623 (-667 *5))))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1021)) (-5 *2 (-112)) (-5 *1 (-1003 *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-4 *5 (-356)) (-4 *5 (-1021)) (-5 *2 (-112)) (-5 *1 (-1003 *5)))) (-1559 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-5 *2 (-667 *5)) (-5 *1 (-1003 *5)) (-4 *5 (-356)) (-4 *5 (-1021)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1003 *4)) (-4 *4 (-356)) (-4 *4 (-1021)))) (-1559 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-623 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-550)) (-5 *2 (-667 *6)) (-5 *1 (-1003 *6)) (-4 *6 (-356)) (-4 *6 (-1021)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-1228 *5)) (-4 *5 (-300)) (-4 *5 (-1021)) (-5 *2 (-667 *5)) (-5 *1 (-1003 *5)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1021)) (-5 *2 (-1228 (-1228 *5))) (-5 *1 (-1003 *5)) (-5 *4 (-1228 *5)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1021)) (-5 *1 (-1003 *4)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1228 (-1228 *4))) (-4 *4 (-1021)) (-5 *2 (-667 *4)) (-5 *1 (-1003 *4))))) -(-10 -7 (-15 -1978 ((-667 |#1|) (-1228 (-1228 |#1|)))) (-15 -3873 ((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -2673 ((-1228 (-1228 |#1|)) (-623 (-667 |#1|)) (-1228 |#1|))) (-15 -3097 ((-667 |#1|) (-623 (-667 |#1|)) (-1228 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550))) (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1559 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550))) (-15 -3340 ((-112) (-623 (-667 |#1|)) (-550))) (-15 -3340 ((-112) (-623 (-667 |#1|)))) (-15 -2590 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 |#1|))) (-15 -2590 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1228 (-1228 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112))) (-15 -3160 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-895))) (-15 -2638 ((-1228 |#1|) (-623 (-1228 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) -((-2163 ((|#1| (-895) |#1|) 9))) -(((-1004 |#1|) (-10 -7 (-15 -2163 (|#1| (-895) |#1|))) (-13 (-1069) (-10 -8 (-15 -2358 ($ $ $))))) (T -1004)) -((-2163 (*1 *2 *3 *2) (-12 (-5 *3 (-895)) (-5 *1 (-1004 *2)) (-4 *2 (-13 (-1069) (-10 -8 (-15 -2358 ($ $ $)))))))) -(-10 -7 (-15 -2163 (|#1| (-895) |#1|))) -((-3376 (((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-926 (-550))))) 59)) (-2112 (((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-926 (-550))))) 48)) (-3914 (((-623 (-309 (-550))) (-667 (-400 (-926 (-550))))) 41)) (-3807 (((-623 (-667 (-309 (-550)))) (-667 (-400 (-926 (-550))))) 68)) (-2262 (((-667 (-309 (-550))) (-667 (-309 (-550)))) 34)) (-3938 (((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550))))) 62)) (-2629 (((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-926 (-550))))) 66))) -(((-1005) (-10 -7 (-15 -3376 ((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-926 (-550)))))) (-15 -2112 ((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-926 (-550)))))) (-15 -3914 ((-623 (-309 (-550))) (-667 (-400 (-926 (-550)))))) (-15 -2629 ((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-926 (-550)))))) (-15 -2262 ((-667 (-309 (-550))) (-667 (-309 (-550))))) (-15 -3938 ((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550)))))) (-15 -3807 ((-623 (-667 (-309 (-550)))) (-667 (-400 (-926 (-550)))))))) (T -1005)) -((-3807 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-926 (-550))))) (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1005)))) (-2629 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 (-400 (-926 (-550))))) (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1005)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-926 (-550))))) (-5 *2 (-623 (-309 (-550)))) (-5 *1 (-1005)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *4 (-667 (-400 (-926 (-550))))) (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005)) (-5 *3 (-309 (-550))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-926 (-550))))) (-5 *2 (-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550)))))))) (-5 *1 (-1005))))) -(-10 -7 (-15 -3376 ((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-926 (-550)))))) (-15 -2112 ((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-926 (-550)))))) (-15 -3914 ((-623 (-309 (-550))) (-667 (-400 (-926 (-550)))))) (-15 -2629 ((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-926 (-550)))))) (-15 -2262 ((-667 (-309 (-550))) (-667 (-309 (-550))))) (-15 -3938 ((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550)))))) (-15 -3807 ((-623 (-667 (-309 (-550)))) (-667 (-400 (-926 (-550))))))) -((-2507 ((|#1| |#1| (-895)) 9))) -(((-1006 |#1|) (-10 -7 (-15 -2507 (|#1| |#1| (-895)))) (-13 (-1069) (-10 -8 (-15 * ($ $ $))))) (T -1006)) -((-2507 (*1 *2 *2 *3) (-12 (-5 *3 (-895)) (-5 *1 (-1006 *2)) (-4 *2 (-13 (-1069) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2507 (|#1| |#1| (-895)))) -((-2233 ((|#1| (-305)) 11) (((-1233) |#1|) 9))) -(((-1007 |#1|) (-10 -7 (-15 -2233 ((-1233) |#1|)) (-15 -2233 (|#1| (-305)))) (-1182)) (T -1007)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1007 *2)) (-4 *2 (-1182)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-1233)) (-5 *1 (-1007 *3)) (-4 *3 (-1182))))) -(-10 -7 (-15 -2233 ((-1233) |#1|)) (-15 -2233 (|#1| (-305)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2924 (($ |#4|) 25)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2910 ((|#4| $) 27)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 46) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3091 (((-749)) 43)) (-2688 (($) 21 T CONST)) (-2700 (($) 23 T CONST)) (-2264 (((-112) $ $) 40)) (-2370 (($ $) 31) (($ $ $) NIL)) (-2358 (($ $ $) 29)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1008 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2924 ($ |#4|)) (-15 -2233 ($ |#4|)) (-15 -2910 (|#4| $)))) (-356) (-771) (-825) (-923 |#1| |#2| |#3|) (-623 |#4|)) (T -1008)) -((-2924 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-923 *3 *4 *5)) (-14 *6 (-623 *2)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-923 *3 *4 *5)) (-14 *6 (-623 *2)))) (-2910 (*1 *2 *1) (-12 (-4 *2 (-923 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-623 *2))))) -(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2924 ($ |#4|)) (-15 -2233 ($ |#4|)) (-15 -2910 (|#4| $)))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-3037 (((-1233) $ (-1145) (-1145)) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2678 (((-112) (-112)) 39)) (-4093 (((-112) (-112)) 38)) (-2409 (((-52) $ (-1145) (-52)) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 (-52) "failed") (-1145) $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-2505 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-3 (-52) "failed") (-1145) $) NIL)) (-1979 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-3317 (((-52) $ (-1145) (-52)) NIL (|has| $ (-6 -4345)))) (-3263 (((-52) $ (-1145)) NIL)) (-2971 (((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-1145) $) NIL (|has| (-1145) (-825)))) (-2876 (((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-2506 (((-1145) $) NIL (|has| (-1145) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4345))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-4212 (((-623 (-1145)) $) 34)) (-3998 (((-112) (-1145) $) NIL)) (-1696 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL)) (-1715 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL)) (-3611 (((-623 (-1145)) $) NIL)) (-3166 (((-112) (-1145) $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-3858 (((-52) $) NIL (|has| (-1145) (-825)))) (-1614 (((-3 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL)) (-2491 (($ $ (-52)) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-287 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-1375 (((-623 (-52)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (((-52) $ (-1145)) 35) (((-52) $ (-1145) (-52)) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-2233 (((-837) $) 37 (-1489 (|has| (-52) (-595 (-837))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1009) (-13 (-1158 (-1145) (-52)) (-10 -7 (-15 -2678 ((-112) (-112))) (-15 -4093 ((-112) (-112))) (-6 -4344)))) (T -1009)) -((-2678 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) -(-13 (-1158 (-1145) (-52)) (-10 -7 (-15 -2678 ((-112) (-112))) (-15 -4093 ((-112) (-112))) (-6 -4344))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 9)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1010) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $))))) (T -1010)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1010))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)))) -((-2202 ((|#2| $) 10))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -2202 (|#2| |#1|))) (-1012 |#2|) (-1182)) (T -1011)) -NIL -(-10 -8 (-15 -2202 (|#2| |#1|))) -((-2288 (((-3 |#1| "failed") $) 7)) (-2202 ((|#1| $) 8)) (-2233 (($ |#1|) 6))) -(((-1012 |#1|) (-138) (-1182)) (T -1012)) -((-2202 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1182)))) (-2288 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1182)))) (-2233 (*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1182))))) -(-13 (-10 -8 (-15 -2233 ($ |t#1|)) (-15 -2288 ((-3 |t#1| "failed") $)) (-15 -2202 (|t#1| $)))) -((-2420 (((-623 (-623 (-287 (-400 (-926 |#2|))))) (-623 (-926 |#2|)) (-623 (-1145))) 38))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -2420 ((-623 (-623 (-287 (-400 (-926 |#2|))))) (-623 (-926 |#2|)) (-623 (-1145))))) (-542) (-13 (-542) (-1012 |#1|))) (T -1013)) -((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) (-4 *6 (-13 (-542) (-1012 *5))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *6)))))) (-5 *1 (-1013 *5 *6))))) -(-10 -7 (-15 -2420 ((-623 (-623 (-287 (-400 (-926 |#2|))))) (-623 (-926 |#2|)) (-623 (-1145))))) -((-2049 (((-372)) 15)) (-2783 (((-1 (-372)) (-372) (-372)) 20)) (-2815 (((-1 (-372)) (-749)) 43)) (-4021 (((-372)) 34)) (-2714 (((-1 (-372)) (-372) (-372)) 35)) (-2989 (((-372)) 26)) (-2684 (((-1 (-372)) (-372)) 27)) (-1869 (((-372) (-749)) 38)) (-2391 (((-1 (-372)) (-749)) 39)) (-3327 (((-1 (-372)) (-749) (-749)) 42)) (-3044 (((-1 (-372)) (-749) (-749)) 40))) -(((-1014) (-10 -7 (-15 -2049 ((-372))) (-15 -4021 ((-372))) (-15 -2989 ((-372))) (-15 -1869 ((-372) (-749))) (-15 -2783 ((-1 (-372)) (-372) (-372))) (-15 -2714 ((-1 (-372)) (-372) (-372))) (-15 -2684 ((-1 (-372)) (-372))) (-15 -2391 ((-1 (-372)) (-749))) (-15 -3044 ((-1 (-372)) (-749) (-749))) (-15 -3327 ((-1 (-372)) (-749) (-749))) (-15 -2815 ((-1 (-372)) (-749))))) (T -1014)) -((-2815 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014)))) (-3327 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014)))) (-3044 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014)))) (-2684 (*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372)))) (-2714 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372)))) (-2783 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-372)) (-5 *1 (-1014)))) (-2989 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014)))) (-4021 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014)))) (-2049 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014))))) -(-10 -7 (-15 -2049 ((-372))) (-15 -4021 ((-372))) (-15 -2989 ((-372))) (-15 -1869 ((-372) (-749))) (-15 -2783 ((-1 (-372)) (-372) (-372))) (-15 -2714 ((-1 (-372)) (-372) (-372))) (-15 -2684 ((-1 (-372)) (-372))) (-15 -2391 ((-1 (-372)) (-749))) (-15 -3044 ((-1 (-372)) (-749) (-749))) (-15 -3327 ((-1 (-372)) (-749) (-749))) (-15 -2815 ((-1 (-372)) (-749)))) -((-1735 (((-411 |#1|) |#1|) 33))) -(((-1015 |#1|) (-10 -7 (-15 -1735 ((-411 |#1|) |#1|))) (-1204 (-400 (-926 (-550))))) (T -1015)) -((-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1015 *3)) (-4 *3 (-1204 (-400 (-926 (-550)))))))) -(-10 -7 (-15 -1735 ((-411 |#1|) |#1|))) -((-4095 (((-400 (-411 (-926 |#1|))) (-400 (-926 |#1|))) 14))) -(((-1016 |#1|) (-10 -7 (-15 -4095 ((-400 (-411 (-926 |#1|))) (-400 (-926 |#1|))))) (-300)) (T -1016)) -((-4095 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-411 (-926 *4)))) (-5 *1 (-1016 *4))))) -(-10 -7 (-15 -4095 ((-400 (-411 (-926 |#1|))) (-400 (-926 |#1|))))) -((-1516 (((-623 (-1145)) (-400 (-926 |#1|))) 17)) (-1705 (((-400 (-1141 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145)) 24)) (-1501 (((-400 (-926 |#1|)) (-400 (-1141 (-400 (-926 |#1|)))) (-1145)) 26)) (-4059 (((-3 (-1145) "failed") (-400 (-926 |#1|))) 20)) (-1553 (((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-287 (-400 (-926 |#1|))))) 32) (((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|)))) 33) (((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-1145)) (-623 (-400 (-926 |#1|)))) 28) (((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|))) 29)) (-2233 (((-400 (-926 |#1|)) |#1|) 11))) -(((-1017 |#1|) (-10 -7 (-15 -1516 ((-623 (-1145)) (-400 (-926 |#1|)))) (-15 -4059 ((-3 (-1145) "failed") (-400 (-926 |#1|)))) (-15 -1705 ((-400 (-1141 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145))) (-15 -1501 ((-400 (-926 |#1|)) (-400 (-1141 (-400 (-926 |#1|)))) (-1145))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|)))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-1145)) (-623 (-400 (-926 |#1|))))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -2233 ((-400 (-926 |#1|)) |#1|))) (-542)) (T -1017)) -((-2233 (*1 *2 *3) (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-1017 *3)) (-4 *3 (-542)))) (-1553 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-287 (-400 (-926 *4))))) (-5 *2 (-400 (-926 *4))) (-4 *4 (-542)) (-5 *1 (-1017 *4)))) (-1553 (*1 *2 *2 *3) (-12 (-5 *3 (-287 (-400 (-926 *4)))) (-5 *2 (-400 (-926 *4))) (-4 *4 (-542)) (-5 *1 (-1017 *4)))) (-1553 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-1145))) (-5 *4 (-623 (-400 (-926 *5)))) (-5 *2 (-400 (-926 *5))) (-4 *5 (-542)) (-5 *1 (-1017 *5)))) (-1553 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-926 *4))) (-5 *3 (-1145)) (-4 *4 (-542)) (-5 *1 (-1017 *4)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 (-400 (-926 *5))))) (-5 *4 (-1145)) (-5 *2 (-400 (-926 *5))) (-5 *1 (-1017 *5)) (-4 *5 (-542)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-542)) (-5 *2 (-400 (-1141 (-400 (-926 *5))))) (-5 *1 (-1017 *5)) (-5 *3 (-400 (-926 *5))))) (-4059 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-5 *2 (-1145)) (-5 *1 (-1017 *4)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-1145))) (-5 *1 (-1017 *4))))) -(-10 -7 (-15 -1516 ((-623 (-1145)) (-400 (-926 |#1|)))) (-15 -4059 ((-3 (-1145) "failed") (-400 (-926 |#1|)))) (-15 -1705 ((-400 (-1141 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145))) (-15 -1501 ((-400 (-926 |#1|)) (-400 (-1141 (-400 (-926 |#1|)))) (-1145))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|)))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-1145)) (-623 (-400 (-926 |#1|))))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-287 (-400 (-926 |#1|))))) (-15 -1553 ((-400 (-926 |#1|)) (-400 (-926 |#1|)) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -2233 ((-400 (-926 |#1|)) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 (-758 |#1| (-839 |#2|)))))) (-623 (-758 |#1| (-839 |#2|)))) NIL)) (-3186 (((-623 $) (-623 (-758 |#1| (-839 |#2|)))) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-112)) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-112) (-112)) NIL)) (-1516 (((-623 (-839 |#2|)) $) NIL)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1404 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-3624 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-2318 (((-623 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1608 $))) (-758 |#1| (-839 |#2|)) $) NIL)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ (-839 |#2|)) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 (-758 |#1| (-839 |#2|)) "failed") $ (-839 |#2|)) NIL)) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) NIL (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3296 (((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|))) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-3694 (((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-542)))) (-2178 (((-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 (-758 |#1| (-839 |#2|)))) NIL)) (-2202 (($ (-623 (-758 |#1| (-839 |#2|)))) NIL)) (-3870 (((-3 $ "failed") $) NIL)) (-2962 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-758 |#1| (-839 |#2|)) (-1069))))) (-1979 (($ (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-542)))) (-4240 (((-112) (-758 |#1| (-839 |#2|)) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-1621 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-2924 (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|))) NIL (|has| $ (-6 -4344))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-2466 (((-2 (|:| -1953 (-623 (-758 |#1| (-839 |#2|)))) (|:| -4046 (-623 (-758 |#1| (-839 |#2|))))) $) NIL)) (-2515 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3350 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3201 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-2971 (((-623 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2831 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-1765 (((-839 |#2|) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-758 |#1| (-839 |#2|)) (-1069))))) (-3311 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL)) (-3704 (((-623 (-839 |#2|)) $) NIL)) (-4159 (((-112) (-839 |#2|) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3352 (((-3 (-758 |#1| (-839 |#2|)) (-623 $)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-1623 (((-623 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1608 $))) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-2001 (((-3 (-758 |#1| (-839 |#2|)) "failed") $) NIL)) (-3087 (((-623 $) (-758 |#1| (-839 |#2|)) $) NIL)) (-1785 (((-3 (-112) (-623 $)) (-758 |#1| (-839 |#2|)) $) NIL)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-4072 (((-623 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-623 $)) NIL) (((-623 $) (-758 |#1| (-839 |#2|)) (-623 $)) NIL)) (-3552 (($ (-758 |#1| (-839 |#2|)) $) NIL) (($ (-623 (-758 |#1| (-839 |#2|))) $) NIL)) (-3896 (((-623 (-758 |#1| (-839 |#2|))) $) NIL)) (-3705 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-2474 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3098 (((-112) $ $) NIL)) (-4035 (((-2 (|:| |num| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-542)))) (-1631 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-3959 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-3 (-758 |#1| (-839 |#2|)) "failed") $) NIL)) (-1614 (((-3 (-758 |#1| (-839 |#2|)) "failed") (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL)) (-3747 (((-3 $ "failed") $ (-758 |#1| (-839 |#2|))) NIL)) (-4268 (($ $ (-758 |#1| (-839 |#2|))) NIL) (((-623 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-623 $) (-758 |#1| (-839 |#2|)) (-623 $)) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-623 $)) NIL)) (-1410 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-758 |#1| (-839 |#2|))) (-623 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (($ $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (($ $ (-287 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (($ $ (-623 (-287 (-758 |#1| (-839 |#2|))))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-3661 (((-749) $) NIL)) (-3457 (((-749) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-758 |#1| (-839 |#2|)) (-1069)))) (((-749) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-758 |#1| (-839 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-758 |#1| (-839 |#2|)))) NIL)) (-3537 (($ $ (-839 |#2|)) NIL)) (-1446 (($ $ (-839 |#2|)) NIL)) (-3236 (($ $) NIL)) (-3175 (($ $ (-839 |#2|)) NIL)) (-2233 (((-837) $) NIL) (((-623 (-758 |#1| (-839 |#2|))) $) NIL)) (-4265 (((-749) $) NIL (|has| (-839 |#2|) (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 (-758 |#1| (-839 |#2|))))) "failed") (-623 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 (-758 |#1| (-839 |#2|))))) "failed") (-623 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-1770 (((-112) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-623 (-758 |#1| (-839 |#2|))))) NIL)) (-3176 (((-623 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-623 $) (-758 |#1| (-839 |#2|)) (-623 $)) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-623 $)) NIL)) (-3404 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-1751 (((-623 (-839 |#2|)) $) NIL)) (-2993 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3636 (((-112) (-839 |#2|) $) NIL)) (-2264 (((-112) $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1018 |#1| |#2|) (-13 (-1041 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -3186 ((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-112) (-112))))) (-444) (-623 (-1145))) (T -1018)) -((-3186 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-1018 *5 *6))))) -(-13 (-1041 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -3186 ((-623 $) (-623 (-758 |#1| (-839 |#2|))) (-112) (-112))))) -((-2783 (((-1 (-550)) (-1063 (-550))) 33)) (-1854 (((-550) (-550) (-550) (-550) (-550)) 30)) (-1452 (((-1 (-550)) |RationalNumber|) NIL)) (-2618 (((-1 (-550)) |RationalNumber|) NIL)) (-1437 (((-1 (-550)) (-550) |RationalNumber|) NIL))) -(((-1019) (-10 -7 (-15 -2783 ((-1 (-550)) (-1063 (-550)))) (-15 -1437 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -1452 ((-1 (-550)) |RationalNumber|)) (-15 -2618 ((-1 (-550)) |RationalNumber|)) (-15 -1854 ((-550) (-550) (-550) (-550) (-550))))) (T -1019)) -((-1854 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1019)))) (-2618 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019)))) (-1452 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019)) (-5 *3 (-550)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1063 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1019))))) -(-10 -7 (-15 -2783 ((-1 (-550)) (-1063 (-550)))) (-15 -1437 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -1452 ((-1 (-550)) |RationalNumber|)) (-15 -2618 ((-1 (-550)) |RationalNumber|)) (-15 -1854 ((-550) (-550) (-550) (-550) (-550)))) -((-2233 (((-837) $) NIL) (($ (-550)) 10))) -(((-1020 |#1|) (-10 -8 (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-1021)) (T -1020)) -NIL -(-10 -8 (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-1021) (-138)) (T -1021)) -((-3091 (*1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-749)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1021))))) -(-13 (-1028) (-705) (-626 $) (-10 -8 (-15 -3091 ((-749))) (-15 -2233 ($ (-550))) (-6 -4341))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 $) . T) ((-705) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-3529 (((-400 (-926 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)) 46))) -(((-1022 |#1| |#2|) (-10 -7 (-15 -3529 ((-400 (-926 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)))) (-1145) (-356)) (T -1022)) -((-3529 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-926 *6))) (-5 *1 (-1022 *5 *6)) (-14 *5 (-1145))))) -(-10 -7 (-15 -3529 ((-400 (-926 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)))) -((-3684 (((-112) $) 29)) (-2644 (((-112) $) 16)) (-2050 (((-749) $) 13)) (-2063 (((-749) $) 14)) (-2418 (((-112) $) 26)) (-3695 (((-112) $) 31))) -(((-1023 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2063 ((-749) |#1|)) (-15 -2050 ((-749) |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -2644 ((-112) |#1|))) (-1024 |#2| |#3| |#4| |#5| |#6|) (-749) (-749) (-1021) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1023)) -NIL -(-10 -8 (-15 -2063 ((-749) |#1|)) (-15 -2050 ((-749) |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -2644 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3684 (((-112) $) 51)) (-1993 (((-3 $ "failed") $ $) 19)) (-2644 (((-112) $) 53)) (-3368 (((-112) $ (-749)) 61)) (-2991 (($) 17 T CONST)) (-4257 (($ $) 34 (|has| |#3| (-300)))) (-1297 ((|#4| $ (-550)) 39)) (-3398 (((-749) $) 33 (|has| |#3| (-542)))) (-3263 ((|#3| $ (-550) (-550)) 41)) (-2971 (((-623 |#3|) $) 68 (|has| $ (-6 -4344)))) (-1436 (((-749) $) 32 (|has| |#3| (-542)))) (-3113 (((-623 |#5|) $) 31 (|has| |#3| (-542)))) (-2050 (((-749) $) 45)) (-2063 (((-749) $) 44)) (-1445 (((-112) $ (-749)) 60)) (-3397 (((-550) $) 49)) (-2415 (((-550) $) 47)) (-2876 (((-623 |#3|) $) 69 (|has| $ (-6 -4344)))) (-3922 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1069)) (|has| $ (-6 -4344))))) (-1630 (((-550) $) 48)) (-2964 (((-550) $) 46)) (-4224 (($ (-623 (-623 |#3|))) 54)) (-3311 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3380 (((-623 (-623 |#3|)) $) 43)) (-1700 (((-112) $ (-749)) 59)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-542)))) (-1410 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#3|) (-623 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-287 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-623 (-287 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))))) (-3155 (((-112) $ $) 55)) (-4217 (((-112) $) 58)) (-2819 (($) 57)) (-2757 ((|#3| $ (-550) (-550)) 42) ((|#3| $ (-550) (-550) |#3|) 40)) (-2418 (((-112) $) 52)) (-3457 (((-749) |#3| $) 70 (-12 (|has| |#3| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4344)))) (-2435 (($ $) 56)) (-1457 ((|#5| $ (-550)) 38)) (-2233 (((-837) $) 11)) (-3404 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4344)))) (-3695 (((-112) $) 50)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3307 (((-749) $) 62 (|has| $ (-6 -4344))))) -(((-1024 |#1| |#2| |#3| |#4| |#5|) (-138) (-749) (-749) (-1021) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1024)) -((-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *5))) (-4 *5 (-1021)) (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-623 (-623 *5))))) (-2757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1021)))) (-3263 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1021)))) (-2757 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) (-4 *2 (-1021)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *6 *2 *7)) (-4 *6 (-1021)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-1457 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *6 *7 *2)) (-4 *6 (-1021)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-2392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1024 *3 *4 *2 *5 *6)) (-4 *2 (-1021)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *2 *5 *6)) (-4 *2 (-1021)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-4257 (*1 *1 *1) (-12 (-4 *1 (-1024 *2 *3 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-749)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-749)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-623 *7))))) -(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4344) (IF (|has| |t#3| (-170)) (-6 (-696 |t#3|)) |%noBranch|) (-15 -4224 ($ (-623 (-623 |t#3|)))) (-15 -2644 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3695 ((-112) $)) (-15 -3397 ((-550) $)) (-15 -1630 ((-550) $)) (-15 -2415 ((-550) $)) (-15 -2964 ((-550) $)) (-15 -2050 ((-749) $)) (-15 -2063 ((-749) $)) (-15 -3380 ((-623 (-623 |t#3|)) $)) (-15 -2757 (|t#3| $ (-550) (-550))) (-15 -3263 (|t#3| $ (-550) (-550))) (-15 -2757 (|t#3| $ (-550) (-550) |t#3|)) (-15 -1297 (|t#4| $ (-550))) (-15 -1457 (|t#5| $ (-550))) (-15 -2392 ($ (-1 |t#3| |t#3|) $)) (-15 -2392 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-542)) (-15 -3409 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -2382 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -4257 ($ $)) |%noBranch|) (IF (|has| |t#3| (-542)) (PROGN (-15 -3398 ((-749) $)) (-15 -1436 ((-749) $)) (-15 -3113 ((-623 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-595 (-837)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))) ((-626 |#3|) . T) ((-696 |#3|) |has| |#3| (-170)) ((-1027 |#3|) . T) ((-1069) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3684 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2644 (((-112) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-4257 (($ $) 43 (|has| |#3| (-300)))) (-1297 (((-234 |#2| |#3|) $ (-550)) 32)) (-2600 (($ (-667 |#3|)) 41)) (-3398 (((-749) $) 45 (|has| |#3| (-542)))) (-3263 ((|#3| $ (-550) (-550)) NIL)) (-2971 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-1436 (((-749) $) 47 (|has| |#3| (-542)))) (-3113 (((-623 (-234 |#1| |#3|)) $) 51 (|has| |#3| (-542)))) (-2050 (((-749) $) NIL)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-4224 (($ (-623 (-623 |#3|))) 27)) (-3311 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3380 (((-623 (-623 |#3|)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-542)))) (-1410 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#3| $ (-550) (-550)) NIL) ((|#3| $ (-550) (-550) |#3|) NIL)) (-1877 (((-133)) 54 (|has| |#3| (-356)))) (-2418 (((-112) $) NIL)) (-3457 (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069)))) (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) 63 (|has| |#3| (-596 (-526))))) (-1457 (((-234 |#1| |#3|) $ (-550)) 36)) (-2233 (((-837) $) 16) (((-667 |#3|) $) 38)) (-3404 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-2688 (($) 13 T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1025 |#1| |#2| |#3|) (-13 (-1024 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1235 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (-15 -2600 ($ (-667 |#3|))) (-15 -2233 ((-667 |#3|) $)))) (-749) (-749) (-1021)) (T -1025)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-667 *5)) (-5 *1 (-1025 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-1021)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-667 *5)) (-4 *5 (-1021)) (-5 *1 (-1025 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749))))) -(-13 (-1024 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1235 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (-15 -2600 ($ (-667 |#3|))) (-15 -2233 ((-667 |#3|) $)))) -((-2924 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2392 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1026 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2392 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2924 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-749) (-749) (-1021) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1024 |#1| |#2| |#3| |#4| |#5|) (-1021) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1024 |#1| |#2| |#7| |#8| |#9|)) (T -1026)) -((-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1021)) (-4 *2 (-1021)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1026 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1024 *5 *6 *7 *8 *9)) (-4 *12 (-1024 *5 *6 *2 *10 *11)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1021)) (-4 *10 (-1021)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1024 *5 *6 *10 *11 *12)) (-5 *1 (-1026 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1024 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10))))) -(-10 -7 (-15 -2392 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2924 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ |#1|) 23))) -(((-1027 |#1|) (-138) (-1028)) (T -1027)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1028))))) +((-3365 (*1 *1 *1) (-4 *1 (-986))) (-3364 (*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-838)))) (-3363 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-3529 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-5 *4 (-838)) (-4 *1 (-986)))) (-3529 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-893)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-986)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-986)))) (-3361 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838)))) (-3360 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-536)))))) +(-13 (-145) (-823) (-170) (-356) (-405 (-400 (-536))) (-38 (-536)) (-38 (-400 (-536))) (-976) (-10 -8 (-15 -3364 ((-3 (-838) "failed") $)) (-15 -3363 ((-3 (-1141 $) "failed") $)) (-15 -3362 ((-3 (-1141 $) "failed") $)) (-15 -3529 ((-3 $ "failed") (-1141 $) (-893) (-838))) (-15 -3529 ((-3 $ "failed") (-1141 $) (-893))) (-15 -3530 ((-620 $) (-1141 $))) (-15 -3530 ((-620 $) (-1141 (-400 (-536))))) (-15 -3530 ((-620 $) (-1141 (-536)))) (-15 -3530 ((-620 $) (-920 $))) (-15 -3530 ((-620 $) (-920 (-400 (-536))))) (-15 -3530 ((-620 $) (-920 (-536)))) (-15 -3365 ($ $ (-893))) (-15 -3365 ($ $)) (-15 -3365 ($ (-400 (-536)))) (-15 -3365 ($ (-536))) (-15 -3361 ($ $ (-838))) (-15 -3360 ($ $ (-838))) (-15 -4124 ((-400 (-536)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 #2=(-536)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-405 (-400 (-536))) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 #2#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 #2#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-895) . T) ((-976) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) |has| (-400 (-536)) (-1012 (-536))) ((-1029 #1#) . T) ((-1029 #2#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-3366 (((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-987 |#1| |#2|) (-10 -7 (-15 -3366 ((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-27) (-414 |#1|))) (T -987)) +((-3366 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1147)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-620 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1169) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112)))) (-5 *1 (-987 *8 *4))))) +(-10 -7 (-15 -3366 ((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3367 (((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-988 |#1| |#2|) (-10 -7 (-15 -3367 ((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-27) (-414 |#1|))) (T -988)) +((-3367 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1147)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-620 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1169) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) (-5 *2 (-620 *4)) (-5 *1 (-988 *8 *4))))) +(-10 -7 (-15 -3367 ((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3370 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)) 30)) (-3368 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-3369 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63))) +(((-989 |#1| |#2|) (-10 -7 (-15 -3368 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3369 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3370 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -989)) +((-3370 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-536)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-989 *6 *3)))) (-3369 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-989 *4 *5)) (-5 *3 (-400 *5)))) (-3368 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3424 *6))) (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -3368 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3369 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3370 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)))) +((-3371 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3372 (((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33))) +(((-990 |#1| |#2|) (-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3372 ((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -990)) +((-3372 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-400 *5))) (-5 *1 (-990 *4 *5)) (-5 *3 (-400 *5)))) (-3371 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -3424 *6))) (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3372 ((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) +((-3373 (((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536))))) 37)) (-3431 (((-1 |#1|) (-1068 |#1|)) 45)) (-3374 (((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)) 34))) +(((-991 |#1|) (-10 -7 (-15 -3431 ((-1 |#1|) (-1068 |#1|))) (-15 -3373 ((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536)))))) (-15 -3374 ((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)))) (-1072)) (T -991)) +((-3374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1229 *6)) (-5 *4 (-1229 (-536))) (-5 *5 (-536)) (-4 *6 (-1072)) (-5 *2 (-1 *6)) (-5 *1 (-991 *6)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3756 *4) (|:| -1572 (-536))))) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) +(-10 -7 (-15 -3431 ((-1 |#1|) (-1068 |#1|))) (-15 -3373 ((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536)))))) (-15 -3374 ((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)))) +((-4126 (((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -992)) +((-4126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-4 *4 (-1205 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-992 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2893 (((-112) $ $) NIL)) (-3375 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 11)) (-3382 (((-112) $ $) NIL))) +(((-993) (-13 (-1054) (-10 -8 (-15 -3375 ((-1106) $)) (-15 -3579 ((-1106) $))))) (T -993)) +((-3375 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993))))) +(-13 (-1054) (-10 -8 (-15 -3375 ((-1106) $)) (-15 -3579 ((-1106) $)))) +((-4325 (((-219) $) 6) (((-371) $) 9))) +(((-994) (-138)) (T -994)) +NIL +(-13 (-596 (-219)) (-596 (-371))) +(((-596 (-219)) . T) ((-596 (-371)) . T)) +((-3464 (((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 31) (((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 28)) (-3378 (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 33) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536))) 29) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 32) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|) 27)) (-3377 (((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) 19)) (-3376 (((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 16))) +(((-995 |#1|) (-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3376 ((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3377 ((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))))) (-1205 (-536))) (T -995)) +((-3377 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *2 (-620 (-400 (-536)))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *2 (-400 (-536))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536))))) (-3464 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) (-3464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *4 (-400 (-536))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-400 (-536))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536)))))) +(-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3376 ((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3377 ((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))))) +((-3464 (((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 35) (((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 32)) (-3378 (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 30) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536))) 26) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 28) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|) 24))) +(((-996 |#1|) (-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-1205 (-400 (-536)))) (T -996)) +((-3464 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) (-3464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *4 (-400 (-536))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *5)) (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *4) (|:| -3467 *4)))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))) (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536))))))) +(-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) +((-3931 (((-620 (-371)) (-920 (-536)) (-371)) 28) (((-620 (-371)) (-920 (-400 (-536))) (-371)) 27)) (-4322 (((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371)) 37))) +(((-997) (-10 -7 (-15 -3931 ((-620 (-371)) (-920 (-400 (-536))) (-371))) (-15 -3931 ((-620 (-371)) (-920 (-536)) (-371))) (-15 -4322 ((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371))))) (T -997)) +((-4322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 (-371)))) (-5 *1 (-997)) (-5 *5 (-371)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) (-5 *4 (-371)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) (-5 *4 (-371))))) +(-10 -7 (-15 -3931 ((-620 (-371)) (-920 (-400 (-536))) (-371))) (-15 -3931 ((-620 (-371)) (-920 (-536)) (-371))) (-15 -4322 ((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 70)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL) (($ $ (-893)) NIL) (($ (-400 (-536))) NIL) (($ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) 65)) (-3891 (($) NIL T CONST)) (-3529 (((-3 $ #1="failed") (-1141 $) (-893) (-838)) NIL) (((-3 $ #1#) (-1141 $) (-893)) 50)) (-3503 (((-3 (-400 (-536)) #2="failed") $) NIL (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-3 (-400 (-536)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-536) #2#) $) NIL (-3886 (|has| (-400 (-536)) (-1012 (-536))) (|has| |#1| (-1012 (-536)))))) (-3502 (((-400 (-536)) $) 15 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-400 (-536)) $) 15) ((|#1| $) 108) (((-536) $) NIL (-3886 (|has| (-400 (-536)) (-1012 (-536))) (|has| |#1| (-1012 (-536)))))) (-3361 (($ $ (-838)) 42)) (-3360 (($ $ (-838)) 43)) (-2889 (($ $ $) NIL)) (-3528 (((-400 (-536)) $ $) 19)) (-3816 (((-3 $ "failed") $) 83)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) 61)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3533 (((-112) $) 64)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3362 (((-3 (-1141 $) #1#) $) 78)) (-3364 (((-3 (-838) #1#) $) 77)) (-3363 (((-3 (-1141 $) #1#) $) 75)) (-3379 (((-3 (-1033 $ (-1141 $)) "failed") $) 73)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 84)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) 82) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ $) 58) (($ (-400 (-536))) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 110)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ $) 25)) (-3530 (((-620 $) (-1141 $)) 56) (((-620 $) (-1141 (-400 (-536)))) NIL) (((-620 $) (-1141 (-536))) NIL) (((-620 $) (-920 $)) NIL) (((-620 $) (-920 (-400 (-536)))) NIL) (((-620 $) (-920 (-536))) NIL)) (-3380 (($ (-1033 $ (-1141 $)) (-838)) 41)) (-3737 (($ $) 20)) (-2986 (($) 29 T CONST)) (-2992 (($) 35 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 71)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22)) (-4303 (($ $ $) 33)) (-4192 (($ $) 34) (($ $ $) 69)) (-4194 (($ $ $) 103)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 91) (($ $ $) 96) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ (-536) $) 91) (($ $ (-536)) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-998 |#1|) (-13 (-986) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3380 ($ (-1033 $ (-1141 $)) (-838))) (-15 -3379 ((-3 (-1033 $ (-1141 $)) "failed") $)) (-15 -3528 ((-400 (-536)) $ $)))) (-13 (-823) (-356) (-994))) (T -998)) +((-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1033 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-838)) (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-994))))) (-3379 (*1 *2 *1) (|partial| -12 (-5 *2 (-1033 (-998 *3) (-1141 (-998 *3)))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-994))))) (-3528 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-994)))))) +(-13 (-986) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3380 ($ (-1033 $ (-1141 $)) (-838))) (-15 -3379 ((-3 (-1033 $ (-1141 $)) "failed") $)) (-15 -3528 ((-400 (-536)) $ $)))) +((-3381 (((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-999 |#1| |#2|) (-10 -7 (-15 -3381 (|#2| |#2| |#1|)) (-15 -3381 ((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)))) (-356) (-636 |#1|)) (T -999)) +((-3381 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3612 *3) (|:| -2831 (-620 *5)))) (-5 *1 (-999 *5 *3)) (-5 *4 (-620 *5)) (-4 *3 (-636 *5)))) (-3381 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-636 *3))))) +(-10 -7 (-15 -3381 (|#2| |#2| |#1|)) (-15 -3381 ((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3383 ((|#1| $ |#1|) 14)) (-4142 ((|#1| $ |#1|) 12)) (-3385 (($ |#1|) 10)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4154 ((|#1| $) 11)) (-3384 ((|#1| $) 13)) (-4312 (((-838) $) 21 (|has| |#1| (-1072)))) (-3382 (((-112) $ $) 9))) +(((-1000 |#1|) (-13 (-1183) (-10 -8 (-15 -3385 ($ |#1|)) (-15 -4154 (|#1| $)) (-15 -4142 (|#1| $ |#1|)) (-15 -3384 (|#1| $)) (-15 -3383 (|#1| $ |#1|)) (-15 -3382 ((-112) $ $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1000)) +((-3385 (*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3384 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3383 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3382 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1183))))) +(-13 (-1183) (-10 -8 (-15 -3385 ($ |#1|)) (-15 -4154 (|#1| $)) (-15 -4142 (|#1| $ |#1|)) (-15 -3384 (|#1| $)) (-15 -3383 (|#1| $ |#1|)) (-15 -3382 ((-112) $ $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 105) (((-620 $) (-620 |#4|) (-112)) 106) (((-620 $) (-620 |#4|) (-112) (-112)) 104) (((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 99)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) 57)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-3543 (((-112) |#4| $) NIL)) (-3541 (((-112) |#4| $) NIL)) (-3544 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3792 (((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112)) 119)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) NIL)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 97)) (-4152 (((-3 |#4| #1#) $) 37)) (-3538 (((-620 $) |#4| $) 80)) (-3540 (((-3 (-112) (-620 $)) |#4| $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3584 (((-620 $) |#4| $) 102) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 103) (((-620 $) |#4| (-620 $)) NIL)) (-3793 (((-620 $) (-620 |#4|) (-112) (-112) (-112)) 114)) (-3794 (($ |#4| $) 70) (($ (-620 |#4|) $) 71) (((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 48)) (-4123 (($ $ |#4|) NIL) (((-620 $) |#4| $) 82) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-3535 (((-620 $) |#4| $) 79) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-3542 (((-112) |#4| $) NIL)) (-4288 (((-112) |#3| $) 53)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1001 |#1| |#2| |#3| |#4|) (-13 (-1043 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1001)) +((-3794 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) (-4 *3 (-1037 *5 *6 *7)))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-4040 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-3793 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-3792 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1001 *5 *6 *7 *8))))) (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) +(-13 (-1043 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) +((-3386 (((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536))))) 59)) (-3387 (((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536))))) 48)) (-3388 (((-620 (-307 (-536))) (-667 (-400 (-920 (-536))))) 41)) (-3392 (((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536))))) 68)) (-3390 (((-667 (-307 (-536))) (-667 (-307 (-536)))) 34)) (-3391 (((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536))))) 62)) (-3389 (((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536))))) 66))) +(((-1002) (-10 -7 (-15 -3386 ((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536)))))) (-15 -3387 ((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536)))))) (-15 -3388 ((-620 (-307 (-536))) (-667 (-400 (-920 (-536)))))) (-15 -3389 ((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536)))))) (-15 -3390 ((-667 (-307 (-536))) (-667 (-307 (-536))))) (-15 -3391 ((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536)))))) (-15 -3392 ((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536)))))))) (T -1002)) +((-3392 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002)))) (-3389 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-307 (-536)))) (-5 *1 (-1002)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *4 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)) (-5 *3 (-307 (-536))))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536)))))))) (-5 *1 (-1002))))) +(-10 -7 (-15 -3386 ((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536)))))) (-15 -3387 ((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536)))))) (-15 -3388 ((-620 (-307 (-536))) (-667 (-400 (-920 (-536)))))) (-15 -3389 ((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536)))))) (-15 -3390 ((-667 (-307 (-536))) (-667 (-307 (-536))))) (-15 -3391 ((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536)))))) (-15 -3392 ((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536))))))) +((-3396 (((-620 (-667 |#1|)) (-620 (-667 |#1|))) 58) (((-667 |#1|) (-667 |#1|)) 57) (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|))) 56) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 53)) (-3395 (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893)) 52) (((-667 |#1|) (-667 |#1|) (-893)) 51)) (-3397 (((-620 (-667 (-536))) (-620 (-620 (-536)))) 68) (((-620 (-667 (-536))) (-620 (-876 (-536))) (-536)) 67) (((-667 (-536)) (-620 (-536))) 64) (((-667 (-536)) (-876 (-536)) (-536)) 63)) (-3394 (((-667 (-920 |#1|)) (-749)) 81)) (-3393 (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893)) 37 (|has| |#1| (-6 (-4350 "*")))) (((-667 |#1|) (-667 |#1|) (-893)) 35 (|has| |#1| (-6 (-4350 "*")))))) +(((-1003 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-667 |#1|) (-667 |#1|) (-893))) |%noBranch|) (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) |%noBranch|) (-15 -3394 ((-667 (-920 |#1|)) (-749))) (-15 -3395 ((-667 |#1|) (-667 |#1|) (-893))) (-15 -3395 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) (-15 -3396 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3396 ((-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3397 ((-667 (-536)) (-876 (-536)) (-536))) (-15 -3397 ((-667 (-536)) (-620 (-536)))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-876 (-536))) (-536))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-620 (-536)))))) (-1023)) (T -1003)) +((-3397 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-536)))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-876 (-536)))) (-5 *4 (-536)) (-5 *2 (-620 (-667 *4))) (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-536))) (-5 *4 (-536)) (-5 *2 (-667 *4)) (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3395 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3395 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-667 (-920 *4))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3393 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3393 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) (-4 *4 (-1023)) (-5 *1 (-1003 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-667 |#1|) (-667 |#1|) (-893))) |%noBranch|) (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) |%noBranch|) (-15 -3394 ((-667 (-920 |#1|)) (-749))) (-15 -3395 ((-667 |#1|) (-667 |#1|) (-893))) (-15 -3395 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) (-15 -3396 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3396 ((-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3397 ((-667 (-536)) (-876 (-536)) (-536))) (-15 -3397 ((-667 (-536)) (-620 (-536)))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-876 (-536))) (-536))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-620 (-536)))))) +((-3401 (((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)) 50 (|has| |#1| (-300)))) (-3772 (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))) 76 (|has| |#1| (-356))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|)) 79 (|has| |#1| (-356)))) (-3405 (((-1229 |#1|) (-620 (-1229 |#1|)) (-536)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3404 (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3403 (((-112) (-620 (-667 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-620 (-667 |#1|)) (-536)) 73 (|has| |#1| (-356)))) (-3400 (((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|)) 48 (|has| |#1| (-300)))) (-3399 (((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|)) 34)) (-3398 (((-667 |#1|) (-1229 (-1229 |#1|))) 31)) (-3402 (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536)) 65 (|has| |#1| (-356))) (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|))) 64 (|has| |#1| (-356))) (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536)) 69 (|has| |#1| (-356))))) +(((-1004 |#1|) (-10 -7 (-15 -3398 ((-667 |#1|) (-1229 (-1229 |#1|)))) (-15 -3399 ((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3400 ((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3401 ((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893))) (-15 -3405 ((-1229 |#1|) (-620 (-1229 |#1|)) (-536)))) |%noBranch|) |%noBranch|)) (-1023)) (T -1004)) +((-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1229 *5))) (-5 *4 (-536)) (-5 *2 (-1229 *5)) (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1023)) (-5 *2 (-620 (-620 (-667 *4)))) (-5 *1 (-1004 *4)) (-5 *3 (-620 (-667 *4))))) (-3404 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-536)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1023)) (-5 *2 (-620 (-620 (-667 *6)))) (-5 *1 (-1004 *6)) (-5 *3 (-620 (-667 *6))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1229 (-1229 *5))) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-1004 *4)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-112)) (-5 *1 (-1004 *5)))) (-3402 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-1023)))) (-3402 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4)) (-4 *4 (-356)) (-4 *4 (-1023)))) (-3402 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-620 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-536)) (-5 *2 (-667 *6)) (-5 *1 (-1004 *6)) (-4 *6 (-356)) (-4 *6 (-1023)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-1229 *5)) (-4 *5 (-300)) (-4 *5 (-1023)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1023)) (-5 *2 (-1229 (-1229 *5))) (-5 *1 (-1004 *5)) (-5 *4 (-1229 *5)))) (-3399 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1004 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1229 (-1229 *4))) (-4 *4 (-1023)) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4))))) +(-10 -7 (-15 -3398 ((-667 |#1|) (-1229 (-1229 |#1|)))) (-15 -3399 ((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3400 ((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3401 ((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893))) (-15 -3405 ((-1229 |#1|) (-620 (-1229 |#1|)) (-536)))) |%noBranch|) |%noBranch|)) +((-3406 ((|#1| (-893) |#1|) 9))) +(((-1005 |#1|) (-10 -7 (-15 -3406 (|#1| (-893) |#1|))) (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $))))) (T -1005)) +((-3406 (*1 *2 *3 *2) (-12 (-5 *3 (-893)) (-5 *1 (-1005 *2)) (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)))))))) +(-10 -7 (-15 -3406 (|#1| (-893) |#1|))) +((-3407 ((|#1| |#1| (-893)) 9))) +(((-1006 |#1|) (-10 -7 (-15 -3407 (|#1| |#1| (-893)))) (-13 (-1072) (-10 -8 (-15 * ($ $ $))))) (T -1006)) +((-3407 (*1 *2 *2 *3) (-12 (-5 *3 (-893)) (-5 *1 (-1006 *2)) (-4 *2 (-13 (-1072) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3407 (|#1| |#1| (-893)))) +((-4312 ((|#1| (-304)) 11) (((-1235) |#1|) 9))) +(((-1007 |#1|) (-10 -7 (-15 -4312 ((-1235) |#1|)) (-15 -4312 (|#1| (-304)))) (-1183)) (T -1007)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1007 *2)) (-4 *2 (-1183)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1235)) (-5 *1 (-1007 *3)) (-4 *3 (-1183))))) +(-10 -7 (-15 -4312 ((-1235) |#1|)) (-15 -4312 (|#1| (-304)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ |#4|) 25)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3408 ((|#4| $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 46) (($ (-536)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3456 (((-749)) 43)) (-2986 (($) 21 T CONST)) (-2992 (($) 23 T CONST)) (-3382 (((-112) $ $) 40)) (-4192 (($ $) 31) (($ $ $) NIL)) (-4194 (($ $ $) 29)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1008 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4197 ($ |#4|)) (-15 -4312 ($ |#4|)) (-15 -3408 (|#4| $)))) (-356) (-771) (-825) (-924 |#1| |#2| |#3|) (-620 |#4|)) (T -1008)) +((-4197 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-620 *2))))) +(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4197 ($ |#4|)) (-15 -4312 ($ |#4|)) (-15 -3408 (|#4| $)))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1147) (-1147)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3410 (((-112) (-112)) 39)) (-3409 (((-112) (-112)) 38)) (-4142 (((-51) $ (-1147) (-51)) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1147) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1147) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-51) $ (-1147) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1147)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1147)) $) 34)) (-2310 (((-112) (-1147) $) NIL)) (-1331 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2305 (((-620 (-1147)) $) NIL)) (-2306 (((-112) (-1147) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4155 (((-51) $) NIL (|has| (-1147) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1147)) 35) (((-51) $ (-1147) (-51)) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-4312 (((-838) $) 37 (-3886 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1009) (-13 (-1160 (-1147) (-51)) (-10 -7 (-15 -3410 ((-112) (-112))) (-15 -3409 ((-112) (-112))) (-6 -4348)))) (T -1009)) +((-3410 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) +(-13 (-1160 (-1147) (-51)) (-10 -7 (-15 -3410 ((-112) (-112))) (-15 -3409 ((-112) (-112))) (-6 -4348))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1010) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $))))) (T -1010)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1010))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)))) +((-3502 ((|#2| $) 10))) +(((-1011 |#1| |#2|) (-10 -8 (-15 -3502 (|#2| |#1|))) (-1012 |#2|) (-1183)) (T -1011)) +NIL +(-10 -8 (-15 -3502 (|#2| |#1|))) +((-3503 (((-3 |#1| "failed") $) 7)) (-3502 ((|#1| $) 8)) (-4312 (($ |#1|) 6))) +(((-1012 |#1|) (-138) (-1183)) (T -1012)) +((-3502 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) (-3503 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183))))) +(-13 (-10 -8 (-15 -4312 ($ |t#1|)) (-15 -3503 ((-3 |t#1| "failed") $)) (-15 -3502 (|t#1| $)))) +((-3411 (((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))) 38))) +(((-1013 |#1| |#2|) (-10 -7 (-15 -3411 ((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))))) (-543) (-13 (-543) (-1012 |#1|))) (T -1013)) +((-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-13 (-543) (-1012 *5))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *6)))))) (-5 *1 (-1013 *5 *6))))) +(-10 -7 (-15 -3411 ((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))))) +((-3412 (((-620 (-1147)) (-400 (-920 |#1|))) 17)) (-3414 (((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147)) 24)) (-3415 (((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147)) 26)) (-3413 (((-3 (-1147) "failed") (-400 (-920 |#1|))) 20)) (-4122 (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|))))) 32) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 33) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|)))) 28) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))) 29)) (-4312 (((-400 (-920 |#1|)) |#1|) 11))) +(((-1014 |#1|) (-10 -7 (-15 -3412 ((-620 (-1147)) (-400 (-920 |#1|)))) (-15 -3413 ((-3 (-1147) "failed") (-400 (-920 |#1|)))) (-15 -3414 ((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3415 ((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -4312 ((-400 (-920 |#1|)) |#1|))) (-543)) (T -1014)) +((-4312 (*1 *2 *3) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-543)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-4122 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-5 *4 (-620 (-400 (-920 *5)))) (-5 *2 (-400 (-920 *5))) (-4 *5 (-543)) (-5 *1 (-1014 *5)))) (-4122 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 (-400 (-920 *5))))) (-5 *4 (-1147)) (-5 *2 (-400 (-920 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-543)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-400 (-1141 (-400 (-920 *5))))) (-5 *1 (-1014 *5)) (-5 *3 (-400 (-920 *5))))) (-3413 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-1147)) (-5 *1 (-1014 *4)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-1147))) (-5 *1 (-1014 *4))))) +(-10 -7 (-15 -3412 ((-620 (-1147)) (-400 (-920 |#1|)))) (-15 -3413 ((-3 (-1147) "failed") (-400 (-920 |#1|)))) (-15 -3414 ((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3415 ((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -4312 ((-400 (-920 |#1|)) |#1|))) +((-3416 (((-371)) 15)) (-3431 (((-1 (-371)) (-371) (-371)) 20)) (-3424 (((-1 (-371)) (-749)) 43)) (-3417 (((-371)) 34)) (-3420 (((-1 (-371)) (-371) (-371)) 35)) (-3418 (((-371)) 26)) (-3421 (((-1 (-371)) (-371)) 27)) (-3419 (((-371) (-749)) 38)) (-3422 (((-1 (-371)) (-749)) 39)) (-3423 (((-1 (-371)) (-749) (-749)) 42)) (-3738 (((-1 (-371)) (-749) (-749)) 40))) +(((-1015) (-10 -7 (-15 -3416 ((-371))) (-15 -3417 ((-371))) (-15 -3418 ((-371))) (-15 -3419 ((-371) (-749))) (-15 -3431 ((-1 (-371)) (-371) (-371))) (-15 -3420 ((-1 (-371)) (-371) (-371))) (-15 -3421 ((-1 (-371)) (-371))) (-15 -3422 ((-1 (-371)) (-749))) (-15 -3738 ((-1 (-371)) (-749) (-749))) (-15 -3423 ((-1 (-371)) (-749) (-749))) (-15 -3424 ((-1 (-371)) (-749))))) (T -1015)) +((-3424 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3423 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3738 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3421 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3420 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-371)) (-5 *1 (-1015)))) (-3418 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015)))) (-3417 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015)))) (-3416 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) +(-10 -7 (-15 -3416 ((-371))) (-15 -3417 ((-371))) (-15 -3418 ((-371))) (-15 -3419 ((-371) (-749))) (-15 -3431 ((-1 (-371)) (-371) (-371))) (-15 -3420 ((-1 (-371)) (-371) (-371))) (-15 -3421 ((-1 (-371)) (-371))) (-15 -3422 ((-1 (-371)) (-749))) (-15 -3738 ((-1 (-371)) (-749) (-749))) (-15 -3423 ((-1 (-371)) (-749) (-749))) (-15 -3424 ((-1 (-371)) (-749)))) +((-4087 (((-398 |#1|) |#1|) 33))) +(((-1016 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|))) (-1205 (-400 (-920 (-536))))) (T -1016)) +((-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1205 (-400 (-920 (-536)))))))) +(-10 -7 (-15 -4087 ((-398 |#1|) |#1|))) +((-3425 (((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))) 14))) +(((-1017 |#1|) (-10 -7 (-15 -3425 ((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))))) (-300)) (T -1017)) +((-3425 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-920 *4)))) (-5 *1 (-1017 *4))))) +(-10 -7 (-15 -3425 ((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3891 (($) 17 T CONST)) (-3429 ((|#1| $) 22)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3428 ((|#1| $) 21)) (-3426 ((|#1|) 19 T CONST)) (-4312 (((-838) $) 11)) (-3427 ((|#1| $) 20)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) +(((-1018 |#1|) (-138) (-23)) (T -1018)) +((-3429 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3426 (*1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3429 (|t#1| $)) (-15 -3428 (|t#1| $)) (-15 -3427 (|t#1| $)) (-15 -3426 (|t#1|) -4306))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3430 (($) 24 T CONST)) (-3891 (($) 17 T CONST)) (-3429 ((|#1| $) 22)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3428 ((|#1| $) 21)) (-3426 ((|#1|) 19 T CONST)) (-4312 (((-838) $) 11)) (-3427 ((|#1| $) 20)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) +(((-1019 |#1|) (-138) (-23)) (T -1019)) +((-3430 (*1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-23))))) +(-13 (-1018 |t#1|) (-10 -8 (-15 -3430 ($) -4306))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1018 |#1|) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 (-758 |#1| (-839 |#2|)))))) (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-4040 (((-620 $) (-620 (-758 |#1| (-839 |#2|)))) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112)) NIL)) (-3412 (((-620 (-839 |#2|)) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4046 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4129 (((-620 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ (-839 |#2|)) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 (-758 |#1| (-839 |#2|)) #1="failed") $ (-839 |#2|)) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-3228 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-3502 (($ (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-4153 (((-3 $ #1#) $) NIL)) (-4043 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-3760 (($ (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-543)))) (-4052 (((-112) (-758 |#1| (-839 |#2|)) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4041 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4197 (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|))) NIL (|has| $ (-6 -4348))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4054 (((-2 (|:| -4216 (-620 (-758 |#1| (-839 |#2|)))) (|:| -1813 (-620 (-758 |#1| (-839 |#2|))))) $) NIL)) (-3543 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3541 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3544 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4053 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-3526 (((-839 |#2|) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-2067 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL)) (-3242 (((-620 (-839 |#2|)) $) NIL)) (-3241 (((-112) (-839 |#2|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 (-758 |#1| (-839 |#2|)) (-620 $)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3536 (((-620 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4152 (((-3 (-758 |#1| (-839 |#2|)) #1#) $) NIL)) (-3538 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL)) (-3540 (((-3 (-112) (-620 $)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3584 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL)) (-3794 (($ (-758 |#1| (-839 |#2|)) $) NIL) (($ (-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4055 (((-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4049 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4044 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-543)))) (-4050 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4045 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 (-758 |#1| (-839 |#2|)) #1#) $) NIL)) (-1399 (((-3 (-758 |#1| (-839 |#2|)) "failed") (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL)) (-4037 (((-3 $ #1#) $ (-758 |#1| (-839 |#2|))) NIL)) (-4123 (($ $ (-758 |#1| (-839 |#2|))) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL)) (-2065 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-286 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-620 (-286 (-758 |#1| (-839 |#2|))))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4302 (((-749) $) NIL)) (-2064 (((-749) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (((-749) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-758 |#1| (-839 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-3238 (($ $ (-839 |#2|)) NIL)) (-3240 (($ $ (-839 |#2|)) NIL)) (-4042 (($ $) NIL)) (-3239 (($ $ (-839 |#2|)) NIL)) (-4312 (((-838) $) NIL) (((-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4036 (((-749) $) NIL (|has| (-839 |#2|) (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 (-758 |#1| (-839 |#2|))))) #1#) (-620 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 (-758 |#1| (-839 |#2|))))) #1#) (-620 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4048 (((-112) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-620 (-758 |#1| (-839 |#2|))))) NIL)) (-3535 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 (-839 |#2|)) $) NIL)) (-3542 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-4288 (((-112) (-839 |#2|) $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1020 |#1| |#2|) (-13 (-1043 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -4040 ((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112))))) (-444) (-620 (-1147))) (T -1020)) +((-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1020 *5 *6))))) +(-13 (-1043 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -4040 ((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112))))) +((-3431 (((-1 (-536)) (-1060 (-536))) 33)) (-3435 (((-536) (-536) (-536) (-536) (-536)) 30)) (-3433 (((-1 (-536)) |RationalNumber|) NIL)) (-3434 (((-1 (-536)) |RationalNumber|) NIL)) (-3432 (((-1 (-536)) (-536) |RationalNumber|) NIL))) +(((-1021) (-10 -7 (-15 -3431 ((-1 (-536)) (-1060 (-536)))) (-15 -3432 ((-1 (-536)) (-536) |RationalNumber|)) (-15 -3433 ((-1 (-536)) |RationalNumber|)) (-15 -3434 ((-1 (-536)) |RationalNumber|)) (-15 -3435 ((-536) (-536) (-536) (-536) (-536))))) (T -1021)) +((-3435 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1021)))) (-3434 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)))) (-3433 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)) (-5 *3 (-536)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1060 (-536))) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) +(-10 -7 (-15 -3431 ((-1 (-536)) (-1060 (-536)))) (-15 -3432 ((-1 (-536)) (-536) |RationalNumber|)) (-15 -3433 ((-1 (-536)) |RationalNumber|)) (-15 -3434 ((-1 (-536)) |RationalNumber|)) (-15 -3435 ((-536) (-536) (-536) (-536) (-536)))) +((-4312 (((-838) $) NIL) (($ (-536)) 10))) +(((-1022 |#1|) (-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1023)) (T -1022)) +NIL +(-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-1023) (-138)) (T -1023)) +((-3456 (*1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1023))))) +(-13 (-1030) (-705) (-626 $) (-10 -8 (-15 -3456 ((-749))) (-15 -4312 ($ (-536))) (-6 -4345))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-3436 (((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)) 46))) +(((-1024 |#1| |#2|) (-10 -7 (-15 -3436 ((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)))) (-1147) (-356)) (T -1024)) +((-3436 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-920 *6))) (-5 *1 (-1024 *5 *6)) (-14 *5 (-1147))))) +(-10 -7 (-15 -3436 ((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)))) +((-3451 (((-112) $) 29)) (-3453 (((-112) $) 16)) (-3445 (((-749) $) 13)) (-3444 (((-749) $) 14)) (-3452 (((-112) $) 26)) (-3450 (((-112) $) 31))) +(((-1025 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3444 ((-749) |#1|)) (-15 -3445 ((-749) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|))) (-1026 |#2| |#3| |#4| |#5| |#6|) (-749) (-749) (-1023) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1025)) +NIL +(-10 -8 (-15 -3444 ((-749) |#1|)) (-15 -3445 ((-749) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3451 (((-112) $) 51)) (-1367 (((-3 $ "failed") $ $) 19)) (-3453 (((-112) $) 53)) (-1269 (((-112) $ (-749)) 61)) (-3891 (($) 17 T CONST)) (-3440 (($ $) 34 (|has| |#3| (-300)))) (-3442 ((|#4| $ (-536)) 39)) (-3439 (((-749) $) 33 (|has| |#3| (-543)))) (-3443 ((|#3| $ (-536) (-536)) 41)) (-2063 (((-620 |#3|) $) 68 (|has| $ (-6 -4348)))) (-3438 (((-749) $) 32 (|has| |#3| (-543)))) (-3437 (((-620 |#5|) $) 31 (|has| |#3| (-543)))) (-3445 (((-749) $) 45)) (-3444 (((-749) $) 44)) (-4077 (((-112) $ (-749)) 60)) (-3449 (((-536) $) 49)) (-3447 (((-536) $) 47)) (-2506 (((-620 |#3|) $) 69 (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 48)) (-3446 (((-536) $) 46)) (-3454 (($ (-620 (-620 |#3|))) 54)) (-2067 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3951 (((-620 (-620 |#3|)) $) 43)) (-4074 (((-112) $ (-749)) 59)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-543)))) (-2065 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#3|) (-620 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 (-286 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) 55)) (-3757 (((-112) $) 58)) (-3923 (($) 57)) (-4154 ((|#3| $ (-536) (-536)) 42) ((|#3| $ (-536) (-536) |#3|) 40)) (-3452 (((-112) $) 52)) (-2064 (((-749) |#3| $) 70 (-12 (|has| |#3| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4348)))) (-3754 (($ $) 56)) (-3441 ((|#5| $ (-536)) 38)) (-4312 (((-838) $) 11)) (-2066 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 50)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4311 (((-749) $) 62 (|has| $ (-6 -4348))))) +(((-1026 |#1| |#2| |#3| |#4| |#5|) (-138) (-749) (-749) (-1023) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1026)) +((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *5))) (-4 *5 (-1023)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-620 (-620 *5))))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) (-4154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *2 (-1023)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *2 *7)) (-4 *6 (-1023)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *7 *2)) (-4 *6 (-1023)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-543)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-620 *7))))) +(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4348) (IF (|has| |t#3| (-170)) (-6 (-696 |t#3|)) |%noBranch|) (-15 -3454 ($ (-620 (-620 |t#3|)))) (-15 -3453 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -3449 ((-536) $)) (-15 -3448 ((-536) $)) (-15 -3447 ((-536) $)) (-15 -3446 ((-536) $)) (-15 -3445 ((-749) $)) (-15 -3444 ((-749) $)) (-15 -3951 ((-620 (-620 |t#3|)) $)) (-15 -4154 (|t#3| $ (-536) (-536))) (-15 -3443 (|t#3| $ (-536) (-536))) (-15 -4154 (|t#3| $ (-536) (-536) |t#3|)) (-15 -3442 (|t#4| $ (-536))) (-15 -3441 (|t#5| $ (-536))) (-15 -4313 ($ (-1 |t#3| |t#3|) $)) (-15 -4313 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -4303 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3440 ($ $)) |%noBranch|) (IF (|has| |t#3| (-543)) (PROGN (-15 -3439 ((-749) $)) (-15 -3438 ((-749) $)) (-15 -3437 ((-620 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-595 (-838)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))) ((-626 |#3|) . T) ((-696 |#3|) |has| |#3| (-170)) ((-1029 |#3|) . T) ((-1072) . T) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 43 (|has| |#3| (-300)))) (-3442 (((-233 |#2| |#3|) $ (-536)) 32)) (-3455 (($ (-667 |#3|)) 41)) (-3439 (((-749) $) 45 (|has| |#3| (-543)))) (-3443 ((|#3| $ (-536) (-536)) NIL)) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3438 (((-749) $) 47 (|has| |#3| (-543)))) (-3437 (((-620 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-543)))) (-3445 (((-749) $) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#3|))) 27)) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3951 (((-620 (-620 |#3|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-543)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) (-536)) NIL) ((|#3| $ (-536) (-536) |#3|) NIL)) (-4266 (((-133)) 54 (|has| |#3| (-356)))) (-3452 (((-112) $) NIL)) (-2064 (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072)))) (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 63 (|has| |#3| (-596 (-525))))) (-3441 (((-233 |#1| |#3|) $ (-536)) 36)) (-4312 (((-838) $) 16) (((-667 |#3|) $) 38)) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2986 (($) 13 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1027 |#1| |#2| |#3|) (-13 (-1026 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1237 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (-15 -3455 ($ (-667 |#3|))) (-15 -4312 ((-667 |#3|) $)))) (-749) (-749) (-1023)) (T -1027)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-667 *5)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-1023)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-667 *5)) (-4 *5 (-1023)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749))))) +(-13 (-1026 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1237 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (-15 -3455 ($ (-667 |#3|))) (-15 -4312 ((-667 |#3|) $)))) +((-4197 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4313 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1028 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4197 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-749) (-749) (-1023) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1026 |#1| |#2| |#3| |#4| |#5|) (-1023) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1026 |#1| |#2| |#7| |#8| |#9|)) (T -1028)) +((-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1023)) (-4 *2 (-1023)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *12 (-1026 *5 *6 *2 *10 *11)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1023)) (-4 *10 (-1023)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1026 *5 *6 *10 *11 *12)) (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10))))) +(-10 -7 (-15 -4313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4197 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ |#1|) 23))) +(((-1029 |#1|) (-138) (-1030)) (T -1029)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1030))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-1028) (-138)) (T -1028)) -NIL -(-13 (-21) (-1081)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-837)) . T) ((-1081) . T) ((-1069) . T)) -((-2879 (($ $) 16)) (-3878 (($ $) 22)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 49)) (-1571 (($ $) 24)) (-1724 (($ $) 11)) (-3925 (($ $) 38)) (-2451 (((-372) $) NIL) (((-219) $) NIL) (((-866 (-372)) $) 33)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 28) (($ (-550)) NIL) (($ (-400 (-550))) 28)) (-3091 (((-749)) 8)) (-2967 (($ $) 39))) -(((-1029 |#1|) (-10 -8 (-15 -3878 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -1571 (|#1| |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2233 ((-837) |#1|))) (-1030)) (T -1029)) -((-3091 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1029 *3)) (-4 *3 (-1030))))) -(-10 -8 (-15 -3878 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -1571 (|#1| |#1|)) (-15 -4141 ((-863 (-372) |#1|) |#1| (-866 (-372)) (-863 (-372) |#1|))) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 -2451 ((-219) |#1|)) (-15 -2451 ((-372) |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -3091 ((-749))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3104 (((-550) $) 86)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-2879 (($ $) 84)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1745 (($ $) 94)) (-1611 (((-112) $ $) 57)) (-4303 (((-550) $) 111)) (-2991 (($) 17 T CONST)) (-3878 (($ $) 83)) (-2288 (((-3 (-550) "failed") $) 99) (((-3 (-400 (-550)) "failed") $) 96)) (-2202 (((-550) $) 98) (((-400 (-550)) $) 95)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-1568 (((-112) $) 68)) (-2694 (((-112) $) 109)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 90)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 93)) (-1571 (($ $) 89)) (-1712 (((-112) $) 110)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2793 (($ $ $) 108)) (-2173 (($ $ $) 107)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1724 (($ $) 85)) (-3925 (($ $) 87)) (-1735 (((-411 $) $) 71)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2451 (((-372) $) 102) (((-219) $) 101) (((-866 (-372)) $) 91)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-550)) 100) (($ (-400 (-550))) 97)) (-3091 (((-749)) 28)) (-2967 (($ $) 88)) (-1819 (((-112) $ $) 37)) (-4188 (($ $) 112)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2324 (((-112) $ $) 105)) (-2302 (((-112) $ $) 104)) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 106)) (-2290 (((-112) $ $) 103)) (-2382 (($ $ $) 62)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 92)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) (((-1030) (-138)) (T -1030)) -((-4188 (*1 *1 *1) (-4 *1 (-1030))) (-1571 (*1 *1 *1) (-4 *1 (-1030))) (-2967 (*1 *1 *1) (-4 *1 (-1030))) (-3925 (*1 *1 *1) (-4 *1 (-1030))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-550)))) (-1724 (*1 *1 *1) (-4 *1 (-1030))) (-2879 (*1 *1 *1) (-4 *1 (-1030))) (-3878 (*1 *1 *1) (-4 *1 (-1030)))) -(-13 (-356) (-823) (-996) (-1012 (-550)) (-1012 (-400 (-550))) (-976) (-596 (-866 (-372))) (-860 (-372)) (-145) (-10 -8 (-15 -1571 ($ $)) (-15 -2967 ($ $)) (-15 -3925 ($ $)) (-15 -3104 ((-550) $)) (-15 -1724 ($ $)) (-15 -2879 ($ $)) (-15 -3878 ($ $)) (-15 -4188 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-837)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-866 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-860 (-372)) . T) ((-894) . T) ((-976) . T) ((-996) . T) ((-1012 (-400 (-550))) . T) ((-1012 (-550)) . T) ((-1027 #0#) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) |#2| $) 23)) (-3828 ((|#1| $) 10)) (-4303 (((-550) |#2| $) 88)) (-3217 (((-3 $ "failed") |#2| (-895)) 57)) (-3490 ((|#1| $) 28)) (-3428 ((|#1| |#2| $ |#1|) 37)) (-3471 (($ $) 25)) (-1537 (((-3 |#2| "failed") |#2| $) 87)) (-2694 (((-112) |#2| $) NIL)) (-1712 (((-112) |#2| $) NIL)) (-1352 (((-112) |#2| $) 24)) (-2501 ((|#1| $) 89)) (-3480 ((|#1| $) 27)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3832 ((|#2| $) 79)) (-2233 (((-837) $) 70)) (-2154 ((|#1| |#2| $ |#1|) 38)) (-1759 (((-623 $) |#2|) 59)) (-2264 (((-112) $ $) 74))) -(((-1031 |#1| |#2|) (-13 (-1038 |#1| |#2|) (-10 -8 (-15 -3480 (|#1| $)) (-15 -3490 (|#1| $)) (-15 -3828 (|#1| $)) (-15 -2501 (|#1| $)) (-15 -3471 ($ $)) (-15 -1352 ((-112) |#2| $)) (-15 -3428 (|#1| |#2| $ |#1|)))) (-13 (-823) (-356)) (-1204 |#1|)) (T -1031)) -((-3428 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-3480 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-3490 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-3828 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-2501 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-3471 (*1 *1 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) (-4 *3 (-1204 *2)))) (-1352 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-1204 *4))))) -(-13 (-1038 |#1| |#2|) (-10 -8 (-15 -3480 (|#1| $)) (-15 -3490 (|#1| $)) (-15 -3828 (|#1| $)) (-15 -2501 (|#1| $)) (-15 -3471 ($ $)) (-15 -1352 ((-112) |#2| $)) (-15 -3428 (|#1| |#2| $ |#1|)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2633 (($ $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1534 (($ $ $ $) NIL)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL)) (-1538 (($ $ $) NIL)) (-2991 (($) NIL T CONST)) (-3290 (($ (-1145)) 10) (($ (-550)) 7)) (-2288 (((-3 (-550) "failed") $) NIL)) (-2202 (((-550) $) NIL)) (-3455 (($ $ $) NIL)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL)) (-2593 (((-112) $) NIL)) (-3169 (((-400 (-550)) $) NIL)) (-1864 (($) NIL) (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2083 (($ $ $ $) NIL)) (-2181 (($ $ $) NIL)) (-2694 (((-112) $) NIL)) (-4083 (($ $ $) NIL)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL)) (-2419 (((-112) $) NIL)) (-1286 (((-112) $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-1712 (((-112) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2960 (($ $ $ $) NIL)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-1673 (($ $) NIL)) (-3839 (($ $) NIL)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-2711 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-2486 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3643 (($ $) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-2417 (($ $) NIL)) (-2435 (($ $) NIL)) (-2451 (((-550) $) 16) (((-526) $) NIL) (((-866 (-550)) $) NIL) (((-372) $) NIL) (((-219) $) NIL) (($ (-1145)) 9)) (-2233 (((-837) $) 20) (($ (-550)) 6) (($ $) NIL) (($ (-550)) 6)) (-3091 (((-749)) NIL)) (-1796 (((-112) $ $) NIL)) (-1437 (($ $ $) NIL)) (-4300 (($) NIL)) (-1819 (((-112) $ $) NIL)) (-4133 (($ $ $ $) NIL)) (-4188 (($ $) NIL)) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) NIL)) (-2370 (($ $) 19) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) -(((-1032) (-13 (-535) (-10 -8 (-6 -4331) (-6 -4336) (-6 -4332) (-15 -2451 ($ (-1145))) (-15 -3290 ($ (-1145))) (-15 -3290 ($ (-550)))))) (T -1032)) -((-2451 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1032)))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1032)))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1032))))) -(-13 (-535) (-10 -8 (-6 -4331) (-6 -4336) (-6 -4332) (-15 -2451 ($ (-1145))) (-15 -3290 ($ (-1145))) (-15 -3290 ($ (-550))))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-3037 (((-1233) $ (-1145) (-1145)) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-1936 (($) 9)) (-2409 (((-52) $ (-1145) (-52)) NIL)) (-3373 (($ $) 30)) (-4290 (($ $) 28)) (-2857 (($ $) 27)) (-1443 (($ $) 29)) (-3964 (($ $) 32)) (-2069 (($ $) 33)) (-2480 (($ $) 26)) (-3022 (($ $) 31)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) 25 (|has| $ (-6 -4344)))) (-3696 (((-3 (-52) "failed") (-1145) $) 40)) (-2991 (($) NIL T CONST)) (-2187 (($) 7)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-2505 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) 50 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-3 (-52) "failed") (-1145) $) NIL)) (-1979 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344)))) (-3238 (((-3 (-1127) "failed") $ (-1127) (-550)) 59)) (-3317 (((-52) $ (-1145) (-52)) NIL (|has| $ (-6 -4345)))) (-3263 (((-52) $ (-1145)) NIL)) (-2971 (((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-1145) $) NIL (|has| (-1145) (-825)))) (-2876 (((-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) 35 (|has| $ (-6 -4344))) (((-623 (-52)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-2506 (((-1145) $) NIL (|has| (-1145) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4345))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-4212 (((-623 (-1145)) $) NIL)) (-3998 (((-112) (-1145) $) NIL)) (-1696 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL)) (-1715 (($ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) 43)) (-3611 (((-623 (-1145)) $) NIL)) (-3166 (((-112) (-1145) $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-2801 (((-372) $ (-1145)) 49)) (-1739 (((-623 (-1127)) $ (-1127)) 60)) (-3858 (((-52) $) NIL (|has| (-1145) (-825)))) (-1614 (((-3 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL)) (-2491 (($ $ (-52)) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-287 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-302 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069))))) (-1375 (((-623 (-52)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (((-52) $ (-1145)) NIL) (((-52) $ (-1145) (-52)) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-2716 (($ $ (-1145)) 51)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-52) (-1069)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) 37)) (-4006 (($ $ $) 38)) (-2233 (((-837) $) NIL (-1489 (|has| (-52) (-595 (-837))) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-595 (-837)))))) (-1329 (($ $ (-1145) (-372)) 47)) (-2552 (($ $ (-1145) (-372)) 48)) (-4017 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 (-1145)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-52) (-1069)) (|has| (-2 (|:| -3549 (-1145)) (|:| -3859 (-52))) (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1033) (-13 (-1158 (-1145) (-52)) (-10 -8 (-15 -4006 ($ $ $)) (-15 -2187 ($)) (-15 -2480 ($ $)) (-15 -2857 ($ $)) (-15 -4290 ($ $)) (-15 -1443 ($ $)) (-15 -3022 ($ $)) (-15 -3373 ($ $)) (-15 -3964 ($ $)) (-15 -2069 ($ $)) (-15 -1329 ($ $ (-1145) (-372))) (-15 -2552 ($ $ (-1145) (-372))) (-15 -2801 ((-372) $ (-1145))) (-15 -1739 ((-623 (-1127)) $ (-1127))) (-15 -2716 ($ $ (-1145))) (-15 -1936 ($)) (-15 -3238 ((-3 (-1127) "failed") $ (-1127) (-550))) (-6 -4344)))) (T -1033)) -((-4006 (*1 *1 *1 *1) (-5 *1 (-1033))) (-2187 (*1 *1) (-5 *1 (-1033))) (-2480 (*1 *1 *1) (-5 *1 (-1033))) (-2857 (*1 *1 *1) (-5 *1 (-1033))) (-4290 (*1 *1 *1) (-5 *1 (-1033))) (-1443 (*1 *1 *1) (-5 *1 (-1033))) (-3022 (*1 *1 *1) (-5 *1 (-1033))) (-3373 (*1 *1 *1) (-5 *1 (-1033))) (-3964 (*1 *1 *1) (-5 *1 (-1033))) (-2069 (*1 *1 *1) (-5 *1 (-1033))) (-1329 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-372)) (-5 *1 (-1033)))) (-2552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-372)) (-5 *1 (-1033)))) (-2801 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-372)) (-5 *1 (-1033)))) (-1739 (*1 *2 *1 *3) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1033)) (-5 *3 (-1127)))) (-2716 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1033)))) (-1936 (*1 *1) (-5 *1 (-1033))) (-3238 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-1033))))) -(-13 (-1158 (-1145) (-52)) (-10 -8 (-15 -4006 ($ $ $)) (-15 -2187 ($)) (-15 -2480 ($ $)) (-15 -2857 ($ $)) (-15 -4290 ($ $)) (-15 -1443 ($ $)) (-15 -3022 ($ $)) (-15 -3373 ($ $)) (-15 -3964 ($ $)) (-15 -2069 ($ $)) (-15 -1329 ($ $ (-1145) (-372))) (-15 -2552 ($ $ (-1145) (-372))) (-15 -2801 ((-372) $ (-1145))) (-15 -1739 ((-623 (-1127)) $ (-1127))) (-15 -2716 ($ $ (-1145))) (-15 -1936 ($)) (-15 -3238 ((-3 (-1127) "failed") $ (-1127) (-550))) (-6 -4344))) -((-2470 (($ $) 45)) (-1403 (((-112) $ $) 74)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-926 (-400 (-550)))) 227) (((-3 $ "failed") (-926 (-550))) 226) (((-3 $ "failed") (-926 |#2|)) 229)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) NIL) (($ (-926 (-400 (-550)))) 215) (($ (-926 (-550))) 211) (($ (-926 |#2|)) 231)) (-1693 (($ $) NIL) (($ $ |#4|) 43)) (-4240 (((-112) $ $) 112) (((-112) $ (-623 $)) 113)) (-3736 (((-112) $) 56)) (-2858 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 107)) (-1519 (($ $) 138)) (-3126 (($ $) 134)) (-1780 (($ $) 133)) (-2696 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3115 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2831 (((-112) $ $) 121) (((-112) $ (-623 $)) 122)) (-1765 ((|#4| $) 33)) (-2164 (($ $ $) 110)) (-3748 (((-112) $) 55)) (-2109 (((-749) $) 35)) (-3825 (($ $) 152)) (-3416 (($ $) 149)) (-3562 (((-623 $) $) 68)) (-4196 (($ $) 57)) (-3146 (($ $) 145)) (-3215 (((-623 $) $) 65)) (-1491 (($ $) 59)) (-1670 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3726 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3867 (-749))) $ $) 111)) (-1842 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $) 108) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $ |#4|) 109)) (-1414 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $) 104) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $ |#4|) 105)) (-3742 (($ $ $) 89) (($ $ $ |#4|) 95)) (-4065 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2253 (((-623 $) $) 51)) (-3705 (((-112) $ $) 118) (((-112) $ (-623 $)) 119)) (-2474 (($ $ $) 103)) (-2463 (($ $) 37)) (-3098 (((-112) $ $) 72)) (-1631 (((-112) $ $) 114) (((-112) $ (-623 $)) 116)) (-3959 (($ $ $) 101)) (-3724 (($ $) 40)) (-3260 ((|#2| |#2| $) 142) (($ (-623 $)) NIL) (($ $ $) NIL)) (-1433 (($ $ |#2|) NIL) (($ $ $) 131)) (-1323 (($ $ |#2|) 126) (($ $ $) 129)) (-3939 (($ $) 48)) (-3610 (($ $) 52)) (-2451 (((-866 (-372)) $) NIL) (((-866 (-550)) $) NIL) (((-526) $) NIL) (($ (-926 (-400 (-550)))) 217) (($ (-926 (-550))) 213) (($ (-926 |#2|)) 228) (((-1127) $) 250) (((-926 |#2|) $) 162)) (-2233 (((-837) $) 30) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-926 |#2|) $) 163) (($ (-400 (-550))) NIL) (($ $) NIL)) (-3984 (((-3 (-112) "failed") $ $) 71))) -(((-1034 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 ((-926 |#2|) |#1|)) (-15 -2451 ((-926 |#2|) |#1|)) (-15 -2451 ((-1127) |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3260 (|#2| |#2| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#2|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -3126 (|#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2451 (|#1| (-926 |#2|))) (-15 -2202 (|#1| (-926 |#2|))) (-15 -2288 ((-3 |#1| "failed") (-926 |#2|))) (-15 -2451 (|#1| (-926 (-550)))) (-15 -2202 (|#1| (-926 (-550)))) (-15 -2288 ((-3 |#1| "failed") (-926 (-550)))) (-15 -2451 (|#1| (-926 (-400 (-550))))) (-15 -2202 (|#1| (-926 (-400 (-550))))) (-15 -2288 ((-3 |#1| "failed") (-926 (-400 (-550))))) (-15 -2474 (|#1| |#1| |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3726 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3867 (-749))) |#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2858 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1414 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -1414 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -4065 (|#1| |#1| |#1| |#4|)) (-15 -3742 (|#1| |#1| |#1| |#4|)) (-15 -4065 (|#1| |#1| |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2696 (|#1| |#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -2831 ((-112) |#1| (-623 |#1|))) (-15 -2831 ((-112) |#1| |#1|)) (-15 -3705 ((-112) |#1| (-623 |#1|))) (-15 -3705 ((-112) |#1| |#1|)) (-15 -1631 ((-112) |#1| (-623 |#1|))) (-15 -1631 ((-112) |#1| |#1|)) (-15 -4240 ((-112) |#1| (-623 |#1|))) (-15 -4240 ((-112) |#1| |#1|)) (-15 -1403 ((-112) |#1| |#1|)) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3984 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3562 ((-623 |#1|) |#1|)) (-15 -3215 ((-623 |#1|) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -4196 (|#1| |#1|)) (-15 -3736 ((-112) |#1|)) (-15 -3748 ((-112) |#1|)) (-15 -1693 (|#1| |#1| |#4|)) (-15 -1670 (|#1| |#1| |#4|)) (-15 -3610 (|#1| |#1|)) (-15 -2253 ((-623 |#1|) |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -2463 (|#1| |#1|)) (-15 -2109 ((-749) |#1|)) (-15 -1765 (|#4| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2202 (|#4| |#1|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -2233 (|#1| |#4|)) (-15 -1670 (|#2| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-1035 |#2| |#3| |#4|) (-1021) (-771) (-825)) (T -1034)) -NIL -(-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3260 (|#1| (-623 |#1|))) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 ((-926 |#2|) |#1|)) (-15 -2451 ((-926 |#2|) |#1|)) (-15 -2451 ((-1127) |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3260 (|#2| |#2| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#2|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -3126 (|#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2451 (|#1| (-926 |#2|))) (-15 -2202 (|#1| (-926 |#2|))) (-15 -2288 ((-3 |#1| "failed") (-926 |#2|))) (-15 -2451 (|#1| (-926 (-550)))) (-15 -2202 (|#1| (-926 (-550)))) (-15 -2288 ((-3 |#1| "failed") (-926 (-550)))) (-15 -2451 (|#1| (-926 (-400 (-550))))) (-15 -2202 (|#1| (-926 (-400 (-550))))) (-15 -2288 ((-3 |#1| "failed") (-926 (-400 (-550))))) (-15 -2474 (|#1| |#1| |#1|)) (-15 -3959 (|#1| |#1| |#1|)) (-15 -3726 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3867 (-749))) |#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2858 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -1842 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1414 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -2545 |#1|)) |#1| |#1| |#4|)) (-15 -1414 ((-2 (|:| -4304 |#1|) (|:| |gap| (-749)) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -4065 (|#1| |#1| |#1| |#4|)) (-15 -3742 (|#1| |#1| |#1| |#4|)) (-15 -4065 (|#1| |#1| |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2696 (|#1| |#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -2831 ((-112) |#1| (-623 |#1|))) (-15 -2831 ((-112) |#1| |#1|)) (-15 -3705 ((-112) |#1| (-623 |#1|))) (-15 -3705 ((-112) |#1| |#1|)) (-15 -1631 ((-112) |#1| (-623 |#1|))) (-15 -1631 ((-112) |#1| |#1|)) (-15 -4240 ((-112) |#1| (-623 |#1|))) (-15 -4240 ((-112) |#1| |#1|)) (-15 -1403 ((-112) |#1| |#1|)) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3984 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3562 ((-623 |#1|) |#1|)) (-15 -3215 ((-623 |#1|) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -4196 (|#1| |#1|)) (-15 -3736 ((-112) |#1|)) (-15 -3748 ((-112) |#1|)) (-15 -1693 (|#1| |#1| |#4|)) (-15 -1670 (|#1| |#1| |#4|)) (-15 -3610 (|#1| |#1|)) (-15 -2253 ((-623 |#1|) |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -2463 (|#1| |#1|)) (-15 -2109 ((-749) |#1|)) (-15 -1765 (|#4| |#1|)) (-15 -2451 ((-526) |#1|)) (-15 -2451 ((-866 (-550)) |#1|)) (-15 -2451 ((-866 (-372)) |#1|)) (-15 -2202 (|#4| |#1|)) (-15 -2288 ((-3 |#4| "failed") |#1|)) (-15 -2233 (|#1| |#4|)) (-15 -1670 (|#2| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 |#3|) $) 108)) (-1705 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-3050 (($ $) 86 (|has| |#1| (-542)))) (-3953 (((-112) $) 88 (|has| |#1| (-542)))) (-2457 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-2470 (($ $) 269)) (-1403 (((-112) $ $) 255)) (-1993 (((-3 $ "failed") $ $) 19)) (-2129 (($ $ $) 214 (|has| |#1| (-542)))) (-3099 (((-623 $) $ $) 209 (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-883)))) (-2318 (($ $) 96 (|has| |#1| (-444)))) (-2207 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-883)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1012 (-550)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-926 (-400 (-550)))) 229 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145))))) (((-3 $ "failed") (-926 (-550))) 226 (-1489 (-12 (-3548 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1145)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145)))))) (((-3 $ "failed") (-926 |#1|)) 223 (-1489 (-12 (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-38 (-550)))) (|has| |#3| (-596 (-1145)))) (-12 (-3548 (|has| |#1| (-535))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1145)))) (-12 (-3548 (|has| |#1| (-966 (-550)))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145))))))) (-2202 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1012 (-550)))) ((|#3| $) 133) (($ (-926 (-400 (-550)))) 228 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145))))) (($ (-926 (-550))) 225 (-1489 (-12 (-3548 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1145)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145)))))) (($ (-926 |#1|)) 222 (-1489 (-12 (-3548 (|has| |#1| (-38 (-400 (-550))))) (-3548 (|has| |#1| (-38 (-550)))) (|has| |#3| (-596 (-1145)))) (-12 (-3548 (|has| |#1| (-535))) (-3548 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1145)))) (-12 (-3548 (|has| |#1| (-966 (-550)))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145))))))) (-1792 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-542)))) (-1693 (($ $) 152) (($ $ |#3|) 264)) (-3756 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-4240 (((-112) $ $) 254) (((-112) $ (-623 $)) 253)) (-1537 (((-3 $ "failed") $) 32)) (-3736 (((-112) $) 262)) (-2858 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 234)) (-1519 (($ $) 203 (|has| |#1| (-444)))) (-2731 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-1683 (((-623 $) $) 107)) (-1568 (((-112) $) 94 (|has| |#1| (-883)))) (-3126 (($ $) 219 (|has| |#1| (-542)))) (-1780 (($ $) 220 (|has| |#1| (-542)))) (-2696 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3115 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3401 (($ $ |#1| |#2| $) 170)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 82 (-12 (|has| |#3| (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 81 (-12 (|has| |#3| (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2419 (((-112) $) 30)) (-3324 (((-749) $) 167)) (-2831 (((-112) $ $) 248) (((-112) $ (-623 $)) 247)) (-1502 (($ $ $ $ $) 205 (|has| |#1| (-542)))) (-1765 ((|#3| $) 273)) (-1501 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-2336 (((-623 $) $) 124)) (-3438 (((-112) $) 150)) (-1488 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-2164 (($ $ $) 233)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#3|) 118)) (-3748 (((-112) $) 263)) (-3346 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2793 (($ $ $) 77 (|has| |#1| (-825)))) (-2109 (((-749) $) 272)) (-2173 (($ $ $) 76 (|has| |#1| (-825)))) (-2863 (($ (-1 |#2| |#2|) $) 169)) (-2392 (($ (-1 |#1| |#1|) $) 149)) (-4059 (((-3 |#3| "failed") $) 121)) (-3825 (($ $) 200 (|has| |#1| (-444)))) (-3416 (($ $) 201 (|has| |#1| (-444)))) (-3562 (((-623 $) $) 258)) (-4196 (($ $) 261)) (-3146 (($ $) 202 (|has| |#1| (-444)))) (-3215 (((-623 $) $) 259)) (-1491 (($ $) 260)) (-1657 (($ $) 147)) (-1670 ((|#1| $) 146) (($ $ |#3|) 265)) (-3231 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3726 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3867 (-749))) $ $) 232)) (-1842 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $) 236) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $ |#3|) 235)) (-1414 (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $) 238) (((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $ |#3|) 237)) (-3742 (($ $ $) 242) (($ $ $ |#3|) 240)) (-4065 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2369 (((-1127) $) 9)) (-1623 (($ $ $) 208 (|has| |#1| (-542)))) (-2253 (((-623 $) $) 267)) (-3833 (((-3 (-623 $) "failed") $) 112)) (-3017 (((-3 (-623 $) "failed") $) 113)) (-2891 (((-3 (-2 (|:| |var| |#3|) (|:| -3068 (-749))) "failed") $) 111)) (-3705 (((-112) $ $) 250) (((-112) $ (-623 $)) 249)) (-2474 (($ $ $) 230)) (-2463 (($ $) 271)) (-3098 (((-112) $ $) 256)) (-1631 (((-112) $ $) 252) (((-112) $ (-623 $)) 251)) (-3959 (($ $ $) 231)) (-3724 (($ $) 270)) (-3445 (((-1089) $) 10)) (-1518 (((-2 (|:| -3260 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-542)))) (-3342 (((-2 (|:| -3260 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-542)))) (-1628 (((-112) $) 164)) (-1639 ((|#1| $) 165)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3260 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 97 (|has| |#1| (-883)))) (-3107 (((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-542)))) (-3409 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-1433 (($ $ |#1|) 217 (|has| |#1| (-542))) (($ $ $) 215 (|has| |#1| (-542)))) (-1323 (($ $ |#1|) 218 (|has| |#1| (-542))) (($ $ $) 216 (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136)) (-3563 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2798 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37)) (-3661 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127)) (-3939 (($ $) 268)) (-3610 (($ $) 266)) (-2451 (((-866 (-372)) $) 80 (-12 (|has| |#3| (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) 79 (-12 (|has| |#3| (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526))))) (($ (-926 (-400 (-550)))) 227 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145))))) (($ (-926 (-550))) 224 (-1489 (-12 (-3548 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1145)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1145)))))) (($ (-926 |#1|)) 221 (|has| |#3| (-596 (-1145)))) (((-1127) $) 199 (-12 (|has| |#1| (-1012 (-550))) (|has| |#3| (-596 (-1145))))) (((-926 |#1|) $) 198 (|has| |#3| (-596 (-1145))))) (-1622 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 102 (-1304 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-926 |#1|) $) 197 (|has| |#3| (-596 (-1145)))) (($ (-400 (-550))) 70 (-1489 (|has| |#1| (-1012 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) 166)) (-1708 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-1613 (((-3 $ "failed") $) 71 (-1489 (-1304 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 28)) (-3895 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-3984 (((-3 (-112) "failed") $ $) 257)) (-2700 (($) 29 T CONST)) (-2436 (($ $ $ $ (-749)) 206 (|has| |#1| (-542)))) (-4121 (($ $ $ (-749)) 207 (|has| |#1| (-542)))) (-1901 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33)) (-2324 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1035 |#1| |#2| |#3|) (-138) (-1021) (-771) (-825)) (T -1035)) -((-1765 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-2463 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3939 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2253 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1035 *3 *4 *5)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-1670 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-1693 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4196 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3215 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1035 *3 *4 *5)))) (-3562 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1035 *3 *4 *5)))) (-3984 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3098 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-1403 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4240 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-1631 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3705 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-2831 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-2831 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-2696 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3115 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2696 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3115 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3742 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4065 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3742 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-4065 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *2 (-825)))) (-1414 (*1 *2 *1 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -2545 *1))) (-4 *1 (-1035 *3 *4 *5)))) (-1414 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -2545 *1))) (-4 *1 (-1035 *4 *5 *3)))) (-1842 (*1 *2 *1 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1035 *3 *4 *5)))) (-1842 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1035 *4 *5 *3)))) (-2858 (*1 *2 *1 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1035 *3 *4 *5)))) (-2164 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3726 (*1 *2 *1 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3867 (-749)))) (-4 *1 (-1035 *3 *4 *5)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2474 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2288 (*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)))) (-2288 (*1 *1 *2) (|partial| -1489 (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2202 (*1 *1 *2) (-1489 (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2451 (*1 *1 *2) (-1489 (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2288 (*1 *1 *2) (|partial| -1489 (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-3548 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-535))) (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-966 (-550)))) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2202 (*1 *1 *2) (-1489 (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-3548 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-535))) (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-926 *3)) (-12 (-3548 (-4 *3 (-966 (-550)))) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *5 (-596 (-1145))) (-4 *4 (-771)) (-4 *5 (-825)))) (-1780 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1323 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1433 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1323 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1433 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-2129 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3107 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3260 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1035 *3 *4 *5)))) (-3342 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3260 *1) (|:| |coef1| *1))) (-4 *1 (-1035 *3 *4 *5)))) (-1518 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3260 *1) (|:| |coef2| *1))) (-4 *1 (-1035 *3 *4 *5)))) (-1792 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3099 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1035 *3 *4 *5)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-4121 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542)))) (-2436 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542)))) (-1502 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3260 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-1519 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3416 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3825 (*1 *1 *1) (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444))))) -(-13 (-923 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1765 (|t#3| $)) (-15 -2109 ((-749) $)) (-15 -2463 ($ $)) (-15 -3724 ($ $)) (-15 -2470 ($ $)) (-15 -3939 ($ $)) (-15 -2253 ((-623 $) $)) (-15 -3610 ($ $)) (-15 -1670 ($ $ |t#3|)) (-15 -1693 ($ $ |t#3|)) (-15 -3748 ((-112) $)) (-15 -3736 ((-112) $)) (-15 -4196 ($ $)) (-15 -1491 ($ $)) (-15 -3215 ((-623 $) $)) (-15 -3562 ((-623 $) $)) (-15 -3984 ((-3 (-112) "failed") $ $)) (-15 -3098 ((-112) $ $)) (-15 -1403 ((-112) $ $)) (-15 -4240 ((-112) $ $)) (-15 -4240 ((-112) $ (-623 $))) (-15 -1631 ((-112) $ $)) (-15 -1631 ((-112) $ (-623 $))) (-15 -3705 ((-112) $ $)) (-15 -3705 ((-112) $ (-623 $))) (-15 -2831 ((-112) $ $)) (-15 -2831 ((-112) $ (-623 $))) (-15 -2696 ($ $ $)) (-15 -3115 ($ $ $)) (-15 -2696 ($ $ $ |t#3|)) (-15 -3115 ($ $ $ |t#3|)) (-15 -3742 ($ $ $)) (-15 -4065 ($ $ $)) (-15 -3742 ($ $ $ |t#3|)) (-15 -4065 ($ $ $ |t#3|)) (-15 -1414 ((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $)) (-15 -1414 ((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -2545 $)) $ $ |t#3|)) (-15 -1842 ((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -1842 ((-2 (|:| -4304 $) (|:| |gap| (-749)) (|:| -3123 $) (|:| -2545 $)) $ $ |t#3|)) (-15 -2858 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -2164 ($ $ $)) (-15 -3726 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3867 (-749))) $ $)) (-15 -3959 ($ $ $)) (-15 -2474 ($ $ $)) (IF (|has| |t#3| (-596 (-1145))) (PROGN (-6 (-595 (-926 |t#1|))) (-6 (-596 (-926 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -2288 ((-3 $ "failed") (-926 (-400 (-550))))) (-15 -2202 ($ (-926 (-400 (-550))))) (-15 -2451 ($ (-926 (-400 (-550))))) (-15 -2288 ((-3 $ "failed") (-926 (-550)))) (-15 -2202 ($ (-926 (-550)))) (-15 -2451 ($ (-926 (-550)))) (IF (|has| |t#1| (-966 (-550))) |%noBranch| (PROGN (-15 -2288 ((-3 $ "failed") (-926 |t#1|))) (-15 -2202 ($ (-926 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) (IF (|has| |t#1| (-38 (-400 (-550)))) |%noBranch| (PROGN (-15 -2288 ((-3 $ "failed") (-926 (-550)))) (-15 -2202 ($ (-926 (-550)))) (-15 -2451 ($ (-926 (-550)))) (IF (|has| |t#1| (-535)) |%noBranch| (PROGN (-15 -2288 ((-3 $ "failed") (-926 |t#1|))) (-15 -2202 ($ (-926 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-550)))) |%noBranch| (PROGN (-15 -2288 ((-3 $ "failed") (-926 |t#1|))) (-15 -2202 ($ (-926 |t#1|)))))) (-15 -2451 ($ (-926 |t#1|))) (IF (|has| |t#1| (-1012 (-550))) (-6 (-596 (-1127))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1780 ($ $)) (-15 -3126 ($ $)) (-15 -1323 ($ $ |t#1|)) (-15 -1433 ($ $ |t#1|)) (-15 -1323 ($ $ $)) (-15 -1433 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3107 ((-2 (|:| -3260 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3342 ((-2 (|:| -3260 $) (|:| |coef1| $)) $ $)) (-15 -1518 ((-2 (|:| -3260 $) (|:| |coef2| $)) $ $)) (-15 -1792 ($ $ $)) (-15 -3099 ((-623 $) $ $)) (-15 -1623 ($ $ $)) (-15 -4121 ($ $ $ (-749))) (-15 -2436 ($ $ $ $ (-749))) (-15 -1502 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3260 (|t#1| |t#1| $)) (-15 -1519 ($ $)) (-15 -3146 ($ $)) (-15 -3416 ($ $)) (-15 -3825 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-595 (-926 |#1|)) |has| |#3| (-596 (-1145))) ((-170) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-866 (-372))) -12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#3| (-596 (-866 (-372))))) ((-596 (-866 (-550))) -12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#3| (-596 (-866 (-550))))) ((-596 (-926 |#1|)) |has| |#3| (-596 (-1145))) ((-596 (-1127)) -12 (|has| |#1| (-1012 (-550))) (|has| |#3| (-596 (-1145)))) ((-283) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-883)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-372)) -12 (|has| |#1| (-860 (-372))) (|has| |#3| (-860 (-372)))) ((-860 (-550)) -12 (|has| |#1| (-860 (-550))) (|has| |#3| (-860 (-550)))) ((-923 |#1| |#2| |#3|) . T) ((-883) |has| |#1| (-883)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) |has| |#1| (-883))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2576 (((-623 (-1104)) $) 13)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 24) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-1104) $) 15)) (-2264 (((-112) $ $) NIL))) -(((-1036) (-13 (-1052) (-10 -8 (-15 -2576 ((-623 (-1104)) $)) (-15 -1865 ((-1104) $))))) (T -1036)) -((-2576 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1036)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1036))))) -(-13 (-1052) (-10 -8 (-15 -2576 ((-623 (-1104)) $)) (-15 -1865 ((-1104) $)))) -((-3378 (((-112) |#3| $) 13)) (-3217 (((-3 $ "failed") |#3| (-895)) 23)) (-1537 (((-3 |#3| "failed") |#3| $) 38)) (-2694 (((-112) |#3| $) 16)) (-1712 (((-112) |#3| $) 14))) -(((-1037 |#1| |#2| |#3|) (-10 -8 (-15 -3217 ((-3 |#1| "failed") |#3| (-895))) (-15 -1537 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2694 ((-112) |#3| |#1|)) (-15 -1712 ((-112) |#3| |#1|)) (-15 -3378 ((-112) |#3| |#1|))) (-1038 |#2| |#3|) (-13 (-823) (-356)) (-1204 |#2|)) (T -1037)) -NIL -(-10 -8 (-15 -3217 ((-3 |#1| "failed") |#3| (-895))) (-15 -1537 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2694 ((-112) |#3| |#1|)) (-15 -1712 ((-112) |#3| |#1|)) (-15 -3378 ((-112) |#3| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) |#2| $) 21)) (-4303 (((-550) |#2| $) 22)) (-3217 (((-3 $ "failed") |#2| (-895)) 15)) (-3428 ((|#1| |#2| $ |#1|) 13)) (-1537 (((-3 |#2| "failed") |#2| $) 18)) (-2694 (((-112) |#2| $) 19)) (-1712 (((-112) |#2| $) 20)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3832 ((|#2| $) 17)) (-2233 (((-837) $) 11)) (-2154 ((|#1| |#2| $ |#1|) 14)) (-1759 (((-623 $) |#2|) 16)) (-2264 (((-112) $ $) 6))) -(((-1038 |#1| |#2|) (-138) (-13 (-823) (-356)) (-1204 |t#1|)) (T -1038)) -((-4303 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-550)))) (-3378 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-112)))) (-1712 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-112)))) (-2694 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-112)))) (-1537 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1038 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1204 *3)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1204 *3)))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-623 *1)) (-4 *1 (-1038 *4 *3)))) (-3217 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-823) (-356))) (-4 *1 (-1038 *4 *2)) (-4 *2 (-1204 *4)))) (-2154 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1038 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1204 *2)))) (-3428 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1038 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1204 *2))))) -(-13 (-1069) (-10 -8 (-15 -4303 ((-550) |t#2| $)) (-15 -3378 ((-112) |t#2| $)) (-15 -1712 ((-112) |t#2| $)) (-15 -2694 ((-112) |t#2| $)) (-15 -1537 ((-3 |t#2| "failed") |t#2| $)) (-15 -3832 (|t#2| $)) (-15 -1759 ((-623 $) |t#2|)) (-15 -3217 ((-3 $ "failed") |t#2| (-895))) (-15 -2154 (|t#1| |t#2| $ |t#1|)) (-15 -3428 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2747 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749)) 96)) (-4219 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749)) 56)) (-4275 (((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)) 87)) (-2328 (((-749) (-623 |#4|) (-623 |#5|)) 27)) (-1535 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749)) 58) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112)) 60)) (-1301 (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112)) 79)) (-2451 (((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) 82)) (-4030 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-112)) 55)) (-3642 (((-749) (-623 |#4|) (-623 |#5|)) 19))) -(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3642 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -2328 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4030 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-112))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2747 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749))) (-15 -2451 ((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -4275 ((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -1039)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) (-5 *4 (-749)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1233)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1127)) (-5 *1 (-1039 *4 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-623 *11)) (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -1608 *11)))))) (-5 *6 (-749)) (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -1608 *11)))) (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1035 *7 *8 *9)) (-4 *11 (-1041 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1039 *7 *8 *9 *10 *11)))) (-1301 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) (-1301 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) (-1535 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) (-1535 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1035 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *7 *8 *9 *3 *4)) (-4 *4 (-1041 *7 *8 *9 *3)))) (-4219 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) (-4030 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1039 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3642 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -2328 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4030 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-112))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2747 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749))) (-15 -2451 ((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -4275 ((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)))) -((-2515 (((-112) |#5| $) 21)) (-3350 (((-112) |#5| $) 24)) (-3201 (((-112) |#5| $) 16) (((-112) $) 45)) (-4072 (((-623 $) |#5| $) NIL) (((-623 $) (-623 |#5|) $) 77) (((-623 $) (-623 |#5|) (-623 $)) 75) (((-623 $) |#5| (-623 $)) 78)) (-4268 (($ $ |#5|) NIL) (((-623 $) |#5| $) NIL) (((-623 $) |#5| (-623 $)) 60) (((-623 $) (-623 |#5|) $) 62) (((-623 $) (-623 |#5|) (-623 $)) 64)) (-3176 (((-623 $) |#5| $) NIL) (((-623 $) |#5| (-623 $)) 54) (((-623 $) (-623 |#5|) $) 56) (((-623 $) (-623 |#5|) (-623 $)) 58)) (-2993 (((-112) |#5| $) 27))) -(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4268 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -4268 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -4268 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -4268 ((-623 |#1|) |#5| |#1|)) (-15 -3176 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -3176 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -3176 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -3176 ((-623 |#1|) |#5| |#1|)) (-15 -4072 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -4072 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -4072 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -4072 ((-623 |#1|) |#5| |#1|)) (-15 -3350 ((-112) |#5| |#1|)) (-15 -3201 ((-112) |#1|)) (-15 -2993 ((-112) |#5| |#1|)) (-15 -2515 ((-112) |#5| |#1|)) (-15 -3201 ((-112) |#5| |#1|)) (-15 -4268 (|#1| |#1| |#5|))) (-1041 |#2| |#3| |#4| |#5|) (-444) (-771) (-825) (-1035 |#2| |#3| |#4|)) (T -1040)) -NIL -(-10 -8 (-15 -4268 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -4268 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -4268 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -4268 ((-623 |#1|) |#5| |#1|)) (-15 -3176 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -3176 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -3176 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -3176 ((-623 |#1|) |#5| |#1|)) (-15 -4072 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -4072 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -4072 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -4072 ((-623 |#1|) |#5| |#1|)) (-15 -3350 ((-112) |#5| |#1|)) (-15 -3201 ((-112) |#1|)) (-15 -2993 ((-112) |#5| |#1|)) (-15 -2515 ((-112) |#5| |#1|)) (-15 -3201 ((-112) |#5| |#1|)) (-15 -4268 (|#1| |#1| |#5|))) -((-2221 (((-112) $ $) 7)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) 85)) (-3186 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) 101) (((-112) $) 97)) (-3624 ((|#4| |#4| $) 92)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 126)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 79)) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-3870 (((-3 $ "failed") $) 82)) (-2962 ((|#4| |#4| $) 89)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1621 ((|#4| |#4| $) 87)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) 105)) (-2515 (((-112) |#4| $) 136)) (-3350 (((-112) |#4| $) 133)) (-3201 (((-112) |#4| $) 137) (((-112) $) 134)) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) 104) (((-112) $) 103)) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 127)) (-2001 (((-3 |#4| "failed") $) 83)) (-3087 (((-623 $) |#4| $) 129)) (-1785 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4072 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3552 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3896 (((-623 |#4|) $) 107)) (-3705 (((-112) |#4| $) 99) (((-112) $) 95)) (-2474 ((|#4| |#4| $) 90)) (-3098 (((-112) $ $) 110)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) 100) (((-112) $) 96)) (-3959 ((|#4| |#4| $) 91)) (-3445 (((-1089) $) 10)) (-3858 (((-3 |#4| "failed") $) 84)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3747 (((-3 $ "failed") $ |#4|) 78)) (-4268 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3661 (((-749) $) 106)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3236 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-4265 (((-749) $) 76 (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3176 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) 81)) (-2993 (((-112) |#4| $) 135)) (-3636 (((-112) |#3| $) 80)) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-1041 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -1041)) -((-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-2515 (*1 *2 *3 *1) (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-2993 (*1 *2 *3 *1) (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-3350 (*1 *2 *3 *1) (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-1785 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-3 (-112) (-623 *1))) (-4 *1 (-1041 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *1)))) (-4 *1 (-1041 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-3087 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)))) (-3352 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-3 *3 (-623 *1))) (-4 *1 (-1041 *4 *5 *6 *3)))) (-1623 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *1)))) (-4 *1 (-1041 *4 *5 *6 *3)))) (-2318 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *1)))) (-4 *1 (-1041 *4 *5 *6 *3)))) (-4072 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)))) (-4072 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *7)))) (-4072 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)))) (-4072 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) (-3176 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)))) (-3176 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) (-3176 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *7)))) (-3176 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)))) (-3552 (*1 *1 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-3552 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)))) (-4268 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)))) (-4268 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) (-4268 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *7)))) (-4268 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1041 *5 *6 *7 *8))))) -(-13 (-1175 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3201 ((-112) |t#4| $)) (-15 -2515 ((-112) |t#4| $)) (-15 -2993 ((-112) |t#4| $)) (-15 -3201 ((-112) $)) (-15 -3350 ((-112) |t#4| $)) (-15 -1785 ((-3 (-112) (-623 $)) |t#4| $)) (-15 -2101 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |t#4| $)) (-15 -2101 ((-112) |t#4| $)) (-15 -3087 ((-623 $) |t#4| $)) (-15 -3352 ((-3 |t#4| (-623 $)) |t#4| |t#4| $)) (-15 -1623 ((-623 (-2 (|:| |val| |t#4|) (|:| -1608 $))) |t#4| |t#4| $)) (-15 -2318 ((-623 (-2 (|:| |val| |t#4|) (|:| -1608 $))) |t#4| $)) (-15 -4072 ((-623 $) |t#4| $)) (-15 -4072 ((-623 $) (-623 |t#4|) $)) (-15 -4072 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -4072 ((-623 $) |t#4| (-623 $))) (-15 -3176 ((-623 $) |t#4| $)) (-15 -3176 ((-623 $) |t#4| (-623 $))) (-15 -3176 ((-623 $) (-623 |t#4|) $)) (-15 -3176 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -3552 ($ |t#4| $)) (-15 -3552 ($ (-623 |t#4|) $)) (-15 -4268 ((-623 $) |t#4| $)) (-15 -4268 ((-623 $) |t#4| (-623 $))) (-15 -4268 ((-623 $) (-623 |t#4|) $)) (-15 -4268 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -3186 ((-623 $) (-623 |t#4|) (-112))))) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1069) . T) ((-1175 |#1| |#2| |#3| |#4|) . T) ((-1182) . T)) -((-2977 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|) 81)) (-2349 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|) 113)) (-3413 (((-623 |#5|) |#4| |#5|) 70)) (-1921 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3654 (((-1233)) 37)) (-2464 (((-1233)) 26)) (-3976 (((-1233) (-1127) (-1127) (-1127)) 33)) (-2722 (((-1233) (-1127) (-1127) (-1127)) 22)) (-1732 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|) 96)) (-1290 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112)) 107) (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2794 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|) 102))) -(((-1042 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2722 ((-1233) (-1127) (-1127) (-1127))) (-15 -2464 ((-1233))) (-15 -3976 ((-1233) (-1127) (-1127) (-1127))) (-15 -3654 ((-1233))) (-15 -1732 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1290 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1290 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112))) (-15 -2794 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -2349 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1921 ((-112) |#4| |#5|)) (-15 -1921 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -3413 ((-623 |#5|) |#4| |#5|)) (-15 -2977 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -1042)) -((-2977 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2349 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2794 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) (-5 *5 (-112)) (-4 *8 (-1035 *6 *7 *4)) (-4 *9 (-1041 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -1608 *9)))) (-5 *1 (-1042 *6 *7 *4 *8 *9)))) (-1290 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1042 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) (-1732 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))) (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-3654 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-3976 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-1042 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2464 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-2722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-1042 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(-10 -7 (-15 -2722 ((-1233) (-1127) (-1127) (-1127))) (-15 -2464 ((-1233))) (-15 -3976 ((-1233) (-1127) (-1127) (-1127))) (-15 -3654 ((-1233))) (-15 -1732 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1290 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1290 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112))) (-15 -2794 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -2349 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1921 ((-112) |#4| |#5|)) (-15 -1921 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -3413 ((-623 |#5|) |#4| |#5|)) (-15 -2977 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|))) -((-2221 (((-112) $ $) NIL)) (-2263 (((-1181) $) 13)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1763 (((-1104) $) 10)) (-2233 (((-837) $) 22) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1043) (-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $))))) (T -1043)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1043)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1043))))) -(-13 (-1052) (-10 -8 (-15 -1763 ((-1104) $)) (-15 -2263 ((-1181) $)))) -((-2221 (((-112) $ $) NIL)) (-1856 (((-1145) $) 8)) (-2369 (((-1127) $) 16)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 13))) -(((-1044 |#1|) (-13 (-1069) (-10 -8 (-15 -1856 ((-1145) $)))) (-1145)) (T -1044)) -((-1856 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1044 *3)) (-14 *3 *2)))) -(-13 (-1069) (-10 -8 (-15 -1856 ((-1145) $)))) -((-2221 (((-112) $ $) NIL)) (-1275 (($ $ (-623 (-1145)) (-1 (-112) (-623 |#3|))) 33)) (-3908 (($ |#3| |#3|) 22) (($ |#3| |#3| (-623 (-1145))) 20)) (-2386 ((|#3| $) 13)) (-2288 (((-3 (-287 |#3|) "failed") $) 58)) (-2202 (((-287 |#3|) $) NIL)) (-4276 (((-623 (-1145)) $) 16)) (-3848 (((-866 |#1|) $) 11)) (-2374 ((|#3| $) 12)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2757 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-895)) 39)) (-2233 (((-837) $) 86) (($ (-287 |#3|)) 21)) (-2264 (((-112) $ $) 36))) -(((-1045 |#1| |#2| |#3|) (-13 (-1069) (-279 |#3| |#3|) (-1012 (-287 |#3|)) (-10 -8 (-15 -3908 ($ |#3| |#3|)) (-15 -3908 ($ |#3| |#3| (-623 (-1145)))) (-15 -1275 ($ $ (-623 (-1145)) (-1 (-112) (-623 |#3|)))) (-15 -3848 ((-866 |#1|) $)) (-15 -2374 (|#3| $)) (-15 -2386 (|#3| $)) (-15 -2757 (|#3| $ |#3| (-895))) (-15 -4276 ((-623 (-1145)) $)))) (-1069) (-13 (-1021) (-860 |#1|) (-825) (-596 (-866 |#1|))) (-13 (-423 |#2|) (-860 |#1|) (-596 (-866 |#1|)))) (T -1045)) -((-3908 (*1 *1 *2 *2) (-12 (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) (-5 *1 (-1045 *3 *4 *2)) (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))))) (-3908 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-5 *1 (-1045 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) (-1275 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-1 (-112) (-623 *6))) (-4 *6 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-5 *1 (-1045 *4 *5 *6)))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 *2))) (-5 *2 (-866 *3)) (-5 *1 (-1045 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-860 *3) (-596 *2))))) (-2374 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) (-5 *1 (-1045 *3 *4 *2)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))))) (-2386 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) (-5 *1 (-1045 *3 *4 *2)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))))) (-2757 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-5 *1 (-1045 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) (-4276 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) (-5 *2 (-623 (-1145))) (-5 *1 (-1045 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3))))))) -(-13 (-1069) (-279 |#3| |#3|) (-1012 (-287 |#3|)) (-10 -8 (-15 -3908 ($ |#3| |#3|)) (-15 -3908 ($ |#3| |#3| (-623 (-1145)))) (-15 -1275 ($ $ (-623 (-1145)) (-1 (-112) (-623 |#3|)))) (-15 -3848 ((-866 |#1|) $)) (-15 -2374 (|#3| $)) (-15 -2386 (|#3| $)) (-15 -2757 (|#3| $ |#3| (-895))) (-15 -4276 ((-623 (-1145)) $)))) -((-2221 (((-112) $ $) NIL)) (-4313 (($ (-623 (-1045 |#1| |#2| |#3|))) 13)) (-1421 (((-623 (-1045 |#1| |#2| |#3|)) $) 20)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2757 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-895)) 26)) (-2233 (((-837) $) 16)) (-2264 (((-112) $ $) 19))) -(((-1046 |#1| |#2| |#3|) (-13 (-1069) (-279 |#3| |#3|) (-10 -8 (-15 -4313 ($ (-623 (-1045 |#1| |#2| |#3|)))) (-15 -1421 ((-623 (-1045 |#1| |#2| |#3|)) $)) (-15 -2757 (|#3| $ |#3| (-895))))) (-1069) (-13 (-1021) (-860 |#1|) (-825) (-596 (-866 |#1|))) (-13 (-423 |#2|) (-860 |#1|) (-596 (-866 |#1|)))) (T -1046)) -((-4313 (*1 *1 *2) (-12 (-5 *2 (-623 (-1045 *3 *4 *5))) (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) (-5 *1 (-1046 *3 *4 *5)))) (-1421 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) (-5 *2 (-623 (-1045 *3 *4 *5))) (-5 *1 (-1046 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))))) (-2757 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1069)) (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) (-5 *1 (-1046 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4))))))) -(-13 (-1069) (-279 |#3| |#3|) (-10 -8 (-15 -4313 ($ (-623 (-1045 |#1| |#2| |#3|)))) (-15 -1421 ((-623 (-1045 |#1| |#2| |#3|)) $)) (-15 -2757 (|#3| $ |#3| (-895))))) -((-3000 (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112)) 75) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|))) 77) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112)) 76))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112))) (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-623 (-1145))) (T -1047)) -((-3000 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-623 (-926 *5))) (-14 *6 (-623 (-1145))))) (-3000 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) (-5 *1 (-1047 *4 *5)) (-5 *3 (-623 (-926 *4))) (-14 *5 (-623 (-1145))))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-623 (-926 *5))) (-14 *6 (-623 (-1145)))))) -(-10 -7 (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112))) (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -3000 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112)))) -((-1735 (((-411 |#3|) |#3|) 18))) -(((-1048 |#1| |#2| |#3|) (-10 -7 (-15 -1735 ((-411 |#3|) |#3|))) (-1204 (-400 (-550))) (-13 (-356) (-145) (-703 (-400 (-550)) |#1|)) (-1204 |#2|)) (T -1048)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-550)) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1048 *4 *5 *3)) (-4 *3 (-1204 *5))))) -(-10 -7 (-15 -1735 ((-411 |#3|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 126)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-3050 (($ $) NIL (|has| |#1| (-356)))) (-3953 (((-112) $) NIL (|has| |#1| (-356)))) (-3992 (((-667 |#1|) (-1228 $)) NIL) (((-667 |#1|)) 115)) (-2223 ((|#1| $) 119)) (-3435 (((-1155 (-895) (-749)) (-550)) NIL (|has| |#1| (-342)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3828 (((-749)) 40 (|has| |#1| (-361)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-2821 (($ (-1228 |#1|) (-1228 $)) NIL) (($ (-1228 |#1|)) 43)) (-2082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-2766 (((-667 |#1|) $ (-1228 $)) NIL) (((-667 |#1|) $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 106) (((-667 |#1|) (-667 $)) 101)) (-2924 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-1537 (((-3 $ "failed") $) NIL)) (-3398 (((-895)) 77)) (-1864 (($) 44 (|has| |#1| (-361)))) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2664 (($) NIL (|has| |#1| (-342)))) (-4139 (((-112) $) NIL (|has| |#1| (-342)))) (-4322 (($ $ (-749)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-2603 (((-895) $) NIL (|has| |#1| (-342))) (((-811 (-895)) $) NIL (|has| |#1| (-342)))) (-2419 (((-112) $) NIL)) (-1571 ((|#1| $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-2835 ((|#2| $) 84 (|has| |#1| (-356)))) (-4073 (((-895) $) 131 (|has| |#1| (-361)))) (-2910 ((|#2| $) 58)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2463 (($) NIL (|has| |#1| (-342)) CONST)) (-3690 (($ (-895)) 125 (|has| |#1| (-361)))) (-3445 (((-1089) $) NIL)) (-2256 (($) 121)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1934 (((-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550))))) NIL (|has| |#1| (-342)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-3563 ((|#1| (-1228 $)) NIL) ((|#1|) 109)) (-2899 (((-749) $) NIL (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-342)))) (-2798 (($ $) NIL (-1489 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) NIL (-1489 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2871 (((-667 |#1|) (-1228 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3832 ((|#2|) 73)) (-2038 (($) NIL (|has| |#1| (-342)))) (-2999 (((-1228 |#1|) $ (-1228 $)) 89) (((-667 |#1|) (-1228 $) (-1228 $)) NIL) (((-1228 |#1|) $) 71) (((-667 |#1|) (-1228 $)) 85)) (-2451 (((-1228 |#1|) $) NIL) (($ (-1228 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (|has| |#1| (-342)))) (-2233 (((-837) $) 57) (($ (-550)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-550))))))) (-1613 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3359 ((|#2| $) 82)) (-3091 (((-749)) 75)) (-2206 (((-1228 $)) 81)) (-1819 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2688 (($) 30 T CONST)) (-2700 (($) 19 T CONST)) (-1901 (($ $) NIL (-1489 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) NIL (-1489 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1145))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2264 (((-112) $ $) 63)) (-2382 (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) 67) (($ $ $) NIL)) (-2358 (($ $ $) 65)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))))) -(((-1049 |#1| |#2| |#3|) (-703 |#1| |#2|) (-170) (-1204 |#1|) |#2|) (T -1049)) +NIL +(-13 (-21) (-1083)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1083) . T) ((-1072) . T)) +((-4125 (($ $) 16)) (-3457 (($ $) 22)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 49)) (-3462 (($ $) 24)) (-3458 (($ $) 11)) (-3460 (($ $) 38)) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-864 (-371)) $) 33)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 28) (($ (-536)) NIL) (($ (-400 (-536))) 28)) (-3456 (((-749)) 8)) (-3461 (($ $) 39))) +(((-1031 |#1|) (-10 -8 (-15 -3457 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) (-1032)) (T -1031)) +((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) +(-10 -8 (-15 -3457 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 (((-536) $) 86)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4125 (($ $) 84)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 111)) (-3891 (($) 17 T CONST)) (-3457 (($ $) 83)) (-3503 (((-3 (-536) #1="failed") $) 99) (((-3 (-400 (-536)) #1#) $) 96)) (-3502 (((-536) $) 98) (((-400 (-536)) $) 95)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3532 (((-112) $) 109)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 90)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 93)) (-3462 (($ $) 89)) (-3533 (((-112) $) 110)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-3672 (($ $ $) 108)) (-3673 (($ $ $) 107)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 85)) (-3460 (($ $) 87)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4325 (((-371) $) 102) (((-219) $) 101) (((-864 (-371)) $) 91)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-536)) 100) (($ (-400 (-536))) 97)) (-3456 (((-749)) 28)) (-3461 (($ $) 88)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 112)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 105)) (-2892 (((-112) $ $) 104)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 106)) (-3013 (((-112) $ $) 103)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 92)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) +(((-1032) (-138)) (T -1032)) +((-3737 (*1 *1 *1) (-4 *1 (-1032))) (-3462 (*1 *1 *1) (-4 *1 (-1032))) (-3461 (*1 *1 *1) (-4 *1 (-1032))) (-3460 (*1 *1 *1) (-4 *1 (-1032))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-536)))) (-3458 (*1 *1 *1) (-4 *1 (-1032))) (-4125 (*1 *1 *1) (-4 *1 (-1032))) (-3457 (*1 *1 *1) (-4 *1 (-1032)))) +(-13 (-356) (-823) (-994) (-1012 (-536)) (-1012 (-400 (-536))) (-976) (-596 (-864 (-371))) (-860 (-371)) (-145) (-10 -8 (-15 -3462 ($ $)) (-15 -3461 ($ $)) (-15 -3460 ($ $)) (-15 -3459 ((-536) $)) (-15 -3458 ($ $)) (-15 -4125 ($ $)) (-15 -3457 ($ $)) (-15 -3737 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-864 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-860 (-371)) . T) ((-895) . T) ((-976) . T) ((-994) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) |#2| $) 23)) (-3466 ((|#1| $) 10)) (-3981 (((-536) |#2| $) 88)) (-3529 (((-3 $ #1="failed") |#2| (-893)) 57)) (-3467 ((|#1| $) 28)) (-3528 ((|#1| |#2| $ |#1|) 37)) (-3464 (($ $) 25)) (-3816 (((-3 |#2| #1#) |#2| $) 87)) (-3532 (((-112) |#2| $) NIL)) (-3533 (((-112) |#2| $) NIL)) (-3463 (((-112) |#2| $) 24)) (-3465 ((|#1| $) 89)) (-3468 ((|#1| $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3531 ((|#2| $) 79)) (-4312 (((-838) $) 70)) (-4124 ((|#1| |#2| $ |#1|) 38)) (-3530 (((-620 $) |#2|) 59)) (-3382 (((-112) $ $) 74))) +(((-1033 |#1| |#2|) (-13 (-1040 |#1| |#2|) (-10 -8 (-15 -3468 (|#1| $)) (-15 -3467 (|#1| $)) (-15 -3466 (|#1| $)) (-15 -3465 (|#1| $)) (-15 -3464 ($ $)) (-15 -3463 ((-112) |#2| $)) (-15 -3528 (|#1| |#2| $ |#1|)))) (-13 (-823) (-356)) (-1205 |#1|)) (T -1033)) +((-3528 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3468 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3467 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3466 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3465 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3464 (*1 *1 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3463 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1033 *4 *3)) (-4 *3 (-1205 *4))))) +(-13 (-1040 |#1| |#2|) (-10 -8 (-15 -3468 (|#1| $)) (-15 -3467 (|#1| $)) (-15 -3466 (|#1| $)) (-15 -3465 (|#1| $)) (-15 -3464 ($ $)) (-15 -3463 ((-112) |#2| $)) (-15 -3528 (|#1| |#2| $ |#1|)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) NIL)) (-3891 (($) NIL T CONST)) (-3469 (($ (-1147)) 10) (($ (-536)) 7)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) NIL) (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) NIL)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2154 (($ $) NIL)) (-4188 (($ $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) NIL)) (-3754 (($ $) NIL)) (-4325 (((-536) $) 16) (((-525) $) NIL) (((-864 (-536)) $) NIL) (((-371) $) NIL) (((-219) $) NIL) (($ (-1147)) 9)) (-4312 (((-838) $) 20) (($ (-536)) 6) (($ $) NIL) (($ (-536)) 6)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) NIL)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $) 19) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) +(((-1034) (-13 (-535) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -4325 ($ (-1147))) (-15 -3469 ($ (-1147))) (-15 -3469 ($ (-536)))))) (T -1034)) +((-4325 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1034))))) +(-13 (-535) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -4325 ($ (-1147))) (-15 -3469 ($ (-1147))) (-15 -3469 ($ (-536))))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1147) (-1147)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3471 (($) 9)) (-4142 (((-51) $ (-1147) (-51)) NIL)) (-3479 (($ $) 30)) (-3482 (($ $) 28)) (-3483 (($ $) 27)) (-3481 (($ $) 29)) (-3478 (($ $) 32)) (-3477 (($ $) 33)) (-3484 (($ $) 26)) (-3480 (($ $) 31)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) 25 (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1147) $) 40)) (-3891 (($) NIL T CONST)) (-3485 (($) 7)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) 50 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1147) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-3470 (((-3 (-1129) "failed") $ (-1129) (-536)) 59)) (-1632 (((-51) $ (-1147) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1147)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) 35 (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1147)) $) NIL)) (-2310 (((-112) (-1147) $) NIL)) (-1331 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) 43)) (-2305 (((-620 (-1147)) $) NIL)) (-2306 (((-112) (-1147) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3474 (((-371) $ (-1147)) 49)) (-3473 (((-620 (-1129)) $ (-1129)) 60)) (-4155 (((-51) $) NIL (|has| (-1147) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1147)) NIL) (((-51) $ (-1147) (-51)) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-3472 (($ $ (-1147)) 51)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) 37)) (-4156 (($ $ $) 38)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-3476 (($ $ (-1147) (-371)) 47)) (-3475 (($ $ (-1147) (-371)) 48)) (-1333 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1035) (-13 (-1160 (-1147) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3485 ($)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $)) (-15 -3480 ($ $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3476 ($ $ (-1147) (-371))) (-15 -3475 ($ $ (-1147) (-371))) (-15 -3474 ((-371) $ (-1147))) (-15 -3473 ((-620 (-1129)) $ (-1129))) (-15 -3472 ($ $ (-1147))) (-15 -3471 ($)) (-15 -3470 ((-3 (-1129) "failed") $ (-1129) (-536))) (-6 -4348)))) (T -1035)) +((-4156 (*1 *1 *1 *1) (-5 *1 (-1035))) (-3485 (*1 *1) (-5 *1 (-1035))) (-3484 (*1 *1 *1) (-5 *1 (-1035))) (-3483 (*1 *1 *1) (-5 *1 (-1035))) (-3482 (*1 *1 *1) (-5 *1 (-1035))) (-3481 (*1 *1 *1) (-5 *1 (-1035))) (-3480 (*1 *1 *1) (-5 *1 (-1035))) (-3479 (*1 *1 *1) (-5 *1 (-1035))) (-3478 (*1 *1 *1) (-5 *1 (-1035))) (-3477 (*1 *1 *1) (-5 *1 (-1035))) (-3476 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035)))) (-3475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035)))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-371)) (-5 *1 (-1035)))) (-3473 (*1 *2 *1 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1035)) (-5 *3 (-1129)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1035)))) (-3471 (*1 *1) (-5 *1 (-1035))) (-3470 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-1035))))) +(-13 (-1160 (-1147) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3485 ($)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $)) (-15 -3480 ($ $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3476 ($ $ (-1147) (-371))) (-15 -3475 ($ $ (-1147) (-371))) (-15 -3474 ((-371) $ (-1147))) (-15 -3473 ((-620 (-1129)) $ (-1129))) (-15 -3472 ($ $ (-1147))) (-15 -3471 ($)) (-15 -3470 ((-3 (-1129) "failed") $ (-1129) (-536))) (-6 -4348))) +((-4151 (($ $) 45)) (-3512 (((-112) $ $) 74)) (-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-920 (-400 (-536)))) 227) (((-3 $ "failed") (-920 (-536))) 226) (((-3 $ "failed") (-920 |#2|)) 229)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL) ((|#4| $) NIL) (($ (-920 (-400 (-536)))) 215) (($ (-920 (-536))) 211) (($ (-920 |#2|)) 231)) (-4314 (($ $) NIL) (($ $ |#4|) 43)) (-4052 (((-112) $ $) 112) (((-112) $ (-620 $)) 113)) (-3518 (((-112) $) 56)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 107)) (-3489 (($ $) 138)) (-3500 (($ $) 134)) (-3501 (($ $) 133)) (-3511 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3510 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4053 (((-112) $ $) 121) (((-112) $ (-620 $)) 122)) (-3526 ((|#4| $) 33)) (-3505 (($ $ $) 110)) (-3519 (((-112) $) 55)) (-3525 (((-749) $) 35)) (-3486 (($ $) 152)) (-3487 (($ $) 149)) (-3514 (((-620 $) $) 68)) (-3517 (($ $) 57)) (-3488 (($ $) 145)) (-3515 (((-620 $) $) 65)) (-3516 (($ $) 59)) (-3520 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 111)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 108) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#4|) 109)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) 104) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#4|) 105)) (-3509 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3508 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3522 (((-620 $) $) 51)) (-4049 (((-112) $ $) 118) (((-112) $ (-620 $)) 119)) (-4044 (($ $ $) 103)) (-3799 (($ $) 37)) (-4057 (((-112) $ $) 72)) (-4050 (((-112) $ $) 114) (((-112) $ (-620 $)) 116)) (-4045 (($ $ $) 101)) (-3524 (($ $) 40)) (-3490 ((|#2| |#2| $) 142) (($ (-620 $)) NIL) (($ $ $) NIL)) (-3498 (($ $ |#2|) NIL) (($ $ $) 131)) (-3499 (($ $ |#2|) 126) (($ $ $) 129)) (-3523 (($ $) 48)) (-3521 (($ $) 52)) (-4325 (((-864 (-371)) $) NIL) (((-864 (-536)) $) NIL) (((-525) $) NIL) (($ (-920 (-400 (-536)))) 217) (($ (-920 (-536))) 213) (($ (-920 |#2|)) 228) (((-1129) $) 250) (((-920 |#2|) $) 162)) (-4312 (((-838) $) 30) (($ (-536)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-920 |#2|) $) 163) (($ (-400 (-536))) NIL) (($ $) NIL)) (-3513 (((-3 (-112) "failed") $ $) 71))) +(((-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 ((-920 |#2|) |#1|)) (-15 -4325 ((-920 |#2|) |#1|)) (-15 -4325 ((-1129) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3490 (|#2| |#2| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#2|)) (-15 -3499 (|#1| |#1| |#2|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4325 (|#1| (-920 |#2|))) (-15 -3502 (|#1| (-920 |#2|))) (-15 -3503 ((-3 |#1| "failed") (-920 |#2|))) (-15 -4325 (|#1| (-920 (-536)))) (-15 -3502 (|#1| (-920 (-536)))) (-15 -3503 ((-3 |#1| "failed") (-920 (-536)))) (-15 -4325 (|#1| (-920 (-400 (-536))))) (-15 -3502 (|#1| (-920 (-400 (-536))))) (-15 -3503 ((-3 |#1| "failed") (-920 (-400 (-536))))) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3504 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-749))) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -4107 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#1| |#4|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| (-620 |#1|))) (-15 -4053 ((-112) |#1| |#1|)) (-15 -4049 ((-112) |#1| (-620 |#1|))) (-15 -4049 ((-112) |#1| |#1|)) (-15 -4050 ((-112) |#1| (-620 |#1|))) (-15 -4050 ((-112) |#1| |#1|)) (-15 -4052 ((-112) |#1| (-620 |#1|))) (-15 -4052 ((-112) |#1| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3513 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3514 ((-620 |#1|) |#1|)) (-15 -3515 ((-620 |#1|) |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -3519 ((-112) |#1|)) (-15 -4314 (|#1| |#1| |#4|)) (-15 -3520 (|#1| |#1| |#4|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 ((-620 |#1|) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3525 ((-749) |#1|)) (-15 -3526 (|#4| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #1="failed") |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -3520 (|#2| |#1|)) (-15 -4314 (|#1| |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1037 |#2| |#3| |#4|) (-1023) (-771) (-825)) (T -1036)) +NIL +(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 ((-920 |#2|) |#1|)) (-15 -4325 ((-920 |#2|) |#1|)) (-15 -4325 ((-1129) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3490 (|#2| |#2| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#2|)) (-15 -3499 (|#1| |#1| |#2|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4325 (|#1| (-920 |#2|))) (-15 -3502 (|#1| (-920 |#2|))) (-15 -3503 ((-3 |#1| "failed") (-920 |#2|))) (-15 -4325 (|#1| (-920 (-536)))) (-15 -3502 (|#1| (-920 (-536)))) (-15 -3503 ((-3 |#1| "failed") (-920 (-536)))) (-15 -4325 (|#1| (-920 (-400 (-536))))) (-15 -3502 (|#1| (-920 (-400 (-536))))) (-15 -3503 ((-3 |#1| "failed") (-920 (-400 (-536))))) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3504 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-749))) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -4107 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#1| |#4|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| (-620 |#1|))) (-15 -4053 ((-112) |#1| |#1|)) (-15 -4049 ((-112) |#1| (-620 |#1|))) (-15 -4049 ((-112) |#1| |#1|)) (-15 -4050 ((-112) |#1| (-620 |#1|))) (-15 -4050 ((-112) |#1| |#1|)) (-15 -4052 ((-112) |#1| (-620 |#1|))) (-15 -4052 ((-112) |#1| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3513 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3514 ((-620 |#1|) |#1|)) (-15 -3515 ((-620 |#1|) |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -3519 ((-112) |#1|)) (-15 -4314 (|#1| |#1| |#4|)) (-15 -3520 (|#1| |#1| |#4|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 ((-620 |#1|) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3525 ((-749) |#1|)) (-15 -3526 (|#4| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #1="failed") |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -3520 (|#2| |#1|)) (-15 -4314 (|#1| |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-4151 (($ $) 269)) (-3512 (((-112) $ $) 255)) (-1367 (((-3 $ "failed") $ $) 19)) (-4110 (($ $ $) 214 (|has| |#1| (-543)))) (-3494 (((-620 $) $ $) 209 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-920 (-400 (-536)))) 229 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (((-3 $ "failed") (-920 (-536))) 226 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (((-3 $ "failed") (-920 |#1|)) 223 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536)))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-535))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-965 (-536)))) (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))))) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133) (($ (-920 (-400 (-536)))) 228 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (($ (-920 (-536))) 225 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (($ (-920 |#1|)) 222 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536)))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-535))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-965 (-536)))) (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))))) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-543)))) (-4314 (($ $) 152) (($ $ |#3|) 264)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-4052 (((-112) $ $) 254) (((-112) $ (-620 $)) 253)) (-3816 (((-3 $ "failed") $) 32)) (-3518 (((-112) $) 262)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 234)) (-3489 (($ $) 203 (|has| |#1| (-444)))) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-3500 (($ $) 219 (|has| |#1| (-543)))) (-3501 (($ $) 220 (|has| |#1| (-543)))) (-3511 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3510 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1716 (($ $ |#1| |#2| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-4053 (((-112) $ $) 248) (((-112) $ (-620 $)) 247)) (-3491 (($ $ $ $ $) 205 (|has| |#1| (-543)))) (-3526 ((|#3| $) 273)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-3505 (($ $ $) 233)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3519 (((-112) $) 263)) (-3148 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3525 (((-749) $) 272)) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-3413 (((-3 |#3| #3="failed") $) 121)) (-3486 (($ $) 200 (|has| |#1| (-444)))) (-3487 (($ $) 201 (|has| |#1| (-444)))) (-3514 (((-620 $) $) 258)) (-3517 (($ $) 261)) (-3488 (($ $) 202 (|has| |#1| (-444)))) (-3515 (((-620 $) $) 259)) (-3516 (($ $) 260)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146) (($ $ |#3|) 265)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 232)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 236) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 235)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) 238) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#3|) 237)) (-3509 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3508 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3588 (((-1129) $) 9)) (-3536 (($ $ $) 208 (|has| |#1| (-543)))) (-3522 (((-620 $) $) 267)) (-3151 (((-3 (-620 $) #3#) $) 112)) (-3150 (((-3 (-620 $) #3#) $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) 111)) (-4049 (((-112) $ $) 250) (((-112) $ (-620 $)) 249)) (-4044 (($ $ $) 230)) (-3799 (($ $) 271)) (-4057 (((-112) $ $) 256)) (-4050 (((-112) $ $) 252) (((-112) $ (-620 $)) 251)) (-4045 (($ $ $) 231)) (-3524 (($ $) 270)) (-3589 (((-1091) $) 10)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-543)))) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3498 (($ $ |#1|) 217 (|has| |#1| (-543))) (($ $ $) 215 (|has| |#1| (-543)))) (-3499 (($ $ |#1|) 218 (|has| |#1| (-543))) (($ $ $) 216 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136)) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37)) (-4302 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127)) (-3523 (($ $) 268)) (-3521 (($ $) 266)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525))))) (($ (-920 (-400 (-536)))) 227 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (($ (-920 (-536))) 224 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (($ (-920 |#1|)) 221 (|has| |#3| (-596 (-1147)))) (((-1129) $) 199 (-12 (|has| |#1| (-1012 (-536))) (|has| |#3| (-596 (-1147))))) (((-920 |#1|) $) 198 (|has| |#3| (-596 (-1147))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-920 |#1|) $) 197 (|has| |#3| (-596 (-1147)))) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-3513 (((-3 (-112) "failed") $ $) 257)) (-2992 (($) 29 T CONST)) (-3492 (($ $ $ $ (-749)) 206 (|has| |#1| (-543)))) (-3493 (($ $ $ (-749)) 207 (|has| |#1| (-543)))) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1037 |#1| |#2| |#3|) (-138) (-1023) (-771) (-825)) (T -1037)) +((-3526 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-4314 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3515 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3513 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4052 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4049 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-3511 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3511 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3510 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3509 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3509 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3508 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3507 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) (-4 *1 (-1037 *4 *5 *3)))) (-3506 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3506 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *4 *5 *3)))) (-4107 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3505 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3504 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-749)))) (-4 *1 (-1037 *3 *4 *5)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4044 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-3503 (*1 *1 *2) (|partial| -3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3502 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4325 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3503 (*1 *1 *2) (|partial| -3886 (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3502 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *5 (-596 (-1147))) (-4 *4 (-771)) (-4 *5 (-825)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3500 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3499 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3498 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3499 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3497 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3493 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-543)))) (-3492 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-543)))) (-3491 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3490 (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3489 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444))))) +(-13 (-924 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3526 (|t#3| $)) (-15 -3525 ((-749) $)) (-15 -3799 ($ $)) (-15 -3524 ($ $)) (-15 -4151 ($ $)) (-15 -3523 ($ $)) (-15 -3522 ((-620 $) $)) (-15 -3521 ($ $)) (-15 -3520 ($ $ |t#3|)) (-15 -4314 ($ $ |t#3|)) (-15 -3519 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -3517 ($ $)) (-15 -3516 ($ $)) (-15 -3515 ((-620 $) $)) (-15 -3514 ((-620 $) $)) (-15 -3513 ((-3 (-112) "failed") $ $)) (-15 -4057 ((-112) $ $)) (-15 -3512 ((-112) $ $)) (-15 -4052 ((-112) $ $)) (-15 -4052 ((-112) $ (-620 $))) (-15 -4050 ((-112) $ $)) (-15 -4050 ((-112) $ (-620 $))) (-15 -4049 ((-112) $ $)) (-15 -4049 ((-112) $ (-620 $))) (-15 -4053 ((-112) $ $)) (-15 -4053 ((-112) $ (-620 $))) (-15 -3511 ($ $ $)) (-15 -3510 ($ $ $)) (-15 -3511 ($ $ $ |t#3|)) (-15 -3510 ($ $ $ |t#3|)) (-15 -3509 ($ $ $)) (-15 -3508 ($ $ $)) (-15 -3509 ($ $ $ |t#3|)) (-15 -3508 ($ $ $ |t#3|)) (-15 -3507 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $)) (-15 -3507 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |t#3|)) (-15 -3506 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3506 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |t#3|)) (-15 -4107 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $)) (-15 -4045 ($ $ $)) (-15 -4044 ($ $ $)) (IF (|has| |t#3| (-596 (-1147))) (PROGN (-6 (-595 (-920 |t#1|))) (-6 (-596 (-920 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -3503 ((-3 $ "failed") (-920 (-400 (-536))))) (-15 -3502 ($ (-920 (-400 (-536))))) (-15 -4325 ($ (-920 (-400 (-536))))) (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-920 (-536)))) (-15 -4325 ($ (-920 (-536)))) (IF (|has| |t#1| (-965 (-536))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-536))) (IF (|has| |t#1| (-38 (-400 (-536)))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-920 (-536)))) (-15 -4325 ($ (-920 (-536)))) (IF (|has| |t#1| (-535)) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-536))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-536)))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|)))))) (-15 -4325 ($ (-920 |t#1|))) (IF (|has| |t#1| (-1012 (-536))) (-6 (-596 (-1129))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3501 ($ $)) (-15 -3500 ($ $)) (-15 -3499 ($ $ |t#1|)) (-15 -3498 ($ $ |t#1|)) (-15 -3499 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -4110 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -4111 ($ $ $)) (-15 -3494 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3493 ($ $ $ (-749))) (-15 -3492 ($ $ $ $ (-749))) (-15 -3491 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3490 (|t#1| |t#1| $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-595 (-920 |#1|)) |has| |#3| (-596 (-1147))) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-596 (-920 |#1|)) |has| |#3| (-596 (-1147))) ((-596 (-1129)) -12 (|has| |#1| (-1012 (-536))) (|has| |#3| (-596 (-1147)))) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-924 |#1| |#2| |#3|) . T) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3527 (((-620 (-1106)) $) 13)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 24) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 15)) (-3382 (((-112) $ $) NIL))) +(((-1038) (-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $))))) (T -1038)) +((-3527 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1038)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1038))))) +(-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $)))) +((-3534 (((-112) |#3| $) 13)) (-3529 (((-3 $ "failed") |#3| (-893)) 23)) (-3816 (((-3 |#3| "failed") |#3| $) 38)) (-3532 (((-112) |#3| $) 16)) (-3533 (((-112) |#3| $) 14))) +(((-1039 |#1| |#2| |#3|) (-10 -8 (-15 -3529 ((-3 |#1| "failed") |#3| (-893))) (-15 -3816 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3532 ((-112) |#3| |#1|)) (-15 -3533 ((-112) |#3| |#1|)) (-15 -3534 ((-112) |#3| |#1|))) (-1040 |#2| |#3|) (-13 (-823) (-356)) (-1205 |#2|)) (T -1039)) +NIL +(-10 -8 (-15 -3529 ((-3 |#1| "failed") |#3| (-893))) (-15 -3816 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3532 ((-112) |#3| |#1|)) (-15 -3533 ((-112) |#3| |#1|)) (-15 -3534 ((-112) |#3| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) |#2| $) 21)) (-3981 (((-536) |#2| $) 22)) (-3529 (((-3 $ "failed") |#2| (-893)) 15)) (-3528 ((|#1| |#2| $ |#1|) 13)) (-3816 (((-3 |#2| "failed") |#2| $) 18)) (-3532 (((-112) |#2| $) 19)) (-3533 (((-112) |#2| $) 20)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3531 ((|#2| $) 17)) (-4312 (((-838) $) 11)) (-4124 ((|#1| |#2| $ |#1|) 14)) (-3530 (((-620 $) |#2|) 16)) (-3382 (((-112) $ $) 6))) +(((-1040 |#1| |#2|) (-138) (-13 (-823) (-356)) (-1205 |t#1|)) (T -1040)) +((-3981 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-536)))) (-3534 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3532 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3816 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3)))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-620 *1)) (-4 *1 (-1040 *4 *3)))) (-3529 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-893)) (-4 *4 (-13 (-823) (-356))) (-4 *1 (-1040 *4 *2)) (-4 *2 (-1205 *4)))) (-4124 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2)))) (-3528 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2))))) +(-13 (-1072) (-10 -8 (-15 -3981 ((-536) |t#2| $)) (-15 -3534 ((-112) |t#2| $)) (-15 -3533 ((-112) |t#2| $)) (-15 -3532 ((-112) |t#2| $)) (-15 -3816 ((-3 |t#2| "failed") |t#2| $)) (-15 -3531 (|t#2| $)) (-15 -3530 ((-620 $) |t#2|)) (-15 -3529 ((-3 $ "failed") |t#2| (-893))) (-15 -4124 (|t#1| |t#2| $ |t#1|)) (-15 -3528 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-3790 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749)) 96)) (-3787 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 56)) (-3791 (((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)) 87)) (-3785 (((-749) (-620 |#4|) (-620 |#5|)) 27)) (-3788 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 58) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112)) 60)) (-3789 (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112)) 79)) (-4325 (((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 82)) (-3786 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112)) 55)) (-3784 (((-749) (-620 |#4|) (-620 |#5|)) 19))) +(((-1041 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1041)) +((-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) (-5 *1 (-1041 *4 *5 *6 *7 *8)))) (-3790 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-620 *11)) (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) (-4 *11 (-1043 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1041 *7 *8 *9 *10 *11)))) (-3789 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *7 *8 *9 *3 *4)) (-4 *4 (-1043 *7 *8 *9 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3786 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) +((-3543 (((-112) |#5| $) 21)) (-3541 (((-112) |#5| $) 24)) (-3544 (((-112) |#5| $) 16) (((-112) $) 45)) (-3584 (((-620 $) |#5| $) NIL) (((-620 $) (-620 |#5|) $) 77) (((-620 $) (-620 |#5|) (-620 $)) 75) (((-620 $) |#5| (-620 $)) 78)) (-4123 (($ $ |#5|) NIL) (((-620 $) |#5| $) NIL) (((-620 $) |#5| (-620 $)) 60) (((-620 $) (-620 |#5|) $) 62) (((-620 $) (-620 |#5|) (-620 $)) 64)) (-3535 (((-620 $) |#5| $) NIL) (((-620 $) |#5| (-620 $)) 54) (((-620 $) (-620 |#5|) $) 56) (((-620 $) (-620 |#5|) (-620 $)) 58)) (-3542 (((-112) |#5| $) 27))) +(((-1042 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4123 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -4123 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -4123 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -4123 ((-620 |#1|) |#5| |#1|)) (-15 -3535 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3535 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3535 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3535 ((-620 |#1|) |#5| |#1|)) (-15 -3584 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3584 ((-620 |#1|) |#5| |#1|)) (-15 -3541 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3542 ((-112) |#5| |#1|)) (-15 -3543 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#5| |#1|)) (-15 -4123 (|#1| |#1| |#5|))) (-1043 |#2| |#3| |#4| |#5|) (-444) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -1042)) +NIL +(-10 -8 (-15 -4123 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -4123 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -4123 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -4123 ((-620 |#1|) |#5| |#1|)) (-15 -3535 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3535 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3535 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3535 ((-620 |#1|) |#5| |#1|)) (-15 -3584 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3584 ((-620 |#1|) |#5| |#1|)) (-15 -3541 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3542 ((-112) |#5| |#1|)) (-15 -3543 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#5| |#1|)) (-15 -4123 (|#1| |#1| |#5|))) +((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-1043 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1043)) +((-3544 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3543 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3542 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-3541 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3540 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-3 (-112) (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3537 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-3 *3 (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3536 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-4129 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3584 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3584 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-3535 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-3535 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-3794 (*1 *1 *2 *1) (-12 (-4 *1 (-1043 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-3794 (*1 *1 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-4123 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *5 *6 *7 *8))))) +(-13 (-1178 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3544 ((-112) |t#4| $)) (-15 -3543 ((-112) |t#4| $)) (-15 -3542 ((-112) |t#4| $)) (-15 -3544 ((-112) $)) (-15 -3541 ((-112) |t#4| $)) (-15 -3540 ((-3 (-112) (-620 $)) |t#4| $)) (-15 -3539 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |t#4| $)) (-15 -3539 ((-112) |t#4| $)) (-15 -3538 ((-620 $) |t#4| $)) (-15 -3537 ((-3 |t#4| (-620 $)) |t#4| |t#4| $)) (-15 -3536 ((-620 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| |t#4| $)) (-15 -4129 ((-620 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| $)) (-15 -3584 ((-620 $) |t#4| $)) (-15 -3584 ((-620 $) (-620 |t#4|) $)) (-15 -3584 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -3584 ((-620 $) |t#4| (-620 $))) (-15 -3535 ((-620 $) |t#4| $)) (-15 -3535 ((-620 $) |t#4| (-620 $))) (-15 -3535 ((-620 $) (-620 |t#4|) $)) (-15 -3535 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -3794 ($ |t#4| $)) (-15 -3794 ($ (-620 |t#4|) $)) (-15 -4123 ((-620 $) |t#4| $)) (-15 -4123 ((-620 $) |t#4| (-620 $))) (-15 -4123 ((-620 $) (-620 |t#4|) $)) (-15 -4123 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -4040 ((-620 $) (-620 |t#4|) (-112))))) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) +((-3551 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 81)) (-3548 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 113)) (-3550 (((-620 |#5|) |#4| |#5|) 70)) (-3549 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3633 (((-1235)) 37)) (-3631 (((-1235)) 26)) (-3632 (((-1235) (-1129) (-1129) (-1129)) 33)) (-3630 (((-1235) (-1129) (-1129) (-1129)) 22)) (-3545 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 96)) (-3546 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 107) (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3547 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 102))) +(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3545 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3547 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3548 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3549 ((-112) |#4| |#5|)) (-15 -3549 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3550 ((-620 |#5|) |#4| |#5|)) (-15 -3551 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1044)) +((-3551 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3550 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3548 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3547 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1044 *6 *7 *4 *8 *9)))) (-3546 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3545 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3633 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3632 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3631 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3630 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) +(-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3545 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3547 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3548 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3549 ((-112) |#4| |#5|)) (-15 -3549 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3550 ((-620 |#5|) |#4| |#5|)) (-15 -3551 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) +((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1045) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -1045)) +((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1045)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1045))))) +(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) +((-2893 (((-112) $ $) NIL)) (-3555 (($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|))) 33)) (-3556 (($ |#3| |#3|) 22) (($ |#3| |#3| (-620 (-1147))) 20)) (-3877 ((|#3| $) 13)) (-3503 (((-3 (-286 |#3|) "failed") $) 58)) (-3502 (((-286 |#3|) $) NIL)) (-3553 (((-620 (-1147)) $) 16)) (-3554 (((-864 |#1|) $) 11)) (-3878 ((|#3| $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-893)) 39)) (-4312 (((-838) $) 86) (($ (-286 |#3|)) 21)) (-3382 (((-112) $ $) 36))) +(((-1046 |#1| |#2| |#3|) (-13 (-1072) (-279 |#3| |#3|) (-1012 (-286 |#3|)) (-10 -8 (-15 -3556 ($ |#3| |#3|)) (-15 -3556 ($ |#3| |#3| (-620 (-1147)))) (-15 -3555 ($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|)))) (-15 -3554 ((-864 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3877 (|#3| $)) (-15 -4154 (|#3| $ |#3| (-893))) (-15 -3553 ((-620 (-1147)) $)))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -1046)) +((-3556 (*1 *1 *2 *2) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))))) (-3556 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-3555 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1 (-112) (-620 *6))) (-4 *6 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *6)))) (-3554 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 *2))) (-5 *2 (-864 *3)) (-5 *1 (-1046 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 *2))))) (-3878 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) (-3877 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) (-4154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-3553 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *2 (-620 (-1147))) (-5 *1 (-1046 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) +(-13 (-1072) (-279 |#3| |#3|) (-1012 (-286 |#3|)) (-10 -8 (-15 -3556 ($ |#3| |#3|)) (-15 -3556 ($ |#3| |#3| (-620 (-1147)))) (-15 -3555 ($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|)))) (-15 -3554 ((-864 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3877 (|#3| $)) (-15 -4154 (|#3| $ |#3| (-893))) (-15 -3553 ((-620 (-1147)) $)))) +((-2893 (((-112) $ $) NIL)) (-3900 (((-1147) $) 8)) (-3588 (((-1129) $) 16)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 13))) +(((-1047 |#1|) (-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) (-1147)) (T -1047)) +((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1047 *3)) (-14 *3 *2)))) +(-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) +((-2893 (((-112) $ $) NIL)) (-3558 (($ (-620 (-1046 |#1| |#2| |#3|))) 13)) (-3557 (((-620 (-1046 |#1| |#2| |#3|)) $) 20)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-893)) 26)) (-4312 (((-838) $) 16)) (-3382 (((-112) $ $) 19))) +(((-1048 |#1| |#2| |#3|) (-13 (-1072) (-279 |#3| |#3|) (-10 -8 (-15 -3558 ($ (-620 (-1046 |#1| |#2| |#3|)))) (-15 -3557 ((-620 (-1046 |#1| |#2| |#3|)) $)) (-15 -4154 (|#3| $ |#3| (-893))))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -1048)) +((-3558 (*1 *1 *2) (-12 (-5 *2 (-620 (-1046 *3 *4 *5))) (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1048 *3 *4 *5)))) (-3557 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *2 (-620 (-1046 *3 *4 *5))) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))))) (-4154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4))))))) +(-13 (-1072) (-279 |#3| |#3|) (-10 -8 (-15 -3558 ($ (-620 (-1046 |#1| |#2| |#3|)))) (-15 -3557 ((-620 (-1046 |#1| |#2| |#3|)) $)) (-15 -4154 (|#3| $ |#3| (-893))))) +((-3559 (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)) 75) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|))) 77) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112)) 76))) +(((-1049 |#1| |#2|) (-10 -7 (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-620 (-1147))) (T -1049)) +((-3559 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))))) (-3559 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1049 *4 *5)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147)))))) +(-10 -7 (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 126)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2173 (($ $) NIL (|has| |#1| (-356)))) (-2171 (((-112) $) NIL (|has| |#1| (-356)))) (-1896 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) 115)) (-3684 ((|#1| $) 119)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3466 (((-749)) 40 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) 43)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-1895 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 106) (((-667 |#1|) (-667 $)) 101)) (-4197 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-3439 (((-893)) 77)) (-3322 (($) 44 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3161 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-749)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-4126 (((-893) $) NIL (|has| |#1| (-343))) (((-810 (-893)) $) NIL (|has| |#1| (-343)))) (-2497 (((-112) $) NIL)) (-3462 ((|#1| $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-2125 ((|#2| $) 84 (|has| |#1| (-356)))) (-2121 (((-893) $) 131 (|has| |#1| (-361)))) (-3408 ((|#2| $) 58)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3799 (($) NIL (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 125 (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-2496 (($) 121)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-343)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4112 ((|#1| (-1229 $)) NIL) ((|#1|) 109)) (-1882 (((-749) $) NIL (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-343)))) (-4165 (($ $) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3531 ((|#2|) 73)) (-1785 (($) NIL (|has| |#1| (-343)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 89) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) 71) (((-667 |#1|) (-1229 $)) 85)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-343)))) (-4312 (((-838) $) 57) (($ (-536)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2693 ((|#2| $) 82)) (-3456 (((-749)) 75)) (-2123 (((-1229 $)) 81)) (-2172 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2986 (($) 30 T CONST)) (-2992 (($) 19 T CONST)) (-2997 (($ $) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3382 (((-112) $ $) 63)) (-4303 (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) 67) (($ $ $) NIL)) (-4194 (($ $ $) 65)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))))) +(((-1050 |#1| |#2| |#3|) (-703 |#1| |#2|) (-170) (-1205 |#1|) |#2|) (T -1050)) NIL (-703 |#1| |#2|) -((-1735 (((-411 |#3|) |#3|) 19))) -(((-1050 |#1| |#2| |#3|) (-10 -7 (-15 -1735 ((-411 |#3|) |#3|))) (-1204 (-400 (-926 (-550)))) (-13 (-356) (-145) (-703 (-400 (-926 (-550))) |#1|)) (-1204 |#2|)) (T -1050)) -((-1735 (*1 *2 *3) (-12 (-4 *4 (-1204 (-400 (-926 (-550))))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-926 (-550))) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1050 *4 *5 *3)) (-4 *3 (-1204 *5))))) -(-10 -7 (-15 -1735 ((-411 |#3|) |#3|))) -((-2221 (((-112) $ $) NIL)) (-2793 (($ $ $) 14)) (-2173 (($ $ $) 15)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1561 (($) 6)) (-2451 (((-1145) $) 18)) (-2233 (((-837) $) 12)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 13)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 8))) -(((-1051) (-13 (-825) (-10 -8 (-15 -1561 ($)) (-15 -2451 ((-1145) $))))) (T -1051)) -((-1561 (*1 *1) (-5 *1 (-1051))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1051))))) -(-13 (-825) (-10 -8 (-15 -1561 ($)) (-15 -2451 ((-1145) $)))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (((-1150) $) 15) (($ (-1150)) 14)) (-2264 (((-112) $ $) 6))) -(((-1052) (-138)) (T -1052)) +((-4087 (((-398 |#3|) |#3|) 18))) +(((-1051 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) (-1205 (-400 (-536))) (-13 (-356) (-145) (-703 (-400 (-536)) |#1|)) (-1205 |#2|)) (T -1051)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-536)) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1051 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) +((-4087 (((-398 |#3|) |#3|) 19))) +(((-1052 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) (-1205 (-400 (-920 (-536)))) (-13 (-356) (-145) (-703 (-400 (-920 (-536))) |#1|)) (-1205 |#2|)) (T -1052)) +((-4087 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 (-920 (-536))))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-920 (-536))) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) +((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) 14)) (-3673 (($ $ $) 15)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3560 (($) 6)) (-4325 (((-1147) $) 18)) (-4312 (((-838) $) 12)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 13)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) +(((-1053) (-13 (-825) (-10 -8 (-15 -3560 ($)) (-15 -4325 ((-1147) $))))) (T -1053)) +((-3560 (*1 *1) (-5 *1 (-1053))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1053))))) +(-13 (-825) (-10 -8 (-15 -3560 ($)) (-15 -4325 ((-1147) $)))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3382 (((-112) $ $) 6))) +(((-1054) (-138)) (T -1054)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-595 (-837)) . T) ((-595 (-1150)) . T) ((-1069) . T)) -((-4321 ((|#1| |#1| (-1 (-550) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2617 (((-1233)) 15)) (-1511 (((-623 |#1|)) 9))) -(((-1053 |#1|) (-10 -7 (-15 -2617 ((-1233))) (-15 -1511 ((-623 |#1|))) (-15 -4321 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4321 (|#1| |#1| (-1 (-550) |#1| |#1|)))) (-131)) (T -1053)) -((-4321 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1053 *2)))) (-4321 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1053 *2)))) (-1511 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-1053 *3)) (-4 *3 (-131)))) (-2617 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1053 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -2617 ((-1233))) (-15 -1511 ((-623 |#1|))) (-15 -4321 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4321 (|#1| |#1| (-1 (-550) |#1| |#1|)))) -((-3913 (($ (-108) $) 16)) (-3773 (((-3 (-108) "failed") (-1145) $) 15)) (-2819 (($) 7)) (-2448 (($) 17)) (-2898 (($) 18)) (-2456 (((-623 (-173)) $) 10)) (-2233 (((-837) $) 21))) -(((-1054) (-13 (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -2456 ((-623 (-173)) $)) (-15 -3773 ((-3 (-108) "failed") (-1145) $)) (-15 -3913 ($ (-108) $)) (-15 -2448 ($)) (-15 -2898 ($))))) (T -1054)) -((-2819 (*1 *1) (-5 *1 (-1054))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-623 (-173))) (-5 *1 (-1054)))) (-3773 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-108)) (-5 *1 (-1054)))) (-3913 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1054)))) (-2448 (*1 *1) (-5 *1 (-1054))) (-2898 (*1 *1) (-5 *1 (-1054)))) -(-13 (-595 (-837)) (-10 -8 (-15 -2819 ($)) (-15 -2456 ((-623 (-173)) $)) (-15 -3773 ((-3 (-108) "failed") (-1145) $)) (-15 -3913 ($ (-108) $)) (-15 -2448 ($)) (-15 -2898 ($)))) -((-2946 (((-1228 (-667 |#1|)) (-623 (-667 |#1|))) 42) (((-1228 (-667 (-926 |#1|))) (-623 (-1145)) (-667 (-926 |#1|))) 63) (((-1228 (-667 (-400 (-926 |#1|)))) (-623 (-1145)) (-667 (-400 (-926 |#1|)))) 79)) (-2999 (((-1228 |#1|) (-667 |#1|) (-623 (-667 |#1|))) 36))) -(((-1055 |#1|) (-10 -7 (-15 -2946 ((-1228 (-667 (-400 (-926 |#1|)))) (-623 (-1145)) (-667 (-400 (-926 |#1|))))) (-15 -2946 ((-1228 (-667 (-926 |#1|))) (-623 (-1145)) (-667 (-926 |#1|)))) (-15 -2946 ((-1228 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -2999 ((-1228 |#1|) (-667 |#1|) (-623 (-667 |#1|))))) (-356)) (T -1055)) -((-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-1228 *5)) (-5 *1 (-1055 *5)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1228 (-667 *4))) (-5 *1 (-1055 *4)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1145))) (-4 *5 (-356)) (-5 *2 (-1228 (-667 (-926 *5)))) (-5 *1 (-1055 *5)) (-5 *4 (-667 (-926 *5))))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1145))) (-4 *5 (-356)) (-5 *2 (-1228 (-667 (-400 (-926 *5))))) (-5 *1 (-1055 *5)) (-5 *4 (-667 (-400 (-926 *5))))))) -(-10 -7 (-15 -2946 ((-1228 (-667 (-400 (-926 |#1|)))) (-623 (-1145)) (-667 (-400 (-926 |#1|))))) (-15 -2946 ((-1228 (-667 (-926 |#1|))) (-623 (-1145)) (-667 (-926 |#1|)))) (-15 -2946 ((-1228 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -2999 ((-1228 |#1|) (-667 |#1|) (-623 (-667 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3312 (((-623 (-749)) $) NIL) (((-623 (-749)) $ (-1145)) NIL)) (-3609 (((-749) $) NIL) (((-749) $ (-1145)) NIL)) (-1516 (((-623 (-1057 (-1145))) $) NIL)) (-1705 (((-1141 $) $ (-1057 (-1145))) NIL) (((-1141 |#1|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1057 (-1145)))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2703 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-1057 (-1145)) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL) (((-3 (-1094 |#1| (-1145)) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-1057 (-1145)) $) NIL) (((-1145) $) NIL) (((-1094 |#1| (-1145)) $) NIL)) (-1792 (($ $ $ (-1057 (-1145))) NIL (|has| |#1| (-170)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1057 (-1145))) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-522 (-1057 (-1145))) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1057 (-1145)) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1057 (-1145)) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ (-1145)) NIL) (((-749) $) NIL)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1501 (($ (-1141 |#1|) (-1057 (-1145))) NIL) (($ (-1141 $) (-1057 (-1145))) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-522 (-1057 (-1145)))) NIL) (($ $ (-1057 (-1145)) (-749)) NIL) (($ $ (-623 (-1057 (-1145))) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1057 (-1145))) NIL)) (-3346 (((-522 (-1057 (-1145))) $) NIL) (((-749) $ (-1057 (-1145))) NIL) (((-623 (-749)) $ (-623 (-1057 (-1145)))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 (-1057 (-1145))) (-522 (-1057 (-1145)))) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2136 (((-1 $ (-749)) (-1145)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-4059 (((-3 (-1057 (-1145)) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3968 (((-1057 (-1145)) $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-1395 (((-112) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1057 (-1145))) (|:| -3068 (-749))) "failed") $) NIL)) (-3888 (($ $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1057 (-1145)) |#1|) NIL) (($ $ (-623 (-1057 (-1145))) (-623 |#1|)) NIL) (($ $ (-1057 (-1145)) $) NIL) (($ $ (-623 (-1057 (-1145))) (-623 $)) NIL) (($ $ (-1145) $) NIL (|has| |#1| (-227))) (($ $ (-623 (-1145)) (-623 $)) NIL (|has| |#1| (-227))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 (-1145)) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3563 (($ $ (-1057 (-1145))) NIL (|has| |#1| (-170)))) (-2798 (($ $ (-1057 (-1145))) NIL) (($ $ (-623 (-1057 (-1145)))) NIL) (($ $ (-1057 (-1145)) (-749)) NIL) (($ $ (-623 (-1057 (-1145))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4019 (((-623 (-1145)) $) NIL)) (-3661 (((-522 (-1057 (-1145))) $) NIL) (((-749) $ (-1057 (-1145))) NIL) (((-623 (-749)) $ (-623 (-1057 (-1145)))) NIL) (((-749) $ (-1145)) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1057 (-1145)) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1057 (-1145)) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1057 (-1145)) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1057 (-1145))) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1057 (-1145))) NIL) (($ (-1145)) NIL) (($ (-1094 |#1| (-1145))) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-522 (-1057 (-1145)))) NIL) (($ $ (-1057 (-1145)) (-749)) NIL) (($ $ (-623 (-1057 (-1145))) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1057 (-1145))) NIL) (($ $ (-623 (-1057 (-1145)))) NIL) (($ $ (-1057 (-1145)) (-749)) NIL) (($ $ (-623 (-1057 (-1145))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1056 |#1|) (-13 (-246 |#1| (-1145) (-1057 (-1145)) (-522 (-1057 (-1145)))) (-1012 (-1094 |#1| (-1145)))) (-1021)) (T -1056)) -NIL -(-13 (-246 |#1| (-1145) (-1057 (-1145)) (-522 (-1057 (-1145)))) (-1012 (-1094 |#1| (-1145)))) -((-2221 (((-112) $ $) NIL)) (-3609 (((-749) $) NIL)) (-2564 ((|#1| $) 10)) (-2288 (((-3 |#1| "failed") $) NIL)) (-2202 ((|#1| $) NIL)) (-2603 (((-749) $) 11)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-2136 (($ |#1| (-749)) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2798 (($ $) NIL) (($ $ (-749)) NIL)) (-2233 (((-837) $) NIL) (($ |#1|) NIL)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 15))) -(((-1057 |#1|) (-259 |#1|) (-825)) (T -1057)) +(((-92) . T) ((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T)) +((-3563 ((|#1| |#1| (-1 (-536) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3561 (((-1235)) 15)) (-3562 (((-620 |#1|)) 9))) +(((-1055 |#1|) (-10 -7 (-15 -3561 ((-1235))) (-15 -3562 ((-620 |#1|))) (-15 -3563 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3563 (|#1| |#1| (-1 (-536) |#1| |#1|)))) (-131)) (T -1055)) +((-3563 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-536) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) (-3563 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) (-3562 (*1 *2) (-12 (-5 *2 (-620 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-131)))) (-3561 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -3561 ((-1235))) (-15 -3562 ((-620 |#1|))) (-15 -3563 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3563 (|#1| |#1| (-1 (-536) |#1| |#1|)))) +((-3566 (($ (-108) $) 16)) (-3567 (((-3 (-108) "failed") (-1147) $) 15)) (-3923 (($) 7)) (-3565 (($) 17)) (-3564 (($) 18)) (-3568 (((-620 (-173)) $) 10)) (-4312 (((-838) $) 21))) +(((-1056) (-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3568 ((-620 (-173)) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)) (-15 -3566 ($ (-108) $)) (-15 -3565 ($)) (-15 -3564 ($))))) (T -1056)) +((-3923 (*1 *1) (-5 *1 (-1056))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-620 (-173))) (-5 *1 (-1056)))) (-3567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-1056)))) (-3566 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056)))) (-3565 (*1 *1) (-5 *1 (-1056))) (-3564 (*1 *1) (-5 *1 (-1056)))) +(-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3568 ((-620 (-173)) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)) (-15 -3566 ($ (-108) $)) (-15 -3565 ($)) (-15 -3564 ($)))) +((-3569 (((-1229 (-667 |#1|)) (-620 (-667 |#1|))) 42) (((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|))) 63) (((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|)))) 79)) (-3570 (((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))) 36))) +(((-1057 |#1|) (-10 -7 (-15 -3569 ((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|))))) (-15 -3569 ((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|)))) (-15 -3569 ((-1229 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3570 ((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))))) (-356)) (T -1057)) +((-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-1229 *5)) (-5 *1 (-1057 *5)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-1057 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-920 *5)))) (-5 *1 (-1057 *5)) (-5 *4 (-667 (-920 *5))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-400 (-920 *5))))) (-5 *1 (-1057 *5)) (-5 *4 (-667 (-400 (-920 *5))))))) +(-10 -7 (-15 -3569 ((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|))))) (-15 -3569 ((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|)))) (-15 -3569 ((-1229 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3570 ((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ (-1147)) NIL)) (-1572 (((-749) $) NIL) (((-749) $ (-1147)) NIL)) (-3412 (((-620 (-1059 (-1147))) $) NIL)) (-3414 (((-1141 $) $ (-1059 (-1147))) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1059 (-1147)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1059 (-1147)) #2#) $) NIL) (((-3 (-1147) #2#) $) NIL) (((-3 (-1096 |#1| (-1147)) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1059 (-1147)) $) NIL) (((-1147) $) NIL) (((-1096 |#1| (-1147)) $) NIL)) (-4111 (($ $ $ (-1059 (-1147))) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1059 (-1147))) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-1059 (-1147))) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1059 (-1147)) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1059 (-1147)) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-1059 (-1147))) NIL) (($ (-1141 $) (-1059 (-1147))) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1059 (-1147))) NIL)) (-3148 (((-522 (-1059 (-1147))) $) NIL) (((-749) $ (-1059 (-1147))) NIL) (((-620 (-749)) $ (-620 (-1059 (-1147)))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-1059 (-1147))) (-522 (-1059 (-1147)))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) (-1147)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 (-1059 (-1147)) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 (((-1059 (-1147)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1059 (-1147))) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1059 (-1147)) |#1|) NIL) (($ $ (-620 (-1059 (-1147))) (-620 |#1|)) NIL) (($ $ (-1059 (-1147)) $) NIL) (($ $ (-620 (-1059 (-1147))) (-620 $)) NIL) (($ $ (-1147) $) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 $)) NIL (|has| |#1| (-227))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ (-1059 (-1147))) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1059 (-1147))) NIL) (($ $ (-620 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 (-1147)) $) NIL)) (-4302 (((-522 (-1059 (-1147))) $) NIL) (((-749) $ (-1059 (-1147))) NIL) (((-620 (-749)) $ (-620 (-1059 (-1147)))) NIL) (((-749) $ (-1147)) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1059 (-1147))) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1059 (-1147))) NIL) (($ (-1147)) NIL) (($ (-1096 |#1| (-1147))) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1059 (-1147))) NIL) (($ $ (-620 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1058 |#1|) (-13 (-246 |#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) (-1012 (-1096 |#1| (-1147)))) (-1023)) (T -1058)) +NIL +(-13 (-246 |#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) (-1012 (-1096 |#1| (-1147)))) +((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) NIL)) (-4186 ((|#1| $) 10)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4126 (((-749) $) 11)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1573 (($ |#1| (-749)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 15))) +(((-1059 |#1|) (-259 |#1|) (-825)) (T -1059)) NIL (-259 |#1|) -((-2392 (((-623 |#2|) (-1 |#2| |#1|) (-1063 |#1|)) 24 (|has| |#1| (-823))) (((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)) 14))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -2392 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) (IF (|has| |#1| (-823)) (-15 -2392 ((-623 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) |%noBranch|)) (-1182) (-1182)) (T -1058)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-823)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-623 *6)) (-5 *1 (-1058 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1063 *6)) (-5 *1 (-1058 *5 *6))))) -(-10 -7 (-15 -2392 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) (IF (|has| |#1| (-823)) (-15 -2392 ((-623 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2352 (((-623 (-1104)) $) 9)) (-2264 (((-112) $ $) NIL))) -(((-1059) (-13 (-1052) (-10 -8 (-15 -2352 ((-623 (-1104)) $))))) (T -1059)) -((-2352 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1059))))) -(-13 (-1052) (-10 -8 (-15 -2352 ((-623 (-1104)) $)))) -((-2392 (((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|)) 19))) -(((-1060 |#1| |#2|) (-10 -7 (-15 -2392 ((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|)))) (-1182) (-1182)) (T -1060)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1061 *6)) (-5 *1 (-1060 *5 *6))))) -(-10 -7 (-15 -2392 ((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2564 (((-1145) $) 11)) (-2332 (((-1063 |#1|) $) 12)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2589 (($ (-1145) (-1063 |#1|)) 10)) (-2233 (((-837) $) 20 (|has| |#1| (-1069)))) (-2264 (((-112) $ $) 15 (|has| |#1| (-1069))))) -(((-1061 |#1|) (-13 (-1182) (-10 -8 (-15 -2589 ($ (-1145) (-1063 |#1|))) (-15 -2564 ((-1145) $)) (-15 -2332 ((-1063 |#1|) $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) (-1182)) (T -1061)) -((-2589 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1063 *4)) (-4 *4 (-1182)) (-5 *1 (-1061 *4)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1061 *3)) (-4 *3 (-1182)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-1182))))) -(-13 (-1182) (-10 -8 (-15 -2589 ($ (-1145) (-1063 |#1|))) (-15 -2564 ((-1145) $)) (-15 -2332 ((-1063 |#1|) $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) -((-2332 (($ |#1| |#1|) 7)) (-1270 ((|#1| $) 10)) (-1883 ((|#1| $) 12)) (-1894 (((-550) $) 8)) (-3338 ((|#1| $) 9)) (-1903 ((|#1| $) 11)) (-2451 (($ |#1|) 6)) (-2051 (($ |#1| |#1|) 14)) (-2026 (($ $ (-550)) 13))) -(((-1062 |#1|) (-138) (-1182)) (T -1062)) -((-2051 (*1 *1 *2 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1062 *3)) (-4 *3 (-1182)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1182)) (-5 *2 (-550)))) (-2332 (*1 *1 *2 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182))))) -(-13 (-1182) (-10 -8 (-15 -2051 ($ |t#1| |t#1|)) (-15 -2026 ($ $ (-550))) (-15 -1883 (|t#1| $)) (-15 -1903 (|t#1| $)) (-15 -1270 (|t#1| $)) (-15 -3338 (|t#1| $)) (-15 -1894 ((-550) $)) (-15 -2332 ($ |t#1| |t#1|)) (-15 -2451 ($ |t#1|)))) -(((-1182) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2332 (($ |#1| |#1|) 15)) (-2392 (((-623 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-823)))) (-1270 ((|#1| $) 10)) (-1883 ((|#1| $) 9)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1894 (((-550) $) 14)) (-3338 ((|#1| $) 12)) (-1903 ((|#1| $) 11)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2062 (((-623 |#1|) $) 36 (|has| |#1| (-823))) (((-623 |#1|) (-623 $)) 35 (|has| |#1| (-823)))) (-2451 (($ |#1|) 26)) (-2233 (((-837) $) 25 (|has| |#1| (-1069)))) (-2051 (($ |#1| |#1|) 8)) (-2026 (($ $ (-550)) 16)) (-2264 (((-112) $ $) 19 (|has| |#1| (-1069))))) -(((-1063 |#1|) (-13 (-1062 |#1|) (-10 -7 (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1064 |#1| (-623 |#1|))) |%noBranch|))) (-1182)) (T -1063)) -NIL -(-13 (-1062 |#1|) (-10 -7 (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1064 |#1| (-623 |#1|))) |%noBranch|))) -((-2332 (($ |#1| |#1|) 7)) (-2392 ((|#2| (-1 |#1| |#1|) $) 16)) (-1270 ((|#1| $) 10)) (-1883 ((|#1| $) 12)) (-1894 (((-550) $) 8)) (-3338 ((|#1| $) 9)) (-1903 ((|#1| $) 11)) (-2062 ((|#2| (-623 $)) 18) ((|#2| $) 17)) (-2451 (($ |#1|) 6)) (-2051 (($ |#1| |#1|) 14)) (-2026 (($ $ (-550)) 13))) -(((-1064 |#1| |#2|) (-138) (-823) (-1118 |t#1|)) (T -1064)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1064 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1118 *4)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1118 *3)))) (-2392 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1064 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1118 *4))))) -(-13 (-1062 |t#1|) (-10 -8 (-15 -2062 (|t#2| (-623 $))) (-15 -2062 (|t#2| $)) (-15 -2392 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1062 |#1|) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-2001 (((-1104) $) 12)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20) (((-1150) $) NIL) (($ (-1150)) NIL)) (-1865 (((-623 (-1104)) $) 10)) (-2264 (((-112) $ $) NIL))) -(((-1065) (-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $)) (-15 -2001 ((-1104) $))))) (T -1065)) -((-1865 (*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1065)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1065))))) -(-13 (-1052) (-10 -8 (-15 -1865 ((-623 (-1104)) $)) (-15 -2001 ((-1104) $)))) -((-4045 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3029 (($ $ $) 10)) (-1287 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1066 |#1| |#2|) (-10 -8 (-15 -4045 (|#1| |#2| |#1|)) (-15 -4045 (|#1| |#1| |#2|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#2|)) (-15 -1287 (|#1| |#1| |#1|))) (-1067 |#2|) (-1069)) (T -1066)) -NIL -(-10 -8 (-15 -4045 (|#1| |#2| |#1|)) (-15 -4045 (|#1| |#1| |#2|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -1287 (|#1| |#1| |#2|)) (-15 -1287 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-4045 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3029 (($ $ $) 20)) (-1952 (((-112) $ $) 19)) (-3368 (((-112) $ (-749)) 35)) (-2085 (($) 25) (($ (-623 |#1|)) 24)) (-2097 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4344)))) (-2991 (($) 36 T CONST)) (-2708 (($ $) 59 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 58 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4344)))) (-2971 (((-623 |#1|) $) 43 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) 28)) (-1445 (((-112) $ (-749)) 34)) (-2876 (((-623 |#1|) $) 44 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 38)) (-1700 (((-112) $ (-749)) 33)) (-2369 (((-1127) $) 9)) (-4072 (($ $ $) 23)) (-3445 (((-1089) $) 10)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1410 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#1|) (-623 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 (-287 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 29)) (-4217 (((-112) $) 32)) (-2819 (($) 31)) (-1287 (($ $ $) 22) (($ $ |#1|) 21)) (-3457 (((-749) |#1| $) 45 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4344)))) (-2435 (($ $) 30)) (-2451 (((-526) $) 60 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 51)) (-2233 (((-837) $) 11)) (-1299 (($) 27) (($ (-623 |#1|)) 26)) (-3404 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 37 (|has| $ (-6 -4344))))) -(((-1067 |#1|) (-138) (-1069)) (T -1067)) -((-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-1299 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-1067 *3)))) (-2085 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-1067 *3)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-1287 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-1287 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-1952 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-4045 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) (-4045 (*1 *1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) -(-13 (-1069) (-149 |t#1|) (-10 -8 (-6 -4334) (-15 -2654 ((-112) $ $)) (-15 -1299 ($)) (-15 -1299 ($ (-623 |t#1|))) (-15 -2085 ($)) (-15 -2085 ($ (-623 |t#1|))) (-15 -4072 ($ $ $)) (-15 -1287 ($ $ $)) (-15 -1287 ($ $ |t#1|)) (-15 -3029 ($ $ $)) (-15 -1952 ((-112) $ $)) (-15 -4045 ($ $ $)) (-15 -4045 ($ $ |t#1|)) (-15 -4045 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) . T) ((-1182) . T)) -((-2369 (((-1127) $) 10)) (-3445 (((-1089) $) 8))) -(((-1068 |#1|) (-10 -8 (-15 -2369 ((-1127) |#1|)) (-15 -3445 ((-1089) |#1|))) (-1069)) (T -1068)) -NIL -(-10 -8 (-15 -2369 ((-1127) |#1|)) (-15 -3445 ((-1089) |#1|))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) -(((-1069) (-138)) (T -1069)) -((-3445 (*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-1089)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-1127))))) -(-13 (-101) (-595 (-837)) (-10 -8 (-15 -3445 ((-1089) $)) (-15 -2369 ((-1127) $)))) -(((-101) . T) ((-595 (-837)) . T)) -((-2221 (((-112) $ $) NIL)) (-3828 (((-749)) 30)) (-2055 (($ (-623 (-895))) 52)) (-3408 (((-3 $ "failed") $ (-895) (-895)) 58)) (-1864 (($) 32)) (-3922 (((-112) (-895) $) 35)) (-4073 (((-895) $) 50)) (-2369 (((-1127) $) NIL)) (-3690 (($ (-895)) 31)) (-3289 (((-3 $ "failed") $ (-895)) 55)) (-3445 (((-1089) $) NIL)) (-3703 (((-1228 $)) 40)) (-1734 (((-623 (-895)) $) 24)) (-1940 (((-749) $ (-895) (-895)) 56)) (-2233 (((-837) $) 29)) (-2264 (((-112) $ $) 21))) -(((-1070 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -3289 ((-3 $ "failed") $ (-895))) (-15 -3408 ((-3 $ "failed") $ (-895) (-895))) (-15 -1734 ((-623 (-895)) $)) (-15 -2055 ($ (-623 (-895)))) (-15 -3703 ((-1228 $))) (-15 -3922 ((-112) (-895) $)) (-15 -1940 ((-749) $ (-895) (-895))))) (-895) (-895)) (T -1070)) -((-3289 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1070 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3408 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1070 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3703 (*1 *2) (-12 (-5 *2 (-1228 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3922 (*1 *2 *3 *1) (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1940 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-749)) (-5 *1 (-1070 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-361) (-10 -8 (-15 -3289 ((-3 $ "failed") $ (-895))) (-15 -3408 ((-3 $ "failed") $ (-895) (-895))) (-15 -1734 ((-623 (-895)) $)) (-15 -2055 ($ (-623 (-895)))) (-15 -3703 ((-1228 $))) (-15 -3922 ((-112) (-895) $)) (-15 -1940 ((-749) $ (-895) (-895))))) -((-2221 (((-112) $ $) NIL)) (-3823 (($) NIL (|has| |#1| (-361)))) (-4045 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3029 (($ $ $) 72)) (-1952 (((-112) $ $) 73)) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#1| (-361)))) (-2085 (($ (-623 |#1|)) NIL) (($) 13)) (-3994 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2505 (($ |#1| $) 67 (|has| $ (-6 -4344))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4344)))) (-1864 (($) NIL (|has| |#1| (-361)))) (-2971 (((-623 |#1|) $) 19 (|has| $ (-6 -4344)))) (-2654 (((-112) $ $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-2793 ((|#1| $) 57 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2173 ((|#1| $) 55 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 34)) (-4073 (((-895) $) NIL (|has| |#1| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-4072 (($ $ $) 70)) (-1696 ((|#1| $) 25)) (-1715 (($ |#1| $) 65)) (-3690 (($ (-895)) NIL (|has| |#1| (-361)))) (-3445 (((-1089) $) NIL)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3576 ((|#1| $) 27)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 21)) (-2819 (($) 11)) (-1287 (($ $ |#1|) NIL) (($ $ $) 71)) (-3246 (($) NIL) (($ (-623 |#1|)) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 16)) (-2451 (((-526) $) 52 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 61)) (-3580 (($ $) NIL (|has| |#1| (-361)))) (-2233 (((-837) $) NIL)) (-2102 (((-749) $) NIL)) (-1299 (($ (-623 |#1|)) NIL) (($) 12)) (-4017 (($ (-623 |#1|)) NIL)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 54)) (-3307 (((-749) $) 10 (|has| $ (-6 -4344))))) -(((-1071 |#1|) (-418 |#1|) (-1069)) (T -1071)) -NIL -(-418 |#1|) -((-2221 (((-112) $ $) 7)) (-2297 (((-112) $) 32)) (-3590 ((|#2| $) 27)) (-1906 (((-112) $) 33)) (-1755 ((|#1| $) 28)) (-2093 (((-112) $) 35)) (-3422 (((-112) $) 37)) (-3555 (((-112) $) 34)) (-2369 (((-1127) $) 9)) (-3517 (((-112) $) 31)) (-1776 ((|#3| $) 26)) (-3445 (((-1089) $) 10)) (-1968 (((-112) $) 30)) (-2795 ((|#4| $) 25)) (-2520 ((|#5| $) 24)) (-1309 (((-112) $ $) 38)) (-2757 (($ $ (-550)) 14) (($ $ (-623 (-550))) 13)) (-1444 (((-623 $) $) 29)) (-2451 (($ (-623 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2233 (((-837) $) 11)) (-3762 (($ $) 16)) (-3753 (($ $) 17)) (-1797 (((-112) $) 36)) (-2264 (((-112) $ $) 6)) (-3307 (((-550) $) 15))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-138) (-1069) (-1069) (-1069) (-1069) (-1069)) (T -1072)) -((-1309 (*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112)))) (-1444 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-623 *1)) (-4 *1 (-1072 *3 *4 *5 *6 *7)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *2 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *2 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *2)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1072 *3 *2 *4 *5 *6)) (-4 *3 (-1069)) (-4 *2 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *2 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *5 *2 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *2 (-1069)) (-4 *6 (-1069)))) (-2451 (*1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *2)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) (-3753 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) (-3762 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-550)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -1309 ((-112) $ $)) (-15 -3422 ((-112) $)) (-15 -1797 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -3555 ((-112) $)) (-15 -1906 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -1968 ((-112) $)) (-15 -1444 ((-623 $) $)) (-15 -1755 (|t#1| $)) (-15 -3590 (|t#2| $)) (-15 -1776 (|t#3| $)) (-15 -2795 (|t#4| $)) (-15 -2520 (|t#5| $)) (-15 -2451 ($ (-623 $))) (-15 -2451 ($ |t#1|)) (-15 -2451 ($ |t#2|)) (-15 -2451 ($ |t#3|)) (-15 -2451 ($ |t#4|)) (-15 -2451 ($ |t#5|)) (-15 -3753 ($ $)) (-15 -3762 ($ $)) (-15 -3307 ((-550) $)) (-15 -2757 ($ $ (-550))) (-15 -2757 ($ $ (-623 (-550)))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-2297 (((-112) $) NIL)) (-3590 (((-1145) $) NIL)) (-1906 (((-112) $) NIL)) (-1755 (((-1127) $) NIL)) (-2093 (((-112) $) NIL)) (-3422 (((-112) $) NIL)) (-3555 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-3517 (((-112) $) NIL)) (-1776 (((-550) $) NIL)) (-3445 (((-1089) $) NIL)) (-1968 (((-112) $) NIL)) (-2795 (((-219) $) NIL)) (-2520 (((-837) $) NIL)) (-1309 (((-112) $ $) NIL)) (-2757 (($ $ (-550)) NIL) (($ $ (-623 (-550))) NIL)) (-1444 (((-623 $) $) NIL)) (-2451 (($ (-623 $)) NIL) (($ (-1127)) NIL) (($ (-1145)) NIL) (($ (-550)) NIL) (($ (-219)) NIL) (($ (-837)) NIL)) (-2233 (((-837) $) NIL)) (-3762 (($ $) NIL)) (-3753 (($ $) NIL)) (-1797 (((-112) $) NIL)) (-2264 (((-112) $ $) NIL)) (-3307 (((-550) $) NIL))) -(((-1073) (-1072 (-1127) (-1145) (-550) (-219) (-837))) (T -1073)) -NIL -(-1072 (-1127) (-1145) (-550) (-219) (-837)) -((-2221 (((-112) $ $) NIL)) (-2297 (((-112) $) 38)) (-3590 ((|#2| $) 42)) (-1906 (((-112) $) 37)) (-1755 ((|#1| $) 41)) (-2093 (((-112) $) 35)) (-3422 (((-112) $) 14)) (-3555 (((-112) $) 36)) (-2369 (((-1127) $) NIL)) (-3517 (((-112) $) 39)) (-1776 ((|#3| $) 44)) (-3445 (((-1089) $) NIL)) (-1968 (((-112) $) 40)) (-2795 ((|#4| $) 43)) (-2520 ((|#5| $) 45)) (-1309 (((-112) $ $) 34)) (-2757 (($ $ (-550)) 56) (($ $ (-623 (-550))) 58)) (-1444 (((-623 $) $) 22)) (-2451 (($ (-623 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2233 (((-837) $) 23)) (-3762 (($ $) 21)) (-3753 (($ $) 52)) (-1797 (((-112) $) 18)) (-2264 (((-112) $ $) 33)) (-3307 (((-550) $) 54))) -(((-1074 |#1| |#2| |#3| |#4| |#5|) (-1072 |#1| |#2| |#3| |#4| |#5|) (-1069) (-1069) (-1069) (-1069) (-1069)) (T -1074)) -NIL -(-1072 |#1| |#2| |#3| |#4| |#5|) -((-1316 (((-1233) $) 23)) (-3150 (($ (-1145) (-427) |#2|) 11)) (-2233 (((-837) $) 16))) -(((-1075 |#1| |#2|) (-13 (-388) (-10 -8 (-15 -3150 ($ (-1145) (-427) |#2|)))) (-825) (-423 |#1|)) (T -1075)) -((-3150 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1145)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1075 *5 *4)) (-4 *4 (-423 *5))))) -(-13 (-388) (-10 -8 (-15 -3150 ($ (-1145) (-427) |#2|)))) -((-1671 (((-112) |#5| |#5|) 38)) (-2219 (((-112) |#5| |#5|) 52)) (-3158 (((-112) |#5| (-623 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-2923 (((-112) (-623 |#4|) (-623 |#4|)) 58)) (-3978 (((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) 63)) (-2077 (((-1233)) 33)) (-3776 (((-1233) (-1127) (-1127) (-1127)) 29)) (-2592 (((-623 |#5|) (-623 |#5|)) 82)) (-3488 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) 80)) (-1336 (((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112)) 102)) (-3868 (((-112) |#5| |#5|) 47)) (-3594 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1363 (((-112) (-623 |#4|) (-623 |#4|)) 57)) (-4013 (((-112) (-623 |#4|) (-623 |#4|)) 59)) (-3098 (((-112) (-623 |#4|) (-623 |#4|)) 60)) (-4131 (((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-4309 (((-623 |#5|) (-623 |#5|)) 43))) -(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3776 ((-1233) (-1127) (-1127) (-1127))) (-15 -2077 ((-1233))) (-15 -1671 ((-112) |#5| |#5|)) (-15 -4309 ((-623 |#5|) (-623 |#5|))) (-15 -3868 ((-112) |#5| |#5|)) (-15 -2219 ((-112) |#5| |#5|)) (-15 -2923 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -1363 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -4013 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3098 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3594 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-623 |#5|))) (-15 -2592 ((-623 |#5|) (-623 |#5|))) (-15 -3978 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -3488 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-15 -1336 ((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -4131 ((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -1076)) -((-4131 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| -1309 (-623 *9)) (|:| -1608 *4) (|:| |ineq| (-623 *9)))) (-5 *1 (-1076 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) (-4 *4 (-1041 *6 *7 *8 *9)))) (-1336 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1041 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| -1309 (-623 *9)) (|:| -1608 *10) (|:| |ineq| (-623 *9))))) (-5 *1 (-1076 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -1608 *7)))) (-4 *6 (-1035 *3 *4 *5)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1076 *3 *4 *5 *6 *7)))) (-3978 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *8)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-1076 *3 *4 *5 *6 *7)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1076 *5 *6 *7 *8 *3)))) (-3158 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3594 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-4013 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-1363 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2923 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2219 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-3868 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-1076 *3 *4 *5 *6 *7)))) (-1671 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) (-2077 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-3776 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(-10 -7 (-15 -3776 ((-1233) (-1127) (-1127) (-1127))) (-15 -2077 ((-1233))) (-15 -1671 ((-112) |#5| |#5|)) (-15 -4309 ((-623 |#5|) (-623 |#5|))) (-15 -3868 ((-112) |#5| |#5|)) (-15 -2219 ((-112) |#5| |#5|)) (-15 -2923 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -1363 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -4013 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3098 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3594 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-623 |#5|))) (-15 -2592 ((-623 |#5|) (-623 |#5|))) (-15 -3978 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -3488 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-15 -1336 ((-623 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -4131 ((-3 (-2 (|:| -1309 (-623 |#4|)) (|:| -1608 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3014 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|) 96)) (-1964 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|) 72)) (-2797 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|) 91)) (-2027 (((-623 |#5|) |#4| |#5|) 110)) (-2738 (((-623 |#5|) |#4| |#5|) 117)) (-3323 (((-623 |#5|) |#4| |#5|) 118)) (-2445 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|) 97)) (-3460 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|) 116)) (-1656 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1454 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112)) 84) (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-4299 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|) 79)) (-3654 (((-1233)) 37)) (-2464 (((-1233)) 26)) (-3976 (((-1233) (-1127) (-1127) (-1127)) 33)) (-2722 (((-1233) (-1127) (-1127) (-1127)) 22))) -(((-1077 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2722 ((-1233) (-1127) (-1127) (-1127))) (-15 -2464 ((-1233))) (-15 -3976 ((-1233) (-1127) (-1127) (-1127))) (-15 -3654 ((-1233))) (-15 -1964 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1454 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1454 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112))) (-15 -4299 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -2797 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1656 ((-112) |#4| |#5|)) (-15 -2445 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2027 ((-623 |#5|) |#4| |#5|)) (-15 -3460 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2738 ((-623 |#5|) |#4| |#5|)) (-15 -1656 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -3323 ((-623 |#5|) |#4| |#5|)) (-15 -3014 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1041 |#1| |#2| |#3| |#4|)) (T -1077)) -((-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1656 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2738 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-3460 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1656 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-2797 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-4299 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) (-5 *5 (-112)) (-4 *8 (-1035 *6 *7 *4)) (-4 *9 (-1041 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -1608 *9)))) (-5 *1 (-1077 *6 *7 *4 *8 *9)))) (-1454 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) (-1964 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) (-3654 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-3976 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-1077 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) (-2464 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) (-5 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) (-2722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) (-5 *1 (-1077 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(-10 -7 (-15 -2722 ((-1233) (-1127) (-1127) (-1127))) (-15 -2464 ((-1233))) (-15 -3976 ((-1233) (-1127) (-1127) (-1127))) (-15 -3654 ((-1233))) (-15 -1964 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1454 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1454 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) |#3| (-112))) (-15 -4299 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -2797 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#4| |#5|)) (-15 -1656 ((-112) |#4| |#5|)) (-15 -2445 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2027 ((-623 |#5|) |#4| |#5|)) (-15 -3460 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -2738 ((-623 |#5|) |#4| |#5|)) (-15 -1656 ((-623 (-2 (|:| |val| (-112)) (|:| -1608 |#5|))) |#4| |#5|)) (-15 -3323 ((-623 |#5|) |#4| |#5|)) (-15 -3014 ((-623 (-2 (|:| |val| |#4|) (|:| -1608 |#5|))) |#4| |#5|))) -((-2221 (((-112) $ $) 7)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) 85)) (-3186 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) 101) (((-112) $) 97)) (-3624 ((|#4| |#4| $) 92)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 126)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 79)) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-3870 (((-3 $ "failed") $) 82)) (-2962 ((|#4| |#4| $) 89)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1621 ((|#4| |#4| $) 87)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) 105)) (-2515 (((-112) |#4| $) 136)) (-3350 (((-112) |#4| $) 133)) (-3201 (((-112) |#4| $) 137) (((-112) $) 134)) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) 104) (((-112) $) 103)) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 127)) (-2001 (((-3 |#4| "failed") $) 83)) (-3087 (((-623 $) |#4| $) 129)) (-1785 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4072 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3552 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3896 (((-623 |#4|) $) 107)) (-3705 (((-112) |#4| $) 99) (((-112) $) 95)) (-2474 ((|#4| |#4| $) 90)) (-3098 (((-112) $ $) 110)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) 100) (((-112) $) 96)) (-3959 ((|#4| |#4| $) 91)) (-3445 (((-1089) $) 10)) (-3858 (((-3 |#4| "failed") $) 84)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3747 (((-3 $ "failed") $ |#4|) 78)) (-4268 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3661 (((-749) $) 106)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3236 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-4265 (((-749) $) 76 (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3176 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) 81)) (-2993 (((-112) |#4| $) 135)) (-3636 (((-112) |#3| $) 80)) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-1078 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -1078)) -NIL -(-13 (-1041 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1041 |#1| |#2| |#3| |#4|) . T) ((-1069) . T) ((-1175 |#1| |#2| |#3| |#4|) . T) ((-1182) . T)) -((-3026 (((-623 (-550)) (-550) (-550) (-550)) 22)) (-3406 (((-623 (-550)) (-550) (-550) (-550)) 12)) (-3899 (((-623 (-550)) (-550) (-550) (-550)) 18)) (-2565 (((-550) (-550) (-550)) 9)) (-2975 (((-1228 (-550)) (-623 (-550)) (-1228 (-550)) (-550)) 46) (((-1228 (-550)) (-1228 (-550)) (-1228 (-550)) (-550)) 41)) (-2269 (((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112)) 28)) (-2737 (((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550))) 45)) (-3130 (((-667 (-550)) (-623 (-550)) (-623 (-550))) 33)) (-3541 (((-623 (-667 (-550))) (-623 (-550))) 35)) (-3931 (((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550))) 49)) (-1447 (((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550))) 57))) -(((-1079) (-10 -7 (-15 -1447 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -3931 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3541 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3130 ((-667 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -2737 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -2269 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112))) (-15 -2975 ((-1228 (-550)) (-1228 (-550)) (-1228 (-550)) (-550))) (-15 -2975 ((-1228 (-550)) (-623 (-550)) (-1228 (-550)) (-550))) (-15 -2565 ((-550) (-550) (-550))) (-15 -3899 ((-623 (-550)) (-550) (-550) (-550))) (-15 -3406 ((-623 (-550)) (-550) (-550) (-550))) (-15 -3026 ((-623 (-550)) (-550) (-550) (-550))))) (T -1079)) -((-3026 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550)))) (-3899 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550)))) (-2565 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1079)))) (-2975 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1228 (-550))) (-5 *3 (-623 (-550))) (-5 *4 (-550)) (-5 *1 (-1079)))) (-2975 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1228 (-550))) (-5 *3 (-550)) (-5 *1 (-1079)))) (-2269 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *3 (-112)) (-5 *1 (-1079)))) (-2737 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-667 (-550))) (-5 *3 (-623 (-550))) (-5 *1 (-1079)))) (-3130 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1079)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-1079)))) (-3931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *3 (-667 (-550))) (-5 *1 (-1079)))) (-1447 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1079))))) -(-10 -7 (-15 -1447 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -3931 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3541 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3130 ((-667 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -2737 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -2269 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112))) (-15 -2975 ((-1228 (-550)) (-1228 (-550)) (-1228 (-550)) (-550))) (-15 -2975 ((-1228 (-550)) (-623 (-550)) (-1228 (-550)) (-550))) (-15 -2565 ((-550) (-550) (-550))) (-15 -3899 ((-623 (-550)) (-550) (-550) (-550))) (-15 -3406 ((-623 (-550)) (-550) (-550) (-550))) (-15 -3026 ((-623 (-550)) (-550) (-550) (-550)))) -((** (($ $ (-895)) 10))) -(((-1080 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895)))) (-1081)) (T -1080)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-895)))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 14))) -(((-1081) (-138)) (T -1081)) -((* (*1 *1 *1 *1) (-4 *1 (-1081))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1081)) (-5 *2 (-895))))) -(-13 (-1069) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-895))))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL (|has| |#3| (-1069)))) (-3378 (((-112) $) NIL (|has| |#3| (-130)))) (-2065 (($ (-895)) NIL (|has| |#3| (-1021)))) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-4250 (($ $ $) NIL (|has| |#3| (-771)))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3368 (((-112) $ (-749)) NIL)) (-3828 (((-749)) NIL (|has| |#3| (-361)))) (-4303 (((-550) $) NIL (|has| |#3| (-823)))) (-2409 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1069)))) (-2202 (((-550) $) NIL (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069)))) (((-400 (-550)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069)))) ((|#3| $) NIL (|has| |#3| (-1069)))) (-3756 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1021)))) (((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 $) (-1228 $)) NIL (|has| |#3| (-1021))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1021)))) (-1537 (((-3 $ "failed") $) NIL (|has| |#3| (-705)))) (-1864 (($) NIL (|has| |#3| (-361)))) (-3317 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#3| $ (-550)) 12)) (-2694 (((-112) $) NIL (|has| |#3| (-823)))) (-2971 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL (|has| |#3| (-705)))) (-1712 (((-112) $) NIL (|has| |#3| (-823)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2876 (((-623 |#3|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3311 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#3| |#3|) $) NIL)) (-4073 (((-895) $) NIL (|has| |#3| (-361)))) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#3| (-1069)))) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3690 (($ (-895)) NIL (|has| |#3| (-361)))) (-3445 (((-1089) $) NIL (|has| |#3| (-1069)))) (-3858 ((|#3| $) NIL (|has| (-550) (-825)))) (-2491 (($ $ |#3|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069)))) (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-1375 (((-623 |#3|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) NIL)) (-3451 ((|#3| $ $) NIL (|has| |#3| (-1021)))) (-1422 (($ (-1228 |#3|)) NIL)) (-1877 (((-133)) NIL (|has| |#3| (-356)))) (-2798 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1021))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1021)))) (-3457 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#3| (-1069))))) (-2435 (($ $) NIL)) (-2233 (((-1228 |#3|) $) NIL) (($ (-550)) NIL (-1489 (-12 (|has| |#3| (-1012 (-550))) (|has| |#3| (-1069))) (|has| |#3| (-1021)))) (($ (-400 (-550))) NIL (-12 (|has| |#3| (-1012 (-400 (-550)))) (|has| |#3| (-1069)))) (($ |#3|) NIL (|has| |#3| (-1069))) (((-837) $) NIL (|has| |#3| (-595 (-837))))) (-3091 (((-749)) NIL (|has| |#3| (-1021)))) (-3404 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4344)))) (-4188 (($ $) NIL (|has| |#3| (-823)))) (-2688 (($) NIL (|has| |#3| (-130)) CONST)) (-2700 (($) NIL (|has| |#3| (-705)) CONST)) (-1901 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1021)))) (($ $ (-1145)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#3| (-874 (-1145))) (|has| |#3| (-1021)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1021))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1021)))) (-2324 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2302 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2264 (((-112) $ $) NIL (|has| |#3| (-1069)))) (-2313 (((-112) $ $) NIL (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2290 (((-112) $ $) 17 (-1489 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2382 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2370 (($ $ $) NIL (|has| |#3| (-1021))) (($ $) NIL (|has| |#3| (-1021)))) (-2358 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-749)) NIL (|has| |#3| (-705))) (($ $ (-895)) NIL (|has| |#3| (-705)))) (* (($ (-550) $) NIL (|has| |#3| (-1021))) (($ $ $) NIL (|has| |#3| (-705))) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ (-749) $) NIL (|has| |#3| (-130))) (($ (-895) $) NIL (|has| |#3| (-25)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1082 |#1| |#2| |#3|) (-232 |#1| |#3|) (-749) (-749) (-771)) (T -1082)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4091 (($ |#1| |#1|) 15)) (-4313 (((-620 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-823)))) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 9)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3573 (((-536) $) 14)) (-3574 ((|#1| $) 12)) (-3576 ((|#1| $) 11)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4318 (((-620 |#1|) $) 36 (|has| |#1| (-823))) (((-620 |#1|) (-620 $)) 35 (|has| |#1| (-823)))) (-4325 (($ |#1|) 26)) (-4312 (((-838) $) 25 (|has| |#1| (-1072)))) (-4092 (($ |#1| |#1|) 8)) (-3578 (($ $ (-536)) 16)) (-3382 (((-112) $ $) 19 (|has| |#1| (-1072))))) +(((-1060 |#1|) (-13 (-1065 |#1|) (-10 -7 (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-620 |#1|))) |%noBranch|))) (-1183)) (T -1060)) +NIL +(-13 (-1065 |#1|) (-10 -7 (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-620 |#1|))) |%noBranch|))) +((-4313 (((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 24 (|has| |#1| (-823))) (((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 14))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -4313 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|)) (-1183) (-1183)) (T -1061)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-1061 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1060 *6)) (-5 *1 (-1061 *5 *6))))) +(-10 -7 (-15 -4313 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3571 (((-620 (-1106)) $) 9)) (-3382 (((-112) $ $) NIL))) +(((-1062) (-13 (-1054) (-10 -8 (-15 -3571 ((-620 (-1106)) $))))) (T -1062)) +((-3571 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1062))))) +(-13 (-1054) (-10 -8 (-15 -3571 ((-620 (-1106)) $)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4186 (((-1147) $) 11)) (-4091 (((-1060 |#1|) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3572 (($ (-1147) (-1060 |#1|)) 10)) (-4312 (((-838) $) 20 (|has| |#1| (-1072)))) (-3382 (((-112) $ $) 15 (|has| |#1| (-1072))))) +(((-1063 |#1|) (-13 (-1183) (-10 -8 (-15 -3572 ($ (-1147) (-1060 |#1|))) (-15 -4186 ((-1147) $)) (-15 -4091 ((-1060 |#1|) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1063)) +((-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1060 *4)) (-4 *4 (-1183)) (-5 *1 (-1063 *4)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1183))))) +(-13 (-1183) (-10 -8 (-15 -3572 ($ (-1147) (-1060 |#1|))) (-15 -4186 ((-1147) $)) (-15 -4091 ((-1060 |#1|) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) +((-4313 (((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)) 19))) +(((-1064 |#1| |#2|) (-10 -7 (-15 -4313 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)))) (-1183) (-1183)) (T -1064)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1063 *6)) (-5 *1 (-1064 *5 *6))))) +(-10 -7 (-15 -4313 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)))) +((-4091 (($ |#1| |#1|) 7)) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 12)) (-3573 (((-536) $) 8)) (-3574 ((|#1| $) 9)) (-3576 ((|#1| $) 11)) (-4325 (($ |#1|) 6)) (-4092 (($ |#1| |#1|) 14)) (-3578 (($ $ (-536)) 13))) +(((-1065 |#1|) (-138) (-1183)) (T -1065)) +((-4092 (*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1065 *3)) (-4 *3 (-1183)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1183)) (-5 *2 (-536)))) (-4091 (*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) +(-13 (-1183) (-10 -8 (-15 -4092 ($ |t#1| |t#1|)) (-15 -3578 ($ $ (-536))) (-15 -3577 (|t#1| $)) (-15 -3576 (|t#1| $)) (-15 -3575 (|t#1| $)) (-15 -3574 (|t#1| $)) (-15 -3573 ((-536) $)) (-15 -4091 ($ |t#1| |t#1|)) (-15 -4325 ($ |t#1|)))) +(((-1183) . T)) +((-4091 (($ |#1| |#1|) 7)) (-4313 ((|#2| (-1 |#1| |#1|) $) 16)) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 12)) (-3573 (((-536) $) 8)) (-3574 ((|#1| $) 9)) (-3576 ((|#1| $) 11)) (-4318 ((|#2| (-620 $)) 18) ((|#2| $) 17)) (-4325 (($ |#1|) 6)) (-4092 (($ |#1| |#1|) 14)) (-3578 (($ $ (-536)) 13))) +(((-1066 |#1| |#2|) (-138) (-823) (-1120 |t#1|)) (T -1066)) +((-4318 (*1 *2 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1120 *4)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1120 *3)))) (-4313 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1120 *4))))) +(-13 (-1065 |t#1|) (-10 -8 (-15 -4318 (|t#2| (-620 $))) (-15 -4318 (|t#2| $)) (-15 -4313 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1065 |#1|) . T) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-1106) $) 12)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 10)) (-3382 (((-112) $ $) NIL))) +(((-1067) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)) (-15 -4152 ((-1106) $))))) (T -1067)) +((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1067)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1067))))) +(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)) (-15 -4152 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-1916 (($) NIL (|has| |#1| (-361)))) (-3580 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3585 (($ (-620 |#1|)) NIL) (($) 13)) (-1626 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 67 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4348)))) (-3322 (($) NIL (|has| |#1| (-361)))) (-2063 (((-620 |#1|) $) 19 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3672 ((|#1| $) 57 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3673 ((|#1| $) 55 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 34)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 70)) (-1331 ((|#1| $) 25)) (-3965 (($ |#1| $) 65)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1332 ((|#1| $) 27)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 21)) (-3923 (($) 11)) (-3583 (($ $ |#1|) NIL) (($ $ $) 71)) (-1518 (($) NIL) (($ (-620 |#1|)) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 16)) (-4325 (((-525) $) 52 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 61)) (-1917 (($ $) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL)) (-1918 (((-749) $) NIL)) (-3586 (($ (-620 |#1|)) NIL) (($) 12)) (-1333 (($ (-620 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 54)) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) +(((-1068 |#1|) (-419 |#1|) (-1072)) (T -1068)) +NIL +(-419 |#1|) +((-3580 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3582 (($ $ $) 10)) (-3583 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1069 |#1| |#2|) (-10 -8 (-15 -3580 (|#1| |#2| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3583 (|#1| |#1| |#1|))) (-1070 |#2|) (-1072)) (T -1069)) +NIL +(-10 -8 (-15 -3580 (|#1| |#2| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3583 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-3580 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3582 (($ $ $) 20)) (-3581 (((-112) $ $) 19)) (-1269 (((-112) $ (-749)) 35)) (-3585 (($) 25) (($ (-620 |#1|)) 24)) (-4068 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4348)))) (-3891 (($) 36 T CONST)) (-1398 (($ $) 59 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 43 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 28)) (-4077 (((-112) $ (-749)) 34)) (-2506 (((-620 |#1|) $) 44 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 38)) (-4074 (((-112) $ (-749)) 33)) (-3588 (((-1129) $) 9)) (-3584 (($ $ $) 23)) (-3589 (((-1091) $) 10)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2065 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-286 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 29)) (-3757 (((-112) $) 32)) (-3923 (($) 31)) (-3583 (($ $ $) 22) (($ $ |#1|) 21)) (-2064 (((-749) |#1| $) 45 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4348)))) (-3754 (($ $) 30)) (-4325 (((-525) $) 60 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 51)) (-4312 (((-838) $) 11)) (-3586 (($) 27) (($ (-620 |#1|)) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 37 (|has| $ (-6 -4348))))) +(((-1070 |#1|) (-138) (-1072)) (T -1070)) +((-3587 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3586 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) (-3585 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3581 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3580 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3580 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3580 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(-13 (-1072) (-149 |t#1|) (-10 -8 (-6 -4338) (-15 -3587 ((-112) $ $)) (-15 -3586 ($)) (-15 -3586 ($ (-620 |t#1|))) (-15 -3585 ($)) (-15 -3585 ($ (-620 |t#1|))) (-15 -3584 ($ $ $)) (-15 -3583 ($ $ $)) (-15 -3583 ($ $ |t#1|)) (-15 -3582 ($ $ $)) (-15 -3581 ((-112) $ $)) (-15 -3580 ($ $ $)) (-15 -3580 ($ $ |t#1|)) (-15 -3580 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) . T) ((-1183) . T)) +((-3588 (((-1129) $) 10)) (-3589 (((-1091) $) 8))) +(((-1071 |#1|) (-10 -8 (-15 -3588 ((-1129) |#1|)) (-15 -3589 ((-1091) |#1|))) (-1072)) (T -1071)) +NIL +(-10 -8 (-15 -3588 ((-1129) |#1|)) (-15 -3589 ((-1091) |#1|))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) +(((-1072) (-138)) (T -1072)) +((-3589 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1091)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1129))))) +(-13 (-101) (-595 (-838)) (-10 -8 (-15 -3589 ((-1091) $)) (-15 -3588 ((-1129) $)))) +(((-101) . T) ((-595 (-838)) . T)) +((-2893 (((-112) $ $) NIL)) (-3466 (((-749)) 30)) (-3593 (($ (-620 (-893))) 52)) (-3595 (((-3 $ #1="failed") $ (-893) (-893)) 58)) (-3322 (($) 32)) (-3591 (((-112) (-893) $) 35)) (-2121 (((-893) $) 50)) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 31)) (-3596 (((-3 $ #1#) $ (-893)) 55)) (-3589 (((-1091) $) NIL)) (-3592 (((-1229 $)) 40)) (-3594 (((-620 (-893)) $) 24)) (-3590 (((-749) $ (-893) (-893)) 56)) (-4312 (((-838) $) 29)) (-3382 (((-112) $ $) 21))) +(((-1073 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -3596 ((-3 $ #1="failed") $ (-893))) (-15 -3595 ((-3 $ #1#) $ (-893) (-893))) (-15 -3594 ((-620 (-893)) $)) (-15 -3593 ($ (-620 (-893)))) (-15 -3592 ((-1229 $))) (-15 -3591 ((-112) (-893) $)) (-15 -3590 ((-749) $ (-893) (-893))))) (-893) (-893)) (T -1073)) +((-3596 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3595 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3592 (*1 *2) (-12 (-5 *2 (-1229 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3591 (*1 *2 *3 *1) (-12 (-5 *3 (-893)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3590 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-749)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-361) (-10 -8 (-15 -3596 ((-3 $ #1="failed") $ (-893))) (-15 -3595 ((-3 $ #1#) $ (-893) (-893))) (-15 -3594 ((-620 (-893)) $)) (-15 -3593 ($ (-620 (-893)))) (-15 -3592 ((-1229 $))) (-15 -3591 ((-112) (-893) $)) (-15 -3590 ((-749) $ (-893) (-893))))) +((-2893 (((-112) $ $) NIL)) (-3606 (((-112) $) NIL)) (-3602 (((-1147) $) NIL)) (-3607 (((-112) $) NIL)) (-3893 (((-1129) $) NIL)) (-3609 (((-112) $) NIL)) (-3611 (((-112) $) NIL)) (-3608 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3605 (((-112) $) NIL)) (-3601 (((-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-3604 (((-112) $) NIL)) (-3600 (((-219) $) NIL)) (-3599 (((-838) $) NIL)) (-3612 (((-112) $ $) NIL)) (-4154 (($ $ (-536)) NIL) (($ $ (-620 (-536))) NIL)) (-3603 (((-620 $) $) NIL)) (-4325 (($ (-620 $)) NIL) (($ (-1129)) NIL) (($ (-1147)) NIL) (($ (-536)) NIL) (($ (-219)) NIL) (($ (-838)) NIL)) (-4312 (((-838) $) NIL)) (-3597 (($ $) NIL)) (-3598 (($ $) NIL)) (-3610 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-536) $) NIL))) +(((-1074) (-1075 (-1129) (-1147) (-536) (-219) (-838))) (T -1074)) +NIL +(-1075 (-1129) (-1147) (-536) (-219) (-838)) +((-2893 (((-112) $ $) 7)) (-3606 (((-112) $) 32)) (-3602 ((|#2| $) 27)) (-3607 (((-112) $) 33)) (-3893 ((|#1| $) 28)) (-3609 (((-112) $) 35)) (-3611 (((-112) $) 37)) (-3608 (((-112) $) 34)) (-3588 (((-1129) $) 9)) (-3605 (((-112) $) 31)) (-3601 ((|#3| $) 26)) (-3589 (((-1091) $) 10)) (-3604 (((-112) $) 30)) (-3600 ((|#4| $) 25)) (-3599 ((|#5| $) 24)) (-3612 (((-112) $ $) 38)) (-4154 (($ $ (-536)) 14) (($ $ (-620 (-536))) 13)) (-3603 (((-620 $) $) 29)) (-4325 (($ (-620 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4312 (((-838) $) 11)) (-3597 (($ $) 16)) (-3598 (($ $) 17)) (-3610 (((-112) $) 36)) (-3382 (((-112) $ $) 6)) (-4311 (((-536) $) 15))) +(((-1075 |#1| |#2| |#3| |#4| |#5|) (-138) (-1072) (-1072) (-1072) (-1072) (-1072)) (T -1075)) +((-3612 (*1 *2 *1 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *2 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *2 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *2 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-536)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -3612 ((-112) $ $)) (-15 -3611 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3604 ((-112) $)) (-15 -3603 ((-620 $) $)) (-15 -3893 (|t#1| $)) (-15 -3602 (|t#2| $)) (-15 -3601 (|t#3| $)) (-15 -3600 (|t#4| $)) (-15 -3599 (|t#5| $)) (-15 -4325 ($ (-620 $))) (-15 -4325 ($ |t#1|)) (-15 -4325 ($ |t#2|)) (-15 -4325 ($ |t#3|)) (-15 -4325 ($ |t#4|)) (-15 -4325 ($ |t#5|)) (-15 -3598 ($ $)) (-15 -3597 ($ $)) (-15 -4311 ((-536) $)) (-15 -4154 ($ $ (-536))) (-15 -4154 ($ $ (-620 (-536)))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3606 (((-112) $) 38)) (-3602 ((|#2| $) 42)) (-3607 (((-112) $) 37)) (-3893 ((|#1| $) 41)) (-3609 (((-112) $) 35)) (-3611 (((-112) $) 14)) (-3608 (((-112) $) 36)) (-3588 (((-1129) $) NIL)) (-3605 (((-112) $) 39)) (-3601 ((|#3| $) 44)) (-3589 (((-1091) $) NIL)) (-3604 (((-112) $) 40)) (-3600 ((|#4| $) 43)) (-3599 ((|#5| $) 45)) (-3612 (((-112) $ $) 34)) (-4154 (($ $ (-536)) 56) (($ $ (-620 (-536))) 58)) (-3603 (((-620 $) $) 22)) (-4325 (($ (-620 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4312 (((-838) $) 23)) (-3597 (($ $) 21)) (-3598 (($ $) 52)) (-3610 (((-112) $) 18)) (-3382 (((-112) $ $) 33)) (-4311 (((-536) $) 54))) +(((-1076 |#1| |#2| |#3| |#4| |#5|) (-1075 |#1| |#2| |#3| |#4| |#5|) (-1072) (-1072) (-1072) (-1072) (-1072)) (T -1076)) +NIL +(-1075 |#1| |#2| |#3| |#4| |#5|) +((-3734 (((-1235) $) 23)) (-3613 (($ (-1147) (-427) |#2|) 11)) (-4312 (((-838) $) 16))) +(((-1077 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -3613 ($ (-1147) (-427) |#2|)))) (-825) (-414 |#1|)) (T -1077)) +((-3613 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1077 *5 *4)) (-4 *4 (-414 *5))))) +(-13 (-389) (-10 -8 (-15 -3613 ($ (-1147) (-427) |#2|)))) +((-3616 (((-112) |#5| |#5|) 38)) (-3619 (((-112) |#5| |#5|) 52)) (-3624 (((-112) |#5| (-620 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3620 (((-112) (-620 |#4|) (-620 |#4|)) 58)) (-3626 (((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 63)) (-3615 (((-1235)) 33)) (-3614 (((-1235) (-1129) (-1129) (-1129)) 29)) (-3625 (((-620 |#5|) (-620 |#5|)) 82)) (-3627 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) 80)) (-3628 (((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112)) 102)) (-3618 (((-112) |#5| |#5|) 47)) (-3623 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3621 (((-112) (-620 |#4|) (-620 |#4|)) 57)) (-3622 (((-112) (-620 |#4|) (-620 |#4|)) 59)) (-4057 (((-112) (-620 |#4|) (-620 |#4|)) 60)) (-3629 (((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3617 (((-620 |#5|) (-620 |#5|)) 43))) +(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1078)) +((-3629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) (-5 *1 (-1078 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) (-4 *4 (-1043 *6 *7 *8 *9)))) (-3628 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) (-5 *1 (-1078 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *8 *3)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3622 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3620 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3614 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) +(-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3644 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 96)) (-3634 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 72)) (-3637 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 91)) (-3639 (((-620 |#5|) |#4| |#5|) 110)) (-3641 (((-620 |#5|) |#4| |#5|) 117)) (-3643 (((-620 |#5|) |#4| |#5|) 118)) (-3638 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 97)) (-3640 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 116)) (-3642 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3635 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 84) (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3636 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 79)) (-3633 (((-1235)) 37)) (-3631 (((-1235)) 26)) (-3632 (((-1235) (-1129) (-1129) (-1129)) 33)) (-3630 (((-1235) (-1129) (-1129) (-1129)) 22))) +(((-1079 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3634 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3636 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3637 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-112) |#4| |#5|)) (-15 -3638 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3639 ((-620 |#5|) |#4| |#5|)) (-15 -3640 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3641 ((-620 |#5|) |#4| |#5|)) (-15 -3642 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3643 ((-620 |#5|) |#4| |#5|)) (-15 -3644 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1079)) +((-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3643 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3640 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3639 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3638 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3637 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3636 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1079 *6 *7 *4 *8 *9)))) (-3635 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3634 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3633 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3632 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3631 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3630 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) +(-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3634 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3636 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3637 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-112) |#4| |#5|)) (-15 -3638 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3639 ((-620 |#5|) |#4| |#5|)) (-15 -3640 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3641 ((-620 |#5|) |#4| |#5|)) (-15 -3642 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3643 ((-620 |#5|) |#4| |#5|)) (-15 -3644 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) +((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-1080 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1080)) +NIL +(-13 (-1043 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) +((-3655 (((-620 (-536)) (-536) (-536) (-536)) 22)) (-3654 (((-620 (-536)) (-536) (-536) (-536)) 12)) (-3653 (((-620 (-536)) (-536) (-536) (-536)) 18)) (-3652 (((-536) (-536) (-536)) 9)) (-3651 (((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536)) 46) (((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536)) 41)) (-3650 (((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112)) 28)) (-3649 (((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536))) 45)) (-3648 (((-667 (-536)) (-620 (-536)) (-620 (-536))) 33)) (-3647 (((-620 (-667 (-536))) (-620 (-536))) 35)) (-3646 (((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536))) 49)) (-3645 (((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536))) 57))) +(((-1081) (-10 -7 (-15 -3645 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3646 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3647 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -3648 ((-667 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3649 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3650 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112))) (-15 -3651 ((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536))) (-15 -3651 ((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536))) (-15 -3652 ((-536) (-536) (-536))) (-15 -3653 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3654 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3655 ((-620 (-536)) (-536) (-536) (-536))))) (T -1081)) +((-3655 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3654 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3653 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3652 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1081)))) (-3651 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-620 (-536))) (-5 *4 (-536)) (-5 *1 (-1081)))) (-3651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-536)) (-5 *1 (-1081)))) (-3650 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-112)) (-5 *1 (-1081)))) (-3649 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-667 (-536))) (-5 *3 (-620 (-536))) (-5 *1 (-1081)))) (-3648 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1081)))) (-3646 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-667 (-536))) (-5 *1 (-1081)))) (-3645 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) +(-10 -7 (-15 -3645 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3646 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3647 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -3648 ((-667 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3649 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3650 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112))) (-15 -3651 ((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536))) (-15 -3651 ((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536))) (-15 -3652 ((-536) (-536) (-536))) (-15 -3653 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3654 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3655 ((-620 (-536)) (-536) (-536) (-536)))) +((** (($ $ (-893)) 10))) +(((-1082 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-893)))) (-1083)) (T -1082)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-893)))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13)) (* (($ $ $) 14))) +(((-1083) (-138)) (T -1083)) +((* (*1 *1 *1 *1) (-4 *1 (-1083))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1083)) (-5 *2 (-893))))) +(-13 (-1072) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-893))))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL (|has| |#3| (-1072)))) (-3534 (((-112) $) NIL (|has| |#3| (-130)))) (-4065 (($ (-893)) NIL (|has| |#3| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#3| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#3| (-361)))) (-3981 (((-536) $) NIL (|has| |#3| (-823)))) (-4142 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) ((|#3| $) NIL (|has| |#3| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) NIL (|has| |#3| (-1023))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#3| (-705)))) (-3322 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#3| $ (-536)) 12)) (-3532 (((-112) $) NIL (|has| |#3| (-823)))) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#3| (-705)))) (-3533 (((-112) $) NIL (|has| |#3| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#3| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#3| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#3| (-361)))) (-3589 (((-1091) $) NIL (|has| |#3| (-1072)))) (-4155 ((|#3| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#3|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2307 (((-620 |#3|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) |#3|) NIL) ((|#3| $ (-536)) NIL)) (-4191 ((|#3| $ $) NIL (|has| |#3| (-1023)))) (-1520 (($ (-1229 |#3|)) NIL)) (-4266 (((-133)) NIL (|has| |#3| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023)))) (-2064 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (|has| |#3| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) (($ |#3|) NIL (|has| |#3| (-1072))) (((-838) $) NIL (|has| |#3| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#3| (-1023)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#3| (-823)))) (-2986 (($) NIL (|has| |#3| (-130)) CONST)) (-2992 (($) NIL (|has| |#3| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#3| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3013 (((-112) $ $) 17 (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $ $) NIL (|has| |#3| (-1023))) (($ $) NIL (|has| |#3| (-1023)))) (-4194 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-749)) NIL (|has| |#3| (-705))) (($ $ (-893)) NIL (|has| |#3| (-705)))) (* (($ (-536) $) NIL (|has| |#3| (-1023))) (($ $ $) NIL (|has| |#3| (-705))) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ (-749) $) NIL (|has| |#3| (-130))) (($ (-893) $) NIL (|has| |#3| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1084 |#1| |#2| |#3|) (-232 |#1| |#3|) (-749) (-749) (-771)) (T -1084)) NIL (-232 |#1| |#3|) -((-2465 (((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|)) 37)) (-2265 (((-550) (-1201 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3982 (((-550) (-1201 |#2| |#1|)) 54)) (-1960 (((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|)) 45)) (-3716 (((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3353 (((-623 |#1|) (-1201 |#2| |#1|) (-1201 |#2| |#1|)) 48)) (-2411 (((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|)) 53))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -2465 ((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -1960 ((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -3353 ((-623 |#1|) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -2411 ((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -3982 ((-550) (-1201 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3716 ((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -2265 ((-550) (-1201 |#2| |#1|)))) |%noBranch|)) (-798) (-1145)) (T -1083)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5)))) (-2411 (*1 *2 *3 *3) (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5)))) (-3353 (*1 *2 *3 *3) (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-623 *4)) (-5 *1 (-1083 *4 *5)))) (-1960 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-623 (-1201 *5 *4))) (-5 *1 (-1083 *4 *5)) (-5 *3 (-1201 *5 *4)))) (-2465 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-623 (-1201 *5 *4))) (-5 *1 (-1083 *4 *5)) (-5 *3 (-1201 *5 *4))))) -(-10 -7 (-15 -2465 ((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -1960 ((-623 (-1201 |#2| |#1|)) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -3353 ((-623 |#1|) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -2411 ((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -3982 ((-550) (-1201 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3716 ((-550) (-1201 |#2| |#1|) (-1201 |#2| |#1|))) (-15 -2265 ((-550) (-1201 |#2| |#1|)))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-3829 (($ (-497) (-1087)) 14)) (-3619 (((-1087) $) 20)) (-1856 (((-497) $) 17)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 28) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1084) (-13 (-1052) (-10 -8 (-15 -3829 ($ (-497) (-1087))) (-15 -1856 ((-497) $)) (-15 -3619 ((-1087) $))))) (T -1084)) -((-3829 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1087)) (-5 *1 (-1084)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1084)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1084))))) -(-13 (-1052) (-10 -8 (-15 -3829 ($ (-497) (-1087))) (-15 -1856 ((-497) $)) (-15 -3619 ((-1087) $)))) -((-4303 (((-3 (-550) "failed") |#2| (-1145) |#2| (-1127)) 17) (((-3 (-550) "failed") |#2| (-1145) (-818 |#2|)) 15) (((-3 (-550) "failed") |#2|) 54))) -(((-1085 |#1| |#2|) (-10 -7 (-15 -4303 ((-3 (-550) "failed") |#2|)) (-15 -4303 ((-3 (-550) "failed") |#2| (-1145) (-818 |#2|))) (-15 -4303 ((-3 (-550) "failed") |#2| (-1145) |#2| (-1127)))) (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1167) (-423 |#1|))) (T -1085)) -((-4303 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-1127)) (-4 *6 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1085 *6 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))))) (-4303 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-818 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1085 *6 *3)))) (-4303 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1085 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4)))))) -(-10 -7 (-15 -4303 ((-3 (-550) "failed") |#2|)) (-15 -4303 ((-3 (-550) "failed") |#2| (-1145) (-818 |#2|))) (-15 -4303 ((-3 (-550) "failed") |#2| (-1145) |#2| (-1127)))) -((-4303 (((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|)) (-1127)) 35) (((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-818 (-400 (-926 |#1|)))) 30) (((-3 (-550) "failed") (-400 (-926 |#1|))) 13))) -(((-1086 |#1|) (-10 -7 (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)))) (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-818 (-400 (-926 |#1|))))) (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|)) (-1127)))) (-444)) (T -1086)) -((-4303 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-926 *6))) (-5 *4 (-1145)) (-5 *5 (-1127)) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1086 *6)))) (-4303 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-818 (-400 (-926 *6)))) (-5 *3 (-400 (-926 *6))) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1086 *6)))) (-4303 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-444)) (-5 *2 (-550)) (-5 *1 (-1086 *4))))) -(-10 -7 (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)))) (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-818 (-400 (-926 |#1|))))) (-15 -4303 ((-3 (-550) "failed") (-400 (-926 |#1|)) (-1145) (-400 (-926 |#1|)) (-1127)))) -((-2221 (((-112) $ $) NIL)) (-2263 (((-1150) $) 10)) (-2203 (((-623 (-1150)) $) 11)) (-3619 (($ (-623 (-1150)) (-1150)) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 20)) (-2264 (((-112) $ $) 14))) -(((-1087) (-13 (-1069) (-10 -8 (-15 -3619 ($ (-623 (-1150)) (-1150))) (-15 -2263 ((-1150) $)) (-15 -2203 ((-623 (-1150)) $))))) (T -1087)) -((-3619 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1150))) (-5 *3 (-1150)) (-5 *1 (-1087)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1087)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1087))))) -(-13 (-1069) (-10 -8 (-15 -3619 ($ (-623 (-1150)) (-1150))) (-15 -2263 ((-1150) $)) (-15 -2203 ((-623 (-1150)) $)))) -((-3788 (((-309 (-550)) (-48)) 12))) -(((-1088) (-10 -7 (-15 -3788 ((-309 (-550)) (-48))))) (T -1088)) -((-3788 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-550))) (-5 *1 (-1088))))) -(-10 -7 (-15 -3788 ((-309 (-550)) (-48)))) -((-2221 (((-112) $ $) NIL)) (-4026 (($ $) 41)) (-3378 (((-112) $) 65)) (-3875 (($ $ $) 48)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 86)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2633 (($ $ $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1534 (($ $ $ $) 75)) (-2318 (($ $) NIL)) (-2207 (((-411 $) $) NIL)) (-1611 (((-112) $ $) NIL)) (-4303 (((-550) $) NIL)) (-1538 (($ $ $) 72)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL)) (-2202 (((-550) $) NIL)) (-3455 (($ $ $) 59)) (-3756 (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 80) (((-667 (-550)) (-667 $)) 28)) (-1537 (((-3 $ "failed") $) NIL)) (-3192 (((-3 (-400 (-550)) "failed") $) NIL)) (-2593 (((-112) $) NIL)) (-3169 (((-400 (-550)) $) NIL)) (-1864 (($) 83) (($ $) 84)) (-3429 (($ $ $) 58)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL)) (-1568 (((-112) $) NIL)) (-2083 (($ $ $ $) NIL)) (-2181 (($ $ $) 81)) (-2694 (((-112) $) NIL)) (-4083 (($ $ $) NIL)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL)) (-2419 (((-112) $) 66)) (-1286 (((-112) $) 64)) (-3548 (($ $) 42)) (-1620 (((-3 $ "failed") $) NIL)) (-1712 (((-112) $) 76)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2960 (($ $ $ $) 73)) (-2793 (($ $ $) 68) (($) 39)) (-2173 (($ $ $) 67) (($) 38)) (-1673 (($ $) NIL)) (-3839 (($ $) 71)) (-3231 (($ $ $) NIL) (($ (-623 $)) NIL)) (-2369 (((-1127) $) NIL)) (-2711 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-2486 (($ $) 50)) (-3445 (((-1089) $) 70)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3260 (($ $ $) 62) (($ (-623 $)) NIL)) (-3643 (($ $) NIL)) (-1735 (((-411 $) $) NIL)) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3725 (((-112) $) NIL)) (-1988 (((-749) $) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 61)) (-2798 (($ $ (-749)) NIL) (($ $) NIL)) (-2417 (($ $) 51)) (-2435 (($ $) NIL)) (-2451 (((-550) $) 32) (((-526) $) NIL) (((-866 (-550)) $) NIL) (((-372) $) NIL) (((-219) $) NIL)) (-2233 (((-837) $) 31) (($ (-550)) 82) (($ $) NIL) (($ (-550)) 82)) (-3091 (((-749)) NIL)) (-1796 (((-112) $ $) NIL)) (-1437 (($ $ $) NIL)) (-4300 (($) 37)) (-1819 (((-112) $ $) NIL)) (-4133 (($ $ $ $) 74)) (-4188 (($ $) 63)) (-2300 (($ $ $) 44)) (-2688 (($) 35 T CONST)) (-3399 (($ $ $) 47)) (-2700 (($) 36 T CONST)) (-3145 (((-1127) $) 21) (((-1127) $ (-112)) 23) (((-1233) (-800) $) 24) (((-1233) (-800) $ (-112)) 25)) (-3410 (($ $) 45)) (-1901 (($ $ (-749)) NIL) (($ $) NIL)) (-3389 (($ $ $) 46)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 40)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 49)) (-2287 (($ $ $) 43)) (-2370 (($ $) 52) (($ $ $) 54)) (-2358 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-749)) 57)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 34) (($ $ $) 55))) -(((-1089) (-13 (-535) (-639) (-806) (-10 -8 (-6 -4331) (-6 -4336) (-6 -4332) (-15 -2173 ($)) (-15 -2793 ($)) (-15 -3548 ($ $)) (-15 -4026 ($ $)) (-15 -2287 ($ $ $)) (-15 -2300 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3410 ($ $)) (-15 -3389 ($ $ $)) (-15 -3399 ($ $ $))))) (T -1089)) -((-2300 (*1 *1 *1 *1) (-5 *1 (-1089))) (-2287 (*1 *1 *1 *1) (-5 *1 (-1089))) (-4026 (*1 *1 *1) (-5 *1 (-1089))) (-2173 (*1 *1) (-5 *1 (-1089))) (-2793 (*1 *1) (-5 *1 (-1089))) (-3548 (*1 *1 *1) (-5 *1 (-1089))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1089))) (-3410 (*1 *1 *1) (-5 *1 (-1089))) (-3389 (*1 *1 *1 *1) (-5 *1 (-1089))) (-3399 (*1 *1 *1 *1) (-5 *1 (-1089)))) -(-13 (-535) (-639) (-806) (-10 -8 (-6 -4331) (-6 -4336) (-6 -4332) (-15 -2173 ($)) (-15 -2793 ($)) (-15 -3548 ($ $)) (-15 -4026 ($ $)) (-15 -2287 ($ $ $)) (-15 -2300 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3410 ($ $)) (-15 -3389 ($ $ $)) (-15 -3399 ($ $ $)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3940 ((|#1| $) 44)) (-3368 (((-112) $ (-749)) 8)) (-2991 (($) 7 T CONST)) (-3219 ((|#1| |#1| $) 46)) (-3540 ((|#1| $) 45)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1696 ((|#1| $) 39)) (-1715 (($ |#1| $) 40)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3576 ((|#1| $) 41)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-3072 (((-749) $) 43)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) 42)) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1090 |#1|) (-138) (-1182)) (T -1090)) -((-3219 (*1 *2 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1182)) (-5 *2 (-749))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4344) (-15 -3219 (|t#1| |t#1| $)) (-15 -3540 (|t#1| $)) (-15 -3940 (|t#1| $)) (-15 -3072 ((-749) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2223 ((|#3| $) 76)) (-2288 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2202 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#3| $) 37)) (-3756 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL) (((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 $) (-1228 $)) 73) (((-667 |#3|) (-667 $)) 65)) (-2798 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2761 ((|#3| $) 78)) (-2407 ((|#4| $) 32)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#3|) 16)) (** (($ $ (-895)) NIL) (($ $ (-749)) 15) (($ $ (-550)) 82))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -2761 (|#3| |#1|)) (-15 -2223 (|#3| |#1|)) (-15 -2407 (|#4| |#1|)) (-15 -3756 ((-667 |#3|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -2233 (|#1| |#3|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2233 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895))) (-15 -2233 ((-837) |#1|))) (-1092 |#2| |#3| |#4| |#5|) (-749) (-1021) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1091)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -2761 (|#3| |#1|)) (-15 -2223 (|#3| |#1|)) (-15 -2407 (|#4| |#1|)) (-15 -3756 ((-667 |#3|) (-667 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 |#3|)) (|:| |vec| (-1228 |#3|))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 |#1|) (-1228 |#1|))) (-15 -3756 ((-667 (-550)) (-667 |#1|))) (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -2233 (|#1| |#3|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-550) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2798 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2233 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-2223 ((|#2| $) 70)) (-3684 (((-112) $) 110)) (-1993 (((-3 $ "failed") $ $) 19)) (-2644 (((-112) $) 108)) (-3368 (((-112) $ (-749)) 100)) (-3955 (($ |#2|) 73)) (-2991 (($) 17 T CONST)) (-4257 (($ $) 127 (|has| |#2| (-300)))) (-1297 ((|#3| $ (-550)) 122)) (-2288 (((-3 (-550) "failed") $) 84 (|has| |#2| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) 82 (|has| |#2| (-1012 (-400 (-550))))) (((-3 |#2| "failed") $) 79)) (-2202 (((-550) $) 85 (|has| |#2| (-1012 (-550)))) (((-400 (-550)) $) 83 (|has| |#2| (-1012 (-400 (-550))))) ((|#2| $) 78)) (-3756 (((-667 (-550)) (-667 $)) 77 (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 76 (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 75) (((-667 |#2|) (-667 $)) 74)) (-1537 (((-3 $ "failed") $) 32)) (-3398 (((-749) $) 128 (|has| |#2| (-542)))) (-3263 ((|#2| $ (-550) (-550)) 120)) (-2971 (((-623 |#2|) $) 93 (|has| $ (-6 -4344)))) (-2419 (((-112) $) 30)) (-1436 (((-749) $) 129 (|has| |#2| (-542)))) (-3113 (((-623 |#4|) $) 130 (|has| |#2| (-542)))) (-2050 (((-749) $) 116)) (-2063 (((-749) $) 117)) (-1445 (((-112) $ (-749)) 101)) (-1517 ((|#2| $) 65 (|has| |#2| (-6 (-4346 "*"))))) (-3397 (((-550) $) 112)) (-2415 (((-550) $) 114)) (-2876 (((-623 |#2|) $) 92 (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-1630 (((-550) $) 113)) (-2964 (((-550) $) 115)) (-4224 (($ (-623 (-623 |#2|))) 107)) (-3311 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3380 (((-623 (-623 |#2|)) $) 118)) (-1700 (((-112) $ (-749)) 102)) (-2369 (((-1127) $) 9)) (-3765 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3445 (((-1089) $) 10)) (-3409 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-542)))) (-1410 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) 106)) (-4217 (((-112) $) 103)) (-2819 (($) 104)) (-2757 ((|#2| $ (-550) (-550) |#2|) 121) ((|#2| $ (-550) (-550)) 119)) (-2798 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-749)) 49) (($ $ (-623 (-1145)) (-623 (-749))) 42 (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) 41 (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) 40 (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) 39 (|has| |#2| (-874 (-1145)))) (($ $ (-749)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-2761 ((|#2| $) 69)) (-4000 (($ (-623 |#2|)) 72)) (-2418 (((-112) $) 109)) (-2407 ((|#3| $) 71)) (-4270 ((|#2| $) 66 (|has| |#2| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4344))) (((-749) |#2| $) 91 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 105)) (-1457 ((|#4| $ (-550)) 123)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 81 (|has| |#2| (-1012 (-400 (-550))))) (($ |#2|) 80)) (-3091 (((-749)) 28)) (-3404 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4344)))) (-3695 (((-112) $) 111)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-749)) 47) (($ $ (-623 (-1145)) (-623 (-749))) 46 (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) 45 (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) 44 (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) 43 (|has| |#2| (-874 (-1145)))) (($ $ (-749)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 63 (|has| |#2| (-356)))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3307 (((-749) $) 99 (|has| $ (-6 -4344))))) -(((-1092 |#1| |#2| |#3| |#4|) (-138) (-749) (-1021) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1092)) -((-3955 (*1 *1 *2) (-12 (-4 *2 (-1021)) (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-1021)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *2 *5)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1021)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1021)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *2 *5)) (-4 *4 (-1021)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) (-3765 (*1 *1 *1) (|partial| -12 (-4 *1 (-1092 *2 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))) -(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1024 |t#1| |t#1| |t#2| |t#3| |t#4|) (-404 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-696 |t#2|)) |%noBranch|) (-15 -3955 ($ |t#2|)) (-15 -4000 ($ (-623 |t#2|))) (-15 -2407 (|t#3| $)) (-15 -2223 (|t#2| $)) (-15 -2761 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4346 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4270 (|t#2| $)) (-15 -1517 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3765 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4346 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-837)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-370 |#2|) . T) ((-404 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-626 |#2|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#2| (-619 (-550))) ((-619 |#2|) . T) ((-696 |#2|) -1489 (|has| |#2| (-170)) (|has| |#2| (-6 (-4346 "*")))) ((-705) . T) ((-874 (-1145)) |has| |#2| (-874 (-1145))) ((-1024 |#1| |#1| |#2| |#3| |#4|) . T) ((-1012 (-400 (-550))) |has| |#2| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#2| (-1012 (-550))) ((-1012 |#2|) . T) ((-1027 |#2|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1182) . T)) -((-3386 ((|#4| |#4|) 70)) (-2810 ((|#4| |#4|) 65)) (-1520 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|) 78)) (-3188 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1722 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1093 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2810 (|#4| |#4|)) (-15 -1722 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3386 (|#4| |#4|)) (-15 -3188 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1520 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|))) (-300) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -1093)) -((-1520 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) (-5 *1 (-1093 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1093 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1093 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-1722 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1093 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1093 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(-10 -7 (-15 -2810 (|#4| |#4|)) (-15 -1722 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3386 (|#4| |#4|)) (-15 -3188 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1520 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2206 (-623 |#3|))) |#4| |#3|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 17)) (-1516 (((-623 |#2|) $) 159)) (-1705 (((-1141 $) $ |#2|) 54) (((-1141 |#1|) $) 43)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 108 (|has| |#1| (-542)))) (-3050 (($ $) 110 (|has| |#1| (-542)))) (-3953 (((-112) $) 112 (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 |#2|)) 192)) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) 156) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 |#2| "failed") $) NIL)) (-2202 ((|#1| $) 154) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) ((|#2| $) NIL)) (-1792 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-1693 (($ $) 196)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) 82)) (-2731 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-522 |#2|) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| |#1| (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| |#1| (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2419 (((-112) $) 19)) (-3324 (((-749) $) 26)) (-1501 (($ (-1141 |#1|) |#2|) 48) (($ (-1141 $) |#2|) 64)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) 32)) (-1488 (($ |#1| (-522 |#2|)) 71) (($ $ |#2| (-749)) 52) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ |#2|) NIL)) (-3346 (((-522 |#2|) $) 186) (((-749) $ |#2|) 187) (((-623 (-749)) $ (-623 |#2|)) 188)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) 120)) (-4059 (((-3 |#2| "failed") $) 161)) (-1657 (($ $) 195)) (-1670 ((|#1| $) 37)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| |#2|) (|:| -3068 (-749))) "failed") $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) 33)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 138 (|has| |#1| (-444)))) (-3260 (($ (-623 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-883)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-542)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-623 |#2|) (-623 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-623 |#2|) (-623 $)) 176)) (-3563 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2798 (($ $ |#2|) 194) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-3661 (((-522 |#2|) $) 182) (((-749) $ |#2|) 178) (((-623 (-749)) $ (-623 |#2|)) 180)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| |#1| (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| |#1| (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-2233 (((-837) $) 149) (($ (-550)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-2969 (((-623 |#1|) $) 152)) (-1708 ((|#1| $ (-522 |#2|)) 73) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 79)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) 115 (|has| |#1| (-542)))) (-2688 (($) 12 T CONST)) (-2700 (($) 14 T CONST)) (-1901 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 97)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-2370 (($ $) 85) (($ $ $) 95)) (-2358 (($ $ $) 49)) (** (($ $ (-895)) 102) (($ $ (-749)) 100)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 88) (($ $ $) 65) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1094 |#1| |#2|) (-923 |#1| (-522 |#2|) |#2|) (-1021) (-825)) (T -1094)) -NIL -(-923 |#1| (-522 |#2|) |#2|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 |#2|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-4160 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 113 (|has| |#1| (-38 (-400 (-550)))))) (-4183 (($ $) 145 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2666 (((-926 |#1|) $ (-749)) NIL) (((-926 |#1|) $ (-749) (-749)) NIL)) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $ |#2|) NIL) (((-749) $ |#2| (-749)) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3438 (((-112) $) NIL)) (-1488 (($ $ (-623 |#2|) (-623 (-522 |#2|))) NIL) (($ $ |#2| (-522 |#2|)) NIL) (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 56) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) 111 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-2149 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-2192 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-550)))))) (-4268 (($ $ (-749)) 13)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1644 (($ $) 109 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (($ $ |#2| $) 95) (($ $ (-623 |#2|) (-623 $)) 88) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL)) (-2798 (($ $ |#2|) 98) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-3661 (((-522 |#2|) $) NIL)) (-4209 (((-1 (-1125 |#3|) |#3|) (-623 |#2|) (-623 (-1125 |#3|))) 77)) (-4194 (($ $) 147 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 15)) (-2233 (((-837) $) 180) (($ (-550)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#2|) 63) (($ |#3|) 61)) (-1708 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL) ((|#3| $ (-749)) 38)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-4233 (($ $) 153 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 157 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3363 (($ $) 159 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 155 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 151 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 47 T CONST)) (-2700 (($) 55 T CONST)) (-1901 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 59)) (** (($ $ (-895)) NIL) (($ $ (-749)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 101 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 58) (($ $ (-400 (-550))) 106 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 104 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1095 |#1| |#2| |#3|) (-13 (-719 |#1| |#2|) (-10 -8 (-15 -1708 (|#3| $ (-749))) (-15 -2233 ($ |#2|)) (-15 -2233 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4209 ((-1 (-1125 |#3|) |#3|) (-623 |#2|) (-623 (-1125 |#3|)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $ |#2| |#1|)) (-15 -2192 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1021) (-825) (-923 |#1| (-522 |#2|) |#2|)) (T -1095)) -((-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-923 *4 (-522 *5) *5)) (-5 *1 (-1095 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-825)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *2 (-825)) (-5 *1 (-1095 *3 *2 *4)) (-4 *4 (-923 *3 (-522 *2) *2)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-923 *3 (-522 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-923 *3 (-522 *4) *4)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1125 *7))) (-4 *6 (-825)) (-4 *7 (-923 *5 (-522 *6) *6)) (-4 *5 (-1021)) (-5 *2 (-1 (-1125 *7) *7)) (-5 *1 (-1095 *5 *6 *7)))) (-2149 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-4 *2 (-825)) (-5 *1 (-1095 *3 *2 *4)) (-4 *4 (-923 *3 (-522 *2) *2)))) (-2192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1095 *4 *3 *5))) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1021)) (-4 *3 (-825)) (-5 *1 (-1095 *4 *3 *5)) (-4 *5 (-923 *4 (-522 *3) *3))))) -(-13 (-719 |#1| |#2|) (-10 -8 (-15 -1708 (|#3| $ (-749))) (-15 -2233 ($ |#2|)) (-15 -2233 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4209 ((-1 (-1125 |#3|) |#3|) (-623 |#2|) (-623 (-1125 |#3|)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $ |#2| |#1|)) (-15 -2192 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2221 (((-112) $ $) 7)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) 85)) (-3186 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) 101) (((-112) $) 97)) (-3624 ((|#4| |#4| $) 92)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 126)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 79)) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-3870 (((-3 $ "failed") $) 82)) (-2962 ((|#4| |#4| $) 89)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1621 ((|#4| |#4| $) 87)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) 105)) (-2515 (((-112) |#4| $) 136)) (-3350 (((-112) |#4| $) 133)) (-3201 (((-112) |#4| $) 137) (((-112) $) 134)) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) 104) (((-112) $) 103)) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 127)) (-2001 (((-3 |#4| "failed") $) 83)) (-3087 (((-623 $) |#4| $) 129)) (-1785 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4072 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3552 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3896 (((-623 |#4|) $) 107)) (-3705 (((-112) |#4| $) 99) (((-112) $) 95)) (-2474 ((|#4| |#4| $) 90)) (-3098 (((-112) $ $) 110)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) 100) (((-112) $) 96)) (-3959 ((|#4| |#4| $) 91)) (-3445 (((-1089) $) 10)) (-3858 (((-3 |#4| "failed") $) 84)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3747 (((-3 $ "failed") $ |#4|) 78)) (-4268 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3661 (((-749) $) 106)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3236 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-4265 (((-749) $) 76 (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3176 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) 81)) (-2993 (((-112) |#4| $) 135)) (-3636 (((-112) |#3| $) 80)) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-1096 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -1096)) -NIL -(-13 (-1078 |t#1| |t#2| |t#3| |t#4|) (-762 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-762 |#1| |#2| |#3| |#4|) . T) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1041 |#1| |#2| |#3| |#4|) . T) ((-1069) . T) ((-1078 |#1| |#2| |#3| |#4|) . T) ((-1175 |#1| |#2| |#3| |#4|) . T) ((-1182) . T)) -((-4229 (((-623 |#2|) |#1|) 12)) (-3358 (((-623 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-623 |#2|) |#1|) 52)) (-2334 (((-623 |#2|) |#2| |#2| |#2|) 39) (((-623 |#2|) |#1|) 50)) (-3786 ((|#2| |#1|) 46)) (-2078 (((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2646 (((-623 |#2|) |#2| |#2|) 38) (((-623 |#2|) |#1|) 49)) (-1867 (((-623 |#2|) |#2| |#2| |#2| |#2|) 40) (((-623 |#2|) |#1|) 51)) (-2319 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2327 ((|#2| |#2| |#2| |#2|) 43)) (-2894 ((|#2| |#2| |#2|) 42)) (-2937 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -4229 ((-623 |#2|) |#1|)) (-15 -3786 (|#2| |#1|)) (-15 -2078 ((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2646 ((-623 |#2|) |#1|)) (-15 -2334 ((-623 |#2|) |#1|)) (-15 -1867 ((-623 |#2|) |#1|)) (-15 -3358 ((-623 |#2|) |#1|)) (-15 -2646 ((-623 |#2|) |#2| |#2|)) (-15 -2334 ((-623 |#2|) |#2| |#2| |#2|)) (-15 -1867 ((-623 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3358 ((-623 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2894 (|#2| |#2| |#2|)) (-15 -2327 (|#2| |#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2319 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1204 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (T -1097)) -((-2319 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2)))) (-2937 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2)))) (-2327 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2)))) (-2894 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2)))) (-3358 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3)))) (-1867 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3)))) (-2334 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) (-2334 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) (-2646 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-2 (|:| |solns| (-623 *5)) (|:| |maps| (-623 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1097 *3 *5)) (-4 *3 (-1204 *5)))) (-3786 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2)))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -4229 ((-623 |#2|) |#1|)) (-15 -3786 (|#2| |#1|)) (-15 -2078 ((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2646 ((-623 |#2|) |#1|)) (-15 -2334 ((-623 |#2|) |#1|)) (-15 -1867 ((-623 |#2|) |#1|)) (-15 -3358 ((-623 |#2|) |#1|)) (-15 -2646 ((-623 |#2|) |#2| |#2|)) (-15 -2334 ((-623 |#2|) |#2| |#2| |#2|)) (-15 -1867 ((-623 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3358 ((-623 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2894 (|#2| |#2| |#2|)) (-15 -2327 (|#2| |#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2319 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3945 (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|))))) 95) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145))) 94) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|)))) 92) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|))) (-623 (-1145))) 90) (((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|)))) 75) (((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|))) (-1145)) 76) (((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|))) 70) (((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|)) (-1145)) 59)) (-3463 (((-623 (-623 (-309 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145))) 88) (((-623 (-309 |#1|)) (-400 (-926 |#1|)) (-1145)) 43)) (-2990 (((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-926 |#1|)) (-1145)) 98) (((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145)) 97))) -(((-1098 |#1|) (-10 -7 (-15 -3945 ((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|)))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|))))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|))))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145)))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -3463 ((-623 (-309 |#1|)) (-400 (-926 |#1|)) (-1145))) (-15 -3463 ((-623 (-623 (-309 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -2990 ((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -2990 ((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-926 |#1|)) (-1145)))) (-13 (-300) (-825) (-145))) (T -1098)) -((-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1134 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-926 *5)))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1134 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-309 *5)))) (-5 *1 (-1098 *5)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-309 *5))) (-5 *1 (-1098 *5)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-623 (-287 (-400 (-926 *4))))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1098 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-926 *5))))) (-5 *4 (-623 (-1145))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-623 (-400 (-926 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1098 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-287 (-400 (-926 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1098 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-926 *5)))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1098 *5)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1098 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1098 *5))))) -(-10 -7 (-15 -3945 ((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|)) (-1145))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-400 (-926 |#1|)))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -3945 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-926 |#1|))))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-926 |#1|))))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145)))) (-15 -3945 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -3463 ((-623 (-309 |#1|)) (-400 (-926 |#1|)) (-1145))) (-15 -3463 ((-623 (-623 (-309 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -2990 ((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -2990 ((-1134 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-926 |#1|)) (-1145)))) -((-1931 (((-400 (-1141 (-309 |#1|))) (-1228 (-309 |#1|)) (-400 (-1141 (-309 |#1|))) (-550)) 29)) (-2432 (((-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|)))) 40))) -(((-1099 |#1|) (-10 -7 (-15 -2432 ((-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))))) (-15 -1931 ((-400 (-1141 (-309 |#1|))) (-1228 (-309 |#1|)) (-400 (-1141 (-309 |#1|))) (-550)))) (-13 (-542) (-825))) (T -1099)) -((-1931 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1141 (-309 *5)))) (-5 *3 (-1228 (-309 *5))) (-5 *4 (-550)) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-1099 *5)))) (-2432 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1141 (-309 *3)))) (-4 *3 (-13 (-542) (-825))) (-5 *1 (-1099 *3))))) -(-10 -7 (-15 -2432 ((-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))) (-400 (-1141 (-309 |#1|))))) (-15 -1931 ((-400 (-1141 (-309 |#1|))) (-1228 (-309 |#1|)) (-400 (-1141 (-309 |#1|))) (-550)))) -((-4229 (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1145))) 224) (((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1145)) 20) (((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1145)) 26) (((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|))) 25) (((-623 (-287 (-309 |#1|))) (-309 |#1|)) 21))) -(((-1100 |#1|) (-10 -7 (-15 -4229 ((-623 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1145))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1145))) (-15 -4229 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1145))))) (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (T -1100)) -((-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1145))) (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-623 (-287 (-309 *5)))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1100 *5)) (-5 *3 (-309 *5)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1100 *5)) (-5 *3 (-287 (-309 *5))))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-287 (-309 *4))))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-309 *4))))) -(-10 -7 (-15 -4229 ((-623 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1145))) (-15 -4229 ((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1145))) (-15 -4229 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1145))))) -((-2776 ((|#2| |#2|) 20 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3335 ((|#2| |#2|) 19 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1101 |#1| |#2|) (-10 -7 (-15 -3335 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2776 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3335 (|#2| |#2|)) (-15 -2776 (|#2| |#2|))) |%noBranch|)) (-1182) (-13 (-586 (-550) |#1|) (-10 -7 (-6 -4344) (-6 -4345)))) (T -1101)) -((-2776 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1182)) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4344) (-6 -4345)))))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1182)) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4344) (-6 -4345)))))) (-2776 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4344) (-6 -4345)))))) (-3335 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4344) (-6 -4345))))))) -(-10 -7 (-15 -3335 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2776 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3335 (|#2| |#2|)) (-15 -2776 (|#2| |#2|))) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-1599 (((-1133 3 |#1|) $) 107)) (-1917 (((-112) $) 72)) (-1356 (($ $ (-623 (-917 |#1|))) 20) (($ $ (-623 (-623 |#1|))) 75) (($ (-623 (-917 |#1|))) 74) (((-623 (-917 |#1|)) $) 73)) (-2726 (((-112) $) 41)) (-2712 (($ $ (-917 |#1|)) 46) (($ $ (-623 |#1|)) 51) (($ $ (-749)) 53) (($ (-917 |#1|)) 47) (((-917 |#1|) $) 45)) (-4291 (((-2 (|:| -3048 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 105)) (-3314 (((-749) $) 26)) (-3101 (((-749) $) 25)) (-2011 (($ $ (-749) (-917 |#1|)) 39)) (-2911 (((-112) $) 82)) (-2342 (($ $ (-623 (-623 (-917 |#1|))) (-623 (-169)) (-169)) 89) (($ $ (-623 (-623 (-623 |#1|))) (-623 (-169)) (-169)) 91) (($ $ (-623 (-623 (-917 |#1|))) (-112) (-112)) 85) (($ $ (-623 (-623 (-623 |#1|))) (-112) (-112)) 93) (($ (-623 (-623 (-917 |#1|)))) 86) (($ (-623 (-623 (-917 |#1|))) (-112) (-112)) 87) (((-623 (-623 (-917 |#1|))) $) 84)) (-2441 (($ (-623 $)) 28) (($ $ $) 29)) (-3561 (((-623 (-169)) $) 102)) (-3374 (((-623 (-917 |#1|)) $) 96)) (-2079 (((-623 (-623 (-169))) $) 101)) (-1786 (((-623 (-623 (-623 (-917 |#1|)))) $) NIL)) (-3273 (((-623 (-623 (-623 (-749)))) $) 99)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2243 (((-749) $ (-623 (-917 |#1|))) 37)) (-2567 (((-112) $) 54)) (-4145 (($ $ (-623 (-917 |#1|))) 56) (($ $ (-623 (-623 |#1|))) 62) (($ (-623 (-917 |#1|))) 57) (((-623 (-917 |#1|)) $) 55)) (-1573 (($) 23) (($ (-1133 3 |#1|)) 24)) (-2435 (($ $) 35)) (-2088 (((-623 $) $) 34)) (-3674 (($ (-623 $)) 31)) (-1753 (((-623 $) $) 33)) (-2233 (((-837) $) 111)) (-3059 (((-112) $) 64)) (-1588 (($ $ (-623 (-917 |#1|))) 66) (($ $ (-623 (-623 |#1|))) 69) (($ (-623 (-917 |#1|))) 67) (((-623 (-917 |#1|)) $) 65)) (-3909 (($ $) 106)) (-2264 (((-112) $ $) NIL))) -(((-1102 |#1|) (-1103 |#1|) (-1021)) (T -1102)) -NIL -(-1103 |#1|) -((-2221 (((-112) $ $) 7)) (-1599 (((-1133 3 |#1|) $) 13)) (-1917 (((-112) $) 29)) (-1356 (($ $ (-623 (-917 |#1|))) 33) (($ $ (-623 (-623 |#1|))) 32) (($ (-623 (-917 |#1|))) 31) (((-623 (-917 |#1|)) $) 30)) (-2726 (((-112) $) 44)) (-2712 (($ $ (-917 |#1|)) 49) (($ $ (-623 |#1|)) 48) (($ $ (-749)) 47) (($ (-917 |#1|)) 46) (((-917 |#1|) $) 45)) (-4291 (((-2 (|:| -3048 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 15)) (-3314 (((-749) $) 58)) (-3101 (((-749) $) 59)) (-2011 (($ $ (-749) (-917 |#1|)) 50)) (-2911 (((-112) $) 21)) (-2342 (($ $ (-623 (-623 (-917 |#1|))) (-623 (-169)) (-169)) 28) (($ $ (-623 (-623 (-623 |#1|))) (-623 (-169)) (-169)) 27) (($ $ (-623 (-623 (-917 |#1|))) (-112) (-112)) 26) (($ $ (-623 (-623 (-623 |#1|))) (-112) (-112)) 25) (($ (-623 (-623 (-917 |#1|)))) 24) (($ (-623 (-623 (-917 |#1|))) (-112) (-112)) 23) (((-623 (-623 (-917 |#1|))) $) 22)) (-2441 (($ (-623 $)) 57) (($ $ $) 56)) (-3561 (((-623 (-169)) $) 16)) (-3374 (((-623 (-917 |#1|)) $) 20)) (-2079 (((-623 (-623 (-169))) $) 17)) (-1786 (((-623 (-623 (-623 (-917 |#1|)))) $) 18)) (-3273 (((-623 (-623 (-623 (-749)))) $) 19)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2243 (((-749) $ (-623 (-917 |#1|))) 51)) (-2567 (((-112) $) 39)) (-4145 (($ $ (-623 (-917 |#1|))) 43) (($ $ (-623 (-623 |#1|))) 42) (($ (-623 (-917 |#1|))) 41) (((-623 (-917 |#1|)) $) 40)) (-1573 (($) 61) (($ (-1133 3 |#1|)) 60)) (-2435 (($ $) 52)) (-2088 (((-623 $) $) 53)) (-3674 (($ (-623 $)) 55)) (-1753 (((-623 $) $) 54)) (-2233 (((-837) $) 11)) (-3059 (((-112) $) 34)) (-1588 (($ $ (-623 (-917 |#1|))) 38) (($ $ (-623 (-623 |#1|))) 37) (($ (-623 (-917 |#1|))) 36) (((-623 (-917 |#1|)) $) 35)) (-3909 (($ $) 14)) (-2264 (((-112) $ $) 6))) -(((-1103 |#1|) (-138) (-1021)) (T -1103)) -((-2233 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-837)))) (-1573 (*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) (-1573 (*1 *1 *2) (-12 (-5 *2 (-1133 3 *3)) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-1753 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)))) (-2088 (*1 *2 *1) (-12 (-4 *3 (-1021)) (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)))) (-2435 (*1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) (-2243 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-917 *4))) (-4 *1 (-1103 *4)) (-4 *4 (-1021)) (-5 *2 (-749)))) (-2011 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1103 *4)) (-4 *4 (-1021)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-917 *3)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112)))) (-1588 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-1588 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-1588 (*1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112)))) (-2342 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-623 (-917 *5)))) (-5 *3 (-623 (-169))) (-5 *4 (-169)) (-4 *1 (-1103 *5)) (-4 *5 (-1021)))) (-2342 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-623 (-169))) (-5 *4 (-169)) (-4 *1 (-1103 *5)) (-4 *5 (-1021)))) (-2342 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-917 *4)))) (-5 *3 (-112)) (-4 *1 (-1103 *4)) (-4 *4 (-1021)))) (-2342 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-112)) (-4 *1 (-1103 *4)) (-4 *4 (-1021)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-917 *3)))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) (-2342 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1021)) (-4 *1 (-1103 *4)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-623 (-917 *3)))))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-623 (-623 (-749))))))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-623 (-623 (-917 *3))))))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-623 (-169)))))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-169))))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3048 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749)))))) (-3909 (*1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-1133 3 *3))))) -(-13 (-1069) (-10 -8 (-15 -1573 ($)) (-15 -1573 ($ (-1133 3 |t#1|))) (-15 -3101 ((-749) $)) (-15 -3314 ((-749) $)) (-15 -2441 ($ (-623 $))) (-15 -2441 ($ $ $)) (-15 -3674 ($ (-623 $))) (-15 -1753 ((-623 $) $)) (-15 -2088 ((-623 $) $)) (-15 -2435 ($ $)) (-15 -2243 ((-749) $ (-623 (-917 |t#1|)))) (-15 -2011 ($ $ (-749) (-917 |t#1|))) (-15 -2712 ($ $ (-917 |t#1|))) (-15 -2712 ($ $ (-623 |t#1|))) (-15 -2712 ($ $ (-749))) (-15 -2712 ($ (-917 |t#1|))) (-15 -2712 ((-917 |t#1|) $)) (-15 -2726 ((-112) $)) (-15 -4145 ($ $ (-623 (-917 |t#1|)))) (-15 -4145 ($ $ (-623 (-623 |t#1|)))) (-15 -4145 ($ (-623 (-917 |t#1|)))) (-15 -4145 ((-623 (-917 |t#1|)) $)) (-15 -2567 ((-112) $)) (-15 -1588 ($ $ (-623 (-917 |t#1|)))) (-15 -1588 ($ $ (-623 (-623 |t#1|)))) (-15 -1588 ($ (-623 (-917 |t#1|)))) (-15 -1588 ((-623 (-917 |t#1|)) $)) (-15 -3059 ((-112) $)) (-15 -1356 ($ $ (-623 (-917 |t#1|)))) (-15 -1356 ($ $ (-623 (-623 |t#1|)))) (-15 -1356 ($ (-623 (-917 |t#1|)))) (-15 -1356 ((-623 (-917 |t#1|)) $)) (-15 -1917 ((-112) $)) (-15 -2342 ($ $ (-623 (-623 (-917 |t#1|))) (-623 (-169)) (-169))) (-15 -2342 ($ $ (-623 (-623 (-623 |t#1|))) (-623 (-169)) (-169))) (-15 -2342 ($ $ (-623 (-623 (-917 |t#1|))) (-112) (-112))) (-15 -2342 ($ $ (-623 (-623 (-623 |t#1|))) (-112) (-112))) (-15 -2342 ($ (-623 (-623 (-917 |t#1|))))) (-15 -2342 ($ (-623 (-623 (-917 |t#1|))) (-112) (-112))) (-15 -2342 ((-623 (-623 (-917 |t#1|))) $)) (-15 -2911 ((-112) $)) (-15 -3374 ((-623 (-917 |t#1|)) $)) (-15 -3273 ((-623 (-623 (-623 (-749)))) $)) (-15 -1786 ((-623 (-623 (-623 (-917 |t#1|)))) $)) (-15 -2079 ((-623 (-623 (-169))) $)) (-15 -3561 ((-623 (-169)) $)) (-15 -4291 ((-2 (|:| -3048 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $)) (-15 -3909 ($ $)) (-15 -1599 ((-1133 3 |t#1|) $)) (-15 -2233 ((-837) $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 176) (((-1150) $) 7) (($ (-1150)) NIL)) (-2676 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-654))) 25) (((-112) $ (|[\|\|]| (-1238))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1084))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-659))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1036))) 57) (((-112) $ (|[\|\|]| (-1239))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-649))) 73) (((-112) $ (|[\|\|]| (-304))) 77) (((-112) $ (|[\|\|]| (-1010))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-944))) 89) (((-112) $ (|[\|\|]| (-1043))) 93) (((-112) $ (|[\|\|]| (-1059))) 97) (((-112) $ (|[\|\|]| (-1065))) 101) (((-112) $ (|[\|\|]| (-606))) 105) (((-112) $ (|[\|\|]| (-1135))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-575))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1127))) 135) (((-112) $ (|[\|\|]| (-550))) 139)) (-2469 (((-515) $) 18) (((-212) $) 22) (((-654) $) 26) (((-1238) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1084) $) 42) (((-95) $) 46) (((-659) $) 50) (((-508) $) 54) (((-1036) $) 58) (((-1239) $) 62) (((-516) $) 66) (((-152) $) 70) (((-649) $) 74) (((-304) $) 78) (((-1010) $) 82) (((-178) $) 86) (((-944) $) 90) (((-1043) $) 94) (((-1059) $) 98) (((-1065) $) 102) (((-606) $) 106) (((-1135) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-575) $) 126) (((-497) $) 132) (((-1127) $) 136) (((-550) $) 140)) (-2264 (((-112) $ $) NIL))) -(((-1104) (-1106)) (T -1104)) -NIL -(-1106) -((-3586 (((-623 (-1150)) (-1127)) 9))) -(((-1105) (-10 -7 (-15 -3586 ((-623 (-1150)) (-1127))))) (T -1105)) -((-3586 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-623 (-1150))) (-5 *1 (-1105))))) -(-10 -7 (-15 -3586 ((-623 (-1150)) (-1127)))) -((-2221 (((-112) $ $) 7)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (((-1150) $) 15) (($ (-1150)) 14)) (-2676 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-654))) 76) (((-112) $ (|[\|\|]| (-1238))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1084))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-659))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1036))) 60) (((-112) $ (|[\|\|]| (-1239))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-649))) 52) (((-112) $ (|[\|\|]| (-304))) 50) (((-112) $ (|[\|\|]| (-1010))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-944))) 44) (((-112) $ (|[\|\|]| (-1043))) 42) (((-112) $ (|[\|\|]| (-1059))) 40) (((-112) $ (|[\|\|]| (-1065))) 38) (((-112) $ (|[\|\|]| (-606))) 36) (((-112) $ (|[\|\|]| (-1135))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-575))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1127))) 22) (((-112) $ (|[\|\|]| (-550))) 20)) (-2469 (((-515) $) 79) (((-212) $) 77) (((-654) $) 75) (((-1238) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1084) $) 67) (((-95) $) 65) (((-659) $) 63) (((-508) $) 61) (((-1036) $) 59) (((-1239) $) 57) (((-516) $) 55) (((-152) $) 53) (((-649) $) 51) (((-304) $) 49) (((-1010) $) 47) (((-178) $) 45) (((-944) $) 43) (((-1043) $) 41) (((-1059) $) 39) (((-1065) $) 37) (((-606) $) 35) (((-1135) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-575) $) 25) (((-497) $) 23) (((-1127) $) 21) (((-550) $) 19)) (-2264 (((-112) $ $) 6))) -(((-1106) (-138)) (T -1106)) -((-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-515)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-212)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-654)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1238))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1238)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-137)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-132)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1084)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-95)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-659)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-508)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1036)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1239))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1239)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-516)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-152)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-649)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-304)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1010)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-178)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-944)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1043)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1059)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1065)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-606)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1135)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-154)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-136)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-470)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-575)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-497)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1127)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-550))))) -(-13 (-1052) (-1223) (-10 -8 (-15 -2676 ((-112) $ (|[\|\|]| (-515)))) (-15 -2469 ((-515) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-212)))) (-15 -2469 ((-212) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-654)))) (-15 -2469 ((-654) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1238)))) (-15 -2469 ((-1238) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-137)))) (-15 -2469 ((-137) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-132)))) (-15 -2469 ((-132) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1084)))) (-15 -2469 ((-1084) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-95)))) (-15 -2469 ((-95) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-659)))) (-15 -2469 ((-659) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-508)))) (-15 -2469 ((-508) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1036)))) (-15 -2469 ((-1036) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1239)))) (-15 -2469 ((-1239) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-516)))) (-15 -2469 ((-516) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-152)))) (-15 -2469 ((-152) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-649)))) (-15 -2469 ((-649) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-304)))) (-15 -2469 ((-304) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1010)))) (-15 -2469 ((-1010) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-178)))) (-15 -2469 ((-178) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-944)))) (-15 -2469 ((-944) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1043)))) (-15 -2469 ((-1043) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1059)))) (-15 -2469 ((-1059) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1065)))) (-15 -2469 ((-1065) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-606)))) (-15 -2469 ((-606) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1135)))) (-15 -2469 ((-1135) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-154)))) (-15 -2469 ((-154) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-136)))) (-15 -2469 ((-136) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-470)))) (-15 -2469 ((-470) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-575)))) (-15 -2469 ((-575) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-497)))) (-15 -2469 ((-497) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-1127)))) (-15 -2469 ((-1127) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-550)))) (-15 -2469 ((-550) $)))) -(((-92) . T) ((-101) . T) ((-595 (-837)) . T) ((-595 (-1150)) . T) ((-1069) . T) ((-1052) . T) ((-1223) . T)) -((-2387 (((-1233) (-623 (-837))) 23) (((-1233) (-837)) 22)) (-1267 (((-1233) (-623 (-837))) 21) (((-1233) (-837)) 20)) (-1316 (((-1233) (-623 (-837))) 19) (((-1233) (-837)) 11) (((-1233) (-1127) (-837)) 17))) -(((-1107) (-10 -7 (-15 -1316 ((-1233) (-1127) (-837))) (-15 -1316 ((-1233) (-837))) (-15 -1267 ((-1233) (-837))) (-15 -2387 ((-1233) (-837))) (-15 -1316 ((-1233) (-623 (-837)))) (-15 -1267 ((-1233) (-623 (-837)))) (-15 -2387 ((-1233) (-623 (-837)))))) (T -1107)) -((-2387 (*1 *2 *3) (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-1127)) (-5 *4 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107))))) -(-10 -7 (-15 -1316 ((-1233) (-1127) (-837))) (-15 -1316 ((-1233) (-837))) (-15 -1267 ((-1233) (-837))) (-15 -2387 ((-1233) (-837))) (-15 -1316 ((-1233) (-623 (-837)))) (-15 -1267 ((-1233) (-623 (-837)))) (-15 -2387 ((-1233) (-623 (-837))))) -((-3532 (($ $ $) 10)) (-1706 (($ $) 9)) (-3504 (($ $ $) 13)) (-3966 (($ $ $) 15)) (-1744 (($ $ $) 12)) (-2116 (($ $ $) 14)) (-2577 (($ $) 17)) (-1850 (($ $) 16)) (-4188 (($ $) 6)) (-3257 (($ $ $) 11) (($ $) 7)) (-3044 (($ $ $) 8))) +((-3656 (((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 37)) (-3662 (((-536) (-1198 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3660 (((-536) (-1198 |#2| |#1|)) 54)) (-3657 (((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 45)) (-3661 (((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3658 (((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 48)) (-3659 (((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 53))) +(((-1085 |#1| |#2|) (-10 -7 (-15 -3656 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3657 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3658 ((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3659 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3660 ((-536) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3661 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3662 ((-536) (-1198 |#2| |#1|)))) |%noBranch|)) (-798) (-1147)) (T -1085)) +((-3662 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3661 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3659 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 *4)) (-5 *1 (-1085 *4 *5)))) (-3657 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) +(-10 -7 (-15 -3656 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3657 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3658 ((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3659 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3660 ((-536) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3661 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3662 ((-536) (-1198 |#2| |#1|)))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3664 (((-1152) $) 10)) (-3663 (((-620 (-1152)) $) 11)) (-3665 (($ (-620 (-1152)) (-1152)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20)) (-3382 (((-112) $ $) 14))) +(((-1086) (-13 (-1072) (-10 -8 (-15 -3665 ($ (-620 (-1152)) (-1152))) (-15 -3664 ((-1152) $)) (-15 -3663 ((-620 (-1152)) $))))) (T -1086)) +((-3665 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1152))) (-5 *3 (-1152)) (-5 *1 (-1086)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1086)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1086))))) +(-13 (-1072) (-10 -8 (-15 -3665 ($ (-620 (-1152)) (-1152))) (-15 -3664 ((-1152) $)) (-15 -3663 ((-620 (-1152)) $)))) +((-2893 (((-112) $ $) NIL)) (-3666 (($ (-497) (-1086)) 14)) (-3665 (((-1086) $) 20)) (-3900 (((-497) $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 28) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1087) (-13 (-1054) (-10 -8 (-15 -3666 ($ (-497) (-1086))) (-15 -3900 ((-497) $)) (-15 -3665 ((-1086) $))))) (T -1087)) +((-3666 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1087)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1087)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1087))))) +(-13 (-1054) (-10 -8 (-15 -3666 ($ (-497) (-1086))) (-15 -3900 ((-497) $)) (-15 -3665 ((-1086) $)))) +((-3981 (((-3 (-536) #1="failed") |#2| (-1147) |#2| (-1129)) 17) (((-3 (-536) #1#) |#2| (-1147) (-817 |#2|)) 15) (((-3 (-536) #1#) |#2|) 54))) +(((-1088 |#1| |#2|) (-10 -7 (-15 -3981 ((-3 (-536) #1="failed") |#2|)) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) (-817 |#2|))) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) |#2| (-1129)))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|))) (T -1088)) +((-3981 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-1129)) (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *6 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *6 *3)))) (-3981 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) +(-10 -7 (-15 -3981 ((-3 (-536) #1="failed") |#2|)) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) (-817 |#2|))) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) |#2| (-1129)))) +((-3981 (((-3 (-536) #1="failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)) 35) (((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|)))) 30) (((-3 (-536) #1#) (-400 (-920 |#1|))) 13))) +(((-1089 |#1|) (-10 -7 (-15 -3981 ((-3 (-536) #1="failed") (-400 (-920 |#1|)))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|))))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)))) (-444)) (T -1089)) +((-3981 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1147)) (-5 *5 (-1129)) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 (-400 (-920 *6)))) (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) (-3981 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *4))))) +(-10 -7 (-15 -3981 ((-3 (-536) #1="failed") (-400 (-920 |#1|)))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|))))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)))) +((-4007 (((-307 (-536)) (-48)) 12))) +(((-1090) (-10 -7 (-15 -4007 ((-307 (-536)) (-48))))) (T -1090)) +((-4007 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-536))) (-5 *1 (-1090))))) +(-10 -7 (-15 -4007 ((-307 (-536)) (-48)))) +((-2893 (((-112) $ $) NIL)) (-3674 (($ $) 41)) (-3534 (((-112) $) 65)) (-3670 (($ $ $) 48)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 86)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) 75)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) 72)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) 59)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 80) (((-667 (-536)) (-667 $)) 28)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) 83) (($ $) 84)) (-2888 (($ $ $) 58)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) 81)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) 66)) (-3001 (((-112) $) 64)) (-3671 (($ $) 42)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) 76)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) 73)) (-3672 (($ $ $) 68) (($) 39)) (-3673 (($ $ $) 67) (($) 38)) (-2154 (($ $) NIL)) (-4188 (($ $) 71)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) 50)) (-3589 (((-1091) $) 70)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) 62) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 61)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) 51)) (-3754 (($ $) NIL)) (-4325 (((-536) $) 32) (((-525) $) NIL) (((-864 (-536)) $) NIL) (((-371) $) NIL) (((-219) $) NIL)) (-4312 (((-838) $) 31) (($ (-536)) 82) (($ $) NIL) (($ (-536)) 82)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) 37)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) 74)) (-3737 (($ $) 63)) (-3676 (($ $ $) 44)) (-2986 (($) 35 T CONST)) (-3667 (($ $ $) 47)) (-2992 (($) 36 T CONST)) (-2829 (((-1129) $) 21) (((-1129) $ (-112)) 23) (((-1235) (-801) $) 24) (((-1235) (-801) $ (-112)) 25)) (-3669 (($ $) 45)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3668 (($ $ $) 46)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 40)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 49)) (-3675 (($ $ $) 43)) (-4192 (($ $) 52) (($ $ $) 54)) (-4194 (($ $ $) 53)) (** (($ $ (-893)) NIL) (($ $ (-749)) 57)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 34) (($ $ $) 55))) +(((-1091) (-13 (-535) (-640) (-799) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -3673 ($)) (-15 -3672 ($)) (-15 -3671 ($ $)) (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -3669 ($ $)) (-15 -3668 ($ $ $)) (-15 -3667 ($ $ $))))) (T -1091)) +((-3676 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3675 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3674 (*1 *1 *1) (-5 *1 (-1091))) (-3673 (*1 *1) (-5 *1 (-1091))) (-3672 (*1 *1) (-5 *1 (-1091))) (-3671 (*1 *1 *1) (-5 *1 (-1091))) (-3670 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3669 (*1 *1 *1) (-5 *1 (-1091))) (-3668 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3667 (*1 *1 *1 *1) (-5 *1 (-1091)))) +(-13 (-535) (-640) (-799) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -3673 ($)) (-15 -3672 ($)) (-15 -3671 ($ $)) (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -3669 ($ $)) (-15 -3668 ($ $ $)) (-15 -3667 ($ $ $)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3678 ((|#1| $) 44)) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3680 ((|#1| |#1| $) 46)) (-3679 ((|#1| $) 45)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3677 (((-749) $) 43)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1092 |#1|) (-138) (-1183)) (T -1092)) +((-3680 (*1 *2 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3680 (|t#1| |t#1| $)) (-15 -3679 (|t#1| $)) (-15 -3678 (|t#1| $)) (-15 -3677 ((-749) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-3684 ((|#3| $) 76)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#3| $) 37)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) 73) (((-667 |#3|) (-667 $)) 65)) (-4165 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3683 ((|#3| $) 78)) (-3685 ((|#4| $) 32)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#3|) 16)) (** (($ $ (-893)) NIL) (($ $ (-749)) 15) (($ $ (-536)) 82))) +(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 -3683 (|#3| |#1|)) (-15 -3684 (|#3| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -4312 ((-838) |#1|))) (-1094 |#2| |#3| |#4| |#5|) (-749) (-1023) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1093)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 -3683 (|#3| |#1|)) (-15 -3684 (|#3| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3684 ((|#2| $) 70)) (-3451 (((-112) $) 110)) (-1367 (((-3 $ "failed") $ $) 19)) (-3453 (((-112) $) 108)) (-1269 (((-112) $ (-749)) 100)) (-3687 (($ |#2|) 73)) (-3891 (($) 17 T CONST)) (-3440 (($ $) 127 (|has| |#2| (-300)))) (-3442 ((|#3| $ (-536)) 122)) (-3503 (((-3 (-536) #1="failed") $) 84 (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 82 (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #1#) $) 79)) (-3502 (((-536) $) 85 (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) 83 (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) 78)) (-2357 (((-667 (-536)) (-667 $)) 77 (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 76 (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 75) (((-667 |#2|) (-667 $)) 74)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-749) $) 128 (|has| |#2| (-543)))) (-3443 ((|#2| $ (-536) (-536)) 120)) (-2063 (((-620 |#2|) $) 93 (|has| $ (-6 -4348)))) (-2497 (((-112) $) 30)) (-3438 (((-749) $) 129 (|has| |#2| (-543)))) (-3437 (((-620 |#4|) $) 130 (|has| |#2| (-543)))) (-3445 (((-749) $) 116)) (-3444 (((-749) $) 117)) (-4077 (((-112) $ (-749)) 101)) (-3681 ((|#2| $) 65 (|has| |#2| (-6 (-4350 #2="*"))))) (-3449 (((-536) $) 112)) (-3447 (((-536) $) 114)) (-2506 (((-620 |#2|) $) 92 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 113)) (-3446 (((-536) $) 115)) (-3454 (($ (-620 (-620 |#2|))) 107)) (-2067 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3951 (((-620 (-620 |#2|)) $) 118)) (-4074 (((-112) $ (-749)) 102)) (-3588 (((-1129) $) 9)) (-3947 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 106)) (-3757 (((-112) $) 103)) (-3923 (($) 104)) (-4154 ((|#2| $ (-536) (-536) |#2|) 121) ((|#2| $ (-536) (-536)) 119)) (-4165 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-749)) 49) (($ $ (-620 (-1147)) (-620 (-749))) 42 (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) 41 (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) 40 (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) 39 (|has| |#2| (-874 (-1147)))) (($ $ (-749)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-3683 ((|#2| $) 69)) (-3686 (($ (-620 |#2|)) 72)) (-3452 (((-112) $) 109)) (-3685 ((|#3| $) 71)) (-3682 ((|#2| $) 66 (|has| |#2| (-6 (-4350 #2#))))) (-2064 (((-749) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4348))) (((-749) |#2| $) 91 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 105)) (-3441 ((|#4| $ (-536)) 123)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 81 (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) 80)) (-3456 (((-749)) 28)) (-2066 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 111)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-749)) 47) (($ $ (-620 (-1147)) (-620 (-749))) 46 (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) 45 (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) 44 (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) 43 (|has| |#2| (-874 (-1147)))) (($ $ (-749)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 63 (|has| |#2| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4311 (((-749) $) 99 (|has| $ (-6 -4348))))) +(((-1094 |#1| |#2| |#3| |#4|) (-138) (-749) (-1023) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1094)) +((-3687 (*1 *1 *2) (-12 (-4 *2 (-1023)) (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *4)) (-4 *4 (-1023)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1023)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1023)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1094 *3 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4350 #1="*"))) (-4 *2 (-1023)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4350 #1#))) (-4 *2 (-1023)))) (-3947 (*1 *1 *1) (|partial| -12 (-4 *1 (-1094 *2 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))) +(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1026 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-696 |t#2|)) |%noBranch|) (-15 -3687 ($ |t#2|)) (-15 -3686 ($ (-620 |t#2|))) (-15 -3685 (|t#3| $)) (-15 -3684 (|t#2| $)) (-15 -3683 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4350 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3682 (|t#2| $)) (-15 -3681 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3947 ((-3 $ "failed") $)) (-15 ** ($ $ (-536)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4350 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-370 |#2|) . T) ((-405 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-626 |#2|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#2| (-619 (-536))) ((-619 |#2|) . T) ((-696 |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-6 (-4350 #1#)))) ((-705) . T) ((-874 (-1147)) |has| |#2| (-874 (-1147))) ((-1026 |#1| |#1| |#2| |#3| |#4|) . T) ((-1012 (-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#2| (-1012 (-536))) ((-1012 |#2|) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1183) . T)) +((-3690 ((|#4| |#4|) 70)) (-3688 ((|#4| |#4|) 65)) (-3692 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|) 78)) (-3691 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3689 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1095 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 (|#4| |#4|)) (-15 -3689 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3690 (|#4| |#4|)) (-15 -3691 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|))) (-300) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -1095)) +((-3692 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-1095 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3690 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(-10 -7 (-15 -3688 (|#4| |#4|)) (-15 -3689 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3690 (|#4| |#4|)) (-15 -3691 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 17)) (-3412 (((-620 |#2|) $) 159)) (-3414 (((-1141 $) $ |#2|) 54) (((-1141 |#1|) $) 43)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 108 (|has| |#1| (-543)))) (-2173 (($ $) 110 (|has| |#1| (-543)))) (-2171 (((-112) $) 112 (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#2|)) 192)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 156) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#2| #2#) $) NIL)) (-3502 ((|#1| $) 154) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#2| $) NIL)) (-4111 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4314 (($ $) 196)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 82)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 |#2|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) 19)) (-2505 (((-749) $) 26)) (-3415 (($ (-1141 |#1|) |#2|) 48) (($ (-1141 $) |#2|) 64)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) 32)) (-3221 (($ |#1| (-522 |#2|)) 71) (($ $ |#2| (-749)) 52) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3148 (((-522 |#2|) $) 186) (((-749) $ |#2|) 187) (((-620 (-749)) $ (-620 |#2|)) 188)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 120)) (-3413 (((-3 |#2| #3="failed") $) 161)) (-3222 (($ $) 195)) (-3520 ((|#1| $) 37)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 33)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 138 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-620 |#2|) (-620 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-620 |#2|) (-620 $)) 176)) (-4112 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#2|) 194) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) 182) (((-749) $ |#2|) 178) (((-620 (-749)) $ (-620 |#2|)) 180)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 149) (($ (-536)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 152)) (-4035 ((|#1| $ (-522 |#2|)) 73) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 79)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) 115 (|has| |#1| (-543)))) (-2986 (($) 12 T CONST)) (-2992 (($) 14 T CONST)) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 97)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-4192 (($ $) 85) (($ $ $) 95)) (-4194 (($ $ $) 49)) (** (($ $ (-893)) 102) (($ $ (-749)) 100)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 88) (($ $ $) 65) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1096 |#1| |#2|) (-924 |#1| (-522 |#2|) |#2|) (-1023) (-825)) (T -1096)) +NIL +(-924 |#1| (-522 |#2|) |#2|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3841 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 113 (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) 145 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4169 (((-920 |#1|) $ (-749)) NIL) (((-920 |#1|) $ (-749) (-749)) NIL)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ |#2|) NIL) (((-749) $ |#2| (-749)) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) NIL)) (-3221 (($ $ (-620 |#2|) (-620 (-522 |#2|))) NIL) (($ $ |#2| (-522 |#2|)) NIL) (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 56) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) 111 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4034 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-536)))))) (-4123 (($ $ (-749)) 13)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) 109 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ |#2| $) 95) (($ $ (-620 |#2|) (-620 $)) 88) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL)) (-4165 (($ $ |#2|) 98) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) NIL)) (-3693 (((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|))) 77)) (-3844 (($ $) 147 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 15)) (-4312 (((-838) $) 180) (($ (-536)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#2|) 63) (($ |#3|) 61)) (-4035 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL) ((|#3| $ (-749)) 38)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3847 (($ $) 153 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 157 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) 159 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 155 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 151 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 47 T CONST)) (-2992 (($) 55 T CONST)) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 59)) (** (($ $ (-893)) NIL) (($ $ (-749)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 101 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 58) (($ $ (-400 (-536))) 106 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 104 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1097 |#1| |#2| |#3|) (-13 (-719 |#1| |#2|) (-10 -8 (-15 -4035 (|#3| $ (-749))) (-15 -4312 ($ |#2|)) (-15 -4312 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3693 ((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |#2| |#1|)) (-15 -4034 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1023) (-825) (-924 |#1| (-522 |#2|) |#2|)) (T -1097)) +((-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-924 *4 (-522 *5) *5)) (-5 *1 (-1097 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-924 *3 (-522 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-924 *3 (-522 *4) *4)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1124 *7))) (-4 *6 (-825)) (-4 *7 (-924 *5 (-522 *6) *6)) (-4 *5 (-1023)) (-5 *2 (-1 (-1124 *7) *7)) (-5 *1 (-1097 *5 *6 *7)))) (-4167 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) (-4034 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4 *3 *5))) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *1 (-1097 *4 *3 *5)) (-4 *5 (-924 *4 (-522 *3) *3))))) +(-13 (-719 |#1| |#2|) (-10 -8 (-15 -4035 (|#3| $ (-749))) (-15 -4312 ($ |#2|)) (-15 -4312 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3693 ((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |#2| |#1|)) (-15 -4034 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-1098 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1098)) +NIL +(-13 (-1080 |t#1| |t#2| |t#3| |t#4|) (-762 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-762 |#1| |#2| |#3| |#4|) . T) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) +((-3931 (((-620 |#2|) |#1|) 12)) (-3699 (((-620 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-620 |#2|) |#1|) 52)) (-3697 (((-620 |#2|) |#2| |#2| |#2|) 39) (((-620 |#2|) |#1|) 50)) (-3694 ((|#2| |#1|) 46)) (-3695 (((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3696 (((-620 |#2|) |#2| |#2|) 38) (((-620 |#2|) |#1|) 49)) (-3698 (((-620 |#2|) |#2| |#2| |#2| |#2|) 40) (((-620 |#2|) |#1|) 51)) (-3703 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3701 ((|#2| |#2| |#2| |#2|) 43)) (-3700 ((|#2| |#2| |#2|) 42)) (-3702 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1099 |#1| |#2|) (-10 -7 (-15 -3931 ((-620 |#2|) |#1|)) (-15 -3694 (|#2| |#1|)) (-15 -3695 ((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3696 ((-620 |#2|) |#1|)) (-15 -3697 ((-620 |#2|) |#1|)) (-15 -3698 ((-620 |#2|) |#1|)) (-15 -3699 ((-620 |#2|) |#1|)) (-15 -3696 ((-620 |#2|) |#2| |#2|)) (-15 -3697 ((-620 |#2|) |#2| |#2| |#2|)) (-15 -3698 ((-620 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3699 ((-620 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -3701 (|#2| |#2| |#2| |#2|)) (-15 -3702 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1205 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (T -1099)) +((-3703 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3702 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3701 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3700 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3699 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3698 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3697 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3697 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-2 (|:| |solns| (-620 *5)) (|:| |maps| (-620 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1099 *3 *5)) (-4 *3 (-1205 *5)))) (-3694 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -3931 ((-620 |#2|) |#1|)) (-15 -3694 (|#2| |#1|)) (-15 -3695 ((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3696 ((-620 |#2|) |#1|)) (-15 -3697 ((-620 |#2|) |#1|)) (-15 -3698 ((-620 |#2|) |#1|)) (-15 -3699 ((-620 |#2|) |#1|)) (-15 -3696 ((-620 |#2|) |#2| |#2|)) (-15 -3697 ((-620 |#2|) |#2| |#2| |#2|)) (-15 -3698 ((-620 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3699 ((-620 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -3701 (|#2| |#2| |#2| |#2|)) (-15 -3702 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3704 (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|))))) 95) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147))) 94) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|)))) 92) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 90) (((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|)))) 75) (((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147)) 76) (((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|))) 70) (((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147)) 59)) (-3705 (((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 88) (((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147)) 43)) (-3706 (((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)) 98) (((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147)) 97))) +(((-1100 |#1|) (-10 -7 (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3705 ((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3705 ((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)))) (-13 (-300) (-825) (-145))) (T -1100)) +((-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-307 *5)))) (-5 *1 (-1100 *5)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-307 *5))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 *5))))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1100 *5))))) +(-10 -7 (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3705 ((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3705 ((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)))) +((-3708 (((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)) 29)) (-3707 (((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|)))) 40))) +(((-1101 |#1|) (-10 -7 (-15 -3707 ((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))))) (-15 -3708 ((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)))) (-13 (-543) (-825))) (T -1101)) +((-3708 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1141 (-307 *5)))) (-5 *3 (-1229 (-307 *5))) (-5 *4 (-536)) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-1101 *5)))) (-3707 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1141 (-307 *3)))) (-4 *3 (-13 (-543) (-825))) (-5 *1 (-1101 *3))))) +(-10 -7 (-15 -3707 ((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))))) (-15 -3708 ((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)))) +((-3931 (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))) 224) (((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147)) 20) (((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147)) 26) (((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|))) 25) (((-620 (-286 (-307 |#1|))) (-307 |#1|)) 21))) +(((-1102 |#1|) (-10 -7 (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147))) (-15 -3931 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (T -1102)) +((-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1102 *5)) (-5 *3 (-620 (-286 (-307 *5)))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-307 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-286 (-307 *5))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-286 (-307 *4))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-307 *4))))) +(-10 -7 (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147))) (-15 -3931 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))))) +((-3710 ((|#2| |#2|) 20 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3709 ((|#2| |#2|) 19 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1103 |#1| |#2|) (-10 -7 (-15 -3709 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3709 (|#2| |#2|)) (-15 -3710 (|#2| |#2|))) |%noBranch|)) (-1183) (-13 (-586 (-536) |#1|) (-10 -7 (-6 -4348) (-6 -4349)))) (T -1103)) +((-3710 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3709 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349))))))) +(-10 -7 (-15 -3709 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3709 (|#2| |#2|)) (-15 -3710 (|#2| |#2|))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-4243 (((-1135 3 |#1|) $) 107)) (-3720 (((-112) $) 72)) (-3721 (($ $ (-620 (-917 |#1|))) 20) (($ $ (-620 (-620 |#1|))) 75) (($ (-620 (-917 |#1|))) 74) (((-620 (-917 |#1|)) $) 73)) (-3726 (((-112) $) 41)) (-4064 (($ $ (-917 |#1|)) 46) (($ $ (-620 |#1|)) 51) (($ $ (-749)) 53) (($ (-917 |#1|)) 47) (((-917 |#1|) $) 45)) (-3712 (((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 105)) (-3730 (((-749) $) 26)) (-3731 (((-749) $) 25)) (-4242 (($ $ (-749) (-917 |#1|)) 39)) (-3718 (((-112) $) 82)) (-3719 (($ $ (-620 (-620 (-917 |#1|))) (-620 (-169)) (-169)) 89) (($ $ (-620 (-620 (-620 |#1|))) (-620 (-169)) (-169)) 91) (($ $ (-620 (-620 (-917 |#1|))) (-112) (-112)) 85) (($ $ (-620 (-620 (-620 |#1|))) (-112) (-112)) 93) (($ (-620 (-620 (-917 |#1|)))) 86) (($ (-620 (-620 (-917 |#1|))) (-112) (-112)) 87) (((-620 (-620 (-917 |#1|))) $) 84)) (-3867 (($ (-620 $)) 28) (($ $ $) 29)) (-3713 (((-620 (-169)) $) 102)) (-3717 (((-620 (-917 |#1|)) $) 96)) (-3714 (((-620 (-620 (-169))) $) 101)) (-3715 (((-620 (-620 (-620 (-917 |#1|)))) $) NIL)) (-3716 (((-620 (-620 (-620 (-749)))) $) 99)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3727 (((-749) $ (-620 (-917 |#1|))) 37)) (-3724 (((-112) $) 54)) (-3725 (($ $ (-620 (-917 |#1|))) 56) (($ $ (-620 (-620 |#1|))) 62) (($ (-620 (-917 |#1|))) 57) (((-620 (-917 |#1|)) $) 55)) (-3732 (($) 23) (($ (-1135 3 |#1|)) 24)) (-3754 (($ $) 35)) (-3728 (((-620 $) $) 34)) (-4109 (($ (-620 $)) 31)) (-3729 (((-620 $) $) 33)) (-4312 (((-838) $) 111)) (-3722 (((-112) $) 64)) (-3723 (($ $ (-620 (-917 |#1|))) 66) (($ $ (-620 (-620 |#1|))) 69) (($ (-620 (-917 |#1|))) 67) (((-620 (-917 |#1|)) $) 65)) (-3711 (($ $) 106)) (-3382 (((-112) $ $) NIL))) +(((-1104 |#1|) (-1105 |#1|) (-1023)) (T -1104)) +NIL +(-1105 |#1|) +((-2893 (((-112) $ $) 7)) (-4243 (((-1135 3 |#1|) $) 13)) (-3720 (((-112) $) 29)) (-3721 (($ $ (-620 (-917 |#1|))) 33) (($ $ (-620 (-620 |#1|))) 32) (($ (-620 (-917 |#1|))) 31) (((-620 (-917 |#1|)) $) 30)) (-3726 (((-112) $) 44)) (-4064 (($ $ (-917 |#1|)) 49) (($ $ (-620 |#1|)) 48) (($ $ (-749)) 47) (($ (-917 |#1|)) 46) (((-917 |#1|) $) 45)) (-3712 (((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 15)) (-3730 (((-749) $) 58)) (-3731 (((-749) $) 59)) (-4242 (($ $ (-749) (-917 |#1|)) 50)) (-3718 (((-112) $) 21)) (-3719 (($ $ (-620 (-620 (-917 |#1|))) (-620 (-169)) (-169)) 28) (($ $ (-620 (-620 (-620 |#1|))) (-620 (-169)) (-169)) 27) (($ $ (-620 (-620 (-917 |#1|))) (-112) (-112)) 26) (($ $ (-620 (-620 (-620 |#1|))) (-112) (-112)) 25) (($ (-620 (-620 (-917 |#1|)))) 24) (($ (-620 (-620 (-917 |#1|))) (-112) (-112)) 23) (((-620 (-620 (-917 |#1|))) $) 22)) (-3867 (($ (-620 $)) 57) (($ $ $) 56)) (-3713 (((-620 (-169)) $) 16)) (-3717 (((-620 (-917 |#1|)) $) 20)) (-3714 (((-620 (-620 (-169))) $) 17)) (-3715 (((-620 (-620 (-620 (-917 |#1|)))) $) 18)) (-3716 (((-620 (-620 (-620 (-749)))) $) 19)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3727 (((-749) $ (-620 (-917 |#1|))) 51)) (-3724 (((-112) $) 39)) (-3725 (($ $ (-620 (-917 |#1|))) 43) (($ $ (-620 (-620 |#1|))) 42) (($ (-620 (-917 |#1|))) 41) (((-620 (-917 |#1|)) $) 40)) (-3732 (($) 61) (($ (-1135 3 |#1|)) 60)) (-3754 (($ $) 52)) (-3728 (((-620 $) $) 53)) (-4109 (($ (-620 $)) 55)) (-3729 (((-620 $) $) 54)) (-4312 (((-838) $) 11)) (-3722 (((-112) $) 34)) (-3723 (($ $ (-620 (-917 |#1|))) 38) (($ $ (-620 (-620 |#1|))) 37) (($ (-620 (-917 |#1|))) 36) (((-620 (-917 |#1|)) $) 35)) (-3711 (($ $) 14)) (-3382 (((-112) $ $) 6))) +(((-1105 |#1|) (-138) (-1023)) (T -1105)) +((-4312 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-838)))) (-3732 (*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1135 3 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3729 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)))) (-3754 (*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-3727 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-917 *4))) (-4 *1 (-1105 *4)) (-4 *4 (-1023)) (-5 *2 (-749)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-917 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3723 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3723 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3719 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-620 (-917 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 *3)))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3719 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1023)) (-4 *1 (-1105 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-917 *3)))))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-749))))))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-917 *3))))))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-169)))))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-169))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749)))))) (-3711 (*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-1135 3 *3))))) +(-13 (-1072) (-10 -8 (-15 -3732 ($)) (-15 -3732 ($ (-1135 3 |t#1|))) (-15 -3731 ((-749) $)) (-15 -3730 ((-749) $)) (-15 -3867 ($ (-620 $))) (-15 -3867 ($ $ $)) (-15 -4109 ($ (-620 $))) (-15 -3729 ((-620 $) $)) (-15 -3728 ((-620 $) $)) (-15 -3754 ($ $)) (-15 -3727 ((-749) $ (-620 (-917 |t#1|)))) (-15 -4242 ($ $ (-749) (-917 |t#1|))) (-15 -4064 ($ $ (-917 |t#1|))) (-15 -4064 ($ $ (-620 |t#1|))) (-15 -4064 ($ $ (-749))) (-15 -4064 ($ (-917 |t#1|))) (-15 -4064 ((-917 |t#1|) $)) (-15 -3726 ((-112) $)) (-15 -3725 ($ $ (-620 (-917 |t#1|)))) (-15 -3725 ($ $ (-620 (-620 |t#1|)))) (-15 -3725 ($ (-620 (-917 |t#1|)))) (-15 -3725 ((-620 (-917 |t#1|)) $)) (-15 -3724 ((-112) $)) (-15 -3723 ($ $ (-620 (-917 |t#1|)))) (-15 -3723 ($ $ (-620 (-620 |t#1|)))) (-15 -3723 ($ (-620 (-917 |t#1|)))) (-15 -3723 ((-620 (-917 |t#1|)) $)) (-15 -3722 ((-112) $)) (-15 -3721 ($ $ (-620 (-917 |t#1|)))) (-15 -3721 ($ $ (-620 (-620 |t#1|)))) (-15 -3721 ($ (-620 (-917 |t#1|)))) (-15 -3721 ((-620 (-917 |t#1|)) $)) (-15 -3720 ((-112) $)) (-15 -3719 ($ $ (-620 (-620 (-917 |t#1|))) (-620 (-169)) (-169))) (-15 -3719 ($ $ (-620 (-620 (-620 |t#1|))) (-620 (-169)) (-169))) (-15 -3719 ($ $ (-620 (-620 (-917 |t#1|))) (-112) (-112))) (-15 -3719 ($ $ (-620 (-620 (-620 |t#1|))) (-112) (-112))) (-15 -3719 ($ (-620 (-620 (-917 |t#1|))))) (-15 -3719 ($ (-620 (-620 (-917 |t#1|))) (-112) (-112))) (-15 -3719 ((-620 (-620 (-917 |t#1|))) $)) (-15 -3718 ((-112) $)) (-15 -3717 ((-620 (-917 |t#1|)) $)) (-15 -3716 ((-620 (-620 (-620 (-749)))) $)) (-15 -3715 ((-620 (-620 (-620 (-917 |t#1|)))) $)) (-15 -3714 ((-620 (-620 (-169))) $)) (-15 -3713 ((-620 (-169)) $)) (-15 -3712 ((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $)) (-15 -3711 ($ $)) (-15 -4243 ((-1135 3 |t#1|) $)) (-15 -4312 ((-838) $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 176) (((-1152) $) 7) (($ (-1152)) NIL)) (-3924 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-654))) 25) (((-112) $ (|[\|\|]| (-1240))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1087))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-659))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1038))) 57) (((-112) $ (|[\|\|]| (-1241))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-649))) 73) (((-112) $ (|[\|\|]| (-305))) 77) (((-112) $ (|[\|\|]| (-1010))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-944))) 89) (((-112) $ (|[\|\|]| (-1045))) 93) (((-112) $ (|[\|\|]| (-1062))) 97) (((-112) $ (|[\|\|]| (-1067))) 101) (((-112) $ (|[\|\|]| (-606))) 105) (((-112) $ (|[\|\|]| (-1137))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-575))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1129))) 135) (((-112) $ (|[\|\|]| (-536))) 139)) (-3930 (((-515) $) 18) (((-212) $) 22) (((-654) $) 26) (((-1240) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1087) $) 42) (((-95) $) 46) (((-659) $) 50) (((-508) $) 54) (((-1038) $) 58) (((-1241) $) 62) (((-516) $) 66) (((-152) $) 70) (((-649) $) 74) (((-305) $) 78) (((-1010) $) 82) (((-178) $) 86) (((-944) $) 90) (((-1045) $) 94) (((-1062) $) 98) (((-1067) $) 102) (((-606) $) 106) (((-1137) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-575) $) 126) (((-497) $) 132) (((-1129) $) 136) (((-536) $) 140)) (-3382 (((-112) $ $) NIL))) +(((-1106) (-1108)) (T -1106)) +NIL +(-1108) +((-3733 (((-620 (-1152)) (-1129)) 9))) +(((-1107) (-10 -7 (-15 -3733 ((-620 (-1152)) (-1129))))) (T -1107)) +((-3733 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-1107))))) +(-10 -7 (-15 -3733 ((-620 (-1152)) (-1129)))) +((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3924 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-654))) 76) (((-112) $ (|[\|\|]| (-1240))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1087))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-659))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1038))) 60) (((-112) $ (|[\|\|]| (-1241))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-649))) 52) (((-112) $ (|[\|\|]| (-305))) 50) (((-112) $ (|[\|\|]| (-1010))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-944))) 44) (((-112) $ (|[\|\|]| (-1045))) 42) (((-112) $ (|[\|\|]| (-1062))) 40) (((-112) $ (|[\|\|]| (-1067))) 38) (((-112) $ (|[\|\|]| (-606))) 36) (((-112) $ (|[\|\|]| (-1137))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-575))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1129))) 22) (((-112) $ (|[\|\|]| (-536))) 20)) (-3930 (((-515) $) 79) (((-212) $) 77) (((-654) $) 75) (((-1240) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1087) $) 67) (((-95) $) 65) (((-659) $) 63) (((-508) $) 61) (((-1038) $) 59) (((-1241) $) 57) (((-516) $) 55) (((-152) $) 53) (((-649) $) 51) (((-305) $) 49) (((-1010) $) 47) (((-178) $) 45) (((-944) $) 43) (((-1045) $) 41) (((-1062) $) 39) (((-1067) $) 37) (((-606) $) 35) (((-1137) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-575) $) 25) (((-497) $) 23) (((-1129) $) 21) (((-536) $) 19)) (-3382 (((-112) $ $) 6))) (((-1108) (-138)) (T -1108)) -((-2577 (*1 *1 *1) (-4 *1 (-1108))) (-1850 (*1 *1 *1) (-4 *1 (-1108))) (-3966 (*1 *1 *1 *1) (-4 *1 (-1108))) (-2116 (*1 *1 *1 *1) (-4 *1 (-1108))) (-3504 (*1 *1 *1 *1) (-4 *1 (-1108))) (-1744 (*1 *1 *1 *1) (-4 *1 (-1108))) (-3257 (*1 *1 *1 *1) (-4 *1 (-1108))) (-3532 (*1 *1 *1 *1) (-4 *1 (-1108))) (-1706 (*1 *1 *1) (-4 *1 (-1108))) (-3044 (*1 *1 *1 *1) (-4 *1 (-1108))) (-3257 (*1 *1 *1) (-4 *1 (-1108))) (-4188 (*1 *1 *1) (-4 *1 (-1108)))) -(-13 (-10 -8 (-15 -4188 ($ $)) (-15 -3257 ($ $)) (-15 -3044 ($ $ $)) (-15 -1706 ($ $)) (-15 -3532 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -3504 ($ $ $)) (-15 -2116 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -1850 ($ $)) (-15 -2577 ($ $)))) -((-2221 (((-112) $ $) 41)) (-1337 ((|#1| $) 15)) (-4215 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1973 (((-112) $) 17)) (-2522 (($ $ |#1|) 28)) (-3499 (($ $ (-112)) 30)) (-1598 (($ $) 31)) (-2851 (($ $ |#2|) 29)) (-2369 (((-1127) $) NIL)) (-2929 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3445 (((-1089) $) NIL)) (-4217 (((-112) $) 14)) (-2819 (($) 10)) (-2435 (($ $) 27)) (-2245 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1608 |#2|))) 21) (((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|)))) 24) (((-623 $) |#1| (-623 |#2|)) 26)) (-1723 ((|#2| $) 16)) (-2233 (((-837) $) 50)) (-2264 (((-112) $ $) 39))) -(((-1109 |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -2819 ($)) (-15 -4217 ((-112) $)) (-15 -1337 (|#1| $)) (-15 -1723 (|#2| $)) (-15 -1973 ((-112) $)) (-15 -2245 ($ |#1| |#2| (-112))) (-15 -2245 ($ |#1| |#2|)) (-15 -2245 ($ (-2 (|:| |val| |#1|) (|:| -1608 |#2|)))) (-15 -2245 ((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|))))) (-15 -2245 ((-623 $) |#1| (-623 |#2|))) (-15 -2435 ($ $)) (-15 -2522 ($ $ |#1|)) (-15 -2851 ($ $ |#2|)) (-15 -3499 ($ $ (-112))) (-15 -1598 ($ $)) (-15 -2929 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4215 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1069) (-34)) (-13 (-1069) (-34))) (T -1109)) -((-2819 (*1 *1) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))))) (-1337 (*1 *2 *1) (-12 (-4 *2 (-13 (-1069) (-34))) (-5 *1 (-1109 *2 *3)) (-4 *3 (-13 (-1069) (-34))))) (-1723 (*1 *2 *1) (-12 (-4 *2 (-13 (-1069) (-34))) (-5 *1 (-1109 *3 *2)) (-4 *3 (-13 (-1069) (-34))))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))))) (-2245 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2245 (*1 *1 *2 *3) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1608 *4))) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1109 *3 *4)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |val| *4) (|:| -1608 *5)))) (-4 *4 (-13 (-1069) (-34))) (-4 *5 (-13 (-1069) (-34))) (-5 *2 (-623 (-1109 *4 *5))) (-5 *1 (-1109 *4 *5)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *5)) (-4 *5 (-13 (-1069) (-34))) (-5 *2 (-623 (-1109 *3 *5))) (-5 *1 (-1109 *3 *5)) (-4 *3 (-13 (-1069) (-34))))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2522 (*1 *1 *1 *2) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2851 (*1 *1 *1 *2) (-12 (-5 *1 (-1109 *3 *2)) (-4 *3 (-13 (-1069) (-34))) (-4 *2 (-13 (-1069) (-34))))) (-3499 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2929 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1069) (-34))) (-4 *6 (-13 (-1069) (-34))) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6)))) (-4215 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1069) (-34))) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-13 (-1069) (-34)))))) -(-13 (-1069) (-10 -8 (-15 -2819 ($)) (-15 -4217 ((-112) $)) (-15 -1337 (|#1| $)) (-15 -1723 (|#2| $)) (-15 -1973 ((-112) $)) (-15 -2245 ($ |#1| |#2| (-112))) (-15 -2245 ($ |#1| |#2|)) (-15 -2245 ($ (-2 (|:| |val| |#1|) (|:| -1608 |#2|)))) (-15 -2245 ((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|))))) (-15 -2245 ((-623 $) |#1| (-623 |#2|))) (-15 -2435 ($ $)) (-15 -2522 ($ $ |#1|)) (-15 -2851 ($ $ |#2|)) (-15 -3499 ($ $ (-112))) (-15 -1598 ($ $)) (-15 -2929 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4215 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2221 (((-112) $ $) NIL (|has| (-1109 |#1| |#2|) (-1069)))) (-1337 (((-1109 |#1| |#2|) $) 25)) (-3601 (($ $) 76)) (-2212 (((-112) (-1109 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2881 (($ $ $ (-623 (-1109 |#1| |#2|))) 90) (($ $ $ (-623 (-1109 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3368 (((-112) $ (-749)) NIL)) (-1629 (((-1109 |#1| |#2|) $ (-1109 |#1| |#2|)) 43 (|has| $ (-6 -4345)))) (-2409 (((-1109 |#1| |#2|) $ "value" (-1109 |#1| |#2|)) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-3245 (((-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|))) $) 80)) (-2505 (($ (-1109 |#1| |#2|) $) 39)) (-1979 (($ (-1109 |#1| |#2|) $) 31)) (-2971 (((-623 (-1109 |#1| |#2|)) $) NIL (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 51)) (-3845 (((-112) (-1109 |#1| |#2|) $) 82)) (-3687 (((-112) $ $) NIL (|has| (-1109 |#1| |#2|) (-1069)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 (-1109 |#1| |#2|)) $) 55 (|has| $ (-6 -4344)))) (-3922 (((-112) (-1109 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-1109 |#1| |#2|) (-1069))))) (-3311 (($ (-1 (-1109 |#1| |#2|) (-1109 |#1| |#2|)) $) 47 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-1109 |#1| |#2|) (-1109 |#1| |#2|)) $) 46)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 (-1109 |#1| |#2|)) $) 53)) (-1515 (((-112) $) 42)) (-2369 (((-1127) $) NIL (|has| (-1109 |#1| |#2|) (-1069)))) (-3445 (((-1089) $) NIL (|has| (-1109 |#1| |#2|) (-1069)))) (-2135 (((-3 $ "failed") $) 75)) (-1410 (((-112) (-1 (-112) (-1109 |#1| |#2|)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-1109 |#1| |#2|)))) NIL (-12 (|has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|))) (|has| (-1109 |#1| |#2|) (-1069)))) (($ $ (-287 (-1109 |#1| |#2|))) NIL (-12 (|has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|))) (|has| (-1109 |#1| |#2|) (-1069)))) (($ $ (-1109 |#1| |#2|) (-1109 |#1| |#2|)) NIL (-12 (|has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|))) (|has| (-1109 |#1| |#2|) (-1069)))) (($ $ (-623 (-1109 |#1| |#2|)) (-623 (-1109 |#1| |#2|))) NIL (-12 (|has| (-1109 |#1| |#2|) (-302 (-1109 |#1| |#2|))) (|has| (-1109 |#1| |#2|) (-1069))))) (-3155 (((-112) $ $) 50)) (-4217 (((-112) $) 22)) (-2819 (($) 24)) (-2757 (((-1109 |#1| |#2|) $ "value") NIL)) (-1456 (((-550) $ $) NIL)) (-2320 (((-112) $) 44)) (-3457 (((-749) (-1 (-112) (-1109 |#1| |#2|)) $) NIL (|has| $ (-6 -4344))) (((-749) (-1109 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-1109 |#1| |#2|) (-1069))))) (-2435 (($ $) 49)) (-2245 (($ (-1109 |#1| |#2|)) 9) (($ |#1| |#2| (-623 $)) 12) (($ |#1| |#2| (-623 (-1109 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-623 |#2|)) 17)) (-2020 (((-623 |#2|) $) 81)) (-2233 (((-837) $) 73 (|has| (-1109 |#1| |#2|) (-595 (-837))))) (-4075 (((-623 $) $) 28)) (-1977 (((-112) $ $) NIL (|has| (-1109 |#1| |#2|) (-1069)))) (-3404 (((-112) (-1 (-112) (-1109 |#1| |#2|)) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 64 (|has| (-1109 |#1| |#2|) (-1069)))) (-3307 (((-749) $) 58 (|has| $ (-6 -4344))))) -(((-1110 |#1| |#2|) (-13 (-984 (-1109 |#1| |#2|)) (-10 -8 (-6 -4345) (-6 -4344) (-15 -2135 ((-3 $ "failed") $)) (-15 -3601 ($ $)) (-15 -2245 ($ (-1109 |#1| |#2|))) (-15 -2245 ($ |#1| |#2| (-623 $))) (-15 -2245 ($ |#1| |#2| (-623 (-1109 |#1| |#2|)))) (-15 -2245 ($ |#1| |#2| |#1| (-623 |#2|))) (-15 -2020 ((-623 |#2|) $)) (-15 -3245 ((-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|))) $)) (-15 -3845 ((-112) (-1109 |#1| |#2|) $)) (-15 -2212 ((-112) (-1109 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1979 ($ (-1109 |#1| |#2|) $)) (-15 -2505 ($ (-1109 |#1| |#2|) $)) (-15 -2881 ($ $ $ (-623 (-1109 |#1| |#2|)))) (-15 -2881 ($ $ $ (-623 (-1109 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1069) (-34)) (-13 (-1069) (-34))) (T -1110)) -((-2135 (*1 *1 *1) (|partial| -12 (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-3601 (*1 *1 *1) (-12 (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4)))) (-2245 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-623 (-1110 *2 *3))) (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) (-2245 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-623 (-1109 *2 *3))) (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))) (-5 *1 (-1110 *2 *3)))) (-2245 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-1069) (-34))) (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) (-5 *1 (-1110 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))))) (-3845 (*1 *2 *3 *1) (-12 (-5 *3 (-1109 *4 *5)) (-4 *4 (-13 (-1069) (-34))) (-4 *5 (-13 (-1069) (-34))) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5)))) (-2212 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1109 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1069) (-34))) (-4 *6 (-13 (-1069) (-34))) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6)))) (-1979 (*1 *1 *2 *1) (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4)))) (-2881 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-623 (-1109 *3 *4))) (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4)))) (-2881 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1109 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1069) (-34))) (-4 *5 (-13 (-1069) (-34))) (-5 *1 (-1110 *4 *5))))) -(-13 (-984 (-1109 |#1| |#2|)) (-10 -8 (-6 -4345) (-6 -4344) (-15 -2135 ((-3 $ "failed") $)) (-15 -3601 ($ $)) (-15 -2245 ($ (-1109 |#1| |#2|))) (-15 -2245 ($ |#1| |#2| (-623 $))) (-15 -2245 ($ |#1| |#2| (-623 (-1109 |#1| |#2|)))) (-15 -2245 ($ |#1| |#2| |#1| (-623 |#2|))) (-15 -2020 ((-623 |#2|) $)) (-15 -3245 ((-623 (-2 (|:| |val| |#1|) (|:| -1608 |#2|))) $)) (-15 -3845 ((-112) (-1109 |#1| |#2|) $)) (-15 -2212 ((-112) (-1109 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1979 ($ (-1109 |#1| |#2|) $)) (-15 -2505 ($ (-1109 |#1| |#2|) $)) (-15 -2881 ($ $ $ (-623 (-1109 |#1| |#2|)))) (-15 -2881 ($ $ $ (-623 (-1109 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3569 (($ $) NIL)) (-2223 ((|#2| $) NIL)) (-3684 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-1911 (($ (-667 |#2|)) 50)) (-2644 (((-112) $) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-3955 (($ |#2|) 10)) (-2991 (($) NIL T CONST)) (-4257 (($ $) 63 (|has| |#2| (-300)))) (-1297 (((-234 |#1| |#2|) $ (-550)) 36)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) ((|#2| $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) 77)) (-3398 (((-749) $) 65 (|has| |#2| (-542)))) (-3263 ((|#2| $ (-550) (-550)) NIL)) (-2971 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-2419 (((-112) $) NIL)) (-1436 (((-749) $) 67 (|has| |#2| (-542)))) (-3113 (((-623 (-234 |#1| |#2|)) $) 71 (|has| |#2| (-542)))) (-2050 (((-749) $) NIL)) (-3375 (($ |#2|) 20)) (-2063 (((-749) $) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-1517 ((|#2| $) 61 (|has| |#2| (-6 (-4346 "*"))))) (-3397 (((-550) $) NIL)) (-2415 (((-550) $) NIL)) (-2876 (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1630 (((-550) $) NIL)) (-2964 (((-550) $) NIL)) (-4224 (($ (-623 (-623 |#2|))) 31)) (-3311 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3380 (((-623 (-623 |#2|)) $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3765 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3445 (((-1089) $) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-1410 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) NIL)) (-2798 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2761 ((|#2| $) NIL)) (-4000 (($ (-623 |#2|)) 44)) (-2418 (((-112) $) NIL)) (-2407 (((-234 |#1| |#2|) $) NIL)) (-4270 ((|#2| $) 59 (|has| |#2| (-6 (-4346 "*"))))) (-3457 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2435 (($ $) NIL)) (-2451 (((-526) $) 86 (|has| |#2| (-596 (-526))))) (-1457 (((-234 |#1| |#2|) $ (-550)) 38)) (-2233 (((-837) $) 41) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1012 (-400 (-550))))) (($ |#2|) NIL) (((-667 |#2|) $) 46)) (-3091 (((-749)) 18)) (-3404 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-3695 (((-112) $) NIL)) (-2688 (($) 12 T CONST)) (-2700 (($) 15 T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) 57) (($ $ (-550)) 76 (|has| |#2| (-356)))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) 53) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) 55)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1111 |#1| |#2|) (-13 (-1092 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3375 ($ |#2|)) (-15 -3569 ($ $)) (-15 -1911 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4346 "*"))) (-6 -4333) |%noBranch|) (IF (|has| |#2| (-6 (-4346 "*"))) (IF (|has| |#2| (-6 -4341)) (-6 -4341) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) (-749) (-1021)) (T -1111)) -((-3375 (*1 *1 *2) (-12 (-5 *1 (-1111 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1021)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1021)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-667 *4)) (-4 *4 (-1021)) (-5 *1 (-1111 *3 *4)) (-14 *3 (-749))))) -(-13 (-1092 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3375 ($ |#2|)) (-15 -3569 ($ $)) (-15 -1911 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4346 "*"))) (-6 -4333) |%noBranch|) (IF (|has| |#2| (-6 (-4346 "*"))) (IF (|has| |#2| (-6 -4341)) (-6 -4341) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) -((-3567 (($ $) 19)) (-1790 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-1584 (((-112) $ $) 24)) (-1898 (($ $) 17)) (-2757 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) NIL) (($ $ (-1195 (-550))) NIL) (($ $ $) 29)) (-2233 (($ (-142)) 27) (((-837) $) NIL))) -(((-1112 |#1|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2757 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1| (-139))) (-15 -1790 (|#1| |#1| (-142))) (-15 -2233 (|#1| (-142))) (-15 -1584 ((-112) |#1| |#1|)) (-15 -3567 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2757 ((-142) |#1| (-550))) (-15 -2757 ((-142) |#1| (-550) (-142)))) (-1113)) (T -1112)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2757 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1| (-139))) (-15 -1790 (|#1| |#1| (-142))) (-15 -2233 (|#1| (-142))) (-15 -1584 ((-112) |#1| |#1|)) (-15 -3567 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2757 ((-142) |#1| (-550))) (-15 -2757 ((-142) |#1| (-550) (-142)))) -((-2221 (((-112) $ $) 19 (|has| (-142) (-1069)))) (-1539 (($ $) 120)) (-3567 (($ $) 121)) (-1790 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1560 (((-112) $ $) 118)) (-2763 (((-112) $ $ (-550)) 117)) (-2590 (((-623 $) $ (-142)) 110) (((-623 $) $ (-139)) 109)) (-1837 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-2734 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 (((-142) $ (-550) (-142)) 52 (|has| $ (-6 -4345))) (((-142) $ (-1195 (-550)) (-142)) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3787 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-1699 (($ $ (-1195 (-550)) $) 114)) (-2708 (($ $) 78 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ (-142) $) 77 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4344)))) (-2924 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4344)))) (-3317 (((-142) $ (-550) (-142)) 53 (|has| $ (-6 -4345)))) (-3263 (((-142) $ (-550)) 51)) (-1584 (((-112) $ $) 119)) (-3088 (((-550) (-1 (-112) (-142)) $) 97) (((-550) (-142) $) 96 (|has| (-142) (-1069))) (((-550) (-142) $ (-550)) 95 (|has| (-142) (-1069))) (((-550) $ $ (-550)) 113) (((-550) (-139) $ (-550)) 112)) (-2971 (((-623 (-142)) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) (-142)) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| (-142) (-825)))) (-2441 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2876 (((-623 (-142)) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| (-142) (-825)))) (-2462 (((-112) $ $ (-142)) 115)) (-2034 (((-749) $ $ (-142)) 116)) (-3311 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-2111 (($ $) 122)) (-1898 (($ $) 123)) (-1700 (((-112) $ (-749)) 10)) (-3802 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2369 (((-1127) $) 22 (|has| (-142) (-1069)))) (-1476 (($ (-142) $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| (-142) (-1069)))) (-3858 (((-142) $) 42 (|has| (-550) (-825)))) (-1614 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2491 (($ $ (-142)) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-623 (-142)) (-623 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1375 (((-623 (-142)) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 (((-142) $ (-550) (-142)) 50) (((-142) $ (-550)) 49) (($ $ (-1195 (-550))) 63) (($ $ $) 102)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4344))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| (-142) (-596 (-526))))) (-2245 (($ (-623 (-142))) 70)) (-4006 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (($ (-142)) 111) (((-837) $) 18 (|has| (-142) (-595 (-837))))) (-3404 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2302 (((-112) $ $) 83 (|has| (-142) (-825)))) (-2264 (((-112) $ $) 20 (|has| (-142) (-1069)))) (-2313 (((-112) $ $) 85 (|has| (-142) (-825)))) (-2290 (((-112) $ $) 82 (|has| (-142) (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1113) (-138)) (T -1113)) -((-1898 (*1 *1 *1) (-4 *1 (-1113))) (-2111 (*1 *1 *1) (-4 *1 (-1113))) (-3567 (*1 *1 *1) (-4 *1 (-1113))) (-1539 (*1 *1 *1) (-4 *1 (-1113))) (-1584 (*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112)))) (-1560 (*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112)))) (-2763 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-550)) (-5 *2 (-112)))) (-2034 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-142)) (-5 *2 (-749)))) (-2462 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1699 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1195 (-550))))) (-3088 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-550)))) (-3088 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-550)) (-5 *3 (-139)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1113)))) (-2590 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-623 *1)) (-4 *1 (-1113)))) (-2590 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-623 *1)) (-4 *1 (-1113)))) (-1790 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142)))) (-1790 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) (-3802 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142)))) (-3802 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) (-3787 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142)))) (-3787 (*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) (-2757 (*1 *1 *1 *1) (-4 *1 (-1113)))) -(-13 (-19 (-142)) (-10 -8 (-15 -1898 ($ $)) (-15 -2111 ($ $)) (-15 -3567 ($ $)) (-15 -1539 ($ $)) (-15 -1584 ((-112) $ $)) (-15 -1560 ((-112) $ $)) (-15 -2763 ((-112) $ $ (-550))) (-15 -2034 ((-749) $ $ (-142))) (-15 -2462 ((-112) $ $ (-142))) (-15 -1699 ($ $ (-1195 (-550)) $)) (-15 -3088 ((-550) $ $ (-550))) (-15 -3088 ((-550) (-139) $ (-550))) (-15 -2233 ($ (-142))) (-15 -2590 ((-623 $) $ (-142))) (-15 -2590 ((-623 $) $ (-139))) (-15 -1790 ($ $ (-142))) (-15 -1790 ($ $ (-139))) (-15 -3802 ($ $ (-142))) (-15 -3802 ($ $ (-139))) (-15 -3787 ($ $ (-142))) (-15 -3787 ($ $ (-139))) (-15 -2757 ($ $ $)))) -(((-34) . T) ((-101) -1489 (|has| (-142) (-1069)) (|has| (-142) (-825))) ((-595 (-837)) -1489 (|has| (-142) (-1069)) (|has| (-142) (-825)) (|has| (-142) (-595 (-837)))) ((-149 #0=(-142)) . T) ((-596 (-526)) |has| (-142) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))) ((-629 #0#) . T) ((-19 #0#) . T) ((-825) |has| (-142) (-825)) ((-1069) -1489 (|has| (-142) (-1069)) (|has| (-142) (-825))) ((-1182) . T)) -((-2747 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749)) 94)) (-4219 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749)) 54)) (-4275 (((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)) 85)) (-2328 (((-749) (-623 |#4|) (-623 |#5|)) 27)) (-1535 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749)) 56) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112)) 58)) (-1301 (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112)) 77)) (-2451 (((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) 80)) (-4030 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|) 53)) (-3642 (((-749) (-623 |#4|) (-623 |#5|)) 19))) -(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3642 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -2328 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4030 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2747 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749))) (-15 -2451 ((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -4275 ((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3| |#4|)) (T -1114)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) (-5 *4 (-749)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1233)) (-5 *1 (-1114 *5 *6 *7 *8 *9)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1078 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1127)) (-5 *1 (-1114 *4 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-623 *11)) (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -1608 *11)))))) (-5 *6 (-749)) (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -1608 *11)))) (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1035 *7 *8 *9)) (-4 *11 (-1078 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1114 *7 *8 *9 *10 *11)))) (-1301 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1114 *5 *6 *7 *8 *9)))) (-1301 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1114 *5 *6 *7 *8 *9)))) (-1535 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1078 *6 *7 *8 *3)))) (-1535 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1035 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *7 *8 *9 *3 *4)) (-4 *4 (-1078 *7 *8 *9 *3)))) (-4219 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1035 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1078 *6 *7 *8 *3)))) (-4030 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1114 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1114 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3642 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -2328 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4030 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -4219 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5| (-749))) (-15 -1535 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) |#4| |#5|)) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1301 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2747 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))))) (-749))) (-15 -2451 ((-1127) (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|)))) (-15 -4275 ((-1233) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -1608 |#5|))) (-749)))) -((-2221 (((-112) $ $) NIL)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) NIL)) (-3186 (((-623 $) (-623 |#4|)) 110) (((-623 $) (-623 |#4|) (-112)) 111) (((-623 $) (-623 |#4|) (-112) (-112)) 109) (((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112)) 112)) (-1516 (((-623 |#3|) $) NIL)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3624 ((|#4| |#4| $) NIL)) (-2318 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| $) 84)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 62)) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) 26 (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3694 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2202 (($ (-623 |#4|)) NIL)) (-3870 (((-3 $ "failed") $) 39)) (-2962 ((|#4| |#4| $) 65)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1979 (($ |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) NIL)) (-2515 (((-112) |#4| $) NIL)) (-3350 (((-112) |#4| $) NIL)) (-3201 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2372 (((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112)) 124)) (-2971 (((-623 |#4|) $) 16 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1765 ((|#3| $) 33)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#4|) $) 17 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-3311 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 21)) (-3704 (((-623 |#3|) $) NIL)) (-4159 (((-112) |#3| $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-3352 (((-3 |#4| (-623 $)) |#4| |#4| $) NIL)) (-1623 (((-623 (-2 (|:| |val| |#4|) (|:| -1608 $))) |#4| |#4| $) 103)) (-2001 (((-3 |#4| "failed") $) 37)) (-3087 (((-623 $) |#4| $) 88)) (-1785 (((-3 (-112) (-623 $)) |#4| $) NIL)) (-2101 (((-623 (-2 (|:| |val| (-112)) (|:| -1608 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-4072 (((-623 $) |#4| $) 107) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 108) (((-623 $) |#4| (-623 $)) NIL)) (-1939 (((-623 $) (-623 |#4|) (-112) (-112) (-112)) 119)) (-3552 (($ |#4| $) 75) (($ (-623 |#4|) $) 76) (((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-3896 (((-623 |#4|) $) NIL)) (-3705 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2474 ((|#4| |#4| $) NIL)) (-3098 (((-112) $ $) NIL)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3959 ((|#4| |#4| $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-3 |#4| "failed") $) 35)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3747 (((-3 $ "failed") $ |#4|) 48)) (-4268 (($ $ |#4|) NIL) (((-623 $) |#4| $) 90) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 86)) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 15)) (-2819 (($) 13)) (-3661 (((-749) $) NIL)) (-3457 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) 12)) (-2451 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 20)) (-3537 (($ $ |#3|) 42)) (-1446 (($ $ |#3|) 44)) (-3236 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-2233 (((-837) $) 31) (((-623 |#4|) $) 40)) (-4265 (((-749) $) NIL (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3176 (((-623 $) |#4| $) 54) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) NIL)) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) NIL)) (-2993 (((-112) |#4| $) NIL)) (-3636 (((-112) |#3| $) 61)) (-2264 (((-112) $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1115 |#1| |#2| |#3| |#4|) (-13 (-1078 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3552 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -1939 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -2372 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -1115)) -((-3552 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1115 *5 *6 *7 *3))) (-5 *1 (-1115 *5 *6 *7 *3)) (-4 *3 (-1035 *5 *6 *7)))) (-3186 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8)))) (-1939 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8)))) (-2372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-623 *8)) (|:| |towers| (-623 (-1115 *5 *6 *7 *8))))) (-5 *1 (-1115 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) -(-13 (-1078 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3552 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -3186 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -1939 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -2372 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3940 ((|#1| $) 34)) (-2239 (($ (-623 |#1|)) 39)) (-3368 (((-112) $ (-749)) NIL)) (-2991 (($) NIL T CONST)) (-3219 ((|#1| |#1| $) 36)) (-3540 ((|#1| $) 32)) (-2971 (((-623 |#1|) $) 18 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 22)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1696 ((|#1| $) 35)) (-1715 (($ |#1| $) 37)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3576 ((|#1| $) 33)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 31)) (-2819 (($) 38)) (-3072 (((-749) $) 29)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 27)) (-2233 (((-837) $) 14 (|has| |#1| (-595 (-837))))) (-4017 (($ (-623 |#1|)) NIL)) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 17 (|has| |#1| (-1069)))) (-3307 (((-749) $) 30 (|has| $ (-6 -4344))))) -(((-1116 |#1|) (-13 (-1090 |#1|) (-10 -8 (-15 -2239 ($ (-623 |#1|))))) (-1182)) (T -1116)) -((-2239 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1116 *3))))) -(-13 (-1090 |#1|) (-10 -8 (-15 -2239 ($ (-623 |#1|))))) -((-2409 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1195 (-550)) |#2|) 44) ((|#2| $ (-550) |#2|) 41)) (-2950 (((-112) $) 12)) (-3311 (($ (-1 |#2| |#2|) $) 39)) (-3858 ((|#2| $) NIL) (($ $ (-749)) 17)) (-2491 (($ $ |#2|) 40)) (-3164 (((-112) $) 11)) (-2757 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1195 (-550))) 31) ((|#2| $ (-550)) 23) ((|#2| $ (-550) |#2|) NIL)) (-2037 (($ $ $) 47) (($ $ |#2|) NIL)) (-4006 (($ $ $) 33) (($ |#2| $) NIL) (($ (-623 $)) 36) (($ $ |#2|) NIL))) -(((-1117 |#1| |#2|) (-10 -8 (-15 -2950 ((-112) |#1|)) (-15 -3164 ((-112) |#1|)) (-15 -2409 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -2491 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| (-623 |#1|))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2409 (|#2| |#1| (-1195 (-550)) |#2|)) (-15 -2409 (|#2| |#1| "last" |#2|)) (-15 -2409 (|#1| |#1| "rest" |#1|)) (-15 -2409 (|#2| |#1| "first" |#2|)) (-15 -2037 (|#1| |#1| |#2|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2757 (|#2| |#1| "last")) (-15 -2757 (|#1| |#1| "rest")) (-15 -3858 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "first")) (-15 -3858 (|#2| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -2757 (|#2| |#1| "value")) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|))) (-1118 |#2|) (-1182)) (T -1117)) -NIL -(-10 -8 (-15 -2950 ((-112) |#1|)) (-15 -3164 ((-112) |#1|)) (-15 -2409 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550) |#2|)) (-15 -2757 (|#2| |#1| (-550))) (-15 -2491 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| (-623 |#1|))) (-15 -2757 (|#1| |#1| (-1195 (-550)))) (-15 -2409 (|#2| |#1| (-1195 (-550)) |#2|)) (-15 -2409 (|#2| |#1| "last" |#2|)) (-15 -2409 (|#1| |#1| "rest" |#1|)) (-15 -2409 (|#2| |#1| "first" |#2|)) (-15 -2037 (|#1| |#1| |#2|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2757 (|#2| |#1| "last")) (-15 -2757 (|#1| |#1| "rest")) (-15 -3858 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "first")) (-15 -3858 (|#2| |#1|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -2757 (|#2| |#1| "value")) (-15 -3311 (|#1| (-1 |#2| |#2|) |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-2422 ((|#1| $) 65)) (-2470 (($ $) 67)) (-3037 (((-1233) $ (-550) (-550)) 97 (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 52 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-2872 (($ $ $) 56 (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) 54 (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 58 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4345))) (($ $ "rest" $) 55 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 117 (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4344)))) (-2408 ((|#1| $) 66)) (-2991 (($) 7 T CONST)) (-3870 (($ $) 73) (($ $ (-749)) 71)) (-2708 (($ $) 99 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4344))) (($ |#1| $) 100 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3317 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 87)) (-2950 (((-112) $) 83)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) 108)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 95 (|has| (-550) (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 94 (|has| (-550) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-2001 ((|#1| $) 70) (($ $ (-749)) 68)) (-1476 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-3611 (((-623 (-550)) $) 92)) (-3166 (((-112) (-550) $) 91)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 76) (($ $ (-749)) 74)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2491 (($ $ |#1|) 96 (|has| $ (-6 -4345)))) (-3164 (((-112) $) 84)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 90)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1195 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-1456 (((-550) $ $) 44)) (-1512 (($ $ (-1195 (-550))) 114) (($ $ (-550)) 113)) (-2320 (((-112) $) 46)) (-1662 (($ $) 62)) (-3709 (($ $) 59 (|has| $ (-6 -4345)))) (-3300 (((-749) $) 63)) (-3813 (($ $) 64)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2451 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 107)) (-2037 (($ $ $) 61 (|has| $ (-6 -4345))) (($ $ |#1|) 60 (|has| $ (-6 -4345)))) (-4006 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1118 |#1|) (-138) (-1182)) (T -1118)) -((-3164 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(-13 (-1216 |t#1|) (-629 |t#1|) (-10 -8 (-15 -3164 ((-112) $)) (-15 -2950 ((-112) $)))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T) ((-1216 |#1|) . T)) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) NIL)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) NIL)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1119 |#1| |#2| |#3|) (-1158 |#1| |#2|) (-1069) (-1069) |#2|) (T -1119)) -NIL -(-1158 |#1| |#2|) -((-2221 (((-112) $ $) 7)) (-1620 (((-3 $ "failed") $) 13)) (-2369 (((-1127) $) 9)) (-2463 (($) 14 T CONST)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11)) (-2264 (((-112) $ $) 6))) -(((-1120) (-138)) (T -1120)) -((-2463 (*1 *1) (-4 *1 (-1120))) (-1620 (*1 *1 *1) (|partial| -4 *1 (-1120)))) -(-13 (-1069) (-10 -8 (-15 -2463 ($) -4165) (-15 -1620 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-837)) . T) ((-1069) . T)) -((-3469 (((-1125 |#1|) (-1125 |#1|)) 17)) (-2588 (((-1125 |#1|) (-1125 |#1|)) 13)) (-4099 (((-1125 |#1|) (-1125 |#1|) (-550) (-550)) 20)) (-4279 (((-1125 |#1|) (-1125 |#1|)) 15))) -(((-1121 |#1|) (-10 -7 (-15 -2588 ((-1125 |#1|) (-1125 |#1|))) (-15 -4279 ((-1125 |#1|) (-1125 |#1|))) (-15 -3469 ((-1125 |#1|) (-1125 |#1|))) (-15 -4099 ((-1125 |#1|) (-1125 |#1|) (-550) (-550)))) (-13 (-542) (-145))) (T -1121)) -((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1121 *4)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1121 *3)))) (-4279 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1121 *3)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1121 *3))))) -(-10 -7 (-15 -2588 ((-1125 |#1|) (-1125 |#1|))) (-15 -4279 ((-1125 |#1|) (-1125 |#1|))) (-15 -3469 ((-1125 |#1|) (-1125 |#1|))) (-15 -4099 ((-1125 |#1|) (-1125 |#1|) (-550) (-550)))) -((-4006 (((-1125 |#1|) (-1125 (-1125 |#1|))) 15))) -(((-1122 |#1|) (-10 -7 (-15 -4006 ((-1125 |#1|) (-1125 (-1125 |#1|))))) (-1182)) (T -1122)) -((-4006 (*1 *2 *3) (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-1182))))) -(-10 -7 (-15 -4006 ((-1125 |#1|) (-1125 (-1125 |#1|))))) -((-2304 (((-1125 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|)) 25)) (-2924 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|)) 26)) (-2392 (((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 16))) -(((-1123 |#1| |#2|) (-10 -7 (-15 -2392 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (-15 -2304 ((-1125 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|))) (-15 -2924 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|)))) (-1182) (-1182)) (T -1123)) -((-2924 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1125 *5)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-1123 *5 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1125 *6)) (-4 *6 (-1182)) (-4 *3 (-1182)) (-5 *2 (-1125 *3)) (-5 *1 (-1123 *6 *3)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1125 *6)) (-5 *1 (-1123 *5 *6))))) -(-10 -7 (-15 -2392 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (-15 -2304 ((-1125 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|))) (-15 -2924 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1125 |#1|)))) -((-2392 (((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-1125 |#2|)) 21))) -(((-1124 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-1125 |#2|)))) (-1182) (-1182) (-1182)) (T -1124)) -((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1125 *6)) (-5 *5 (-1125 *7)) (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) (-5 *1 (-1124 *6 *7 *8))))) -(-10 -7 (-15 -2392 ((-1125 |#3|) (-1 |#3| |#1| |#2|) (-1125 |#1|) (-1125 |#2|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) NIL)) (-2422 ((|#1| $) NIL)) (-2470 (($ $) 52)) (-3037 (((-1233) $ (-550) (-550)) 77 (|has| $ (-6 -4345)))) (-1687 (($ $ (-550)) 111 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-3330 (((-837) $) 41 (|has| |#1| (-1069)))) (-2553 (((-112)) 40 (|has| |#1| (-1069)))) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4345)))) (-2872 (($ $ $) 99 (|has| $ (-6 -4345))) (($ $ (-550) $) 123)) (-3737 ((|#1| $ |#1|) 108 (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 103 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4345))) (($ $ "rest" $) 107 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 90 (|has| $ (-6 -4345))) ((|#1| $ (-550) |#1|) 56 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 59)) (-2408 ((|#1| $) NIL)) (-2991 (($) NIL T CONST)) (-4129 (($ $) 14)) (-3870 (($ $) 29) (($ $ (-749)) 89)) (-3950 (((-112) (-623 |#1|) $) 117 (|has| |#1| (-1069)))) (-3905 (($ (-623 |#1|)) 113)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) 58)) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-2950 (((-112) $) NIL)) (-2971 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-2346 (((-1233) (-550) $) 122 (|has| |#1| (-1069)))) (-2602 (((-749) $) 119)) (-4079 (((-623 $) $) NIL)) (-3687 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-1700 (((-112) $ (-749)) NIL)) (-2951 (((-623 |#1|) $) NIL)) (-1515 (((-112) $) NIL)) (-4264 (($ $) 91)) (-2850 (((-112) $) 13)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-2001 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1476 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) 75)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2029 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-1376 ((|#1| $) 10)) (-3858 ((|#1| $) 28) (($ $ (-749)) 50)) (-2194 (((-2 (|:| |cycle?| (-112)) (|:| -3578 (-749)) (|:| |period| (-749))) (-749) $) 25)) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2073 (($ (-1 (-112) |#1|) $) 127)) (-2086 (($ (-1 (-112) |#1|) $) 128)) (-2491 (($ $ |#1|) 69 (|has| $ (-6 -4345)))) (-4268 (($ $ (-550)) 32)) (-3164 (((-112) $) 73)) (-2333 (((-112) $) 12)) (-1524 (((-112) $) 118)) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 20)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) 15)) (-2819 (($) 45)) (-2757 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1195 (-550))) NIL) ((|#1| $ (-550)) 55) ((|#1| $ (-550) |#1|) NIL)) (-1456 (((-550) $ $) 49)) (-1512 (($ $ (-1195 (-550))) NIL) (($ $ (-550)) NIL)) (-2146 (($ (-1 $)) 48)) (-2320 (((-112) $) 70)) (-1662 (($ $) 71)) (-3709 (($ $) 100 (|has| $ (-6 -4345)))) (-3300 (((-749) $) NIL)) (-3813 (($ $) NIL)) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 44)) (-2451 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 54)) (-2132 (($ |#1| $) 98)) (-2037 (($ $ $) 101 (|has| $ (-6 -4345))) (($ $ |#1|) 102 (|has| $ (-6 -4345)))) (-4006 (($ $ $) 79) (($ |#1| $) 46) (($ (-623 $)) 84) (($ $ |#1|) 78)) (-4012 (($ $) 51)) (-2233 (($ (-623 |#1|)) 112) (((-837) $) 42 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) NIL)) (-1977 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 115 (|has| |#1| (-1069)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1125 |#1|) (-13 (-652 |#1|) (-10 -8 (-6 -4345) (-15 -2233 ($ (-623 |#1|))) (-15 -3905 ($ (-623 |#1|))) (IF (|has| |#1| (-1069)) (-15 -3950 ((-112) (-623 |#1|) $)) |%noBranch|) (-15 -2194 ((-2 (|:| |cycle?| (-112)) (|:| -3578 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -2146 ($ (-1 $))) (-15 -2132 ($ |#1| $)) (IF (|has| |#1| (-1069)) (PROGN (-15 -2346 ((-1233) (-550) $)) (-15 -3330 ((-837) $)) (-15 -2553 ((-112)))) |%noBranch|) (-15 -2872 ($ $ (-550) $)) (-15 -2029 ($ (-1 |#1|))) (-15 -2029 ($ (-1 |#1| |#1|) |#1|)) (-15 -2073 ($ (-1 (-112) |#1|) $)) (-15 -2086 ($ (-1 (-112) |#1|) $)))) (-1182)) (T -1125)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) (-3905 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) (-3950 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-4 *4 (-1182)) (-5 *2 (-112)) (-5 *1 (-1125 *4)))) (-2194 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3578 (-749)) (|:| |period| (-749)))) (-5 *1 (-1125 *4)) (-4 *4 (-1182)) (-5 *3 (-749)))) (-2146 (*1 *1 *2) (-12 (-5 *2 (-1 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1182)))) (-2132 (*1 *1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1182)))) (-2346 (*1 *2 *3 *1) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1125 *4)) (-4 *4 (-1069)) (-4 *4 (-1182)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1125 *3)) (-4 *3 (-1069)) (-4 *3 (-1182)))) (-2553 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3)) (-4 *3 (-1069)) (-4 *3 (-1182)))) (-2872 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1125 *3)) (-4 *3 (-1182)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) (-2029 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) (-2073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) (-2086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3))))) -(-13 (-652 |#1|) (-10 -8 (-6 -4345) (-15 -2233 ($ (-623 |#1|))) (-15 -3905 ($ (-623 |#1|))) (IF (|has| |#1| (-1069)) (-15 -3950 ((-112) (-623 |#1|) $)) |%noBranch|) (-15 -2194 ((-2 (|:| |cycle?| (-112)) (|:| -3578 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -2146 ($ (-1 $))) (-15 -2132 ($ |#1| $)) (IF (|has| |#1| (-1069)) (PROGN (-15 -2346 ((-1233) (-550) $)) (-15 -3330 ((-837) $)) (-15 -2553 ((-112)))) |%noBranch|) (-15 -2872 ($ $ (-550) $)) (-15 -2029 ($ (-1 |#1|))) (-15 -2029 ($ (-1 |#1| |#1|) |#1|)) (-15 -2073 ($ (-1 (-112) |#1|) $)) (-15 -2086 ($ (-1 (-112) |#1|) $)))) -((-2221 (((-112) $ $) 19)) (-1539 (($ $) 120)) (-3567 (($ $) 121)) (-1790 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1560 (((-112) $ $) 118)) (-2763 (((-112) $ $ (-550)) 117)) (-1755 (($ (-550)) 127)) (-2590 (((-623 $) $ (-142)) 110) (((-623 $) $ (-139)) 109)) (-1837 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-2734 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 (((-142) $ (-550) (-142)) 52 (|has| $ (-6 -4345))) (((-142) $ (-1195 (-550)) (-142)) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3787 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-1699 (($ $ (-1195 (-550)) $) 114)) (-2708 (($ $) 78 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ (-142) $) 77 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4344)))) (-2924 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4344)))) (-3317 (((-142) $ (-550) (-142)) 53 (|has| $ (-6 -4345)))) (-3263 (((-142) $ (-550)) 51)) (-1584 (((-112) $ $) 119)) (-3088 (((-550) (-1 (-112) (-142)) $) 97) (((-550) (-142) $) 96 (|has| (-142) (-1069))) (((-550) (-142) $ (-550)) 95 (|has| (-142) (-1069))) (((-550) $ $ (-550)) 113) (((-550) (-139) $ (-550)) 112)) (-2971 (((-623 (-142)) $) 30 (|has| $ (-6 -4344)))) (-3375 (($ (-749) (-142)) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| (-142) (-825)))) (-2441 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2876 (((-623 (-142)) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| (-142) (-825)))) (-2462 (((-112) $ $ (-142)) 115)) (-2034 (((-749) $ $ (-142)) 116)) (-3311 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-2111 (($ $) 122)) (-1898 (($ $) 123)) (-1700 (((-112) $ (-749)) 10)) (-3802 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2369 (((-1127) $) 22)) (-1476 (($ (-142) $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21)) (-3858 (((-142) $) 42 (|has| (-550) (-825)))) (-1614 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2491 (($ $ (-142)) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-623 (-142)) (-623 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1375 (((-623 (-142)) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 (((-142) $ (-550) (-142)) 50) (((-142) $ (-550)) 49) (($ $ (-1195 (-550))) 63) (($ $ $) 102)) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-3457 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4344))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| (-142) (-596 (-526))))) (-2245 (($ (-623 (-142))) 70)) (-4006 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (($ (-142)) 111) (((-837) $) 18)) (-3404 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4344)))) (-3145 (((-1127) $) 131) (((-1127) $ (-112)) 130) (((-1233) (-800) $) 129) (((-1233) (-800) $ (-112)) 128)) (-2324 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2302 (((-112) $ $) 83 (|has| (-142) (-825)))) (-2264 (((-112) $ $) 20)) (-2313 (((-112) $ $) 85 (|has| (-142) (-825)))) (-2290 (((-112) $ $) 82 (|has| (-142) (-825)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1126) (-138)) (T -1126)) -((-1755 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1126))))) -(-13 (-1113) (-1069) (-806) (-10 -8 (-15 -1755 ($ (-550))))) -(((-34) . T) ((-101) . T) ((-595 (-837)) . T) ((-149 #0=(-142)) . T) ((-596 (-526)) |has| (-142) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))) ((-629 #0#) . T) ((-19 #0#) . T) ((-806) . T) ((-825) |has| (-142) (-825)) ((-1069) . T) ((-1113) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-1539 (($ $) NIL)) (-3567 (($ $) NIL)) (-1790 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1560 (((-112) $ $) NIL)) (-2763 (((-112) $ $ (-550)) NIL)) (-1755 (($ (-550)) 7)) (-2590 (((-623 $) $ (-142)) NIL) (((-623 $) $ (-139)) NIL)) (-1837 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-2734 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| (-142) (-825))))) (-1814 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4345))) (((-142) $ (-1195 (-550)) (-142)) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3787 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-1699 (($ $ (-1195 (-550)) $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1979 (($ (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4344))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4344)))) (-3317 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4345)))) (-3263 (((-142) $ (-550)) NIL)) (-1584 (((-112) $ $) NIL)) (-3088 (((-550) (-1 (-112) (-142)) $) NIL) (((-550) (-142) $) NIL (|has| (-142) (-1069))) (((-550) (-142) $ (-550)) NIL (|has| (-142) (-1069))) (((-550) $ $ (-550)) NIL) (((-550) (-139) $ (-550)) NIL)) (-2971 (((-623 (-142)) $) NIL (|has| $ (-6 -4344)))) (-3375 (($ (-749) (-142)) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| (-142) (-825)))) (-2441 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2876 (((-623 (-142)) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| (-142) (-825)))) (-2462 (((-112) $ $ (-142)) NIL)) (-2034 (((-749) $ $ (-142)) NIL)) (-3311 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-2111 (($ $) NIL)) (-1898 (($ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-3802 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2369 (((-1127) $) NIL)) (-1476 (($ (-142) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-142) $) NIL (|has| (-550) (-825)))) (-1614 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2491 (($ $ (-142)) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069)))) (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-1375 (((-623 (-142)) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) NIL) (($ $ (-1195 (-550))) NIL) (($ $ $) NIL)) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3457 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-142) (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-142) (-596 (-526))))) (-2245 (($ (-623 (-142))) NIL)) (-4006 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (($ (-142)) NIL) (((-837) $) NIL)) (-3404 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4344)))) (-3145 (((-1127) $) 18) (((-1127) $ (-112)) 20) (((-1233) (-800) $) 21) (((-1233) (-800) $ (-112)) 22)) (-2324 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2302 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2290 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1127) (-1126)) (T -1127)) -NIL -(-1126) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)) (|has| |#1| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-3037 (((-1233) $ (-1127) (-1127)) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-1127) |#1|) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#1| "failed") (-1127) $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#1| "failed") (-1127) $) NIL)) (-1979 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-1127) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-1127)) NIL)) (-2971 (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-1127) $) NIL (|has| (-1127) (-825)))) (-2876 (((-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-1127) $) NIL (|has| (-1127) (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)) (|has| |#1| (-1069))))) (-4212 (((-623 (-1127)) $) NIL)) (-3998 (((-112) (-1127) $) NIL)) (-1696 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-3611 (((-623 (-1127)) $) NIL)) (-3166 (((-112) (-1127) $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)) (|has| |#1| (-1069))))) (-3858 ((|#1| $) NIL (|has| (-1127) (-825)))) (-1614 (((-3 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) "failed") (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-302 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-1127)) NIL) ((|#1| $ (-1127) |#1|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-595 (-837))) (|has| |#1| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 (-1127)) (|:| -3859 |#1|)) (-1069)) (|has| |#1| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1128 |#1|) (-13 (-1158 (-1127) |#1|) (-10 -7 (-6 -4344))) (-1069)) (T -1128)) -NIL -(-13 (-1158 (-1127) |#1|) (-10 -7 (-6 -4344))) -((-4076 (((-1125 |#1|) (-1125 |#1|)) 77)) (-1537 (((-3 (-1125 |#1|) "failed") (-1125 |#1|)) 37)) (-2244 (((-1125 |#1|) (-400 (-550)) (-1125 |#1|)) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3867 (((-1125 |#1|) |#1| (-1125 |#1|)) 127 (|has| |#1| (-356)))) (-2620 (((-1125 |#1|) (-1125 |#1|)) 90)) (-3518 (((-1125 (-550)) (-550)) 57)) (-3388 (((-1125 |#1|) (-1125 (-1125 |#1|))) 109 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-1125 |#1|) (-550) (-550) (-1125 |#1|)) 95)) (-3227 (((-1125 |#1|) |#1| (-550)) 45)) (-1962 (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 60)) (-2973 (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 124 (|has| |#1| (-356)))) (-2641 (((-1125 |#1|) |#1| (-1 (-1125 |#1|))) 108 (|has| |#1| (-38 (-400 (-550)))))) (-2119 (((-1125 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1125 |#1|))) 125 (|has| |#1| (-356)))) (-3061 (((-1125 |#1|) (-1125 |#1|)) 89)) (-3957 (((-1125 |#1|) (-1125 |#1|)) 76)) (-2913 (((-1125 |#1|) (-550) (-550) (-1125 |#1|)) 96)) (-2149 (((-1125 |#1|) |#1| (-1125 |#1|)) 105 (|has| |#1| (-38 (-400 (-550)))))) (-1440 (((-1125 (-550)) (-550)) 56)) (-3489 (((-1125 |#1|) |#1|) 59)) (-3565 (((-1125 |#1|) (-1125 |#1|) (-550) (-550)) 92)) (-3156 (((-1125 |#1|) (-1 |#1| (-550)) (-1125 |#1|)) 66)) (-3409 (((-3 (-1125 |#1|) "failed") (-1125 |#1|) (-1125 |#1|)) 35)) (-3199 (((-1125 |#1|) (-1125 |#1|)) 91)) (-1553 (((-1125 |#1|) (-1125 |#1|) |#1|) 71)) (-4052 (((-1125 |#1|) (-1125 |#1|)) 62)) (-3904 (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 72)) (-2233 (((-1125 |#1|) |#1|) 67)) (-2754 (((-1125 |#1|) (-1125 (-1125 |#1|))) 82)) (-2382 (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 36)) (-2370 (((-1125 |#1|) (-1125 |#1|)) 21) (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 23)) (-2358 (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 17)) (* (((-1125 |#1|) (-1125 |#1|) |#1|) 29) (((-1125 |#1|) |#1| (-1125 |#1|)) 26) (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 27))) -(((-1129 |#1|) (-10 -7 (-15 -2358 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2370 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2370 ((-1125 |#1|) (-1125 |#1|))) (-15 * ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 * ((-1125 |#1|) |#1| (-1125 |#1|))) (-15 * ((-1125 |#1|) (-1125 |#1|) |#1|)) (-15 -3409 ((-3 (-1125 |#1|) "failed") (-1125 |#1|) (-1125 |#1|))) (-15 -2382 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -1537 ((-3 (-1125 |#1|) "failed") (-1125 |#1|))) (-15 -3227 ((-1125 |#1|) |#1| (-550))) (-15 -1440 ((-1125 (-550)) (-550))) (-15 -3518 ((-1125 (-550)) (-550))) (-15 -3489 ((-1125 |#1|) |#1|)) (-15 -1962 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -4052 ((-1125 |#1|) (-1125 |#1|))) (-15 -3156 ((-1125 |#1|) (-1 |#1| (-550)) (-1125 |#1|))) (-15 -2233 ((-1125 |#1|) |#1|)) (-15 -1553 ((-1125 |#1|) (-1125 |#1|) |#1|)) (-15 -3904 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -3957 ((-1125 |#1|) (-1125 |#1|))) (-15 -4076 ((-1125 |#1|) (-1125 |#1|))) (-15 -2754 ((-1125 |#1|) (-1125 (-1125 |#1|)))) (-15 -3061 ((-1125 |#1|) (-1125 |#1|))) (-15 -2620 ((-1125 |#1|) (-1125 |#1|))) (-15 -3199 ((-1125 |#1|) (-1125 |#1|))) (-15 -3565 ((-1125 |#1|) (-1125 |#1|) (-550) (-550))) (-15 -2475 ((-1125 |#1|) (-550) (-550) (-1125 |#1|))) (-15 -2913 ((-1125 |#1|) (-550) (-550) (-1125 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ((-1125 |#1|) |#1| (-1125 |#1|))) (-15 -2641 ((-1125 |#1|) |#1| (-1 (-1125 |#1|)))) (-15 -3388 ((-1125 |#1|) (-1125 (-1125 |#1|)))) (-15 -2244 ((-1125 |#1|) (-400 (-550)) (-1125 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2973 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2119 ((-1125 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1125 |#1|)))) (-15 -3867 ((-1125 |#1|) |#1| (-1125 |#1|)))) |%noBranch|)) (-1021)) (T -1129)) -((-3867 (*1 *2 *3 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1125 *4))) (-4 *4 (-356)) (-4 *4 (-1021)) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4)))) (-2973 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-356)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2244 (*1 *2 *3 *2) (-12 (-5 *2 (-1125 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1021)) (-5 *3 (-400 (-550))) (-5 *1 (-1129 *4)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4)) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1021)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1125 *3))) (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)))) (-2149 (*1 *2 *3 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2913 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) (-5 *1 (-1129 *4)))) (-2475 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) (-5 *1 (-1129 *4)))) (-3565 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) (-5 *1 (-1129 *4)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4)) (-4 *4 (-1021)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-3904 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-1553 (*1 *2 *2 *3) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1021)))) (-3156 (*1 *2 *3 *2) (-12 (-5 *2 (-1125 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1021)) (-5 *1 (-1129 *4)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-3489 (*1 *2 *3) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1021)))) (-3518 (*1 *2 *3) (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-1129 *4)) (-4 *4 (-1021)) (-5 *3 (-550)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-1129 *4)) (-4 *4 (-1021)) (-5 *3 (-550)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1021)))) (-1537 (*1 *2 *2) (|partial| -12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-3409 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2370 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) -(-10 -7 (-15 -2358 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2370 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2370 ((-1125 |#1|) (-1125 |#1|))) (-15 * ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 * ((-1125 |#1|) |#1| (-1125 |#1|))) (-15 * ((-1125 |#1|) (-1125 |#1|) |#1|)) (-15 -3409 ((-3 (-1125 |#1|) "failed") (-1125 |#1|) (-1125 |#1|))) (-15 -2382 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -1537 ((-3 (-1125 |#1|) "failed") (-1125 |#1|))) (-15 -3227 ((-1125 |#1|) |#1| (-550))) (-15 -1440 ((-1125 (-550)) (-550))) (-15 -3518 ((-1125 (-550)) (-550))) (-15 -3489 ((-1125 |#1|) |#1|)) (-15 -1962 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -4052 ((-1125 |#1|) (-1125 |#1|))) (-15 -3156 ((-1125 |#1|) (-1 |#1| (-550)) (-1125 |#1|))) (-15 -2233 ((-1125 |#1|) |#1|)) (-15 -1553 ((-1125 |#1|) (-1125 |#1|) |#1|)) (-15 -3904 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -3957 ((-1125 |#1|) (-1125 |#1|))) (-15 -4076 ((-1125 |#1|) (-1125 |#1|))) (-15 -2754 ((-1125 |#1|) (-1125 (-1125 |#1|)))) (-15 -3061 ((-1125 |#1|) (-1125 |#1|))) (-15 -2620 ((-1125 |#1|) (-1125 |#1|))) (-15 -3199 ((-1125 |#1|) (-1125 |#1|))) (-15 -3565 ((-1125 |#1|) (-1125 |#1|) (-550) (-550))) (-15 -2475 ((-1125 |#1|) (-550) (-550) (-1125 |#1|))) (-15 -2913 ((-1125 |#1|) (-550) (-550) (-1125 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ((-1125 |#1|) |#1| (-1125 |#1|))) (-15 -2641 ((-1125 |#1|) |#1| (-1 (-1125 |#1|)))) (-15 -3388 ((-1125 |#1|) (-1125 (-1125 |#1|)))) (-15 -2244 ((-1125 |#1|) (-400 (-550)) (-1125 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2973 ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2119 ((-1125 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1125 |#1|)))) (-15 -3867 ((-1125 |#1|) |#1| (-1125 |#1|)))) |%noBranch|)) -((-4160 (((-1125 |#1|) (-1125 |#1|)) 57)) (-2820 (((-1125 |#1|) (-1125 |#1|)) 39)) (-4137 (((-1125 |#1|) (-1125 |#1|)) 53)) (-2796 (((-1125 |#1|) (-1125 |#1|)) 35)) (-4183 (((-1125 |#1|) (-1125 |#1|)) 60)) (-2844 (((-1125 |#1|) (-1125 |#1|)) 42)) (-3080 (((-1125 |#1|) (-1125 |#1|)) 31)) (-1644 (((-1125 |#1|) (-1125 |#1|)) 27)) (-4194 (((-1125 |#1|) (-1125 |#1|)) 61)) (-2856 (((-1125 |#1|) (-1125 |#1|)) 43)) (-4171 (((-1125 |#1|) (-1125 |#1|)) 58)) (-2832 (((-1125 |#1|) (-1125 |#1|)) 40)) (-4149 (((-1125 |#1|) (-1125 |#1|)) 55)) (-2807 (((-1125 |#1|) (-1125 |#1|)) 37)) (-4233 (((-1125 |#1|) (-1125 |#1|)) 65)) (-2893 (((-1125 |#1|) (-1125 |#1|)) 47)) (-4206 (((-1125 |#1|) (-1125 |#1|)) 63)) (-2869 (((-1125 |#1|) (-1125 |#1|)) 45)) (-4255 (((-1125 |#1|) (-1125 |#1|)) 68)) (-4117 (((-1125 |#1|) (-1125 |#1|)) 50)) (-3363 (((-1125 |#1|) (-1125 |#1|)) 69)) (-4127 (((-1125 |#1|) (-1125 |#1|)) 51)) (-4244 (((-1125 |#1|) (-1125 |#1|)) 67)) (-2905 (((-1125 |#1|) (-1125 |#1|)) 49)) (-4218 (((-1125 |#1|) (-1125 |#1|)) 66)) (-2880 (((-1125 |#1|) (-1125 |#1|)) 48)) (** (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 33))) -(((-1130 |#1|) (-10 -7 (-15 -1644 ((-1125 |#1|) (-1125 |#1|))) (-15 -3080 ((-1125 |#1|) (-1125 |#1|))) (-15 ** ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2796 ((-1125 |#1|) (-1125 |#1|))) (-15 -2807 ((-1125 |#1|) (-1125 |#1|))) (-15 -2820 ((-1125 |#1|) (-1125 |#1|))) (-15 -2832 ((-1125 |#1|) (-1125 |#1|))) (-15 -2844 ((-1125 |#1|) (-1125 |#1|))) (-15 -2856 ((-1125 |#1|) (-1125 |#1|))) (-15 -2869 ((-1125 |#1|) (-1125 |#1|))) (-15 -2880 ((-1125 |#1|) (-1125 |#1|))) (-15 -2893 ((-1125 |#1|) (-1125 |#1|))) (-15 -2905 ((-1125 |#1|) (-1125 |#1|))) (-15 -4117 ((-1125 |#1|) (-1125 |#1|))) (-15 -4127 ((-1125 |#1|) (-1125 |#1|))) (-15 -4137 ((-1125 |#1|) (-1125 |#1|))) (-15 -4149 ((-1125 |#1|) (-1125 |#1|))) (-15 -4160 ((-1125 |#1|) (-1125 |#1|))) (-15 -4171 ((-1125 |#1|) (-1125 |#1|))) (-15 -4183 ((-1125 |#1|) (-1125 |#1|))) (-15 -4194 ((-1125 |#1|) (-1125 |#1|))) (-15 -4206 ((-1125 |#1|) (-1125 |#1|))) (-15 -4218 ((-1125 |#1|) (-1125 |#1|))) (-15 -4233 ((-1125 |#1|) (-1125 |#1|))) (-15 -4244 ((-1125 |#1|) (-1125 |#1|))) (-15 -4255 ((-1125 |#1|) (-1125 |#1|))) (-15 -3363 ((-1125 |#1|) (-1125 |#1|)))) (-38 (-400 (-550)))) (T -1130)) -((-3363 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2905 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3))))) -(-10 -7 (-15 -1644 ((-1125 |#1|) (-1125 |#1|))) (-15 -3080 ((-1125 |#1|) (-1125 |#1|))) (-15 ** ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2796 ((-1125 |#1|) (-1125 |#1|))) (-15 -2807 ((-1125 |#1|) (-1125 |#1|))) (-15 -2820 ((-1125 |#1|) (-1125 |#1|))) (-15 -2832 ((-1125 |#1|) (-1125 |#1|))) (-15 -2844 ((-1125 |#1|) (-1125 |#1|))) (-15 -2856 ((-1125 |#1|) (-1125 |#1|))) (-15 -2869 ((-1125 |#1|) (-1125 |#1|))) (-15 -2880 ((-1125 |#1|) (-1125 |#1|))) (-15 -2893 ((-1125 |#1|) (-1125 |#1|))) (-15 -2905 ((-1125 |#1|) (-1125 |#1|))) (-15 -4117 ((-1125 |#1|) (-1125 |#1|))) (-15 -4127 ((-1125 |#1|) (-1125 |#1|))) (-15 -4137 ((-1125 |#1|) (-1125 |#1|))) (-15 -4149 ((-1125 |#1|) (-1125 |#1|))) (-15 -4160 ((-1125 |#1|) (-1125 |#1|))) (-15 -4171 ((-1125 |#1|) (-1125 |#1|))) (-15 -4183 ((-1125 |#1|) (-1125 |#1|))) (-15 -4194 ((-1125 |#1|) (-1125 |#1|))) (-15 -4206 ((-1125 |#1|) (-1125 |#1|))) (-15 -4218 ((-1125 |#1|) (-1125 |#1|))) (-15 -4233 ((-1125 |#1|) (-1125 |#1|))) (-15 -4244 ((-1125 |#1|) (-1125 |#1|))) (-15 -4255 ((-1125 |#1|) (-1125 |#1|))) (-15 -3363 ((-1125 |#1|) (-1125 |#1|)))) -((-4160 (((-1125 |#1|) (-1125 |#1|)) 100)) (-2820 (((-1125 |#1|) (-1125 |#1|)) 64)) (-1574 (((-2 (|:| -4137 (-1125 |#1|)) (|:| -4149 (-1125 |#1|))) (-1125 |#1|)) 96)) (-4137 (((-1125 |#1|) (-1125 |#1|)) 97)) (-2782 (((-2 (|:| -2796 (-1125 |#1|)) (|:| -2807 (-1125 |#1|))) (-1125 |#1|)) 53)) (-2796 (((-1125 |#1|) (-1125 |#1|)) 54)) (-4183 (((-1125 |#1|) (-1125 |#1|)) 102)) (-2844 (((-1125 |#1|) (-1125 |#1|)) 71)) (-3080 (((-1125 |#1|) (-1125 |#1|)) 39)) (-1644 (((-1125 |#1|) (-1125 |#1|)) 36)) (-4194 (((-1125 |#1|) (-1125 |#1|)) 103)) (-2856 (((-1125 |#1|) (-1125 |#1|)) 72)) (-4171 (((-1125 |#1|) (-1125 |#1|)) 101)) (-2832 (((-1125 |#1|) (-1125 |#1|)) 67)) (-4149 (((-1125 |#1|) (-1125 |#1|)) 98)) (-2807 (((-1125 |#1|) (-1125 |#1|)) 55)) (-4233 (((-1125 |#1|) (-1125 |#1|)) 111)) (-2893 (((-1125 |#1|) (-1125 |#1|)) 86)) (-4206 (((-1125 |#1|) (-1125 |#1|)) 105)) (-2869 (((-1125 |#1|) (-1125 |#1|)) 82)) (-4255 (((-1125 |#1|) (-1125 |#1|)) 115)) (-4117 (((-1125 |#1|) (-1125 |#1|)) 90)) (-3363 (((-1125 |#1|) (-1125 |#1|)) 117)) (-4127 (((-1125 |#1|) (-1125 |#1|)) 92)) (-4244 (((-1125 |#1|) (-1125 |#1|)) 113)) (-2905 (((-1125 |#1|) (-1125 |#1|)) 88)) (-4218 (((-1125 |#1|) (-1125 |#1|)) 107)) (-2880 (((-1125 |#1|) (-1125 |#1|)) 84)) (** (((-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) 40))) -(((-1131 |#1|) (-10 -7 (-15 -1644 ((-1125 |#1|) (-1125 |#1|))) (-15 -3080 ((-1125 |#1|) (-1125 |#1|))) (-15 ** ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2782 ((-2 (|:| -2796 (-1125 |#1|)) (|:| -2807 (-1125 |#1|))) (-1125 |#1|))) (-15 -2796 ((-1125 |#1|) (-1125 |#1|))) (-15 -2807 ((-1125 |#1|) (-1125 |#1|))) (-15 -2820 ((-1125 |#1|) (-1125 |#1|))) (-15 -2832 ((-1125 |#1|) (-1125 |#1|))) (-15 -2844 ((-1125 |#1|) (-1125 |#1|))) (-15 -2856 ((-1125 |#1|) (-1125 |#1|))) (-15 -2869 ((-1125 |#1|) (-1125 |#1|))) (-15 -2880 ((-1125 |#1|) (-1125 |#1|))) (-15 -2893 ((-1125 |#1|) (-1125 |#1|))) (-15 -2905 ((-1125 |#1|) (-1125 |#1|))) (-15 -4117 ((-1125 |#1|) (-1125 |#1|))) (-15 -4127 ((-1125 |#1|) (-1125 |#1|))) (-15 -1574 ((-2 (|:| -4137 (-1125 |#1|)) (|:| -4149 (-1125 |#1|))) (-1125 |#1|))) (-15 -4137 ((-1125 |#1|) (-1125 |#1|))) (-15 -4149 ((-1125 |#1|) (-1125 |#1|))) (-15 -4160 ((-1125 |#1|) (-1125 |#1|))) (-15 -4171 ((-1125 |#1|) (-1125 |#1|))) (-15 -4183 ((-1125 |#1|) (-1125 |#1|))) (-15 -4194 ((-1125 |#1|) (-1125 |#1|))) (-15 -4206 ((-1125 |#1|) (-1125 |#1|))) (-15 -4218 ((-1125 |#1|) (-1125 |#1|))) (-15 -4233 ((-1125 |#1|) (-1125 |#1|))) (-15 -4244 ((-1125 |#1|) (-1125 |#1|))) (-15 -4255 ((-1125 |#1|) (-1125 |#1|))) (-15 -3363 ((-1125 |#1|) (-1125 |#1|)))) (-38 (-400 (-550)))) (T -1131)) -((-3363 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-1574 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-2 (|:| -4137 (-1125 *4)) (|:| -4149 (-1125 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-1125 *4)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2905 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-2782 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-2 (|:| -2796 (-1125 *4)) (|:| -2807 (-1125 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-1125 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1131 *3))))) -(-10 -7 (-15 -1644 ((-1125 |#1|) (-1125 |#1|))) (-15 -3080 ((-1125 |#1|) (-1125 |#1|))) (-15 ** ((-1125 |#1|) (-1125 |#1|) (-1125 |#1|))) (-15 -2782 ((-2 (|:| -2796 (-1125 |#1|)) (|:| -2807 (-1125 |#1|))) (-1125 |#1|))) (-15 -2796 ((-1125 |#1|) (-1125 |#1|))) (-15 -2807 ((-1125 |#1|) (-1125 |#1|))) (-15 -2820 ((-1125 |#1|) (-1125 |#1|))) (-15 -2832 ((-1125 |#1|) (-1125 |#1|))) (-15 -2844 ((-1125 |#1|) (-1125 |#1|))) (-15 -2856 ((-1125 |#1|) (-1125 |#1|))) (-15 -2869 ((-1125 |#1|) (-1125 |#1|))) (-15 -2880 ((-1125 |#1|) (-1125 |#1|))) (-15 -2893 ((-1125 |#1|) (-1125 |#1|))) (-15 -2905 ((-1125 |#1|) (-1125 |#1|))) (-15 -4117 ((-1125 |#1|) (-1125 |#1|))) (-15 -4127 ((-1125 |#1|) (-1125 |#1|))) (-15 -1574 ((-2 (|:| -4137 (-1125 |#1|)) (|:| -4149 (-1125 |#1|))) (-1125 |#1|))) (-15 -4137 ((-1125 |#1|) (-1125 |#1|))) (-15 -4149 ((-1125 |#1|) (-1125 |#1|))) (-15 -4160 ((-1125 |#1|) (-1125 |#1|))) (-15 -4171 ((-1125 |#1|) (-1125 |#1|))) (-15 -4183 ((-1125 |#1|) (-1125 |#1|))) (-15 -4194 ((-1125 |#1|) (-1125 |#1|))) (-15 -4206 ((-1125 |#1|) (-1125 |#1|))) (-15 -4218 ((-1125 |#1|) (-1125 |#1|))) (-15 -4233 ((-1125 |#1|) (-1125 |#1|))) (-15 -4244 ((-1125 |#1|) (-1125 |#1|))) (-15 -4255 ((-1125 |#1|) (-1125 |#1|))) (-15 -3363 ((-1125 |#1|) (-1125 |#1|)))) -((-4284 (((-932 |#2|) |#2| |#2|) 35)) (-2731 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300))))) -(((-1132 |#1| |#2|) (-10 -7 (-15 -4284 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -2731 (|#2| |#2| |#1|)) |%noBranch|)) (-542) (-1204 |#1|)) (T -1132)) -((-2731 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1132 *3 *2)) (-4 *2 (-1204 *3)))) (-4284 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-932 *3)) (-5 *1 (-1132 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -4284 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -2731 (|#2| |#2| |#1|)) |%noBranch|)) -((-2221 (((-112) $ $) NIL)) (-1262 (($ $ (-623 (-749))) 67)) (-1599 (($) 26)) (-2814 (($ $) 42)) (-4146 (((-623 $) $) 51)) (-3210 (((-112) $) 16)) (-2401 (((-623 (-917 |#2|)) $) 74)) (-4005 (($ $) 68)) (-2499 (((-749) $) 37)) (-3375 (($) 25)) (-4037 (($ $ (-623 (-749)) (-917 |#2|)) 60) (($ $ (-623 (-749)) (-749)) 61) (($ $ (-749) (-917 |#2|)) 63)) (-2441 (($ $ $) 48) (($ (-623 $)) 50)) (-1360 (((-749) $) 75)) (-1515 (((-112) $) 15)) (-2369 (((-1127) $) NIL)) (-3901 (((-112) $) 18)) (-3445 (((-1089) $) NIL)) (-3763 (((-169) $) 73)) (-1580 (((-917 |#2|) $) 69)) (-1944 (((-749) $) 70)) (-2195 (((-112) $) 72)) (-2855 (($ $ (-623 (-749)) (-169)) 66)) (-4172 (($ $) 43)) (-2233 (((-837) $) 86)) (-2490 (($ $ (-623 (-749)) (-112)) 65)) (-4075 (((-623 $) $) 11)) (-2772 (($ $ (-749)) 36)) (-2680 (($ $) 32)) (-1904 (($ $ $ (-917 |#2|) (-749)) 56)) (-3768 (($ $ (-917 |#2|)) 55)) (-2581 (($ $ (-623 (-749)) (-917 |#2|)) 54) (($ $ (-623 (-749)) (-749)) 58) (((-749) $ (-917 |#2|)) 59)) (-2264 (((-112) $ $) 80))) -(((-1133 |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -1515 ((-112) $)) (-15 -3210 ((-112) $)) (-15 -3901 ((-112) $)) (-15 -3375 ($)) (-15 -1599 ($)) (-15 -2680 ($ $)) (-15 -2772 ($ $ (-749))) (-15 -4075 ((-623 $) $)) (-15 -2499 ((-749) $)) (-15 -2814 ($ $)) (-15 -4172 ($ $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ (-623 $))) (-15 -4146 ((-623 $) $)) (-15 -2581 ($ $ (-623 (-749)) (-917 |#2|))) (-15 -3768 ($ $ (-917 |#2|))) (-15 -1904 ($ $ $ (-917 |#2|) (-749))) (-15 -4037 ($ $ (-623 (-749)) (-917 |#2|))) (-15 -2581 ($ $ (-623 (-749)) (-749))) (-15 -4037 ($ $ (-623 (-749)) (-749))) (-15 -2581 ((-749) $ (-917 |#2|))) (-15 -4037 ($ $ (-749) (-917 |#2|))) (-15 -2490 ($ $ (-623 (-749)) (-112))) (-15 -2855 ($ $ (-623 (-749)) (-169))) (-15 -1262 ($ $ (-623 (-749)))) (-15 -1580 ((-917 |#2|) $)) (-15 -1944 ((-749) $)) (-15 -2195 ((-112) $)) (-15 -3763 ((-169) $)) (-15 -1360 ((-749) $)) (-15 -4005 ($ $)) (-15 -2401 ((-623 (-917 |#2|)) $)))) (-895) (-1021)) (T -1133)) -((-1515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-3375 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-1599 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-2680 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-4172 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-2441 (*1 *1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-2581 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1021)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1021)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)))) (-1904 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1021)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1021)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) (-2581 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1021)))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1021)))) (-2581 (*1 *2 *1 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1021)) (-5 *2 (-749)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1021)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) (-2490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-112)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1021)))) (-2855 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-169)) (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1021)))) (-1262 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-917 *4)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-623 (-917 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1021))))) -(-13 (-1069) (-10 -8 (-15 -1515 ((-112) $)) (-15 -3210 ((-112) $)) (-15 -3901 ((-112) $)) (-15 -3375 ($)) (-15 -1599 ($)) (-15 -2680 ($ $)) (-15 -2772 ($ $ (-749))) (-15 -4075 ((-623 $) $)) (-15 -2499 ((-749) $)) (-15 -2814 ($ $)) (-15 -4172 ($ $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ (-623 $))) (-15 -4146 ((-623 $) $)) (-15 -2581 ($ $ (-623 (-749)) (-917 |#2|))) (-15 -3768 ($ $ (-917 |#2|))) (-15 -1904 ($ $ $ (-917 |#2|) (-749))) (-15 -4037 ($ $ (-623 (-749)) (-917 |#2|))) (-15 -2581 ($ $ (-623 (-749)) (-749))) (-15 -4037 ($ $ (-623 (-749)) (-749))) (-15 -2581 ((-749) $ (-917 |#2|))) (-15 -4037 ($ $ (-749) (-917 |#2|))) (-15 -2490 ($ $ (-623 (-749)) (-112))) (-15 -2855 ($ $ (-623 (-749)) (-169))) (-15 -1262 ($ $ (-623 (-749)))) (-15 -1580 ((-917 |#2|) $)) (-15 -1944 ((-749) $)) (-15 -2195 ((-112) $)) (-15 -3763 ((-169) $)) (-15 -1360 ((-749) $)) (-15 -4005 ($ $)) (-15 -2401 ((-623 (-917 |#2|)) $)))) -((-2221 (((-112) $ $) NIL)) (-2386 ((|#2| $) 11)) (-2374 ((|#1| $) 10)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2245 (($ |#1| |#2|) 9)) (-2233 (((-837) $) 16)) (-2264 (((-112) $ $) NIL))) -(((-1134 |#1| |#2|) (-13 (-1069) (-10 -8 (-15 -2245 ($ |#1| |#2|)) (-15 -2374 (|#1| $)) (-15 -2386 (|#2| $)))) (-1069) (-1069)) (T -1134)) -((-2245 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-2374 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-1134 *2 *3)) (-4 *3 (-1069)))) (-2386 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1069))))) -(-13 (-1069) (-10 -8 (-15 -2245 ($ |#1| |#2|)) (-15 -2374 (|#1| $)) (-15 -2386 (|#2| $)))) -((-2221 (((-112) $ $) NIL)) (-4067 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1135) (-13 (-1052) (-10 -8 (-15 -4067 ((-1104) $))))) (T -1135)) -((-4067 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1135))))) -(-13 (-1052) (-10 -8 (-15 -4067 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-1143 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 11)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3050 (($ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3953 (((-112) $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2879 (($ $ (-550)) NIL) (($ $ (-550) (-550)) 66)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4164 (((-1143 |#1| |#2| |#3|) $) 36)) (-3869 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 29)) (-1570 (((-1143 |#1| |#2| |#3|) $) 30)) (-4160 (($ $) 107 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 83 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) 103 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 79 (|has| |#1| (-38 (-400 (-550)))))) (-4303 (((-550) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) 111 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 87 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1145) "failed") $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-550) "failed") $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))))) (-2202 (((-1143 |#1| |#2| |#3|) $) 131) (((-1145) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356)))) (((-550) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))))) (-2468 (($ $) 34) (($ (-550) $) 35)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-1143 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-1143 |#1| |#2| |#3|))) (|:| |vec| (-1228 (-1143 |#1| |#2| |#3|)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356))))) (-1537 (((-3 $ "failed") $) 48)) (-4115 (((-400 (-926 |#1|)) $ (-550)) 65 (|has| |#1| (-542))) (((-400 (-926 |#1|)) $ (-550) (-550)) 67 (|has| |#1| (-542)))) (-1864 (($) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-2694 (((-112) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3771 (((-112) $) 25)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-860 (-550))) (|has| |#1| (-356)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-860 (-372))) (|has| |#1| (-356))))) (-2603 (((-550) $) NIL) (((-550) $ (-550)) 24)) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL (|has| |#1| (-356)))) (-4153 (((-1143 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1120)) (|has| |#1| (-356))))) (-1712 (((-112) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-1937 (($ $ (-895)) NIL)) (-1546 (($ (-1 |#1| (-550)) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-550)) 18) (($ $ (-1051) (-550)) NIL) (($ $ (-623 (-1051)) (-623 (-550))) NIL)) (-2793 (($ $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2173 (($ $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3080 (($ $) 72 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1583 (($ (-550) (-1143 |#1| |#2| |#3|)) 33)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) 70 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 71 (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1120)) (|has| |#1| (-356))) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1724 (($ $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3925 (((-1143 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-550)) 145)) (-3409 (((-3 $ "failed") $ $) 49 (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) 73 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1145) (-1143 |#1| |#2| |#3|)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-505 (-1145) (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 (-1143 |#1| |#2| |#3|))) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-505 (-1145) (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-287 (-1143 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1143 |#1| |#2| |#3|))) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1143 |#1| |#2| |#3|)) (-623 (-1143 |#1| |#2| |#3|))) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-302 (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-550)) NIL) (($ $ $) 54 (|has| (-550) (-1081))) (($ $ (-1143 |#1| |#2| |#3|)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-279 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-1 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1224 |#2|)) 51) (($ $ (-749)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 50 (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-3608 (($ $) NIL (|has| |#1| (-356)))) (-4163 (((-1143 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-3661 (((-550) $) 37)) (-4194 (($ $) 113 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 89 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 109 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 85 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 105 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 81 (|has| |#1| (-38 (-400 (-550)))))) (-2451 (((-526) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-596 (-526))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-996)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-996)) (|has| |#1| (-356)))) (((-866 (-372)) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-596 (-866 (-372)))) (|has| |#1| (-356)))) (((-866 (-550)) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-596 (-866 (-550)))) (|has| |#1| (-356))))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) 149) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1143 |#1| |#2| |#3|)) 27) (($ (-1224 |#2|)) 23) (($ (-1145)) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (($ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-550))) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-550))))))) (-1708 ((|#1| $ (-550)) 68)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 12)) (-2967 (((-1143 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-4233 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 95 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4206 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 91 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 99 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 101 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 97 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 93 (|has| |#1| (-38 (-400 (-550)))))) (-4188 (($ $) NIL (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2688 (($) 20 T CONST)) (-2700 (($) 16 T CONST)) (-1901 (($ $ (-1 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-2324 (((-112) $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2302 (((-112) $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2290 (((-112) $ $) NIL (-1489 (-12 (|has| (-1143 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1143 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1143 |#1| |#2| |#3|) (-1143 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-749)) 53) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 128 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1143 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1143 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1136 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1143 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1136)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1190 |#1| (-1143 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-3405 ((|#2| |#2| (-1061 |#2|)) 26) ((|#2| |#2| (-1145)) 28))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3405 (|#2| |#2| (-1145))) (-15 -3405 (|#2| |#2| (-1061 |#2|)))) (-13 (-542) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-423 |#1|) (-158) (-27) (-1167))) (T -1137)) -((-3405 (*1 *2 *2 *3) (-12 (-5 *3 (-1061 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1167))) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1137 *4 *2)))) (-3405 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1137 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1167)))))) -(-10 -7 (-15 -3405 (|#2| |#2| (-1145))) (-15 -3405 (|#2| |#2| (-1061 |#2|)))) -((-3405 (((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1061 (-400 (-926 |#1|)))) 31) (((-400 (-926 |#1|)) (-926 |#1|) (-1061 (-926 |#1|))) 44) (((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1145)) 33) (((-400 (-926 |#1|)) (-926 |#1|) (-1145)) 36))) -(((-1138 |#1|) (-10 -7 (-15 -3405 ((-400 (-926 |#1|)) (-926 |#1|) (-1145))) (-15 -3405 ((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1145))) (-15 -3405 ((-400 (-926 |#1|)) (-926 |#1|) (-1061 (-926 |#1|)))) (-15 -3405 ((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1061 (-400 (-926 |#1|)))))) (-13 (-542) (-825) (-1012 (-550)))) (T -1138)) -((-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1138 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-926 *5))) (-5 *3 (-926 *5)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-400 *3)) (-5 *1 (-1138 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-3 (-400 (-926 *5)) (-309 *5))) (-5 *1 (-1138 *5)) (-5 *3 (-400 (-926 *5))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-400 (-926 *5))) (-5 *1 (-1138 *5)) (-5 *3 (-926 *5))))) -(-10 -7 (-15 -3405 ((-400 (-926 |#1|)) (-926 |#1|) (-1145))) (-15 -3405 ((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1145))) (-15 -3405 ((-400 (-926 |#1|)) (-926 |#1|) (-1061 (-926 |#1|)))) (-15 -3405 ((-3 (-400 (-926 |#1|)) (-309 |#1|)) (-400 (-926 |#1|)) (-1061 (-400 (-926 |#1|)))))) -((-2392 (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 13))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -2392 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) (-1021) (-1021)) (T -1139)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-5 *2 (-1141 *6)) (-5 *1 (-1139 *5 *6))))) -(-10 -7 (-15 -2392 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) -((-2207 (((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 51)) (-1735 (((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 52))) -(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -2207 ((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) (-771) (-825) (-444) (-923 |#3| |#1| |#2|)) (T -1140)) -((-2207 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 (-400 *7)))) (-5 *1 (-1140 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7))))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 (-400 *7)))) (-5 *1 (-1140 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7)))))) -(-10 -7 (-15 -1735 ((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -2207 ((-411 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) -((-2221 (((-112) $ $) 137)) (-3378 (((-112) $) 27)) (-1431 (((-1228 |#1|) $ (-749)) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-3297 (($ (-1141 |#1|)) NIL)) (-1705 (((-1141 $) $ (-1051)) 58) (((-1141 |#1|) $) 47)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) 132 (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1051))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2129 (($ $ $) 126 (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) 71 (|has| |#1| (-883)))) (-2318 (($ $) NIL (|has| |#1| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 91 (|has| |#1| (-883)))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2887 (($ $ (-749)) 39)) (-4069 (($ $ (-749)) 40)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-1051) "failed") $) NIL)) (-2202 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-1051) $) NIL)) (-1792 (($ $ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) 56)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-2193 (($ $ $) 104)) (-1509 (($ $ $) NIL (|has| |#1| (-542)))) (-2858 (((-2 (|:| -4304 |#1|) (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2731 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-749) $) 45)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1051) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1051) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-3303 (((-837) $ (-837)) 117)) (-2603 (((-749) $ $) NIL (|has| |#1| (-542)))) (-2419 (((-112) $) 30)) (-3324 (((-749) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1120)))) (-1501 (($ (-1141 |#1|) (-1051)) 49) (($ (-1141 $) (-1051)) 65)) (-1937 (($ $ (-749)) 32)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) 63) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1051)) NIL) (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 121)) (-3346 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-2863 (($ (-1 (-749) (-749)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-2838 (((-1141 |#1|) $) NIL)) (-4059 (((-3 (-1051) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) 52)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2369 (((-1127) $) NIL)) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) 38)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1051)) (|:| -3068 (-749))) "failed") $) NIL)) (-2149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) NIL (|has| |#1| (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) 31)) (-1639 ((|#1| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 79 (|has| |#1| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-2607 (($ $ (-749) |#1| $) 99)) (-3348 (((-411 (-1141 $)) (-1141 $)) 77 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 76 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 84 (|has| |#1| (-883)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1051) |#1|) NIL) (($ $ (-623 (-1051)) (-623 |#1|)) NIL) (($ $ (-1051) $) NIL) (($ $ (-623 (-1051)) (-623 $)) NIL)) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-3522 (((-3 $ "failed") $ (-749)) 35)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 138 (|has| |#1| (-356)))) (-3563 (($ $ (-1051)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-2798 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3661 (((-749) $) 54) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1051) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1051)) NIL (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-883))))) (-3674 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-2233 (((-837) $) 118) (($ (-550)) NIL) (($ |#1|) 53) (($ (-1051)) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) 25 (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 15 T CONST)) (-2700 (($) 16 T CONST)) (-1901 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) 96)) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 66)) (** (($ $ (-895)) 14) (($ $ (-749)) 12)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 24) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1141 |#1|) (-13 (-1204 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-837))) (-15 -2607 ($ $ (-749) |#1| $)))) (-1021)) (T -1141)) -((-3303 (*1 *2 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-1141 *3)) (-4 *3 (-1021)))) (-2607 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1021))))) -(-13 (-1204 |#1|) (-10 -8 (-15 -3303 ((-837) $ (-837))) (-15 -2607 ($ $ (-749) |#1| $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 11)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 36)) (-2202 (((-1136 |#1| |#2| |#3|) $) NIL) (((-1143 |#1| |#2| |#3|) $) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2622 (((-400 (-550)) $) 55)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1595 (($ (-400 (-550)) (-1136 |#1| |#2| |#3|)) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) NIL) (($ $ (-400 (-550))) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-400 (-550))) 20) (($ $ (-1051) (-400 (-550))) NIL) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2885 (((-1136 |#1| |#2| |#3|) $) 41)) (-3988 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) NIL)) (-1583 (((-1136 |#1| |#2| |#3|) $) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) 39 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 40 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1224 |#2|)) 38)) (-3661 (((-400 (-550)) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) 58) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1136 |#1| |#2| |#3|)) 30) (($ (-1143 |#1| |#2| |#3|)) 31) (($ (-1224 |#2|)) 26) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 12)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 22 T CONST)) (-2700 (($) 16 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 24)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1142 |#1| |#2| |#3|) (-13 (-1211 |#1| (-1136 |#1| |#2| |#3|)) (-1012 (-1143 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1142)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1211 |#1| (-1136 |#1| |#2| |#3|)) (-1012 (-1143 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 125)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 116)) (-2890 (((-1201 |#2| |#1|) $ (-749)) 63)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-749)) 79) (($ $ (-749) (-749)) 76)) (-4222 (((-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 102)) (-4160 (($ $) 169 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 145 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) 165 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 115) (($ (-1125 |#1|)) 110)) (-4183 (($ $) 173 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) 23)) (-2608 (($ $) 26)) (-2666 (((-926 |#1|) $ (-749)) 75) (((-926 |#1|) $ (-749) (-749)) 77)) (-3771 (((-112) $) 120)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $) 122) (((-749) $ (-749)) 124)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) NIL)) (-1546 (($ (-1 |#1| (-550)) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) 13) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-2149 (($ $) 129 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-4268 (($ $ (-749)) 15)) (-3409 (((-3 $ "failed") $ $) 24 (|has| |#1| (-542)))) (-1644 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2757 ((|#1| $ (-749)) 119) (($ $ $) 128 (|has| (-749) (-1081)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1224 |#2|)) 29)) (-3661 (((-749) $) NIL)) (-4194 (($ $) 175 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 151 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 171 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 147 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 167 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 143 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) 201) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1201 |#2| |#1|)) 51) (($ (-1224 |#2|)) 32)) (-2969 (((-1125 |#1|) $) 98)) (-1708 ((|#1| $ (-749)) 118)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 54)) (-4233 (($ $) 181 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 157 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) 177 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 153 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 185 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 161 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-749)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 187 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 163 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 183 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 159 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 179 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 155 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 17 T CONST)) (-2700 (($) 19 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) 194)) (-2358 (($ $ $) 31)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 137 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1143 |#1| |#2| |#3|) (-13 (-1219 |#1|) (-10 -8 (-15 -2233 ($ (-1201 |#2| |#1|))) (-15 -2890 ((-1201 |#2| |#1|) $ (-749))) (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1143)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1201 *4 *3)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3) (-5 *1 (-1143 *3 *4 *5)))) (-2890 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1201 *5 *4)) (-5 *1 (-1143 *4 *5 *6)) (-4 *4 (-1021)) (-14 *5 (-1145)) (-14 *6 *4))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1219 |#1|) (-10 -8 (-15 -2233 ($ (-1201 |#2| |#1|))) (-15 -2890 ((-1201 |#2| |#1|) $ (-749))) (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-2233 (((-837) $) 27) (($ (-1145)) 29)) (-1489 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 40)) (-1477 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 33) (($ $) 34)) (-2932 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 35)) (-2919 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 37)) (-2907 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 36)) (-2895 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 38)) (-3893 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 39))) -(((-1144) (-13 (-595 (-837)) (-10 -8 (-15 -2233 ($ (-1145))) (-15 -2932 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2907 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2919 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2895 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1489 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1477 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1477 ($ $))))) (T -1144)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1144)))) (-2932 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-2907 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-2919 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-2895 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-1489 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-3893 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) (-5 *1 (-1144)))) (-1477 (*1 *1 *1) (-5 *1 (-1144)))) -(-13 (-595 (-837)) (-10 -8 (-15 -2233 ($ (-1145))) (-15 -2932 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2907 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2919 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2895 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1489 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1477 ($ (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1477 ($ $)))) -((-2221 (((-112) $ $) NIL)) (-3618 (($ $ (-623 (-837))) 59)) (-2362 (($ $ (-623 (-837))) 57)) (-1755 (((-1127) $) 84)) (-3850 (((-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837)))) $) 87)) (-1945 (((-112) $) 22)) (-3264 (($ $ (-623 (-623 (-837)))) 56) (($ $ (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837))))) 82)) (-2991 (($) 124 T CONST)) (-1843 (((-1233)) 106)) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 66) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 73)) (-3375 (($) 95) (($ $) 101)) (-1856 (($ $) 83)) (-2793 (($ $ $) NIL)) (-2173 (($ $ $) NIL)) (-3743 (((-623 $) $) 107)) (-2369 (((-1127) $) 90)) (-3445 (((-1089) $) NIL)) (-2757 (($ $ (-623 (-837))) 58)) (-2451 (((-526) $) 46) (((-1145) $) 47) (((-866 (-550)) $) 77) (((-866 (-372)) $) 75)) (-2233 (((-837) $) 53) (($ (-1127)) 48)) (-1738 (($ $ (-623 (-837))) 60)) (-3145 (((-1127) $) 33) (((-1127) $ (-112)) 34) (((-1233) (-800) $) 35) (((-1233) (-800) $ (-112)) 36)) (-2324 (((-112) $ $) NIL)) (-2302 (((-112) $ $) NIL)) (-2264 (((-112) $ $) 49)) (-2313 (((-112) $ $) NIL)) (-2290 (((-112) $ $) 50))) -(((-1145) (-13 (-825) (-596 (-526)) (-806) (-596 (-1145)) (-596 (-866 (-550))) (-596 (-866 (-372))) (-860 (-550)) (-860 (-372)) (-10 -8 (-15 -3375 ($)) (-15 -3375 ($ $)) (-15 -1843 ((-1233))) (-15 -2233 ($ (-1127))) (-15 -1856 ($ $)) (-15 -1945 ((-112) $)) (-15 -3850 ((-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837)))) $)) (-15 -3264 ($ $ (-623 (-623 (-837))))) (-15 -3264 ($ $ (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837)))))) (-15 -2362 ($ $ (-623 (-837)))) (-15 -3618 ($ $ (-623 (-837)))) (-15 -1738 ($ $ (-623 (-837)))) (-15 -2757 ($ $ (-623 (-837)))) (-15 -1755 ((-1127) $)) (-15 -3743 ((-623 $) $)) (-15 -2991 ($) -4165)))) (T -1145)) -((-3375 (*1 *1) (-5 *1 (-1145))) (-3375 (*1 *1 *1) (-5 *1 (-1145))) (-1843 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1145)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1145)))) (-1856 (*1 *1 *1) (-5 *1 (-1145))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1145)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837))))) (-5 *1 (-1145)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 (-837)))) (-5 *1 (-1145)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837))))) (-5 *1 (-1145)))) (-2362 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145)))) (-1738 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1145)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1145)))) (-2991 (*1 *1) (-5 *1 (-1145)))) -(-13 (-825) (-596 (-526)) (-806) (-596 (-1145)) (-596 (-866 (-550))) (-596 (-866 (-372))) (-860 (-550)) (-860 (-372)) (-10 -8 (-15 -3375 ($)) (-15 -3375 ($ $)) (-15 -1843 ((-1233))) (-15 -2233 ($ (-1127))) (-15 -1856 ($ $)) (-15 -1945 ((-112) $)) (-15 -3850 ((-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837)))) $)) (-15 -3264 ($ $ (-623 (-623 (-837))))) (-15 -3264 ($ $ (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) (|:| |args| (-623 (-837)))))) (-15 -2362 ($ $ (-623 (-837)))) (-15 -3618 ($ $ (-623 (-837)))) (-15 -1738 ($ $ (-623 (-837)))) (-15 -2757 ($ $ (-623 (-837)))) (-15 -1755 ((-1127) $)) (-15 -3743 ((-623 $) $)) (-15 -2991 ($) -4165))) -((-1330 (((-1228 |#1|) |#1| (-895)) 16) (((-1228 |#1|) (-623 |#1|)) 20))) -(((-1146 |#1|) (-10 -7 (-15 -1330 ((-1228 |#1|) (-623 |#1|))) (-15 -1330 ((-1228 |#1|) |#1| (-895)))) (-1021)) (T -1146)) -((-1330 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1228 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1021)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1021)) (-5 *2 (-1228 *4)) (-5 *1 (-1146 *4))))) -(-10 -7 (-15 -1330 ((-1228 |#1|) (-623 |#1|))) (-15 -1330 ((-1228 |#1|) |#1| (-895)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1012 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2202 (((-550) $) NIL (|has| |#1| (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1012 (-400 (-550))))) ((|#1| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-444)))) (-3401 (($ $ |#1| (-945) $) NIL)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-945)) NIL)) (-3346 (((-945) $) NIL)) (-2863 (($ (-1 (-945) (-945)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#1| $) NIL)) (-2607 (($ $ (-945) |#1| $) NIL (-12 (|has| (-945) (-130)) (|has| |#1| (-542))))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-3661 (((-945) $) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) NIL) (($ (-400 (-550))) NIL (-1489 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1012 (-400 (-550))))))) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ (-945)) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2688 (($) 9 T CONST)) (-2700 (($) 14 T CONST)) (-2264 (((-112) $ $) 16)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1147 |#1|) (-13 (-319 |#1| (-945)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-945) (-130)) (-15 -2607 ($ $ (-945) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) (-1021)) (T -1147)) -((-2607 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1147 *3)) (-4 *3 (-542)) (-4 *3 (-1021))))) -(-13 (-319 |#1| (-945)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-945) (-130)) (-15 -2607 ($ $ (-945) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) -((-2930 (((-1149) (-1145) $) 25)) (-1425 (($) 29)) (-3932 (((-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-1145) $) 22)) (-1498 (((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")) $) 41) (((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) 42) (((-1233) (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) 43)) (-4280 (((-1233) (-1145)) 58)) (-3534 (((-1233) (-1145) $) 55) (((-1233) (-1145)) 56) (((-1233)) 57)) (-3432 (((-1233) (-1145)) 37)) (-3174 (((-1145)) 36)) (-2819 (($) 34)) (-2249 (((-430) (-1145) (-430) (-1145) $) 45) (((-430) (-623 (-1145)) (-430) (-1145) $) 49) (((-430) (-1145) (-430)) 46) (((-430) (-1145) (-430) (-1145)) 50)) (-1736 (((-1145)) 35)) (-2233 (((-837) $) 28)) (-3139 (((-1233)) 30) (((-1233) (-1145)) 33)) (-2478 (((-623 (-1145)) (-1145) $) 24)) (-3293 (((-1233) (-1145) (-623 (-1145)) $) 38) (((-1233) (-1145) (-623 (-1145))) 39) (((-1233) (-623 (-1145))) 40))) -(((-1148) (-13 (-595 (-837)) (-10 -8 (-15 -1425 ($)) (-15 -3139 ((-1233))) (-15 -3139 ((-1233) (-1145))) (-15 -2249 ((-430) (-1145) (-430) (-1145) $)) (-15 -2249 ((-430) (-623 (-1145)) (-430) (-1145) $)) (-15 -2249 ((-430) (-1145) (-430))) (-15 -2249 ((-430) (-1145) (-430) (-1145))) (-15 -3432 ((-1233) (-1145))) (-15 -1736 ((-1145))) (-15 -3174 ((-1145))) (-15 -3293 ((-1233) (-1145) (-623 (-1145)) $)) (-15 -3293 ((-1233) (-1145) (-623 (-1145)))) (-15 -3293 ((-1233) (-623 (-1145)))) (-15 -1498 ((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")) $)) (-15 -1498 ((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")))) (-15 -1498 ((-1233) (-3 (|:| |fst| (-427)) (|:| -2487 "void")))) (-15 -3534 ((-1233) (-1145) $)) (-15 -3534 ((-1233) (-1145))) (-15 -3534 ((-1233))) (-15 -4280 ((-1233) (-1145))) (-15 -2819 ($)) (-15 -3932 ((-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-1145) $)) (-15 -2478 ((-623 (-1145)) (-1145) $)) (-15 -2930 ((-1149) (-1145) $))))) (T -1148)) -((-1425 (*1 *1) (-5 *1 (-1148))) (-3139 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-2249 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) (-2249 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1145))) (-5 *4 (-1145)) (-5 *1 (-1148)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) (-2249 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-1736 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1148)))) (-3174 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1148)))) (-3293 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-1498 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1145)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3534 (*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-3534 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1148)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) (-2819 (*1 *1) (-5 *1 (-1148))) (-3932 (*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *1 (-1148)))) (-2478 (*1 *2 *3 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1148)) (-5 *3 (-1145)))) (-2930 (*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-1149)) (-5 *1 (-1148))))) -(-13 (-595 (-837)) (-10 -8 (-15 -1425 ($)) (-15 -3139 ((-1233))) (-15 -3139 ((-1233) (-1145))) (-15 -2249 ((-430) (-1145) (-430) (-1145) $)) (-15 -2249 ((-430) (-623 (-1145)) (-430) (-1145) $)) (-15 -2249 ((-430) (-1145) (-430))) (-15 -2249 ((-430) (-1145) (-430) (-1145))) (-15 -3432 ((-1233) (-1145))) (-15 -1736 ((-1145))) (-15 -3174 ((-1145))) (-15 -3293 ((-1233) (-1145) (-623 (-1145)) $)) (-15 -3293 ((-1233) (-1145) (-623 (-1145)))) (-15 -3293 ((-1233) (-623 (-1145)))) (-15 -1498 ((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")) $)) (-15 -1498 ((-1233) (-1145) (-3 (|:| |fst| (-427)) (|:| -2487 "void")))) (-15 -1498 ((-1233) (-3 (|:| |fst| (-427)) (|:| -2487 "void")))) (-15 -3534 ((-1233) (-1145) $)) (-15 -3534 ((-1233) (-1145))) (-15 -3534 ((-1233))) (-15 -4280 ((-1233) (-1145))) (-15 -2819 ($)) (-15 -3932 ((-3 (|:| |fst| (-427)) (|:| -2487 "void")) (-1145) $)) (-15 -2478 ((-623 (-1145)) (-1145) $)) (-15 -2930 ((-1149) (-1145) $)))) -((-2657 (((-623 (-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550))))))))) $) 59)) (-1475 (((-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550)))))))) (-427) $) 43)) (-1277 (($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-430))))) 17)) (-4280 (((-1233) $) 67)) (-1397 (((-623 (-1145)) $) 22)) (-2882 (((-1073) $) 55)) (-4227 (((-430) (-1145) $) 27)) (-3951 (((-623 (-1145)) $) 30)) (-2819 (($) 19)) (-2249 (((-430) (-623 (-1145)) (-430) $) 25) (((-430) (-1145) (-430) $) 24)) (-2233 (((-837) $) 9) (((-1155 (-1145) (-430)) $) 13))) -(((-1149) (-13 (-595 (-837)) (-10 -8 (-15 -2233 ((-1155 (-1145) (-430)) $)) (-15 -2819 ($)) (-15 -2249 ((-430) (-623 (-1145)) (-430) $)) (-15 -2249 ((-430) (-1145) (-430) $)) (-15 -4227 ((-430) (-1145) $)) (-15 -1397 ((-623 (-1145)) $)) (-15 -1475 ((-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550)))))))) (-427) $)) (-15 -3951 ((-623 (-1145)) $)) (-15 -2657 ((-623 (-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550))))))))) $)) (-15 -2882 ((-1073) $)) (-15 -4280 ((-1233) $)) (-15 -1277 ($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-430))))))))) (T -1149)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-1155 (-1145) (-430))) (-5 *1 (-1149)))) (-2819 (*1 *1) (-5 *1 (-1149))) (-2249 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1145))) (-5 *1 (-1149)))) (-2249 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1149)))) (-4227 (*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-430)) (-5 *1 (-1149)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1149)))) (-1475 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550))))))))) (-5 *1 (-1149)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1149)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550)))))))))) (-5 *1 (-1149)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1149)))) (-1277 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-430))))) (-5 *1 (-1149))))) -(-13 (-595 (-837)) (-10 -8 (-15 -2233 ((-1155 (-1145) (-430)) $)) (-15 -2819 ($)) (-15 -2249 ((-430) (-623 (-1145)) (-430) $)) (-15 -2249 ((-430) (-1145) (-430) $)) (-15 -4227 ((-430) (-1145) $)) (-15 -1397 ((-623 (-1145)) $)) (-15 -1475 ((-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550)))))))) (-427) $)) (-15 -3951 ((-623 (-1145)) $)) (-15 -2657 ((-623 (-623 (-3 (|:| -1856 (-1145)) (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550))))))))) $)) (-15 -2882 ((-1073) $)) (-15 -4280 ((-1233) $)) (-15 -1277 ($ (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-430)))))))) -((-2221 (((-112) $ $) NIL)) (-3131 (((-112) $) 48)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2698 (((-3 (-550) (-219) (-1145) (-1127) $) $) 56)) (-4089 (((-623 $) $) 61)) (-2451 (((-1073) $) 30) (($ (-1073)) 31)) (-2583 (((-112) $) 58)) (-2233 (((-837) $) 29) (($ (-550)) 32) (((-550) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1145)) 38) (((-1145) $) 40) (($ (-1127)) 41) (((-1127) $) 43)) (-2676 (((-112) $ (|[\|\|]| (-550))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1145))) 25) (((-112) $ (|[\|\|]| (-1127))) 21)) (-1474 (($ (-1145) (-623 $)) 45) (($ $ (-623 $)) 46)) (-2469 (((-550) $) 33) (((-219) $) 36) (((-1145) $) 39) (((-1127) $) 42)) (-2264 (((-112) $ $) 8))) -(((-1150) (-13 (-1223) (-1069) (-10 -8 (-15 -2451 ((-1073) $)) (-15 -2451 ($ (-1073))) (-15 -2233 ($ (-550))) (-15 -2233 ((-550) $)) (-15 -2469 ((-550) $)) (-15 -2233 ($ (-219))) (-15 -2233 ((-219) $)) (-15 -2469 ((-219) $)) (-15 -2233 ($ (-1145))) (-15 -2233 ((-1145) $)) (-15 -2469 ((-1145) $)) (-15 -2233 ($ (-1127))) (-15 -2233 ((-1127) $)) (-15 -2469 ((-1127) $)) (-15 -1474 ($ (-1145) (-623 $))) (-15 -1474 ($ $ (-623 $))) (-15 -3131 ((-112) $)) (-15 -2698 ((-3 (-550) (-219) (-1145) (-1127) $) $)) (-15 -4089 ((-623 $) $)) (-15 -2583 ((-112) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-550)))) (-15 -2676 ((-112) $ (|[\|\|]| (-219)))) (-15 -2676 ((-112) $ (|[\|\|]| (-1145)))) (-15 -2676 ((-112) $ (|[\|\|]| (-1127))))))) (T -1150)) -((-2451 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1150)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1150)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1150)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1150)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1150)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) (-1474 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-1150))) (-5 *1 (-1150)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1150)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1150)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-3 (-550) (-219) (-1145) (-1127) (-1150))) (-5 *1 (-1150)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1150)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1150)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1150)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1150)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1150)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)) (-5 *1 (-1150))))) -(-13 (-1223) (-1069) (-10 -8 (-15 -2451 ((-1073) $)) (-15 -2451 ($ (-1073))) (-15 -2233 ($ (-550))) (-15 -2233 ((-550) $)) (-15 -2469 ((-550) $)) (-15 -2233 ($ (-219))) (-15 -2233 ((-219) $)) (-15 -2469 ((-219) $)) (-15 -2233 ($ (-1145))) (-15 -2233 ((-1145) $)) (-15 -2469 ((-1145) $)) (-15 -2233 ($ (-1127))) (-15 -2233 ((-1127) $)) (-15 -2469 ((-1127) $)) (-15 -1474 ($ (-1145) (-623 $))) (-15 -1474 ($ $ (-623 $))) (-15 -3131 ((-112) $)) (-15 -2698 ((-3 (-550) (-219) (-1145) (-1127) $) $)) (-15 -4089 ((-623 $) $)) (-15 -2583 ((-112) $)) (-15 -2676 ((-112) $ (|[\|\|]| (-550)))) (-15 -2676 ((-112) $ (|[\|\|]| (-219)))) (-15 -2676 ((-112) $ (|[\|\|]| (-1145)))) (-15 -2676 ((-112) $ (|[\|\|]| (-1127)))))) -((-3880 (((-623 (-623 (-926 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145))) 57)) (-4229 (((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|)))) 69) (((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|))) 65) (((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145)) 70) (((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145)) 64) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|))))) 93) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|)))) 92) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145))) 94) (((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|))) (-623 (-1145))) 91))) -(((-1151 |#1|) (-10 -7 (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|))))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|)))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|))))) (-15 -3880 ((-623 (-623 (-926 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145))))) (-542)) (T -1151)) -((-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-926 *5)))) (-5 *1 (-1151 *5)))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *4))))) (-5 *1 (-1151 *4)) (-5 *3 (-287 (-400 (-926 *4)))))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *4))))) (-5 *1 (-1151 *4)) (-5 *3 (-400 (-926 *4))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *5))))) (-5 *1 (-1151 *5)) (-5 *3 (-287 (-400 (-926 *5)))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-1145)) (-4 *5 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *5))))) (-5 *1 (-1151 *5)) (-5 *3 (-400 (-926 *5))))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-1151 *4)) (-5 *3 (-623 (-287 (-400 (-926 *4))))))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-623 (-400 (-926 *4)))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-1151 *4)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1145))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-1151 *5)) (-5 *3 (-623 (-287 (-400 (-926 *5))))))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-1151 *5))))) -(-10 -7 (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|))) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|)))) (-623 (-1145)))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-400 (-926 |#1|))))) (-15 -4229 ((-623 (-623 (-287 (-400 (-926 |#1|))))) (-623 (-287 (-400 (-926 |#1|)))))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|)) (-1145))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|))) (-1145))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-400 (-926 |#1|)))) (-15 -4229 ((-623 (-287 (-400 (-926 |#1|)))) (-287 (-400 (-926 |#1|))))) (-15 -3880 ((-623 (-623 (-926 |#1|))) (-623 (-400 (-926 |#1|))) (-623 (-1145))))) -((-2232 (((-1127)) 7)) (-2413 (((-1127)) 9)) (-2335 (((-1233) (-1127)) 11)) (-2948 (((-1127)) 8))) -(((-1152) (-10 -7 (-15 -2232 ((-1127))) (-15 -2948 ((-1127))) (-15 -2413 ((-1127))) (-15 -2335 ((-1233) (-1127))))) (T -1152)) -((-2335 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1152)))) (-2413 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152)))) (-2948 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152)))) (-2232 (*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152))))) -(-10 -7 (-15 -2232 ((-1127))) (-15 -2948 ((-1127))) (-15 -2413 ((-1127))) (-15 -2335 ((-1233) (-1127)))) -((-1661 (((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|)))) 38)) (-3917 (((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|))) 24)) (-2623 (((-1154 (-623 |#1|)) (-623 |#1|)) 34)) (-4007 (((-623 (-623 |#1|)) (-623 |#1|)) 30)) (-2889 (((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))) 37)) (-2140 (((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|)))) 36)) (-2488 (((-623 (-623 |#1|)) (-623 (-623 |#1|))) 28)) (-3765 (((-623 |#1|) (-623 |#1|)) 31)) (-2070 (((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|)))) 18)) (-3699 (((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|)))) 16)) (-4113 (((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|))) 14)) (-4323 (((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|)))) 39)) (-2707 (((-623 (-623 |#1|)) (-1154 (-623 |#1|))) 41))) -(((-1153 |#1|) (-10 -7 (-15 -4113 ((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|)))) (-15 -3699 ((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2070 ((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -1661 ((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -4323 ((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2707 ((-623 (-623 |#1|)) (-1154 (-623 |#1|)))) (-15 -3917 ((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)))) (-15 -2623 ((-1154 (-623 |#1|)) (-623 |#1|))) (-15 -2488 ((-623 (-623 |#1|)) (-623 (-623 |#1|)))) (-15 -4007 ((-623 (-623 |#1|)) (-623 |#1|))) (-15 -3765 ((-623 |#1|) (-623 |#1|))) (-15 -2140 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))))) (-15 -2889 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))))) (-825)) (T -1153)) -((-2889 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-2 (|:| |f1| (-623 *4)) (|:| |f2| (-623 (-623 (-623 *4)))) (|:| |f3| (-623 (-623 *4))) (|:| |f4| (-623 (-623 (-623 *4)))))) (-5 *1 (-1153 *4)) (-5 *3 (-623 (-623 (-623 *4)))))) (-2140 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-825)) (-5 *3 (-623 *6)) (-5 *5 (-623 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-623 *5)) (|:| |f3| *5) (|:| |f4| (-623 *5)))) (-5 *1 (-1153 *6)) (-5 *4 (-623 *5)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-1153 *3)))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1153 *4)) (-5 *3 (-623 *4)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-825)) (-5 *1 (-1153 *3)))) (-2623 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-1153 *4)) (-5 *3 (-623 *4)))) (-3917 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 (-623 *4)))) (-5 *1 (-1153 *4)) (-5 *3 (-623 (-623 *4))))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1153 *4)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1153 *4)) (-4 *4 (-825)))) (-1661 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) (-4 *4 (-825)) (-5 *1 (-1153 *4)))) (-2070 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *1 (-1153 *4)))) (-3699 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-623 *5)) (-4 *5 (-825)) (-5 *1 (-1153 *5)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-623 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-623 *4)))) (-5 *1 (-1153 *6)) (-5 *5 (-623 *4))))) -(-10 -7 (-15 -4113 ((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|)))) (-15 -3699 ((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2070 ((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -1661 ((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -4323 ((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2707 ((-623 (-623 |#1|)) (-1154 (-623 |#1|)))) (-15 -3917 ((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)))) (-15 -2623 ((-1154 (-623 |#1|)) (-623 |#1|))) (-15 -2488 ((-623 (-623 |#1|)) (-623 (-623 |#1|)))) (-15 -4007 ((-623 (-623 |#1|)) (-623 |#1|))) (-15 -3765 ((-623 |#1|) (-623 |#1|))) (-15 -2140 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))))) (-15 -2889 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))))) -((-1815 (($ (-623 (-623 |#1|))) 10)) (-3380 (((-623 (-623 |#1|)) $) 11)) (-2233 (((-837) $) 26))) -(((-1154 |#1|) (-10 -8 (-15 -1815 ($ (-623 (-623 |#1|)))) (-15 -3380 ((-623 (-623 |#1|)) $)) (-15 -2233 ((-837) $))) (-1069)) (T -1154)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 *3))) (-5 *1 (-1154 *3)) (-4 *3 (-1069)))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-1154 *3))))) -(-10 -8 (-15 -1815 ($ (-623 (-623 |#1|)))) (-15 -3380 ((-623 (-623 |#1|)) $)) (-15 -2233 ((-837) $))) -((-2221 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3364 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3037 (((-1233) $ |#1| |#1|) NIL (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#2| $ |#1| |#2|) NIL)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) NIL)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-623 |#2|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-2506 ((|#1| $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-4212 (((-623 |#1|) $) NIL)) (-3998 (((-112) |#1| $) NIL)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3611 (((-623 |#1|) $) NIL)) (-3166 (((-112) |#1| $) NIL)) (-3445 (((-1089) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3858 ((|#2| $) NIL (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2491 (($ $ |#2|) NIL (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3246 (($) NIL) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4344)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-2233 (((-837) $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837))) (|has| |#2| (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) NIL)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) NIL (-1489 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| |#2| (-1069))))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1155 |#1| |#2|) (-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) (-1069) (-1069)) (T -1155)) -NIL -(-13 (-1158 |#1| |#2|) (-10 -7 (-6 -4344))) -((-3261 ((|#1| (-623 |#1|)) 32)) (-3479 ((|#1| |#1| (-550)) 18)) (-1933 (((-1141 |#1|) |#1| (-895)) 15))) -(((-1156 |#1|) (-10 -7 (-15 -3261 (|#1| (-623 |#1|))) (-15 -1933 ((-1141 |#1|) |#1| (-895))) (-15 -3479 (|#1| |#1| (-550)))) (-356)) (T -1156)) -((-3479 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1156 *2)) (-4 *2 (-356)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1141 *3)) (-5 *1 (-1156 *3)) (-4 *3 (-356)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-1156 *2)) (-4 *2 (-356))))) -(-10 -7 (-15 -3261 (|#1| (-623 |#1|))) (-15 -1933 ((-1141 |#1|) |#1| (-895))) (-15 -3479 (|#1| |#1| (-550)))) -((-3364 (($) 10) (($ (-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)))) 14)) (-2505 (($ (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2971 (((-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) 39) (((-623 |#3|) $) 41)) (-3311 (($ (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2392 (($ (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1696 (((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) 54)) (-1715 (($ (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) 16)) (-3611 (((-623 |#2|) $) 19)) (-3166 (((-112) |#2| $) 59)) (-1614 (((-3 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) 58)) (-3576 (((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) 63)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-1375 (((-623 |#3|) $) 43)) (-2757 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) NIL) (((-749) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) $) NIL) (((-749) |#3| $) NIL) (((-749) (-1 (-112) |#3|) $) 68)) (-2233 (((-837) $) 27)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2264 (((-112) $ $) 49))) -(((-1157 |#1| |#2| |#3|) (-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3364 (|#1| (-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))))) (-15 -3364 (|#1|)) (-15 -2392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3311 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2971 ((-623 |#3|) |#1|)) (-15 -3457 ((-749) |#3| |#1|)) (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -2757 (|#3| |#1| |#2|)) (-15 -1375 ((-623 |#3|) |#1|)) (-15 -3166 ((-112) |#2| |#1|)) (-15 -3611 ((-623 |#2|) |#1|)) (-15 -2505 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2505 (|#1| (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2505 (|#1| (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1614 ((-3 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -1696 ((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1715 (|#1| (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3576 ((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3457 ((-749) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -2971 ((-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3457 ((-749) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -1410 ((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3404 ((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3311 (|#1| (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2392 (|#1| (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|))) (-1158 |#2| |#3|) (-1069) (-1069)) (T -1157)) -NIL -(-10 -8 (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2392 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3364 (|#1| (-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))))) (-15 -3364 (|#1|)) (-15 -2392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3311 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3404 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1410 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3457 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2971 ((-623 |#3|) |#1|)) (-15 -3457 ((-749) |#3| |#1|)) (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -2757 (|#3| |#1| |#2|)) (-15 -1375 ((-623 |#3|) |#1|)) (-15 -3166 ((-112) |#2| |#1|)) (-15 -3611 ((-623 |#2|) |#1|)) (-15 -2505 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2505 (|#1| (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2505 (|#1| (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1614 ((-3 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -1696 ((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1715 (|#1| (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3576 ((-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3457 ((-749) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -2971 ((-623 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3457 ((-749) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -1410 ((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3404 ((-112) (-1 (-112) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3311 (|#1| (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2392 (|#1| (-1 (-2 (|:| -3549 |#2|) (|:| -3859 |#3|)) (-2 (|:| -3549 |#2|) (|:| -3859 |#3|))) |#1|))) -((-2221 (((-112) $ $) 19 (-1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3364 (($) 72) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 71)) (-3037 (((-1233) $ |#1| |#1|) 99 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#2| $ |#1| |#2|) 73)) (-3994 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 45 (|has| $ (-6 -4344)))) (-2097 (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4344)))) (-3696 (((-3 |#2| "failed") |#1| $) 61)) (-2991 (($) 7 T CONST)) (-2708 (($ $) 58 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344))))) (-2505 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 47 (|has| $ (-6 -4344))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4344))) (((-3 |#2| "failed") |#1| $) 62)) (-1979 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 54 (|has| $ (-6 -4344)))) (-2924 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 56 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 53 (|has| $ (-6 -4344))) (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 52 (|has| $ (-6 -4344)))) (-3317 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4345)))) (-3263 ((|#2| $ |#1|) 88)) (-2971 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4344))) (((-623 |#2|) $) 79 (|has| $ (-6 -4344)))) (-1445 (((-112) $ (-749)) 9)) (-3096 ((|#1| $) 96 (|has| |#1| (-825)))) (-2876 (((-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 29 (|has| $ (-6 -4344))) (((-623 |#2|) $) 80 (|has| $ (-6 -4344)))) (-3922 (((-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344))))) (-2506 ((|#1| $) 95 (|has| |#1| (-825)))) (-3311 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4345))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4345)))) (-2392 (($ (-1 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1700 (((-112) $ (-749)) 10)) (-2369 (((-1127) $) 22 (-1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-4212 (((-623 |#1|) $) 63)) (-3998 (((-112) |#1| $) 64)) (-1696 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 39)) (-1715 (($ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 40)) (-3611 (((-623 |#1|) $) 93)) (-3166 (((-112) |#1| $) 92)) (-3445 (((-1089) $) 21 (-1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3858 ((|#2| $) 97 (|has| |#1| (-825)))) (-1614 (((-3 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 51)) (-2491 (($ $ |#2|) 98 (|has| $ (-6 -4345)))) (-3576 (((-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 41)) (-1410 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))))) 26 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-287 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 25 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) 24 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 23 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069)))) (($ $ (-623 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4344)) (|has| |#2| (-1069))))) (-1375 (((-623 |#2|) $) 91)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3246 (($) 49) (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 48)) (-3457 (((-749) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4344))) (((-749) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| $ (-6 -4344)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4344)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 59 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))))) (-2245 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 50)) (-2233 (((-837) $) 18 (-1489 (|has| |#2| (-595 (-837))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837)))))) (-4017 (($ (-623 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) 42)) (-3404 (((-112) (-1 (-112) (-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4344))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (-1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1158 |#1| |#2|) (-138) (-1069) (-1069)) (T -1158)) -((-2409 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) (-3364 (*1 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3549 *3) (|:| -3859 *4)))) (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *1 (-1158 *3 *4)))) (-2392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069))))) -(-13 (-592 |t#1| |t#2|) (-586 |t#1| |t#2|) (-10 -8 (-15 -2409 (|t#2| $ |t#1| |t#2|)) (-15 -3364 ($)) (-15 -3364 ($ (-623 (-2 (|:| -3549 |t#1|) (|:| -3859 |t#2|))))) (-15 -2392 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3549 |#1|) (|:| -3859 |#2|))) . T) ((-101) -1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-595 (-837)) -1489 (|has| |#2| (-1069)) (|has| |#2| (-595 (-837))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-595 (-837)))) ((-149 #0#) . T) ((-596 (-526)) |has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-481 #0#) . T) ((-481 |#2|) . T) ((-586 |#1| |#2|) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-302 (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1069))) ((-592 |#1| |#2|) . T) ((-1069) -1489 (|has| |#2| (-1069)) (|has| (-2 (|:| -3549 |#1|) (|:| -3859 |#2|)) (-1069))) ((-1182) . T)) -((-3820 (((-112)) 24)) (-2770 (((-1233) (-1127)) 26)) (-1841 (((-112)) 36)) (-2405 (((-1233)) 34)) (-4074 (((-1233) (-1127) (-1127)) 25)) (-3491 (((-112)) 37)) (-1715 (((-1233) |#1| |#2|) 44)) (-3127 (((-1233)) 20)) (-1987 (((-3 |#2| "failed") |#1|) 42)) (-4038 (((-1233)) 35))) -(((-1159 |#1| |#2|) (-10 -7 (-15 -3127 ((-1233))) (-15 -4074 ((-1233) (-1127) (-1127))) (-15 -2770 ((-1233) (-1127))) (-15 -2405 ((-1233))) (-15 -4038 ((-1233))) (-15 -3820 ((-112))) (-15 -1841 ((-112))) (-15 -3491 ((-112))) (-15 -1987 ((-3 |#2| "failed") |#1|)) (-15 -1715 ((-1233) |#1| |#2|))) (-1069) (-1069)) (T -1159)) -((-1715 (*1 *2 *3 *4) (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-1987 (*1 *2 *3) (|partial| -12 (-4 *2 (-1069)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1069)))) (-3491 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-1841 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-3820 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-4038 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-2405 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)))) (-4074 (*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)))) (-3127 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069))))) -(-10 -7 (-15 -3127 ((-1233))) (-15 -4074 ((-1233) (-1127) (-1127))) (-15 -2770 ((-1233) (-1127))) (-15 -2405 ((-1233))) (-15 -4038 ((-1233))) (-15 -3820 ((-112))) (-15 -1841 ((-112))) (-15 -3491 ((-112))) (-15 -1987 ((-3 |#2| "failed") |#1|)) (-15 -1715 ((-1233) |#1| |#2|))) -((-3075 (((-1127) (-1127)) 18)) (-3411 (((-52) (-1127)) 21))) -(((-1160) (-10 -7 (-15 -3411 ((-52) (-1127))) (-15 -3075 ((-1127) (-1127))))) (T -1160)) -((-3075 (*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1160)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-1160))))) -(-10 -7 (-15 -3411 ((-52) (-1127))) (-15 -3075 ((-1127) (-1127)))) -((-2233 (((-1162) |#1|) 11))) -(((-1161 |#1|) (-10 -7 (-15 -2233 ((-1162) |#1|))) (-1069)) (T -1161)) -((-2233 (*1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *1 (-1161 *3)) (-4 *3 (-1069))))) -(-10 -7 (-15 -2233 ((-1162) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3292 (((-623 (-1127)) $) 34)) (-4262 (((-623 (-1127)) $ (-623 (-1127))) 37)) (-1405 (((-623 (-1127)) $ (-623 (-1127))) 36)) (-2846 (((-623 (-1127)) $ (-623 (-1127))) 38)) (-1494 (((-623 (-1127)) $) 33)) (-3375 (($) 22)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3664 (((-623 (-1127)) $) 35)) (-1970 (((-1233) $ (-550)) 29) (((-1233) $) 30)) (-2451 (($ (-837) (-550)) 26) (($ (-837) (-550) (-837)) NIL)) (-2233 (((-837) $) 40) (($ (-837)) 24)) (-2264 (((-112) $ $) NIL))) -(((-1162) (-13 (-1069) (-10 -8 (-15 -2233 ($ (-837))) (-15 -2451 ($ (-837) (-550))) (-15 -2451 ($ (-837) (-550) (-837))) (-15 -1970 ((-1233) $ (-550))) (-15 -1970 ((-1233) $)) (-15 -3664 ((-623 (-1127)) $)) (-15 -3292 ((-623 (-1127)) $)) (-15 -3375 ($)) (-15 -1494 ((-623 (-1127)) $)) (-15 -2846 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -4262 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -1405 ((-623 (-1127)) $ (-623 (-1127))))))) (T -1162)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-1162)))) (-2451 (*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-1162)))) (-2451 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-1162)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1162)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1162)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162)))) (-3375 (*1 *1) (-5 *1 (-1162))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162)))) (-2846 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162)))) (-4262 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162)))) (-1405 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(-13 (-1069) (-10 -8 (-15 -2233 ($ (-837))) (-15 -2451 ($ (-837) (-550))) (-15 -2451 ($ (-837) (-550) (-837))) (-15 -1970 ((-1233) $ (-550))) (-15 -1970 ((-1233) $)) (-15 -3664 ((-623 (-1127)) $)) (-15 -3292 ((-623 (-1127)) $)) (-15 -3375 ($)) (-15 -1494 ((-623 (-1127)) $)) (-15 -2846 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -4262 ((-623 (-1127)) $ (-623 (-1127)))) (-15 -1405 ((-623 (-1127)) $ (-623 (-1127)))))) -((-2221 (((-112) $ $) NIL)) (-1492 (((-1127) $ (-1127)) 17) (((-1127) $) 16)) (-2363 (((-1127) $ (-1127)) 15)) (-3053 (($ $ (-1127)) NIL)) (-3278 (((-3 (-1127) "failed") $) 11)) (-3057 (((-1127) $) 8)) (-1581 (((-3 (-1127) "failed") $) 12)) (-3258 (((-1127) $) 9)) (-4046 (($ (-381)) NIL) (($ (-381) (-1127)) NIL)) (-1856 (((-381) $) NIL)) (-2369 (((-1127) $) NIL)) (-2216 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2042 (((-112) $) 18)) (-2233 (((-837) $) NIL)) (-4231 (($ $) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1163) (-13 (-357 (-381) (-1127)) (-10 -8 (-15 -1492 ((-1127) $ (-1127))) (-15 -1492 ((-1127) $)) (-15 -3057 ((-1127) $)) (-15 -3278 ((-3 (-1127) "failed") $)) (-15 -1581 ((-3 (-1127) "failed") $)) (-15 -2042 ((-112) $))))) (T -1163)) -((-1492 (*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1163)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1163)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1163)))) (-3278 (*1 *2 *1) (|partial| -12 (-5 *2 (-1127)) (-5 *1 (-1163)))) (-1581 (*1 *2 *1) (|partial| -12 (-5 *2 (-1127)) (-5 *1 (-1163)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163))))) -(-13 (-357 (-381) (-1127)) (-10 -8 (-15 -1492 ((-1127) $ (-1127))) (-15 -1492 ((-1127) $)) (-15 -3057 ((-1127) $)) (-15 -3278 ((-3 (-1127) "failed") $)) (-15 -1581 ((-3 (-1127) "failed") $)) (-15 -2042 ((-112) $)))) -((-4303 (((-3 (-550) "failed") |#1|) 19)) (-2777 (((-3 (-550) "failed") |#1|) 14)) (-3108 (((-550) (-1127)) 28))) -(((-1164 |#1|) (-10 -7 (-15 -4303 ((-3 (-550) "failed") |#1|)) (-15 -2777 ((-3 (-550) "failed") |#1|)) (-15 -3108 ((-550) (-1127)))) (-1021)) (T -1164)) -((-3108 (*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-550)) (-5 *1 (-1164 *4)) (-4 *4 (-1021)))) (-2777 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1164 *3)) (-4 *3 (-1021)))) (-4303 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1164 *3)) (-4 *3 (-1021))))) -(-10 -7 (-15 -4303 ((-3 (-550) "failed") |#1|)) (-15 -2777 ((-3 (-550) "failed") |#1|)) (-15 -3108 ((-550) (-1127)))) -((-2621 (((-1102 (-219))) 9))) -(((-1165) (-10 -7 (-15 -2621 ((-1102 (-219)))))) (T -1165)) -((-2621 (*1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1165))))) -(-10 -7 (-15 -2621 ((-1102 (-219))))) -((-4187 (($) 11)) (-4233 (($ $) 35)) (-4206 (($ $) 33)) (-2869 (($ $) 25)) (-4255 (($ $) 17)) (-3363 (($ $) 15)) (-4244 (($ $) 19)) (-2905 (($ $) 30)) (-4218 (($ $) 34)) (-2880 (($ $) 29))) -(((-1166 |#1|) (-10 -8 (-15 -4187 (|#1|)) (-15 -4233 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -2880 (|#1| |#1|))) (-1167)) (T -1166)) -NIL -(-10 -8 (-15 -4187 (|#1|)) (-15 -4233 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -2880 (|#1| |#1|))) -((-4160 (($ $) 26)) (-2820 (($ $) 11)) (-4137 (($ $) 27)) (-2796 (($ $) 10)) (-4183 (($ $) 28)) (-2844 (($ $) 9)) (-4187 (($) 16)) (-3080 (($ $) 19)) (-1644 (($ $) 18)) (-4194 (($ $) 29)) (-2856 (($ $) 8)) (-4171 (($ $) 30)) (-2832 (($ $) 7)) (-4149 (($ $) 31)) (-2807 (($ $) 6)) (-4233 (($ $) 20)) (-2893 (($ $) 32)) (-4206 (($ $) 21)) (-2869 (($ $) 33)) (-4255 (($ $) 22)) (-4117 (($ $) 34)) (-3363 (($ $) 23)) (-4127 (($ $) 35)) (-4244 (($ $) 24)) (-2905 (($ $) 36)) (-4218 (($ $) 25)) (-2880 (($ $) 37)) (** (($ $ $) 17))) -(((-1167) (-138)) (T -1167)) -((-4187 (*1 *1) (-4 *1 (-1167)))) -(-13 (-1170) (-94) (-484) (-35) (-277) (-10 -8 (-15 -4187 ($)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1170) . T)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-1337 ((|#1| $) 17)) (-1328 (($ |#1| (-623 $)) 23) (($ (-623 |#1|)) 27) (($ |#1|) 25)) (-3368 (((-112) $ (-749)) 48)) (-1629 ((|#1| $ |#1|) 14 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 13 (|has| $ (-6 -4345)))) (-2991 (($) NIL T CONST)) (-2971 (((-623 |#1|) $) 52 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 43)) (-3687 (((-112) $ $) 33 (|has| |#1| (-1069)))) (-1445 (((-112) $ (-749)) 41)) (-2876 (((-623 |#1|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-3311 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 22)) (-1700 (((-112) $ (-749)) 40)) (-2951 (((-623 |#1|) $) 37)) (-1515 (((-112) $) 36)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-1410 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 74)) (-4217 (((-112) $) 9)) (-2819 (($) 10)) (-2757 ((|#1| $ "value") NIL)) (-1456 (((-550) $ $) 32)) (-4024 (((-623 $) $) 59)) (-3604 (((-112) $ $) 77)) (-3235 (((-623 $) $) 72)) (-2650 (($ $) 73)) (-2320 (((-112) $) 56)) (-3457 (((-749) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4344))) (((-749) |#1| $) 16 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2435 (($ $) 58)) (-2233 (((-837) $) 61 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 12)) (-1977 (((-112) $ $) 29 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 28 (|has| |#1| (-1069)))) (-3307 (((-749) $) 39 (|has| $ (-6 -4344))))) -(((-1168 |#1|) (-13 (-984 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -1328 ($ |#1| (-623 $))) (-15 -1328 ($ (-623 |#1|))) (-15 -1328 ($ |#1|)) (-15 -2320 ((-112) $)) (-15 -2650 ($ $)) (-15 -3235 ((-623 $) $)) (-15 -3604 ((-112) $ $)) (-15 -4024 ((-623 $) $)))) (-1069)) (T -1168)) -((-2320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1069)))) (-1328 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-1168 *2))) (-5 *1 (-1168 *2)) (-4 *2 (-1069)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-1168 *3)))) (-1328 (*1 *1 *2) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1069)))) (-2650 (*1 *1 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1069)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-623 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1069)))) (-3604 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1069)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-623 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1069))))) -(-13 (-984 |#1|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -1328 ($ |#1| (-623 $))) (-15 -1328 ($ (-623 |#1|))) (-15 -1328 ($ |#1|)) (-15 -2320 ((-112) $)) (-15 -2650 ($ $)) (-15 -3235 ((-623 $) $)) (-15 -3604 ((-112) $ $)) (-15 -4024 ((-623 $) $)))) -((-2820 (($ $) 15)) (-2844 (($ $) 12)) (-2856 (($ $) 10)) (-2832 (($ $) 17))) -(((-1169 |#1|) (-10 -8 (-15 -2832 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2820 (|#1| |#1|))) (-1170)) (T -1169)) -NIL -(-10 -8 (-15 -2832 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2820 (|#1| |#1|))) -((-2820 (($ $) 11)) (-2796 (($ $) 10)) (-2844 (($ $) 9)) (-2856 (($ $) 8)) (-2832 (($ $) 7)) (-2807 (($ $) 6))) -(((-1170) (-138)) (T -1170)) -((-2820 (*1 *1 *1) (-4 *1 (-1170))) (-2796 (*1 *1 *1) (-4 *1 (-1170))) (-2844 (*1 *1 *1) (-4 *1 (-1170))) (-2856 (*1 *1 *1) (-4 *1 (-1170))) (-2832 (*1 *1 *1) (-4 *1 (-1170))) (-2807 (*1 *1 *1) (-4 *1 (-1170)))) -(-13 (-10 -8 (-15 -2807 ($ $)) (-15 -2832 ($ $)) (-15 -2856 ($ $)) (-15 -2844 ($ $)) (-15 -2796 ($ $)) (-15 -2820 ($ $)))) -((-2868 ((|#2| |#2|) 88)) (-2326 (((-112) |#2|) 26)) (-1406 ((|#2| |#2|) 30)) (-1415 ((|#2| |#2|) 32)) (-1875 ((|#2| |#2| (-1145)) 83) ((|#2| |#2|) 84)) (-1828 (((-167 |#2|) |#2|) 28)) (-3356 ((|#2| |#2| (-1145)) 85) ((|#2| |#2|) 86))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -1875 (|#2| |#2|)) (-15 -1875 (|#2| |#2| (-1145))) (-15 -3356 (|#2| |#2|)) (-15 -3356 (|#2| |#2| (-1145))) (-15 -2868 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -2326 ((-112) |#2|)) (-15 -1828 ((-167 |#2|) |#2|))) (-13 (-444) (-825) (-1012 (-550)) (-619 (-550))) (-13 (-27) (-1167) (-423 |#1|))) (T -1171)) -((-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-167 *3)) (-5 *1 (-1171 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *4))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3)))))) -(-10 -7 (-15 -1875 (|#2| |#2|)) (-15 -1875 (|#2| |#2| (-1145))) (-15 -3356 (|#2| |#2|)) (-15 -3356 (|#2| |#2| (-1145))) (-15 -2868 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -2326 ((-112) |#2|)) (-15 -1828 ((-167 |#2|) |#2|))) -((-1317 ((|#4| |#4| |#1|) 27)) (-2174 ((|#4| |#4| |#1|) 28))) -(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1317 (|#4| |#4| |#1|)) (-15 -2174 (|#4| |#4| |#1|))) (-542) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -1172)) -((-2174 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1172 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-1317 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1172 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(-10 -7 (-15 -1317 (|#4| |#4| |#1|)) (-15 -2174 (|#4| |#4| |#1|))) -((-1758 ((|#2| |#2|) 133)) (-2840 ((|#2| |#2|) 130)) (-2384 ((|#2| |#2|) 121)) (-1359 ((|#2| |#2|) 118)) (-2634 ((|#2| |#2|) 126)) (-4156 ((|#2| |#2|) 114)) (-1767 ((|#2| |#2|) 43)) (-2056 ((|#2| |#2|) 94)) (-3788 ((|#2| |#2|) 74)) (-1430 ((|#2| |#2|) 128)) (-1527 ((|#2| |#2|) 116)) (-4318 ((|#2| |#2|) 138)) (-3485 ((|#2| |#2|) 136)) (-1764 ((|#2| |#2|) 137)) (-1908 ((|#2| |#2|) 135)) (-3543 ((|#2| |#2|) 148)) (-2645 ((|#2| |#2|) 30 (-12 (|has| |#2| (-596 (-866 |#1|))) (|has| |#2| (-860 |#1|)) (|has| |#1| (-596 (-866 |#1|))) (|has| |#1| (-860 |#1|))))) (-3360 ((|#2| |#2|) 75)) (-2996 ((|#2| |#2|) 139)) (-2062 ((|#2| |#2|) 140)) (-3617 ((|#2| |#2|) 127)) (-1677 ((|#2| |#2|) 115)) (-2072 ((|#2| |#2|) 134)) (-2367 ((|#2| |#2|) 132)) (-3651 ((|#2| |#2|) 122)) (-3076 ((|#2| |#2|) 120)) (-1996 ((|#2| |#2|) 124)) (-2402 ((|#2| |#2|) 112))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -2062 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3360 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -2840 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -1908 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -1764 (|#2| |#2|)) (-15 -4318 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-866 |#1|))) (IF (|has| |#2| (-596 (-866 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -2645 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-825) (-444)) (-13 (-423 |#1|) (-1167))) (T -1173)) -((-2645 (*1 *2 *2) (-12 (-4 *3 (-596 (-866 *3))) (-4 *3 (-860 *3)) (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-596 (-866 *3))) (-4 *2 (-860 *3)) (-4 *2 (-13 (-423 *3) (-1167))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1764 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1908 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2996 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3360 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2056 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167))))) (-2062 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-423 *3) (-1167)))))) -(-10 -7 (-15 -2062 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3360 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -2840 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -1908 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -1764 (|#2| |#2|)) (-15 -4318 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-866 |#1|))) (IF (|has| |#2| (-596 (-866 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -2645 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1404 (((-112) |#5| $) 60) (((-112) $) 102)) (-3624 ((|#5| |#5| $) 75)) (-2097 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3296 (((-623 |#5|) (-623 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2288 (((-3 $ "failed") (-623 |#5|)) 126)) (-3870 (((-3 $ "failed") $) 112)) (-2962 ((|#5| |#5| $) 94)) (-4240 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-1621 ((|#5| |#5| $) 98)) (-2924 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2466 (((-2 (|:| -1953 (-623 |#5|)) (|:| -4046 (-623 |#5|))) $) 55)) (-2831 (((-112) |#5| $) 58) (((-112) $) 103)) (-1765 ((|#4| $) 108)) (-2001 (((-3 |#5| "failed") $) 110)) (-3896 (((-623 |#5|) $) 49)) (-3705 (((-112) |#5| $) 67) (((-112) $) 107)) (-2474 ((|#5| |#5| $) 81)) (-3098 (((-112) $ $) 27)) (-1631 (((-112) |#5| $) 63) (((-112) $) 105)) (-3959 ((|#5| |#5| $) 78)) (-3858 (((-3 |#5| "failed") $) 109)) (-4268 (($ $ |#5|) 127)) (-3661 (((-749) $) 52)) (-2245 (($ (-623 |#5|)) 124)) (-3537 (($ $ |#4|) 122)) (-1446 (($ $ |#4|) 121)) (-3236 (($ $) 120)) (-2233 (((-837) $) NIL) (((-623 |#5|) $) 113)) (-4265 (((-749) $) 130)) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-1770 (((-112) $ (-1 (-112) |#5| (-623 |#5|))) 100)) (-1751 (((-623 |#4|) $) 115)) (-3636 (((-112) |#4| $) 118)) (-2264 (((-112) $ $) 19))) -(((-1174 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4265 ((-749) |#1|)) (-15 -4268 (|#1| |#1| |#5|)) (-15 -2097 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3636 ((-112) |#4| |#1|)) (-15 -1751 ((-623 |#4|) |#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -2001 ((-3 |#5| "failed") |#1|)) (-15 -3858 ((-3 |#5| "failed") |#1|)) (-15 -1621 (|#5| |#5| |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -2962 (|#5| |#5| |#1|)) (-15 -2474 (|#5| |#5| |#1|)) (-15 -3959 (|#5| |#5| |#1|)) (-15 -3624 (|#5| |#5| |#1|)) (-15 -3296 ((-623 |#5|) (-623 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2924 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3705 ((-112) |#1|)) (-15 -1631 ((-112) |#1|)) (-15 -1404 ((-112) |#1|)) (-15 -1770 ((-112) |#1| (-1 (-112) |#5| (-623 |#5|)))) (-15 -3705 ((-112) |#5| |#1|)) (-15 -1631 ((-112) |#5| |#1|)) (-15 -1404 ((-112) |#5| |#1|)) (-15 -4240 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2831 ((-112) |#1|)) (-15 -2831 ((-112) |#5| |#1|)) (-15 -2466 ((-2 (|:| -1953 (-623 |#5|)) (|:| -4046 (-623 |#5|))) |#1|)) (-15 -3661 ((-749) |#1|)) (-15 -3896 ((-623 |#5|) |#1|)) (-15 -3526 ((-3 (-2 (|:| |bas| |#1|) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3526 ((-3 (-2 (|:| |bas| |#1|) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#4|)) (-15 -1765 (|#4| |#1|)) (-15 -2288 ((-3 |#1| "failed") (-623 |#5|))) (-15 -2233 ((-623 |#5|) |#1|)) (-15 -2245 (|#1| (-623 |#5|))) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2097 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) (-1175 |#2| |#3| |#4| |#5|) (-542) (-771) (-825) (-1035 |#2| |#3| |#4|)) (T -1174)) -NIL -(-10 -8 (-15 -4265 ((-749) |#1|)) (-15 -4268 (|#1| |#1| |#5|)) (-15 -2097 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3636 ((-112) |#4| |#1|)) (-15 -1751 ((-623 |#4|) |#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -2001 ((-3 |#5| "failed") |#1|)) (-15 -3858 ((-3 |#5| "failed") |#1|)) (-15 -1621 (|#5| |#5| |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -2962 (|#5| |#5| |#1|)) (-15 -2474 (|#5| |#5| |#1|)) (-15 -3959 (|#5| |#5| |#1|)) (-15 -3624 (|#5| |#5| |#1|)) (-15 -3296 ((-623 |#5|) (-623 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2924 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3705 ((-112) |#1|)) (-15 -1631 ((-112) |#1|)) (-15 -1404 ((-112) |#1|)) (-15 -1770 ((-112) |#1| (-1 (-112) |#5| (-623 |#5|)))) (-15 -3705 ((-112) |#5| |#1|)) (-15 -1631 ((-112) |#5| |#1|)) (-15 -1404 ((-112) |#5| |#1|)) (-15 -4240 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2831 ((-112) |#1|)) (-15 -2831 ((-112) |#5| |#1|)) (-15 -2466 ((-2 (|:| -1953 (-623 |#5|)) (|:| -4046 (-623 |#5|))) |#1|)) (-15 -3661 ((-749) |#1|)) (-15 -3896 ((-623 |#5|) |#1|)) (-15 -3526 ((-3 (-2 (|:| |bas| |#1|) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3526 ((-3 (-2 (|:| |bas| |#1|) (|:| -3940 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#4|)) (-15 -1765 (|#4| |#1|)) (-15 -2288 ((-3 |#1| "failed") (-623 |#5|))) (-15 -2233 ((-623 |#5|) |#1|)) (-15 -2245 (|#1| (-623 |#5|))) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2097 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2924 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2233 ((-837) |#1|)) (-15 -2264 ((-112) |#1| |#1|))) -((-2221 (((-112) $ $) 7)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) 85)) (-3186 (((-623 $) (-623 |#4|)) 86)) (-1516 (((-623 |#3|) $) 33)) (-3935 (((-112) $) 26)) (-3885 (((-112) $) 17 (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) 101) (((-112) $) 97)) (-3624 ((|#4| |#4| $) 92)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) 27)) (-3368 (((-112) $ (-749)) 44)) (-2097 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) 79)) (-2991 (($) 45 T CONST)) (-3711 (((-112) $) 22 (|has| |#1| (-542)))) (-2751 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3305 (((-112) $ $) 23 (|has| |#1| (-542)))) (-2248 (((-112) $) 25 (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3694 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) 36)) (-2202 (($ (-623 |#4|)) 35)) (-3870 (((-3 $ "failed") $) 82)) (-2962 ((|#4| |#4| $) 89)) (-2708 (($ $) 68 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#4| $) 67 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1621 ((|#4| |#4| $) 87)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) 105)) (-2971 (((-623 |#4|) $) 52 (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) 104) (((-112) $) 103)) (-1765 ((|#3| $) 34)) (-1445 (((-112) $ (-749)) 43)) (-2876 (((-623 |#4|) $) 53 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) 47)) (-3704 (((-623 |#3|) $) 32)) (-4159 (((-112) |#3| $) 31)) (-1700 (((-112) $ (-749)) 42)) (-2369 (((-1127) $) 9)) (-2001 (((-3 |#4| "failed") $) 83)) (-3896 (((-623 |#4|) $) 107)) (-3705 (((-112) |#4| $) 99) (((-112) $) 95)) (-2474 ((|#4| |#4| $) 90)) (-3098 (((-112) $ $) 110)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) 100) (((-112) $) 96)) (-3959 ((|#4| |#4| $) 91)) (-3445 (((-1089) $) 10)) (-3858 (((-3 |#4| "failed") $) 84)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3747 (((-3 $ "failed") $ |#4|) 78)) (-4268 (($ $ |#4|) 77)) (-1410 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) 38)) (-4217 (((-112) $) 41)) (-2819 (($) 40)) (-3661 (((-749) $) 106)) (-3457 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1069)) (|has| $ (-6 -4344)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4344)))) (-2435 (($ $) 39)) (-2451 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) 60)) (-3537 (($ $ |#3|) 28)) (-1446 (($ $ |#3|) 30)) (-3236 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-2233 (((-837) $) 11) (((-623 |#4|) $) 37)) (-4265 (((-749) $) 76 (|has| |#3| (-361)))) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3404 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) 81)) (-3636 (((-112) |#3| $) 80)) (-2264 (((-112) $ $) 6)) (-3307 (((-749) $) 46 (|has| $ (-6 -4344))))) -(((-1175 |#1| |#2| |#3| |#4|) (-138) (-542) (-771) (-825) (-1035 |t#1| |t#2| |t#3|)) (T -1175)) -((-3098 (*1 *2 *1 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-3526 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3940 (-623 *8)))) (-5 *3 (-623 *8)) (-4 *1 (-1175 *5 *6 *7 *8)))) (-3526 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3940 (-623 *9)))) (-5 *3 (-623 *9)) (-4 *1 (-1175 *6 *7 *8 *9)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *6)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-749)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-2 (|:| -1953 (-623 *6)) (|:| -4046 (-623 *6)))))) (-2831 (*1 *2 *3 *1) (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-4240 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1175 *5 *6 *7 *3)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112)))) (-1404 (*1 *2 *3 *1) (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-1631 (*1 *2 *3 *1) (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-3705 (*1 *2 *3 *1) (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-623 *7))) (-4 *1 (-1175 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) (-2924 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1175 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *2 (-1035 *5 *6 *7)))) (-3296 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1175 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)))) (-3624 (*1 *2 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-3959 (*1 *2 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-2474 (*1 *2 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-2962 (*1 *2 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-1175 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1035 *2 *3 *4)))) (-1621 (*1 *2 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1175 *4 *5 *6 *7)))) (-3393 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| -1953 *1) (|:| -4046 (-623 *7))))) (-5 *3 (-623 *7)) (-4 *1 (-1175 *4 *5 *6 *7)))) (-3858 (*1 *2 *1) (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-2001 (*1 *2 *1) (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-3870 (*1 *1 *1) (|partial| -12 (-4 *1 (-1175 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1035 *2 *3 *4)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5)))) (-3636 (*1 *2 *3 *1) (-12 (-4 *1 (-1175 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1035 *4 *5 *3)) (-5 *2 (-112)))) (-2097 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1175 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1035 *4 *5 *3)))) (-3747 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-4268 (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) -(-13 (-950 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4344) (-6 -4345) (-15 -3098 ((-112) $ $)) (-15 -3526 ((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |t#4|))) "failed") (-623 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3526 ((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |t#4|))) "failed") (-623 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3896 ((-623 |t#4|) $)) (-15 -3661 ((-749) $)) (-15 -2466 ((-2 (|:| -1953 (-623 |t#4|)) (|:| -4046 (-623 |t#4|))) $)) (-15 -2831 ((-112) |t#4| $)) (-15 -2831 ((-112) $)) (-15 -4240 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1404 ((-112) |t#4| $)) (-15 -1631 ((-112) |t#4| $)) (-15 -3705 ((-112) |t#4| $)) (-15 -1770 ((-112) $ (-1 (-112) |t#4| (-623 |t#4|)))) (-15 -1404 ((-112) $)) (-15 -1631 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -2924 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3296 ((-623 |t#4|) (-623 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3624 (|t#4| |t#4| $)) (-15 -3959 (|t#4| |t#4| $)) (-15 -2474 (|t#4| |t#4| $)) (-15 -2962 (|t#4| |t#4| $)) (-15 -3236 ($ $)) (-15 -1621 (|t#4| |t#4| $)) (-15 -3186 ((-623 $) (-623 |t#4|))) (-15 -3393 ((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |t#4|)))) (-623 |t#4|))) (-15 -3858 ((-3 |t#4| "failed") $)) (-15 -2001 ((-3 |t#4| "failed") $)) (-15 -3870 ((-3 $ "failed") $)) (-15 -1751 ((-623 |t#3|) $)) (-15 -3636 ((-112) |t#3| $)) (-15 -2097 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3747 ((-3 $ "failed") $ |t#4|)) (-15 -4268 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -4265 ((-749) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-837)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1069) . T) ((-1182) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1145)) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2666 (((-926 |#1|) $ (-749)) 17) (((-926 |#1|) $ (-749) (-749)) NIL)) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $ (-1145)) NIL) (((-749) $ (-1145) (-749)) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3438 (((-112) $) NIL)) (-1488 (($ $ (-623 (-1145)) (-623 (-522 (-1145)))) NIL) (($ $ (-1145) (-522 (-1145))) NIL) (($ |#1| (-522 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-2149 (($ $ (-1145)) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145) |#1|) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-2192 (($ (-1 $) (-1145) |#1|) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4268 (($ $ (-749)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (($ $ (-1145) $) NIL) (($ $ (-623 (-1145)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL)) (-2798 (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-3661 (((-522 (-1145)) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-1145)) NIL) (($ (-926 |#1|)) NIL)) (-1708 ((|#1| $ (-522 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (((-926 |#1|) $ (-749)) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) NIL T CONST)) (-2700 (($) NIL T CONST)) (-1901 (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1176 |#1|) (-13 (-719 |#1| (-1145)) (-10 -8 (-15 -1708 ((-926 |#1|) $ (-749))) (-15 -2233 ($ (-1145))) (-15 -2233 ($ (-926 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $ (-1145) |#1|)) (-15 -2192 ($ (-1 $) (-1145) |#1|))) |%noBranch|))) (-1021)) (T -1176)) -((-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-926 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1021)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1176 *3)) (-4 *3 (-1021)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-5 *1 (-1176 *3)))) (-2149 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)))) (-2192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1145)) (-5 *1 (-1176 *4)) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1021))))) -(-13 (-719 |#1| (-1145)) (-10 -8 (-15 -1708 ((-926 |#1|) $ (-749))) (-15 -2233 ($ (-1145))) (-15 -2233 ($ (-926 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $ (-1145) |#1|)) (-15 -2192 ($ (-1 $) (-1145) |#1|))) |%noBranch|))) -((-2661 (($ |#1| (-623 (-623 (-917 (-219)))) (-112)) 19)) (-3315 (((-112) $ (-112)) 18)) (-3794 (((-112) $) 17)) (-1582 (((-623 (-623 (-917 (-219)))) $) 13)) (-3283 ((|#1| $) 8)) (-4242 (((-112) $) 15))) -(((-1177 |#1|) (-10 -8 (-15 -3283 (|#1| $)) (-15 -1582 ((-623 (-623 (-917 (-219)))) $)) (-15 -4242 ((-112) $)) (-15 -3794 ((-112) $)) (-15 -3315 ((-112) $ (-112))) (-15 -2661 ($ |#1| (-623 (-623 (-917 (-219)))) (-112)))) (-948)) (T -1177)) -((-2661 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-112)) (-5 *1 (-1177 *2)) (-4 *2 (-948)))) (-3315 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-1177 *3)) (-4 *3 (-948)))) (-3283 (*1 *2 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-948))))) -(-10 -8 (-15 -3283 (|#1| $)) (-15 -1582 ((-623 (-623 (-917 (-219)))) $)) (-15 -4242 ((-112) $)) (-15 -3794 ((-112) $)) (-15 -3315 ((-112) $ (-112))) (-15 -2661 ($ |#1| (-623 (-623 (-917 (-219)))) (-112)))) -((-2065 (((-917 (-219)) (-917 (-219))) 25)) (-2712 (((-917 (-219)) (-219) (-219) (-219) (-219)) 10)) (-1302 (((-623 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-623 (-623 (-219)))) 37)) (-3451 (((-219) (-917 (-219)) (-917 (-219))) 21)) (-1442 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 22)) (-1801 (((-623 (-623 (-219))) (-550)) 31)) (-2370 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 20)) (-2358 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 19)) (* (((-917 (-219)) (-219) (-917 (-219))) 18))) -(((-1178) (-10 -7 (-15 -2712 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -2358 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -2370 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -3451 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -1442 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -2065 ((-917 (-219)) (-917 (-219)))) (-15 -1801 ((-623 (-623 (-219))) (-550))) (-15 -1302 ((-623 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-623 (-623 (-219))))))) (T -1178)) -((-1302 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-623 (-623 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 (-917 *4))) (-5 *1 (-1178)) (-5 *3 (-917 *4)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-1178)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1178)))) (-2370 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1178)))) (-2712 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)) (-5 *3 (-219))))) -(-10 -7 (-15 -2712 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -2358 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -2370 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -3451 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -1442 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -2065 ((-917 (-219)) (-917 (-219)))) (-15 -1801 ((-623 (-623 (-219))) (-550))) (-15 -1302 ((-623 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-623 (-623 (-219)))))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2097 ((|#1| $ (-749)) 13)) (-3839 (((-749) $) 12)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2233 (((-932 |#1|) $) 10) (($ (-932 |#1|)) 9) (((-837) $) 23 (|has| |#1| (-595 (-837))))) (-2264 (((-112) $ $) 16 (|has| |#1| (-1069))))) -(((-1179 |#1|) (-13 (-595 (-932 |#1|)) (-10 -8 (-15 -2233 ($ (-932 |#1|))) (-15 -2097 (|#1| $ (-749))) (-15 -3839 ((-749) $)) (IF (|has| |#1| (-595 (-837))) (-6 (-595 (-837))) |%noBranch|) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) (-1182)) (T -1179)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-932 *3)) (-4 *3 (-1182)) (-5 *1 (-1179 *3)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1179 *2)) (-4 *2 (-1182)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1179 *3)) (-4 *3 (-1182))))) -(-13 (-595 (-932 |#1|)) (-10 -8 (-15 -2233 ($ (-932 |#1|))) (-15 -2097 (|#1| $ (-749))) (-15 -3839 ((-749) $)) (IF (|has| |#1| (-595 (-837))) (-6 (-595 (-837))) |%noBranch|) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|))) -((-1675 (((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-550)) 80)) (-2702 (((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 74)) (-2157 (((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 59))) -(((-1180 |#1|) (-10 -7 (-15 -2702 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -2157 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -1675 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-550)))) (-342)) (T -1180)) -((-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-342)) (-5 *2 (-411 (-1141 (-1141 *5)))) (-5 *1 (-1180 *5)) (-5 *3 (-1141 (-1141 *5))))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1141 (-1141 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1141 (-1141 *4))))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1141 (-1141 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1141 (-1141 *4)))))) -(-10 -7 (-15 -2702 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -2157 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -1675 ((-411 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-550)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 9) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1181) (-1052)) (T -1181)) -NIL -(-1052) -NIL -(((-1182) (-138)) (T -1182)) -NIL -(-13 (-10 -7 (-6 -2836))) -((-3239 (((-112)) 15)) (-4246 (((-1233) (-623 |#1|) (-623 |#1|)) 19) (((-1233) (-623 |#1|)) 20)) (-1445 (((-112) |#1| |#1|) 32 (|has| |#1| (-825)))) (-1700 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-3012 ((|#1| (-623 |#1|)) 33 (|has| |#1| (-825))) ((|#1| (-623 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-3715 (((-2 (|:| -1270 (-623 |#1|)) (|:| -3338 (-623 |#1|)))) 17))) -(((-1183 |#1|) (-10 -7 (-15 -4246 ((-1233) (-623 |#1|))) (-15 -4246 ((-1233) (-623 |#1|) (-623 |#1|))) (-15 -3715 ((-2 (|:| -1270 (-623 |#1|)) (|:| -3338 (-623 |#1|))))) (-15 -1700 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3012 (|#1| (-623 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3239 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -3012 (|#1| (-623 |#1|))) (-15 -1445 ((-112) |#1| |#1|))) |%noBranch|)) (-1069)) (T -1183)) -((-1445 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-825)) (-4 *3 (-1069)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-825)) (-5 *1 (-1183 *2)))) (-3239 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-1069)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-1069)))) (-1700 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1069)) (-5 *2 (-112)) (-5 *1 (-1183 *3)))) (-1700 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-1069)))) (-3715 (*1 *2) (-12 (-5 *2 (-2 (|:| -1270 (-623 *3)) (|:| -3338 (-623 *3)))) (-5 *1 (-1183 *3)) (-4 *3 (-1069)))) (-4246 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-5 *2 (-1233)) (-5 *1 (-1183 *4)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-5 *2 (-1233)) (-5 *1 (-1183 *4))))) -(-10 -7 (-15 -4246 ((-1233) (-623 |#1|))) (-15 -4246 ((-1233) (-623 |#1|) (-623 |#1|))) (-15 -3715 ((-2 (|:| -1270 (-623 |#1|)) (|:| -3338 (-623 |#1|))))) (-15 -1700 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3012 (|#1| (-623 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3239 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -3012 (|#1| (-623 |#1|))) (-15 -1445 ((-112) |#1| |#1|))) |%noBranch|)) -((-4220 (((-1233) (-623 (-1145)) (-623 (-1145))) 13) (((-1233) (-623 (-1145))) 11)) (-2076 (((-1233)) 14)) (-2597 (((-2 (|:| -3338 (-623 (-1145))) (|:| -1270 (-623 (-1145))))) 18))) -(((-1184) (-10 -7 (-15 -4220 ((-1233) (-623 (-1145)))) (-15 -4220 ((-1233) (-623 (-1145)) (-623 (-1145)))) (-15 -2597 ((-2 (|:| -3338 (-623 (-1145))) (|:| -1270 (-623 (-1145)))))) (-15 -2076 ((-1233))))) (T -1184)) -((-2076 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1184)))) (-2597 (*1 *2) (-12 (-5 *2 (-2 (|:| -3338 (-623 (-1145))) (|:| -1270 (-623 (-1145))))) (-5 *1 (-1184)))) (-4220 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1184)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1184))))) -(-10 -7 (-15 -4220 ((-1233) (-623 (-1145)))) (-15 -4220 ((-1233) (-623 (-1145)) (-623 (-1145)))) (-15 -2597 ((-2 (|:| -3338 (-623 (-1145))) (|:| -1270 (-623 (-1145)))))) (-15 -2076 ((-1233)))) -((-2318 (($ $) 17)) (-1568 (((-112) $) 24))) -(((-1185 |#1|) (-10 -8 (-15 -2318 (|#1| |#1|)) (-15 -1568 ((-112) |#1|))) (-1186)) (T -1185)) -NIL -(-10 -8 (-15 -2318 (|#1| |#1|)) (-15 -1568 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 49)) (-2207 (((-411 $) $) 50)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-1568 (((-112) $) 51)) (-2419 (((-112) $) 30)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1735 (((-411 $) $) 48)) (-3409 (((-3 $ "failed") $ $) 40)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41)) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) -(((-1186) (-138)) (T -1186)) -((-1568 (*1 *2 *1) (-12 (-4 *1 (-1186)) (-5 *2 (-112)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1186)))) (-2318 (*1 *1 *1) (-4 *1 (-1186))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1186))))) -(-13 (-444) (-10 -8 (-15 -1568 ((-112) $)) (-15 -2207 ((-411 $) $)) (-15 -2318 ($ $)) (-15 -1735 ((-411 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-837)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2392 (((-1192 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1192 |#1| |#3| |#5|)) 23))) -(((-1187 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2392 ((-1192 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1192 |#1| |#3| |#5|)))) (-1021) (-1021) (-1145) (-1145) |#1| |#2|) (T -1187)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5 *7 *9)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-14 *7 (-1145)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1192 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1145))))) -(-10 -7 (-15 -2392 ((-1192 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1192 |#1| |#3| |#5|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ (-550)) 96) (($ $ (-550) (-550)) 95)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 103)) (-4160 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 160 (|has| |#1| (-356)))) (-2207 (((-411 $) $) 161 (|has| |#1| (-356)))) (-1745 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) 151 (|has| |#1| (-356)))) (-4137 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 171)) (-4183 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-3455 (($ $ $) 155 (|has| |#1| (-356)))) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-4115 (((-400 (-926 |#1|)) $ (-550)) 169 (|has| |#1| (-542))) (((-400 (-926 |#1|)) $ (-550) (-550)) 168 (|has| |#1| (-542)))) (-3429 (($ $ $) 154 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-1568 (((-112) $) 162 (|has| |#1| (-356)))) (-3771 (((-112) $) 71)) (-4187 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-550) $) 98) (((-550) $ (-550)) 97)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) 99)) (-1546 (($ (-1 |#1| (-550)) $) 170)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3438 (((-112) $) 60)) (-1488 (($ |#1| (-550)) 59) (($ $ (-1051) (-550)) 74) (($ $ (-623 (-1051)) (-623 (-550))) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-3080 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-3231 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 163 (|has| |#1| (-356)))) (-2149 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 166 (-1489 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-933)) (|has| |#1| (-1167)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3260 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-1735 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 156 (|has| |#1| (-356)))) (-4268 (($ $ (-550)) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1644 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-1988 (((-749) $) 152 (|has| |#1| (-356)))) (-2757 ((|#1| $ (-550)) 102) (($ $ $) 79 (|has| (-550) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 153 (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 87 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1145) (-749)) 86 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145))) 85 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1145)) 84 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-3661 (((-550) $) 62)) (-4194 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-1708 ((|#1| $ (-550)) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-4233 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4206 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-550)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 91 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1145) (-749)) 90 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145))) 89 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1145)) 88 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1188 |#1|) (-138) (-1021)) (T -1188)) -((-2744 (*1 *1 *2) (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1021)) (-4 *1 (-1188 *3)))) (-1546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1188 *3)) (-4 *3 (-1021)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1188 *4)) (-4 *4 (-1021)) (-4 *4 (-542)) (-5 *2 (-400 (-926 *4))))) (-4115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1188 *4)) (-4 *4 (-1021)) (-4 *4 (-542)) (-5 *2 (-400 (-926 *4))))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) (-2149 (*1 *1 *1 *2) (-1489 (-12 (-5 *2 (-1145)) (-4 *1 (-1188 *3)) (-4 *3 (-1021)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1145)) (-4 *1 (-1188 *3)) (-4 *3 (-1021)) (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) -(-13 (-1206 |t#1| (-550)) (-10 -8 (-15 -2744 ($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |t#1|))))) (-15 -1546 ($ (-1 |t#1| (-550)) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -4115 ((-400 (-926 |t#1|)) $ (-550))) (-15 -4115 ((-400 (-926 |t#1|)) $ (-550) (-550)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $)) (IF (|has| |t#1| (-15 -2149 (|t#1| |t#1| (-1145)))) (IF (|has| |t#1| (-15 -1516 ((-623 (-1145)) |t#1|))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1167)) (IF (|has| |t#1| (-933)) (IF (|has| |t#1| (-29 (-550))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1167))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-550)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-550) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-550) (-1081)) ((-283) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))) ((-947 |#1| #0# (-1051)) . T) ((-894) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-1027 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550)))) ((-1186) |has| |#1| (-356)) ((-1206 |#1| #0#) . T)) -((-3378 (((-112) $) 12)) (-2288 (((-3 |#3| "failed") $) 17) (((-3 (-1145) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL)) (-2202 ((|#3| $) 14) (((-1145) $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL))) -(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -3378 ((-112) |#1|))) (-1190 |#2| |#3|) (-1021) (-1219 |#2|)) (T -1189)) -NIL -(-10 -8 (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2202 ((-1145) |#1|)) (-15 -2288 ((-3 (-1145) "failed") |#1|)) (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -3378 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3104 ((|#2| $) 228 (-1304 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ (-550)) 96) (($ $ (-550) (-550)) 95)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 103)) (-4164 ((|#2| $) 264)) (-3869 (((-3 |#2| "failed") $) 260)) (-1570 ((|#2| $) 261)) (-4160 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-4050 (((-411 (-1141 $)) (-1141 $)) 237 (-1304 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-2318 (($ $) 160 (|has| |#1| (-356)))) (-2207 (((-411 $) $) 161 (|has| |#1| (-356)))) (-1745 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 234 (-1304 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-1611 (((-112) $ $) 151 (|has| |#1| (-356)))) (-4137 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-4303 (((-550) $) 246 (-1304 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 171)) (-4183 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#2| "failed") $) 267) (((-3 (-550) "failed") $) 256 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) 254 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-1145) "failed") $) 239 (-1304 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356))))) (-2202 ((|#2| $) 266) (((-550) $) 257 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-400 (-550)) $) 255 (-1304 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-1145) $) 240 (-1304 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356))))) (-2468 (($ $) 263) (($ (-550) $) 262)) (-3455 (($ $ $) 155 (|has| |#1| (-356)))) (-1693 (($ $) 58)) (-3756 (((-667 |#2|) (-667 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 216 (-1304 (|has| |#2| (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) 215 (-1304 (|has| |#2| (-619 (-550))) (|has| |#1| (-356))))) (-1537 (((-3 $ "failed") $) 32)) (-4115 (((-400 (-926 |#1|)) $ (-550)) 169 (|has| |#1| (-542))) (((-400 (-926 |#1|)) $ (-550) (-550)) 168 (|has| |#1| (-542)))) (-1864 (($) 230 (-1304 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3429 (($ $ $) 154 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-1568 (((-112) $) 162 (|has| |#1| (-356)))) (-2694 (((-112) $) 244 (-1304 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3771 (((-112) $) 71)) (-4187 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 222 (-1304 (|has| |#2| (-860 (-372))) (|has| |#1| (-356)))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 221 (-1304 (|has| |#2| (-860 (-550))) (|has| |#1| (-356))))) (-2603 (((-550) $) 98) (((-550) $ (-550)) 97)) (-2419 (((-112) $) 30)) (-1484 (($ $) 226 (|has| |#1| (-356)))) (-4153 ((|#2| $) 224 (|has| |#1| (-356)))) (-1893 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1620 (((-3 $ "failed") $) 258 (-1304 (|has| |#2| (-1120)) (|has| |#1| (-356))))) (-1712 (((-112) $) 245 (-1304 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-1937 (($ $ (-895)) 99)) (-1546 (($ (-1 |#1| (-550)) $) 170)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3438 (((-112) $) 60)) (-1488 (($ |#1| (-550)) 59) (($ $ (-1051) (-550)) 74) (($ $ (-623 (-1051)) (-623 (-550))) 73)) (-2793 (($ $ $) 248 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2173 (($ $ $) 249 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2392 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-3080 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-3231 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-1583 (($ (-550) |#2|) 265)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 163 (|has| |#1| (-356)))) (-2149 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 166 (-1489 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-933)) (|has| |#1| (-1167)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-38 (-400 (-550)))))))) (-2463 (($) 259 (-1304 (|has| |#2| (-1120)) (|has| |#1| (-356))) CONST)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3260 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-1724 (($ $) 229 (-1304 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3925 ((|#2| $) 232 (-1304 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3348 (((-411 (-1141 $)) (-1141 $)) 235 (-1304 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-2182 (((-411 (-1141 $)) (-1141 $)) 236 (-1304 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-1735 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 156 (|has| |#1| (-356)))) (-4268 (($ $ (-550)) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1644 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1145) |#2|) 209 (-1304 (|has| |#2| (-505 (-1145) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 |#2|)) 208 (-1304 (|has| |#2| (-505 (-1145) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-287 |#2|))) 207 (-1304 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) 206 (-1304 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-1304 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-623 |#2|) (-623 |#2|)) 204 (-1304 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1988 (((-749) $) 152 (|has| |#1| (-356)))) (-2757 ((|#1| $ (-550)) 102) (($ $ $) 79 (|has| (-550) (-1081))) (($ $ |#2|) 203 (-1304 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 153 (|has| |#1| (-356)))) (-2798 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 213 (|has| |#1| (-356))) (($ $ (-749)) 82 (-1489 (-1304 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 80 (-1489 (-1304 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) 87 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1145) (-749)) 86 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-623 (-1145))) 85 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1145)) 84 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-3608 (($ $) 227 (|has| |#1| (-356)))) (-4163 ((|#2| $) 225 (|has| |#1| (-356)))) (-3661 (((-550) $) 62)) (-4194 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-2451 (((-219) $) 243 (-1304 (|has| |#2| (-996)) (|has| |#1| (-356)))) (((-372) $) 242 (-1304 (|has| |#2| (-996)) (|has| |#1| (-356)))) (((-526) $) 241 (-1304 (|has| |#2| (-596 (-526))) (|has| |#1| (-356)))) (((-866 (-372)) $) 220 (-1304 (|has| |#2| (-596 (-866 (-372)))) (|has| |#1| (-356)))) (((-866 (-550)) $) 219 (-1304 (|has| |#2| (-596 (-866 (-550)))) (|has| |#1| (-356))))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 233 (-1304 (-1304 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#1| (-356))))) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1145)) 238 (-1304 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356)))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-1708 ((|#1| $ (-550)) 57)) (-1613 (((-3 $ "failed") $) 46 (-1489 (-1304 (-1489 (|has| |#2| (-143)) (-1304 (|has| $ (-143)) (|has| |#2| (-883)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-2967 ((|#2| $) 231 (-1304 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-4233 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4206 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-550)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-4188 (($ $) 247 (-1304 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 211 (|has| |#1| (-356))) (($ $ (-749)) 83 (-1489 (-1304 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 81 (-1489 (-1304 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) 91 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1145) (-749)) 90 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-623 (-1145))) 89 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1145)) 88 (-1489 (-1304 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2324 (((-112) $ $) 251 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2302 (((-112) $ $) 252 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 250 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2290 (((-112) $ $) 253 (-1304 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1190 |#1| |#2|) (-138) (-1021) (-1219 |t#1|)) (T -1190)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1219 *3)) (-5 *2 (-550)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1219 *3)))) (-1583 (*1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *4 (-1021)) (-4 *1 (-1190 *4 *3)) (-4 *3 (-1219 *4)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1219 *3)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1219 *2)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1219 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1219 *3)))) (-3869 (*1 *2 *1) (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1219 *3))))) -(-13 (-1188 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -1583 ($ (-550) |t#2|)) (-15 -3661 ((-550) $)) (-15 -4164 (|t#2| $)) (-15 -2468 ($ $)) (-15 -2468 ($ (-550) $)) (-15 -2233 ($ |t#2|)) (-15 -1570 (|t#2| $)) (-15 -3869 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-966 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-550)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-996))) ((-596 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-996))) ((-596 (-526)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-526)))) ((-596 (-866 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-866 (-372))))) ((-596 (-866 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-866 (-550))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-550) (-1081)) ((-283) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-505 (-1145) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1145) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-542) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 |#2|) |has| |#1| (-356)) ((-626 $) . T) ((-619 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-550)))) ((-619 |#2|) |has| |#1| (-356)) ((-696 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 |#2|) |has| |#1| (-356)) ((-696 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-769) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-772) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-773) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-798) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-823) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-825) -1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-825))) (-12 (|has| |#1| (-356)) (|has| |#2| (-798)))) ((-874 (-1145)) -1489 (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1145)))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))) ((-860 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-372)))) ((-860 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-550)))) ((-858 |#2|) |has| |#1| (-356)) ((-883) -12 (|has| |#1| (-356)) (|has| |#2| (-883))) ((-947 |#1| #0# (-1051)) . T) ((-894) |has| |#1| (-356)) ((-966 |#2|) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-996) -12 (|has| |#1| (-356)) (|has| |#2| (-996))) ((-1012 (-400 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-550)))) ((-1012 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-550)))) ((-1012 (-1145)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1145)))) ((-1012 |#2|) . T) ((-1027 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1027 |#1|) . T) ((-1027 |#2|) |has| |#1| (-356)) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) -12 (|has| |#1| (-356)) (|has| |#2| (-1120))) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550)))) ((-1182) |has| |#1| (-356)) ((-1186) |has| |#1| (-356)) ((-1188 |#1|) . T) ((-1206 |#1| #0#) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 70)) (-3104 ((|#2| $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 88)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-550)) 97) (($ $ (-550) (-550)) 99)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 47)) (-4164 ((|#2| $) 11)) (-3869 (((-3 |#2| "failed") $) 30)) (-1570 ((|#2| $) 31)) (-4160 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-4303 (((-550) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 57)) (-4183 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 172 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) 144) (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-1145) "failed") $) NIL (-12 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356))))) (-2202 ((|#2| $) 143) (((-550) $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1012 (-550))) (|has| |#1| (-356)))) (((-1145) $) NIL (-12 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356))))) (-2468 (($ $) 61) (($ (-550) $) 24)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-3756 (((-667 |#2|) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#1| (-356))))) (-1537 (((-3 $ "failed") $) 77)) (-4115 (((-400 (-926 |#1|)) $ (-550)) 112 (|has| |#1| (-542))) (((-400 (-926 |#1|)) $ (-550) (-550)) 114 (|has| |#1| (-542)))) (-1864 (($) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-2694 (((-112) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3771 (((-112) $) 64)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| |#2| (-860 (-372))) (|has| |#1| (-356)))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| |#2| (-860 (-550))) (|has| |#1| (-356))))) (-2603 (((-550) $) 93) (((-550) $ (-550)) 95)) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL (|has| |#1| (-356)))) (-4153 ((|#2| $) 151 (|has| |#1| (-356)))) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1120)) (|has| |#1| (-356))))) (-1712 (((-112) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-1937 (($ $ (-895)) 136)) (-1546 (($ (-1 |#1| (-550)) $) 132)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-550)) 19) (($ $ (-1051) (-550)) NIL) (($ $ (-623 (-1051)) (-623 (-550))) NIL)) (-2793 (($ $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2173 (($ $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2392 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-3080 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1583 (($ (-550) |#2|) 10)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 145 (|has| |#1| (-356)))) (-2149 (($ $) 214 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 219 (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167)))))) (-2463 (($) NIL (-12 (|has| |#2| (-1120)) (|has| |#1| (-356))) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1724 (($ $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3925 ((|#2| $) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#2| (-883)) (|has| |#1| (-356))))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-550)) 126)) (-3409 (((-3 $ "failed") $ $) 116 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1145) |#2|) NIL (-12 (|has| |#2| (-505 (-1145) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 |#2|)) NIL (-12 (|has| |#2| (-505 (-1145) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-550)) 91) (($ $ $) 79 (|has| (-550) (-1081))) (($ $ |#2|) NIL (-12 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1489 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 137 (-1489 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) 140 (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-3608 (($ $) NIL (|has| |#1| (-356)))) (-4163 ((|#2| $) 152 (|has| |#1| (-356)))) (-3661 (((-550) $) 12)) (-4194 (($ $) 198 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 174 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 170 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 166 (|has| |#1| (-38 (-400 (-550)))))) (-2451 (((-219) $) NIL (-12 (|has| |#2| (-996)) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| |#2| (-996)) (|has| |#1| (-356)))) (((-526) $) NIL (-12 (|has| |#2| (-596 (-526))) (|has| |#1| (-356)))) (((-866 (-372)) $) NIL (-12 (|has| |#2| (-596 (-866 (-372)))) (|has| |#1| (-356)))) (((-866 (-550)) $) NIL (-12 (|has| |#2| (-596 (-866 (-550)))) (|has| |#1| (-356))))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883)) (|has| |#1| (-356))))) (-4012 (($ $) 124)) (-2233 (((-837) $) 245) (($ (-550)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1145)) NIL (-12 (|has| |#2| (-1012 (-1145))) (|has| |#1| (-356)))) (($ (-400 (-550))) 155 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-550)) 74)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883)) (|has| |#1| (-356))) (-12 (|has| |#2| (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3091 (((-749)) 142)) (-1808 ((|#1| $) 90)) (-2967 ((|#2| $) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-4233 (($ $) 204 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 180 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) 200 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 176 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 208 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 184 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-550)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 210 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 206 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 182 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 202 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 178 (|has| |#1| (-38 (-400 (-550)))))) (-4188 (($ $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2688 (($) 13 T CONST)) (-2700 (($) 17 T CONST)) (-1901 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1489 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1489 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#2| (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-2324 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2302 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2264 (((-112) $ $) 63)) (-2313 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2290 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-2370 (($ $) 213) (($ $ $) 68)) (-2358 (($ $ $) 66)) (** (($ $ (-895)) NIL) (($ $ (-749)) 73) (($ $ (-550)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 158 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1191 |#1| |#2|) (-1190 |#1| |#2|) (-1021) (-1219 |#1|)) (T -1191)) -NIL -(-1190 |#1| |#2|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3104 (((-1220 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 10)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3050 (($ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3953 (((-112) $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2879 (($ $ (-550)) NIL) (($ $ (-550) (-550)) NIL)) (-4222 (((-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4164 (((-1220 |#1| |#2| |#3|) $) NIL)) (-3869 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) NIL)) (-1570 (((-1220 |#1| |#2| |#3|) $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4303 (((-550) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2744 (($ (-1125 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1145) "failed") $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356)))) (((-3 (-550) "failed") $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))))) (-2202 (((-1220 |#1| |#2| |#3|) $) NIL) (((-1145) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356)))) (((-550) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))))) (-2468 (($ $) NIL) (($ (-550) $) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-1220 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-1220 |#1| |#2| |#3|))) (|:| |vec| (-1228 (-1220 |#1| |#2| |#3|)))) (-667 $) (-1228 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356))))) (-1537 (((-3 $ "failed") $) NIL)) (-4115 (((-400 (-926 |#1|)) $ (-550)) NIL (|has| |#1| (-542))) (((-400 (-926 |#1|)) $ (-550) (-550)) NIL (|has| |#1| (-542)))) (-1864 (($) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-2694 (((-112) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4141 (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-860 (-550))) (|has| |#1| (-356)))) (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-860 (-372))) (|has| |#1| (-356))))) (-2603 (((-550) $) NIL) (((-550) $ (-550)) NIL)) (-2419 (((-112) $) NIL)) (-1484 (($ $) NIL (|has| |#1| (-356)))) (-4153 (((-1220 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1120)) (|has| |#1| (-356))))) (-1712 (((-112) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-1937 (($ $ (-895)) NIL)) (-1546 (($ (-1 |#1| (-550)) $) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-550)) 17) (($ $ (-1051) (-550)) NIL) (($ $ (-623 (-1051)) (-623 (-550))) NIL)) (-2793 (($ $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2173 (($ $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1583 (($ (-550) (-1220 |#1| |#2| |#3|)) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) 25 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 26 (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1120)) (|has| |#1| (-356))) CONST)) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1724 (($ $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3925 (((-1220 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-550)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1145) (-1220 |#1| |#2| |#3|)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-505 (-1145) (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1145)) (-623 (-1220 |#1| |#2| |#3|))) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-505 (-1145) (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-287 (-1220 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1220 |#1| |#2| |#3|))) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1220 |#1| |#2| |#3|)) (-623 (-1220 |#1| |#2| |#3|))) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-302 (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-550)) NIL) (($ $ $) NIL (|has| (-550) (-1081))) (($ $ (-1220 |#1| |#2| |#3|)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-279 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-1 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1224 |#2|)) 24) (($ $ (-749)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 23 (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-3608 (($ $) NIL (|has| |#1| (-356)))) (-4163 (((-1220 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3661 (((-550) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2451 (((-526) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-596 (-526))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-996)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-996)) (|has| |#1| (-356)))) (((-866 (-372)) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-596 (-866 (-372)))) (|has| |#1| (-356)))) (((-866 (-550)) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-596 (-866 (-550)))) (|has| |#1| (-356))))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1220 |#1| |#2| |#3|)) NIL) (($ (-1224 |#2|)) 22) (($ (-1145)) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-1145))) (|has| |#1| (-356)))) (($ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-550))) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-1012 (-550))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-550))))))) (-1708 ((|#1| $ (-550)) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 11)) (-2967 (((-1220 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-883)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4188 (($ $) NIL (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2688 (($) 19 T CONST)) (-2700 (($) 15 T CONST)) (-1901 (($ $ (-1 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145) (-749)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-623 (-1145))) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145)))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-874 (-1145))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-874 (-1145))))))) (-2324 (((-112) $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2302 (((-112) $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2290 (((-112) $ $) NIL (-1489 (-12 (|has| (-1220 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1220 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1220 |#1| |#2| |#3|) (-1220 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1220 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1220 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1192 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1220 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1192)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1190 |#1| (-1220 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-2896 (((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112)) 12)) (-3452 (((-411 |#1|) |#1|) 22)) (-1735 (((-411 |#1|) |#1|) 21))) -(((-1193 |#1|) (-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1|)) (-15 -2896 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112)))) (-1204 (-550))) (T -1193)) -((-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550))))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550)))))) -(-10 -7 (-15 -1735 ((-411 |#1|) |#1|)) (-15 -3452 ((-411 |#1|) |#1|)) (-15 -2896 ((-2 (|:| |contp| (-550)) (|:| -1610 (-623 (-2 (|:| |irr| |#1|) (|:| -1635 (-550)))))) |#1| (-112)))) -((-2392 (((-1125 |#2|) (-1 |#2| |#1|) (-1195 |#1|)) 23 (|has| |#1| (-823))) (((-1195 |#2|) (-1 |#2| |#1|) (-1195 |#1|)) 17))) -(((-1194 |#1| |#2|) (-10 -7 (-15 -2392 ((-1195 |#2|) (-1 |#2| |#1|) (-1195 |#1|))) (IF (|has| |#1| (-823)) (-15 -2392 ((-1125 |#2|) (-1 |#2| |#1|) (-1195 |#1|))) |%noBranch|)) (-1182) (-1182)) (T -1194)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1195 *5)) (-4 *5 (-823)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1125 *6)) (-5 *1 (-1194 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1195 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1195 *6)) (-5 *1 (-1194 *5 *6))))) -(-10 -7 (-15 -2392 ((-1195 |#2|) (-1 |#2| |#1|) (-1195 |#1|))) (IF (|has| |#1| (-823)) (-15 -2392 ((-1125 |#2|) (-1 |#2| |#1|) (-1195 |#1|))) |%noBranch|)) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2332 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2392 (((-1125 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-823)))) (-1270 ((|#1| $) 14)) (-1883 ((|#1| $) 10)) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1894 (((-550) $) 18)) (-3338 ((|#1| $) 17)) (-1903 ((|#1| $) 11)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-2669 (((-112) $) 16)) (-2062 (((-1125 |#1|) $) 38 (|has| |#1| (-823))) (((-1125 |#1|) (-623 $)) 37 (|has| |#1| (-823)))) (-2451 (($ |#1|) 25)) (-2233 (($ (-1063 |#1|)) 24) (((-837) $) 34 (|has| |#1| (-1069)))) (-2051 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2026 (($ $ (-550)) 13)) (-2264 (((-112) $ $) 27 (|has| |#1| (-1069))))) -(((-1195 |#1|) (-13 (-1062 |#1|) (-10 -8 (-15 -2051 ($ |#1|)) (-15 -2332 ($ |#1|)) (-15 -2233 ($ (-1063 |#1|))) (-15 -2669 ((-112) $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1064 |#1| (-1125 |#1|))) |%noBranch|))) (-1182)) (T -1195)) -((-2051 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1182)))) (-2332 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1182)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-1182)) (-5 *1 (-1195 *3)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1182))))) -(-13 (-1062 |#1|) (-10 -8 (-15 -2051 ($ |#1|)) (-15 -2332 ($ |#1|)) (-15 -2233 ($ (-1063 |#1|))) (-15 -2669 ((-112) $)) (IF (|has| |#1| (-1069)) (-6 (-1069)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1064 |#1| (-1125 |#1|))) |%noBranch|))) -((-2392 (((-1201 |#3| |#4|) (-1 |#4| |#2|) (-1201 |#1| |#2|)) 15))) -(((-1196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 ((-1201 |#3| |#4|) (-1 |#4| |#2|) (-1201 |#1| |#2|)))) (-1145) (-1021) (-1145) (-1021)) (T -1196)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1201 *5 *6)) (-14 *5 (-1145)) (-4 *6 (-1021)) (-4 *8 (-1021)) (-5 *2 (-1201 *7 *8)) (-5 *1 (-1196 *5 *6 *7 *8)) (-14 *7 (-1145))))) -(-10 -7 (-15 -2392 ((-1201 |#3| |#4|) (-1 |#4| |#2|) (-1201 |#1| |#2|)))) -((-3805 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2543 ((|#1| |#3|) 13)) (-4054 ((|#3| |#3|) 19))) -(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -2543 (|#1| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-966 |#1|) (-1204 |#2|)) (T -1197)) -((-3805 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1197 *4 *5 *3)) (-4 *3 (-1204 *5)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-966 *3)) (-5 *1 (-1197 *3 *4 *2)) (-4 *2 (-1204 *4)))) (-2543 (*1 *2 *3) (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-1197 *2 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -2543 (|#1| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -3805 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3916 (((-3 |#2| "failed") |#2| (-749) |#1|) 29)) (-2359 (((-3 |#2| "failed") |#2| (-749)) 30)) (-1730 (((-3 (-2 (|:| -3480 |#2|) (|:| -3490 |#2|)) "failed") |#2|) 43)) (-3592 (((-623 |#2|) |#2|) 45)) (-3039 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -2359 ((-3 |#2| "failed") |#2| (-749))) (-15 -3916 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -3039 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1730 ((-3 (-2 (|:| -3480 |#2|) (|:| -3490 |#2|)) "failed") |#2|)) (-15 -3592 ((-623 |#2|) |#2|))) (-13 (-542) (-145)) (-1204 |#1|)) (T -1198)) -((-3592 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-623 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-1204 *4)))) (-1730 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-2 (|:| -3480 *3) (|:| -3490 *3))) (-5 *1 (-1198 *4 *3)) (-4 *3 (-1204 *4)))) (-3039 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1204 *3)))) (-3916 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-1204 *4)))) (-2359 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-1204 *4))))) -(-10 -7 (-15 -2359 ((-3 |#2| "failed") |#2| (-749))) (-15 -3916 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -3039 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1730 ((-3 (-2 (|:| -3480 |#2|) (|:| -3490 |#2|)) "failed") |#2|)) (-15 -3592 ((-623 |#2|) |#2|))) -((-2381 (((-3 (-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) "failed") |#2| |#2|) 32))) -(((-1199 |#1| |#2|) (-10 -7 (-15 -2381 ((-3 (-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) "failed") |#2| |#2|))) (-542) (-1204 |#1|)) (T -1199)) -((-2381 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-1199 *4 *3)) (-4 *3 (-1204 *4))))) -(-10 -7 (-15 -2381 ((-3 (-2 (|:| -3123 |#2|) (|:| -2545 |#2|)) "failed") |#2| |#2|))) -((-4138 ((|#2| |#2| |#2|) 19)) (-2825 ((|#2| |#2| |#2|) 30)) (-2450 ((|#2| |#2| |#2| (-749) (-749)) 36))) -(((-1200 |#1| |#2|) (-10 -7 (-15 -4138 (|#2| |#2| |#2|)) (-15 -2825 (|#2| |#2| |#2|)) (-15 -2450 (|#2| |#2| |#2| (-749) (-749)))) (-1021) (-1204 |#1|)) (T -1200)) -((-2450 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1021)) (-5 *1 (-1200 *4 *2)) (-4 *2 (-1204 *4)))) (-2825 (*1 *2 *2 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-1204 *3)))) (-4138 (*1 *2 *2 *2) (-12 (-4 *3 (-1021)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-1204 *3))))) -(-10 -7 (-15 -4138 (|#2| |#2| |#2|)) (-15 -2825 (|#2| |#2| |#2|)) (-15 -2450 (|#2| |#2| |#2| (-749) (-749)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1431 (((-1228 |#2|) $ (-749)) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-3297 (($ (-1141 |#2|)) NIL)) (-1705 (((-1141 $) $ (-1051)) NIL) (((-1141 |#2|) $) NIL)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-3050 (($ $) NIL (|has| |#2| (-542)))) (-3953 (((-112) $) NIL (|has| |#2| (-542)))) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1051))) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2129 (($ $ $) NIL (|has| |#2| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2318 (($ $) NIL (|has| |#2| (-444)))) (-2207 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1611 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2887 (($ $ (-749)) NIL)) (-4069 (($ $ (-749)) NIL)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1012 (-550)))) (((-3 (-1051) "failed") $) NIL)) (-2202 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1012 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1012 (-550)))) (((-1051) $) NIL)) (-1792 (($ $ $ (-1051)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-3455 (($ $ $) NIL (|has| |#2| (-356)))) (-1693 (($ $) NIL)) (-3756 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#2|)) (|:| |vec| (-1228 |#2|))) (-667 $) (-1228 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#2| (-356)))) (-2193 (($ $ $) NIL)) (-1509 (($ $ $) NIL (|has| |#2| (-542)))) (-2858 (((-2 (|:| -4304 |#2|) (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#2| (-356)))) (-2731 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1051)) NIL (|has| |#2| (-444)))) (-1683 (((-623 $) $) NIL)) (-1568 (((-112) $) NIL (|has| |#2| (-883)))) (-3401 (($ $ |#2| (-749) $) NIL)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) NIL (-12 (|has| (-1051) (-860 (-372))) (|has| |#2| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) NIL (-12 (|has| (-1051) (-860 (-550))) (|has| |#2| (-860 (-550)))))) (-2603 (((-749) $ $) NIL (|has| |#2| (-542)))) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#2| (-1120)))) (-1501 (($ (-1141 |#2|) (-1051)) NIL) (($ (-1141 $) (-1051)) NIL)) (-1937 (($ $ (-749)) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-1488 (($ |#2| (-749)) 17) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1051)) NIL) (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL)) (-3346 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2793 (($ $ $) NIL (|has| |#2| (-825)))) (-2173 (($ $ $) NIL (|has| |#2| (-825)))) (-2863 (($ (-1 (-749) (-749)) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-2838 (((-1141 |#2|) $) NIL)) (-4059 (((-3 (-1051) "failed") $) NIL)) (-1657 (($ $) NIL)) (-1670 ((|#2| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2369 (((-1127) $) NIL)) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) NIL)) (-3833 (((-3 (-623 $) "failed") $) NIL)) (-3017 (((-3 (-623 $) "failed") $) NIL)) (-2891 (((-3 (-2 (|:| |var| (-1051)) (|:| -3068 (-749))) "failed") $) NIL)) (-2149 (($ $) NIL (|has| |#2| (-38 (-400 (-550)))))) (-2463 (($) NIL (|has| |#2| (-1120)) CONST)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 ((|#2| $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3260 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2607 (($ $ (-749) |#2| $) NIL)) (-3348 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-883)))) (-1735 (((-411 $) $) NIL (|has| |#2| (-883)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#2| (-356)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-1553 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1051) |#2|) NIL) (($ $ (-623 (-1051)) (-623 |#2|)) NIL) (($ $ (-1051) $) NIL) (($ $ (-623 (-1051)) (-623 $)) NIL)) (-1988 (((-749) $) NIL (|has| |#2| (-356)))) (-2757 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-542))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-542)))) (-3522 (((-3 $ "failed") $ (-749)) NIL)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#2| (-356)))) (-3563 (($ $ (-1051)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-2798 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3661 (((-749) $) NIL) (((-749) $ (-1051)) NIL) (((-623 (-749)) $ (-623 (-1051))) NIL)) (-2451 (((-866 (-372)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#2| (-596 (-866 (-372)))))) (((-866 (-550)) $) NIL (-12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#2| (-596 (-866 (-550)))))) (((-526) $) NIL (-12 (|has| (-1051) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-1622 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1051)) NIL (|has| |#2| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-883))))) (-3674 (((-3 $ "failed") $ $) NIL (|has| |#2| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#2| (-542)))) (-2233 (((-837) $) 13) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1051)) NIL) (($ (-1224 |#1|)) 19) (($ (-400 (-550))) NIL (-1489 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1012 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-749)) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-1613 (((-3 $ "failed") $) NIL (-1489 (-12 (|has| $ (-143)) (|has| |#2| (-883))) (|has| |#2| (-143))))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1819 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2688 (($) NIL T CONST)) (-2700 (($) 14 T CONST)) (-1901 (($ $ (-1051)) NIL) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1145)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1145) (-749)) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) NIL (|has| |#2| (-874 (-1145)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2324 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2264 (((-112) $ $) NIL)) (-2313 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2382 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1201 |#1| |#2|) (-13 (-1204 |#2|) (-10 -8 (-15 -2233 ($ (-1224 |#1|))) (-15 -2607 ($ $ (-749) |#2| $)))) (-1145) (-1021)) (T -1201)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-14 *3 (-1145)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-1021)))) (-2607 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1201 *4 *3)) (-14 *4 (-1145)) (-4 *3 (-1021))))) -(-13 (-1204 |#2|) (-10 -8 (-15 -2233 ($ (-1224 |#1|))) (-15 -2607 ($ $ (-749) |#2| $)))) -((-2392 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|))) (-1021) (-1204 |#1|) (-1021) (-1204 |#3|)) (T -1202)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-4 *2 (-1204 *6)) (-5 *1 (-1202 *5 *4 *6 *2)) (-4 *4 (-1204 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#3| |#1|) |#2|))) -((-1431 (((-1228 |#2|) $ (-749)) 114)) (-1516 (((-623 (-1051)) $) 15)) (-3297 (($ (-1141 |#2|)) 67)) (-2457 (((-749) $) NIL) (((-749) $ (-623 (-1051))) 18)) (-4050 (((-411 (-1141 $)) (-1141 $)) 185)) (-2318 (($ $) 175)) (-2207 (((-411 $) $) 173)) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 82)) (-2887 (($ $ (-749)) 71)) (-4069 (($ $ (-749)) 73)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2288 (((-3 |#2| "failed") $) 117) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-1051) "failed") $) NIL)) (-2202 ((|#2| $) 115) (((-400 (-550)) $) NIL) (((-550) $) NIL) (((-1051) $) NIL)) (-1509 (($ $ $) 151)) (-2858 (((-2 (|:| -4304 |#2|) (|:| -3123 $) (|:| -2545 $)) $ $) 153)) (-2603 (((-749) $ $) 170)) (-1620 (((-3 $ "failed") $) 123)) (-1488 (($ |#2| (-749)) NIL) (($ $ (-1051) (-749)) 47) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-3346 (((-749) $) NIL) (((-749) $ (-1051)) 42) (((-623 (-749)) $ (-623 (-1051))) 43)) (-2838 (((-1141 |#2|) $) 59)) (-4059 (((-3 (-1051) "failed") $) 40)) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) 70)) (-2149 (($ $) 197)) (-2463 (($) 119)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 182)) (-3348 (((-411 (-1141 $)) (-1141 $)) 88)) (-2182 (((-411 (-1141 $)) (-1141 $)) 86)) (-1735 (((-411 $) $) 107)) (-1553 (($ $ (-623 (-287 $))) 39) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1051) |#2|) 31) (($ $ (-623 (-1051)) (-623 |#2|)) 28) (($ $ (-1051) $) 25) (($ $ (-623 (-1051)) (-623 $)) 23)) (-1988 (((-749) $) 188)) (-2757 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 191)) (-2798 (($ $ (-1051)) 140) (($ $ (-623 (-1051))) NIL) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) 138) (($ $ (-1145)) NIL) (($ $ (-623 (-1145))) NIL) (($ $ (-1145) (-749)) NIL) (($ $ (-623 (-1145)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3661 (((-749) $) NIL) (((-749) $ (-1051)) 16) (((-623 (-749)) $ (-623 (-1051))) 20)) (-1622 ((|#2| $) NIL) (($ $ (-1051)) 125)) (-3674 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1051)) 51) (($ (-400 (-550))) NIL) (($ $) NIL))) -(((-1203 |#1| |#2|) (-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2757 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1988 ((-749) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2757 (|#2| (-400 |#1|) |#2|)) (-15 -4146 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2858 ((-2 (|:| -4304 |#2|) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1509 (|#1| |#1| |#1|)) (-15 -3674 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3674 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2603 ((-749) |#1| |#1|)) (-15 -2757 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4069 (|#1| |#1| (-749))) (-15 -2887 (|#1| |#1| (-749))) (-15 -3266 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| (-749))) (-15 -3297 (|#1| (-1141 |#2|))) (-15 -2838 ((-1141 |#2|) |#1|)) (-15 -1431 ((-1228 |#2|) |#1| (-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| |#1|)) (-15 -2757 (|#2| |#1| |#2|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -4050 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -1622 (|#1| |#1| (-1051))) (-15 -1516 ((-623 (-1051)) |#1|)) (-15 -2457 ((-749) |#1| (-623 (-1051)))) (-15 -2457 ((-749) |#1|)) (-15 -1488 (|#1| |#1| (-623 (-1051)) (-623 (-749)))) (-15 -1488 (|#1| |#1| (-1051) (-749))) (-15 -3346 ((-623 (-749)) |#1| (-623 (-1051)))) (-15 -3346 ((-749) |#1| (-1051))) (-15 -4059 ((-3 (-1051) "failed") |#1|)) (-15 -3661 ((-623 (-749)) |#1| (-623 (-1051)))) (-15 -3661 ((-749) |#1| (-1051))) (-15 -2202 ((-1051) |#1|)) (-15 -2288 ((-3 (-1051) "failed") |#1|)) (-15 -2233 (|#1| (-1051))) (-15 -1553 (|#1| |#1| (-623 (-1051)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-1051) |#1|)) (-15 -1553 (|#1| |#1| (-623 (-1051)) (-623 |#2|))) (-15 -1553 (|#1| |#1| (-1051) |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3661 ((-749) |#1|)) (-15 -1488 (|#1| |#2| (-749))) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -3346 ((-749) |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -2798 (|#1| |#1| (-623 (-1051)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1051) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1051)))) (-15 -2798 (|#1| |#1| (-1051))) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) (-1204 |#2|) (-1021)) (T -1203)) -NIL -(-10 -8 (-15 -2233 (|#1| |#1|)) (-15 -3459 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2207 ((-411 |#1|) |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2463 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -2757 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1988 ((-749) |#1|)) (-15 -1505 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2757 (|#2| (-400 |#1|) |#2|)) (-15 -4146 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2858 ((-2 (|:| -4304 |#2|) (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| |#1|)) (-15 -1509 (|#1| |#1| |#1|)) (-15 -3674 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3674 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2603 ((-749) |#1| |#1|)) (-15 -2757 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4069 (|#1| |#1| (-749))) (-15 -2887 (|#1| |#1| (-749))) (-15 -3266 ((-2 (|:| -3123 |#1|) (|:| -2545 |#1|)) |#1| (-749))) (-15 -3297 (|#1| (-1141 |#2|))) (-15 -2838 ((-1141 |#2|) |#1|)) (-15 -1431 ((-1228 |#2|) |#1| (-749))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2798 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1145) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1145)))) (-15 -2798 (|#1| |#1| (-1145))) (-15 -2798 (|#1| |#1|)) (-15 -2798 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| |#1|)) (-15 -2757 (|#2| |#1| |#2|)) (-15 -1735 ((-411 |#1|) |#1|)) (-15 -4050 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -2182 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -3348 ((-411 (-1141 |#1|)) (-1141 |#1|))) (-15 -1370 ((-3 (-623 (-1141 |#1|)) "failed") (-623 (-1141 |#1|)) (-1141 |#1|))) (-15 -1622 (|#1| |#1| (-1051))) (-15 -1516 ((-623 (-1051)) |#1|)) (-15 -2457 ((-749) |#1| (-623 (-1051)))) (-15 -2457 ((-749) |#1|)) (-15 -1488 (|#1| |#1| (-623 (-1051)) (-623 (-749)))) (-15 -1488 (|#1| |#1| (-1051) (-749))) (-15 -3346 ((-623 (-749)) |#1| (-623 (-1051)))) (-15 -3346 ((-749) |#1| (-1051))) (-15 -4059 ((-3 (-1051) "failed") |#1|)) (-15 -3661 ((-623 (-749)) |#1| (-623 (-1051)))) (-15 -3661 ((-749) |#1| (-1051))) (-15 -2202 ((-1051) |#1|)) (-15 -2288 ((-3 (-1051) "failed") |#1|)) (-15 -2233 (|#1| (-1051))) (-15 -1553 (|#1| |#1| (-623 (-1051)) (-623 |#1|))) (-15 -1553 (|#1| |#1| (-1051) |#1|)) (-15 -1553 (|#1| |#1| (-623 (-1051)) (-623 |#2|))) (-15 -1553 (|#1| |#1| (-1051) |#2|)) (-15 -1553 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -1553 (|#1| |#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| (-287 |#1|))) (-15 -1553 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3661 ((-749) |#1|)) (-15 -1488 (|#1| |#2| (-749))) (-15 -2202 ((-550) |#1|)) (-15 -2288 ((-3 (-550) "failed") |#1|)) (-15 -2202 ((-400 (-550)) |#1|)) (-15 -2288 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2233 (|#1| |#2|)) (-15 -2288 ((-3 |#2| "failed") |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -3346 ((-749) |#1|)) (-15 -1622 (|#2| |#1|)) (-15 -2798 (|#1| |#1| (-623 (-1051)) (-623 (-749)))) (-15 -2798 (|#1| |#1| (-1051) (-749))) (-15 -2798 (|#1| |#1| (-623 (-1051)))) (-15 -2798 (|#1| |#1| (-1051))) (-15 -2233 (|#1| (-550))) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1431 (((-1228 |#1|) $ (-749)) 236)) (-1516 (((-623 (-1051)) $) 108)) (-3297 (($ (-1141 |#1|)) 234)) (-1705 (((-1141 $) $ (-1051)) 123) (((-1141 |#1|) $) 122)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-3050 (($ $) 86 (|has| |#1| (-542)))) (-3953 (((-112) $) 88 (|has| |#1| (-542)))) (-2457 (((-749) $) 110) (((-749) $ (-623 (-1051))) 109)) (-1993 (((-3 $ "failed") $ $) 19)) (-2129 (($ $ $) 221 (|has| |#1| (-542)))) (-4050 (((-411 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-883)))) (-2318 (($ $) 96 (|has| |#1| (-444)))) (-2207 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1370 (((-3 (-623 (-1141 $)) "failed") (-623 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-883)))) (-1611 (((-112) $ $) 206 (|has| |#1| (-356)))) (-2887 (($ $ (-749)) 229)) (-4069 (($ $ (-749)) 228)) (-4146 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1012 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1012 (-550)))) (((-3 (-1051) "failed") $) 134)) (-2202 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1012 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1012 (-550)))) (((-1051) $) 133)) (-1792 (($ $ $ (-1051)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-3455 (($ $ $) 210 (|has| |#1| (-356)))) (-1693 (($ $) 152)) (-3756 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 (-550))) (|:| |vec| (-1228 (-550)))) (-667 $) (-1228 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -3121 (-667 |#1|)) (|:| |vec| (-1228 |#1|))) (-667 $) (-1228 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 209 (|has| |#1| (-356)))) (-2193 (($ $ $) 227)) (-1509 (($ $ $) 218 (|has| |#1| (-542)))) (-2858 (((-2 (|:| -4304 |#1|) (|:| -3123 $) (|:| -2545 $)) $ $) 217 (|has| |#1| (-542)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 204 (|has| |#1| (-356)))) (-2731 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1051)) 103 (|has| |#1| (-444)))) (-1683 (((-623 $) $) 107)) (-1568 (((-112) $) 94 (|has| |#1| (-883)))) (-3401 (($ $ |#1| (-749) $) 170)) (-4141 (((-863 (-372) $) $ (-866 (-372)) (-863 (-372) $)) 82 (-12 (|has| (-1051) (-860 (-372))) (|has| |#1| (-860 (-372))))) (((-863 (-550) $) $ (-866 (-550)) (-863 (-550) $)) 81 (-12 (|has| (-1051) (-860 (-550))) (|has| |#1| (-860 (-550)))))) (-2603 (((-749) $ $) 222 (|has| |#1| (-542)))) (-2419 (((-112) $) 30)) (-3324 (((-749) $) 167)) (-1620 (((-3 $ "failed") $) 202 (|has| |#1| (-1120)))) (-1501 (($ (-1141 |#1|) (-1051)) 115) (($ (-1141 $) (-1051)) 114)) (-1937 (($ $ (-749)) 233)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 213 (|has| |#1| (-356)))) (-2336 (((-623 $) $) 124)) (-3438 (((-112) $) 150)) (-1488 (($ |#1| (-749)) 151) (($ $ (-1051) (-749)) 117) (($ $ (-623 (-1051)) (-623 (-749))) 116)) (-1766 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $ (-1051)) 118) (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 231)) (-3346 (((-749) $) 168) (((-749) $ (-1051)) 120) (((-623 (-749)) $ (-623 (-1051))) 119)) (-2793 (($ $ $) 77 (|has| |#1| (-825)))) (-2173 (($ $ $) 76 (|has| |#1| (-825)))) (-2863 (($ (-1 (-749) (-749)) $) 169)) (-2392 (($ (-1 |#1| |#1|) $) 149)) (-2838 (((-1141 |#1|) $) 235)) (-4059 (((-3 (-1051) "failed") $) 121)) (-1657 (($ $) 147)) (-1670 ((|#1| $) 146)) (-3231 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2369 (((-1127) $) 9)) (-3266 (((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749)) 230)) (-3833 (((-3 (-623 $) "failed") $) 112)) (-3017 (((-3 (-623 $) "failed") $) 113)) (-2891 (((-3 (-2 (|:| |var| (-1051)) (|:| -3068 (-749))) "failed") $) 111)) (-2149 (($ $) 214 (|has| |#1| (-38 (-400 (-550)))))) (-2463 (($) 201 (|has| |#1| (-1120)) CONST)) (-3445 (((-1089) $) 10)) (-1628 (((-112) $) 164)) (-1639 ((|#1| $) 165)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3260 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3348 (((-411 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-883)))) (-2182 (((-411 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-883)))) (-1735 (((-411 $) $) 97 (|has| |#1| (-883)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 211 (|has| |#1| (-356)))) (-3409 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 205 (|has| |#1| (-356)))) (-1553 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ (-1051) |#1|) 139) (($ $ (-623 (-1051)) (-623 |#1|)) 138) (($ $ (-1051) $) 137) (($ $ (-623 (-1051)) (-623 $)) 136)) (-1988 (((-749) $) 207 (|has| |#1| (-356)))) (-2757 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-542)))) (-3522 (((-3 $ "failed") $ (-749)) 232)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 208 (|has| |#1| (-356)))) (-3563 (($ $ (-1051)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-2798 (($ $ (-1051)) 40) (($ $ (-623 (-1051))) 39) (($ $ (-1051) (-749)) 38) (($ $ (-623 (-1051)) (-623 (-749))) 37) (($ $ (-749)) 251) (($ $) 249) (($ $ (-1145)) 248 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 247 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 246 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 245 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3661 (((-749) $) 148) (((-749) $ (-1051)) 128) (((-623 (-749)) $ (-623 (-1051))) 127)) (-2451 (((-866 (-372)) $) 80 (-12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372)))))) (((-866 (-550)) $) 79 (-12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550)))))) (((-526) $) 78 (-12 (|has| (-1051) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-1622 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1051)) 104 (|has| |#1| (-444)))) (-2897 (((-3 (-1228 $) "failed") (-667 $)) 102 (-1304 (|has| $ (-143)) (|has| |#1| (-883))))) (-3674 (((-3 $ "failed") $ $) 220 (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-542)))) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ (-1051)) 135) (($ (-400 (-550))) 70 (-1489 (|has| |#1| (-1012 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-2969 (((-623 |#1|) $) 166)) (-1708 ((|#1| $ (-749)) 153) (($ $ (-1051) (-749)) 126) (($ $ (-623 (-1051)) (-623 (-749))) 125)) (-1613 (((-3 $ "failed") $) 71 (-1489 (-1304 (|has| $ (-143)) (|has| |#1| (-883))) (|has| |#1| (-143))))) (-3091 (((-749)) 28)) (-3895 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1819 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-1051)) 36) (($ $ (-623 (-1051))) 35) (($ $ (-1051) (-749)) 34) (($ $ (-623 (-1051)) (-623 (-749))) 33) (($ $ (-749)) 252) (($ $) 250) (($ $ (-1145)) 244 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145))) 243 (|has| |#1| (-874 (-1145)))) (($ $ (-1145) (-749)) 242 (|has| |#1| (-874 (-1145)))) (($ $ (-623 (-1145)) (-623 (-749))) 241 (|has| |#1| (-874 (-1145)))) (($ $ (-1 |#1| |#1|) (-749)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2324 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 6)) (-2313 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2382 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1204 |#1|) (-138) (-1021)) (T -1204)) -((-1431 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1204 *4)) (-4 *4 (-1021)) (-5 *2 (-1228 *4)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-5 *2 (-1141 *3)))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1021)) (-4 *1 (-1204 *3)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) (-3522 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) (-1766 (*1 *2 *1 *1) (-12 (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1204 *3)))) (-3266 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1204 *4)))) (-2887 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) (-2193 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)))) (-2798 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-170)))) (-1792 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-170)))) (-2757 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-4 *3 (-542)))) (-2603 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-4 *3 (-542)) (-5 *2 (-749)))) (-2129 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542)))) (-3674 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542)))) (-3674 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-4 *3 (-542)))) (-1509 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542)))) (-2858 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| -4304 *3) (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1204 *3)))) (-4146 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1021)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1204 *3)))) (-2757 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550))))))) -(-13 (-923 |t#1| (-749) (-1051)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -1431 ((-1228 |t#1|) $ (-749))) (-15 -2838 ((-1141 |t#1|) $)) (-15 -3297 ($ (-1141 |t#1|))) (-15 -1937 ($ $ (-749))) (-15 -3522 ((-3 $ "failed") $ (-749))) (-15 -1766 ((-2 (|:| -3123 $) (|:| -2545 $)) $ $)) (-15 -3266 ((-2 (|:| -3123 $) (|:| -2545 $)) $ (-749))) (-15 -2887 ($ $ (-749))) (-15 -4069 ($ $ (-749))) (-15 -2193 ($ $ $)) (-15 -2798 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3563 (|t#1| $)) (-15 -1792 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -2757 ((-400 $) (-400 $) (-400 $))) (-15 -2603 ((-749) $ $)) (-15 -2129 ($ $ $)) (-15 -3674 ((-3 $ "failed") $ $)) (-15 -3674 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -1509 ($ $ $)) (-15 -2858 ((-2 (|:| -4304 |t#1|) (|:| -3123 $) (|:| -2545 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4146 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4340) (-15 -2757 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (-15 -2149 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-749)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| (-1051) (-596 (-526))) (|has| |#1| (-596 (-526)))) ((-596 (-866 (-372))) -12 (|has| (-1051) (-596 (-866 (-372)))) (|has| |#1| (-596 (-866 (-372))))) ((-596 (-866 (-550))) -12 (|has| (-1051) (-596 (-866 (-550)))) (|has| |#1| (-596 (-866 (-550))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-542)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #0#) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1489 (|has| |#1| (-883)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #2=(-1051) |#1|) . T) ((-505 #2# $) . T) ((-505 $ $) . T) ((-542) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 #2#) . T) ((-874 (-1145)) |has| |#1| (-874 (-1145))) ((-860 (-372)) -12 (|has| (-1051) (-860 (-372))) (|has| |#1| (-860 (-372)))) ((-860 (-550)) -12 (|has| (-1051) (-860 (-550))) (|has| |#1| (-860 (-550)))) ((-923 |#1| #0# #2#) . T) ((-883) |has| |#1| (-883)) ((-894) |has| |#1| (-356)) ((-1012 (-400 (-550))) |has| |#1| (-1012 (-400 (-550)))) ((-1012 (-550)) |has| |#1| (-1012 (-550))) ((-1012 #2#) . T) ((-1012 |#1|) . T) ((-1027 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-883)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1120) |has| |#1| (-1120)) ((-1186) |has| |#1| (-883))) -((-1516 (((-623 (-1051)) $) 28)) (-1693 (($ $) 25)) (-1488 (($ |#2| |#3|) NIL) (($ $ (-1051) |#3|) 22) (($ $ (-623 (-1051)) (-623 |#3|)) 21)) (-1657 (($ $) 14)) (-1670 ((|#2| $) 12)) (-3661 ((|#3| $) 10))) -(((-1205 |#1| |#2| |#3|) (-10 -8 (-15 -1516 ((-623 (-1051)) |#1|)) (-15 -1488 (|#1| |#1| (-623 (-1051)) (-623 |#3|))) (-15 -1488 (|#1| |#1| (-1051) |#3|)) (-15 -1693 (|#1| |#1|)) (-15 -1488 (|#1| |#2| |#3|)) (-15 -3661 (|#3| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -1670 (|#2| |#1|))) (-1206 |#2| |#3|) (-1021) (-770)) (T -1205)) -NIL -(-10 -8 (-15 -1516 ((-623 (-1051)) |#1|)) (-15 -1488 (|#1| |#1| (-623 (-1051)) (-623 |#3|))) (-15 -1488 (|#1| |#1| (-1051) |#3|)) (-15 -1693 (|#1| |#1|)) (-15 -1488 (|#1| |#2| |#3|)) (-15 -3661 (|#3| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -1670 (|#2| |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4222 (((-1125 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-3771 (((-112) $) 71)) (-2603 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2419 (((-112) $) 30)) (-1937 (($ $ (-895)) 99)) (-3438 (((-112) $) 60)) (-1488 (($ |#1| |#2|) 59) (($ $ (-1051) |#2|) 74) (($ $ (-623 (-1051)) (-623 |#2|)) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-4268 (($ $ |#2|) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2757 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1081)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 87 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1145) (-749)) 86 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-623 (-1145))) 85 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1145)) 84 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3661 ((|#2| $) 62)) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-1708 ((|#1| $ |#2|) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2154 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 91 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1145) (-749)) 90 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-623 (-1145))) 89 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1145)) 88 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1206 |#1| |#2|) (-138) (-1021) (-770)) (T -1206)) -((-4222 (*1 *2 *1) (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-1125 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2757 (*1 *2 *1 *3) (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (-5 *2 (-1145)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2603 (*1 *2 *1 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2879 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2233 (*2 (-1145)))) (-4 *2 (-1021)))) (-4268 (*1 *1 *1 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1125 *3))))) -(-13 (-947 |t#1| |t#2| (-1051)) (-10 -8 (-15 -4222 ((-1125 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2757 (|t#1| $ |t#2|)) (-15 -2564 ((-1145) $)) (-15 -1808 (|t#1| $)) (-15 -1937 ($ $ (-895))) (-15 -2603 (|t#2| $)) (-15 -2603 (|t#2| $ |t#2|)) (-15 -2879 ($ $ |t#2|)) (-15 -2879 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2233 (|t#1| (-1145)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2154 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4268 ($ $ |t#2|)) (IF (|has| |t#2| (-1081)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-874 (-1145))) (-6 (-874 (-1145))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1553 ((-1125 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1081)) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-874 (-1145)))) ((-947 |#1| |#2| (-1051)) . T) ((-1027 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2318 ((|#2| |#2|) 12)) (-2207 (((-411 |#2|) |#2|) 14)) (-4258 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))) 30))) -(((-1207 |#1| |#2|) (-10 -7 (-15 -2207 ((-411 |#2|) |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -4258 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) (-542) (-13 (-1204 |#1|) (-542) (-10 -8 (-15 -3260 ($ $ $))))) (T -1207)) -((-4258 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-550)))) (-4 *4 (-13 (-1204 *3) (-542) (-10 -8 (-15 -3260 ($ $ $))))) (-4 *3 (-542)) (-5 *1 (-1207 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-1204 *3) (-542) (-10 -8 (-15 -3260 ($ $ $))))))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-1204 *4) (-542) (-10 -8 (-15 -3260 ($ $ $)))))))) -(-10 -7 (-15 -2207 ((-411 |#2|) |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -4258 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) -((-2392 (((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)) 24))) -(((-1208 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2392 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)))) (-1021) (-1021) (-1145) (-1145) |#1| |#2|) (T -1208)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-14 *7 (-1145)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1208 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1145))))) -(-10 -7 (-15 -2392 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) 96) (($ $ (-400 (-550)) (-400 (-550))) 95)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 103)) (-4160 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 160 (|has| |#1| (-356)))) (-2207 (((-411 $) $) 161 (|has| |#1| (-356)))) (-1745 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) 151 (|has| |#1| (-356)))) (-4137 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 169)) (-4183 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-3455 (($ $ $) 155 (|has| |#1| (-356)))) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 154 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-1568 (((-112) $) 162 (|has| |#1| (-356)))) (-3771 (((-112) $) 71)) (-4187 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) 98) (((-400 (-550)) $ (-400 (-550))) 97)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) 99) (($ $ (-400 (-550))) 168)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3438 (((-112) $) 60)) (-1488 (($ |#1| (-400 (-550))) 59) (($ $ (-1051) (-400 (-550))) 74) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-3080 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-3231 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2369 (((-1127) $) 9)) (-1619 (($ $) 163 (|has| |#1| (-356)))) (-2149 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 166 (-1489 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-933)) (|has| |#1| (-1167)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3260 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-1735 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 156 (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1644 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) 152 (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) 102) (($ $ $) 79 (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 153 (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 87 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145) (-749)) 86 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1145))) 85 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145)) 84 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-3661 (((-400 (-550)) $) 62)) (-4194 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-4233 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4206 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 91 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145) (-749)) 90 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1145))) 89 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145)) 88 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1209 |#1|) (-138) (-1021)) (T -1209)) -((-2744 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))) (-4 *4 (-1021)) (-4 *1 (-1209 *4)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-1209 *3)) (-4 *3 (-1021)))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) (-2149 (*1 *1 *1 *2) (-1489 (-12 (-5 *2 (-1145)) (-4 *1 (-1209 *3)) (-4 *3 (-1021)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1145)) (-4 *1 (-1209 *3)) (-4 *3 (-1021)) (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) -(-13 (-1206 |t#1| (-400 (-550))) (-10 -8 (-15 -2744 ($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |t#1|))))) (-15 -1937 ($ $ (-400 (-550)))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $)) (IF (|has| |t#1| (-15 -2149 (|t#1| |t#1| (-1145)))) (IF (|has| |t#1| (-15 -1516 ((-623 (-1145)) |t#1|))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1167)) (IF (|has| |t#1| (-933)) (IF (|has| |t#1| (-29 (-550))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1167))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-550))) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-400 (-550)) (-1081)) ((-283) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145)))) ((-947 |#1| #0# (-1051)) . T) ((-894) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-1027 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550)))) ((-1186) |has| |#1| (-356)) ((-1206 |#1| #0#) . T)) -((-3378 (((-112) $) 12)) (-2288 (((-3 |#3| "failed") $) 17)) (-2202 ((|#3| $) 14))) -(((-1210 |#1| |#2| |#3|) (-10 -8 (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -3378 ((-112) |#1|))) (-1211 |#2| |#3|) (-1021) (-1188 |#2|)) (T -1210)) -NIL -(-10 -8 (-15 -2202 (|#3| |#1|)) (-15 -2288 ((-3 |#3| "failed") |#1|)) (-15 -3378 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) 96) (($ $ (-400 (-550)) (-400 (-550))) 95)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 103)) (-4160 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 160 (|has| |#1| (-356)))) (-2207 (((-411 $) $) 161 (|has| |#1| (-356)))) (-1745 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) 151 (|has| |#1| (-356)))) (-4137 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 169)) (-4183 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#2| "failed") $) 180)) (-2202 ((|#2| $) 179)) (-3455 (($ $ $) 155 (|has| |#1| (-356)))) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-2622 (((-400 (-550)) $) 177)) (-3429 (($ $ $) 154 (|has| |#1| (-356)))) (-1595 (($ (-400 (-550)) |#2|) 178)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-1568 (((-112) $) 162 (|has| |#1| (-356)))) (-3771 (((-112) $) 71)) (-4187 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) 98) (((-400 (-550)) $ (-400 (-550))) 97)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) 99) (($ $ (-400 (-550))) 168)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3438 (((-112) $) 60)) (-1488 (($ |#1| (-400 (-550))) 59) (($ $ (-1051) (-400 (-550))) 74) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-3080 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-3231 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2885 ((|#2| $) 176)) (-3988 (((-3 |#2| "failed") $) 174)) (-1583 ((|#2| $) 175)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 163 (|has| |#1| (-356)))) (-2149 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 166 (-1489 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-933)) (|has| |#1| (-1167)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3260 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-1735 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 156 (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1644 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) 152 (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) 102) (($ $ $) 79 (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 153 (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 87 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145) (-749)) 86 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1145))) 85 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145)) 84 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-3661 (((-400 (-550)) $) 62)) (-4194 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-4233 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4206 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 91 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145) (-749)) 90 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1145))) 89 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1145)) 88 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1211 |#1| |#2|) (-138) (-1021) (-1188 |t#1|)) (T -1211)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1188 *3)) (-5 *2 (-400 (-550))))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *1 (-1211 *3 *2)) (-4 *2 (-1188 *3)))) (-1595 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-4 *4 (-1021)) (-4 *1 (-1211 *4 *3)) (-4 *3 (-1188 *4)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1188 *3)) (-5 *2 (-400 (-550))))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1188 *3)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1188 *3)))) (-3988 (*1 *2 *1) (|partial| -12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1188 *3))))) -(-13 (-1209 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -1595 ($ (-400 (-550)) |t#2|)) (-15 -2622 ((-400 (-550)) $)) (-15 -2885 (|t#2| $)) (-15 -3661 ((-400 (-550)) $)) (-15 -2233 ($ |t#2|)) (-15 -1583 (|t#2| $)) (-15 -3988 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-550))) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-400 (-550)) (-1081)) ((-283) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145)))) ((-947 |#1| #0# (-1051)) . T) ((-894) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-1012 |#2|) . T) ((-1027 #1#) -1489 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550)))) ((-1186) |has| |#1| (-356)) ((-1206 |#1| #0#) . T) ((-1209 |#1|) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 96)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) 106) (($ $ (-400 (-550)) (-400 (-550))) 108)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 51)) (-4160 (($ $) 180 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 156 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) 176 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 152 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 61)) (-4183 (($ $) 184 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL)) (-2202 ((|#2| $) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) 79)) (-2622 (((-400 (-550)) $) 13)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1595 (($ (-400 (-550)) |#2|) 11)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-3771 (((-112) $) 68)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) 103) (((-400 (-550)) $ (-400 (-550))) 104)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) 120) (($ $ (-400 (-550))) 118)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-400 (-550))) 31) (($ $ (-1051) (-400 (-550))) NIL) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) 115)) (-3080 (($ $) 150 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2885 ((|#2| $) 12)) (-3988 (((-3 |#2| "failed") $) 41)) (-1583 ((|#2| $) 42)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) 93 (|has| |#1| (-356)))) (-2149 (($ $) 135 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 140 (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167)))))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) 112)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) 148 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) 100) (($ $ $) 86 (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) 127 (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-3661 (((-400 (-550)) $) 16)) (-4194 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 182 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 158 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 178 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 154 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 110)) (-2233 (((-837) $) NIL) (($ (-550)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-550))) 128 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) 99)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) 117)) (-1808 ((|#1| $) 98)) (-4233 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 172 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 198 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 174 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 170 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 166 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 21 T CONST)) (-2700 (($) 17 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) 66)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-2370 (($ $) 131) (($ $ $) 72)) (-2358 (($ $ $) 70)) (** (($ $ (-895)) NIL) (($ $ (-749)) 76) (($ $ (-550)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 146 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1212 |#1| |#2|) (-1211 |#1| |#2|) (-1021) (-1188 |#1|)) (T -1212)) -NIL -(-1211 |#1| |#2|) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 11)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) NIL (|has| |#1| (-542)))) (-2879 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-4222 (((-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-2318 (($ $) NIL (|has| |#1| (-356)))) (-2207 (((-411 $) $) NIL (|has| |#1| (-356)))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1611 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-749) (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1220 |#1| |#2| |#3|) "failed") $) 22)) (-2202 (((-1192 |#1| |#2| |#3|) $) NIL) (((-1220 |#1| |#2| |#3|) $) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-356)))) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2622 (((-400 (-550)) $) 57)) (-3429 (($ $ $) NIL (|has| |#1| (-356)))) (-1595 (($ (-400 (-550)) (-1192 |#1| |#2| |#3|)) NIL)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-1568 (((-112) $) NIL (|has| |#1| (-356)))) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-2419 (((-112) $) NIL)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) NIL) (($ $ (-400 (-550))) NIL)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-400 (-550))) 30) (($ $ (-1051) (-400 (-550))) NIL) (($ $ (-623 (-1051)) (-623 (-400 (-550)))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-3231 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2885 (((-1192 |#1| |#2| |#3|) $) 60)) (-3988 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL)) (-1583 (((-1192 |#1| |#2| |#3|) $) NIL)) (-2369 (((-1127) $) NIL)) (-1619 (($ $) NIL (|has| |#1| (-356)))) (-2149 (($ $) 39 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) NIL (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 40 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3260 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1735 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3581 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) NIL (|has| |#1| (-356)))) (-4268 (($ $ (-400 (-550))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3041 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-1988 (((-749) $) NIL (|has| |#1| (-356)))) (-2757 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1081)))) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) NIL (|has| |#1| (-356)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1224 |#2|)) 38)) (-3661 (((-400 (-550)) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) NIL)) (-2233 (((-837) $) 89) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1192 |#1| |#2| |#3|)) 16) (($ (-1220 |#1| |#2| |#3|)) 17) (($ (-1224 |#2|)) 36) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-1708 ((|#1| $ (-400 (-550))) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 12)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-400 (-550))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 32 T CONST)) (-2700 (($) 26 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1213 |#1| |#2| |#3|) (-13 (-1211 |#1| (-1192 |#1| |#2| |#3|)) (-1012 (-1220 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1213)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1211 |#1| (-1192 |#1| |#2| |#3|)) (-1012 (-1220 |#1| |#2| |#3|)) (-10 -8 (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 34)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL)) (-3050 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 (-550) "failed") $) NIL (|has| (-1213 |#2| |#3| |#4|) (-1012 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-1213 |#2| |#3| |#4|) (-1012 (-400 (-550))))) (((-3 (-1213 |#2| |#3| |#4|) "failed") $) 20)) (-2202 (((-550) $) NIL (|has| (-1213 |#2| |#3| |#4|) (-1012 (-550)))) (((-400 (-550)) $) NIL (|has| (-1213 |#2| |#3| |#4|) (-1012 (-400 (-550))))) (((-1213 |#2| |#3| |#4|) $) NIL)) (-1693 (($ $) 35)) (-1537 (((-3 $ "failed") $) 25)) (-2731 (($ $) NIL (|has| (-1213 |#2| |#3| |#4|) (-444)))) (-3401 (($ $ (-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) 11)) (-3438 (((-112) $) NIL)) (-1488 (($ (-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3346 (((-312 |#2| |#3| |#4|) $) NIL)) (-2863 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-2392 (($ (-1 (-1213 |#2| |#3| |#4|) (-1213 |#2| |#3| |#4|)) $) NIL)) (-3038 (((-3 (-818 |#2|) "failed") $) 75)) (-1657 (($ $) NIL)) (-1670 (((-1213 |#2| |#3| |#4|) $) 18)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1628 (((-112) $) NIL)) (-1639 (((-1213 |#2| |#3| |#4|) $) NIL)) (-3409 (((-3 $ "failed") $ (-1213 |#2| |#3| |#4|)) NIL (|has| (-1213 |#2| |#3| |#4|) (-542))) (((-3 $ "failed") $ $) NIL)) (-4310 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1213 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1127))) "failed") $) 58)) (-3661 (((-312 |#2| |#3| |#4|) $) 14)) (-1622 (((-1213 |#2| |#3| |#4|) $) NIL (|has| (-1213 |#2| |#3| |#4|) (-444)))) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ (-1213 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL (-1489 (|has| (-1213 |#2| |#3| |#4|) (-38 (-400 (-550)))) (|has| (-1213 |#2| |#3| |#4|) (-1012 (-400 (-550))))))) (-2969 (((-623 (-1213 |#2| |#3| |#4|)) $) NIL)) (-1708 (((-1213 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-1613 (((-3 $ "failed") $) NIL (|has| (-1213 |#2| |#3| |#4|) (-143)))) (-3091 (((-749)) NIL)) (-3895 (($ $ $ (-749)) NIL (|has| (-1213 |#2| |#3| |#4|) (-170)))) (-1819 (((-112) $ $) NIL)) (-2688 (($) 63 T CONST)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ (-1213 |#2| |#3| |#4|)) NIL (|has| (-1213 |#2| |#3| |#4|) (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-1213 |#2| |#3| |#4|)) NIL) (($ (-1213 |#2| |#3| |#4|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-1213 |#2| |#3| |#4|) (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| (-1213 |#2| |#3| |#4|) (-38 (-400 (-550))))))) -(((-1214 |#1| |#2| |#3| |#4|) (-13 (-319 (-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -3038 ((-3 (-818 |#2|) "failed") $)) (-15 -4310 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1213 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1127))) "failed") $)))) (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1167) (-423 |#1|)) (-1145) |#2|) (T -1214)) -((-3038 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) (-5 *2 (-818 *4)) (-5 *1 (-1214 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) (-14 *6 *4))) (-4310 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1213 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))))) (|:| |%type| (-1127)))) (-5 *1 (-1214 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) (-14 *6 *4)))) -(-13 (-319 (-1213 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -3038 ((-3 (-818 |#2|) "failed") $)) (-15 -4310 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1213 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1127))) "failed") $)))) -((-1337 ((|#2| $) 29)) (-2422 ((|#2| $) 18)) (-2470 (($ $) 36)) (-1687 (($ $ (-550)) 64)) (-3368 (((-112) $ (-749)) 33)) (-1629 ((|#2| $ |#2|) 61)) (-3737 ((|#2| $ |#2|) 59)) (-2409 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4202 (($ $ (-623 $)) 60)) (-2408 ((|#2| $) 17)) (-3870 (($ $) NIL) (($ $ (-749)) 42)) (-4079 (((-623 $) $) 26)) (-3687 (((-112) $ $) 50)) (-1445 (((-112) $ (-749)) 32)) (-1700 (((-112) $ (-749)) 31)) (-1515 (((-112) $) 28)) (-2001 ((|#2| $) 24) (($ $ (-749)) 46)) (-2757 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2320 (((-112) $) 22)) (-1662 (($ $) 39)) (-3709 (($ $) 65)) (-3300 (((-749) $) 41)) (-3813 (($ $) 40)) (-4006 (($ $ $) 58) (($ |#2| $) NIL)) (-4075 (((-623 $) $) 27)) (-2264 (((-112) $ $) 48)) (-3307 (((-749) $) 35))) -(((-1215 |#1| |#2|) (-10 -8 (-15 -1687 (|#1| |#1| (-550))) (-15 -2409 (|#2| |#1| "last" |#2|)) (-15 -3737 (|#2| |#1| |#2|)) (-15 -2409 (|#1| |#1| "rest" |#1|)) (-15 -2409 (|#2| |#1| "first" |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -3300 ((-749) |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2422 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -2001 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "last")) (-15 -2001 (|#2| |#1|)) (-15 -3870 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| "rest")) (-15 -3870 (|#1| |#1|)) (-15 -2757 (|#2| |#1| "first")) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -1629 (|#2| |#1| |#2|)) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-623 |#1|))) (-15 -3687 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1337 (|#2| |#1|)) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749)))) (-1216 |#2|) (-1182)) (T -1215)) -NIL -(-10 -8 (-15 -1687 (|#1| |#1| (-550))) (-15 -2409 (|#2| |#1| "last" |#2|)) (-15 -3737 (|#2| |#1| |#2|)) (-15 -2409 (|#1| |#1| "rest" |#1|)) (-15 -2409 (|#2| |#1| "first" |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -3300 ((-749) |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2422 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -2001 (|#1| |#1| (-749))) (-15 -2757 (|#2| |#1| "last")) (-15 -2001 (|#2| |#1|)) (-15 -3870 (|#1| |#1| (-749))) (-15 -2757 (|#1| |#1| "rest")) (-15 -3870 (|#1| |#1|)) (-15 -2757 (|#2| |#1| "first")) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -1629 (|#2| |#1| |#2|)) (-15 -2409 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-623 |#1|))) (-15 -3687 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1|)) (-15 -2757 (|#2| |#1| "value")) (-15 -1337 (|#2| |#1|)) (-15 -1515 ((-112) |#1|)) (-15 -4079 ((-623 |#1|) |#1|)) (-15 -4075 ((-623 |#1|) |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -3307 ((-749) |#1|)) (-15 -3368 ((-112) |#1| (-749))) (-15 -1445 ((-112) |#1| (-749))) (-15 -1700 ((-112) |#1| (-749)))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-1337 ((|#1| $) 48)) (-2422 ((|#1| $) 65)) (-2470 (($ $) 67)) (-1687 (($ $ (-550)) 52 (|has| $ (-6 -4345)))) (-3368 (((-112) $ (-749)) 8)) (-1629 ((|#1| $ |#1|) 39 (|has| $ (-6 -4345)))) (-2872 (($ $ $) 56 (|has| $ (-6 -4345)))) (-3737 ((|#1| $ |#1|) 54 (|has| $ (-6 -4345)))) (-3946 ((|#1| $ |#1|) 58 (|has| $ (-6 -4345)))) (-2409 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4345))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4345))) (($ $ "rest" $) 55 (|has| $ (-6 -4345))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4345)))) (-4202 (($ $ (-623 $)) 41 (|has| $ (-6 -4345)))) (-2408 ((|#1| $) 66)) (-2991 (($) 7 T CONST)) (-3870 (($ $) 73) (($ $ (-749)) 71)) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-4079 (((-623 $) $) 50)) (-3687 (((-112) $ $) 42 (|has| |#1| (-1069)))) (-1445 (((-112) $ (-749)) 9)) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35)) (-1700 (((-112) $ (-749)) 10)) (-2951 (((-623 |#1|) $) 45)) (-1515 (((-112) $) 49)) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-2001 ((|#1| $) 70) (($ $ (-749)) 68)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 76) (($ $ (-749)) 74)) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1456 (((-550) $ $) 44)) (-2320 (((-112) $) 46)) (-1662 (($ $) 62)) (-3709 (($ $) 59 (|has| $ (-6 -4345)))) (-3300 (((-749) $) 63)) (-3813 (($ $) 64)) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2435 (($ $) 13)) (-2037 (($ $ $) 61 (|has| $ (-6 -4345))) (($ $ |#1|) 60 (|has| $ (-6 -4345)))) (-4006 (($ $ $) 78) (($ |#1| $) 77)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-4075 (((-623 $) $) 51)) (-1977 (((-112) $ $) 43 (|has| |#1| (-1069)))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1216 |#1|) (-138) (-1182)) (T -1216)) -((-4006 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-4006 (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) (-3870 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) (-1662 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2037 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2037 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3709 (*1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-3946 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2872 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2409 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) (-3737 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) (-1687 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4345)) (-4 *1 (-1216 *3)) (-4 *3 (-1182))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -4006 ($ $ $)) (-15 -4006 ($ |t#1| $)) (-15 -3858 (|t#1| $)) (-15 -2757 (|t#1| $ "first")) (-15 -3858 ($ $ (-749))) (-15 -3870 ($ $)) (-15 -2757 ($ $ "rest")) (-15 -3870 ($ $ (-749))) (-15 -2001 (|t#1| $)) (-15 -2757 (|t#1| $ "last")) (-15 -2001 ($ $ (-749))) (-15 -2470 ($ $)) (-15 -2408 (|t#1| $)) (-15 -2422 (|t#1| $)) (-15 -3813 ($ $)) (-15 -3300 ((-749) $)) (-15 -1662 ($ $)) (IF (|has| $ (-6 -4345)) (PROGN (-15 -2037 ($ $ $)) (-15 -2037 ($ $ |t#1|)) (-15 -3709 ($ $)) (-15 -3946 (|t#1| $ |t#1|)) (-15 -2409 (|t#1| $ "first" |t#1|)) (-15 -2872 ($ $ $)) (-15 -2409 ($ $ "rest" $)) (-15 -3737 (|t#1| $ |t#1|)) (-15 -2409 (|t#1| $ "last" |t#1|)) (-15 -1687 ($ $ (-550)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1069)) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-595 (-837)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-984 |#1|) . T) ((-1069) |has| |#1| (-1069)) ((-1182) . T)) -((-2392 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 (|#4| (-1 |#2| |#1|) |#3|))) (-1021) (-1021) (-1219 |#1|) (-1219 |#2|)) (T -1217)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) (-4 *2 (-1219 *6)) (-5 *1 (-1217 *5 *6 *4 *2)) (-4 *4 (-1219 *5))))) -(-10 -7 (-15 -2392 (|#4| (-1 |#2| |#1|) |#3|))) -((-3378 (((-112) $) 15)) (-4160 (($ $) 92)) (-2820 (($ $) 68)) (-4137 (($ $) 88)) (-2796 (($ $) 64)) (-4183 (($ $) 96)) (-2844 (($ $) 72)) (-3080 (($ $) 62)) (-1644 (($ $) 60)) (-4194 (($ $) 98)) (-2856 (($ $) 74)) (-4171 (($ $) 94)) (-2832 (($ $) 70)) (-4149 (($ $) 90)) (-2807 (($ $) 66)) (-2233 (((-837) $) 48) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4233 (($ $) 104)) (-2893 (($ $) 80)) (-4206 (($ $) 100)) (-2869 (($ $) 76)) (-4255 (($ $) 108)) (-4117 (($ $) 84)) (-3363 (($ $) 110)) (-4127 (($ $) 86)) (-4244 (($ $) 106)) (-2905 (($ $) 82)) (-4218 (($ $) 102)) (-2880 (($ $) 78)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-550))) 58))) -(((-1218 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -2820 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895))) (-15 -3378 ((-112) |#1|)) (-15 -2233 ((-837) |#1|))) (-1219 |#2|) (-1021)) (T -1218)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -2820 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2233 (|#1| |#2|)) (-15 -2233 (|#1| |#1|)) (-15 -2233 (|#1| (-400 (-550)))) (-15 -2233 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-895))) (-15 -3378 ((-112) |#1|)) (-15 -2233 ((-837) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1516 (((-623 (-1051)) $) 72)) (-2564 (((-1145) $) 101)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-3050 (($ $) 50 (|has| |#1| (-542)))) (-3953 (((-112) $) 52 (|has| |#1| (-542)))) (-2879 (($ $ (-749)) 96) (($ $ (-749) (-749)) 95)) (-4222 (((-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 103)) (-4160 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) 19)) (-1745 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 153) (($ (-1125 |#1|)) 151)) (-4183 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) 17 T CONST)) (-1693 (($ $) 58)) (-1537 (((-3 $ "failed") $) 32)) (-2608 (($ $) 150)) (-2666 (((-926 |#1|) $ (-749)) 148) (((-926 |#1|) $ (-749) (-749)) 147)) (-3771 (((-112) $) 71)) (-4187 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $) 98) (((-749) $ (-749)) 97)) (-2419 (((-112) $) 30)) (-1893 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1937 (($ $ (-895)) 99)) (-1546 (($ (-1 |#1| (-550)) $) 149)) (-3438 (((-112) $) 60)) (-1488 (($ |#1| (-749)) 59) (($ $ (-1051) (-749)) 74) (($ $ (-623 (-1051)) (-623 (-749))) 73)) (-2392 (($ (-1 |#1| |#1|) $) 61)) (-3080 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) 63)) (-1670 ((|#1| $) 64)) (-2369 (((-1127) $) 9)) (-2149 (($ $) 145 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 144 (-1489 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-933)) (|has| |#1| (-1167)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3445 (((-1089) $) 10)) (-4268 (($ $ (-749)) 93)) (-3409 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-1644 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-1553 (((-1125 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2757 ((|#1| $ (-749)) 102) (($ $ $) 79 (|has| (-749) (-1081)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) 87 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1145) (-749)) 86 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-623 (-1145))) 85 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1145)) 84 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3661 (((-749) $) 62)) (-4194 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 70)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2969 (((-1125 |#1|) $) 152)) (-1708 ((|#1| $ (-749)) 57)) (-1613 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3091 (((-749)) 28)) (-1808 ((|#1| $) 100)) (-4233 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4206 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-749)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) 91 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1145) (-749)) 90 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-623 (-1145))) 89 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1145)) 88 (-12 (|has| |#1| (-874 (-1145))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) -(((-1219 |#1|) (-138) (-1021)) (T -1219)) -((-2744 (*1 *1 *2) (-12 (-5 *2 (-1125 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1021)) (-4 *1 (-1219 *3)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1021)) (-5 *2 (-1125 *3)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-4 *1 (-1219 *3)))) (-2608 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021)))) (-1546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1219 *3)) (-4 *3 (-1021)))) (-2666 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1219 *4)) (-4 *4 (-1021)) (-5 *2 (-926 *4)))) (-2666 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1219 *4)) (-4 *4 (-1021)) (-5 *2 (-926 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) (-2149 (*1 *1 *1 *2) (-1489 (-12 (-5 *2 (-1145)) (-4 *1 (-1219 *3)) (-4 *3 (-1021)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1145)) (-4 *1 (-1219 *3)) (-4 *3 (-1021)) (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) -(-13 (-1206 |t#1| (-749)) (-10 -8 (-15 -2744 ($ (-1125 (-2 (|:| |k| (-749)) (|:| |c| |t#1|))))) (-15 -2969 ((-1125 |t#1|) $)) (-15 -2744 ($ (-1125 |t#1|))) (-15 -2608 ($ $)) (-15 -1546 ($ (-1 |t#1| (-550)) $)) (-15 -2666 ((-926 |t#1|) $ (-749))) (-15 -2666 ((-926 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -2149 ($ $)) (IF (|has| |t#1| (-15 -2149 (|t#1| |t#1| (-1145)))) (IF (|has| |t#1| (-15 -1516 ((-623 (-1145)) |t#1|))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1167)) (IF (|has| |t#1| (-933)) (IF (|has| |t#1| (-29 (-550))) (-15 -2149 ($ $ (-1145))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1167))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-749)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-749) |#1|))) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-749) (-1081)) ((-283) |has| |#1| (-542)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) |has| |#1| (-542)) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-874 (-1145)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145)))) ((-947 |#1| #0# (-1051)) . T) ((-976) |has| |#1| (-38 (-400 (-550)))) ((-1027 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1027 |#1|) . T) ((-1027 $) -1489 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1167) |has| |#1| (-38 (-400 (-550)))) ((-1170) |has| |#1| (-38 (-400 (-550)))) ((-1206 |#1| #0#) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1516 (((-623 (-1051)) $) NIL)) (-2564 (((-1145) $) 87)) (-2890 (((-1201 |#2| |#1|) $ (-749)) 73)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-3050 (($ $) NIL (|has| |#1| (-542)))) (-3953 (((-112) $) 137 (|has| |#1| (-542)))) (-2879 (($ $ (-749)) 122) (($ $ (-749) (-749)) 124)) (-4222 (((-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 42)) (-4160 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2820 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1993 (((-3 $ "failed") $ $) NIL)) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2796 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2744 (($ (-1125 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 53) (($ (-1125 |#1|)) NIL)) (-4183 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2844 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2991 (($) NIL T CONST)) (-4076 (($ $) 128)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2608 (($ $) 135)) (-2666 (((-926 |#1|) $ (-749)) 63) (((-926 |#1|) $ (-749) (-749)) 65)) (-3771 (((-112) $) NIL)) (-4187 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2603 (((-749) $) NIL) (((-749) $ (-749)) NIL)) (-2419 (((-112) $) NIL)) (-2620 (($ $) 112)) (-1893 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (($ (-550) (-550) $) 130)) (-1937 (($ $ (-895)) 134)) (-1546 (($ (-1 |#1| (-550)) $) 106)) (-3438 (((-112) $) NIL)) (-1488 (($ |#1| (-749)) 15) (($ $ (-1051) (-749)) NIL) (($ $ (-623 (-1051)) (-623 (-749))) NIL)) (-2392 (($ (-1 |#1| |#1|) $) 94)) (-3080 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1657 (($ $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3061 (($ $) 110)) (-3957 (($ $) 108)) (-2913 (($ (-550) (-550) $) 132)) (-2149 (($ $) 145 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1145)) 151 (-1489 (-12 (|has| |#1| (-15 -2149 (|#1| |#1| (-1145)))) (|has| |#1| (-15 -1516 ((-623 (-1145)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-933)) (|has| |#1| (-1167))))) (($ $ (-1224 |#2|)) 146 (|has| |#1| (-38 (-400 (-550)))))) (-3445 (((-1089) $) NIL)) (-3565 (($ $ (-550) (-550)) 116)) (-4268 (($ $ (-749)) 118)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3199 (($ $) 114)) (-1553 (((-1125 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2757 ((|#1| $ (-749)) 91) (($ $ $) 126 (|has| (-749) (-1081)))) (-2798 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) 103 (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1224 |#2|)) 99)) (-3661 (((-749) $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2856 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2832 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2807 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4012 (($ $) 120)) (-2233 (((-837) $) NIL) (($ (-550)) 24) (($ (-400 (-550))) 143 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1201 |#2| |#1|)) 80) (($ (-1224 |#2|)) 20)) (-2969 (((-1125 |#1|) $) NIL)) (-1708 ((|#1| $ (-749)) 90)) (-1613 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3091 (((-749)) NIL)) (-1808 ((|#1| $) 88)) (-4233 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2893 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1819 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2869 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4255 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2154 ((|#1| $ (-749)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -2233 (|#1| (-1145))))))) (-3363 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4127 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4244 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2905 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4218 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2880 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2688 (($) 17 T CONST)) (-2700 (($) 13 T CONST)) (-1901 (($ $ (-623 (-1145)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-623 (-1145))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-1145)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-874 (-1145))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2264 (((-112) $ $) NIL)) (-2382 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) 102)) (-2358 (($ $ $) 18)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) -(((-1220 |#1| |#2| |#3|) (-13 (-1219 |#1|) (-10 -8 (-15 -2233 ($ (-1201 |#2| |#1|))) (-15 -2890 ((-1201 |#2| |#1|) $ (-749))) (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (-15 -3957 ($ $)) (-15 -3061 ($ $)) (-15 -2620 ($ $)) (-15 -3199 ($ $)) (-15 -3565 ($ $ (-550) (-550))) (-15 -4076 ($ $)) (-15 -2475 ($ (-550) (-550) $)) (-15 -2913 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) (-1021) (-1145) |#1|) (T -1220)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-1201 *4 *3)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3) (-5 *1 (-1220 *3 *4 *5)))) (-2890 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1201 *5 *4)) (-5 *1 (-1220 *4 *5 *6)) (-4 *4 (-1021)) (-14 *5 (-1145)) (-14 *6 *4))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) (-14 *5 *3))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) (-14 *4 *2))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) (-14 *4 *2))) (-2620 (*1 *1 *1) (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) (-14 *4 *2))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) (-14 *4 *2))) (-3565 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3))) (-4076 (*1 *1 *1) (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) (-14 *4 *2))) (-2475 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3))) (-2913 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-1145)) (-14 *5 *3))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) -(-13 (-1219 |#1|) (-10 -8 (-15 -2233 ($ (-1201 |#2| |#1|))) (-15 -2890 ((-1201 |#2| |#1|) $ (-749))) (-15 -2233 ($ (-1224 |#2|))) (-15 -2798 ($ $ (-1224 |#2|))) (-15 -3957 ($ $)) (-15 -3061 ($ $)) (-15 -2620 ($ $)) (-15 -3199 ($ $)) (-15 -3565 ($ $ (-550) (-550))) (-15 -4076 ($ $)) (-15 -2475 ($ (-550) (-550) $)) (-15 -2913 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2149 ($ $ (-1224 |#2|))) |%noBranch|))) -((-1958 (((-1 (-1125 |#1|) (-623 (-1125 |#1|))) (-1 |#2| (-623 |#2|))) 24)) (-4154 (((-1 (-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2074 (((-1 (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2|)) 13)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1579 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1455 ((|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|)) 54)) (-3524 (((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))) 61)) (-2659 ((|#2| |#2| |#2|) 43))) -(((-1221 |#1| |#2|) (-10 -7 (-15 -2074 ((-1 (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2|))) (-15 -4154 ((-1 (-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1958 ((-1 (-1125 |#1|) (-623 (-1125 |#1|))) (-1 |#2| (-623 |#2|)))) (-15 -2659 (|#2| |#2| |#2|)) (-15 -1579 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1455 (|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|))) (-15 -3524 ((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))))) (-38 (-400 (-550))) (-1219 |#1|)) (T -1221)) -((-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 (-1 *6 (-623 *6)))) (-4 *5 (-38 (-400 (-550)))) (-4 *6 (-1219 *5)) (-5 *2 (-623 *6)) (-5 *1 (-1221 *5 *6)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-623 *2))) (-5 *4 (-623 *5)) (-4 *5 (-38 (-400 (-550)))) (-4 *2 (-1219 *5)) (-5 *1 (-1221 *5 *2)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-1221 *4 *2)) (-4 *4 (-38 (-400 (-550)))))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-1221 *4 *2)) (-4 *4 (-38 (-400 (-550)))))) (-2659 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1221 *3 *2)) (-4 *2 (-1219 *3)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-623 *5))) (-4 *5 (-1219 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1125 *4) (-623 (-1125 *4)))) (-5 *1 (-1221 *4 *5)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1125 *4) (-1125 *4) (-1125 *4))) (-5 *1 (-1221 *4 *5)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1125 *4) (-1125 *4))) (-5 *1 (-1221 *4 *5))))) -(-10 -7 (-15 -2074 ((-1 (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2|))) (-15 -4154 ((-1 (-1125 |#1|) (-1125 |#1|) (-1125 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1958 ((-1 (-1125 |#1|) (-623 (-1125 |#1|))) (-1 |#2| (-623 |#2|)))) (-15 -2659 (|#2| |#2| |#2|)) (-15 -1579 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1455 (|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|))) (-15 -3524 ((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))))) -((-4025 ((|#2| |#4| (-749)) 30)) (-2131 ((|#4| |#2|) 25)) (-1839 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-542)))) (-2957 (((-1 |#4| (-623 |#4|)) |#3|) 46))) -(((-1222 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2131 (|#4| |#2|)) (-15 -4025 (|#2| |#4| (-749))) (-15 -2957 ((-1 |#4| (-623 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -1839 (|#4| (-400 |#2|))) |%noBranch|)) (-1021) (-1204 |#1|) (-634 |#2|) (-1219 |#1|)) (T -1222)) -((-1839 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-542)) (-4 *4 (-1021)) (-4 *2 (-1219 *4)) (-5 *1 (-1222 *4 *5 *6 *2)) (-4 *6 (-634 *5)))) (-2957 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *5 (-1204 *4)) (-5 *2 (-1 *6 (-623 *6))) (-5 *1 (-1222 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1219 *4)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1021)) (-4 *2 (-1204 *5)) (-5 *1 (-1222 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1219 *5)))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-1021)) (-4 *3 (-1204 *4)) (-4 *2 (-1219 *4)) (-5 *1 (-1222 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) -(-10 -7 (-15 -2131 (|#4| |#2|)) (-15 -4025 (|#2| |#4| (-749))) (-15 -2957 ((-1 |#4| (-623 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -1839 (|#4| (-400 |#2|))) |%noBranch|)) -NIL -(((-1223) (-138)) (T -1223)) -NIL -(-13 (-10 -7 (-6 -2836))) -((-2221 (((-112) $ $) NIL)) (-2564 (((-1145)) 12)) (-2369 (((-1127) $) 17)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 11) (((-1145) $) 8)) (-2264 (((-112) $ $) 14))) -(((-1224 |#1|) (-13 (-1069) (-595 (-1145)) (-10 -8 (-15 -2233 ((-1145) $)) (-15 -2564 ((-1145))))) (-1145)) (T -1224)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1224 *3)) (-14 *3 *2))) (-2564 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1224 *3)) (-14 *3 *2)))) -(-13 (-1069) (-595 (-1145)) (-10 -8 (-15 -2233 ((-1145) $)) (-15 -2564 ((-1145))))) -((-3370 (($ (-749)) 18)) (-2755 (((-667 |#2|) $ $) 40)) (-2986 ((|#2| $) 48)) (-3839 ((|#2| $) 47)) (-3451 ((|#2| $ $) 35)) (-1442 (($ $ $) 44)) (-2370 (($ $) 22) (($ $ $) 28)) (-2358 (($ $ $) 15)) (* (($ (-550) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1225 |#1| |#2|) (-10 -8 (-15 -2986 (|#2| |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2755 ((-667 |#2|) |#1| |#1|)) (-15 -3451 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3370 (|#1| (-749))) (-15 -2358 (|#1| |#1| |#1|))) (-1226 |#2|) (-1182)) (T -1225)) -NIL -(-10 -8 (-15 -2986 (|#2| |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2755 ((-667 |#2|) |#1| |#1|)) (-15 -3451 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3370 (|#1| (-749))) (-15 -2358 (|#1| |#1| |#1|))) -((-2221 (((-112) $ $) 19 (|has| |#1| (-1069)))) (-3370 (($ (-749)) 112 (|has| |#1| (-23)))) (-3037 (((-1233) $ (-550) (-550)) 40 (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4345))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4345))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) 8)) (-2409 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) 58 (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4344)))) (-2991 (($) 7 T CONST)) (-3770 (($ $) 90 (|has| $ (-6 -4345)))) (-1999 (($ $) 100)) (-2708 (($ $) 78 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-1979 (($ |#1| $) 77 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) 51)) (-3088 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) 30 (|has| $ (-6 -4344)))) (-2755 (((-667 |#1|) $ $) 105 (|has| |#1| (-1021)))) (-3375 (($ (-749) |#1|) 69)) (-1445 (((-112) $ (-749)) 9)) (-3096 (((-550) $) 43 (|has| (-550) (-825)))) (-2793 (($ $ $) 87 (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2506 (((-550) $) 44 (|has| (-550) (-825)))) (-2173 (($ $ $) 86 (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2986 ((|#1| $) 102 (-12 (|has| |#1| (-1021)) (|has| |#1| (-976))))) (-1700 (((-112) $ (-749)) 10)) (-3839 ((|#1| $) 103 (-12 (|has| |#1| (-1021)) (|has| |#1| (-976))))) (-2369 (((-1127) $) 22 (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-3611 (((-623 (-550)) $) 46)) (-3166 (((-112) (-550) $) 47)) (-3445 (((-1089) $) 21 (|has| |#1| (-1069)))) (-3858 ((|#1| $) 42 (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2491 (($ $ |#1|) 41 (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) 14)) (-4100 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) 48)) (-4217 (((-112) $) 11)) (-2819 (($) 12)) (-2757 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1195 (-550))) 63)) (-3451 ((|#1| $ $) 106 (|has| |#1| (-1021)))) (-1512 (($ $ (-550)) 62) (($ $ (-1195 (-550))) 61)) (-1442 (($ $ $) 104 (|has| |#1| (-1021)))) (-3457 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4344))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1069)) (|has| $ (-6 -4344))))) (-2502 (($ $ $ (-550)) 91 (|has| $ (-6 -4345)))) (-2435 (($ $) 13)) (-2451 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 70)) (-4006 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-2233 (((-837) $) 18 (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2302 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2264 (((-112) $ $) 20 (|has| |#1| (-1069)))) (-2313 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2290 (((-112) $ $) 82 (|has| |#1| (-825)))) (-2370 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2358 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-550) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-3307 (((-749) $) 6 (|has| $ (-6 -4344))))) -(((-1226 |#1|) (-138) (-1182)) (T -1226)) -((-2358 (*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-25)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1226 *3)) (-4 *3 (-23)) (-4 *3 (-1182)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-21)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1226 *3)) (-4 *3 (-1182)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) (-3451 (*1 *2 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-1021)))) (-2755 (*1 *2 *1 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1182)) (-4 *3 (-1021)) (-5 *2 (-667 *3)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-1021)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-976)) (-4 *2 (-1021)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-976)) (-4 *2 (-1021))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2358 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3370 ($ (-749))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2370 ($ $)) (-15 -2370 ($ $ $)) (-15 * ($ (-550) $))) |%noBranch|) (IF (|has| |t#1| (-705)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1021)) (PROGN (-15 -3451 (|t#1| $ $)) (-15 -2755 ((-667 |t#1|) $ $)) (-15 -1442 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-1021)) (PROGN (-15 -3839 (|t#1| $)) (-15 -2986 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-595 (-837)) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825)) (|has| |#1| (-595 (-837)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1069) -1489 (|has| |#1| (-1069)) (|has| |#1| (-825))) ((-1182) . T)) -((-2304 (((-1228 |#2|) (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|) 13)) (-2924 ((|#2| (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|) 15)) (-2392 (((-3 (-1228 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1228 |#1|)) 28) (((-1228 |#2|) (-1 |#2| |#1|) (-1228 |#1|)) 18))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -2304 ((-1228 |#2|) (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|)) (-15 -2392 ((-1228 |#2|) (-1 |#2| |#1|) (-1228 |#1|))) (-15 -2392 ((-3 (-1228 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1228 |#1|)))) (-1182) (-1182)) (T -1227)) -((-2392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1228 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1228 *6)) (-5 *1 (-1227 *5 *6)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1228 *6)) (-5 *1 (-1227 *5 *6)))) (-2924 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1228 *5)) (-4 *5 (-1182)) (-4 *2 (-1182)) (-5 *1 (-1227 *5 *2)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1228 *6)) (-4 *6 (-1182)) (-4 *5 (-1182)) (-5 *2 (-1228 *5)) (-5 *1 (-1227 *6 *5))))) -(-10 -7 (-15 -2304 ((-1228 |#2|) (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|)) (-15 -2924 (|#2| (-1 |#2| |#1| |#2|) (-1228 |#1|) |#2|)) (-15 -2392 ((-1228 |#2|) (-1 |#2| |#1|) (-1228 |#1|))) (-15 -2392 ((-3 (-1228 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1228 |#1|)))) -((-2221 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-3370 (($ (-749)) NIL (|has| |#1| (-23)))) (-2784 (($ (-623 |#1|)) 9)) (-3037 (((-1233) $ (-550) (-550)) NIL (|has| $ (-6 -4345)))) (-1837 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-2734 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4345))) (($ $) NIL (-12 (|has| $ (-6 -4345)) (|has| |#1| (-825))))) (-1814 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-3368 (((-112) $ (-749)) NIL)) (-2409 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345))) ((|#1| $ (-1195 (-550)) |#1|) NIL (|has| $ (-6 -4345)))) (-2097 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2991 (($) NIL T CONST)) (-3770 (($ $) NIL (|has| $ (-6 -4345)))) (-1999 (($ $) NIL)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1979 (($ |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2924 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4344))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4344)))) (-3317 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4345)))) (-3263 ((|#1| $ (-550)) NIL)) (-3088 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1069))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1069)))) (-2971 (((-623 |#1|) $) 15 (|has| $ (-6 -4344)))) (-2755 (((-667 |#1|) $ $) NIL (|has| |#1| (-1021)))) (-3375 (($ (-749) |#1|) NIL)) (-1445 (((-112) $ (-749)) NIL)) (-3096 (((-550) $) NIL (|has| (-550) (-825)))) (-2793 (($ $ $) NIL (|has| |#1| (-825)))) (-2441 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2876 (((-623 |#1|) $) NIL (|has| $ (-6 -4344)))) (-3922 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2506 (((-550) $) NIL (|has| (-550) (-825)))) (-2173 (($ $ $) NIL (|has| |#1| (-825)))) (-3311 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2986 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-1700 (((-112) $ (-749)) NIL)) (-3839 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1021))))) (-2369 (((-1127) $) NIL (|has| |#1| (-1069)))) (-1476 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-3611 (((-623 (-550)) $) NIL)) (-3166 (((-112) (-550) $) NIL)) (-3445 (((-1089) $) NIL (|has| |#1| (-1069)))) (-3858 ((|#1| $) NIL (|has| (-550) (-825)))) (-1614 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2491 (($ $ |#1|) NIL (|has| $ (-6 -4345)))) (-1410 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4100 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-1375 (((-623 |#1|) $) NIL)) (-4217 (((-112) $) NIL)) (-2819 (($) NIL)) (-2757 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-3451 ((|#1| $ $) NIL (|has| |#1| (-1021)))) (-1512 (($ $ (-550)) NIL) (($ $ (-1195 (-550))) NIL)) (-1442 (($ $ $) NIL (|has| |#1| (-1021)))) (-3457 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#1| (-1069))))) (-2502 (($ $ $ (-550)) NIL (|has| $ (-6 -4345)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) 19 (|has| |#1| (-596 (-526))))) (-2245 (($ (-623 |#1|)) 8)) (-4006 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-2233 (((-837) $) NIL (|has| |#1| (-595 (-837))))) (-3404 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4344)))) (-2324 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2302 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2264 (((-112) $ $) NIL (|has| |#1| (-1069)))) (-2313 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2290 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2370 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2358 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1228 |#1|) (-13 (-1226 |#1|) (-10 -8 (-15 -2784 ($ (-623 |#1|))))) (-1182)) (T -1228)) -((-2784 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1228 *3))))) -(-13 (-1226 |#1|) (-10 -8 (-15 -2784 ($ (-623 |#1|))))) -((-2221 (((-112) $ $) NIL)) (-4103 (((-1127) $ (-1127)) 90) (((-1127) $ (-1127) (-1127)) 88) (((-1127) $ (-1127) (-623 (-1127))) 87)) (-2586 (($) 59)) (-3023 (((-1233) $ (-460) (-895)) 45)) (-2220 (((-1233) $ (-895) (-1127)) 73) (((-1233) $ (-895) (-848)) 74)) (-3734 (((-1233) $ (-895) (-372) (-372)) 48)) (-1809 (((-1233) $ (-1127)) 69)) (-2198 (((-1233) $ (-895) (-1127)) 78)) (-3173 (((-1233) $ (-895) (-372) (-372)) 49)) (-3465 (((-1233) $ (-895) (-895)) 46)) (-4084 (((-1233) $) 70)) (-1390 (((-1233) $ (-895) (-1127)) 77)) (-2400 (((-1233) $ (-460) (-895)) 31)) (-3048 (((-1233) $ (-895) (-1127)) 76)) (-1725 (((-623 (-256)) $) 23) (($ $ (-623 (-256))) 24)) (-3649 (((-1233) $ (-749) (-749)) 43)) (-1727 (($ $) 60) (($ (-460) (-623 (-256))) 61)) (-2369 (((-1127) $) NIL)) (-3549 (((-550) $) 38)) (-3445 (((-1089) $) NIL)) (-3919 (((-1228 (-3 (-460) "undefined")) $) 37)) (-3582 (((-1228 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3048 (-550)) (|:| -1642 (-550)) (|:| |spline| (-550)) (|:| -4235 (-550)) (|:| |axesColor| (-848)) (|:| -2220 (-550)) (|:| |unitsColor| (-848)) (|:| |showing| (-550)))) $) 36)) (-2023 (((-1233) $ (-895) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-848) (-550) (-848) (-550)) 68)) (-1327 (((-623 (-917 (-219))) $) NIL)) (-2658 (((-460) $ (-895)) 33)) (-1794 (((-1233) $ (-749) (-749) (-895) (-895)) 40)) (-3646 (((-1233) $ (-1127)) 79)) (-1642 (((-1233) $ (-895) (-1127)) 75)) (-2233 (((-837) $) 85)) (-1953 (((-1233) $) 80)) (-4235 (((-1233) $ (-895) (-1127)) 71) (((-1233) $ (-895) (-848)) 72)) (-2264 (((-112) $ $) NIL))) -(((-1229) (-13 (-1069) (-10 -8 (-15 -1327 ((-623 (-917 (-219))) $)) (-15 -2586 ($)) (-15 -1727 ($ $)) (-15 -1725 ((-623 (-256)) $)) (-15 -1725 ($ $ (-623 (-256)))) (-15 -1727 ($ (-460) (-623 (-256)))) (-15 -2023 ((-1233) $ (-895) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-848) (-550) (-848) (-550))) (-15 -3582 ((-1228 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3048 (-550)) (|:| -1642 (-550)) (|:| |spline| (-550)) (|:| -4235 (-550)) (|:| |axesColor| (-848)) (|:| -2220 (-550)) (|:| |unitsColor| (-848)) (|:| |showing| (-550)))) $)) (-15 -3919 ((-1228 (-3 (-460) "undefined")) $)) (-15 -1809 ((-1233) $ (-1127))) (-15 -2400 ((-1233) $ (-460) (-895))) (-15 -2658 ((-460) $ (-895))) (-15 -4235 ((-1233) $ (-895) (-1127))) (-15 -4235 ((-1233) $ (-895) (-848))) (-15 -2220 ((-1233) $ (-895) (-1127))) (-15 -2220 ((-1233) $ (-895) (-848))) (-15 -3048 ((-1233) $ (-895) (-1127))) (-15 -1390 ((-1233) $ (-895) (-1127))) (-15 -1642 ((-1233) $ (-895) (-1127))) (-15 -3646 ((-1233) $ (-1127))) (-15 -1953 ((-1233) $)) (-15 -1794 ((-1233) $ (-749) (-749) (-895) (-895))) (-15 -3173 ((-1233) $ (-895) (-372) (-372))) (-15 -3734 ((-1233) $ (-895) (-372) (-372))) (-15 -2198 ((-1233) $ (-895) (-1127))) (-15 -3649 ((-1233) $ (-749) (-749))) (-15 -3023 ((-1233) $ (-460) (-895))) (-15 -3465 ((-1233) $ (-895) (-895))) (-15 -4103 ((-1127) $ (-1127))) (-15 -4103 ((-1127) $ (-1127) (-1127))) (-15 -4103 ((-1127) $ (-1127) (-623 (-1127)))) (-15 -4084 ((-1233) $)) (-15 -3549 ((-550) $)) (-15 -2233 ((-837) $))))) (T -1229)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1229)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-623 (-917 (-219)))) (-5 *1 (-1229)))) (-2586 (*1 *1) (-5 *1 (-1229))) (-1727 (*1 *1 *1) (-5 *1 (-1229))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-623 (-256))) (-5 *1 (-1229)))) (-2023 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-895)) (-5 *4 (-219)) (-5 *5 (-550)) (-5 *6 (-848)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-1228 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3048 (-550)) (|:| -1642 (-550)) (|:| |spline| (-550)) (|:| -4235 (-550)) (|:| |axesColor| (-848)) (|:| -2220 (-550)) (|:| |unitsColor| (-848)) (|:| |showing| (-550))))) (-5 *1 (-1229)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1228 (-3 (-460) "undefined"))) (-5 *1 (-1229)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-2400 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-2658 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-460)) (-5 *1 (-1229)))) (-4235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-4235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-848)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-2220 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-2220 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-848)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3048 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-1390 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-1642 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1229)))) (-1794 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3173 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3734 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-2198 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3649 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3023 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3465 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1229)))) (-4103 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1229)))) (-4103 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-1229)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1229)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1229))))) -(-13 (-1069) (-10 -8 (-15 -1327 ((-623 (-917 (-219))) $)) (-15 -2586 ($)) (-15 -1727 ($ $)) (-15 -1725 ((-623 (-256)) $)) (-15 -1725 ($ $ (-623 (-256)))) (-15 -1727 ($ (-460) (-623 (-256)))) (-15 -2023 ((-1233) $ (-895) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-848) (-550) (-848) (-550))) (-15 -3582 ((-1228 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3048 (-550)) (|:| -1642 (-550)) (|:| |spline| (-550)) (|:| -4235 (-550)) (|:| |axesColor| (-848)) (|:| -2220 (-550)) (|:| |unitsColor| (-848)) (|:| |showing| (-550)))) $)) (-15 -3919 ((-1228 (-3 (-460) "undefined")) $)) (-15 -1809 ((-1233) $ (-1127))) (-15 -2400 ((-1233) $ (-460) (-895))) (-15 -2658 ((-460) $ (-895))) (-15 -4235 ((-1233) $ (-895) (-1127))) (-15 -4235 ((-1233) $ (-895) (-848))) (-15 -2220 ((-1233) $ (-895) (-1127))) (-15 -2220 ((-1233) $ (-895) (-848))) (-15 -3048 ((-1233) $ (-895) (-1127))) (-15 -1390 ((-1233) $ (-895) (-1127))) (-15 -1642 ((-1233) $ (-895) (-1127))) (-15 -3646 ((-1233) $ (-1127))) (-15 -1953 ((-1233) $)) (-15 -1794 ((-1233) $ (-749) (-749) (-895) (-895))) (-15 -3173 ((-1233) $ (-895) (-372) (-372))) (-15 -3734 ((-1233) $ (-895) (-372) (-372))) (-15 -2198 ((-1233) $ (-895) (-1127))) (-15 -3649 ((-1233) $ (-749) (-749))) (-15 -3023 ((-1233) $ (-460) (-895))) (-15 -3465 ((-1233) $ (-895) (-895))) (-15 -4103 ((-1127) $ (-1127))) (-15 -4103 ((-1127) $ (-1127) (-1127))) (-15 -4103 ((-1127) $ (-1127) (-623 (-1127)))) (-15 -4084 ((-1233) $)) (-15 -3549 ((-550) $)) (-15 -2233 ((-837) $)))) -((-2221 (((-112) $ $) NIL)) (-3434 (((-1233) $ (-372)) 140) (((-1233) $ (-372) (-372) (-372)) 141)) (-4103 (((-1127) $ (-1127)) 148) (((-1127) $ (-1127) (-1127)) 146) (((-1127) $ (-1127) (-623 (-1127))) 145)) (-3831 (($) 50)) (-3221 (((-1233) $ (-372) (-372) (-372) (-372) (-372)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1233) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1233) $ (-550) (-550) (-372) (-372) (-372)) 117) (((-1233) $ (-372) (-372)) 118) (((-1233) $ (-372) (-372) (-372)) 125)) (-2404 (((-372)) 97) (((-372) (-372)) 98)) (-2651 (((-372)) 92) (((-372) (-372)) 94)) (-4057 (((-372)) 95) (((-372) (-372)) 96)) (-3865 (((-372)) 101) (((-372) (-372)) 102)) (-3727 (((-372)) 99) (((-372) (-372)) 100)) (-3734 (((-1233) $ (-372) (-372)) 142)) (-1809 (((-1233) $ (-1127)) 126)) (-1599 (((-1102 (-219)) $) 51) (($ $ (-1102 (-219))) 52)) (-1658 (((-1233) $ (-1127)) 154)) (-3284 (((-1233) $ (-1127)) 155)) (-2343 (((-1233) $ (-372) (-372)) 124) (((-1233) $ (-550) (-550)) 139)) (-3465 (((-1233) $ (-895) (-895)) 132)) (-4084 (((-1233) $) 112)) (-2003 (((-1233) $ (-1127)) 153)) (-3602 (((-1233) $ (-1127)) 109)) (-1725 (((-623 (-256)) $) 53) (($ $ (-623 (-256))) 54)) (-3649 (((-1233) $ (-749) (-749)) 131)) (-2011 (((-1233) $ (-749) (-917 (-219))) 160)) (-4274 (($ $) 56) (($ (-1102 (-219)) (-1127)) 57) (($ (-1102 (-219)) (-623 (-256))) 58)) (-1746 (((-1233) $ (-372) (-372) (-372)) 106)) (-2369 (((-1127) $) NIL)) (-3549 (((-550) $) 103)) (-1919 (((-1233) $ (-372)) 143)) (-3440 (((-1233) $ (-372)) 158)) (-3445 (((-1089) $) NIL)) (-3316 (((-1233) $ (-372)) 157)) (-3927 (((-1233) $ (-1127)) 111)) (-1794 (((-1233) $ (-749) (-749) (-895) (-895)) 130)) (-2360 (((-1233) $ (-1127)) 108)) (-3646 (((-1233) $ (-1127)) 110)) (-3213 (((-1233) $ (-155) (-155)) 129)) (-2233 (((-837) $) 137)) (-1953 (((-1233) $) 113)) (-3550 (((-1233) $ (-1127)) 156)) (-4235 (((-1233) $ (-1127)) 107)) (-2264 (((-112) $ $) NIL))) -(((-1230) (-13 (-1069) (-10 -8 (-15 -2651 ((-372))) (-15 -2651 ((-372) (-372))) (-15 -4057 ((-372))) (-15 -4057 ((-372) (-372))) (-15 -2404 ((-372))) (-15 -2404 ((-372) (-372))) (-15 -3727 ((-372))) (-15 -3727 ((-372) (-372))) (-15 -3865 ((-372))) (-15 -3865 ((-372) (-372))) (-15 -3831 ($)) (-15 -4274 ($ $)) (-15 -4274 ($ (-1102 (-219)) (-1127))) (-15 -4274 ($ (-1102 (-219)) (-623 (-256)))) (-15 -1599 ((-1102 (-219)) $)) (-15 -1599 ($ $ (-1102 (-219)))) (-15 -2011 ((-1233) $ (-749) (-917 (-219)))) (-15 -1725 ((-623 (-256)) $)) (-15 -1725 ($ $ (-623 (-256)))) (-15 -3649 ((-1233) $ (-749) (-749))) (-15 -3465 ((-1233) $ (-895) (-895))) (-15 -1809 ((-1233) $ (-1127))) (-15 -1794 ((-1233) $ (-749) (-749) (-895) (-895))) (-15 -3221 ((-1233) $ (-372) (-372) (-372) (-372) (-372))) (-15 -3221 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -3221 ((-1233) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -3221 ((-1233) $ (-550) (-550) (-372) (-372) (-372))) (-15 -3221 ((-1233) $ (-372) (-372))) (-15 -3221 ((-1233) $ (-372) (-372) (-372))) (-15 -3646 ((-1233) $ (-1127))) (-15 -4235 ((-1233) $ (-1127))) (-15 -2360 ((-1233) $ (-1127))) (-15 -3602 ((-1233) $ (-1127))) (-15 -3927 ((-1233) $ (-1127))) (-15 -2343 ((-1233) $ (-372) (-372))) (-15 -2343 ((-1233) $ (-550) (-550))) (-15 -3434 ((-1233) $ (-372))) (-15 -3434 ((-1233) $ (-372) (-372) (-372))) (-15 -3734 ((-1233) $ (-372) (-372))) (-15 -2003 ((-1233) $ (-1127))) (-15 -3316 ((-1233) $ (-372))) (-15 -3440 ((-1233) $ (-372))) (-15 -1658 ((-1233) $ (-1127))) (-15 -3284 ((-1233) $ (-1127))) (-15 -3550 ((-1233) $ (-1127))) (-15 -1746 ((-1233) $ (-372) (-372) (-372))) (-15 -1919 ((-1233) $ (-372))) (-15 -4084 ((-1233) $)) (-15 -3213 ((-1233) $ (-155) (-155))) (-15 -4103 ((-1127) $ (-1127))) (-15 -4103 ((-1127) $ (-1127) (-1127))) (-15 -4103 ((-1127) $ (-1127) (-623 (-1127)))) (-15 -1953 ((-1233) $)) (-15 -3549 ((-550) $))))) (T -1230)) -((-2651 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-4057 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-2404 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-3727 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-3865 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) (-3831 (*1 *1) (-5 *1 (-1230))) (-4274 (*1 *1 *1) (-5 *1 (-1230))) (-4274 (*1 *1 *2 *3) (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-1127)) (-5 *1 (-1230)))) (-4274 (*1 *1 *2 *3) (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-623 (-256))) (-5 *1 (-1230)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1230)))) (-1599 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1230)))) (-2011 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1230)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1230)))) (-3649 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3465 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1794 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3221 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1230)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3221 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-550)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3221 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3221 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-2360 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3927 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3434 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3434 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-2003 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3316 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1658 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3284 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1746 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-1919 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3213 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1233)) (-5 *1 (-1230)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1230)))) (-4103 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1230)))) (-4103 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-1230)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1230)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1230))))) -(-13 (-1069) (-10 -8 (-15 -2651 ((-372))) (-15 -2651 ((-372) (-372))) (-15 -4057 ((-372))) (-15 -4057 ((-372) (-372))) (-15 -2404 ((-372))) (-15 -2404 ((-372) (-372))) (-15 -3727 ((-372))) (-15 -3727 ((-372) (-372))) (-15 -3865 ((-372))) (-15 -3865 ((-372) (-372))) (-15 -3831 ($)) (-15 -4274 ($ $)) (-15 -4274 ($ (-1102 (-219)) (-1127))) (-15 -4274 ($ (-1102 (-219)) (-623 (-256)))) (-15 -1599 ((-1102 (-219)) $)) (-15 -1599 ($ $ (-1102 (-219)))) (-15 -2011 ((-1233) $ (-749) (-917 (-219)))) (-15 -1725 ((-623 (-256)) $)) (-15 -1725 ($ $ (-623 (-256)))) (-15 -3649 ((-1233) $ (-749) (-749))) (-15 -3465 ((-1233) $ (-895) (-895))) (-15 -1809 ((-1233) $ (-1127))) (-15 -1794 ((-1233) $ (-749) (-749) (-895) (-895))) (-15 -3221 ((-1233) $ (-372) (-372) (-372) (-372) (-372))) (-15 -3221 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -3221 ((-1233) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -3221 ((-1233) $ (-550) (-550) (-372) (-372) (-372))) (-15 -3221 ((-1233) $ (-372) (-372))) (-15 -3221 ((-1233) $ (-372) (-372) (-372))) (-15 -3646 ((-1233) $ (-1127))) (-15 -4235 ((-1233) $ (-1127))) (-15 -2360 ((-1233) $ (-1127))) (-15 -3602 ((-1233) $ (-1127))) (-15 -3927 ((-1233) $ (-1127))) (-15 -2343 ((-1233) $ (-372) (-372))) (-15 -2343 ((-1233) $ (-550) (-550))) (-15 -3434 ((-1233) $ (-372))) (-15 -3434 ((-1233) $ (-372) (-372) (-372))) (-15 -3734 ((-1233) $ (-372) (-372))) (-15 -2003 ((-1233) $ (-1127))) (-15 -3316 ((-1233) $ (-372))) (-15 -3440 ((-1233) $ (-372))) (-15 -1658 ((-1233) $ (-1127))) (-15 -3284 ((-1233) $ (-1127))) (-15 -3550 ((-1233) $ (-1127))) (-15 -1746 ((-1233) $ (-372) (-372) (-372))) (-15 -1919 ((-1233) $ (-372))) (-15 -4084 ((-1233) $)) (-15 -3213 ((-1233) $ (-155) (-155))) (-15 -4103 ((-1127) $ (-1127))) (-15 -4103 ((-1127) $ (-1127) (-1127))) (-15 -4103 ((-1127) $ (-1127) (-623 (-1127)))) (-15 -1953 ((-1233) $)) (-15 -3549 ((-550) $)))) -((-3493 (((-623 (-1127)) (-623 (-1127))) 94) (((-623 (-1127))) 90)) (-2002 (((-623 (-1127))) 88)) (-2823 (((-623 (-895)) (-623 (-895))) 63) (((-623 (-895))) 60)) (-3423 (((-623 (-749)) (-623 (-749))) 57) (((-623 (-749))) 53)) (-1812 (((-1233)) 65)) (-3447 (((-895) (-895)) 81) (((-895)) 80)) (-1728 (((-895) (-895)) 79) (((-895)) 78)) (-3306 (((-848) (-848)) 75) (((-848)) 74)) (-2214 (((-219)) 85) (((-219) (-372)) 87)) (-3195 (((-895)) 82) (((-895) (-895)) 83)) (-1881 (((-895) (-895)) 77) (((-895)) 76)) (-2176 (((-848) (-848)) 69) (((-848)) 67)) (-1868 (((-848) (-848)) 71) (((-848)) 70)) (-3531 (((-848) (-848)) 73) (((-848)) 72))) -(((-1231) (-10 -7 (-15 -2176 ((-848))) (-15 -2176 ((-848) (-848))) (-15 -1868 ((-848))) (-15 -1868 ((-848) (-848))) (-15 -3531 ((-848))) (-15 -3531 ((-848) (-848))) (-15 -3306 ((-848))) (-15 -3306 ((-848) (-848))) (-15 -1881 ((-895))) (-15 -1881 ((-895) (-895))) (-15 -3423 ((-623 (-749)))) (-15 -3423 ((-623 (-749)) (-623 (-749)))) (-15 -2823 ((-623 (-895)))) (-15 -2823 ((-623 (-895)) (-623 (-895)))) (-15 -1812 ((-1233))) (-15 -3493 ((-623 (-1127)))) (-15 -3493 ((-623 (-1127)) (-623 (-1127)))) (-15 -2002 ((-623 (-1127)))) (-15 -1728 ((-895))) (-15 -3447 ((-895))) (-15 -1728 ((-895) (-895))) (-15 -3447 ((-895) (-895))) (-15 -3195 ((-895) (-895))) (-15 -3195 ((-895))) (-15 -2214 ((-219) (-372))) (-15 -2214 ((-219))))) (T -1231)) -((-2214 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1231)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1231)))) (-3195 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-3447 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-1728 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-2002 (*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231)))) (-3493 (*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231)))) (-1812 (*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1231)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1231)))) (-2823 (*1 *2) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1231)))) (-3423 (*1 *2 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1231)))) (-3423 (*1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1231)))) (-1881 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-1881 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) (-3306 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-3306 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-3531 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-3531 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-1868 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) (-2176 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231))))) -(-10 -7 (-15 -2176 ((-848))) (-15 -2176 ((-848) (-848))) (-15 -1868 ((-848))) (-15 -1868 ((-848) (-848))) (-15 -3531 ((-848))) (-15 -3531 ((-848) (-848))) (-15 -3306 ((-848))) (-15 -3306 ((-848) (-848))) (-15 -1881 ((-895))) (-15 -1881 ((-895) (-895))) (-15 -3423 ((-623 (-749)))) (-15 -3423 ((-623 (-749)) (-623 (-749)))) (-15 -2823 ((-623 (-895)))) (-15 -2823 ((-623 (-895)) (-623 (-895)))) (-15 -1812 ((-1233))) (-15 -3493 ((-623 (-1127)))) (-15 -3493 ((-623 (-1127)) (-623 (-1127)))) (-15 -2002 ((-623 (-1127)))) (-15 -1728 ((-895))) (-15 -3447 ((-895))) (-15 -1728 ((-895) (-895))) (-15 -3447 ((-895) (-895))) (-15 -3195 ((-895) (-895))) (-15 -3195 ((-895))) (-15 -2214 ((-219) (-372))) (-15 -2214 ((-219)))) -((-4162 (((-460) (-623 (-623 (-917 (-219)))) (-623 (-256))) 21) (((-460) (-623 (-623 (-917 (-219))))) 20) (((-460) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256))) 19)) (-3542 (((-1229) (-623 (-623 (-917 (-219)))) (-623 (-256))) 27) (((-1229) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256))) 26)) (-2233 (((-1229) (-460)) 38))) -(((-1232) (-10 -7 (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256)))) (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))))) (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))) (-623 (-256)))) (-15 -3542 ((-1229) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256)))) (-15 -3542 ((-1229) (-623 (-623 (-917 (-219)))) (-623 (-256)))) (-15 -2233 ((-1229) (-460))))) (T -1232)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1229)) (-5 *1 (-1232)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-1232)))) (-3542 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-895)) (-5 *6 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-1232)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1232)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *2 (-460)) (-5 *1 (-1232)))) (-4162 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-895)) (-5 *6 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1232))))) -(-10 -7 (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256)))) (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))))) (-15 -4162 ((-460) (-623 (-623 (-917 (-219)))) (-623 (-256)))) (-15 -3542 ((-1229) (-623 (-623 (-917 (-219)))) (-848) (-848) (-895) (-623 (-256)))) (-15 -3542 ((-1229) (-623 (-623 (-917 (-219)))) (-623 (-256)))) (-15 -2233 ((-1229) (-460)))) -((-2487 (($) 7)) (-2233 (((-837) $) 10))) -(((-1233) (-10 -8 (-15 -2487 ($)) (-15 -2233 ((-837) $)))) (T -1233)) -((-2233 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1233)))) (-2487 (*1 *1) (-5 *1 (-1233)))) -(-10 -8 (-15 -2487 ($)) (-15 -2233 ((-837) $))) -((-2382 (($ $ |#2|) 10))) -(((-1234 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1| |#2|))) (-1235 |#2|) (-356)) (T -1234)) -NIL -(-10 -8 (-15 -2382 (|#1| |#1| |#2|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-1877 (((-133)) 28)) (-2233 (((-837) $) 11)) (-2688 (($) 18 T CONST)) (-2264 (((-112) $ $) 6)) (-2382 (($ $ |#1|) 29)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1235 |#1|) (-138) (-356)) (T -1235)) -((-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-356)))) (-1877 (*1 *2) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) -(-13 (-696 |t#1|) (-10 -8 (-15 -2382 ($ $ |t#1|)) (-15 -1877 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1027 |#1|) . T) ((-1069) . T)) -((-1813 (((-623 (-1176 |#1|)) (-1145) (-1176 |#1|)) 74)) (-2605 (((-1125 (-1125 (-926 |#1|))) (-1145) (-1125 (-926 |#1|))) 53)) (-3304 (((-1 (-1125 (-1176 |#1|)) (-1125 (-1176 |#1|))) (-749) (-1176 |#1|) (-1125 (-1176 |#1|))) 64)) (-3453 (((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749)) 55)) (-1972 (((-1 (-1141 (-926 |#1|)) (-926 |#1|)) (-1145)) 29)) (-3082 (((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749)) 54))) -(((-1236 |#1|) (-10 -7 (-15 -3453 ((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749))) (-15 -3082 ((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749))) (-15 -2605 ((-1125 (-1125 (-926 |#1|))) (-1145) (-1125 (-926 |#1|)))) (-15 -1972 ((-1 (-1141 (-926 |#1|)) (-926 |#1|)) (-1145))) (-15 -1813 ((-623 (-1176 |#1|)) (-1145) (-1176 |#1|))) (-15 -3304 ((-1 (-1125 (-1176 |#1|)) (-1125 (-1176 |#1|))) (-749) (-1176 |#1|) (-1125 (-1176 |#1|))))) (-356)) (T -1236)) -((-3304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) (-5 *2 (-1 (-1125 *4) (-1125 *4))) (-5 *1 (-1236 *6)) (-5 *5 (-1125 *4)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-4 *5 (-356)) (-5 *2 (-623 (-1176 *5))) (-5 *1 (-1236 *5)) (-5 *4 (-1176 *5)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1 (-1141 (-926 *4)) (-926 *4))) (-5 *1 (-1236 *4)) (-4 *4 (-356)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-4 *5 (-356)) (-5 *2 (-1125 (-1125 (-926 *5)))) (-5 *1 (-1236 *5)) (-5 *4 (-1125 (-926 *5))))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1125 (-926 *4)) (-1125 (-926 *4)))) (-5 *1 (-1236 *4)) (-4 *4 (-356)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1125 (-926 *4)) (-1125 (-926 *4)))) (-5 *1 (-1236 *4)) (-4 *4 (-356))))) -(-10 -7 (-15 -3453 ((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749))) (-15 -3082 ((-1 (-1125 (-926 |#1|)) (-1125 (-926 |#1|))) (-749))) (-15 -2605 ((-1125 (-1125 (-926 |#1|))) (-1145) (-1125 (-926 |#1|)))) (-15 -1972 ((-1 (-1141 (-926 |#1|)) (-926 |#1|)) (-1145))) (-15 -1813 ((-623 (-1176 |#1|)) (-1145) (-1176 |#1|))) (-15 -3304 ((-1 (-1125 (-1176 |#1|)) (-1125 (-1176 |#1|))) (-749) (-1176 |#1|) (-1125 (-1176 |#1|))))) -((-2443 (((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 75)) (-2892 (((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 74))) -(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) (-342) (-1204 |#1|) (-1204 |#2|) (-402 |#2| |#3|)) (T -1237)) -((-2443 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 *3)) (-5 *2 (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-1237 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))) (-2892 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 *4)) (-5 *2 (-2 (|:| -2206 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-1237 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5))))) -(-10 -7 (-15 -2892 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2443 ((-2 (|:| -2206 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) -((-2221 (((-112) $ $) NIL)) (-3906 (((-1104) $) 11)) (-3506 (((-1104) $) 9)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 19) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1238) (-13 (-1052) (-10 -8 (-15 -3506 ((-1104) $)) (-15 -3906 ((-1104) $))))) (T -1238)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1238)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1238))))) -(-13 (-1052) (-10 -8 (-15 -3506 ((-1104) $)) (-15 -3906 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1723 (((-1104) $) 9)) (-2233 (((-837) $) 17) (((-1150) $) NIL) (($ (-1150)) NIL)) (-2264 (((-112) $ $) NIL))) -(((-1239) (-13 (-1052) (-10 -8 (-15 -1723 ((-1104) $))))) (T -1239)) -((-1723 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1239))))) -(-13 (-1052) (-10 -8 (-15 -1723 ((-1104) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 43)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2233 (((-837) $) 64) (($ (-550)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3091 (((-749)) NIL)) (-1429 (((-1233) (-749)) 16)) (-2688 (($) 27 T CONST)) (-2700 (($) 67 T CONST)) (-2264 (((-112) $ $) 69)) (-2382 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2370 (($ $) 71) (($ $ $) NIL)) (-2358 (($ $ $) 47)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-1240 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1021) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -2233 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2382 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2233 ($ |#4|)) (-15 -1429 ((-1233) (-749))))) (-1021) (-825) (-771) (-923 |#1| |#3| |#2|) (-623 |#2|) (-623 (-749)) (-749)) (T -1240)) -((-2233 (*1 *2 *1) (-12 (-4 *2 (-923 *3 *5 *4)) (-5 *1 (-1240 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-2382 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1021)) (-4 *3 (-825)) (-4 *4 (-771)) (-14 *6 (-623 *3)) (-5 *1 (-1240 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-923 *2 *4 *3)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-2233 (*1 *1 *2) (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) (-5 *1 (-1240 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-923 *3 *5 *4)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1021)) (-4 *5 (-825)) (-4 *6 (-771)) (-14 *8 (-623 *5)) (-5 *2 (-1233)) (-5 *1 (-1240 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-923 *4 *6 *5)) (-14 *9 (-623 *3)) (-14 *10 *3)))) -(-13 (-1021) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -2233 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2382 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2233 ($ |#4|)) (-15 -1429 ((-1233) (-749))))) -((-2221 (((-112) $ $) NIL)) (-3393 (((-623 (-2 (|:| -1953 $) (|:| -4046 (-623 |#4|)))) (-623 |#4|)) NIL)) (-3186 (((-623 $) (-623 |#4|)) 88)) (-1516 (((-623 |#3|) $) NIL)) (-3935 (((-112) $) NIL)) (-3885 (((-112) $) NIL (|has| |#1| (-542)))) (-1404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3624 ((|#4| |#4| $) NIL)) (-1814 (((-2 (|:| |under| $) (|:| -3925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3368 (((-112) $ (-749)) NIL)) (-2097 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2991 (($) NIL T CONST)) (-3711 (((-112) $) NIL (|has| |#1| (-542)))) (-2751 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3305 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2248 (((-112) $) NIL (|has| |#1| (-542)))) (-3296 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3694 (((-623 |#4|) (-623 |#4|) $) 25 (|has| |#1| (-542)))) (-2178 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-2288 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2202 (($ (-623 |#4|)) NIL)) (-3870 (((-3 $ "failed") $) 70)) (-2962 ((|#4| |#4| $) 75)) (-2708 (($ $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1979 (($ |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2545 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2924 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4344))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4344))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2466 (((-2 (|:| -1953 (-623 |#4|)) (|:| -4046 (-623 |#4|))) $) NIL)) (-2971 (((-623 |#4|) $) NIL (|has| $ (-6 -4344)))) (-2831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1765 ((|#3| $) 76)) (-1445 (((-112) $ (-749)) NIL)) (-2876 (((-623 |#4|) $) 29 (|has| $ (-6 -4344)))) (-3922 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069))))) (-1684 (((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-623 |#4|)) 35)) (-3311 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4345)))) (-2392 (($ (-1 |#4| |#4|) $) NIL)) (-3704 (((-623 |#3|) $) NIL)) (-4159 (((-112) |#3| $) NIL)) (-1700 (((-112) $ (-749)) NIL)) (-2369 (((-1127) $) NIL)) (-2001 (((-3 |#4| "failed") $) NIL)) (-3896 (((-623 |#4|) $) 50)) (-3705 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2474 ((|#4| |#4| $) 74)) (-3098 (((-112) $ $) 85)) (-4035 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3959 ((|#4| |#4| $) NIL)) (-3445 (((-1089) $) NIL)) (-3858 (((-3 |#4| "failed") $) 69)) (-1614 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3747 (((-3 $ "failed") $ |#4|) NIL)) (-4268 (($ $ |#4|) NIL)) (-1410 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1553 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1069))))) (-3155 (((-112) $ $) NIL)) (-4217 (((-112) $) 67)) (-2819 (($) 42)) (-3661 (((-749) $) NIL)) (-3457 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4344)) (|has| |#4| (-1069)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-2435 (($ $) NIL)) (-2451 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-2245 (($ (-623 |#4|)) NIL)) (-3537 (($ $ |#3|) NIL)) (-1446 (($ $ |#3|) NIL)) (-3236 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-2233 (((-837) $) NIL) (((-623 |#4|) $) 57)) (-4265 (((-749) $) NIL (|has| |#3| (-361)))) (-3132 (((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-623 |#4|)) 41)) (-3248 (((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-623 $) (-623 |#4|)) 66)) (-3526 (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3940 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1770 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3404 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4344)))) (-1751 (((-623 |#3|) $) NIL)) (-3636 (((-112) |#3| $) NIL)) (-2264 (((-112) $ $) NIL)) (-3307 (((-749) $) NIL (|has| $ (-6 -4344))))) -(((-1241 |#1| |#2| |#3| |#4|) (-13 (-1175 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1684 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1684 ((-3 $ "failed") (-623 |#4|))) (-15 -3132 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3132 ((-3 $ "failed") (-623 |#4|))) (-15 -3248 ((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3248 ((-623 $) (-623 |#4|))))) (-542) (-771) (-825) (-1035 |#1| |#2| |#3|)) (T -1241)) -((-1684 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1241 *5 *6 *7 *8)))) (-1684 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1241 *3 *4 *5 *6)))) (-3132 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1241 *5 *6 *7 *8)))) (-3132 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1241 *3 *4 *5 *6)))) (-3248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-623 (-1241 *6 *7 *8 *9))) (-5 *1 (-1241 *6 *7 *8 *9)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-1241 *4 *5 *6 *7))) (-5 *1 (-1241 *4 *5 *6 *7))))) -(-13 (-1175 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1684 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1684 ((-3 $ "failed") (-623 |#4|))) (-15 -3132 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3132 ((-3 $ "failed") (-623 |#4|))) (-15 -3248 ((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3248 ((-623 $) (-623 |#4|))))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-1993 (((-3 $ "failed") $ $) 19)) (-2991 (($) 17 T CONST)) (-1537 (((-3 $ "failed") $) 32)) (-2419 (((-112) $) 30)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#1|) 36)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1242 |#1|) (-138) (-1021)) (T -1242)) -((-2233 (*1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1021))))) -(-13 (-1021) (-111 |t#1| |t#1|) (-10 -8 (-15 -2233 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1027 |#1|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T)) -((-2221 (((-112) $ $) 60)) (-3378 (((-112) $) NIL)) (-3016 (((-623 |#1|) $) 45)) (-1918 (($ $ (-749)) 39)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2540 (($ $ (-749)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-2991 (($) NIL T CONST)) (-3134 (($ $ $) 63) (($ $ (-797 |#1|)) 49) (($ $ |#1|) 53)) (-2288 (((-3 (-797 |#1|) "failed") $) NIL)) (-2202 (((-797 |#1|) $) NIL)) (-1693 (($ $) 32)) (-1537 (((-3 $ "failed") $) NIL)) (-2639 (((-112) $) NIL)) (-4036 (($ $) NIL)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ (-797 |#1|) |#2|) 31)) (-2481 (($ $) 33)) (-3392 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 12)) (-1845 (((-797 |#1|) $) NIL)) (-3513 (((-797 |#1|) $) 34)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-1676 (($ $ $) 62) (($ $ (-797 |#1|)) 51) (($ $ |#1|) 55)) (-1615 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1657 (((-797 |#1|) $) 28)) (-1670 ((|#2| $) 30)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-3661 (((-749) $) 36)) (-2153 (((-112) $) 40)) (-4165 ((|#2| $) NIL)) (-2233 (((-837) $) NIL) (($ (-797 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-550)) NIL)) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-797 |#1|)) NIL)) (-4304 ((|#2| $ $) 65) ((|#2| $ (-797 |#1|)) NIL)) (-3091 (((-749)) NIL)) (-2688 (($) 13 T CONST)) (-2700 (($) 15 T CONST)) (-1564 (((-623 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2264 (((-112) $ $) 38)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 22)) (** (($ $ (-749)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-797 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1243 |#1| |#2|) (-13 (-375 |#2| (-797 |#1|)) (-1249 |#1| |#2|)) (-825) (-1021)) (T -1243)) -NIL -(-13 (-375 |#2| (-797 |#1|)) (-1249 |#1| |#2|)) -((-3080 ((|#3| |#3| (-749)) 23)) (-1644 ((|#3| |#3| (-749)) 27)) (-3281 ((|#3| |#3| |#3| (-749)) 28))) -(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#3| |#3| (-749))) (-15 -3080 (|#3| |#3| (-749))) (-15 -3281 (|#3| |#3| |#3| (-749)))) (-13 (-1021) (-696 (-400 (-550)))) (-825) (-1249 |#2| |#1|)) (T -1244)) -((-3281 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4)))) (-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4)))) (-1644 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4))))) -(-10 -7 (-15 -1644 (|#3| |#3| (-749))) (-15 -3080 (|#3| |#3| (-749))) (-15 -3281 (|#3| |#3| |#3| (-749)))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3016 (((-623 |#1|) $) 38)) (-1993 (((-3 $ "failed") $ $) 19)) (-2540 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-2991 (($) 17 T CONST)) (-3134 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-2288 (((-3 (-797 |#1|) "failed") $) 62)) (-2202 (((-797 |#1|) $) 61)) (-1537 (((-3 $ "failed") $) 32)) (-2639 (((-112) $) 43)) (-4036 (($ $) 42)) (-2419 (((-112) $) 30)) (-3438 (((-112) $) 48)) (-3227 (($ (-797 |#1|) |#2|) 49)) (-2481 (($ $) 47)) (-3392 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-1845 (((-797 |#1|) $) 59)) (-2392 (($ (-1 |#2| |#2|) $) 39)) (-1676 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-2153 (((-112) $) 45)) (-4165 ((|#2| $) 44)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4304 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1245 |#1| |#2|) (-138) (-825) (-1021)) (T -1245)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-797 *3)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4))))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-797 *4)) (-4 *1 (-1245 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1021)))) (-4304 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) (-1676 (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-1676 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)))) (-1676 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-3134 (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)))) (-3134 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1245 *4 *3)) (-4 *3 (-1021)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-112)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-2233 (*1 *1 *2) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-112)))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-112)))) (-4036 (*1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)) (-4 *3 (-170)))) (-2540 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-4 *4 (-170)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-623 *3))))) -(-13 (-1021) (-1242 |t#2|) (-1012 (-797 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1845 ((-797 |t#1|) $)) (-15 -3392 ((-2 (|:| |k| (-797 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4304 (|t#2| $ (-797 |t#1|))) (-15 -4304 (|t#2| $ $)) (-15 -1676 ($ $ |t#1|)) (-15 -1676 ($ $ (-797 |t#1|))) (-15 -1676 ($ $ $)) (-15 -3134 ($ $ |t#1|)) (-15 -3134 ($ $ (-797 |t#1|))) (-15 -3134 ($ $ $)) (-15 -3227 ($ (-797 |t#1|) |t#2|)) (-15 -3438 ((-112) $)) (-15 -2481 ($ $)) (-15 -2233 ($ |t#1|)) (-15 -2153 ((-112) $)) (-15 -4165 (|t#2| $)) (-15 -2639 ((-112) $)) (-15 -4036 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -2540 ($ $ $)) (-15 -2540 ($ $ (-749)))) |%noBranch|) (-15 -2392 ($ (-1 |t#2| |t#2|) $)) (-15 -3016 ((-623 |t#1|) $)) (IF (|has| |t#2| (-6 -4337)) (-6 -4337) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1027 |#2|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1242 |#2|) . T)) -((-2594 (((-112) $) 15)) (-3636 (((-112) $) 14)) (-3020 (($ $) 19) (($ $ (-749)) 20))) -(((-1246 |#1| |#2|) (-10 -8 (-15 -3020 (|#1| |#1| (-749))) (-15 -3020 (|#1| |#1|)) (-15 -2594 ((-112) |#1|)) (-15 -3636 ((-112) |#1|))) (-1247 |#2|) (-356)) (T -1246)) -NIL -(-10 -8 (-15 -3020 (|#1| |#1| (-749))) (-15 -3020 (|#1| |#1|)) (-15 -2594 ((-112) |#1|)) (-15 -3636 ((-112) |#1|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3911 (((-2 (|:| -2305 $) (|:| -4331 $) (|:| |associate| $)) $) 39)) (-3050 (($ $) 38)) (-3953 (((-112) $) 36)) (-2594 (((-112) $) 91)) (-2532 (((-749)) 87)) (-1993 (((-3 $ "failed") $ $) 19)) (-2318 (($ $) 70)) (-2207 (((-411 $) $) 69)) (-1611 (((-112) $ $) 57)) (-2991 (($) 17 T CONST)) (-2288 (((-3 |#1| "failed") $) 98)) (-2202 ((|#1| $) 97)) (-3455 (($ $ $) 53)) (-1537 (((-3 $ "failed") $) 32)) (-3429 (($ $ $) 54)) (-1346 (((-2 (|:| -4304 (-623 $)) (|:| -2256 $)) (-623 $)) 49)) (-4322 (($ $ (-749)) 84 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1568 (((-112) $) 68)) (-2603 (((-811 (-895)) $) 81 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2419 (((-112) $) 30)) (-1915 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3231 (($ $ $) 44) (($ (-623 $)) 43)) (-2369 (((-1127) $) 9)) (-1619 (($ $) 67)) (-3881 (((-112) $) 90)) (-3445 (((-1089) $) 10)) (-3459 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3260 (($ $ $) 46) (($ (-623 $)) 45)) (-1735 (((-411 $) $) 71)) (-4015 (((-811 (-895))) 88)) (-3581 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2256 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3409 (((-3 $ "failed") $ $) 40)) (-3041 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1988 (((-749) $) 56)) (-1505 (((-2 (|:| -3123 $) (|:| -2545 $)) $ $) 55)) (-2899 (((-3 (-749) "failed") $ $) 82 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1877 (((-133)) 96)) (-3661 (((-811 (-895)) $) 89)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 99)) (-1613 (((-3 $ "failed") $) 80 (-1489 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3091 (((-749)) 28)) (-1819 (((-112) $ $) 37)) (-3636 (((-112) $) 92)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-3020 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-2264 (((-112) $ $) 6)) (-2382 (($ $ $) 62) (($ $ |#1|) 95)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1247 |#1|) (-138) (-356)) (T -1247)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-895))))) (-4015 (*1 *2) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-895))))) (-2532 (*1 *2) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-749)))) (-3020 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-4 *3 (-361))))) -(-13 (-356) (-1012 |t#1|) (-1235 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -3636 ((-112) $)) (-15 -2594 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -3661 ((-811 (-895)) $)) (-15 -4015 ((-811 (-895)))) (-15 -2532 ((-749))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -3020 ($ $)) (-15 -3020 ($ $ (-749)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1489 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-837)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -1489 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-894) . T) ((-1012 |#1|) . T) ((-1027 #0#) . T) ((-1027 |#1|) . T) ((-1027 $) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1186) . T) ((-1235 |#1|) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3016 (((-623 |#1|) $) 86)) (-1918 (($ $ (-749)) 89)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2540 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-749)) NIL (|has| |#2| (-170)))) (-2991 (($) NIL T CONST)) (-3134 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-2288 (((-3 (-797 |#1|) "failed") $) NIL) (((-3 (-867 |#1|) "failed") $) NIL)) (-2202 (((-797 |#1|) $) NIL) (((-867 |#1|) $) NIL)) (-1693 (($ $) 88)) (-1537 (((-3 $ "failed") $) NIL)) (-2639 (((-112) $) 77)) (-4036 (($ $) 81)) (-3141 (($ $ $ (-749)) 90)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ (-797 |#1|) |#2|) NIL) (($ (-867 |#1|) |#2|) 26)) (-2481 (($ $) 103)) (-3392 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1845 (((-797 |#1|) $) NIL)) (-3513 (((-797 |#1|) $) NIL)) (-2392 (($ (-1 |#2| |#2|) $) NIL)) (-1676 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-3080 (($ $ (-749)) 97 (|has| |#2| (-696 (-400 (-550)))))) (-1615 (((-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1657 (((-867 |#1|) $) 70)) (-1670 ((|#2| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-1644 (($ $ (-749)) 94 (|has| |#2| (-696 (-400 (-550)))))) (-3661 (((-749) $) 87)) (-2153 (((-112) $) 71)) (-4165 ((|#2| $) 75)) (-2233 (((-837) $) 57) (($ (-550)) NIL) (($ |#2|) 51) (($ (-797 |#1|)) NIL) (($ |#1|) 59) (($ (-867 |#1|)) NIL) (($ (-642 |#1| |#2|)) 43) (((-1243 |#1| |#2|) $) 64) (((-1252 |#1| |#2|) $) 69)) (-2969 (((-623 |#2|) $) NIL)) (-1708 ((|#2| $ (-867 |#1|)) NIL)) (-4304 ((|#2| $ (-797 |#1|)) NIL) ((|#2| $ $) NIL)) (-3091 (((-749)) NIL)) (-2688 (($) 21 T CONST)) (-2700 (($) 25 T CONST)) (-1564 (((-623 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2631 (((-3 (-642 |#1| |#2|) "failed") $) 102)) (-2264 (((-112) $ $) 65)) (-2370 (($ $) 96) (($ $ $) 95)) (-2358 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-867 |#1|)) NIL))) -(((-1248 |#1| |#2|) (-13 (-1249 |#1| |#2|) (-375 |#2| (-867 |#1|)) (-10 -8 (-15 -2233 ($ (-642 |#1| |#2|))) (-15 -2233 ((-1243 |#1| |#2|) $)) (-15 -2233 ((-1252 |#1| |#2|) $)) (-15 -2631 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -3141 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-550)))) (PROGN (-15 -1644 ($ $ (-749))) (-15 -3080 ($ $ (-749)))) |%noBranch|))) (-825) (-170)) (T -1248)) -((-2233 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-1248 *3 *4)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-2631 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3141 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170)))) (-3080 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) -(-13 (-1249 |#1| |#2|) (-375 |#2| (-867 |#1|)) (-10 -8 (-15 -2233 ($ (-642 |#1| |#2|))) (-15 -2233 ((-1243 |#1| |#2|) $)) (-15 -2233 ((-1252 |#1| |#2|) $)) (-15 -2631 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -3141 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-550)))) (PROGN (-15 -1644 ($ $ (-749))) (-15 -3080 ($ $ (-749)))) |%noBranch|))) -((-2221 (((-112) $ $) 7)) (-3378 (((-112) $) 16)) (-3016 (((-623 |#1|) $) 38)) (-1918 (($ $ (-749)) 71)) (-1993 (((-3 $ "failed") $ $) 19)) (-2540 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-2991 (($) 17 T CONST)) (-3134 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-2288 (((-3 (-797 |#1|) "failed") $) 62)) (-2202 (((-797 |#1|) $) 61)) (-1537 (((-3 $ "failed") $) 32)) (-2639 (((-112) $) 43)) (-4036 (($ $) 42)) (-2419 (((-112) $) 30)) (-3438 (((-112) $) 48)) (-3227 (($ (-797 |#1|) |#2|) 49)) (-2481 (($ $) 47)) (-3392 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-1845 (((-797 |#1|) $) 59)) (-3513 (((-797 |#1|) $) 73)) (-2392 (($ (-1 |#2| |#2|) $) 39)) (-1676 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-2369 (((-1127) $) 9)) (-3445 (((-1089) $) 10)) (-3661 (((-749) $) 72)) (-2153 (((-112) $) 45)) (-4165 ((|#2| $) 44)) (-2233 (((-837) $) 11) (($ (-550)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4304 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3091 (((-749)) 28)) (-2688 (($) 18 T CONST)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 6)) (-2370 (($ $) 22) (($ $ $) 21)) (-2358 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-749)) 31)) (* (($ (-895) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1249 |#1| |#2|) (-138) (-825) (-1021)) (T -1249)) -((-3513 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-797 *3)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *2 (-749)))) (-1918 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021))))) -(-13 (-1245 |t#1| |t#2|) (-10 -8 (-15 -3513 ((-797 |t#1|) $)) (-15 -3661 ((-749) $)) (-15 -1918 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-837)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1027 |#2|) . T) ((-1021) . T) ((-1028) . T) ((-1081) . T) ((-1069) . T) ((-1242 |#2|) . T) ((-1245 |#1| |#2|) . T)) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-3016 (((-623 (-1145)) $) NIL)) (-3980 (($ (-1243 (-1145) |#1|)) NIL)) (-1918 (($ $ (-749)) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2540 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-749)) NIL (|has| |#1| (-170)))) (-2991 (($) NIL T CONST)) (-3134 (($ $ (-1145)) NIL) (($ $ (-797 (-1145))) NIL) (($ $ $) NIL)) (-2288 (((-3 (-797 (-1145)) "failed") $) NIL)) (-2202 (((-797 (-1145)) $) NIL)) (-1537 (((-3 $ "failed") $) NIL)) (-2639 (((-112) $) NIL)) (-4036 (($ $) NIL)) (-2419 (((-112) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ (-797 (-1145)) |#1|) NIL)) (-2481 (($ $) NIL)) (-3392 (((-2 (|:| |k| (-797 (-1145))) (|:| |c| |#1|)) $) NIL)) (-1845 (((-797 (-1145)) $) NIL)) (-3513 (((-797 (-1145)) $) NIL)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1676 (($ $ (-1145)) NIL) (($ $ (-797 (-1145))) NIL) (($ $ $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2062 (((-1243 (-1145) |#1|) $) NIL)) (-3661 (((-749) $) NIL)) (-2153 (((-112) $) NIL)) (-4165 ((|#1| $) NIL)) (-2233 (((-837) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-797 (-1145))) NIL) (($ (-1145)) NIL)) (-4304 ((|#1| $ (-797 (-1145))) NIL) ((|#1| $ $) NIL)) (-3091 (((-749)) NIL)) (-2688 (($) NIL T CONST)) (-2126 (((-623 (-2 (|:| |k| (-1145)) (|:| |c| $))) $) NIL)) (-2700 (($) NIL T CONST)) (-2264 (((-112) $ $) NIL)) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-749)) NIL)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1145) $) NIL))) -(((-1250 |#1|) (-13 (-1249 (-1145) |#1|) (-10 -8 (-15 -2062 ((-1243 (-1145) |#1|) $)) (-15 -3980 ($ (-1243 (-1145) |#1|))) (-15 -2126 ((-623 (-2 (|:| |k| (-1145)) (|:| |c| $))) $)))) (-1021)) (T -1250)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-1243 (-1145) *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1021)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-1243 (-1145) *3)) (-4 *3 (-1021)) (-5 *1 (-1250 *3)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-1145)) (|:| |c| (-1250 *3))))) (-5 *1 (-1250 *3)) (-4 *3 (-1021))))) -(-13 (-1249 (-1145) |#1|) (-10 -8 (-15 -2062 ((-1243 (-1145) |#1|) $)) (-15 -3980 ($ (-1243 (-1145) |#1|))) (-15 -2126 ((-623 (-2 (|:| |k| (-1145)) (|:| |c| $))) $)))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) NIL)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2991 (($) NIL T CONST)) (-2288 (((-3 |#2| "failed") $) NIL)) (-2202 ((|#2| $) NIL)) (-1693 (($ $) NIL)) (-1537 (((-3 $ "failed") $) 36)) (-2639 (((-112) $) 30)) (-4036 (($ $) 32)) (-2419 (((-112) $) NIL)) (-3324 (((-749) $) NIL)) (-2336 (((-623 $) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ |#2| |#1|) NIL)) (-1845 ((|#2| $) 19)) (-3513 ((|#2| $) 16)) (-2392 (($ (-1 |#1| |#1|) $) NIL)) (-1615 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1657 ((|#2| $) NIL)) (-1670 ((|#1| $) NIL)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2153 (((-112) $) 27)) (-4165 ((|#1| $) 28)) (-2233 (((-837) $) 55) (($ (-550)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2969 (((-623 |#1|) $) NIL)) (-1708 ((|#1| $ |#2|) NIL)) (-4304 ((|#1| $ |#2|) 24)) (-3091 (((-749)) 14)) (-2688 (($) 25 T CONST)) (-2700 (($) 11 T CONST)) (-1564 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2264 (((-112) $ $) 26)) (-2382 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-2370 (($ $) NIL) (($ $ $) NIL)) (-2358 (($ $ $) 44)) (** (($ $ (-895)) NIL) (($ $ (-749)) 46)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3307 (((-749) $) 15))) -(((-1251 |#1| |#2|) (-13 (-1021) (-1242 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3307 ((-749) $)) (-15 -2233 ($ |#2|)) (-15 -3513 (|#2| $)) (-15 -1845 (|#2| $)) (-15 -1693 ($ $)) (-15 -4304 (|#1| $ |#2|)) (-15 -2153 ((-112) $)) (-15 -4165 (|#1| $)) (-15 -2639 ((-112) $)) (-15 -4036 ($ $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2382 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4337)) (-6 -4337) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) (-1021) (-821)) (T -1251)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-1251 *3 *4)) (-4 *4 (-821)))) (-2233 (*1 *1 *2) (-12 (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-821)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-821)))) (-3513 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021)))) (-1845 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *2 (-1021)) (-5 *1 (-1251 *2 *3)) (-4 *3 (-821)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-821)))) (-4165 (*1 *2 *1) (-12 (-4 *2 (-1021)) (-5 *1 (-1251 *2 *3)) (-4 *3 (-821)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-821)))) (-4036 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1021)) (-4 *3 (-821))))) -(-13 (-1021) (-1242 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3307 ((-749) $)) (-15 -2233 ($ |#2|)) (-15 -3513 (|#2| $)) (-15 -1845 (|#2| $)) (-15 -1693 ($ $)) (-15 -4304 (|#1| $ |#2|)) (-15 -2153 ((-112) $)) (-15 -4165 (|#1| $)) (-15 -2639 ((-112) $)) (-15 -4036 ($ $)) (-15 -2392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2382 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4337)) (-6 -4337) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4342)) (-6 -4342) |%noBranch|))) -((-2221 (((-112) $ $) 26)) (-3378 (((-112) $) NIL)) (-3016 (((-623 |#1|) $) 120)) (-3980 (($ (-1243 |#1| |#2|)) 44)) (-1918 (($ $ (-749)) 32)) (-1993 (((-3 $ "failed") $ $) NIL)) (-2540 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-749)) 46 (|has| |#2| (-170)))) (-2991 (($) NIL T CONST)) (-3134 (($ $ |#1|) 102) (($ $ (-797 |#1|)) 103) (($ $ $) 25)) (-2288 (((-3 (-797 |#1|) "failed") $) NIL)) (-2202 (((-797 |#1|) $) NIL)) (-1537 (((-3 $ "failed") $) 110)) (-2639 (((-112) $) 105)) (-4036 (($ $) 106)) (-2419 (((-112) $) NIL)) (-3438 (((-112) $) NIL)) (-3227 (($ (-797 |#1|) |#2|) 19)) (-2481 (($ $) NIL)) (-3392 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1845 (((-797 |#1|) $) 111)) (-3513 (((-797 |#1|) $) 114)) (-2392 (($ (-1 |#2| |#2|) $) 119)) (-1676 (($ $ |#1|) 100) (($ $ (-797 |#1|)) 101) (($ $ $) 56)) (-2369 (((-1127) $) NIL)) (-3445 (((-1089) $) NIL)) (-2062 (((-1243 |#1| |#2|) $) 84)) (-3661 (((-749) $) 117)) (-2153 (((-112) $) 70)) (-4165 ((|#2| $) 28)) (-2233 (((-837) $) 63) (($ (-550)) 77) (($ |#2|) 74) (($ (-797 |#1|)) 17) (($ |#1|) 73)) (-4304 ((|#2| $ (-797 |#1|)) 104) ((|#2| $ $) 27)) (-3091 (((-749)) 108)) (-2688 (($) 14 T CONST)) (-2126 (((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2700 (($) 29 T CONST)) (-2264 (((-112) $ $) 13)) (-2370 (($ $) 88) (($ $ $) 91)) (-2358 (($ $ $) 55)) (** (($ $ (-895)) NIL) (($ $ (-749)) 49)) (* (($ (-895) $) NIL) (($ (-749) $) 47) (($ (-550) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1252 |#1| |#2|) (-13 (-1249 |#1| |#2|) (-10 -8 (-15 -2062 ((-1243 |#1| |#2|) $)) (-15 -3980 ($ (-1243 |#1| |#2|))) (-15 -2126 ((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-825) (-1021)) (T -1252)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-1243 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) (-5 *1 (-1252 *3 *4)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| *3) (|:| |c| (-1252 *3 *4))))) (-5 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021))))) -(-13 (-1249 |#1| |#2|) (-10 -8 (-15 -2062 ((-1243 |#1| |#2|) $)) (-15 -3980 ($ (-1243 |#1| |#2|))) (-15 -2126 ((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1932 (((-623 (-1125 |#1|)) (-1 (-623 (-1125 |#1|)) (-623 (-1125 |#1|))) (-550)) 15) (((-1125 |#1|) (-1 (-1125 |#1|) (-1125 |#1|))) 11))) -(((-1253 |#1|) (-10 -7 (-15 -1932 ((-1125 |#1|) (-1 (-1125 |#1|) (-1125 |#1|)))) (-15 -1932 ((-623 (-1125 |#1|)) (-1 (-623 (-1125 |#1|)) (-623 (-1125 |#1|))) (-550)))) (-1182)) (T -1253)) -((-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-623 (-1125 *5)) (-623 (-1125 *5)))) (-5 *4 (-550)) (-5 *2 (-623 (-1125 *5))) (-5 *1 (-1253 *5)) (-4 *5 (-1182)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-1 (-1125 *4) (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1253 *4)) (-4 *4 (-1182))))) -(-10 -7 (-15 -1932 ((-1125 |#1|) (-1 (-1125 |#1|) (-1125 |#1|)))) (-15 -1932 ((-623 (-1125 |#1|)) (-1 (-623 (-1125 |#1|)) (-623 (-1125 |#1|))) (-550)))) -((-2389 (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|))) 148) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112)) 147) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112)) 146) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112) (-112)) 145) (((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-1018 |#1| |#2|)) 130)) (-3179 (((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|))) 72) (((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112)) 71) (((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112) (-112)) 70)) (-2207 (((-623 (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1018 |#1| |#2|)) 61)) (-3900 (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|))) 115) (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112)) 114) (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112)) 113) (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112) (-112)) 112) (((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|)) 107)) (-3659 (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|))) 120) (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112)) 119) (((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112)) 118) (((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|)) 117)) (-2451 (((-623 (-758 |#1| (-839 |#3|))) (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) 98) (((-1141 (-998 (-400 |#1|))) (-1141 |#1|)) 89) (((-926 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|))) 96) (((-926 (-998 (-400 |#1|))) (-926 |#1|)) 94) (((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|))) 33))) -(((-1254 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112))) (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-1018 |#1| |#2|))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)))) (-15 -2207 ((-623 (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1018 |#1| |#2|))) (-15 -2451 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -2451 ((-926 (-998 (-400 |#1|))) (-926 |#1|))) (-15 -2451 ((-926 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -2451 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -2451 ((-623 (-758 |#1| (-839 |#3|))) (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) (-13 (-823) (-300) (-145) (-996)) (-623 (-1145)) (-623 (-1145))) (T -1254)) -((-2451 (*1 *2 *3) (-12 (-5 *3 (-1115 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-758 *4 (-839 *6)))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *6 (-623 (-1145))) (-5 *2 (-926 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-926 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-926 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-1115 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-3659 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3659 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3900 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3900 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) (-2389 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) (-5 *1 (-1254 *4 *5 *6)) (-5 *3 (-623 (-926 *4))) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-2389 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-2389 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-1018 *4 *5))) (-5 *1 (-1254 *4 *5 *6)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) (-3179 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-1254 *5 *6 *7)) (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145)))))) -(-10 -7 (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)) (-112))) (-15 -3179 ((-623 (-1018 |#1| |#2|)) (-623 (-926 |#1|)))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-1018 |#1| |#2|))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)) (-112))) (-15 -2389 ((-623 (-2 (|:| -4018 (-1141 |#1|)) (|:| -2999 (-623 (-926 |#1|))))) (-623 (-926 |#1|)))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112))) (-15 -3900 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-1018 |#1| |#2|))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112) (-112))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)) (-112))) (-15 -3659 ((-623 (-623 (-998 (-400 |#1|)))) (-623 (-926 |#1|)))) (-15 -2207 ((-623 (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1018 |#1| |#2|))) (-15 -2451 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -2451 ((-926 (-998 (-400 |#1|))) (-926 |#1|))) (-15 -2451 ((-926 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -2451 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -2451 ((-623 (-758 |#1| (-839 |#3|))) (-1115 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) -((-2686 (((-3 (-1228 (-400 (-550))) "failed") (-1228 |#1|) |#1|) 21)) (-1891 (((-112) (-1228 |#1|)) 12)) (-3507 (((-3 (-1228 (-550)) "failed") (-1228 |#1|)) 16))) -(((-1255 |#1|) (-10 -7 (-15 -1891 ((-112) (-1228 |#1|))) (-15 -3507 ((-3 (-1228 (-550)) "failed") (-1228 |#1|))) (-15 -2686 ((-3 (-1228 (-400 (-550))) "failed") (-1228 |#1|) |#1|))) (-619 (-550))) (T -1255)) -((-2686 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-1228 (-400 (-550)))) (-5 *1 (-1255 *4)))) (-3507 (*1 *2 *3) (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-1228 (-550))) (-5 *1 (-1255 *4)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-112)) (-5 *1 (-1255 *4))))) -(-10 -7 (-15 -1891 ((-112) (-1228 |#1|))) (-15 -3507 ((-3 (-1228 (-550)) "failed") (-1228 |#1|))) (-15 -2686 ((-3 (-1228 (-400 (-550))) "failed") (-1228 |#1|) |#1|))) -((-2221 (((-112) $ $) NIL)) (-3378 (((-112) $) 11)) (-1993 (((-3 $ "failed") $ $) NIL)) (-3828 (((-749)) 8)) (-2991 (($) NIL T CONST)) (-1537 (((-3 $ "failed") $) 43)) (-1864 (($) 36)) (-2419 (((-112) $) NIL)) (-1620 (((-3 $ "failed") $) 29)) (-4073 (((-895) $) 15)) (-2369 (((-1127) $) NIL)) (-2463 (($) 25 T CONST)) (-3690 (($ (-895)) 37)) (-3445 (((-1089) $) NIL)) (-2451 (((-550) $) 13)) (-2233 (((-837) $) 22) (($ (-550)) 19)) (-3091 (((-749)) 9)) (-2688 (($) 23 T CONST)) (-2700 (($) 24 T CONST)) (-2264 (((-112) $ $) 27)) (-2370 (($ $) 38) (($ $ $) 35)) (-2358 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-749)) 40)) (* (($ (-895) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 32) (($ $ $) 31))) -(((-1256 |#1|) (-13 (-170) (-361) (-596 (-550)) (-1120)) (-895)) (T -1256)) -NIL -(-13 (-170) (-361) (-596 (-550)) (-1120)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3175743 3175748 3175753 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3175728 3175733 3175738 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3175713 3175718 3175723 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3175698 3175703 3175708 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1256 3174874 3175573 3175650 "ZMOD" 3175655 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1255 3173984 3174148 3174357 "ZLINDEP" 3174706 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1254 3163360 3165112 3167071 "ZDSOLVE" 3172126 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1253 3162606 3162747 3162936 "YSTREAM" 3163206 NIL YSTREAM (NIL T) -7 NIL NIL) (-1252 3160417 3161907 3162111 "XRPOLY" 3162449 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1251 3156909 3158192 3158776 "XPR" 3159880 NIL XPR (NIL T T) -8 NIL NIL) (-1250 3154665 3156240 3156444 "XPOLY" 3156740 NIL XPOLY (NIL T) -8 NIL NIL) (-1249 3152514 3153848 3153903 "XPOLYC" 3154191 NIL XPOLYC (NIL T T) -9 NIL 3154304) (-1248 3148932 3151031 3151419 "XPBWPOLY" 3152172 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1247 3144917 3147165 3147207 "XF" 3147828 NIL XF (NIL T) -9 NIL 3148228) (-1246 3144538 3144626 3144795 "XF-" 3144800 NIL XF- (NIL T T) -8 NIL NIL) (-1245 3139930 3141185 3141240 "XFALG" 3143412 NIL XFALG (NIL T T) -9 NIL 3144201) (-1244 3139063 3139167 3139372 "XEXPPKG" 3139822 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1243 3137207 3138913 3139009 "XDPOLY" 3139014 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1242 3136123 3136689 3136732 "XALG" 3136795 NIL XALG (NIL T) -9 NIL 3136915) (-1241 3129592 3134100 3134594 "WUTSET" 3135715 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1240 3127443 3128204 3128557 "WP" 3129373 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1239 3127072 3127265 3127335 "WHILEAST" 3127395 T WHILEAST (NIL) -8 NIL NIL) (-1238 3126571 3126789 3126883 "WHEREAST" 3127000 T WHEREAST (NIL) -8 NIL NIL) (-1237 3125457 3125655 3125950 "WFFINTBS" 3126368 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1236 3123361 3123788 3124250 "WEIER" 3125029 NIL WEIER (NIL T) -7 NIL NIL) (-1235 3122508 3122932 3122974 "VSPACE" 3123110 NIL VSPACE (NIL T) -9 NIL 3123184) (-1234 3122346 3122373 3122464 "VSPACE-" 3122469 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1233 3122092 3122135 3122206 "VOID" 3122297 T VOID (NIL) -8 NIL NIL) (-1232 3120228 3120587 3120993 "VIEW" 3121708 T VIEW (NIL) -7 NIL NIL) (-1231 3116653 3117291 3118028 "VIEWDEF" 3119513 T VIEWDEF (NIL) -7 NIL NIL) (-1230 3105991 3108201 3110374 "VIEW3D" 3114502 T VIEW3D (NIL) -8 NIL NIL) (-1229 3098273 3099902 3101481 "VIEW2D" 3104434 T VIEW2D (NIL) -8 NIL NIL) (-1228 3093677 3098043 3098135 "VECTOR" 3098216 NIL VECTOR (NIL T) -8 NIL NIL) (-1227 3092254 3092513 3092831 "VECTOR2" 3093407 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1226 3085781 3090038 3090081 "VECTCAT" 3091074 NIL VECTCAT (NIL T) -9 NIL 3091660) (-1225 3084795 3085049 3085439 "VECTCAT-" 3085444 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1224 3084276 3084446 3084566 "VARIABLE" 3084710 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1223 3084209 3084214 3084244 "UTYPE" 3084249 T UTYPE (NIL) -9 NIL NIL) (-1222 3083039 3083193 3083455 "UTSODETL" 3084035 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1221 3080479 3080939 3081463 "UTSODE" 3082580 NIL UTSODE (NIL T T) -7 NIL NIL) (-1220 3072355 3078105 3078594 "UTS" 3080048 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1219 3063728 3069047 3069090 "UTSCAT" 3070202 NIL UTSCAT (NIL T) -9 NIL 3070959) (-1218 3061082 3061798 3062787 "UTSCAT-" 3062792 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1217 3060709 3060752 3060885 "UTS2" 3061033 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1216 3054984 3057549 3057592 "URAGG" 3059662 NIL URAGG (NIL T) -9 NIL 3060384) (-1215 3051923 3052786 3053909 "URAGG-" 3053914 NIL URAGG- (NIL T T) -8 NIL NIL) (-1214 3047647 3050537 3051009 "UPXSSING" 3051587 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1213 3039617 3046762 3047044 "UPXS" 3047423 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1212 3032730 3039521 3039593 "UPXSCONS" 3039598 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1211 3023088 3029833 3029895 "UPXSCCA" 3030551 NIL UPXSCCA (NIL T T) -9 NIL 3030793) (-1210 3022726 3022811 3022985 "UPXSCCA-" 3022990 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1209 3013010 3019528 3019571 "UPXSCAT" 3020219 NIL UPXSCAT (NIL T) -9 NIL 3020827) (-1208 3012440 3012519 3012698 "UPXS2" 3012925 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1207 3011094 3011347 3011698 "UPSQFREE" 3012183 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1206 3005012 3008021 3008076 "UPSCAT" 3009237 NIL UPSCAT (NIL T T) -9 NIL 3010011) (-1205 3004216 3004423 3004750 "UPSCAT-" 3004755 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1204 2990307 2998303 2998346 "UPOLYC" 3000447 NIL UPOLYC (NIL T) -9 NIL 3001668) (-1203 2981636 2984061 2987208 "UPOLYC-" 2987213 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1202 2981263 2981306 2981439 "UPOLYC2" 2981587 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1201 2972720 2980829 2980967 "UP" 2981173 NIL UP (NIL NIL T) -8 NIL NIL) (-1200 2972059 2972166 2972330 "UPMP" 2972609 NIL UPMP (NIL T T) -7 NIL NIL) (-1199 2971612 2971693 2971832 "UPDIVP" 2971972 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1198 2970180 2970429 2970745 "UPDECOMP" 2971361 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1197 2969415 2969527 2969712 "UPCDEN" 2970064 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1196 2968934 2969003 2969152 "UP2" 2969340 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1195 2967451 2968138 2968415 "UNISEG" 2968692 NIL UNISEG (NIL T) -8 NIL NIL) (-1194 2966666 2966793 2966998 "UNISEG2" 2967294 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1193 2965726 2965906 2966132 "UNIFACT" 2966482 NIL UNIFACT (NIL T) -7 NIL NIL) (-1192 2949695 2964903 2965154 "ULS" 2965533 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1191 2937737 2949599 2949671 "ULSCONS" 2949676 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1190 2920541 2932476 2932538 "ULSCCAT" 2933258 NIL ULSCCAT (NIL T T) -9 NIL 2933555) (-1189 2919591 2919836 2920224 "ULSCCAT-" 2920229 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1188 2909652 2916084 2916127 "ULSCAT" 2916990 NIL ULSCAT (NIL T) -9 NIL 2917720) (-1187 2909082 2909161 2909340 "ULS2" 2909567 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1186 2907520 2908443 2908473 "UFD" 2908685 T UFD (NIL) -9 NIL 2908799) (-1185 2907314 2907360 2907455 "UFD-" 2907460 NIL UFD- (NIL T) -8 NIL NIL) (-1184 2906396 2906579 2906795 "UDVO" 2907120 T UDVO (NIL) -7 NIL NIL) (-1183 2904212 2904621 2905092 "UDPO" 2905960 NIL UDPO (NIL T) -7 NIL NIL) (-1182 2904145 2904150 2904180 "TYPE" 2904185 T TYPE (NIL) -9 NIL NIL) (-1181 2903932 2904100 2904131 "TYPEAST" 2904136 T TYPEAST (NIL) -8 NIL NIL) (-1180 2902903 2903105 2903345 "TWOFACT" 2903726 NIL TWOFACT (NIL T) -7 NIL NIL) (-1179 2901841 2902178 2902441 "TUPLE" 2902675 NIL TUPLE (NIL T) -8 NIL NIL) (-1178 2899532 2900051 2900590 "TUBETOOL" 2901324 T TUBETOOL (NIL) -7 NIL NIL) (-1177 2898381 2898586 2898827 "TUBE" 2899325 NIL TUBE (NIL T) -8 NIL NIL) (-1176 2893145 2897353 2897636 "TS" 2898133 NIL TS (NIL T) -8 NIL NIL) (-1175 2881812 2885904 2886001 "TSETCAT" 2891270 NIL TSETCAT (NIL T T T T) -9 NIL 2892801) (-1174 2876546 2878144 2880035 "TSETCAT-" 2880040 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1173 2870809 2871655 2872597 "TRMANIP" 2875682 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1172 2870250 2870313 2870476 "TRIMAT" 2870741 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1171 2868046 2868283 2868647 "TRIGMNIP" 2869999 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1170 2867566 2867679 2867709 "TRIGCAT" 2867922 T TRIGCAT (NIL) -9 NIL NIL) (-1169 2867235 2867314 2867455 "TRIGCAT-" 2867460 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1168 2864134 2866095 2866375 "TREE" 2866990 NIL TREE (NIL T) -8 NIL NIL) (-1167 2863408 2863936 2863966 "TRANFUN" 2864001 T TRANFUN (NIL) -9 NIL 2864067) (-1166 2862687 2862878 2863158 "TRANFUN-" 2863163 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1165 2862491 2862523 2862584 "TOPSP" 2862648 T TOPSP (NIL) -7 NIL NIL) (-1164 2861839 2861954 2862108 "TOOLSIGN" 2862372 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1163 2860500 2861016 2861255 "TEXTFILE" 2861622 T TEXTFILE (NIL) -8 NIL NIL) (-1162 2858365 2858879 2859317 "TEX" 2860084 T TEX (NIL) -8 NIL NIL) (-1161 2858146 2858177 2858249 "TEX1" 2858328 NIL TEX1 (NIL T) -7 NIL NIL) (-1160 2857794 2857857 2857947 "TEMUTL" 2858078 T TEMUTL (NIL) -7 NIL NIL) (-1159 2855948 2856228 2856553 "TBCMPPK" 2857517 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1158 2847836 2854108 2854164 "TBAGG" 2854564 NIL TBAGG (NIL T T) -9 NIL 2854775) (-1157 2842906 2844394 2846148 "TBAGG-" 2846153 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1156 2842290 2842397 2842542 "TANEXP" 2842795 NIL TANEXP (NIL T) -7 NIL NIL) (-1155 2835791 2842147 2842240 "TABLE" 2842245 NIL TABLE (NIL T T) -8 NIL NIL) (-1154 2835203 2835302 2835440 "TABLEAU" 2835688 NIL TABLEAU (NIL T) -8 NIL NIL) (-1153 2829811 2831031 2832279 "TABLBUMP" 2833989 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1152 2829239 2829339 2829467 "SYSTEM" 2829705 T SYSTEM (NIL) -7 NIL NIL) (-1151 2825702 2826397 2827180 "SYSSOLP" 2828490 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1150 2821994 2822701 2823435 "SYNTAX" 2824990 T SYNTAX (NIL) -8 NIL NIL) (-1149 2819152 2819754 2820386 "SYMTAB" 2821384 T SYMTAB (NIL) -8 NIL NIL) (-1148 2814401 2815303 2816286 "SYMS" 2818191 T SYMS (NIL) -8 NIL NIL) (-1147 2811673 2813859 2814089 "SYMPOLY" 2814206 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1146 2811190 2811265 2811388 "SYMFUNC" 2811585 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1145 2807167 2808427 2809249 "SYMBOL" 2810390 T SYMBOL (NIL) -8 NIL NIL) (-1144 2800706 2802395 2804115 "SWITCH" 2805469 T SWITCH (NIL) -8 NIL NIL) (-1143 2793976 2799527 2799830 "SUTS" 2800461 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1142 2785945 2793091 2793373 "SUPXS" 2793752 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1141 2777474 2785563 2785689 "SUP" 2785854 NIL SUP (NIL T) -8 NIL NIL) (-1140 2776633 2776760 2776977 "SUPFRACF" 2777342 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1139 2776254 2776313 2776426 "SUP2" 2776568 NIL SUP2 (NIL T T) -7 NIL NIL) (-1138 2774667 2774941 2775304 "SUMRF" 2775953 NIL SUMRF (NIL T) -7 NIL NIL) (-1137 2773981 2774047 2774246 "SUMFS" 2774588 NIL SUMFS (NIL T T) -7 NIL NIL) (-1136 2757990 2773158 2773409 "SULS" 2773788 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1135 2757619 2757812 2757882 "SUCHTAST" 2757942 T SUCHTAST (NIL) -8 NIL NIL) (-1134 2756941 2757144 2757284 "SUCH" 2757527 NIL SUCH (NIL T T) -8 NIL NIL) (-1133 2750835 2751847 2752806 "SUBSPACE" 2756029 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1132 2750265 2750355 2750519 "SUBRESP" 2750723 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1131 2743634 2744930 2746241 "STTF" 2749001 NIL STTF (NIL T) -7 NIL NIL) (-1130 2737807 2738927 2740074 "STTFNC" 2742534 NIL STTFNC (NIL T) -7 NIL NIL) (-1129 2729122 2730989 2732783 "STTAYLOR" 2736048 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1128 2722366 2728986 2729069 "STRTBL" 2729074 NIL STRTBL (NIL T) -8 NIL NIL) (-1127 2717757 2722321 2722352 "STRING" 2722357 T STRING (NIL) -8 NIL NIL) (-1126 2712645 2717130 2717160 "STRICAT" 2717219 T STRICAT (NIL) -9 NIL 2717281) (-1125 2705358 2710168 2710788 "STREAM" 2712060 NIL STREAM (NIL T) -8 NIL NIL) (-1124 2704868 2704945 2705089 "STREAM3" 2705275 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1123 2703850 2704033 2704268 "STREAM2" 2704681 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1122 2703538 2703590 2703683 "STREAM1" 2703792 NIL STREAM1 (NIL T) -7 NIL NIL) (-1121 2702554 2702735 2702966 "STINPROD" 2703354 NIL STINPROD (NIL T) -7 NIL NIL) (-1120 2702132 2702316 2702346 "STEP" 2702426 T STEP (NIL) -9 NIL 2702504) (-1119 2695675 2702031 2702108 "STBL" 2702113 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1118 2690850 2694897 2694940 "STAGG" 2695093 NIL STAGG (NIL T) -9 NIL 2695182) (-1117 2688552 2689154 2690026 "STAGG-" 2690031 NIL STAGG- (NIL T T) -8 NIL NIL) (-1116 2686747 2688322 2688414 "STACK" 2688495 NIL STACK (NIL T) -8 NIL NIL) (-1115 2679472 2684888 2685344 "SREGSET" 2686377 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1114 2671898 2673266 2674779 "SRDCMPK" 2678078 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1113 2664865 2669338 2669368 "SRAGG" 2670671 T SRAGG (NIL) -9 NIL 2671279) (-1112 2663882 2664137 2664516 "SRAGG-" 2664521 NIL SRAGG- (NIL T) -8 NIL NIL) (-1111 2658377 2662829 2663250 "SQMATRIX" 2663508 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1110 2652129 2655097 2655823 "SPLTREE" 2657723 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1109 2648119 2648785 2649431 "SPLNODE" 2651555 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1108 2647166 2647399 2647429 "SPFCAT" 2647873 T SPFCAT (NIL) -9 NIL NIL) (-1107 2645903 2646113 2646377 "SPECOUT" 2646924 T SPECOUT (NIL) -7 NIL NIL) (-1106 2637592 2639336 2639366 "SPADXPT" 2643758 T SPADXPT (NIL) -9 NIL 2645792) (-1105 2637353 2637393 2637462 "SPADPRSR" 2637545 T SPADPRSR (NIL) -7 NIL NIL) (-1104 2635536 2637308 2637339 "SPADAST" 2637344 T SPADAST (NIL) -8 NIL NIL) (-1103 2627507 2629254 2629297 "SPACEC" 2633670 NIL SPACEC (NIL T) -9 NIL 2635486) (-1102 2625678 2627439 2627488 "SPACE3" 2627493 NIL SPACE3 (NIL T) -8 NIL NIL) (-1101 2624430 2624601 2624892 "SORTPAK" 2625483 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1100 2622480 2622783 2623202 "SOLVETRA" 2624094 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1099 2621491 2621713 2621987 "SOLVESER" 2622253 NIL SOLVESER (NIL T) -7 NIL NIL) (-1098 2616711 2617592 2618594 "SOLVERAD" 2620543 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1097 2612526 2613135 2613864 "SOLVEFOR" 2616078 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1096 2606823 2611875 2611972 "SNTSCAT" 2611977 NIL SNTSCAT (NIL T T T T) -9 NIL 2612047) (-1095 2600966 2605146 2605537 "SMTS" 2606513 NIL SMTS (NIL T T T) -8 NIL NIL) (-1094 2595416 2600854 2600931 "SMP" 2600936 NIL SMP (NIL T T) -8 NIL NIL) (-1093 2593575 2593876 2594274 "SMITH" 2595113 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1092 2586558 2590713 2590816 "SMATCAT" 2592167 NIL SMATCAT (NIL NIL T T T) -9 NIL 2592717) (-1091 2583498 2584321 2585499 "SMATCAT-" 2585504 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1090 2581211 2582734 2582777 "SKAGG" 2583038 NIL SKAGG (NIL T) -9 NIL 2583173) (-1089 2577327 2580315 2580593 "SINT" 2580955 T SINT (NIL) -8 NIL NIL) (-1088 2577099 2577137 2577203 "SIMPAN" 2577283 T SIMPAN (NIL) -7 NIL NIL) (-1087 2576406 2576634 2576774 "SIG" 2576981 T SIG (NIL) -8 NIL NIL) (-1086 2575244 2575465 2575740 "SIGNRF" 2576165 NIL SIGNRF (NIL T) -7 NIL NIL) (-1085 2574049 2574200 2574491 "SIGNEF" 2575073 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1084 2573382 2573632 2573756 "SIGAST" 2573947 T SIGAST (NIL) -8 NIL NIL) (-1083 2571072 2571526 2572032 "SHP" 2572923 NIL SHP (NIL T NIL) -7 NIL NIL) (-1082 2564978 2570973 2571049 "SHDP" 2571054 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1081 2564577 2564743 2564773 "SGROUP" 2564866 T SGROUP (NIL) -9 NIL 2564928) (-1080 2564435 2564461 2564534 "SGROUP-" 2564539 NIL SGROUP- (NIL T) -8 NIL NIL) (-1079 2561271 2561968 2562691 "SGCF" 2563734 T SGCF (NIL) -7 NIL NIL) (-1078 2555666 2560718 2560815 "SFRTCAT" 2560820 NIL SFRTCAT (NIL T T T T) -9 NIL 2560859) (-1077 2549090 2550105 2551241 "SFRGCD" 2554649 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1076 2542218 2543289 2544475 "SFQCMPK" 2548023 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1075 2541840 2541929 2542039 "SFORT" 2542159 NIL SFORT (NIL T T) -8 NIL NIL) (-1074 2540985 2541680 2541801 "SEXOF" 2541806 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1073 2540119 2540866 2540934 "SEX" 2540939 T SEX (NIL) -8 NIL NIL) (-1072 2534895 2535584 2535679 "SEXCAT" 2539450 NIL SEXCAT (NIL T T T T T) -9 NIL 2540069) (-1071 2532075 2534829 2534877 "SET" 2534882 NIL SET (NIL T) -8 NIL NIL) (-1070 2530326 2530788 2531093 "SETMN" 2531816 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1069 2529932 2530058 2530088 "SETCAT" 2530205 T SETCAT (NIL) -9 NIL 2530290) (-1068 2529712 2529764 2529863 "SETCAT-" 2529868 NIL SETCAT- (NIL T) -8 NIL NIL) (-1067 2526099 2528173 2528216 "SETAGG" 2529086 NIL SETAGG (NIL T) -9 NIL 2529426) (-1066 2525557 2525673 2525910 "SETAGG-" 2525915 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1065 2525027 2525253 2525354 "SEQAST" 2525478 T SEQAST (NIL) -8 NIL NIL) (-1064 2524231 2524524 2524585 "SEGXCAT" 2524871 NIL SEGXCAT (NIL T T) -9 NIL 2524991) (-1063 2523287 2523897 2524079 "SEG" 2524084 NIL SEG (NIL T) -8 NIL NIL) (-1062 2522194 2522407 2522450 "SEGCAT" 2523032 NIL SEGCAT (NIL T) -9 NIL 2523270) (-1061 2521243 2521573 2521773 "SEGBIND" 2522029 NIL SEGBIND (NIL T) -8 NIL NIL) (-1060 2520864 2520923 2521036 "SEGBIND2" 2521178 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1059 2520465 2520665 2520742 "SEGAST" 2520809 T SEGAST (NIL) -8 NIL NIL) (-1058 2519684 2519810 2520014 "SEG2" 2520309 NIL SEG2 (NIL T T) -7 NIL NIL) (-1057 2519121 2519619 2519666 "SDVAR" 2519671 NIL SDVAR (NIL T) -8 NIL NIL) (-1056 2511411 2518891 2519021 "SDPOL" 2519026 NIL SDPOL (NIL T) -8 NIL NIL) (-1055 2510004 2510270 2510589 "SCPKG" 2511126 NIL SCPKG (NIL T) -7 NIL NIL) (-1054 2509140 2509320 2509520 "SCOPE" 2509826 T SCOPE (NIL) -8 NIL NIL) (-1053 2508361 2508494 2508673 "SCACHE" 2508995 NIL SCACHE (NIL T) -7 NIL NIL) (-1052 2508070 2508230 2508260 "SASTCAT" 2508265 T SASTCAT (NIL) -9 NIL 2508278) (-1051 2507509 2507830 2507915 "SAOS" 2508007 T SAOS (NIL) -8 NIL NIL) (-1050 2507074 2507109 2507282 "SAERFFC" 2507468 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1049 2501048 2506971 2507051 "SAE" 2507056 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1048 2500641 2500676 2500835 "SAEFACT" 2501007 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1047 2498962 2499276 2499677 "RURPK" 2500307 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1046 2497598 2497877 2498189 "RULESET" 2498796 NIL RULESET (NIL T T T) -8 NIL NIL) (-1045 2494785 2495288 2495753 "RULE" 2497279 NIL RULE (NIL T T T) -8 NIL NIL) (-1044 2494424 2494579 2494662 "RULECOLD" 2494737 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1043 2493922 2494141 2494235 "RSTRCAST" 2494352 T RSTRCAST (NIL) -8 NIL NIL) (-1042 2488771 2489565 2490485 "RSETGCD" 2493121 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1041 2478028 2483080 2483177 "RSETCAT" 2487296 NIL RSETCAT (NIL T T T T) -9 NIL 2488393) (-1040 2475955 2476494 2477318 "RSETCAT-" 2477323 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1039 2468342 2469717 2471237 "RSDCMPK" 2474554 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1038 2466347 2466788 2466862 "RRCC" 2467948 NIL RRCC (NIL T T) -9 NIL 2468292) (-1037 2465698 2465872 2466151 "RRCC-" 2466156 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1036 2465168 2465394 2465495 "RPTAST" 2465619 T RPTAST (NIL) -8 NIL NIL) (-1035 2439396 2448981 2449048 "RPOLCAT" 2459712 NIL RPOLCAT (NIL T T T) -9 NIL 2462871) (-1034 2430896 2433234 2436356 "RPOLCAT-" 2436361 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1033 2421943 2429107 2429589 "ROUTINE" 2430436 T ROUTINE (NIL) -8 NIL NIL) (-1032 2418701 2421494 2421643 "ROMAN" 2421816 T ROMAN (NIL) -8 NIL NIL) (-1031 2416976 2417561 2417821 "ROIRC" 2418506 NIL ROIRC (NIL T T) -8 NIL NIL) (-1030 2413427 2415666 2415696 "RNS" 2416000 T RNS (NIL) -9 NIL 2416272) (-1029 2411936 2412319 2412853 "RNS-" 2412928 NIL RNS- (NIL T) -8 NIL NIL) (-1028 2411385 2411767 2411797 "RNG" 2411802 T RNG (NIL) -9 NIL 2411823) (-1027 2410777 2411139 2411182 "RMODULE" 2411244 NIL RMODULE (NIL T) -9 NIL 2411286) (-1026 2409613 2409707 2410043 "RMCAT2" 2410678 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1025 2406318 2408787 2409112 "RMATRIX" 2409347 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1024 2399260 2401494 2401609 "RMATCAT" 2404968 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2405950) (-1023 2398635 2398782 2399089 "RMATCAT-" 2399094 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1022 2398202 2398277 2398405 "RINTERP" 2398554 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1021 2397290 2397810 2397840 "RING" 2397952 T RING (NIL) -9 NIL 2398047) (-1020 2397082 2397126 2397223 "RING-" 2397228 NIL RING- (NIL T) -8 NIL NIL) (-1019 2395923 2396160 2396418 "RIDIST" 2396846 T RIDIST (NIL) -7 NIL NIL) (-1018 2387239 2395391 2395597 "RGCHAIN" 2395771 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1017 2384233 2384847 2385517 "RF" 2386603 NIL RF (NIL T) -7 NIL NIL) (-1016 2383879 2383942 2384045 "RFFACTOR" 2384164 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1015 2383604 2383639 2383736 "RFFACT" 2383838 NIL RFFACT (NIL T) -7 NIL NIL) (-1014 2381721 2382085 2382467 "RFDIST" 2383244 T RFDIST (NIL) -7 NIL NIL) (-1013 2381174 2381266 2381429 "RETSOL" 2381623 NIL RETSOL (NIL T T) -7 NIL NIL) (-1012 2380762 2380842 2380885 "RETRACT" 2381078 NIL RETRACT (NIL T) -9 NIL NIL) (-1011 2380611 2380636 2380723 "RETRACT-" 2380728 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1010 2380240 2380433 2380503 "RETAST" 2380563 T RETAST (NIL) -8 NIL NIL) (-1009 2373094 2379893 2380020 "RESULT" 2380135 T RESULT (NIL) -8 NIL NIL) (-1008 2371720 2372363 2372562 "RESRING" 2372997 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1007 2371356 2371405 2371503 "RESLATC" 2371657 NIL RESLATC (NIL T) -7 NIL NIL) (-1006 2371062 2371096 2371203 "REPSQ" 2371315 NIL REPSQ (NIL T) -7 NIL NIL) (-1005 2368484 2369064 2369666 "REP" 2370482 T REP (NIL) -7 NIL NIL) (-1004 2368182 2368216 2368327 "REPDB" 2368443 NIL REPDB (NIL T) -7 NIL NIL) (-1003 2362092 2363471 2364694 "REP2" 2366994 NIL REP2 (NIL T) -7 NIL NIL) (-1002 2358469 2359150 2359958 "REP1" 2361319 NIL REP1 (NIL T) -7 NIL NIL) (-1001 2351195 2356610 2357066 "REGSET" 2358099 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1000 2350008 2350343 2350593 "REF" 2350980 NIL REF (NIL T) -8 NIL NIL) (-999 2349389 2349492 2349657 "REDORDER" 2349892 NIL REDORDER (NIL T T) -7 NIL NIL) (-998 2345409 2348617 2348840 "RECLOS" 2349218 NIL RECLOS (NIL T) -8 NIL NIL) (-997 2344466 2344647 2344860 "REALSOLV" 2345216 T REALSOLV (NIL) -7 NIL NIL) (-996 2344314 2344355 2344383 "REAL" 2344388 T REAL (NIL) -9 NIL 2344423) (-995 2340805 2341607 2342489 "REAL0Q" 2343479 NIL REAL0Q (NIL T) -7 NIL NIL) (-994 2336416 2337404 2338463 "REAL0" 2339786 NIL REAL0 (NIL T) -7 NIL NIL) (-993 2335918 2336137 2336229 "RDUCEAST" 2336344 T RDUCEAST (NIL) -8 NIL NIL) (-992 2335326 2335398 2335603 "RDIV" 2335840 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-991 2334399 2334573 2334784 "RDIST" 2335148 NIL RDIST (NIL T) -7 NIL NIL) (-990 2333000 2333287 2333657 "RDETRS" 2334107 NIL RDETRS (NIL T T) -7 NIL NIL) (-989 2330817 2331271 2331807 "RDETR" 2332542 NIL RDETR (NIL T T) -7 NIL NIL) (-988 2329431 2329709 2330111 "RDEEFS" 2330533 NIL RDEEFS (NIL T T) -7 NIL NIL) (-987 2327929 2328235 2328665 "RDEEF" 2329119 NIL RDEEF (NIL T T) -7 NIL NIL) (-986 2322266 2325137 2325165 "RCFIELD" 2326442 T RCFIELD (NIL) -9 NIL 2327172) (-985 2320335 2320839 2321532 "RCFIELD-" 2321605 NIL RCFIELD- (NIL T) -8 NIL NIL) (-984 2316666 2318451 2318492 "RCAGG" 2319563 NIL RCAGG (NIL T) -9 NIL 2320028) (-983 2316297 2316391 2316551 "RCAGG-" 2316556 NIL RCAGG- (NIL T T) -8 NIL NIL) (-982 2315637 2315749 2315912 "RATRET" 2316181 NIL RATRET (NIL T) -7 NIL NIL) (-981 2315194 2315261 2315380 "RATFACT" 2315565 NIL RATFACT (NIL T) -7 NIL NIL) (-980 2314509 2314629 2314779 "RANDSRC" 2315064 T RANDSRC (NIL) -7 NIL NIL) (-979 2314246 2314290 2314361 "RADUTIL" 2314458 T RADUTIL (NIL) -7 NIL NIL) (-978 2307311 2312989 2313306 "RADIX" 2313961 NIL RADIX (NIL NIL) -8 NIL NIL) (-977 2298967 2307155 2307283 "RADFF" 2307288 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-976 2298619 2298694 2298722 "RADCAT" 2298879 T RADCAT (NIL) -9 NIL NIL) (-975 2298404 2298452 2298549 "RADCAT-" 2298554 NIL RADCAT- (NIL T) -8 NIL NIL) (-974 2296555 2298179 2298268 "QUEUE" 2298348 NIL QUEUE (NIL T) -8 NIL NIL) (-973 2293131 2296492 2296537 "QUAT" 2296542 NIL QUAT (NIL T) -8 NIL NIL) (-972 2292769 2292812 2292939 "QUATCT2" 2293082 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-971 2286629 2289930 2289970 "QUATCAT" 2290750 NIL QUATCAT (NIL T) -9 NIL 2291516) (-970 2282773 2283810 2285197 "QUATCAT-" 2285291 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-969 2280293 2281857 2281898 "QUAGG" 2282273 NIL QUAGG (NIL T) -9 NIL 2282448) (-968 2279925 2280118 2280186 "QQUTAST" 2280245 T QQUTAST (NIL) -8 NIL NIL) (-967 2278850 2279323 2279495 "QFORM" 2279797 NIL QFORM (NIL NIL T) -8 NIL NIL) (-966 2270183 2275386 2275426 "QFCAT" 2276084 NIL QFCAT (NIL T) -9 NIL 2277083) (-965 2265755 2266956 2268547 "QFCAT-" 2268641 NIL QFCAT- (NIL T T) -8 NIL NIL) (-964 2265393 2265436 2265563 "QFCAT2" 2265706 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-963 2264853 2264963 2265093 "QEQUAT" 2265283 T QEQUAT (NIL) -8 NIL NIL) (-962 2258001 2259072 2260256 "QCMPACK" 2263786 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-961 2255577 2255998 2256426 "QALGSET" 2257656 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-960 2254822 2254996 2255228 "QALGSET2" 2255397 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-959 2253513 2253736 2254053 "PWFFINTB" 2254595 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-958 2251695 2251863 2252217 "PUSHVAR" 2253327 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-957 2247613 2248667 2248708 "PTRANFN" 2250592 NIL PTRANFN (NIL T) -9 NIL NIL) (-956 2246015 2246306 2246628 "PTPACK" 2247324 NIL PTPACK (NIL T) -7 NIL NIL) (-955 2245647 2245704 2245813 "PTFUNC2" 2245952 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-954 2240113 2244458 2244499 "PTCAT" 2244872 NIL PTCAT (NIL T) -9 NIL 2245034) (-953 2239771 2239806 2239930 "PSQFR" 2240072 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-952 2238366 2238664 2238998 "PSEUDLIN" 2239469 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-951 2225135 2227500 2229824 "PSETPK" 2236126 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-950 2218179 2220893 2220989 "PSETCAT" 2224010 NIL PSETCAT (NIL T T T T) -9 NIL 2224824) (-949 2216015 2216649 2217470 "PSETCAT-" 2217475 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-948 2215364 2215529 2215557 "PSCURVE" 2215825 T PSCURVE (NIL) -9 NIL 2215992) (-947 2211845 2213327 2213392 "PSCAT" 2214236 NIL PSCAT (NIL T T T) -9 NIL 2214476) (-946 2210908 2211124 2211524 "PSCAT-" 2211529 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-945 2209560 2210193 2210407 "PRTITION" 2210714 T PRTITION (NIL) -8 NIL NIL) (-944 2209062 2209281 2209373 "PRTDAST" 2209488 T PRTDAST (NIL) -8 NIL NIL) (-943 2198160 2200366 2202554 "PRS" 2206924 NIL PRS (NIL T T) -7 NIL NIL) (-942 2196018 2197510 2197550 "PRQAGG" 2197733 NIL PRQAGG (NIL T) -9 NIL 2197835) (-941 2195404 2195633 2195661 "PROPLOG" 2195846 T PROPLOG (NIL) -9 NIL 2195968) (-940 2192574 2193218 2193682 "PROPFRML" 2194972 NIL PROPFRML (NIL T) -8 NIL NIL) (-939 2192034 2192144 2192274 "PROPERTY" 2192464 T PROPERTY (NIL) -8 NIL NIL) (-938 2186119 2190200 2191020 "PRODUCT" 2191260 NIL PRODUCT (NIL T T) -8 NIL NIL) (-937 2183432 2185577 2185811 "PR" 2185930 NIL PR (NIL T T) -8 NIL NIL) (-936 2183228 2183260 2183319 "PRINT" 2183393 T PRINT (NIL) -7 NIL NIL) (-935 2182568 2182685 2182837 "PRIMES" 2183108 NIL PRIMES (NIL T) -7 NIL NIL) (-934 2180633 2181034 2181500 "PRIMELT" 2182147 NIL PRIMELT (NIL T) -7 NIL NIL) (-933 2180362 2180411 2180439 "PRIMCAT" 2180563 T PRIMCAT (NIL) -9 NIL NIL) (-932 2176523 2180300 2180345 "PRIMARR" 2180350 NIL PRIMARR (NIL T) -8 NIL NIL) (-931 2175530 2175708 2175936 "PRIMARR2" 2176341 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-930 2175173 2175229 2175340 "PREASSOC" 2175468 NIL PREASSOC (NIL T T) -7 NIL NIL) (-929 2174648 2174781 2174809 "PPCURVE" 2175014 T PPCURVE (NIL) -9 NIL 2175150) (-928 2174270 2174443 2174526 "PORTNUM" 2174585 T PORTNUM (NIL) -8 NIL NIL) (-927 2171629 2172028 2172620 "POLYROOT" 2173851 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-926 2165574 2171233 2171393 "POLY" 2171502 NIL POLY (NIL T) -8 NIL NIL) (-925 2164957 2165015 2165249 "POLYLIFT" 2165510 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-924 2161232 2161681 2162310 "POLYCATQ" 2164502 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-923 2148271 2153627 2153692 "POLYCAT" 2157206 NIL POLYCAT (NIL T T T) -9 NIL 2159134) (-922 2141721 2143582 2145966 "POLYCAT-" 2145971 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-921 2141308 2141376 2141496 "POLY2UP" 2141647 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-920 2140940 2140997 2141106 "POLY2" 2141245 NIL POLY2 (NIL T T) -7 NIL NIL) (-919 2139625 2139864 2140140 "POLUTIL" 2140714 NIL POLUTIL (NIL T T) -7 NIL NIL) (-918 2137980 2138257 2138588 "POLTOPOL" 2139347 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-917 2133498 2137916 2137962 "POINT" 2137967 NIL POINT (NIL T) -8 NIL NIL) (-916 2131685 2132042 2132417 "PNTHEORY" 2133143 T PNTHEORY (NIL) -7 NIL NIL) (-915 2130104 2130401 2130813 "PMTOOLS" 2131383 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-914 2129697 2129775 2129892 "PMSYM" 2130020 NIL PMSYM (NIL T) -7 NIL NIL) (-913 2129207 2129276 2129450 "PMQFCAT" 2129622 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-912 2128562 2128672 2128828 "PMPRED" 2129084 NIL PMPRED (NIL T) -7 NIL NIL) (-911 2127958 2128044 2128205 "PMPREDFS" 2128463 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-910 2126601 2126809 2127194 "PMPLCAT" 2127720 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-909 2126133 2126212 2126364 "PMLSAGG" 2126516 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-908 2125608 2125684 2125865 "PMKERNEL" 2126051 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-907 2125225 2125300 2125413 "PMINS" 2125527 NIL PMINS (NIL T) -7 NIL NIL) (-906 2124653 2124722 2124938 "PMFS" 2125150 NIL PMFS (NIL T T T) -7 NIL NIL) (-905 2123881 2123999 2124204 "PMDOWN" 2124530 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-904 2123044 2123203 2123385 "PMASS" 2123719 T PMASS (NIL) -7 NIL NIL) (-903 2122318 2122429 2122592 "PMASSFS" 2122930 NIL PMASSFS (NIL T T) -7 NIL NIL) (-902 2121973 2122041 2122135 "PLOTTOOL" 2122244 T PLOTTOOL (NIL) -7 NIL NIL) (-901 2116595 2117784 2118932 "PLOT" 2120845 T PLOT (NIL) -8 NIL NIL) (-900 2112409 2113443 2114364 "PLOT3D" 2115694 T PLOT3D (NIL) -8 NIL NIL) (-899 2111321 2111498 2111733 "PLOT1" 2112213 NIL PLOT1 (NIL T) -7 NIL NIL) (-898 2086715 2091387 2096238 "PLEQN" 2106587 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-897 2086033 2086155 2086335 "PINTERP" 2086580 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-896 2085726 2085773 2085876 "PINTERPA" 2085980 NIL PINTERPA (NIL T T) -7 NIL NIL) (-895 2085011 2085532 2085619 "PI" 2085659 T PI (NIL) -8 NIL NIL) (-894 2083443 2084384 2084412 "PID" 2084594 T PID (NIL) -9 NIL 2084728) (-893 2083168 2083205 2083293 "PICOERCE" 2083400 NIL PICOERCE (NIL T) -7 NIL NIL) (-892 2082488 2082627 2082803 "PGROEB" 2083024 NIL PGROEB (NIL T) -7 NIL NIL) (-891 2078075 2078889 2079794 "PGE" 2081603 T PGE (NIL) -7 NIL NIL) (-890 2076199 2076445 2076811 "PGCD" 2077792 NIL PGCD (NIL T T T T) -7 NIL NIL) (-889 2075537 2075640 2075801 "PFRPAC" 2076083 NIL PFRPAC (NIL T) -7 NIL NIL) (-888 2072217 2074085 2074438 "PFR" 2075216 NIL PFR (NIL T) -8 NIL NIL) (-887 2070606 2070850 2071175 "PFOTOOLS" 2071964 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-886 2069139 2069378 2069729 "PFOQ" 2070363 NIL PFOQ (NIL T T T) -7 NIL NIL) (-885 2067612 2067824 2068187 "PFO" 2068923 NIL PFO (NIL T T T T T) -7 NIL NIL) (-884 2064200 2067501 2067570 "PF" 2067575 NIL PF (NIL NIL) -8 NIL NIL) (-883 2061669 2062906 2062934 "PFECAT" 2063519 T PFECAT (NIL) -9 NIL 2063903) (-882 2061114 2061268 2061482 "PFECAT-" 2061487 NIL PFECAT- (NIL T) -8 NIL NIL) (-881 2059718 2059969 2060270 "PFBRU" 2060863 NIL PFBRU (NIL T T) -7 NIL NIL) (-880 2057585 2057936 2058368 "PFBR" 2059369 NIL PFBR (NIL T T T T) -7 NIL NIL) (-879 2053501 2054961 2055637 "PERM" 2056942 NIL PERM (NIL T) -8 NIL NIL) (-878 2048767 2049708 2050578 "PERMGRP" 2052664 NIL PERMGRP (NIL T) -8 NIL NIL) (-877 2046899 2047830 2047871 "PERMCAT" 2048317 NIL PERMCAT (NIL T) -9 NIL 2048622) (-876 2046552 2046593 2046717 "PERMAN" 2046852 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-875 2043992 2046121 2046252 "PENDTREE" 2046454 NIL PENDTREE (NIL T) -8 NIL NIL) (-874 2042105 2042839 2042880 "PDRING" 2043537 NIL PDRING (NIL T) -9 NIL 2043823) (-873 2041208 2041426 2041788 "PDRING-" 2041793 NIL PDRING- (NIL T T) -8 NIL NIL) (-872 2038349 2039100 2039791 "PDEPROB" 2040537 T PDEPROB (NIL) -8 NIL NIL) (-871 2035896 2036398 2036953 "PDEPACK" 2037814 T PDEPACK (NIL) -7 NIL NIL) (-870 2034808 2034998 2035249 "PDECOMP" 2035695 NIL PDECOMP (NIL T T) -7 NIL NIL) (-869 2032413 2033230 2033258 "PDECAT" 2034045 T PDECAT (NIL) -9 NIL 2034758) (-868 2032164 2032197 2032287 "PCOMP" 2032374 NIL PCOMP (NIL T T) -7 NIL NIL) (-867 2030369 2030965 2031262 "PBWLB" 2031893 NIL PBWLB (NIL T) -8 NIL NIL) (-866 2022873 2024442 2025780 "PATTERN" 2029052 NIL PATTERN (NIL T) -8 NIL NIL) (-865 2022505 2022562 2022671 "PATTERN2" 2022810 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-864 2020262 2020650 2021107 "PATTERN1" 2022094 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-863 2017657 2018211 2018692 "PATRES" 2019827 NIL PATRES (NIL T T) -8 NIL NIL) (-862 2017221 2017288 2017420 "PATRES2" 2017584 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-861 2015104 2015509 2015916 "PATMATCH" 2016888 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-860 2014640 2014823 2014864 "PATMAB" 2014971 NIL PATMAB (NIL T) -9 NIL 2015054) (-859 2013185 2013494 2013752 "PATLRES" 2014445 NIL PATLRES (NIL T T T) -8 NIL NIL) (-858 2012731 2012854 2012895 "PATAB" 2012900 NIL PATAB (NIL T) -9 NIL 2013072) (-857 2010212 2010744 2011317 "PARTPERM" 2012178 T PARTPERM (NIL) -7 NIL NIL) (-856 2009833 2009896 2009998 "PARSURF" 2010143 NIL PARSURF (NIL T) -8 NIL NIL) (-855 2009465 2009522 2009631 "PARSU2" 2009770 NIL PARSU2 (NIL T T) -7 NIL NIL) (-854 2009229 2009269 2009336 "PARSER" 2009418 T PARSER (NIL) -7 NIL NIL) (-853 2008850 2008913 2009015 "PARSCURV" 2009160 NIL PARSCURV (NIL T) -8 NIL NIL) (-852 2008482 2008539 2008648 "PARSC2" 2008787 NIL PARSC2 (NIL T T) -7 NIL NIL) (-851 2008121 2008179 2008276 "PARPCURV" 2008418 NIL PARPCURV (NIL T) -8 NIL NIL) (-850 2007753 2007810 2007919 "PARPC2" 2008058 NIL PARPC2 (NIL T T) -7 NIL NIL) (-849 2007273 2007359 2007478 "PAN2EXPR" 2007654 T PAN2EXPR (NIL) -7 NIL NIL) (-848 2006079 2006394 2006622 "PALETTE" 2007065 T PALETTE (NIL) -8 NIL NIL) (-847 2004547 2005084 2005444 "PAIR" 2005765 NIL PAIR (NIL T T) -8 NIL NIL) (-846 1998455 2003806 2004000 "PADICRC" 2004402 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-845 1991721 1997801 1997985 "PADICRAT" 1998303 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-844 1990071 1991658 1991703 "PADIC" 1991708 NIL PADIC (NIL NIL) -8 NIL NIL) (-843 1987316 1988846 1988886 "PADICCT" 1989467 NIL PADICCT (NIL NIL) -9 NIL 1989749) (-842 1986273 1986473 1986741 "PADEPAC" 1987103 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-841 1985485 1985618 1985824 "PADE" 1986135 NIL PADE (NIL T T T) -7 NIL NIL) (-840 1983535 1984321 1984638 "OWP" 1985252 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-839 1982644 1983140 1983312 "OVAR" 1983403 NIL OVAR (NIL NIL) -8 NIL NIL) (-838 1981908 1982029 1982190 "OUT" 1982503 T OUT (NIL) -7 NIL NIL) (-837 1970815 1973017 1975217 "OUTFORM" 1979728 T OUTFORM (NIL) -8 NIL NIL) (-836 1970236 1970412 1970539 "OUTBFILE" 1970708 T OUTBFILE (NIL) -8 NIL NIL) (-835 1969873 1969956 1969984 "OUTBCON" 1970135 T OUTBCON (NIL) -9 NIL 1970220) (-834 1969713 1969748 1969824 "OUTBCON-" 1969829 NIL OUTBCON- (NIL T) -8 NIL NIL) (-833 1969121 1969442 1969531 "OSI" 1969644 T OSI (NIL) -8 NIL NIL) (-832 1968677 1968989 1969017 "OSGROUP" 1969022 T OSGROUP (NIL) -9 NIL 1969044) (-831 1967422 1967649 1967934 "ORTHPOL" 1968424 NIL ORTHPOL (NIL T) -7 NIL NIL) (-830 1964832 1967081 1967220 "OREUP" 1967365 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-829 1962270 1964523 1964650 "ORESUP" 1964774 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-828 1959798 1960298 1960859 "OREPCTO" 1961759 NIL OREPCTO (NIL T T) -7 NIL NIL) (-827 1953709 1955876 1955917 "OREPCAT" 1958265 NIL OREPCAT (NIL T) -9 NIL 1959369) (-826 1950856 1951638 1952696 "OREPCAT-" 1952701 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-825 1950033 1950305 1950333 "ORDSET" 1950642 T ORDSET (NIL) -9 NIL 1950806) (-824 1949552 1949674 1949867 "ORDSET-" 1949872 NIL ORDSET- (NIL T) -8 NIL NIL) (-823 1948206 1948963 1948991 "ORDRING" 1949193 T ORDRING (NIL) -9 NIL 1949318) (-822 1947851 1947945 1948089 "ORDRING-" 1948094 NIL ORDRING- (NIL T) -8 NIL NIL) (-821 1947257 1947694 1947722 "ORDMON" 1947727 T ORDMON (NIL) -9 NIL 1947748) (-820 1946419 1946566 1946761 "ORDFUNS" 1947106 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-819 1945930 1946289 1946317 "ORDFIN" 1946322 T ORDFIN (NIL) -9 NIL 1946343) (-818 1942522 1944516 1944925 "ORDCOMP" 1945554 NIL ORDCOMP (NIL T) -8 NIL NIL) (-817 1941788 1941915 1942101 "ORDCOMP2" 1942382 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-816 1938295 1939178 1940015 "OPTPROB" 1940971 T OPTPROB (NIL) -8 NIL NIL) (-815 1935097 1935736 1936440 "OPTPACK" 1937611 T OPTPACK (NIL) -7 NIL NIL) (-814 1932810 1933550 1933578 "OPTCAT" 1934397 T OPTCAT (NIL) -9 NIL 1935047) (-813 1932578 1932617 1932683 "OPQUERY" 1932764 T OPQUERY (NIL) -7 NIL NIL) (-812 1929744 1930889 1931393 "OP" 1932107 NIL OP (NIL T) -8 NIL NIL) (-811 1926589 1928541 1928910 "ONECOMP" 1929408 NIL ONECOMP (NIL T) -8 NIL NIL) (-810 1925894 1926009 1926183 "ONECOMP2" 1926461 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-809 1925313 1925419 1925549 "OMSERVER" 1925784 T OMSERVER (NIL) -7 NIL NIL) (-808 1922201 1924753 1924793 "OMSAGG" 1924854 NIL OMSAGG (NIL T) -9 NIL 1924918) (-807 1920824 1921087 1921369 "OMPKG" 1921939 T OMPKG (NIL) -7 NIL NIL) (-806 1920254 1920357 1920385 "OM" 1920684 T OM (NIL) -9 NIL NIL) (-805 1918836 1919803 1919972 "OMLO" 1920135 NIL OMLO (NIL T T) -8 NIL NIL) (-804 1917761 1917908 1918135 "OMEXPR" 1918662 NIL OMEXPR (NIL T) -7 NIL NIL) (-803 1917079 1917307 1917443 "OMERR" 1917645 T OMERR (NIL) -8 NIL NIL) (-802 1916257 1916500 1916660 "OMERRK" 1916939 T OMERRK (NIL) -8 NIL NIL) (-801 1915735 1915934 1916042 "OMENC" 1916169 T OMENC (NIL) -8 NIL NIL) (-800 1909630 1910815 1911986 "OMDEV" 1914584 T OMDEV (NIL) -8 NIL NIL) (-799 1908699 1908870 1909064 "OMCONN" 1909456 T OMCONN (NIL) -8 NIL NIL) (-798 1907355 1908297 1908325 "OINTDOM" 1908330 T OINTDOM (NIL) -9 NIL 1908351) (-797 1903161 1904345 1905061 "OFMONOID" 1906671 NIL OFMONOID (NIL T) -8 NIL NIL) (-796 1902599 1903098 1903143 "ODVAR" 1903148 NIL ODVAR (NIL T) -8 NIL NIL) (-795 1899809 1902096 1902281 "ODR" 1902474 NIL ODR (NIL T T NIL) -8 NIL NIL) (-794 1892153 1899585 1899711 "ODPOL" 1899716 NIL ODPOL (NIL T) -8 NIL NIL) (-793 1886029 1892025 1892130 "ODP" 1892135 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-792 1884795 1885010 1885285 "ODETOOLS" 1885803 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-791 1881764 1882420 1883136 "ODESYS" 1884128 NIL ODESYS (NIL T T) -7 NIL NIL) (-790 1876646 1877554 1878579 "ODERTRIC" 1880839 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-789 1876072 1876154 1876348 "ODERED" 1876558 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-788 1872960 1873508 1874185 "ODERAT" 1875495 NIL ODERAT (NIL T T) -7 NIL NIL) (-787 1869920 1870384 1870981 "ODEPRRIC" 1872489 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-786 1867789 1868358 1868867 "ODEPROB" 1869431 T ODEPROB (NIL) -8 NIL NIL) (-785 1864311 1864794 1865441 "ODEPRIM" 1867268 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-784 1863560 1863662 1863922 "ODEPAL" 1864203 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-783 1859722 1860513 1861377 "ODEPACK" 1862716 T ODEPACK (NIL) -7 NIL NIL) (-782 1858755 1858862 1859091 "ODEINT" 1859611 NIL ODEINT (NIL T T) -7 NIL NIL) (-781 1852856 1854281 1855728 "ODEIFTBL" 1857328 T ODEIFTBL (NIL) -8 NIL NIL) (-780 1848191 1848977 1849936 "ODEEF" 1852015 NIL ODEEF (NIL T T) -7 NIL NIL) (-779 1847526 1847615 1847845 "ODECONST" 1848096 NIL ODECONST (NIL T T T) -7 NIL NIL) (-778 1845677 1846312 1846340 "ODECAT" 1846945 T ODECAT (NIL) -9 NIL 1847476) (-777 1842584 1845389 1845508 "OCT" 1845590 NIL OCT (NIL T) -8 NIL NIL) (-776 1842222 1842265 1842392 "OCTCT2" 1842535 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-775 1837083 1839483 1839523 "OC" 1840620 NIL OC (NIL T) -9 NIL 1841478) (-774 1834310 1835058 1836048 "OC-" 1836142 NIL OC- (NIL T T) -8 NIL NIL) (-773 1833688 1834130 1834158 "OCAMON" 1834163 T OCAMON (NIL) -9 NIL 1834184) (-772 1833245 1833560 1833588 "OASGP" 1833593 T OASGP (NIL) -9 NIL 1833613) (-771 1832532 1832995 1833023 "OAMONS" 1833063 T OAMONS (NIL) -9 NIL 1833106) (-770 1831972 1832379 1832407 "OAMON" 1832412 T OAMON (NIL) -9 NIL 1832432) (-769 1831276 1831768 1831796 "OAGROUP" 1831801 T OAGROUP (NIL) -9 NIL 1831821) (-768 1830966 1831016 1831104 "NUMTUBE" 1831220 NIL NUMTUBE (NIL T) -7 NIL NIL) (-767 1824539 1826057 1827593 "NUMQUAD" 1829450 T NUMQUAD (NIL) -7 NIL NIL) (-766 1820295 1821283 1822308 "NUMODE" 1823534 T NUMODE (NIL) -7 NIL NIL) (-765 1817676 1818530 1818558 "NUMINT" 1819481 T NUMINT (NIL) -9 NIL 1820245) (-764 1816624 1816821 1817039 "NUMFMT" 1817478 T NUMFMT (NIL) -7 NIL NIL) (-763 1802983 1805928 1808460 "NUMERIC" 1814131 NIL NUMERIC (NIL T) -7 NIL NIL) (-762 1797380 1802432 1802527 "NTSCAT" 1802532 NIL NTSCAT (NIL T T T T) -9 NIL 1802571) (-761 1796574 1796739 1796932 "NTPOLFN" 1797219 NIL NTPOLFN (NIL T) -7 NIL NIL) (-760 1784414 1793399 1794211 "NSUP" 1795795 NIL NSUP (NIL T) -8 NIL NIL) (-759 1784046 1784103 1784212 "NSUP2" 1784351 NIL NSUP2 (NIL T T) -7 NIL NIL) (-758 1774043 1783820 1783953 "NSMP" 1783958 NIL NSMP (NIL T T) -8 NIL NIL) (-757 1772475 1772776 1773133 "NREP" 1773731 NIL NREP (NIL T) -7 NIL NIL) (-756 1771066 1771318 1771676 "NPCOEF" 1772218 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-755 1770132 1770247 1770463 "NORMRETR" 1770947 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-754 1768173 1768463 1768872 "NORMPK" 1769840 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-753 1767858 1767886 1768010 "NORMMA" 1768139 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-752 1767685 1767815 1767844 "NONE" 1767849 T NONE (NIL) -8 NIL NIL) (-751 1767474 1767503 1767572 "NONE1" 1767649 NIL NONE1 (NIL T) -7 NIL NIL) (-750 1766957 1767019 1767205 "NODE1" 1767406 NIL NODE1 (NIL T T) -7 NIL NIL) (-749 1765297 1766120 1766375 "NNI" 1766722 T NNI (NIL) -8 NIL NIL) (-748 1763717 1764030 1764394 "NLINSOL" 1764965 NIL NLINSOL (NIL T) -7 NIL NIL) (-747 1759884 1760852 1761774 "NIPROB" 1762815 T NIPROB (NIL) -8 NIL NIL) (-746 1758641 1758875 1759177 "NFINTBAS" 1759646 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-745 1757349 1757580 1757861 "NCODIV" 1758409 NIL NCODIV (NIL T T) -7 NIL NIL) (-744 1757111 1757148 1757223 "NCNTFRAC" 1757306 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-743 1755291 1755655 1756075 "NCEP" 1756736 NIL NCEP (NIL T) -7 NIL NIL) (-742 1754202 1754941 1754969 "NASRING" 1755079 T NASRING (NIL) -9 NIL 1755153) (-741 1753997 1754041 1754135 "NASRING-" 1754140 NIL NASRING- (NIL T) -8 NIL NIL) (-740 1753150 1753649 1753677 "NARNG" 1753794 T NARNG (NIL) -9 NIL 1753885) (-739 1752842 1752909 1753043 "NARNG-" 1753048 NIL NARNG- (NIL T) -8 NIL NIL) (-738 1751721 1751928 1752163 "NAGSP" 1752627 T NAGSP (NIL) -7 NIL NIL) (-737 1742993 1744677 1746350 "NAGS" 1750068 T NAGS (NIL) -7 NIL NIL) (-736 1741541 1741849 1742180 "NAGF07" 1742682 T NAGF07 (NIL) -7 NIL NIL) (-735 1736079 1737370 1738677 "NAGF04" 1740254 T NAGF04 (NIL) -7 NIL NIL) (-734 1729047 1730661 1732294 "NAGF02" 1734466 T NAGF02 (NIL) -7 NIL NIL) (-733 1724271 1725371 1726488 "NAGF01" 1727950 T NAGF01 (NIL) -7 NIL NIL) (-732 1717899 1719465 1721050 "NAGE04" 1722706 T NAGE04 (NIL) -7 NIL NIL) (-731 1709068 1711189 1713319 "NAGE02" 1715789 T NAGE02 (NIL) -7 NIL NIL) (-730 1705021 1705968 1706932 "NAGE01" 1708124 T NAGE01 (NIL) -7 NIL NIL) (-729 1702816 1703350 1703908 "NAGD03" 1704483 T NAGD03 (NIL) -7 NIL NIL) (-728 1694566 1696494 1698448 "NAGD02" 1700882 T NAGD02 (NIL) -7 NIL NIL) (-727 1688377 1689802 1691242 "NAGD01" 1693146 T NAGD01 (NIL) -7 NIL NIL) (-726 1684586 1685408 1686245 "NAGC06" 1687560 T NAGC06 (NIL) -7 NIL NIL) (-725 1683051 1683383 1683739 "NAGC05" 1684250 T NAGC05 (NIL) -7 NIL NIL) (-724 1682427 1682546 1682690 "NAGC02" 1682927 T NAGC02 (NIL) -7 NIL NIL) (-723 1681487 1682044 1682084 "NAALG" 1682163 NIL NAALG (NIL T) -9 NIL 1682224) (-722 1681322 1681351 1681441 "NAALG-" 1681446 NIL NAALG- (NIL T T) -8 NIL NIL) (-721 1675272 1676380 1677567 "MULTSQFR" 1680218 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-720 1674591 1674666 1674850 "MULTFACT" 1675184 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-719 1667814 1671679 1671732 "MTSCAT" 1672802 NIL MTSCAT (NIL T T) -9 NIL 1673316) (-718 1667526 1667580 1667672 "MTHING" 1667754 NIL MTHING (NIL T) -7 NIL NIL) (-717 1667318 1667351 1667411 "MSYSCMD" 1667486 T MSYSCMD (NIL) -7 NIL NIL) (-716 1663430 1666073 1666393 "MSET" 1667031 NIL MSET (NIL T) -8 NIL NIL) (-715 1660525 1662991 1663032 "MSETAGG" 1663037 NIL MSETAGG (NIL T) -9 NIL 1663071) (-714 1656408 1657904 1658649 "MRING" 1659825 NIL MRING (NIL T T) -8 NIL NIL) (-713 1655974 1656041 1656172 "MRF2" 1656335 NIL MRF2 (NIL T T T) -7 NIL NIL) (-712 1655592 1655627 1655771 "MRATFAC" 1655933 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-711 1653204 1653499 1653930 "MPRFF" 1655297 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-710 1647264 1653058 1653155 "MPOLY" 1653160 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-709 1646754 1646789 1646997 "MPCPF" 1647223 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-708 1646268 1646311 1646495 "MPC3" 1646705 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-707 1645463 1645544 1645765 "MPC2" 1646183 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-706 1643764 1644101 1644491 "MONOTOOL" 1645123 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-705 1643015 1643306 1643334 "MONOID" 1643553 T MONOID (NIL) -9 NIL 1643700) (-704 1642561 1642680 1642861 "MONOID-" 1642866 NIL MONOID- (NIL T) -8 NIL NIL) (-703 1633611 1639517 1639576 "MONOGEN" 1640250 NIL MONOGEN (NIL T T) -9 NIL 1640706) (-702 1630829 1631564 1632564 "MONOGEN-" 1632683 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-701 1629688 1630108 1630136 "MONADWU" 1630528 T MONADWU (NIL) -9 NIL 1630766) (-700 1629060 1629219 1629467 "MONADWU-" 1629472 NIL MONADWU- (NIL T) -8 NIL NIL) (-699 1628445 1628663 1628691 "MONAD" 1628898 T MONAD (NIL) -9 NIL 1629010) (-698 1628130 1628208 1628340 "MONAD-" 1628345 NIL MONAD- (NIL T) -8 NIL NIL) (-697 1626446 1627043 1627322 "MOEBIUS" 1627883 NIL MOEBIUS (NIL T) -8 NIL NIL) (-696 1625838 1626216 1626256 "MODULE" 1626261 NIL MODULE (NIL T) -9 NIL 1626287) (-695 1625406 1625502 1625692 "MODULE-" 1625697 NIL MODULE- (NIL T T) -8 NIL NIL) (-694 1623121 1623770 1624097 "MODRING" 1625230 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1620107 1621226 1621747 "MODOP" 1622650 NIL MODOP (NIL T T) -8 NIL NIL) (-692 1618294 1618746 1619087 "MODMONOM" 1619906 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-691 1608002 1616486 1616909 "MODMON" 1617922 NIL MODMON (NIL T T) -8 NIL NIL) (-690 1605193 1606846 1607122 "MODFIELD" 1607877 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1604197 1604474 1604664 "MMLFORM" 1605023 T MMLFORM (NIL) -8 NIL NIL) (-688 1603723 1603766 1603945 "MMAP" 1604148 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-687 1601992 1602725 1602766 "MLO" 1603189 NIL MLO (NIL T) -9 NIL 1603431) (-686 1599359 1599874 1600476 "MLIFT" 1601473 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-685 1598750 1598834 1598988 "MKUCFUNC" 1599270 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-684 1598349 1598419 1598542 "MKRECORD" 1598673 NIL MKRECORD (NIL T T) -7 NIL NIL) (-683 1597397 1597558 1597786 "MKFUNC" 1598160 NIL MKFUNC (NIL T) -7 NIL NIL) (-682 1596785 1596889 1597045 "MKFLCFN" 1597280 NIL MKFLCFN (NIL T) -7 NIL NIL) (-681 1596211 1596578 1596667 "MKCHSET" 1596729 NIL MKCHSET (NIL T) -8 NIL NIL) (-680 1595488 1595590 1595775 "MKBCFUNC" 1596104 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-679 1592230 1595042 1595178 "MINT" 1595372 T MINT (NIL) -8 NIL NIL) (-678 1591042 1591285 1591562 "MHROWRED" 1591985 NIL MHROWRED (NIL T) -7 NIL NIL) (-677 1586468 1589577 1589982 "MFLOAT" 1590657 T MFLOAT (NIL) -8 NIL NIL) (-676 1585825 1585901 1586072 "MFINFACT" 1586380 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-675 1582140 1582988 1583872 "MESH" 1584961 T MESH (NIL) -7 NIL NIL) (-674 1580530 1580842 1581195 "MDDFACT" 1581827 NIL MDDFACT (NIL T) -7 NIL NIL) (-673 1577372 1579689 1579730 "MDAGG" 1579985 NIL MDAGG (NIL T) -9 NIL 1580128) (-672 1567152 1576665 1576872 "MCMPLX" 1577185 T MCMPLX (NIL) -8 NIL NIL) (-671 1566293 1566439 1566639 "MCDEN" 1567001 NIL MCDEN (NIL T T) -7 NIL NIL) (-670 1564183 1564453 1564833 "MCALCFN" 1566023 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-669 1563094 1563267 1563508 "MAYBE" 1563981 NIL MAYBE (NIL T) -8 NIL NIL) (-668 1560706 1561229 1561791 "MATSTOR" 1562565 NIL MATSTOR (NIL T) -7 NIL NIL) (-667 1556712 1560078 1560326 "MATRIX" 1560491 NIL MATRIX (NIL T) -8 NIL NIL) (-666 1552481 1553185 1553921 "MATLIN" 1556069 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-665 1542635 1545773 1545850 "MATCAT" 1550730 NIL MATCAT (NIL T T T) -9 NIL 1552147) (-664 1538999 1540012 1541368 "MATCAT-" 1541373 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-663 1537593 1537746 1538079 "MATCAT2" 1538834 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-662 1535705 1536029 1536413 "MAPPKG3" 1537268 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-661 1534686 1534859 1535081 "MAPPKG2" 1535529 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-660 1533185 1533469 1533796 "MAPPKG1" 1534392 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-659 1532291 1532591 1532768 "MAPPAST" 1533028 T MAPPAST (NIL) -8 NIL NIL) (-658 1531902 1531960 1532083 "MAPHACK3" 1532227 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-657 1531494 1531555 1531669 "MAPHACK2" 1531834 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-656 1530932 1531035 1531177 "MAPHACK1" 1531385 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-655 1529038 1529632 1529936 "MAGMA" 1530660 NIL MAGMA (NIL T) -8 NIL NIL) (-654 1528544 1528762 1528853 "MACROAST" 1528967 T MACROAST (NIL) -8 NIL NIL) (-653 1525011 1526783 1527244 "M3D" 1528116 NIL M3D (NIL T) -8 NIL NIL) (-652 1519166 1523381 1523422 "LZSTAGG" 1524204 NIL LZSTAGG (NIL T) -9 NIL 1524499) (-651 1515139 1516297 1517754 "LZSTAGG-" 1517759 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-650 1512253 1513030 1513517 "LWORD" 1514684 NIL LWORD (NIL T) -8 NIL NIL) (-649 1511856 1512057 1512132 "LSTAST" 1512198 T LSTAST (NIL) -8 NIL NIL) (-648 1505057 1511627 1511761 "LSQM" 1511766 NIL LSQM (NIL NIL T) -8 NIL NIL) (-647 1504281 1504420 1504648 "LSPP" 1504912 NIL LSPP (NIL T T T T) -7 NIL NIL) (-646 1502093 1502394 1502850 "LSMP" 1503970 NIL LSMP (NIL T T T T) -7 NIL NIL) (-645 1498872 1499546 1500276 "LSMP1" 1501395 NIL LSMP1 (NIL T) -7 NIL NIL) (-644 1492798 1498040 1498081 "LSAGG" 1498143 NIL LSAGG (NIL T) -9 NIL 1498221) (-643 1489493 1490417 1491630 "LSAGG-" 1491635 NIL LSAGG- (NIL T T) -8 NIL NIL) (-642 1487119 1488637 1488886 "LPOLY" 1489288 NIL LPOLY (NIL T T) -8 NIL NIL) (-641 1486701 1486786 1486909 "LPEFRAC" 1487028 NIL LPEFRAC (NIL T) -7 NIL NIL) (-640 1485048 1485795 1486048 "LO" 1486533 NIL LO (NIL T T T) -8 NIL NIL) (-639 1484700 1484812 1484840 "LOGIC" 1484951 T LOGIC (NIL) -9 NIL 1485032) (-638 1484562 1484585 1484656 "LOGIC-" 1484661 NIL LOGIC- (NIL T) -8 NIL NIL) (-637 1483755 1483895 1484088 "LODOOPS" 1484418 NIL LODOOPS (NIL T T) -7 NIL NIL) (-636 1481213 1483671 1483737 "LODO" 1483742 NIL LODO (NIL T NIL) -8 NIL NIL) (-635 1479751 1479986 1480339 "LODOF" 1480960 NIL LODOF (NIL T T) -7 NIL NIL) (-634 1476194 1478591 1478632 "LODOCAT" 1479070 NIL LODOCAT (NIL T) -9 NIL 1479281) (-633 1475927 1475985 1476112 "LODOCAT-" 1476117 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-632 1473282 1475768 1475886 "LODO2" 1475891 NIL LODO2 (NIL T T) -8 NIL NIL) (-631 1470752 1473219 1473264 "LODO1" 1473269 NIL LODO1 (NIL T) -8 NIL NIL) (-630 1469612 1469777 1470089 "LODEEF" 1470575 NIL LODEEF (NIL T T T) -7 NIL NIL) (-629 1464898 1467742 1467783 "LNAGG" 1468730 NIL LNAGG (NIL T) -9 NIL 1469174) (-628 1464045 1464259 1464601 "LNAGG-" 1464606 NIL LNAGG- (NIL T T) -8 NIL NIL) (-627 1460208 1460970 1461609 "LMOPS" 1463460 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-626 1459603 1459965 1460006 "LMODULE" 1460067 NIL LMODULE (NIL T) -9 NIL 1460109) (-625 1456849 1459248 1459371 "LMDICT" 1459513 NIL LMDICT (NIL T) -8 NIL NIL) (-624 1456575 1456757 1456817 "LITERAL" 1456822 NIL LITERAL (NIL T) -8 NIL NIL) (-623 1449802 1455521 1455819 "LIST" 1456310 NIL LIST (NIL T) -8 NIL NIL) (-622 1449327 1449401 1449540 "LIST3" 1449722 NIL LIST3 (NIL T T T) -7 NIL NIL) (-621 1448334 1448512 1448740 "LIST2" 1449145 NIL LIST2 (NIL T T) -7 NIL NIL) (-620 1446468 1446780 1447179 "LIST2MAP" 1447981 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-619 1445218 1445854 1445895 "LINEXP" 1446150 NIL LINEXP (NIL T) -9 NIL 1446299) (-618 1443865 1444125 1444422 "LINDEP" 1444970 NIL LINDEP (NIL T T) -7 NIL NIL) (-617 1440632 1441351 1442128 "LIMITRF" 1443120 NIL LIMITRF (NIL T) -7 NIL NIL) (-616 1438908 1439203 1439619 "LIMITPS" 1440327 NIL LIMITPS (NIL T T) -7 NIL NIL) (-615 1433363 1438419 1438647 "LIE" 1438729 NIL LIE (NIL T T) -8 NIL NIL) (-614 1432412 1432855 1432895 "LIECAT" 1433035 NIL LIECAT (NIL T) -9 NIL 1433186) (-613 1432253 1432280 1432368 "LIECAT-" 1432373 NIL LIECAT- (NIL T T) -8 NIL NIL) (-612 1424865 1431702 1431867 "LIB" 1432108 T LIB (NIL) -8 NIL NIL) (-611 1420502 1421383 1422318 "LGROBP" 1423982 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-610 1418368 1418642 1419004 "LF" 1420223 NIL LF (NIL T T) -7 NIL NIL) (-609 1417208 1417900 1417928 "LFCAT" 1418135 T LFCAT (NIL) -9 NIL 1418274) (-608 1414112 1414740 1415428 "LEXTRIPK" 1416572 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-607 1410883 1411682 1412185 "LEXP" 1413692 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-606 1410386 1410604 1410696 "LETAST" 1410811 T LETAST (NIL) -8 NIL NIL) (-605 1408784 1409097 1409498 "LEADCDET" 1410068 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-604 1407974 1408048 1408277 "LAZM3PK" 1408705 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-603 1402930 1406051 1406589 "LAUPOL" 1407486 NIL LAUPOL (NIL T T) -8 NIL NIL) (-602 1402495 1402539 1402707 "LAPLACE" 1402880 NIL LAPLACE (NIL T T) -7 NIL NIL) (-601 1400469 1401596 1401847 "LA" 1402328 NIL LA (NIL T T T) -8 NIL NIL) (-600 1399570 1400120 1400161 "LALG" 1400223 NIL LALG (NIL T) -9 NIL 1400282) (-599 1399284 1399343 1399479 "LALG-" 1399484 NIL LALG- (NIL T T) -8 NIL NIL) (-598 1398084 1398501 1398730 "KTVLOGIC" 1399075 T KTVLOGIC (NIL) -8 NIL NIL) (-597 1396988 1397175 1397474 "KOVACIC" 1397884 NIL KOVACIC (NIL T T) -7 NIL NIL) (-596 1396823 1396847 1396888 "KONVERT" 1396950 NIL KONVERT (NIL T) -9 NIL NIL) (-595 1396658 1396682 1396723 "KOERCE" 1396785 NIL KOERCE (NIL T) -9 NIL NIL) (-594 1394392 1395152 1395545 "KERNEL" 1396297 NIL KERNEL (NIL T) -8 NIL NIL) (-593 1393894 1393975 1394105 "KERNEL2" 1394306 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-592 1387745 1392433 1392487 "KDAGG" 1392864 NIL KDAGG (NIL T T) -9 NIL 1393070) (-591 1387274 1387398 1387603 "KDAGG-" 1387608 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-590 1380449 1386935 1387090 "KAFILE" 1387152 NIL KAFILE (NIL T) -8 NIL NIL) (-589 1374904 1379960 1380188 "JORDAN" 1380270 NIL JORDAN (NIL T T) -8 NIL NIL) (-588 1374310 1374553 1374674 "JOINAST" 1374803 T JOINAST (NIL) -8 NIL NIL) (-587 1374039 1374098 1374185 "JAVACODE" 1374243 T JAVACODE (NIL) -8 NIL NIL) (-586 1370338 1372244 1372298 "IXAGG" 1373227 NIL IXAGG (NIL T T) -9 NIL 1373686) (-585 1369257 1369563 1369982 "IXAGG-" 1369987 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-584 1364837 1369179 1369238 "IVECTOR" 1369243 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-583 1363603 1363840 1364106 "ITUPLE" 1364604 NIL ITUPLE (NIL T) -8 NIL NIL) (-582 1362039 1362216 1362522 "ITRIGMNP" 1363425 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-581 1360784 1360988 1361271 "ITFUN3" 1361815 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-580 1360416 1360473 1360582 "ITFUN2" 1360721 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-579 1358253 1359278 1359577 "ITAYLOR" 1360150 NIL ITAYLOR (NIL T) -8 NIL NIL) (-578 1347235 1352390 1353553 "ISUPS" 1357123 NIL ISUPS (NIL T) -8 NIL NIL) (-577 1346339 1346479 1346715 "ISUMP" 1347082 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-576 1341603 1346140 1346219 "ISTRING" 1346292 NIL ISTRING (NIL NIL) -8 NIL NIL) (-575 1341106 1341324 1341416 "ISAST" 1341531 T ISAST (NIL) -8 NIL NIL) (-574 1340316 1340397 1340613 "IRURPK" 1341020 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-573 1339252 1339453 1339693 "IRSN" 1340096 T IRSN (NIL) -7 NIL NIL) (-572 1337281 1337636 1338072 "IRRF2F" 1338890 NIL IRRF2F (NIL T) -7 NIL NIL) (-571 1337028 1337066 1337142 "IRREDFFX" 1337237 NIL IRREDFFX (NIL T) -7 NIL NIL) (-570 1335643 1335902 1336201 "IROOT" 1336761 NIL IROOT (NIL T) -7 NIL NIL) (-569 1332275 1333327 1334019 "IR" 1334983 NIL IR (NIL T) -8 NIL NIL) (-568 1329888 1330383 1330949 "IR2" 1331753 NIL IR2 (NIL T T) -7 NIL NIL) (-567 1328960 1329073 1329294 "IR2F" 1329771 NIL IR2F (NIL T T) -7 NIL NIL) (-566 1328751 1328785 1328845 "IPRNTPK" 1328920 T IPRNTPK (NIL) -7 NIL NIL) (-565 1325370 1328640 1328709 "IPF" 1328714 NIL IPF (NIL NIL) -8 NIL NIL) (-564 1323733 1325295 1325352 "IPADIC" 1325357 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-563 1323233 1323437 1323547 "IOMODE" 1323643 T IOMODE (NIL) -8 NIL NIL) (-562 1322997 1323137 1323165 "IOBCON" 1323170 T IOBCON (NIL) -9 NIL 1323191) (-561 1322494 1322552 1322742 "INVLAPLA" 1322933 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-560 1312143 1314496 1316882 "INTTR" 1320158 NIL INTTR (NIL T T) -7 NIL NIL) (-559 1308487 1309229 1310093 "INTTOOLS" 1311328 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-558 1308073 1308164 1308281 "INTSLPE" 1308390 T INTSLPE (NIL) -7 NIL NIL) (-557 1306068 1307996 1308055 "INTRVL" 1308060 NIL INTRVL (NIL T) -8 NIL NIL) (-556 1303670 1304182 1304757 "INTRF" 1305553 NIL INTRF (NIL T) -7 NIL NIL) (-555 1303081 1303178 1303320 "INTRET" 1303568 NIL INTRET (NIL T) -7 NIL NIL) (-554 1301078 1301467 1301937 "INTRAT" 1302689 NIL INTRAT (NIL T T) -7 NIL NIL) (-553 1298306 1298889 1299515 "INTPM" 1300563 NIL INTPM (NIL T T) -7 NIL NIL) (-552 1295009 1295608 1296353 "INTPAF" 1297692 NIL INTPAF (NIL T T T) -7 NIL NIL) (-551 1290188 1291150 1292201 "INTPACK" 1293978 T INTPACK (NIL) -7 NIL NIL) (-550 1287100 1289917 1290044 "INT" 1290081 T INT (NIL) -8 NIL NIL) (-549 1286352 1286504 1286712 "INTHERTR" 1286942 NIL INTHERTR (NIL T T) -7 NIL NIL) (-548 1285791 1285871 1286059 "INTHERAL" 1286266 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-547 1283637 1284080 1284537 "INTHEORY" 1285354 T INTHEORY (NIL) -7 NIL NIL) (-546 1274945 1276566 1278345 "INTG0" 1281989 NIL INTG0 (NIL T T T) -7 NIL NIL) (-545 1255518 1260308 1265118 "INTFTBL" 1270155 T INTFTBL (NIL) -8 NIL NIL) (-544 1254767 1254905 1255078 "INTFACT" 1255377 NIL INTFACT (NIL T) -7 NIL NIL) (-543 1252152 1252598 1253162 "INTEF" 1254321 NIL INTEF (NIL T T) -7 NIL NIL) (-542 1250654 1251359 1251387 "INTDOM" 1251688 T INTDOM (NIL) -9 NIL 1251895) (-541 1250023 1250197 1250439 "INTDOM-" 1250444 NIL INTDOM- (NIL T) -8 NIL NIL) (-540 1246556 1248442 1248496 "INTCAT" 1249295 NIL INTCAT (NIL T) -9 NIL 1249615) (-539 1246029 1246131 1246259 "INTBIT" 1246448 T INTBIT (NIL) -7 NIL NIL) (-538 1244700 1244854 1245168 "INTALG" 1245874 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-537 1244157 1244247 1244417 "INTAF" 1244604 NIL INTAF (NIL T T) -7 NIL NIL) (-536 1237611 1243967 1244107 "INTABL" 1244112 NIL INTABL (NIL T T T) -8 NIL NIL) (-535 1232666 1235337 1235365 "INS" 1236299 T INS (NIL) -9 NIL 1236963) (-534 1229906 1230677 1231651 "INS-" 1231724 NIL INS- (NIL T) -8 NIL NIL) (-533 1228681 1228908 1229206 "INPSIGN" 1229659 NIL INPSIGN (NIL T T) -7 NIL NIL) (-532 1227799 1227916 1228113 "INPRODPF" 1228561 NIL INPRODPF (NIL T T) -7 NIL NIL) (-531 1226693 1226810 1227047 "INPRODFF" 1227679 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-530 1225693 1225845 1226105 "INNMFACT" 1226529 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-529 1224890 1224987 1225175 "INMODGCD" 1225592 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-528 1223399 1223643 1223967 "INFSP" 1224635 NIL INFSP (NIL T T T) -7 NIL NIL) (-527 1222583 1222700 1222883 "INFPROD0" 1223279 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-526 1219465 1220648 1221163 "INFORM" 1222076 T INFORM (NIL) -8 NIL NIL) (-525 1219075 1219135 1219233 "INFORM1" 1219400 NIL INFORM1 (NIL T) -7 NIL NIL) (-524 1218598 1218687 1218801 "INFINITY" 1218981 T INFINITY (NIL) -7 NIL NIL) (-523 1217215 1217464 1217785 "INEP" 1218346 NIL INEP (NIL T T T) -7 NIL NIL) (-522 1216491 1217112 1217177 "INDE" 1217182 NIL INDE (NIL T) -8 NIL NIL) (-521 1216055 1216123 1216240 "INCRMAPS" 1216418 NIL INCRMAPS (NIL T) -7 NIL NIL) (-520 1215358 1215551 1215701 "INBFILE" 1215925 T INBFILE (NIL) -8 NIL NIL) (-519 1210669 1211594 1212538 "INBFF" 1214446 NIL INBFF (NIL T) -7 NIL NIL) (-518 1210338 1210414 1210442 "INBCON" 1210575 T INBCON (NIL) -9 NIL 1210653) (-517 1210178 1210213 1210289 "INBCON-" 1210294 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1209680 1209899 1209991 "INAST" 1210106 T INAST (NIL) -8 NIL NIL) (-515 1209134 1209359 1209465 "IMPTAST" 1209594 T IMPTAST (NIL) -8 NIL NIL) (-514 1205628 1208978 1209082 "IMATRIX" 1209087 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1204340 1204463 1204778 "IMATQF" 1205484 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1202560 1202787 1203124 "IMATLIN" 1204096 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1197186 1202484 1202542 "ILIST" 1202547 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1195139 1197046 1197159 "IIARRAY2" 1197164 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1190572 1195050 1195114 "IFF" 1195119 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1189946 1190189 1190305 "IFAST" 1190476 T IFAST (NIL) -8 NIL NIL) (-507 1184989 1189238 1189426 "IFARRAY" 1189803 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1184196 1184893 1184966 "IFAMON" 1184971 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1183780 1183845 1183899 "IEVALAB" 1184106 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1183455 1183523 1183683 "IEVALAB-" 1183688 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1183113 1183369 1183432 "IDPO" 1183437 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1182390 1183002 1183077 "IDPOAMS" 1183082 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-501 1181724 1182279 1182354 "IDPOAM" 1182359 NIL IDPOAM (NIL T T) -8 NIL NIL) (-500 1180809 1181059 1181112 "IDPC" 1181525 NIL IDPC (NIL T T) -9 NIL 1181674) (-499 1180305 1180701 1180774 "IDPAM" 1180779 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1179708 1180197 1180270 "IDPAG" 1180275 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1179438 1179623 1179673 "IDENT" 1179678 T IDENT (NIL) -8 NIL NIL) (-496 1175693 1176541 1177436 "IDECOMP" 1178595 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1168566 1169616 1170663 "IDEAL" 1174729 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1167730 1167842 1168041 "ICDEN" 1168450 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1166829 1167210 1167357 "ICARD" 1167603 T ICARD (NIL) -8 NIL NIL) (-492 1164889 1165202 1165607 "IBPTOOLS" 1166506 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1160523 1164509 1164622 "IBITS" 1164808 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1157246 1157822 1158517 "IBATOOL" 1159940 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1155026 1155487 1156020 "IBACHIN" 1156781 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1152903 1154872 1154975 "IARRAY2" 1154980 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1149056 1152829 1152886 "IARRAY1" 1152891 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1143051 1147470 1147950 "IAN" 1148596 T IAN (NIL) -8 NIL NIL) (-485 1142562 1142619 1142792 "IALGFACT" 1142988 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1142090 1142203 1142231 "HYPCAT" 1142438 T HYPCAT (NIL) -9 NIL NIL) (-483 1141628 1141745 1141931 "HYPCAT-" 1141936 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1141250 1141423 1141506 "HOSTNAME" 1141565 T HOSTNAME (NIL) -8 NIL NIL) (-481 1137929 1139260 1139301 "HOAGG" 1140282 NIL HOAGG (NIL T) -9 NIL 1140961) (-480 1136523 1136922 1137448 "HOAGG-" 1137453 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1130411 1135964 1136130 "HEXADEC" 1136377 T HEXADEC (NIL) -8 NIL NIL) (-478 1129159 1129381 1129644 "HEUGCD" 1130188 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1128262 1128996 1129126 "HELLFDIV" 1129131 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1126490 1128039 1128127 "HEAP" 1128206 NIL HEAP (NIL T) -8 NIL NIL) (-475 1125781 1126042 1126176 "HEADAST" 1126376 T HEADAST (NIL) -8 NIL NIL) (-474 1119701 1125696 1125758 "HDP" 1125763 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1113452 1119336 1119488 "HDMP" 1119602 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1112777 1112916 1113080 "HB" 1113308 T HB (NIL) -7 NIL NIL) (-471 1106274 1112623 1112727 "HASHTBL" 1112732 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1105777 1105995 1106087 "HASAST" 1106202 T HASAST (NIL) -8 NIL NIL) (-469 1103591 1105401 1105582 "HACKPI" 1105616 T HACKPI (NIL) -8 NIL NIL) (-468 1099286 1103444 1103557 "GTSET" 1103562 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1092812 1099164 1099262 "GSTBL" 1099267 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1085125 1091843 1092108 "GSERIES" 1092603 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1084292 1084683 1084711 "GROUP" 1084914 T GROUP (NIL) -9 NIL 1085048) (-464 1083658 1083817 1084068 "GROUP-" 1084073 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1082027 1082346 1082733 "GROEBSOL" 1083335 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1080967 1081229 1081280 "GRMOD" 1081809 NIL GRMOD (NIL T T) -9 NIL 1081977) (-461 1080735 1080771 1080899 "GRMOD-" 1080904 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1076060 1077089 1078089 "GRIMAGE" 1079755 T GRIMAGE (NIL) -8 NIL NIL) (-459 1074527 1074787 1075111 "GRDEF" 1075756 T GRDEF (NIL) -7 NIL NIL) (-458 1073971 1074087 1074228 "GRAY" 1074406 T GRAY (NIL) -7 NIL NIL) (-457 1073202 1073582 1073633 "GRALG" 1073786 NIL GRALG (NIL T T) -9 NIL 1073879) (-456 1072863 1072936 1073099 "GRALG-" 1073104 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1069667 1072448 1072626 "GPOLSET" 1072770 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1069021 1069078 1069336 "GOSPER" 1069604 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1064780 1065459 1065985 "GMODPOL" 1068720 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1063785 1063969 1064207 "GHENSEL" 1064592 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1057836 1058679 1059706 "GENUPS" 1062869 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1057533 1057584 1057673 "GENUFACT" 1057779 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1056945 1057022 1057187 "GENPGCD" 1057451 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1056419 1056454 1056667 "GENMFACT" 1056904 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1054987 1055242 1055549 "GENEEZ" 1056162 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1048900 1054598 1054760 "GDMP" 1054910 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1038277 1042671 1043777 "GCNAALG" 1047883 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1036739 1037567 1037595 "GCDDOM" 1037850 T GCDDOM (NIL) -9 NIL 1038007) (-443 1036209 1036336 1036551 "GCDDOM-" 1036556 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1034881 1035066 1035370 "GB" 1035988 NIL GB (NIL T T T T) -7 NIL NIL) (-441 1023501 1025827 1028219 "GBINTERN" 1032572 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-440 1021338 1021630 1022051 "GBF" 1023176 NIL GBF (NIL T T T T) -7 NIL NIL) (-439 1020119 1020284 1020551 "GBEUCLID" 1021154 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-438 1019468 1019593 1019742 "GAUSSFAC" 1019990 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1017835 1018137 1018451 "GALUTIL" 1019187 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1016143 1016417 1016741 "GALPOLYU" 1017562 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1013508 1013798 1014205 "GALFACTU" 1015840 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1005314 1006813 1008421 "GALFACT" 1011940 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1002702 1003360 1003388 "FVFUN" 1004544 T FVFUN (NIL) -9 NIL 1005264) (-432 1001968 1002150 1002178 "FVC" 1002469 T FVC (NIL) -9 NIL 1002652) (-431 1001610 1001765 1001846 "FUNCTION" 1001920 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 999280 999831 1000320 "FT" 1001141 T FT (NIL) -8 NIL NIL) (-429 998098 998581 998784 "FTEM" 999097 T FTEM (NIL) -8 NIL NIL) (-428 996354 996643 997047 "FSUPFACT" 997789 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 994751 995040 995372 "FST" 996042 T FST (NIL) -8 NIL NIL) (-426 993922 994028 994223 "FSRED" 994633 NIL FSRED (NIL T T) -7 NIL NIL) (-425 992601 992856 993210 "FSPRMELT" 993637 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 989686 990124 990623 "FSPECF" 992164 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 972128 980570 980610 "FS" 984458 NIL FS (NIL T) -9 NIL 986747) (-422 960778 963768 967824 "FS-" 968121 NIL FS- (NIL T T) -8 NIL NIL) (-421 960292 960346 960523 "FSINT" 960719 NIL FSINT (NIL T T) -7 NIL NIL) (-420 958619 959285 959588 "FSERIES" 960071 NIL FSERIES (NIL T T) -8 NIL NIL) (-419 957633 957749 957980 "FSCINT" 958499 NIL FSCINT (NIL T T) -7 NIL NIL) (-418 953867 956577 956618 "FSAGG" 956988 NIL FSAGG (NIL T) -9 NIL 957247) (-417 951629 952230 953026 "FSAGG-" 953121 NIL FSAGG- (NIL T T) -8 NIL NIL) (-416 950671 950814 951041 "FSAGG2" 951482 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-415 948326 948605 949159 "FS2UPS" 950389 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-414 947908 947951 948106 "FS2" 948277 NIL FS2 (NIL T T T T) -7 NIL NIL) (-413 946765 946936 947245 "FS2EXPXP" 947733 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-412 946191 946306 946458 "FRUTIL" 946645 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 937652 941690 943046 "FR" 944867 NIL FR (NIL T) -8 NIL NIL) (-410 932727 935370 935410 "FRNAALG" 936806 NIL FRNAALG (NIL T) -9 NIL 937413) (-409 928405 929476 930751 "FRNAALG-" 931501 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-408 928043 928086 928213 "FRNAAF2" 928356 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-407 926450 926897 927192 "FRMOD" 927855 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-406 924229 924833 925150 "FRIDEAL" 926241 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 923424 923511 923800 "FRIDEAL2" 924136 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-404 922666 923080 923121 "FRETRCT" 923126 NIL FRETRCT (NIL T) -9 NIL 923302) (-403 921778 922009 922360 "FRETRCT-" 922365 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-402 919028 920204 920263 "FRAMALG" 921145 NIL FRAMALG (NIL T T) -9 NIL 921437) (-401 917162 917617 918247 "FRAMALG-" 918470 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-400 911122 916637 916913 "FRAC" 916918 NIL FRAC (NIL T) -8 NIL NIL) (-399 910758 910815 910922 "FRAC2" 911059 NIL FRAC2 (NIL T T) -7 NIL NIL) (-398 910394 910451 910558 "FR2" 910695 NIL FR2 (NIL T T) -7 NIL NIL) (-397 905124 907972 908000 "FPS" 909119 T FPS (NIL) -9 NIL 909676) (-396 904573 904682 904846 "FPS-" 904992 NIL FPS- (NIL T) -8 NIL NIL) (-395 902079 903714 903742 "FPC" 903967 T FPC (NIL) -9 NIL 904109) (-394 901872 901912 902009 "FPC-" 902014 NIL FPC- (NIL T) -8 NIL NIL) (-393 900750 901360 901401 "FPATMAB" 901406 NIL FPATMAB (NIL T) -9 NIL 901558) (-392 898450 898926 899352 "FPARFRAC" 900387 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 893843 894342 895024 "FORTRAN" 897882 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 891559 892059 892598 "FORT" 893324 T FORT (NIL) -7 NIL NIL) (-389 889235 889797 889825 "FORTFN" 890885 T FORTFN (NIL) -9 NIL 891509) (-388 888999 889049 889077 "FORTCAT" 889136 T FORTCAT (NIL) -9 NIL 889198) (-387 887059 887542 887941 "FORMULA" 888620 T FORMULA (NIL) -8 NIL NIL) (-386 886847 886877 886946 "FORMULA1" 887023 NIL FORMULA1 (NIL T) -7 NIL NIL) (-385 886370 886422 886595 "FORDER" 886789 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 885466 885630 885823 "FOP" 886197 T FOP (NIL) -7 NIL NIL) (-383 884074 884746 884920 "FNLA" 885348 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 882742 883131 883159 "FNCAT" 883731 T FNCAT (NIL) -9 NIL 884024) (-381 882308 882701 882729 "FNAME" 882734 T FNAME (NIL) -8 NIL NIL) (-380 881006 881935 881963 "FMTC" 881968 T FMTC (NIL) -9 NIL 882004) (-379 877368 878529 879158 "FMONOID" 880410 NIL FMONOID (NIL T) -8 NIL NIL) (-378 876587 877110 877259 "FM" 877264 NIL FM (NIL T T) -8 NIL NIL) (-377 874011 874657 874685 "FMFUN" 875829 T FMFUN (NIL) -9 NIL 876537) (-376 873280 873461 873489 "FMC" 873779 T FMC (NIL) -9 NIL 873961) (-375 870492 871326 871380 "FMCAT" 872575 NIL FMCAT (NIL T T) -9 NIL 873070) (-374 869385 870258 870358 "FM1" 870437 NIL FM1 (NIL T T) -8 NIL NIL) (-373 867159 867575 868069 "FLOATRP" 868936 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 860710 864815 865445 "FLOAT" 866549 T FLOAT (NIL) -8 NIL NIL) (-371 858148 858648 859226 "FLOATCP" 860177 NIL FLOATCP (NIL T) -7 NIL NIL) (-370 856977 857781 857822 "FLINEXP" 857827 NIL FLINEXP (NIL T) -9 NIL 857920) (-369 856131 856366 856694 "FLINEXP-" 856699 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 855207 855351 855575 "FLASORT" 855983 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 852424 853266 853318 "FLALG" 854545 NIL FLALG (NIL T T) -9 NIL 855012) (-366 846208 849910 849951 "FLAGG" 851213 NIL FLAGG (NIL T) -9 NIL 851865) (-365 844934 845273 845763 "FLAGG-" 845768 NIL FLAGG- (NIL T T) -8 NIL NIL) (-364 843976 844119 844346 "FLAGG2" 844787 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-363 840989 841963 842022 "FINRALG" 843150 NIL FINRALG (NIL T T) -9 NIL 843658) (-362 840149 840378 840717 "FINRALG-" 840722 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 839555 839768 839796 "FINITE" 839992 T FINITE (NIL) -9 NIL 840099) (-360 832013 834174 834214 "FINAALG" 837881 NIL FINAALG (NIL T) -9 NIL 839334) (-359 827354 828395 829539 "FINAALG-" 830918 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 826749 827109 827212 "FILE" 827284 NIL FILE (NIL T) -8 NIL NIL) (-357 825433 825745 825799 "FILECAT" 826483 NIL FILECAT (NIL T T) -9 NIL 826699) (-356 823353 824847 824875 "FIELD" 824915 T FIELD (NIL) -9 NIL 824995) (-355 821973 822358 822869 "FIELD-" 822874 NIL FIELD- (NIL T) -8 NIL NIL) (-354 819851 820608 820955 "FGROUP" 821659 NIL FGROUP (NIL T) -8 NIL NIL) (-353 818941 819105 819325 "FGLMICPK" 819683 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 814808 818866 818923 "FFX" 818928 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 814409 814470 814605 "FFSLPE" 814741 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 810402 811181 811977 "FFPOLY" 813645 NIL FFPOLY (NIL T) -7 NIL NIL) (-349 809906 809942 810151 "FFPOLY2" 810360 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-348 805792 809825 809888 "FFP" 809893 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 801225 805703 805767 "FF" 805772 NIL FF (NIL NIL NIL) -8 NIL NIL) (-346 796386 800568 800758 "FFNBX" 801079 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-345 791360 795521 795779 "FFNBP" 796240 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-344 786028 790644 790855 "FFNB" 791193 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-343 784860 785058 785373 "FFINTBAS" 785825 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-342 781144 783319 783347 "FFIELDC" 783967 T FFIELDC (NIL) -9 NIL 784343) (-341 779807 780177 780674 "FFIELDC-" 780679 NIL FFIELDC- (NIL T) -8 NIL NIL) (-340 779377 779422 779546 "FFHOM" 779749 NIL FFHOM (NIL T T T) -7 NIL NIL) (-339 777075 777559 778076 "FFF" 778892 NIL FFF (NIL T) -7 NIL NIL) (-338 772728 776817 776918 "FFCGX" 777018 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-337 768395 772460 772567 "FFCGP" 772671 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-336 763613 768122 768230 "FFCG" 768331 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-335 745671 754707 754793 "FFCAT" 759958 NIL FFCAT (NIL T T T) -9 NIL 761409) (-334 740869 741916 743230 "FFCAT-" 744460 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 740280 740323 740558 "FFCAT2" 740820 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-332 729492 733252 734472 "FEXPR" 739132 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 728492 728927 728968 "FEVALAB" 729052 NIL FEVALAB (NIL T) -9 NIL 729313) (-330 727651 727861 728199 "FEVALAB-" 728204 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 726244 727034 727237 "FDIV" 727550 NIL FDIV (NIL T T T T) -8 NIL NIL) (-328 723310 724025 724140 "FDIVCAT" 725708 NIL FDIVCAT (NIL T T T T) -9 NIL 726145) (-327 723072 723099 723269 "FDIVCAT-" 723274 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-326 722292 722379 722656 "FDIV2" 722979 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-325 720978 721237 721526 "FCPAK1" 722023 T FCPAK1 (NIL) -7 NIL NIL) (-324 720106 720478 720619 "FCOMP" 720869 NIL FCOMP (NIL T) -8 NIL NIL) (-323 703741 707155 710716 "FC" 716565 T FC (NIL) -8 NIL NIL) (-322 696394 700375 700415 "FAXF" 702217 NIL FAXF (NIL T) -9 NIL 702909) (-321 693673 694328 695153 "FAXF-" 695618 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 688773 693049 693225 "FARRAY" 693530 NIL FARRAY (NIL T) -8 NIL NIL) (-319 684180 686212 686265 "FAMR" 687288 NIL FAMR (NIL T T) -9 NIL 687748) (-318 683070 683372 683807 "FAMR-" 683812 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 682266 682992 683045 "FAMONOID" 683050 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 680096 680780 680833 "FAMONC" 681774 NIL FAMONC (NIL T T) -9 NIL 682160) (-315 678788 679850 679987 "FAGROUP" 679992 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 676583 676902 677305 "FACUTIL" 678469 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 675682 675867 676089 "FACTFUNC" 676393 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 668087 674933 675145 "EXPUPXS" 675538 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 665570 666110 666696 "EXPRTUBE" 667521 T EXPRTUBE (NIL) -7 NIL NIL) (-310 661764 662356 663093 "EXPRODE" 664909 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 647138 660419 660847 "EXPR" 661368 NIL EXPR (NIL T) -8 NIL NIL) (-308 641545 642132 642945 "EXPR2UPS" 646436 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-307 641181 641238 641345 "EXPR2" 641482 NIL EXPR2 (NIL T T) -7 NIL NIL) (-306 632588 640313 640610 "EXPEXPAN" 641018 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 632415 632545 632574 "EXIT" 632579 T EXIT (NIL) -8 NIL NIL) (-304 631922 632139 632230 "EXITAST" 632344 T EXITAST (NIL) -8 NIL NIL) (-303 631549 631611 631724 "EVALCYC" 631854 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 631090 631208 631249 "EVALAB" 631419 NIL EVALAB (NIL T) -9 NIL 631523) (-301 630571 630693 630914 "EVALAB-" 630919 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 628074 629342 629370 "EUCDOM" 629925 T EUCDOM (NIL) -9 NIL 630275) (-299 626479 626921 627511 "EUCDOM-" 627516 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 614019 616777 619527 "ESTOOLS" 623749 T ESTOOLS (NIL) -7 NIL NIL) (-297 613651 613708 613817 "ESTOOLS2" 613956 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-296 613402 613444 613524 "ESTOOLS1" 613603 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-295 607327 609055 609083 "ES" 611851 T ES (NIL) -9 NIL 613260) (-294 602274 603561 605378 "ES-" 605542 NIL ES- (NIL T) -8 NIL NIL) (-293 598649 599409 600189 "ESCONT" 601514 T ESCONT (NIL) -7 NIL NIL) (-292 598394 598426 598508 "ESCONT1" 598611 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-291 598069 598119 598219 "ES2" 598338 NIL ES2 (NIL T T) -7 NIL NIL) (-290 597699 597757 597866 "ES1" 598005 NIL ES1 (NIL T T) -7 NIL NIL) (-289 596915 597044 597220 "ERROR" 597543 T ERROR (NIL) -7 NIL NIL) (-288 590418 596774 596865 "EQTBL" 596870 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 582975 585732 587181 "EQ" 589002 NIL -3893 (NIL T) -8 NIL NIL) (-286 582607 582664 582773 "EQ2" 582912 NIL EQ2 (NIL T T) -7 NIL NIL) (-285 577899 578945 580038 "EP" 581546 NIL EP (NIL T) -7 NIL NIL) (-284 576481 576782 577099 "ENV" 577602 T ENV (NIL) -8 NIL NIL) (-283 575680 576200 576228 "ENTIRER" 576233 T ENTIRER (NIL) -9 NIL 576279) (-282 572182 573635 574005 "EMR" 575479 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 571326 571511 571565 "ELTAGG" 571945 NIL ELTAGG (NIL T T) -9 NIL 572156) (-280 571045 571107 571248 "ELTAGG-" 571253 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 570834 570863 570917 "ELTAB" 571001 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 569960 570106 570305 "ELFUTS" 570685 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 569702 569758 569786 "ELEMFUN" 569891 T ELEMFUN (NIL) -9 NIL NIL) (-276 569572 569593 569661 "ELEMFUN-" 569666 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 564463 567672 567713 "ELAGG" 568653 NIL ELAGG (NIL T) -9 NIL 569116) (-274 562748 563182 563845 "ELAGG-" 563850 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 561405 561685 561980 "ELABEXPR" 562473 T ELABEXPR (NIL) -8 NIL NIL) (-272 554271 556072 556899 "EFUPXS" 560681 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 547721 549522 550332 "EFULS" 553547 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 545143 545501 545980 "EFSTRUC" 547353 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 534215 535780 537340 "EF" 543658 NIL EF (NIL T T) -7 NIL NIL) (-268 533316 533700 533849 "EAB" 534086 T EAB (NIL) -8 NIL NIL) (-267 532525 533275 533303 "E04UCFA" 533308 T E04UCFA (NIL) -8 NIL NIL) (-266 531734 532484 532512 "E04NAFA" 532517 T E04NAFA (NIL) -8 NIL NIL) (-265 530943 531693 531721 "E04MBFA" 531726 T E04MBFA (NIL) -8 NIL NIL) (-264 530152 530902 530930 "E04JAFA" 530935 T E04JAFA (NIL) -8 NIL NIL) (-263 529363 530111 530139 "E04GCFA" 530144 T E04GCFA (NIL) -8 NIL NIL) (-262 528574 529322 529350 "E04FDFA" 529355 T E04FDFA (NIL) -8 NIL NIL) (-261 527783 528533 528561 "E04DGFA" 528566 T E04DGFA (NIL) -8 NIL NIL) (-260 521961 523308 524672 "E04AGNT" 526439 T E04AGNT (NIL) -7 NIL NIL) (-259 520685 521165 521205 "DVARCAT" 521680 NIL DVARCAT (NIL T) -9 NIL 521879) (-258 519889 520101 520415 "DVARCAT-" 520420 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 512789 519688 519817 "DSMP" 519822 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 507599 508734 509802 "DROPT" 511741 T DROPT (NIL) -8 NIL NIL) (-255 507264 507323 507421 "DROPT1" 507534 NIL DROPT1 (NIL T) -7 NIL NIL) (-254 502379 503505 504642 "DROPT0" 506147 T DROPT0 (NIL) -7 NIL NIL) (-253 500724 501049 501435 "DRAWPT" 502013 T DRAWPT (NIL) -7 NIL NIL) (-252 495311 496234 497313 "DRAW" 499698 NIL DRAW (NIL T) -7 NIL NIL) (-251 494944 494997 495115 "DRAWHACK" 495252 NIL DRAWHACK (NIL T) -7 NIL NIL) (-250 493675 493944 494235 "DRAWCX" 494673 T DRAWCX (NIL) -7 NIL NIL) (-249 493191 493259 493410 "DRAWCURV" 493601 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-248 483662 485621 487736 "DRAWCFUN" 491096 T DRAWCFUN (NIL) -7 NIL NIL) (-247 480475 482357 482398 "DQAGG" 483027 NIL DQAGG (NIL T) -9 NIL 483300) (-246 468994 475691 475774 "DPOLCAT" 477626 NIL DPOLCAT (NIL T T T T) -9 NIL 478171) (-245 463833 465179 467137 "DPOLCAT-" 467142 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456988 463694 463792 "DPMO" 463797 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 450046 456768 456935 "DPMM" 456940 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 449466 449669 449783 "DOMAIN" 449952 T DOMAIN (NIL) -8 NIL NIL) (-241 443217 449101 449253 "DMP" 449367 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442817 442873 443017 "DLP" 443155 NIL DLP (NIL T) -7 NIL NIL) (-239 436461 441918 442145 "DLIST" 442622 NIL DLIST (NIL T) -8 NIL NIL) (-238 433307 435316 435357 "DLAGG" 435907 NIL DLAGG (NIL T) -9 NIL 436136) (-237 432157 432787 432815 "DIVRING" 432907 T DIVRING (NIL) -9 NIL 432990) (-236 431394 431584 431884 "DIVRING-" 431889 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 429496 429853 430259 "DISPLAY" 431008 T DISPLAY (NIL) -7 NIL NIL) (-234 423438 429410 429473 "DIRPROD" 429478 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-233 422286 422489 422754 "DIRPROD2" 423231 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-232 411824 417776 417829 "DIRPCAT" 418239 NIL DIRPCAT (NIL NIL T) -9 NIL 419079) (-231 409150 409792 410673 "DIRPCAT-" 411010 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 408437 408597 408783 "DIOSP" 408984 T DIOSP (NIL) -7 NIL NIL) (-229 405139 407349 407390 "DIOPS" 407824 NIL DIOPS (NIL T) -9 NIL 408053) (-228 404688 404802 404993 "DIOPS-" 404998 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 403600 404194 404222 "DIFRING" 404409 T DIFRING (NIL) -9 NIL 404519) (-226 403246 403323 403475 "DIFRING-" 403480 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 401071 402309 402350 "DIFEXT" 402713 NIL DIFEXT (NIL T) -9 NIL 403007) (-224 399356 399784 400450 "DIFEXT-" 400455 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 396678 398888 398929 "DIAGG" 398934 NIL DIAGG (NIL T) -9 NIL 398954) (-222 396062 396219 396471 "DIAGG-" 396476 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 391527 395021 395298 "DHMATRIX" 395831 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 387139 388048 389058 "DFSFUN" 390537 T DFSFUN (NIL) -7 NIL NIL) (-219 382255 386070 386382 "DFLOAT" 386847 T DFLOAT (NIL) -8 NIL NIL) (-218 380483 380764 381160 "DFINTTLS" 381963 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 377548 378504 378904 "DERHAM" 380149 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 375397 377323 377412 "DEQUEUE" 377492 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 374612 374745 374941 "DEGRED" 375259 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 371007 371752 372605 "DEFINTRF" 373840 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368534 369003 369602 "DEFINTEF" 370526 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367911 368154 368269 "DEFAST" 368439 T DEFAST (NIL) -8 NIL NIL) (-211 361799 367352 367518 "DECIMAL" 367765 T DECIMAL (NIL) -8 NIL NIL) (-210 359311 359769 360275 "DDFACT" 361343 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358907 358950 359101 "DBLRESP" 359262 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356617 356951 357320 "DBASE" 358665 NIL DBASE (NIL T) -8 NIL NIL) (-207 355886 356097 356243 "DATABUF" 356516 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 355019 355845 355873 "D03FAFA" 355878 T D03FAFA (NIL) -8 NIL NIL) (-205 354153 354978 355006 "D03EEFA" 355011 T D03EEFA (NIL) -8 NIL NIL) (-204 352103 352569 353058 "D03AGNT" 353684 T D03AGNT (NIL) -7 NIL NIL) (-203 351419 352062 352090 "D02EJFA" 352095 T D02EJFA (NIL) -8 NIL NIL) (-202 350735 351378 351406 "D02CJFA" 351411 T D02CJFA (NIL) -8 NIL NIL) (-201 350051 350694 350722 "D02BHFA" 350727 T D02BHFA (NIL) -8 NIL NIL) (-200 349367 350010 350038 "D02BBFA" 350043 T D02BBFA (NIL) -8 NIL NIL) (-199 342565 344153 345759 "D02AGNT" 347781 T D02AGNT (NIL) -7 NIL NIL) (-198 340334 340856 341402 "D01WGTS" 342039 T D01WGTS (NIL) -7 NIL NIL) (-197 339429 340293 340321 "D01TRNS" 340326 T D01TRNS (NIL) -8 NIL NIL) (-196 338524 339388 339416 "D01GBFA" 339421 T D01GBFA (NIL) -8 NIL NIL) (-195 337619 338483 338511 "D01FCFA" 338516 T D01FCFA (NIL) -8 NIL NIL) (-194 336714 337578 337606 "D01ASFA" 337611 T D01ASFA (NIL) -8 NIL NIL) (-193 335809 336673 336701 "D01AQFA" 336706 T D01AQFA (NIL) -8 NIL NIL) (-192 334904 335768 335796 "D01APFA" 335801 T D01APFA (NIL) -8 NIL NIL) (-191 333999 334863 334891 "D01ANFA" 334896 T D01ANFA (NIL) -8 NIL NIL) (-190 333094 333958 333986 "D01AMFA" 333991 T D01AMFA (NIL) -8 NIL NIL) (-189 332189 333053 333081 "D01ALFA" 333086 T D01ALFA (NIL) -8 NIL NIL) (-188 331284 332148 332176 "D01AKFA" 332181 T D01AKFA (NIL) -8 NIL NIL) (-187 330379 331243 331271 "D01AJFA" 331276 T D01AJFA (NIL) -8 NIL NIL) (-186 323676 325227 326788 "D01AGNT" 328838 T D01AGNT (NIL) -7 NIL NIL) (-185 323013 323141 323293 "CYCLOTOM" 323544 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319748 320461 321188 "CYCLES" 322306 T CYCLES (NIL) -7 NIL NIL) (-183 319060 319194 319365 "CVMP" 319609 NIL CVMP (NIL T) -7 NIL NIL) (-182 316831 317089 317465 "CTRIGMNP" 318788 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 316342 316531 316630 "CTORCALL" 316752 T CTORCALL (NIL) -8 NIL NIL) (-180 315716 315815 315968 "CSTTOOLS" 316239 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311515 312172 312930 "CRFP" 315028 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311017 311236 311328 "CRCEAST" 311443 T CRCEAST (NIL) -8 NIL NIL) (-177 310064 310249 310477 "CRAPACK" 310821 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309448 309549 309753 "CPMATCH" 309940 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309173 309201 309307 "CPIMA" 309414 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305537 306209 306927 "COORDSYS" 308508 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304921 305050 305200 "CONTOUR" 305407 T CONTOUR (NIL) -8 NIL NIL) (-172 300847 302924 303416 "CONTFRAC" 304461 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300727 300748 300776 "CONDUIT" 300813 T CONDUIT (NIL) -9 NIL NIL) (-170 299920 300440 300468 "COMRING" 300473 T COMRING (NIL) -9 NIL 300525) (-169 299001 299278 299462 "COMPPROP" 299756 T COMPPROP (NIL) -8 NIL NIL) (-168 298662 298697 298825 "COMPLPAT" 298960 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288721 298471 298580 "COMPLEX" 298585 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288357 288414 288521 "COMPLEX2" 288658 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288075 288110 288208 "COMPFACT" 288316 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272473 282689 282729 "COMPCAT" 283733 NIL COMPCAT (NIL T) -9 NIL 285128) (-163 261988 264912 268539 "COMPCAT-" 268895 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261717 261745 261848 "COMMUPC" 261954 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261512 261545 261604 "COMMONOP" 261678 T COMMONOP (NIL) -7 NIL NIL) (-160 261095 261263 261350 "COMM" 261445 T COMM (NIL) -8 NIL NIL) (-159 260699 260899 260974 "COMMAAST" 261040 T COMMAAST (NIL) -8 NIL NIL) (-158 259948 260142 260170 "COMBOPC" 260508 T COMBOPC (NIL) -9 NIL 260683) (-157 258844 259054 259296 "COMBINAT" 259738 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255042 255615 256255 "COMBF" 258266 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253828 254158 254393 "COLOR" 254827 T COLOR (NIL) -8 NIL NIL) (-154 253331 253549 253641 "COLONAST" 253756 T COLONAST (NIL) -8 NIL NIL) (-153 252971 253018 253143 "CMPLXRT" 253278 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252446 252671 252770 "CLLCTAST" 252892 T CLLCTAST (NIL) -8 NIL NIL) (-151 247948 248976 250056 "CLIP" 251386 T CLIP (NIL) -7 NIL NIL) (-150 246330 247054 247293 "CLIF" 247775 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242552 244476 244517 "CLAGG" 245446 NIL CLAGG (NIL T) -9 NIL 245982) (-148 240974 241431 242014 "CLAGG-" 242019 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240518 240603 240743 "CINTSLPE" 240883 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238019 238490 239038 "CHVAR" 240046 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237282 237802 237830 "CHARZ" 237835 T CHARZ (NIL) -9 NIL 237850) (-144 237036 237076 237154 "CHARPOL" 237236 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236183 236736 236764 "CHARNZ" 236811 T CHARNZ (NIL) -9 NIL 236867) (-142 234208 234873 235208 "CHAR" 235868 T CHAR (NIL) -8 NIL NIL) (-141 233934 233995 234023 "CFCAT" 234134 T CFCAT (NIL) -9 NIL NIL) (-140 233179 233290 233472 "CDEN" 233818 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229171 232332 232612 "CCLASS" 232919 T CCLASS (NIL) -8 NIL NIL) (-138 229090 229116 229151 "CATEGORY" 229156 T -10 (NIL) -8 NIL NIL) (-137 228564 228790 228889 "CATAST" 229011 T CATAST (NIL) -8 NIL NIL) (-136 228067 228285 228377 "CASEAST" 228492 T CASEAST (NIL) -8 NIL NIL) (-135 223119 224096 224849 "CARTEN" 227370 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222227 222375 222596 "CARTEN2" 222966 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220569 221377 221634 "CARD" 221990 T CARD (NIL) -8 NIL NIL) (-132 220172 220373 220448 "CAPSLAST" 220514 T CAPSLAST (NIL) -8 NIL NIL) (-131 219544 219872 219900 "CACHSET" 220032 T CACHSET (NIL) -9 NIL 220109) (-130 219040 219336 219364 "CABMON" 219414 T CABMON (NIL) -9 NIL 219470) (-129 218209 218587 218730 "BYTE" 218917 T BYTE (NIL) -8 NIL NIL) (-128 214157 218156 218190 "BYTEARY" 218195 T BYTEARY (NIL) -8 NIL NIL) (-127 211714 213849 213956 "BTREE" 214083 NIL BTREE (NIL T) -8 NIL NIL) (-126 209212 211362 211484 "BTOURN" 211624 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206630 208683 208724 "BTCAT" 208792 NIL BTCAT (NIL T) -9 NIL 208869) (-124 206297 206377 206526 "BTCAT-" 206531 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201589 205440 205468 "BTAGG" 205690 T BTAGG (NIL) -9 NIL 205851) (-122 201079 201204 201410 "BTAGG-" 201415 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 198123 200357 200572 "BSTREE" 200896 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197261 197387 197571 "BRILL" 197979 NIL BRILL (NIL T) -7 NIL NIL) (-119 193962 195989 196030 "BRAGG" 196679 NIL BRAGG (NIL T) -9 NIL 196936) (-118 192491 192897 193452 "BRAGG-" 193457 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185757 191837 192021 "BPADICRT" 192339 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 184107 185694 185739 "BPADIC" 185744 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183805 183835 183949 "BOUNDZRO" 184071 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179320 180411 181278 "BOP" 182958 T BOP (NIL) -8 NIL NIL) (-113 176941 177385 177905 "BOP1" 178833 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175679 176365 176558 "BOOLEAN" 176768 T BOOLEAN (NIL) -8 NIL NIL) (-111 175041 175419 175473 "BMODULE" 175478 NIL BMODULE (NIL T T) -9 NIL 175543) (-110 170871 174839 174912 "BITS" 174988 T BITS (NIL) -8 NIL NIL) (-109 169968 170403 170555 "BINFILE" 170739 T BINFILE (NIL) -8 NIL NIL) (-108 169380 169502 169644 "BINDING" 169846 T BINDING (NIL) -8 NIL NIL) (-107 163272 168824 168989 "BINARY" 169235 T BINARY (NIL) -8 NIL NIL) (-106 161099 162527 162568 "BGAGG" 162828 NIL BGAGG (NIL T) -9 NIL 162965) (-105 160930 160962 161053 "BGAGG-" 161058 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160028 160314 160519 "BFUNCT" 160745 T BFUNCT (NIL) -8 NIL NIL) (-103 158718 158896 159184 "BEZOUT" 159852 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155235 157570 157900 "BBTREE" 158421 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154969 155022 155050 "BASTYPE" 155169 T BASTYPE (NIL) -9 NIL NIL) (-100 154821 154850 154923 "BASTYPE-" 154928 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154259 154335 154485 "BALFACT" 154732 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153142 153674 153860 "AUTOMOR" 154104 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152868 152873 152899 "ATTREG" 152904 T ATTREG (NIL) -9 NIL NIL) (-96 151147 151565 151917 "ATTRBUT" 152534 T ATTRBUT (NIL) -8 NIL NIL) (-95 150782 150975 151041 "ATTRAST" 151099 T ATTRAST (NIL) -8 NIL NIL) (-94 150318 150431 150457 "ATRIG" 150658 T ATRIG (NIL) -9 NIL NIL) (-93 150127 150168 150255 "ATRIG-" 150260 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149749 149909 149935 "ASTCAT" 149993 T ASTCAT (NIL) -9 NIL 150056) (-91 149476 149535 149654 "ASTCAT-" 149659 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147673 149252 149340 "ASTACK" 149419 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146178 146475 146840 "ASSOCEQ" 147355 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145210 145837 145961 "ASP9" 146085 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144974 145158 145197 "ASP8" 145202 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143843 144579 144721 "ASP80" 144863 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142742 143478 143610 "ASP7" 143742 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141696 142419 142537 "ASP78" 142655 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140665 141376 141493 "ASP77" 141610 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139577 140303 140434 "ASP74" 140565 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138477 139212 139344 "ASP73" 139476 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137432 138154 138272 "ASP6" 138390 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136380 137109 137227 "ASP55" 137345 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135330 136054 136173 "ASP50" 136292 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134418 135031 135141 "ASP4" 135251 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133506 134119 134229 "ASP49" 134339 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132291 133045 133213 "ASP42" 133395 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131068 131824 131994 "ASP41" 132178 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130018 130745 130863 "ASP35" 130981 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129783 129966 130005 "ASP34" 130010 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129520 129587 129663 "ASP33" 129738 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128415 129155 129287 "ASP31" 129419 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128180 128363 128402 "ASP30" 128407 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127915 127984 128060 "ASP29" 128135 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127680 127863 127902 "ASP28" 127907 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127445 127628 127667 "ASP27" 127672 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126529 127143 127254 "ASP24" 127365 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125445 126170 126300 "ASP20" 126430 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124533 125146 125256 "ASP1" 125366 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123477 124207 124326 "ASP19" 124445 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123214 123281 123357 "ASP12" 123432 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122066 122813 122957 "ASP10" 123101 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119965 121910 122001 "ARRAY2" 122006 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115781 119613 119727 "ARRAY1" 119882 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114813 114986 115207 "ARRAY12" 115604 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109172 111043 111118 "ARR2CAT" 113748 NIL ARR2CAT (NIL T T T) -9 NIL 114506) (-55 106606 107350 108304 "ARR2CAT-" 108309 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105354 105506 105812 "APPRULE" 106442 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105005 105053 105172 "APPLYORE" 105300 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103979 104270 104465 "ANY" 104828 T ANY (NIL) -8 NIL NIL) (-51 103257 103380 103537 "ANY1" 103853 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100822 101694 102021 "ANTISYM" 102981 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100337 100526 100623 "ANON" 100743 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99331 "AN" 99902 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-515)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-212)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-654)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1240))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1240)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-137)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-132)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1087)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-95)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-659)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-508)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1038)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1241))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1241)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-516)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-152)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-649)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-305)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1010)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-178)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-944)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1045)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1062)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1067)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-606)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1137)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-154)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-136)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-470)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-575)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-497)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1129)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-536))))) +(-13 (-1054) (-1225) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| (-515)))) (-15 -3930 ((-515) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-212)))) (-15 -3930 ((-212) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-654)))) (-15 -3930 ((-654) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1240)))) (-15 -3930 ((-1240) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-137)))) (-15 -3930 ((-137) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-132)))) (-15 -3930 ((-132) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1087)))) (-15 -3930 ((-1087) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-95)))) (-15 -3930 ((-95) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-659)))) (-15 -3930 ((-659) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-508)))) (-15 -3930 ((-508) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1038)))) (-15 -3930 ((-1038) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1241)))) (-15 -3930 ((-1241) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-516)))) (-15 -3930 ((-516) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-152)))) (-15 -3930 ((-152) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-649)))) (-15 -3930 ((-649) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-305)))) (-15 -3930 ((-305) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1010)))) (-15 -3930 ((-1010) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-178)))) (-15 -3930 ((-178) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-944)))) (-15 -3930 ((-944) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1045)))) (-15 -3930 ((-1045) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1062)))) (-15 -3930 ((-1062) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1067)))) (-15 -3930 ((-1067) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-606)))) (-15 -3930 ((-606) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1137)))) (-15 -3930 ((-1137) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-154)))) (-15 -3930 ((-154) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-136)))) (-15 -3930 ((-136) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-470)))) (-15 -3930 ((-470) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-575)))) (-15 -3930 ((-575) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-497)))) (-15 -3930 ((-497) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1129)))) (-15 -3930 ((-1129) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3930 ((-536) $)))) +(((-92) . T) ((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T) ((-1054) . T) ((-1225) . T)) +((-3736 (((-1235) (-620 (-838))) 23) (((-1235) (-838)) 22)) (-3735 (((-1235) (-620 (-838))) 21) (((-1235) (-838)) 20)) (-3734 (((-1235) (-620 (-838))) 19) (((-1235) (-838)) 11) (((-1235) (-1129) (-838)) 17))) +(((-1109) (-10 -7 (-15 -3734 ((-1235) (-1129) (-838))) (-15 -3734 ((-1235) (-838))) (-15 -3735 ((-1235) (-838))) (-15 -3736 ((-1235) (-838))) (-15 -3734 ((-1235) (-620 (-838)))) (-15 -3735 ((-1235) (-620 (-838)))) (-15 -3736 ((-1235) (-620 (-838)))))) (T -1109)) +((-3736 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109))))) +(-10 -7 (-15 -3734 ((-1235) (-1129) (-838))) (-15 -3734 ((-1235) (-838))) (-15 -3735 ((-1235) (-838))) (-15 -3736 ((-1235) (-838))) (-15 -3734 ((-1235) (-620 (-838)))) (-15 -3735 ((-1235) (-620 (-838)))) (-15 -3736 ((-1235) (-620 (-838))))) +((-3740 (($ $ $) 10)) (-3739 (($ $) 9)) (-3743 (($ $ $) 13)) (-3745 (($ $ $) 15)) (-3742 (($ $ $) 12)) (-3744 (($ $ $) 14)) (-3747 (($ $) 17)) (-3746 (($ $) 16)) (-3737 (($ $) 6)) (-3741 (($ $ $) 11) (($ $) 7)) (-3738 (($ $ $) 8))) +(((-1110) (-138)) (T -1110)) +((-3747 (*1 *1 *1) (-4 *1 (-1110))) (-3746 (*1 *1 *1) (-4 *1 (-1110))) (-3745 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3744 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3743 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3742 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3741 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3740 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3739 (*1 *1 *1) (-4 *1 (-1110))) (-3738 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3741 (*1 *1 *1) (-4 *1 (-1110))) (-3737 (*1 *1 *1) (-4 *1 (-1110)))) +(-13 (-10 -8 (-15 -3737 ($ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -3739 ($ $)) (-15 -3740 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3745 ($ $ $)) (-15 -3746 ($ $)) (-15 -3747 ($ $)))) +((-2893 (((-112) $ $) 41)) (-3756 ((|#1| $) 15)) (-3748 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3755 (((-112) $) 17)) (-3753 (($ $ |#1|) 28)) (-3751 (($ $ (-112)) 30)) (-3750 (($ $) 31)) (-3752 (($ $ |#2|) 29)) (-3588 (((-1129) $) NIL)) (-3749 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3589 (((-1091) $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 10)) (-3754 (($ $) 27)) (-3879 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) 21) (((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) 24) (((-620 $) |#1| (-620 |#2|)) 26)) (-4277 ((|#2| $) 16)) (-4312 (((-838) $) 50)) (-3382 (((-112) $ $) 39))) +(((-1111 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -3756 (|#1| $)) (-15 -4277 (|#2| $)) (-15 -3755 ((-112) $)) (-15 -3879 ($ |#1| |#2| (-112))) (-15 -3879 ($ |#1| |#2|)) (-15 -3879 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3879 ((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3879 ((-620 $) |#1| (-620 |#2|))) (-15 -3754 ($ $)) (-15 -3753 ($ $ |#1|)) (-15 -3752 ($ $ |#2|)) (-15 -3751 ($ $ (-112))) (-15 -3750 ($ $)) (-15 -3749 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3748 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1072) (-34)) (-13 (-1072) (-34))) (T -1111)) +((-3923 (*1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3756 (*1 *2 *1) (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *2 *3)) (-4 *3 (-13 (-1072) (-34))))) (-4277 (*1 *2 *1) (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *4)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |val| *4) (|:| -1655 *5)))) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-620 (-1111 *4 *5))) (-5 *1 (-1111 *4 *5)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-620 (-1111 *3 *5))) (-5 *1 (-1111 *3 *5)) (-4 *3 (-13 (-1072) (-34))))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3753 (*1 *1 *1 *2) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3752 (*1 *1 *1 *2) (-12 (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))) (-4 *2 (-13 (-1072) (-34))))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3750 (*1 *1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3749 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1111 *5 *6)))) (-3748 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34)))))) +(-13 (-1072) (-10 -8 (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -3756 (|#1| $)) (-15 -4277 (|#2| $)) (-15 -3755 ((-112) $)) (-15 -3879 ($ |#1| |#2| (-112))) (-15 -3879 ($ |#1| |#2|)) (-15 -3879 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3879 ((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3879 ((-620 $) |#1| (-620 |#2|))) (-15 -3754 ($ $)) (-15 -3753 ($ $ |#1|)) (-15 -3752 ($ $ |#2|)) (-15 -3751 ($ $ (-112))) (-15 -3750 ($ $)) (-15 -3749 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3748 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2893 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3756 (((-1111 |#1| |#2|) $) 25)) (-3765 (($ $) 76)) (-3761 (((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3758 (($ $ $ (-620 (-1111 |#1| |#2|))) 90) (($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1269 (((-112) $ (-749)) NIL)) (-3353 (((-1111 |#1| |#2|) $ (-1111 |#1| |#2|)) 43 (|has| $ (-6 -4349)))) (-4142 (((-1111 |#1| |#2|) $ #1="value" (-1111 |#1| |#2|)) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3763 (((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $) 80)) (-3759 (($ (-1111 |#1| |#2|) $) 39)) (-3760 (($ (-1111 |#1| |#2|) $) 31)) (-2063 (((-620 (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 51)) (-3762 (((-112) (-1111 |#1| |#2|) $) 82)) (-3355 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 (-1111 |#1| |#2|)) $) 55 (|has| $ (-6 -4348)))) (-3591 (((-112) (-1111 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-1111 |#1| |#2|) (-1072))))) (-2067 (($ (-1 (-1111 |#1| |#2|) (-1111 |#1| |#2|)) $) 47 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-1111 |#1| |#2|) (-1111 |#1| |#2|)) $) 46)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 (-1111 |#1| |#2|)) $) 53)) (-3876 (((-112) $) 42)) (-3588 (((-1129) $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3589 (((-1091) $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3766 (((-3 $ "failed") $) 75)) (-2065 (((-112) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-1111 |#1| |#2|)))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-286 (-1111 |#1| |#2|))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-1111 |#1| |#2|) (-1111 |#1| |#2|)) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-620 (-1111 |#1| |#2|)) (-620 (-1111 |#1| |#2|))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072))))) (-1270 (((-112) $ $) 50)) (-3757 (((-112) $) 22)) (-3923 (($) 24)) (-4154 (((-1111 |#1| |#2|) $ #1#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) 44)) (-2064 (((-749) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348))) (((-749) (-1111 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-1111 |#1| |#2|) (-1072))))) (-3754 (($ $) 49)) (-3879 (($ (-1111 |#1| |#2|)) 9) (($ |#1| |#2| (-620 $)) 12) (($ |#1| |#2| (-620 (-1111 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-620 |#2|)) 17)) (-3764 (((-620 |#2|) $) 81)) (-4312 (((-838) $) 73 (|has| (-1111 |#1| |#2|) (-595 (-838))))) (-3871 (((-620 $) $) 28)) (-3356 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-2066 (((-112) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 64 (|has| (-1111 |#1| |#2|) (-1072)))) (-4311 (((-749) $) 58 (|has| $ (-6 -4348))))) +(((-1112 |#1| |#2|) (-13 (-984 (-1111 |#1| |#2|)) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3766 ((-3 $ "failed") $)) (-15 -3765 ($ $)) (-15 -3879 ($ (-1111 |#1| |#2|))) (-15 -3879 ($ |#1| |#2| (-620 $))) (-15 -3879 ($ |#1| |#2| (-620 (-1111 |#1| |#2|)))) (-15 -3879 ($ |#1| |#2| |#1| (-620 |#2|))) (-15 -3764 ((-620 |#2|) $)) (-15 -3763 ((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3762 ((-112) (-1111 |#1| |#2|) $)) (-15 -3761 ((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3760 ($ (-1111 |#1| |#2|) $)) (-15 -3759 ($ (-1111 |#1| |#2|) $)) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)))) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1072) (-34)) (-13 (-1072) (-34))) (T -1112)) +((-3766 (*1 *1 *1) (|partial| -12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3765 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-620 (-1112 *2 *3))) (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-620 (-1111 *2 *3))) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)))) (-3879 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-620 *4)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3762 (*1 *2 *3 *1) (-12 (-5 *3 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)))) (-3761 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1111 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *5 *6)))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3758 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-620 (-1111 *3 *4))) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3758 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1111 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *1 (-1112 *4 *5))))) +(-13 (-984 (-1111 |#1| |#2|)) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3766 ((-3 $ "failed") $)) (-15 -3765 ($ $)) (-15 -3879 ($ (-1111 |#1| |#2|))) (-15 -3879 ($ |#1| |#2| (-620 $))) (-15 -3879 ($ |#1| |#2| (-620 (-1111 |#1| |#2|)))) (-15 -3879 ($ |#1| |#2| |#1| (-620 |#2|))) (-15 -3764 ((-620 |#2|) $)) (-15 -3763 ((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3762 ((-112) (-1111 |#1| |#2|) $)) (-15 -3761 ((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3760 ($ (-1111 |#1| |#2|) $)) (-15 -3759 ($ (-1111 |#1| |#2|) $)) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)))) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3768 (($ $) NIL)) (-3684 ((|#2| $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($ (-667 |#2|)) 50)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3687 (($ |#2|) 10)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 63 (|has| |#2| (-300)))) (-3442 (((-233 |#1| |#2|) $ (-536)) 36)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 77)) (-3439 (((-749) $) 65 (|has| |#2| (-543)))) (-3443 ((|#2| $ (-536) (-536)) NIL)) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL)) (-3438 (((-749) $) 67 (|has| |#2| (-543)))) (-3437 (((-620 (-233 |#1| |#2|)) $) 71 (|has| |#2| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ |#2|) 20)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#2| $) 61 (|has| |#2| (-6 (-4350 #2="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#2|))) 31)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3951 (((-620 (-620 |#2|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3947 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) (-536) |#2|) NIL) ((|#2| $ (-536) (-536)) NIL)) (-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3683 ((|#2| $) NIL)) (-3686 (($ (-620 |#2|)) 44)) (-3452 (((-112) $) NIL)) (-3685 (((-233 |#1| |#2|) $) NIL)) (-3682 ((|#2| $) 59 (|has| |#2| (-6 (-4350 #2#))))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 86 (|has| |#2| (-596 (-525))))) (-3441 (((-233 |#1| |#2|) $ (-536)) 38)) (-4312 (((-838) $) 41) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (((-667 |#2|) $) 46)) (-3456 (((-749)) 18)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2986 (($) 12 T CONST)) (-2992 (($) 15 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) 57) (($ $ (-536)) 76 (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 53) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 55)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1113 |#1| |#2|) (-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3972 ($ |#2|)) (-15 -3768 ($ $)) (-15 -3767 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4350 "*"))) (-6 -4337) |%noBranch|) (IF (|has| |#2| (-6 (-4350 "*"))) (IF (|has| |#2| (-6 -4345)) (-6 -4345) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) (-749) (-1023)) (T -1113)) +((-3972 (*1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1023)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1023)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1113 *3 *4)) (-14 *3 (-749))))) +(-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3972 ($ |#2|)) (-15 -3768 ($ $)) (-15 -3767 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4350 "*"))) (-6 -4337) |%noBranch|) (IF (|has| |#2| (-6 (-4350 "*"))) (IF (|has| |#2| (-6 -4345)) (-6 -4345) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) +((-3781 (($ $) 19)) (-3771 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3779 (((-112) $ $) 24)) (-3783 (($ $) 17)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (($ $ $) 29)) (-4312 (($ (-142)) 27) (((-838) $) NIL))) +(((-1114 |#1|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4154 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-139))) (-15 -3771 (|#1| |#1| (-142))) (-15 -4312 (|#1| (-142))) (-15 -3779 ((-112) |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4154 ((-142) |#1| (-536))) (-15 -4154 ((-142) |#1| (-536) (-142)))) (-1115)) (T -1114)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4154 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-139))) (-15 -3771 (|#1| |#1| (-142))) (-15 -4312 (|#1| (-142))) (-15 -3779 ((-112) |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4154 ((-142) |#1| (-536))) (-15 -4154 ((-142) |#1| (-536) (-142)))) +((-2893 (((-112) $ $) 19 (|has| (-142) (-1072)))) (-3780 (($ $) 120)) (-3781 (($ $) 121)) (-3771 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 118)) (-3777 (((-112) $ $ (-536)) 117)) (-3772 (((-620 $) $ (-142)) 110) (((-620 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 (((-142) $ (-536) (-142)) 52 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-3769 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-3774 (($ $ (-1196 (-536)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-142) $) 77 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) 53 (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) 51)) (-3779 (((-112) $ $) 119)) (-3773 (((-536) (-1 (-112) (-142)) $) 97) (((-536) (-142) $) 96 (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 95 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 113) (((-536) (-139) $ (-536)) 112)) (-2063 (((-620 (-142)) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 115)) (-3776 (((-749) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3782 (($ $) 122)) (-3783 (($ $) 123)) (-4074 (((-112) $ (-749)) 10)) (-3770 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3588 (((-1129) $) 22 (|has| (-142) (-1072)))) (-2377 (($ (-142) $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| (-142) (-1072)))) (-4155 (((-142) $) 42 (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2301 (($ $ (-142)) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 (((-142) $ (-536) (-142)) 50) (((-142) $ (-536)) 49) (($ $ (-1196 (-536))) 63) (($ $ $) 102)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4348))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) 70)) (-4156 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (($ (-142)) 111) (((-838) $) 18 (|has| (-142) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2892 (((-112) $ $) 83 (|has| (-142) (-825)))) (-3382 (((-112) $ $) 20 (|has| (-142) (-1072)))) (-3012 (((-112) $ $) 85 (|has| (-142) (-825)))) (-3013 (((-112) $ $) 82 (|has| (-142) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1115) (-138)) (T -1115)) +((-3783 (*1 *1 *1) (-4 *1 (-1115))) (-3782 (*1 *1 *1) (-4 *1 (-1115))) (-3781 (*1 *1 *1) (-4 *1 (-1115))) (-3780 (*1 *1 *1) (-4 *1 (-1115))) (-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-536)) (-5 *2 (-112)))) (-3776 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-749)))) (-3775 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3774 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1196 (-536))))) (-3773 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)) (-5 *3 (-139)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1115)))) (-3772 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) (-3772 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-4154 (*1 *1 *1 *1) (-4 *1 (-1115)))) +(-13 (-19 (-142)) (-10 -8 (-15 -3783 ($ $)) (-15 -3782 ($ $)) (-15 -3781 ($ $)) (-15 -3780 ($ $)) (-15 -3779 ((-112) $ $)) (-15 -3778 ((-112) $ $)) (-15 -3777 ((-112) $ $ (-536))) (-15 -3776 ((-749) $ $ (-142))) (-15 -3775 ((-112) $ $ (-142))) (-15 -3774 ($ $ (-1196 (-536)) $)) (-15 -3773 ((-536) $ $ (-536))) (-15 -3773 ((-536) (-139) $ (-536))) (-15 -4312 ($ (-142))) (-15 -3772 ((-620 $) $ (-142))) (-15 -3772 ((-620 $) $ (-139))) (-15 -3771 ($ $ (-142))) (-15 -3771 ($ $ (-139))) (-15 -3770 ($ $ (-142))) (-15 -3770 ($ $ (-139))) (-15 -3769 ($ $ (-142))) (-15 -3769 ($ $ (-139))) (-15 -4154 ($ $ $)))) +(((-34) . T) ((-101) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825))) ((-595 (-838)) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825)) (|has| (-142) (-595 (-838)))) ((-149 #1=(-142)) . T) ((-596 (-525)) |has| (-142) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-629 #1#) . T) ((-19 #1#) . T) ((-825) |has| (-142) (-825)) ((-1072) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825))) ((-1183) . T)) +((-3790 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749)) 94)) (-3787 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 54)) (-3791 (((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)) 85)) (-3785 (((-749) (-620 |#4|) (-620 |#5|)) 27)) (-3788 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 56) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112)) 58)) (-3789 (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112)) 77)) (-4325 (((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 80)) (-3786 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 53)) (-3784 (((-749) (-620 |#4|) (-620 |#5|)) 19))) +(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1116)) +((-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) (-5 *1 (-1116 *4 *5 *6 *7 *8)))) (-3790 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-620 *11)) (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1116 *7 *8 *9 *10 *11)))) (-3789 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3786 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) +((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 110) (((-620 $) (-620 |#4|) (-112)) 111) (((-620 $) (-620 |#4|) (-112) (-112)) 109) (((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 84)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) 65)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-3543 (((-112) |#4| $) NIL)) (-3541 (((-112) |#4| $) NIL)) (-3544 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3792 (((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112)) 124)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) NIL)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 103)) (-4152 (((-3 |#4| #1#) $) 37)) (-3538 (((-620 $) |#4| $) 88)) (-3540 (((-3 (-112) (-620 $)) |#4| $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3584 (((-620 $) |#4| $) 107) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 108) (((-620 $) |#4| (-620 $)) NIL)) (-3793 (((-620 $) (-620 |#4|) (-112) (-112) (-112)) 119)) (-3794 (($ |#4| $) 75) (($ (-620 |#4|) $) 76) (((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 48)) (-4123 (($ $ |#4|) NIL) (((-620 $) |#4| $) 90) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 86)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-3535 (((-620 $) |#4| $) 54) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-3542 (((-112) |#4| $) NIL)) (-4288 (((-112) |#3| $) 61)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1117 |#1| |#2| |#3| |#4|) (-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1117)) +((-3794 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *3))) (-5 *1 (-1117 *5 *6 *7 *3)) (-4 *3 (-1037 *5 *6 *7)))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-4040 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-3793 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-3792 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1117 *5 *6 *7 *8))))) (-5 *1 (-1117 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) +(-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3678 ((|#1| $) 34)) (-3795 (($ (-620 |#1|)) 39)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3680 ((|#1| |#1| $) 36)) (-3679 ((|#1| $) 32)) (-2063 (((-620 |#1|) $) 18 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 35)) (-3965 (($ |#1| $) 37)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 33)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 31)) (-3923 (($) 38)) (-3677 (((-749) $) 29)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 27)) (-4312 (((-838) $) 14 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 17 (|has| |#1| (-1072)))) (-4311 (((-749) $) 30 (|has| $ (-6 -4348))))) +(((-1118 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -3795 ($ (-620 |#1|))))) (-1183)) (T -1118)) +((-3795 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1118 *3))))) +(-13 (-1092 |#1|) (-10 -8 (-15 -3795 ($ (-620 |#1|))))) +((-4142 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1196 (-536)) |#2|) 44) ((|#2| $ (-536) |#2|) 41)) (-3796 (((-112) $) 12)) (-2067 (($ (-1 |#2| |#2|) $) 39)) (-4155 ((|#2| $) NIL) (($ $ (-749)) 17)) (-2301 (($ $ |#2|) 40)) (-3797 (((-112) $) 11)) (-4154 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1196 (-536))) 31) ((|#2| $ (-536)) 23) ((|#2| $ (-536) |#2|) NIL)) (-4145 (($ $ $) 47) (($ $ |#2|) NIL)) (-4156 (($ $ $) 33) (($ |#2| $) NIL) (($ (-620 $)) 36) (($ $ |#2|) NIL))) +(((-1119 |#1| |#2|) (-10 -8 (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -4142 (|#2| |#1| #1="last" |#2|)) (-15 -4142 (|#1| |#1| #2="rest" |#1|)) (-15 -4142 (|#2| |#1| #3="first" |#2|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -4154 (|#1| |#1| #2#)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| #3#)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #4="value" |#2|)) (-15 -4154 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) (-1120 |#2|) (-1183)) (T -1119)) +NIL +(-10 -8 (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -4142 (|#2| |#1| #1="last" |#2|)) (-15 -4142 (|#1| |#1| #2="rest" |#1|)) (-15 -4142 (|#2| |#1| #3="first" |#2|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -4154 (|#1| |#1| #2#)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| #3#)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #4="value" |#2|)) (-15 -4154 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4348)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4348))) (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-3797 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1120 |#1|) (-138) (-1183)) (T -1120)) +((-3797 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(-13 (-1218 |t#1|) (-629 |t#1|) (-10 -8 (-15 -3797 ((-112) $)) (-15 -3796 ((-112) $)))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T) ((-1218 |#1|) . T)) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1121 |#1| |#2| |#3|) (-1160 |#1| |#2|) (-1072) (-1072) |#2|) (T -1121)) +NIL +(-1160 |#1| |#2|) +((-2893 (((-112) $ $) 7)) (-3798 (((-3 $ "failed") $) 13)) (-3588 (((-1129) $) 9)) (-3799 (($) 14 T CONST)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) +(((-1122) (-138)) (T -1122)) +((-3799 (*1 *1) (-4 *1 (-1122))) (-3798 (*1 *1 *1) (|partial| -4 *1 (-1122)))) +(-13 (-1072) (-10 -8 (-15 -3799 ($) -4306) (-15 -3798 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) +((-3802 (((-1124 |#1|) (-1124 |#1|)) 17)) (-3800 (((-1124 |#1|) (-1124 |#1|)) 13)) (-3803 (((-1124 |#1|) (-1124 |#1|) (-536) (-536)) 20)) (-3801 (((-1124 |#1|) (-1124 |#1|)) 15))) +(((-1123 |#1|) (-10 -7 (-15 -3800 ((-1124 |#1|) (-1124 |#1|))) (-15 -3801 ((-1124 |#1|) (-1124 |#1|))) (-15 -3802 ((-1124 |#1|) (-1124 |#1|))) (-15 -3803 ((-1124 |#1|) (-1124 |#1|) (-536) (-536)))) (-13 (-543) (-145))) (T -1123)) +((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1123 *4)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) +(-10 -7 (-15 -3800 ((-1124 |#1|) (-1124 |#1|))) (-15 -3801 ((-1124 |#1|) (-1124 |#1|))) (-15 -3802 ((-1124 |#1|) (-1124 |#1|))) (-15 -3803 ((-1124 |#1|) (-1124 |#1|) (-536) (-536)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) 52)) (-2300 (((-1235) $ (-536) (-536)) 77 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 111 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3808 (((-838) $) 41 (|has| |#1| (-1072)))) (-3807 (((-112)) 40 (|has| |#1| (-1072)))) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 99 (|has| $ (-6 -4349))) (($ $ (-536) $) 123)) (-4140 ((|#1| $ |#1|) 108 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 103 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 90 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 56 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 59)) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2393 (($ $) 14)) (-4153 (($ $) 29) (($ $ (-749)) 89)) (-3813 (((-112) (-620 |#1|) $) 117 (|has| |#1| (-1072)))) (-3814 (($ (-620 |#1|)) 113)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) 58)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3809 (((-1235) (-536) $) 122 (|has| |#1| (-1072)))) (-2392 (((-749) $) 119)) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-2395 (($ $) 91)) (-2396 (((-112) $) 13)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) 75)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3806 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2394 ((|#1| $) 10)) (-4155 ((|#1| $) 28) (($ $ (-749)) 50)) (-3812 (((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $) 25)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3805 (($ (-1 (-112) |#1|) $) 127)) (-3804 (($ (-1 (-112) |#1|) $) 128)) (-2301 (($ $ |#1|) 69 (|has| $ (-6 -4349)))) (-4123 (($ $ (-536)) 32)) (-3797 (((-112) $) 73)) (-2397 (((-112) $) 12)) (-2398 (((-112) $) 118)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 20)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 45)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) 55) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) 49)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3811 (($ (-1 $)) 48)) (-3991 (((-112) $) 70)) (-4146 (($ $) 71)) (-4144 (($ $) 100 (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 44)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 54)) (-3810 (($ |#1| $) 98)) (-4145 (($ $ $) 101 (|has| $ (-6 -4349))) (($ $ |#1|) 102 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 79) (($ |#1| $) 46) (($ (-620 $)) 84) (($ $ |#1|) 78)) (-3219 (($ $) 51)) (-4312 (($ (-620 |#1|)) 112) (((-838) $) 42 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 115 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1124 |#1|) (-13 (-652 |#1|) (-10 -8 (-6 -4349) (-15 -4312 ($ (-620 |#1|))) (-15 -3814 ($ (-620 |#1|))) (IF (|has| |#1| (-1072)) (-15 -3813 ((-112) (-620 |#1|) $)) |%noBranch|) (-15 -3812 ((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3811 ($ (-1 $))) (-15 -3810 ($ |#1| $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -3809 ((-1235) (-536) $)) (-15 -3808 ((-838) $)) (-15 -3807 ((-112)))) |%noBranch|) (-15 -4141 ($ $ (-536) $)) (-15 -3806 ($ (-1 |#1|))) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)))) (-1183)) (T -1124)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3813 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-1124 *4)))) (-3812 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749)))) (-5 *1 (-1124 *4)) (-4 *4 (-1183)) (-5 *3 (-749)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1183)))) (-3809 (*1 *2 *3 *1) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1124 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)))) (-3807 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)))) (-4141 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3805 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) +(-13 (-652 |#1|) (-10 -8 (-6 -4349) (-15 -4312 ($ (-620 |#1|))) (-15 -3814 ($ (-620 |#1|))) (IF (|has| |#1| (-1072)) (-15 -3813 ((-112) (-620 |#1|) $)) |%noBranch|) (-15 -3812 ((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3811 ($ (-1 $))) (-15 -3810 ($ |#1| $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -3809 ((-1235) (-536) $)) (-15 -3808 ((-838) $)) (-15 -3807 ((-112)))) |%noBranch|) (-15 -4141 ($ $ (-536) $)) (-15 -3806 ($ (-1 |#1|))) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)))) +((-4156 (((-1124 |#1|) (-1124 (-1124 |#1|))) 15))) +(((-1125 |#1|) (-10 -7 (-15 -4156 ((-1124 |#1|) (-1124 (-1124 |#1|))))) (-1183)) (T -1125)) +((-4156 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1125 *4)) (-4 *4 (-1183))))) +(-10 -7 (-15 -4156 ((-1124 |#1|) (-1124 (-1124 |#1|))))) +((-4196 (((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 25)) (-4197 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 26)) (-4313 (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 16))) +(((-1126 |#1| |#2|) (-10 -7 (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -4196 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -4197 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) (-1183) (-1183)) (T -1126)) +((-4197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-1126 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1183)) (-4 *3 (-1183)) (-5 *2 (-1124 *3)) (-5 *1 (-1126 *6 *3)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1126 *5 *6))))) +(-10 -7 (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -4196 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -4197 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) +((-4313 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)) 21))) +(((-1127 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) (-1183) (-1183) (-1183)) (T -1127)) +((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-1127 *6 *7 *8))))) +(-10 -7 (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) +((-2893 (((-112) $ $) 19)) (-3780 (($ $) 120)) (-3781 (($ $) 121)) (-3771 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 118)) (-3777 (((-112) $ $ (-536)) 117)) (-3893 (($ (-536)) 127)) (-3772 (((-620 $) $ (-142)) 110) (((-620 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 (((-142) $ (-536) (-142)) 52 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-3769 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-3774 (($ $ (-1196 (-536)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-142) $) 77 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) 53 (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) 51)) (-3779 (((-112) $ $) 119)) (-3773 (((-536) (-1 (-112) (-142)) $) 97) (((-536) (-142) $) 96 (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 95 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 113) (((-536) (-139) $ (-536)) 112)) (-2063 (((-620 (-142)) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 115)) (-3776 (((-749) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3782 (($ $) 122)) (-3783 (($ $) 123)) (-4074 (((-112) $ (-749)) 10)) (-3770 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3588 (((-1129) $) 22)) (-2377 (($ (-142) $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21)) (-4155 (((-142) $) 42 (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2301 (($ $ (-142)) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 (((-142) $ (-536) (-142)) 50) (((-142) $ (-536)) 49) (($ $ (-1196 (-536))) 63) (($ $ $) 102)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4348))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) 70)) (-4156 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (($ (-142)) 111) (((-838) $) 18)) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 131) (((-1129) $ (-112)) 130) (((-1235) (-801) $) 129) (((-1235) (-801) $ (-112)) 128)) (-2891 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2892 (((-112) $ $) 83 (|has| (-142) (-825)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) 85 (|has| (-142) (-825)))) (-3013 (((-112) $ $) 82 (|has| (-142) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1128) (-138)) (T -1128)) +((-3893 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1128))))) +(-13 (-1115) (-1072) (-799) (-10 -8 (-15 -3893 ($ (-536))))) +(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 #1=(-142)) . T) ((-596 (-525)) |has| (-142) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-629 #1#) . T) ((-19 #1#) . T) ((-799) . T) ((-825) |has| (-142) (-825)) ((-1072) . T) ((-1115) . T) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3780 (($ $) NIL)) (-3781 (($ $) NIL)) (-3771 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) NIL)) (-3777 (((-112) $ $ (-536)) NIL)) (-3893 (($ (-536)) 7)) (-3772 (((-620 $) $ (-142)) NIL) (((-620 $) $ (-139)) NIL)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-142) (-825))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3769 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-3774 (($ $ (-1196 (-536)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3760 (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) NIL)) (-3779 (((-112) $ $) NIL)) (-3773 (((-536) (-1 (-112) (-142)) $) NIL) (((-536) (-142) $) NIL (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) NIL (|has| (-142) (-1072))) (((-536) $ $ (-536)) NIL) (((-536) (-139) $ (-536)) NIL)) (-2063 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) NIL)) (-3776 (((-749) $ $ (-142)) NIL)) (-2067 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3782 (($ $) NIL)) (-3783 (($ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3770 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ (-142) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-142) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2301 (($ $ (-142)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (($ $ $) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) NIL)) (-4156 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (($ (-142)) NIL) (((-838) $) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 18) (((-1129) $ (-112)) 20) (((-1235) (-801) $) 21) (((-1235) (-801) $ (-112)) 22)) (-2891 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-142) (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1129) (-1128)) (T -1129)) +NIL +(-1128) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-1129) |#1|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#1| #1="failed") (-1129) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#1| #1#) (-1129) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-1129) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-1129)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-2739 (((-620 (-1129)) $) NIL)) (-2310 (((-112) (-1129) $) NIL)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-4155 ((|#1| $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-1129)) NIL) ((|#1| $ (-1129) |#1|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-595 (-838))) (|has| |#1| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1130 |#1|) (-13 (-1160 (-1129) |#1|) (-10 -7 (-6 -4348))) (-1072)) (T -1130)) +NIL +(-13 (-1160 (-1129) |#1|) (-10 -7 (-6 -4348))) +((-4159 (((-1124 |#1|) (-1124 |#1|)) 77)) (-3816 (((-3 (-1124 |#1|) "failed") (-1124 |#1|)) 37)) (-3827 (((-1124 |#1|) (-400 (-536)) (-1124 |#1|)) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3830 (((-1124 |#1|) |#1| (-1124 |#1|)) 127 (|has| |#1| (-356)))) (-4162 (((-1124 |#1|) (-1124 |#1|)) 90)) (-3818 (((-1124 (-536)) (-536)) 57)) (-3826 (((-1124 |#1|) (-1124 (-1124 |#1|))) 109 (|has| |#1| (-38 (-400 (-536)))))) (-4158 (((-1124 |#1|) (-536) (-536) (-1124 |#1|)) 95)) (-4293 (((-1124 |#1|) |#1| (-536)) 45)) (-3820 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 60)) (-3828 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 124 (|has| |#1| (-356)))) (-3825 (((-1124 |#1|) |#1| (-1 (-1124 |#1|))) 108 (|has| |#1| (-38 (-400 (-536)))))) (-3829 (((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|))) 125 (|has| |#1| (-356)))) (-4163 (((-1124 |#1|) (-1124 |#1|)) 89)) (-4164 (((-1124 |#1|) (-1124 |#1|)) 76)) (-4157 (((-1124 |#1|) (-536) (-536) (-1124 |#1|)) 96)) (-4167 (((-1124 |#1|) |#1| (-1124 |#1|)) 105 (|has| |#1| (-38 (-400 (-536)))))) (-3817 (((-1124 (-536)) (-536)) 56)) (-3819 (((-1124 |#1|) |#1|) 59)) (-4160 (((-1124 |#1|) (-1124 |#1|) (-536) (-536)) 92)) (-3822 (((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|)) 66)) (-3815 (((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|)) 35)) (-4161 (((-1124 |#1|) (-1124 |#1|)) 91)) (-4122 (((-1124 |#1|) (-1124 |#1|) |#1|) 71)) (-3821 (((-1124 |#1|) (-1124 |#1|)) 62)) (-3823 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 72)) (-4312 (((-1124 |#1|) |#1|) 67)) (-3824 (((-1124 |#1|) (-1124 (-1124 |#1|))) 82)) (-4303 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 36)) (-4192 (((-1124 |#1|) (-1124 |#1|)) 21) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 23)) (-4194 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 17)) (* (((-1124 |#1|) (-1124 |#1|) |#1|) 29) (((-1124 |#1|) |#1| (-1124 |#1|)) 26) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 27))) +(((-1131 |#1|) (-10 -7 (-15 -4194 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3815 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -4303 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3816 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -4293 ((-1124 |#1|) |#1| (-536))) (-15 -3817 ((-1124 (-536)) (-536))) (-15 -3818 ((-1124 (-536)) (-536))) (-15 -3819 ((-1124 |#1|) |#1|)) (-15 -3820 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3821 ((-1124 |#1|) (-1124 |#1|))) (-15 -3822 ((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|))) (-15 -4312 ((-1124 |#1|) |#1|)) (-15 -4122 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3823 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4164 ((-1124 |#1|) (-1124 |#1|))) (-15 -4159 ((-1124 |#1|) (-1124 |#1|))) (-15 -3824 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4163 ((-1124 |#1|) (-1124 |#1|))) (-15 -4162 ((-1124 |#1|) (-1124 |#1|))) (-15 -4161 ((-1124 |#1|) (-1124 |#1|))) (-15 -4160 ((-1124 |#1|) (-1124 |#1|) (-536) (-536))) (-15 -4158 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (-15 -4157 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3825 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -3826 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -3827 ((-1124 |#1|) (-400 (-536)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3828 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3829 ((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|)))) (-15 -3830 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) (-1023)) (T -1131)) +((-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-536))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1023)) (-5 *3 (-400 (-536))) (-5 *1 (-1131 *4)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)))) (-4167 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4157 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4158 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4160 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) (-4 *4 (-1023)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3823 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3822 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-536))) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3818 (*1 *2 *3) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) (-5 *3 (-536)))) (-3817 (*1 *2 *3) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) (-5 *3 (-536)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3816 (*1 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3815 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4192 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(-10 -7 (-15 -4194 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3815 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -4303 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3816 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -4293 ((-1124 |#1|) |#1| (-536))) (-15 -3817 ((-1124 (-536)) (-536))) (-15 -3818 ((-1124 (-536)) (-536))) (-15 -3819 ((-1124 |#1|) |#1|)) (-15 -3820 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3821 ((-1124 |#1|) (-1124 |#1|))) (-15 -3822 ((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|))) (-15 -4312 ((-1124 |#1|) |#1|)) (-15 -4122 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3823 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4164 ((-1124 |#1|) (-1124 |#1|))) (-15 -4159 ((-1124 |#1|) (-1124 |#1|))) (-15 -3824 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4163 ((-1124 |#1|) (-1124 |#1|))) (-15 -4162 ((-1124 |#1|) (-1124 |#1|))) (-15 -4161 ((-1124 |#1|) (-1124 |#1|))) (-15 -4160 ((-1124 |#1|) (-1124 |#1|) (-536) (-536))) (-15 -4158 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (-15 -4157 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3825 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -3826 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -3827 ((-1124 |#1|) (-400 (-536)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3828 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3829 ((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|)))) (-15 -3830 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) +((-3841 (((-1124 |#1|) (-1124 |#1|)) 100)) (-3997 (((-1124 |#1|) (-1124 |#1|)) 64)) (-3832 (((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|)) 96)) (-3839 (((-1124 |#1|) (-1124 |#1|)) 97)) (-3831 (((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|)) 53)) (-3996 (((-1124 |#1|) (-1124 |#1|)) 54)) (-3843 (((-1124 |#1|) (-1124 |#1|)) 102)) (-3995 (((-1124 |#1|) (-1124 |#1|)) 71)) (-4297 (((-1124 |#1|) (-1124 |#1|)) 39)) (-4298 (((-1124 |#1|) (-1124 |#1|)) 36)) (-3844 (((-1124 |#1|) (-1124 |#1|)) 103)) (-3994 (((-1124 |#1|) (-1124 |#1|)) 72)) (-3842 (((-1124 |#1|) (-1124 |#1|)) 101)) (-3993 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3840 (((-1124 |#1|) (-1124 |#1|)) 98)) (-3992 (((-1124 |#1|) (-1124 |#1|)) 55)) (-3847 (((-1124 |#1|) (-1124 |#1|)) 111)) (-3835 (((-1124 |#1|) (-1124 |#1|)) 86)) (-3845 (((-1124 |#1|) (-1124 |#1|)) 105)) (-3833 (((-1124 |#1|) (-1124 |#1|)) 82)) (-3849 (((-1124 |#1|) (-1124 |#1|)) 115)) (-3837 (((-1124 |#1|) (-1124 |#1|)) 90)) (-3850 (((-1124 |#1|) (-1124 |#1|)) 117)) (-3838 (((-1124 |#1|) (-1124 |#1|)) 92)) (-3848 (((-1124 |#1|) (-1124 |#1|)) 113)) (-3836 (((-1124 |#1|) (-1124 |#1|)) 88)) (-3846 (((-1124 |#1|) (-1124 |#1|)) 107)) (-3834 (((-1124 |#1|) (-1124 |#1|)) 84)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 40))) +(((-1132 |#1|) (-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3831 ((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3832 ((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-536)))) (T -1132)) +((-3850 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-2 (|:| -3839 (-1124 *4)) (|:| -3840 (-1124 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-2 (|:| -3996 (-1124 *4)) (|:| -3992 (-1124 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3))))) +(-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3831 ((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3832 ((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) +((-3841 (((-1124 |#1|) (-1124 |#1|)) 57)) (-3997 (((-1124 |#1|) (-1124 |#1|)) 39)) (-3839 (((-1124 |#1|) (-1124 |#1|)) 53)) (-3996 (((-1124 |#1|) (-1124 |#1|)) 35)) (-3843 (((-1124 |#1|) (-1124 |#1|)) 60)) (-3995 (((-1124 |#1|) (-1124 |#1|)) 42)) (-4297 (((-1124 |#1|) (-1124 |#1|)) 31)) (-4298 (((-1124 |#1|) (-1124 |#1|)) 27)) (-3844 (((-1124 |#1|) (-1124 |#1|)) 61)) (-3994 (((-1124 |#1|) (-1124 |#1|)) 43)) (-3842 (((-1124 |#1|) (-1124 |#1|)) 58)) (-3993 (((-1124 |#1|) (-1124 |#1|)) 40)) (-3840 (((-1124 |#1|) (-1124 |#1|)) 55)) (-3992 (((-1124 |#1|) (-1124 |#1|)) 37)) (-3847 (((-1124 |#1|) (-1124 |#1|)) 65)) (-3835 (((-1124 |#1|) (-1124 |#1|)) 47)) (-3845 (((-1124 |#1|) (-1124 |#1|)) 63)) (-3833 (((-1124 |#1|) (-1124 |#1|)) 45)) (-3849 (((-1124 |#1|) (-1124 |#1|)) 68)) (-3837 (((-1124 |#1|) (-1124 |#1|)) 50)) (-3850 (((-1124 |#1|) (-1124 |#1|)) 69)) (-3838 (((-1124 |#1|) (-1124 |#1|)) 51)) (-3848 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3836 (((-1124 |#1|) (-1124 |#1|)) 49)) (-3846 (((-1124 |#1|) (-1124 |#1|)) 66)) (-3834 (((-1124 |#1|) (-1124 |#1|)) 48)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 33))) +(((-1133 |#1|) (-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-536)))) (T -1133)) +((-3850 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) +((-3851 (((-932 |#2|) |#2| |#2|) 35)) (-3852 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300))))) +(((-1134 |#1| |#2|) (-10 -7 (-15 -3851 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3852 (|#2| |#2| |#1|)) |%noBranch|)) (-543) (-1205 |#1|)) (T -1134)) +((-3852 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-1205 *3)))) (-3851 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-932 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -3851 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3852 (|#2| |#2| |#1|)) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3860 (($ $ (-620 (-749))) 67)) (-4243 (($) 26)) (-3869 (($ $) 42)) (-4106 (((-620 $) $) 51)) (-3875 (((-112) $) 16)) (-3853 (((-620 (-917 |#2|)) $) 74)) (-3854 (($ $) 68)) (-3870 (((-749) $) 37)) (-3972 (($) 25)) (-3863 (($ $ (-620 (-749)) (-917 |#2|)) 60) (($ $ (-620 (-749)) (-749)) 61) (($ $ (-749) (-917 |#2|)) 63)) (-3867 (($ $ $) 48) (($ (-620 $)) 50)) (-3855 (((-749) $) 75)) (-3876 (((-112) $) 15)) (-3588 (((-1129) $) NIL)) (-3874 (((-112) $) 18)) (-3589 (((-1091) $) NIL)) (-3856 (((-169) $) 73)) (-3859 (((-917 |#2|) $) 69)) (-3858 (((-749) $) 70)) (-3857 (((-112) $) 72)) (-3861 (($ $ (-620 (-749)) (-169)) 66)) (-3868 (($ $) 43)) (-4312 (((-838) $) 86)) (-3862 (($ $ (-620 (-749)) (-112)) 65)) (-3871 (((-620 $) $) 11)) (-3872 (($ $ (-749)) 36)) (-3873 (($ $) 32)) (-3864 (($ $ $ (-917 |#2|) (-749)) 56)) (-3865 (($ $ (-917 |#2|)) 55)) (-3866 (($ $ (-620 (-749)) (-917 |#2|)) 54) (($ $ (-620 (-749)) (-749)) 58) (((-749) $ (-917 |#2|)) 59)) (-3382 (((-112) $ $) 80))) +(((-1135 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3876 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3874 ((-112) $)) (-15 -3972 ($)) (-15 -4243 ($)) (-15 -3873 ($ $)) (-15 -3872 ($ $ (-749))) (-15 -3871 ((-620 $) $)) (-15 -3870 ((-749) $)) (-15 -3869 ($ $)) (-15 -3868 ($ $)) (-15 -3867 ($ $ $)) (-15 -3867 ($ (-620 $))) (-15 -4106 ((-620 $) $)) (-15 -3866 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3865 ($ $ (-917 |#2|))) (-15 -3864 ($ $ $ (-917 |#2|) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3866 ($ $ (-620 (-749)) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-749))) (-15 -3866 ((-749) $ (-917 |#2|))) (-15 -3863 ($ $ (-749) (-917 |#2|))) (-15 -3862 ($ $ (-620 (-749)) (-112))) (-15 -3861 ($ $ (-620 (-749)) (-169))) (-15 -3860 ($ $ (-620 (-749)))) (-15 -3859 ((-917 |#2|) $)) (-15 -3858 ((-749) $)) (-15 -3857 ((-112) $)) (-15 -3856 ((-169) $)) (-15 -3855 ((-749) $)) (-15 -3854 ($ $)) (-15 -3853 ((-620 (-917 |#2|)) $)))) (-893) (-1023)) (T -1135)) +((-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3972 (*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-4243 (*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3873 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3869 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3867 (*1 *1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1023)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)))) (-3864 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *2 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-112)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-169)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-917 *4)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3854 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-620 (-917 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(-13 (-1072) (-10 -8 (-15 -3876 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3874 ((-112) $)) (-15 -3972 ($)) (-15 -4243 ($)) (-15 -3873 ($ $)) (-15 -3872 ($ $ (-749))) (-15 -3871 ((-620 $) $)) (-15 -3870 ((-749) $)) (-15 -3869 ($ $)) (-15 -3868 ($ $)) (-15 -3867 ($ $ $)) (-15 -3867 ($ (-620 $))) (-15 -4106 ((-620 $) $)) (-15 -3866 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3865 ($ $ (-917 |#2|))) (-15 -3864 ($ $ $ (-917 |#2|) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3866 ($ $ (-620 (-749)) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-749))) (-15 -3866 ((-749) $ (-917 |#2|))) (-15 -3863 ($ $ (-749) (-917 |#2|))) (-15 -3862 ($ $ (-620 (-749)) (-112))) (-15 -3861 ($ $ (-620 (-749)) (-169))) (-15 -3860 ($ $ (-620 (-749)))) (-15 -3859 ((-917 |#2|) $)) (-15 -3858 ((-749) $)) (-15 -3857 ((-112) $)) (-15 -3856 ((-169) $)) (-15 -3855 ((-749) $)) (-15 -3854 ($ $)) (-15 -3853 ((-620 (-917 |#2|)) $)))) +((-2893 (((-112) $ $) NIL)) (-3877 ((|#2| $) 11)) (-3878 ((|#1| $) 10)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3879 (($ |#1| |#2|) 9)) (-4312 (((-838) $) 16)) (-3382 (((-112) $ $) NIL))) +(((-1136 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3879 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3877 (|#2| $)))) (-1072) (-1072)) (T -1136)) +((-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-1136 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *2 *3)) (-4 *3 (-1072)))) (-3877 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1072))))) +(-13 (-1072) (-10 -8 (-15 -3879 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3877 (|#2| $)))) +((-2893 (((-112) $ $) NIL)) (-3880 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1137) (-13 (-1054) (-10 -8 (-15 -3880 ((-1106) $))))) (T -1137)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1137))))) +(-13 (-1054) (-10 -8 (-15 -3880 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-4125 (($ $ (-536)) NIL) (($ $ (-536) (-536)) 66)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) NIL)) (-4086 (((-1145 |#1| |#2| |#3|) $) 36)) (-4083 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 29)) (-4084 (((-1145 |#1| |#2| |#3|) $) 30)) (-3841 (($ $) 107 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 83 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 103 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 79 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) 111 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 87 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1145 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1147) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-536) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-3502 (((-1145 |#1| |#2| |#3|) $) 131) (((-1147) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-400 (-536)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-536) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-4085 (($ $) 34) (($ (-536) $) 35)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-1145 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-1145 |#1| |#2| |#3|))) (|:| |vec| (-1229 (-1145 |#1| |#2| |#3|)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) 48)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 65 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 67 (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) 25)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-860 (-536))) (|has| |#1| (-356)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-860 (-371))) (|has| |#1| (-356))))) (-4126 (((-536) $) NIL) (((-536) $ (-536)) 24)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 (((-1145 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 18) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) 72 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) (-1145 |#1| |#2| |#3|)) 33)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 70 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 71 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3460 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 145)) (-3815 (((-3 $ "failed") $ $) 49 (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 73 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-286 (-1145 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1145 |#1| |#2| |#3|)) (-620 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) NIL) (($ $ $) 54 (|has| (-536) (-1083))) (($ $ (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-279 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1226 |#2|)) 51) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 50 (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 (((-1145 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-4302 (((-536) $) 37)) (-3844 (($ $) 113 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 89 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 109 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 85 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 105 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 81 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-525) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-525))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-864 (-371)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 149) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1145 |#1| |#2| |#3|)) 27) (($ (-1226 |#2|)) 23) (($ (-1147)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543)))) (($ (-400 (-536))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-536))))))) (-4035 ((|#1| $ (-536)) 68)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3461 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3847 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 95 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3845 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 91 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 99 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 101 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 97 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 93 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2986 (($) 20 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3013 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 21)) (** (($ $ (-893)) NIL) (($ $ (-749)) 53) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 128 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1145 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1145 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1138 |#1| |#2| |#3|) (-13 (-1193 |#1| (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1138)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1193 |#1| (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-3881 ((|#2| |#2| (-1063 |#2|)) 26) ((|#2| |#2| (-1147)) 28))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -3881 (|#2| |#2| (-1147))) (-15 -3881 (|#2| |#2| (-1063 |#2|)))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-414 |#1|) (-158) (-27) (-1169))) (T -1139)) +((-3881 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1139 *4 *2)))) (-3881 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1139 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169)))))) +(-10 -7 (-15 -3881 (|#2| |#2| (-1147))) (-15 -3881 (|#2| |#2| (-1063 |#2|)))) +((-3881 (((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))) 31) (((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|))) 44) (((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147)) 33) (((-400 (-920 |#1|)) (-920 |#1|) (-1147)) 36))) +(((-1140 |#1|) (-10 -7 (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1147))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|)))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))))) (-13 (-543) (-825) (-1012 (-536)))) (T -1140)) +((-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1140 *5)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-920 *5))) (-5 *3 (-920 *5)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 *3)) (-5 *1 (-1140 *5)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 (-400 (-920 *5)) (-307 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-400 (-920 *5))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 (-920 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-920 *5))))) +(-10 -7 (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1147))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|)))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))))) +((-2893 (((-112) $ $) 137)) (-3534 (((-112) $) 27)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) 58) (((-1141 |#1|) $) 47)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) 132 (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) 126 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 71 (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 91 (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4115 (($ $ (-749)) 39)) (-4114 (($ $ (-749)) 40)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 56)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) 104)) (-4108 (($ $ $) NIL (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) 45)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-3882 (((-838) $ (-838)) 117)) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) 49) (($ (-1141 $) (-1053)) 65)) (-4131 (($ $ (-749)) 32)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 63) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 121)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) 52)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 38)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 31)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 79 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-4093 (($ $ (-749) |#1| $) 99)) (-3033 (((-398 (-1141 $)) (-1141 $)) 77 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 76 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 84 (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) 35)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 138 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) 54) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) 118) (($ (-536)) NIL) (($ |#1|) 53) (($ (-1053)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) 25 (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 15 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 96)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 66)) (** (($ $ (-893)) 14) (($ $ (-749)) 12)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 24) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1141 |#1|) (-13 (-1205 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))) (-15 -4093 ($ $ (-749) |#1| $)))) (-1023)) (T -1141)) +((-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1141 *3)) (-4 *3 (-1023)))) (-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1023))))) +(-13 (-1205 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))) (-15 -4093 ($ $ (-749) |#1| $)))) +((-4313 (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 13))) +(((-1142 |#1| |#2|) (-10 -7 (-15 -4313 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) (-1023) (-1023)) (T -1142)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-1142 *5 *6))))) +(-10 -7 (-15 -4313 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) +((-4324 (((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 51)) (-4087 (((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 52))) +(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -4324 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) (-771) (-825) (-444) (-924 |#3| |#1| |#2|)) (T -1143)) +((-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7)))))) +(-10 -7 (-15 -4087 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -4324 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1138 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1145 |#1| |#2| |#3|) #1#) $) 36)) (-3502 (((-1138 |#1| |#2| |#3|) $) NIL) (((-1145 |#1| |#2| |#3|) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4135 (((-400 (-536)) $) 55)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) (-1138 |#1| |#2| |#3|)) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 20) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 (((-1138 |#1| |#2| |#3|) $) 41)) (-4132 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) NIL)) (-4133 (((-1138 |#1| |#2| |#3|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 39 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 40 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 38)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 58) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1138 |#1| |#2| |#3|)) 30) (($ (-1145 |#1| |#2| |#3|)) 31) (($ (-1226 |#2|)) 26) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 22 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 24)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1144 |#1| |#2| |#3|) (-13 (-1214 |#1| (-1138 |#1| |#2| |#3|)) (-1012 (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1144)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1214 |#1| (-1138 |#1| |#2| |#3|)) (-1012 (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 125)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 116)) (-4166 (((-1198 |#2| |#1|) $ (-749)) 63)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 79) (($ $ (-749) (-749)) 76)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 102)) (-3841 (($ $) 169 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 145 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 165 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 115) (($ (-1124 |#1|)) 110)) (-3843 (($ $) 173 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 23)) (-4171 (($ $) 26)) (-4169 (((-920 |#1|) $ (-749)) 75) (((-920 |#1|) $ (-749) (-749)) 77)) (-3220 (((-112) $) 120)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) 122) (((-749) $ (-749)) 124)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 13) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $) 129 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4123 (($ $ (-749)) 15)) (-3815 (((-3 $ "failed") $ $) 24 (|has| |#1| (-543)))) (-4298 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 119) (($ $ $) 128 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1226 |#2|)) 29)) (-4302 (((-749) $) NIL)) (-3844 (($ $) 175 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 151 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 171 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 147 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 167 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 201) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 51) (($ (-1226 |#2|)) 32)) (-4172 (((-1124 |#1|) $) 98)) (-4035 ((|#1| $ (-749)) 118)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 54)) (-3847 (($ $) 181 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 157 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 177 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 153 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 185 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 161 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 187 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 163 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 183 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 159 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 179 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 155 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 17 T CONST)) (-2992 (($) 19 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 194)) (-4194 (($ $ $) 31)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 137 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1145 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1145)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-1145 *3 *4 *5)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1145 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-4312 (((-838) $) 27) (($ (-1147)) 29)) (-3886 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 40)) (-3883 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3890 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 35)) (-3888 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 37)) (-3889 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 36)) (-3887 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 38)) (-3885 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 39))) +(((-1146) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -3890 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3889 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3887 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3886 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3885 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ $))))) (T -1146)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1146)))) (-3890 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3889 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3888 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3887 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3886 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3885 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3883 (*1 *1 *1) (-5 *1 (-1146)))) +(-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -3890 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3889 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3887 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3886 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3885 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ $)))) +((-2893 (((-112) $ $) NIL)) (-3895 (($ $ (-620 (-838))) 59)) (-3896 (($ $ (-620 (-838))) 57)) (-3893 (((-1129) $) 84)) (-3898 (((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $) 87)) (-3899 (((-112) $) 22)) (-3897 (($ $ (-620 (-620 (-838)))) 56) (($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) 82)) (-3891 (($) 124 T CONST)) (-3901 (((-1235)) 106)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 66) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 73)) (-3972 (($) 95) (($ $) 101)) (-3900 (($ $) 83)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3892 (((-620 $) $) 107)) (-3588 (((-1129) $) 90)) (-3589 (((-1091) $) NIL)) (-4154 (($ $ (-620 (-838))) 58)) (-4325 (((-525) $) 46) (((-1147) $) 47) (((-864 (-536)) $) 77) (((-864 (-371)) $) 75)) (-4312 (((-838) $) 53) (($ (-1129)) 48)) (-3894 (($ $ (-620 (-838))) 60)) (-2829 (((-1129) $) 33) (((-1129) $ (-112)) 34) (((-1235) (-801) $) 35) (((-1235) (-801) $ (-112)) 36)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 49)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 50))) +(((-1147) (-13 (-825) (-596 (-525)) (-799) (-596 (-1147)) (-596 (-864 (-536))) (-596 (-864 (-371))) (-860 (-536)) (-860 (-371)) (-10 -8 (-15 -3972 ($)) (-15 -3972 ($ $)) (-15 -3901 ((-1235))) (-15 -4312 ($ (-1129))) (-15 -3900 ($ $)) (-15 -3899 ((-112) $)) (-15 -3898 ((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $)) (-15 -3897 ($ $ (-620 (-620 (-838))))) (-15 -3897 ($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))))) (-15 -3896 ($ $ (-620 (-838)))) (-15 -3895 ($ $ (-620 (-838)))) (-15 -3894 ($ $ (-620 (-838)))) (-15 -4154 ($ $ (-620 (-838)))) (-15 -3893 ((-1129) $)) (-15 -3892 ((-620 $) $)) (-15 -3891 ($) -4306)))) (T -1147)) +((-3972 (*1 *1) (-5 *1 (-1147))) (-3972 (*1 *1 *1) (-5 *1 (-1147))) (-3901 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1147)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) (-3900 (*1 *1 *1) (-5 *1 (-1147))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) (-5 *1 (-1147)))) (-3897 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-1147)))) (-3897 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) (-5 *1 (-1147)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1147)))) (-3891 (*1 *1) (-5 *1 (-1147)))) +(-13 (-825) (-596 (-525)) (-799) (-596 (-1147)) (-596 (-864 (-536))) (-596 (-864 (-371))) (-860 (-536)) (-860 (-371)) (-10 -8 (-15 -3972 ($)) (-15 -3972 ($ $)) (-15 -3901 ((-1235))) (-15 -4312 ($ (-1129))) (-15 -3900 ($ $)) (-15 -3899 ((-112) $)) (-15 -3898 ((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $)) (-15 -3897 ($ $ (-620 (-620 (-838))))) (-15 -3897 ($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))))) (-15 -3896 ($ $ (-620 (-838)))) (-15 -3895 ($ $ (-620 (-838)))) (-15 -3894 ($ $ (-620 (-838)))) (-15 -4154 ($ $ (-620 (-838)))) (-15 -3893 ((-1129) $)) (-15 -3892 ((-620 $) $)) (-15 -3891 ($) -4306))) +((-3902 (((-1229 |#1|) |#1| (-893)) 16) (((-1229 |#1|) (-620 |#1|)) 20))) +(((-1148 |#1|) (-10 -7 (-15 -3902 ((-1229 |#1|) (-620 |#1|))) (-15 -3902 ((-1229 |#1|) |#1| (-893)))) (-1023)) (T -1148)) +((-3902 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-1229 *3)) (-5 *1 (-1148 *3)) (-4 *3 (-1023)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)) (-5 *1 (-1148 *4))))) +(-10 -7 (-15 -3902 ((-1229 |#1|) (-620 |#1|))) (-15 -3902 ((-1229 |#1|) |#1| (-893)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| (-945) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-945)) NIL)) (-3148 (((-945) $) NIL)) (-1717 (($ (-1 (-945) (-945)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-4093 (($ $ (-945) |#1| $) NIL (-12 (|has| (-945) (-130)) (|has| |#1| (-543))))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543)))) (-4302 (((-945) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-945)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 9 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) 16)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 19)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1149 |#1|) (-13 (-319 |#1| (-945)) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| (-945) (-130)) (-15 -4093 ($ $ (-945) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023)) (T -1149)) +((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1149 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) +(-13 (-319 |#1| #1=(-945)) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| #1# (-130)) (-15 -4093 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) +((-3903 (((-1151) (-1147) $) 25)) (-3913 (($) 29)) (-3905 (((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) (-1147) $) 22)) (-3907 (((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) $) 41) (((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) 42) (((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) 43)) (-3915 (((-1235) (-1147)) 58)) (-3906 (((-1235) (-1147) $) 55) (((-1235) (-1147)) 56) (((-1235)) 57)) (-3911 (((-1235) (-1147)) 37)) (-3909 (((-1147)) 36)) (-3923 (($) 34)) (-3922 (((-429) (-1147) (-429) (-1147) $) 45) (((-429) (-620 (-1147)) (-429) (-1147) $) 49) (((-429) (-1147) (-429)) 46) (((-429) (-1147) (-429) (-1147)) 50)) (-3910 (((-1147)) 35)) (-4312 (((-838) $) 28)) (-3912 (((-1235)) 30) (((-1235) (-1147)) 33)) (-3904 (((-620 (-1147)) (-1147) $) 24)) (-3908 (((-1235) (-1147) (-620 (-1147)) $) 38) (((-1235) (-1147) (-620 (-1147))) 39) (((-1235) (-620 (-1147))) 40))) +(((-1150) (-13 (-595 (-838)) (-10 -8 (-15 -3913 ($)) (-15 -3912 ((-1235))) (-15 -3912 ((-1235) (-1147))) (-15 -3922 ((-429) (-1147) (-429) (-1147) $)) (-15 -3922 ((-429) (-620 (-1147)) (-429) (-1147) $)) (-15 -3922 ((-429) (-1147) (-429))) (-15 -3922 ((-429) (-1147) (-429) (-1147))) (-15 -3911 ((-1235) (-1147))) (-15 -3910 ((-1147))) (-15 -3909 ((-1147))) (-15 -3908 ((-1235) (-1147) (-620 (-1147)) $)) (-15 -3908 ((-1235) (-1147) (-620 (-1147)))) (-15 -3908 ((-1235) (-620 (-1147)))) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3907 ((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3906 ((-1235) (-1147) $)) (-15 -3906 ((-1235) (-1147))) (-15 -3906 ((-1235))) (-15 -3915 ((-1235) (-1147))) (-15 -3923 ($)) (-15 -3905 ((-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-1147) $)) (-15 -3904 ((-620 (-1147)) (-1147) $)) (-15 -3903 ((-1151) (-1147) $))))) (T -1150)) +((-3913 (*1 *1) (-5 *1 (-1150))) (-3912 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *4 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3910 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150)))) (-3909 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3923 (*1 *1) (-5 *1 (-1150))) (-3905 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *1 (-1150)))) (-3904 (*1 *2 *3 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1150)) (-5 *3 (-1147)))) (-3903 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1151)) (-5 *1 (-1150))))) +(-13 (-595 (-838)) (-10 -8 (-15 -3913 ($)) (-15 -3912 ((-1235))) (-15 -3912 ((-1235) (-1147))) (-15 -3922 ((-429) (-1147) (-429) (-1147) $)) (-15 -3922 ((-429) (-620 (-1147)) (-429) (-1147) $)) (-15 -3922 ((-429) (-1147) (-429))) (-15 -3922 ((-429) (-1147) (-429) (-1147))) (-15 -3911 ((-1235) (-1147))) (-15 -3910 ((-1147))) (-15 -3909 ((-1147))) (-15 -3908 ((-1235) (-1147) (-620 (-1147)) $)) (-15 -3908 ((-1235) (-1147) (-620 (-1147)))) (-15 -3908 ((-1235) (-620 (-1147)))) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3907 ((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3906 ((-1235) (-1147) $)) (-15 -3906 ((-1235) (-1147))) (-15 -3906 ((-1235))) (-15 -3915 ((-1235) (-1147))) (-15 -3923 ($)) (-15 -3905 ((-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-1147) $)) (-15 -3904 ((-620 (-1147)) (-1147) $)) (-15 -3903 ((-1151) (-1147) $)))) +((-3917 (((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $) 59)) (-3919 (((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $) 43)) (-3914 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) 17)) (-3915 (((-1235) $) 67)) (-3920 (((-620 (-1147)) $) 22)) (-3916 (((-1074) $) 55)) (-3921 (((-429) (-1147) $) 27)) (-3918 (((-620 (-1147)) $) 30)) (-3923 (($) 19)) (-3922 (((-429) (-620 (-1147)) (-429) $) 25) (((-429) (-1147) (-429) $) 24)) (-4312 (((-838) $) 9) (((-1156 (-1147) (-429)) $) 13))) +(((-1151) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ((-1156 (-1147) (-429)) $)) (-15 -3923 ($)) (-15 -3922 ((-429) (-620 (-1147)) (-429) $)) (-15 -3922 ((-429) (-1147) (-429) $)) (-15 -3921 ((-429) (-1147) $)) (-15 -3920 ((-620 (-1147)) $)) (-15 -3919 ((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $)) (-15 -3918 ((-620 (-1147)) $)) (-15 -3917 ((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $)) (-15 -3916 ((-1074) $)) (-15 -3915 ((-1235) $)) (-15 -3914 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))))))) (T -1151)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-1156 (-1147) (-429))) (-5 *1 (-1151)))) (-3923 (*1 *1) (-5 *1 (-1151))) (-3922 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *1 (-1151)))) (-3922 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1151)))) (-3921 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-429)) (-5 *1 (-1151)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151)))) (-3919 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) (-5 *1 (-1151)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))))) (-5 *1 (-1151)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1151)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1151)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) (-5 *1 (-1151))))) +(-13 (-595 (-838)) (-10 -8 (-15 -4312 ((-1156 (-1147) (-429)) $)) (-15 -3923 ($)) (-15 -3922 ((-429) (-620 (-1147)) (-429) $)) (-15 -3922 ((-429) (-1147) (-429) $)) (-15 -3921 ((-429) (-1147) $)) (-15 -3920 ((-620 (-1147)) $)) (-15 -3919 ((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $)) (-15 -3918 ((-620 (-1147)) $)) (-15 -3917 ((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $)) (-15 -3916 ((-1074) $)) (-15 -3915 ((-1235) $)) (-15 -3914 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429)))))))) +((-2893 (((-112) $ $) NIL)) (-3928 (((-112) $) 48)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3927 (((-3 (-536) (-219) (-1147) (-1129) $) $) 56)) (-3926 (((-620 $) $) 61)) (-4325 (((-1074) $) 30) (($ (-1074)) 31)) (-3925 (((-112) $) 58)) (-4312 (((-838) $) 29) (($ (-536)) 32) (((-536) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1147)) 38) (((-1147) $) 40) (($ (-1129)) 41) (((-1129) $) 43)) (-3924 (((-112) $ (|[\|\|]| (-536))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1147))) 25) (((-112) $ (|[\|\|]| (-1129))) 21)) (-3929 (($ (-1147) (-620 $)) 45) (($ $ (-620 $)) 46)) (-3930 (((-536) $) 33) (((-219) $) 36) (((-1147) $) 39) (((-1129) $) 42)) (-3382 (((-112) $ $) 8))) +(((-1152) (-13 (-1225) (-1072) (-10 -8 (-15 -4325 ((-1074) $)) (-15 -4325 ($ (-1074))) (-15 -4312 ($ (-536))) (-15 -4312 ((-536) $)) (-15 -3930 ((-536) $)) (-15 -4312 ($ (-219))) (-15 -4312 ((-219) $)) (-15 -3930 ((-219) $)) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -3930 ((-1147) $)) (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -3930 ((-1129) $)) (-15 -3929 ($ (-1147) (-620 $))) (-15 -3929 ($ $ (-620 $))) (-15 -3928 ((-112) $)) (-15 -3927 ((-3 (-536) (-219) (-1147) (-1129) $) $)) (-15 -3926 ((-620 $) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3924 ((-112) $ (|[\|\|]| (-219)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1147)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1129))))))) (T -1152)) +((-4325 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-1152))) (-5 *1 (-1152)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-3 (-536) (-219) (-1147) (-1129) (-1152))) (-5 *1 (-1152)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)) (-5 *1 (-1152))))) +(-13 (-1225) (-1072) (-10 -8 (-15 -4325 ((-1074) $)) (-15 -4325 ($ (-1074))) (-15 -4312 ($ (-536))) (-15 -4312 ((-536) $)) (-15 -3930 ((-536) $)) (-15 -4312 ($ (-219))) (-15 -4312 ((-219) $)) (-15 -3930 ((-219) $)) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -3930 ((-1147) $)) (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -3930 ((-1129) $)) (-15 -3929 ($ (-1147) (-620 $))) (-15 -3929 ($ $ (-620 $))) (-15 -3928 ((-112) $)) (-15 -3927 ((-3 (-536) (-219) (-1147) (-1129) $) $)) (-15 -3926 ((-620 $) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3924 ((-112) $ (|[\|\|]| (-219)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1147)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1129)))))) +((-3932 (((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 57)) (-3931 (((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|)))) 69) (((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|))) 65) (((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147)) 70) (((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147)) 64) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|))))) 93) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|)))) 92) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147))) 94) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 91))) +(((-1153 |#1|) (-10 -7 (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))))) (-15 -3932 ((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))))) (-543)) (T -1153)) +((-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-920 *5)))) (-5 *1 (-1153 *5)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) (-5 *3 (-286 (-400 (-920 *4)))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) (-5 *3 (-400 (-920 *4))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-286 (-400 (-920 *5)))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-400 (-920 *5))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)) (-5 *3 (-620 (-286 (-400 (-920 *4))))))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)) (-5 *3 (-620 (-286 (-400 (-920 *5))))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5))))) +(-10 -7 (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))))) (-15 -3932 ((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))))) +((-3933 (((-1129)) 7)) (-3935 (((-1129)) 9)) (-3936 (((-1235) (-1129)) 11)) (-3934 (((-1129)) 8))) +(((-1154) (-10 -7 (-15 -3933 ((-1129))) (-15 -3934 ((-1129))) (-15 -3935 ((-1129))) (-15 -3936 ((-1235) (-1129))))) (T -1154)) +((-3936 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1154)))) (-3935 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154)))) (-3934 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154)))) (-3933 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) +(-10 -7 (-15 -3933 ((-1129))) (-15 -3934 ((-1129))) (-15 -3935 ((-1129))) (-15 -3936 ((-1235) (-1129)))) +((-3940 (((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|)))) 38)) (-3943 (((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|))) 24)) (-3944 (((-1157 (-620 |#1|)) (-620 |#1|)) 34)) (-3946 (((-620 (-620 |#1|)) (-620 |#1|)) 30)) (-3949 (((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))) 37)) (-3948 (((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|)))) 36)) (-3945 (((-620 (-620 |#1|)) (-620 (-620 |#1|))) 28)) (-3947 (((-620 |#1|) (-620 |#1|)) 31)) (-3939 (((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|)))) 18)) (-3938 (((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|)))) 16)) (-3937 (((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|))) 14)) (-3941 (((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|)))) 39)) (-3942 (((-620 (-620 |#1|)) (-1157 (-620 |#1|))) 41))) +(((-1155 |#1|) (-10 -7 (-15 -3937 ((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|)))) (-15 -3938 ((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3939 ((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3940 ((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3941 ((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3942 ((-620 (-620 |#1|)) (-1157 (-620 |#1|)))) (-15 -3943 ((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)))) (-15 -3944 ((-1157 (-620 |#1|)) (-620 |#1|))) (-15 -3945 ((-620 (-620 |#1|)) (-620 (-620 |#1|)))) (-15 -3946 ((-620 (-620 |#1|)) (-620 |#1|))) (-15 -3947 ((-620 |#1|) (-620 |#1|))) (-15 -3948 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))))) (-15 -3949 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))))) (-825)) (T -1155)) +((-3949 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-2 (|:| |f1| (-620 *4)) (|:| |f2| (-620 (-620 (-620 *4)))) (|:| |f3| (-620 (-620 *4))) (|:| |f4| (-620 (-620 (-620 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 (-620 *4)))))) (-3948 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-825)) (-5 *3 (-620 *6)) (-5 *5 (-620 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-620 *5)) (|:| |f3| *5) (|:| |f4| (-620 *5)))) (-5 *1 (-1155 *6)) (-5 *4 (-620 *5)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-1155 *3)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) (-5 *3 (-620 *4)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-825)) (-5 *1 (-1155 *3)))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-1157 (-620 *4))) (-5 *1 (-1155 *4)) (-5 *3 (-620 *4)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 (-620 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 *4))))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-1157 (-620 *4))) (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) (-4 *4 (-825)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-4 *4 (-825)) (-5 *1 (-1155 *4)))) (-3939 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *1 (-1155 *4)))) (-3938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-620 *5)) (-4 *5 (-825)) (-5 *1 (-1155 *5)))) (-3937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-620 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-620 *4)))) (-5 *1 (-1155 *6)) (-5 *5 (-620 *4))))) +(-10 -7 (-15 -3937 ((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|)))) (-15 -3938 ((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3939 ((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3940 ((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3941 ((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3942 ((-620 (-620 |#1|)) (-1157 (-620 |#1|)))) (-15 -3943 ((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)))) (-15 -3944 ((-1157 (-620 |#1|)) (-620 |#1|))) (-15 -3945 ((-620 (-620 |#1|)) (-620 (-620 |#1|)))) (-15 -3946 ((-620 (-620 |#1|)) (-620 |#1|))) (-15 -3947 ((-620 |#1|) (-620 |#1|))) (-15 -3948 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))))) (-15 -3949 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))))) +((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1156 |#1| |#2|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072)) (T -1156)) +NIL +(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) +((-3950 (($ (-620 (-620 |#1|))) 10)) (-3951 (((-620 (-620 |#1|)) $) 11)) (-4312 (((-838) $) 26))) +(((-1157 |#1|) (-10 -8 (-15 -3950 ($ (-620 (-620 |#1|)))) (-15 -3951 ((-620 (-620 |#1|)) $)) (-15 -4312 ((-838) $))) (-1072)) (T -1157)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-1157 *3))))) +(-10 -8 (-15 -3950 ($ (-620 (-620 |#1|)))) (-15 -3951 ((-620 (-620 |#1|)) $)) (-15 -4312 ((-838) $))) +((-3952 ((|#1| (-620 |#1|)) 32)) (-3954 ((|#1| |#1| (-536)) 18)) (-3953 (((-1141 |#1|) |#1| (-893)) 15))) +(((-1158 |#1|) (-10 -7 (-15 -3952 (|#1| (-620 |#1|))) (-15 -3953 ((-1141 |#1|) |#1| (-893))) (-15 -3954 (|#1| |#1| (-536)))) (-356)) (T -1158)) +((-3954 (*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-1158 *2)) (-4 *2 (-356)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-1141 *3)) (-5 *1 (-1158 *3)) (-4 *3 (-356)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) +(-10 -7 (-15 -3952 (|#1| (-620 |#1|))) (-15 -3953 ((-1141 |#1|) |#1| (-893))) (-15 -3954 (|#1| |#1| (-536)))) +((-3955 (($) 10) (($ (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)))) 14)) (-3759 (($ (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 39) (((-620 |#3|) $) 41)) (-2067 (($ (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4313 (($ (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1331 (((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 54)) (-3965 (($ (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 16)) (-2305 (((-620 |#2|) $) 19)) (-2306 (((-112) |#2| $) 59)) (-1399 (((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 58)) (-1332 (((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 63)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2307 (((-620 |#3|) $) 43)) (-4154 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) NIL) (((-749) |#3| $) NIL) (((-749) (-1 (-112) |#3|) $) 68)) (-4312 (((-838) $) 27)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3382 (((-112) $ $) 49))) +(((-1159 |#1| |#2| |#3|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3955 (|#1| (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))))) (-15 -3955 (|#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-620 |#3|) |#1|)) (-15 -2064 ((-749) |#3| |#1|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -2305 ((-620 |#2|) |#1|)) (-15 -3759 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3759 (|#1| (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -3759 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -1331 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -3965 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1332 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2064 ((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2063 ((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2064 ((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -4313 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|))) (-1160 |#2| |#3|) (-1072) (-1072)) (T -1159)) +NIL +(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3955 (|#1| (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))))) (-15 -3955 (|#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-620 |#3|) |#1|)) (-15 -2064 ((-749) |#3| |#1|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -2305 ((-620 |#2|) |#1|)) (-15 -3759 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3759 (|#1| (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -3759 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -1331 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -3965 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1332 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2064 ((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2063 ((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2064 ((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -4313 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|))) +((-2893 (((-112) $ $) 19 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3955 (($) 72) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 71)) (-2300 (((-1235) $ |#1| |#1|) 99 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#2| $ |#1| |#2|) 73)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 62)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 88)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348))) (((-620 |#2|) $) 79 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 96 (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348))) (((-620 |#2|) $) 80 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 95 (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40)) (-2305 (((-620 |#1|) $) 93)) (-2306 (((-112) |#1| $) 92)) (-3589 (((-1091) $) 21 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4155 ((|#2| $) 97 (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51)) (-2301 (($ $ |#2|) 98 (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 91)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4348)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50)) (-4312 (((-838) $) 18 (-3886 (|has| |#2| (-595 (-838))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1160 |#1| |#2|) (-138) (-1072) (-1072)) (T -1160)) +((-4142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-3955 (*1 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 *3) (|:| -2186 *4)))) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *1 (-1160 *3 *4)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(-13 (-592 |t#1| |t#2|) (-586 |t#1| |t#2|) (-10 -8 (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -3955 ($)) (-15 -3955 ($ (-620 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))))) (-15 -4313 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-149 #1#) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-481 #1#) . T) ((-481 |#2|) . T) ((-586 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-592 |#1| |#2|) . T) ((-1072) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))) ((-1183) . T)) +((-3961 (((-112)) 24)) (-3958 (((-1235) (-1129)) 26)) (-3962 (((-112)) 36)) (-3959 (((-1235)) 34)) (-3957 (((-1235) (-1129) (-1129)) 25)) (-3963 (((-112)) 37)) (-3965 (((-1235) |#1| |#2|) 44)) (-3956 (((-1235)) 20)) (-3964 (((-3 |#2| "failed") |#1|) 42)) (-3960 (((-1235)) 35))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -3956 ((-1235))) (-15 -3957 ((-1235) (-1129) (-1129))) (-15 -3958 ((-1235) (-1129))) (-15 -3959 ((-1235))) (-15 -3960 ((-1235))) (-15 -3961 ((-112))) (-15 -3962 ((-112))) (-15 -3963 ((-112))) (-15 -3964 ((-3 |#2| "failed") |#1|)) (-15 -3965 ((-1235) |#1| |#2|))) (-1072) (-1072)) (T -1161)) +((-3965 (*1 *2 *3 *4) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3964 (*1 *2 *3) (|partial| -12 (-4 *2 (-1072)) (-5 *1 (-1161 *3 *2)) (-4 *3 (-1072)))) (-3963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3962 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3961 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3960 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3959 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)))) (-3957 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)))) (-3956 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(-10 -7 (-15 -3956 ((-1235))) (-15 -3957 ((-1235) (-1129) (-1129))) (-15 -3958 ((-1235) (-1129))) (-15 -3959 ((-1235))) (-15 -3960 ((-1235))) (-15 -3961 ((-112))) (-15 -3962 ((-112))) (-15 -3963 ((-112))) (-15 -3964 ((-3 |#2| "failed") |#1|)) (-15 -3965 ((-1235) |#1| |#2|))) +((-3967 (((-1129) (-1129)) 18)) (-3966 (((-51) (-1129)) 21))) +(((-1162) (-10 -7 (-15 -3966 ((-51) (-1129))) (-15 -3967 ((-1129) (-1129))))) (T -1162)) +((-3967 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1162)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-1162))))) +(-10 -7 (-15 -3966 ((-51) (-1129))) (-15 -3967 ((-1129) (-1129)))) +((-2893 (((-112) $ $) NIL)) (-3973 (((-620 (-1129)) $) 34)) (-3969 (((-620 (-1129)) $ (-620 (-1129))) 37)) (-3968 (((-620 (-1129)) $ (-620 (-1129))) 36)) (-3970 (((-620 (-1129)) $ (-620 (-1129))) 38)) (-3971 (((-620 (-1129)) $) 33)) (-3972 (($) 22)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3974 (((-620 (-1129)) $) 35)) (-3975 (((-1235) $ (-536)) 29) (((-1235) $) 30)) (-4325 (($ (-838) (-536)) 26) (($ (-838) (-536) (-838)) NIL)) (-4312 (((-838) $) 40) (($ (-838)) 24)) (-3382 (((-112) $ $) NIL))) +(((-1163) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -4325 ($ (-838) (-536) (-838))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -3973 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3969 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129))))))) (T -1163)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1163)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) (-4325 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) (-3975 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1163)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1163)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3972 (*1 *1) (-5 *1 (-1163))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3969 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -4325 ($ (-838) (-536) (-838))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -3973 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3969 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129)))))) +((-4312 (((-1163) |#1|) 11))) +(((-1164 |#1|) (-10 -7 (-15 -4312 ((-1163) |#1|))) (-1072)) (T -1164)) +((-4312 (*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1164 *3)) (-4 *3 (-1072))))) +(-10 -7 (-15 -4312 ((-1163) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3980 (((-1129) $ (-1129)) 17) (((-1129) $) 16)) (-1808 (((-1129) $ (-1129)) 15)) (-1812 (($ $ (-1129)) NIL)) (-3978 (((-3 (-1129) "failed") $) 11)) (-3979 (((-1129) $) 8)) (-3977 (((-3 (-1129) "failed") $) 12)) (-1809 (((-1129) $) 9)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) NIL)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3976 (((-112) $) 18)) (-4312 (((-838) $) NIL)) (-1811 (($ $) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1165) (-13 (-358 (-381) (-1129)) (-10 -8 (-15 -3980 ((-1129) $ (-1129))) (-15 -3980 ((-1129) $)) (-15 -3979 ((-1129) $)) (-15 -3978 ((-3 (-1129) "failed") $)) (-15 -3977 ((-3 (-1129) "failed") $)) (-15 -3976 ((-112) $))))) (T -1165)) +((-3980 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3978 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165))))) +(-13 (-358 (-381) (-1129)) (-10 -8 (-15 -3980 ((-1129) $ (-1129))) (-15 -3980 ((-1129) $)) (-15 -3979 ((-1129) $)) (-15 -3978 ((-3 (-1129) "failed") $)) (-15 -3977 ((-3 (-1129) "failed") $)) (-15 -3976 ((-112) $)))) +((-3981 (((-3 (-536) "failed") |#1|) 19)) (-3982 (((-3 (-536) "failed") |#1|) 14)) (-3983 (((-536) (-1129)) 28))) +(((-1166 |#1|) (-10 -7 (-15 -3981 ((-3 (-536) "failed") |#1|)) (-15 -3982 ((-3 (-536) "failed") |#1|)) (-15 -3983 ((-536) (-1129)))) (-1023)) (T -1166)) +((-3983 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-1166 *4)) (-4 *4 (-1023)))) (-3982 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023)))) (-3981 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) +(-10 -7 (-15 -3981 ((-3 (-536) "failed") |#1|)) (-15 -3982 ((-3 (-536) "failed") |#1|)) (-15 -3983 ((-536) (-1129)))) +((-3984 (((-1104 (-219))) 9))) +(((-1167) (-10 -7 (-15 -3984 ((-1104 (-219)))))) (T -1167)) +((-3984 (*1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1167))))) +(-10 -7 (-15 -3984 ((-1104 (-219))))) +((-3985 (($) 11)) (-3847 (($ $) 35)) (-3845 (($ $) 33)) (-3833 (($ $) 25)) (-3849 (($ $) 17)) (-3850 (($ $) 15)) (-3848 (($ $) 19)) (-3836 (($ $) 30)) (-3846 (($ $) 34)) (-3834 (($ $) 29))) +(((-1168 |#1|) (-10 -8 (-15 -3985 (|#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|))) (-1169)) (T -1168)) +NIL +(-10 -8 (-15 -3985 (|#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|))) +((-3841 (($ $) 26)) (-3997 (($ $) 11)) (-3839 (($ $) 27)) (-3996 (($ $) 10)) (-3843 (($ $) 28)) (-3995 (($ $) 9)) (-3985 (($) 16)) (-4297 (($ $) 19)) (-4298 (($ $) 18)) (-3844 (($ $) 29)) (-3994 (($ $) 8)) (-3842 (($ $) 30)) (-3993 (($ $) 7)) (-3840 (($ $) 31)) (-3992 (($ $) 6)) (-3847 (($ $) 20)) (-3835 (($ $) 32)) (-3845 (($ $) 21)) (-3833 (($ $) 33)) (-3849 (($ $) 22)) (-3837 (($ $) 34)) (-3850 (($ $) 23)) (-3838 (($ $) 35)) (-3848 (($ $) 24)) (-3836 (($ $) 36)) (-3846 (($ $) 25)) (-3834 (($ $) 37)) (** (($ $ $) 17))) +(((-1169) (-138)) (T -1169)) +((-3985 (*1 *1) (-4 *1 (-1169)))) +(-13 (-1172) (-94) (-484) (-35) (-277) (-10 -8 (-15 -3985 ($)))) +(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1172) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 17)) (-3990 (($ |#1| (-620 $)) 23) (($ (-620 |#1|)) 27) (($ |#1|) 25)) (-1269 (((-112) $ (-749)) 48)) (-3353 ((|#1| $ |#1|) 14 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 13 (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-2063 (((-620 |#1|) $) 52 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 43)) (-3355 (((-112) $ $) 33 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 41)) (-2506 (((-620 |#1|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4074 (((-112) $ (-749)) 40)) (-3358 (((-620 |#1|) $) 37)) (-3876 (((-112) $) 36)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 74)) (-3757 (((-112) $) 9)) (-3923 (($) 10)) (-4154 ((|#1| $ #1#) NIL)) (-3357 (((-536) $ $) 32)) (-3986 (((-620 $) $) 59)) (-3987 (((-112) $ $) 77)) (-3988 (((-620 $) $) 72)) (-3989 (($ $) 73)) (-3991 (((-112) $) 56)) (-2064 (((-749) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4348))) (((-749) |#1| $) 16 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 58)) (-4312 (((-838) $) 61 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 12)) (-3356 (((-112) $ $) 29 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 28 (|has| |#1| (-1072)))) (-4311 (((-749) $) 39 (|has| $ (-6 -4348))))) +(((-1170 |#1|) (-13 (-984 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -3990 ($ |#1| (-620 $))) (-15 -3990 ($ (-620 |#1|))) (-15 -3990 ($ |#1|)) (-15 -3991 ((-112) $)) (-15 -3989 ($ $)) (-15 -3988 ((-620 $) $)) (-15 -3987 ((-112) $ $)) (-15 -3986 ((-620 $) $)))) (-1072)) (T -1170)) +((-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3990 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1170 *2))) (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-1170 *3)))) (-3990 (*1 *1 *2) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3989 (*1 *1 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3987 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) +(-13 (-984 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -3990 ($ |#1| (-620 $))) (-15 -3990 ($ (-620 |#1|))) (-15 -3990 ($ |#1|)) (-15 -3991 ((-112) $)) (-15 -3989 ($ $)) (-15 -3988 ((-620 $) $)) (-15 -3987 ((-112) $ $)) (-15 -3986 ((-620 $) $)))) +((-3997 (($ $) 15)) (-3995 (($ $) 12)) (-3994 (($ $) 10)) (-3993 (($ $) 17))) +(((-1171 |#1|) (-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|))) (-1172)) (T -1171)) +NIL +(-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|))) +((-3997 (($ $) 11)) (-3996 (($ $) 10)) (-3995 (($ $) 9)) (-3994 (($ $) 8)) (-3993 (($ $) 7)) (-3992 (($ $) 6))) +(((-1172) (-138)) (T -1172)) +((-3997 (*1 *1 *1) (-4 *1 (-1172))) (-3996 (*1 *1 *1) (-4 *1 (-1172))) (-3995 (*1 *1 *1) (-4 *1 (-1172))) (-3994 (*1 *1 *1) (-4 *1 (-1172))) (-3993 (*1 *1 *1) (-4 *1 (-1172))) (-3992 (*1 *1 *1) (-4 *1 (-1172)))) +(-13 (-10 -8 (-15 -3992 ($ $)) (-15 -3993 ($ $)) (-15 -3994 ($ $)) (-15 -3995 ($ $)) (-15 -3996 ($ $)) (-15 -3997 ($ $)))) +((-4000 ((|#2| |#2|) 88)) (-4003 (((-112) |#2|) 26)) (-4001 ((|#2| |#2|) 30)) (-4002 ((|#2| |#2|) 32)) (-3998 ((|#2| |#2| (-1147)) 83) ((|#2| |#2|) 84)) (-4004 (((-166 |#2|) |#2|) 28)) (-3999 ((|#2| |#2| (-1147)) 85) ((|#2| |#2|) 86))) +(((-1173 |#1| |#2|) (-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4004 ((-166 |#2|) |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -1173)) +((-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-166 *3)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-3999 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-3998 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) +(-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4004 ((-166 |#2|) |#2|))) +((-4005 ((|#4| |#4| |#1|) 27)) (-4006 ((|#4| |#4| |#1|) 28))) +(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4005 (|#4| |#4| |#1|)) (-15 -4006 (|#4| |#4| |#1|))) (-543) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -1174)) +((-4006 (*1 *2 *2 *3) (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-4005 (*1 *2 *2 *3) (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(-10 -7 (-15 -4005 (|#4| |#4| |#1|)) (-15 -4006 (|#4| |#4| |#1|))) +((-4024 ((|#2| |#2|) 133)) (-4026 ((|#2| |#2|) 130)) (-4023 ((|#2| |#2|) 121)) (-4025 ((|#2| |#2|) 118)) (-4022 ((|#2| |#2|) 126)) (-4021 ((|#2| |#2|) 114)) (-4010 ((|#2| |#2|) 43)) (-4009 ((|#2| |#2|) 94)) (-4007 ((|#2| |#2|) 74)) (-4020 ((|#2| |#2|) 128)) (-4019 ((|#2| |#2|) 116)) (-4032 ((|#2| |#2|) 138)) (-4030 ((|#2| |#2|) 136)) (-4031 ((|#2| |#2|) 137)) (-4029 ((|#2| |#2|) 135)) (-4008 ((|#2| |#2|) 148)) (-4033 ((|#2| |#2|) 30 (-12 (|has| |#2| (-596 (-864 |#1|))) (|has| |#2| (-860 |#1|)) (|has| |#1| (-596 (-864 |#1|))) (|has| |#1| (-860 |#1|))))) (-4011 ((|#2| |#2|) 75)) (-4012 ((|#2| |#2|) 139)) (-4318 ((|#2| |#2|) 140)) (-4018 ((|#2| |#2|) 127)) (-4017 ((|#2| |#2|) 115)) (-4016 ((|#2| |#2|) 134)) (-4028 ((|#2| |#2|) 132)) (-4015 ((|#2| |#2|) 122)) (-4027 ((|#2| |#2|) 120)) (-4014 ((|#2| |#2|) 124)) (-4013 ((|#2| |#2|) 112))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-864 |#1|))) (IF (|has| |#2| (-596 (-864 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -4033 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-825) (-444)) (-13 (-414 |#1|) (-1169))) (T -1175)) +((-4033 (*1 *2 *2) (-12 (-4 *3 (-596 (-864 *3))) (-4 *3 (-860 *3)) (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-596 (-864 *3))) (-4 *2 (-860 *3)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4031 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4011 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169)))))) +(-10 -7 (-15 -4318 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-864 |#1|))) (IF (|has| |#2| (-596 (-864 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -4033 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4169 (((-920 |#1|) $ (-749)) 17) (((-920 |#1|) $ (-749) (-749)) NIL)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $ (-1147) (-749)) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) NIL)) (-3221 (($ $ (-620 (-1147)) (-620 (-522 (-1147)))) NIL) (($ $ (-1147) (-522 (-1147))) NIL) (($ |#1| (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $ (-1147)) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4034 (($ (-1 $) (-1147) |#1|) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4123 (($ $ (-749)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ (-1147) $) NIL) (($ $ (-620 (-1147)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL)) (-4165 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4302 (((-522 (-1147)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-1147)) NIL) (($ (-920 |#1|)) NIL)) (-4035 ((|#1| $ (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (((-920 |#1|) $ (-749)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1176 |#1|) (-13 (-719 |#1| (-1147)) (-10 -8 (-15 -4035 ((-920 |#1|) $ (-749))) (-15 -4312 ($ (-1147))) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ (-1147) |#1|)) (-15 -4034 ($ (-1 $) (-1147) |#1|))) |%noBranch|))) (-1023)) (T -1176)) +((-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-920 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1023)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-1176 *3)))) (-4167 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)))) (-4034 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1147)) (-5 *1 (-1176 *4)) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) +(-13 (-719 |#1| (-1147)) (-10 -8 (-15 -4035 ((-920 |#1|) $ (-749))) (-15 -4312 ($ (-1147))) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ (-1147) |#1|)) (-15 -4034 ($ (-1 $) (-1147) |#1|))) |%noBranch|))) +((-4051 (((-112) |#5| $) 60) (((-112) $) 102)) (-4046 ((|#5| |#5| $) 75)) (-4068 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4047 (((-620 |#5|) (-620 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3503 (((-3 $ "failed") (-620 |#5|)) 126)) (-4153 (((-3 $ "failed") $) 112)) (-4043 ((|#5| |#5| $) 94)) (-4052 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4041 ((|#5| |#5| $) 98)) (-4197 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4054 (((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) $) 55)) (-4053 (((-112) |#5| $) 58) (((-112) $) 103)) (-3526 ((|#4| $) 108)) (-4152 (((-3 |#5| "failed") $) 110)) (-4055 (((-620 |#5|) $) 49)) (-4049 (((-112) |#5| $) 67) (((-112) $) 107)) (-4044 ((|#5| |#5| $) 81)) (-4057 (((-112) $ $) 27)) (-4050 (((-112) |#5| $) 63) (((-112) $) 105)) (-4045 ((|#5| |#5| $) 78)) (-4155 (((-3 |#5| "failed") $) 109)) (-4123 (($ $ |#5|) 127)) (-4302 (((-749) $) 52)) (-3879 (($ (-620 |#5|)) 124)) (-3238 (($ $ |#4|) 122)) (-3240 (($ $ |#4|) 121)) (-4042 (($ $) 120)) (-4312 (((-838) $) NIL) (((-620 |#5|) $) 113)) (-4036 (((-749) $) 130)) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4048 (((-112) $ (-1 (-112) |#5| (-620 |#5|))) 100)) (-4038 (((-620 |#4|) $) 115)) (-4288 (((-112) |#4| $) 118)) (-3382 (((-112) $ $) 19))) +(((-1177 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4036 ((-749) |#1|)) (-15 -4123 (|#1| |#1| |#5|)) (-15 -4068 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4288 ((-112) |#4| |#1|)) (-15 -4038 ((-620 |#4|) |#1|)) (-15 -4153 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#5| "failed") |#1|)) (-15 -4155 ((-3 |#5| "failed") |#1|)) (-15 -4041 (|#5| |#5| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#5| |#5| |#1|)) (-15 -4044 (|#5| |#5| |#1|)) (-15 -4045 (|#5| |#5| |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 ((-620 |#5|) (-620 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4049 ((-112) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -4051 ((-112) |#1|)) (-15 -4048 ((-112) |#1| (-1 (-112) |#5| (-620 |#5|)))) (-15 -4049 ((-112) |#5| |#1|)) (-15 -4050 ((-112) |#5| |#1|)) (-15 -4051 ((-112) |#5| |#1|)) (-15 -4052 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4053 ((-112) |#1|)) (-15 -4053 ((-112) |#5| |#1|)) (-15 -4054 ((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) |#1|)) (-15 -4302 ((-749) |#1|)) (-15 -4055 ((-620 |#5|) |#1|)) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3526 (|#4| |#1|)) (-15 -3503 ((-3 |#1| "failed") (-620 |#5|))) (-15 -4312 ((-620 |#5|) |#1|)) (-15 -3879 (|#1| (-620 |#5|))) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4068 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-1178 |#2| |#3| |#4| |#5|) (-543) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -1177)) +NIL +(-10 -8 (-15 -4036 ((-749) |#1|)) (-15 -4123 (|#1| |#1| |#5|)) (-15 -4068 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4288 ((-112) |#4| |#1|)) (-15 -4038 ((-620 |#4|) |#1|)) (-15 -4153 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#5| "failed") |#1|)) (-15 -4155 ((-3 |#5| "failed") |#1|)) (-15 -4041 (|#5| |#5| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#5| |#5| |#1|)) (-15 -4044 (|#5| |#5| |#1|)) (-15 -4045 (|#5| |#5| |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 ((-620 |#5|) (-620 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4049 ((-112) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -4051 ((-112) |#1|)) (-15 -4048 ((-112) |#1| (-1 (-112) |#5| (-620 |#5|)))) (-15 -4049 ((-112) |#5| |#1|)) (-15 -4050 ((-112) |#5| |#1|)) (-15 -4051 ((-112) |#5| |#1|)) (-15 -4052 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4053 ((-112) |#1|)) (-15 -4053 ((-112) |#5| |#1|)) (-15 -4054 ((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) |#1|)) (-15 -4302 ((-749) |#1|)) (-15 -4055 ((-620 |#5|) |#1|)) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3526 (|#4| |#1|)) (-15 -3503 ((-3 |#1| "failed") (-620 |#5|))) (-15 -4312 ((-620 |#5|) |#1|)) (-15 -3879 (|#1| (-620 |#5|))) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4068 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) +((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| "failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ "failed") $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-4152 (((-3 |#4| "failed") $) 83)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| "failed") $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ "failed") $ |#4|) 78)) (-4123 (($ $ |#4|) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) +(((-1178 |#1| |#2| |#3| |#4|) (-138) (-543) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1178)) +((-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4056 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *8)))) (-5 *3 (-620 *8)) (-4 *1 (-1178 *5 *6 *7 *8)))) (-4056 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *9)))) (-5 *3 (-620 *9)) (-4 *1 (-1178 *6 *7 *8 *9)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *6)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-749)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-2 (|:| -4216 (-620 *6)) (|:| -1813 (-620 *6)))))) (-4053 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4052 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1178 *5 *6 *7 *3)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)))) (-4051 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4050 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4049 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4048 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-620 *7))) (-4 *1 (-1178 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4197 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1178 *5 *6 *7 *2)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *2 (-1037 *5 *6 *7)))) (-4047 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1178 *5 *6 *7 *8)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)))) (-4046 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4045 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4044 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4043 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4042 (*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) (-4041 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1178 *4 *5 *6 *7)))) (-4039 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| -4216 *1) (|:| -1813 (-620 *7))))) (-5 *3 (-620 *7)) (-4 *1 (-1178 *4 *5 *6 *7)))) (-4155 (*1 *2 *1) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4152 (*1 *2 *1) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4153 (*1 *1 *1) (|partial| -12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-4288 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *3 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) (-4068 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1178 *4 *5 *3 *2)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1037 *4 *5 *3)))) (-4037 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) +(-13 (-950 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -4057 ((-112) $ $)) (-15 -4056 ((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |t#4|))) "failed") (-620 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4056 ((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |t#4|))) "failed") (-620 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4055 ((-620 |t#4|) $)) (-15 -4302 ((-749) $)) (-15 -4054 ((-2 (|:| -4216 (-620 |t#4|)) (|:| -1813 (-620 |t#4|))) $)) (-15 -4053 ((-112) |t#4| $)) (-15 -4053 ((-112) $)) (-15 -4052 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4051 ((-112) |t#4| $)) (-15 -4050 ((-112) |t#4| $)) (-15 -4049 ((-112) |t#4| $)) (-15 -4048 ((-112) $ (-1 (-112) |t#4| (-620 |t#4|)))) (-15 -4051 ((-112) $)) (-15 -4050 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4197 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4047 ((-620 |t#4|) (-620 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4046 (|t#4| |t#4| $)) (-15 -4045 (|t#4| |t#4| $)) (-15 -4044 (|t#4| |t#4| $)) (-15 -4043 (|t#4| |t#4| $)) (-15 -4042 ($ $)) (-15 -4041 (|t#4| |t#4| $)) (-15 -4040 ((-620 $) (-620 |t#4|))) (-15 -4039 ((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |t#4|)))) (-620 |t#4|))) (-15 -4155 ((-3 |t#4| "failed") $)) (-15 -4152 ((-3 |t#4| "failed") $)) (-15 -4153 ((-3 $ "failed") $)) (-15 -4038 ((-620 |t#3|) $)) (-15 -4288 ((-112) |t#3| $)) (-15 -4068 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4037 ((-3 $ "failed") $ |t#4|)) (-15 -4123 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -4036 ((-749) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1183) . T)) +((-4063 (($ |#1| (-620 (-620 (-917 (-219)))) (-112)) 19)) (-4062 (((-112) $ (-112)) 18)) (-4061 (((-112) $) 17)) (-4059 (((-620 (-620 (-917 (-219)))) $) 13)) (-4058 ((|#1| $) 8)) (-4060 (((-112) $) 15))) +(((-1179 |#1|) (-10 -8 (-15 -4058 (|#1| $)) (-15 -4059 ((-620 (-620 (-917 (-219)))) $)) (-15 -4060 ((-112) $)) (-15 -4061 ((-112) $)) (-15 -4062 ((-112) $ (-112))) (-15 -4063 ($ |#1| (-620 (-620 (-917 (-219)))) (-112)))) (-948)) (T -1179)) +((-4063 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-112)) (-5 *1 (-1179 *2)) (-4 *2 (-948)))) (-4062 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4058 (*1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-948))))) +(-10 -8 (-15 -4058 (|#1| $)) (-15 -4059 ((-620 (-620 (-917 (-219)))) $)) (-15 -4060 ((-112) $)) (-15 -4061 ((-112) $)) (-15 -4062 ((-112) $ (-112))) (-15 -4063 ($ |#1| (-620 (-620 (-917 (-219)))) (-112)))) +((-4065 (((-917 (-219)) (-917 (-219))) 25)) (-4064 (((-917 (-219)) (-219) (-219) (-219) (-219)) 10)) (-4067 (((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219)))) 37)) (-4191 (((-219) (-917 (-219)) (-917 (-219))) 21)) (-4189 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 22)) (-4066 (((-620 (-620 (-219))) (-536)) 31)) (-4192 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 20)) (-4194 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 19)) (* (((-917 (-219)) (-219) (-917 (-219))) 18))) +(((-1180) (-10 -7 (-15 -4064 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -4194 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4192 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4191 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -4189 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4065 ((-917 (-219)) (-917 (-219)))) (-15 -4066 ((-620 (-620 (-219))) (-536))) (-15 -4067 ((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219))))))) (T -1180)) +((-4067 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-620 (-620 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 (-917 *4))) (-5 *1 (-1180)) (-5 *3 (-917 *4)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-1180)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4189 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4191 (*1 *2 *3 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1180)))) (-4192 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1180)))) (-4064 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)) (-5 *3 (-219))))) +(-10 -7 (-15 -4064 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -4194 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4192 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4191 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -4189 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4065 ((-917 (-219)) (-917 (-219)))) (-15 -4066 ((-620 (-620 (-219))) (-536))) (-15 -4067 ((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219)))))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4068 ((|#1| $ (-749)) 13)) (-4188 (((-749) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4312 (((-932 |#1|) $) 10) (($ (-932 |#1|)) 9) (((-838) $) 23 (|has| |#1| (-595 (-838))))) (-3382 (((-112) $ $) 16 (|has| |#1| (-1072))))) +(((-1181 |#1|) (-13 (-595 (-932 |#1|)) (-10 -8 (-15 -4312 ($ (-932 |#1|))) (-15 -4068 (|#1| $ (-749))) (-15 -4188 ((-749) $)) (IF (|has| |#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1181)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-932 *3)) (-4 *3 (-1183)) (-5 *1 (-1181 *3)))) (-4068 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1181 *2)) (-4 *2 (-1183)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1181 *3)) (-4 *3 (-1183))))) +(-13 (-595 (-932 |#1|)) (-10 -8 (-15 -4312 ($ (-932 |#1|))) (-15 -4068 (|#1| $ (-749))) (-15 -4188 ((-749) $)) (IF (|has| |#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) +((-4071 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)) 80)) (-4069 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 74)) (-4070 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 59))) +(((-1182 |#1|) (-10 -7 (-15 -4069 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4070 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4071 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)))) (-343)) (T -1182)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *5 (-343)) (-5 *2 (-398 (-1141 (-1141 *5)))) (-5 *1 (-1182 *5)) (-5 *3 (-1141 (-1141 *5))))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1141 (-1141 *4))))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1141 (-1141 *4)))))) +(-10 -7 (-15 -4069 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4070 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4071 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)))) +NIL +(((-1183) (-138)) (T -1183)) +NIL +(-13 (-10 -7 (-6 -2363))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 9) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1184) (-1054)) (T -1184)) +NIL +(-1054) +((-4075 (((-112)) 15)) (-4072 (((-1235) (-620 |#1|) (-620 |#1|)) 19) (((-1235) (-620 |#1|)) 20)) (-4077 (((-112) |#1| |#1|) 32 (|has| |#1| (-825)))) (-4074 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4076 ((|#1| (-620 |#1|)) 33 (|has| |#1| (-825))) ((|#1| (-620 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4073 (((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|)))) 17))) +(((-1185 |#1|) (-10 -7 (-15 -4072 ((-1235) (-620 |#1|))) (-15 -4072 ((-1235) (-620 |#1|) (-620 |#1|))) (-15 -4073 ((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|))))) (-15 -4074 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4074 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4076 (|#1| (-620 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4075 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -4076 (|#1| (-620 |#1|))) (-15 -4077 ((-112) |#1| |#1|))) |%noBranch|)) (-1072)) (T -1185)) +((-4077 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-825)) (-4 *3 (-1072)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-1185 *2)))) (-4075 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1185 *2)) (-4 *2 (-1072)))) (-4074 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1072)) (-5 *2 (-112)) (-5 *1 (-1185 *3)))) (-4074 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4073 (*1 *2) (-12 (-5 *2 (-2 (|:| -3575 (-620 *3)) (|:| -3574 (-620 *3)))) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4072 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4))))) +(-10 -7 (-15 -4072 ((-1235) (-620 |#1|))) (-15 -4072 ((-1235) (-620 |#1|) (-620 |#1|))) (-15 -4073 ((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|))))) (-15 -4074 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4074 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4076 (|#1| (-620 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4075 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -4076 (|#1| (-620 |#1|))) (-15 -4077 ((-112) |#1| |#1|))) |%noBranch|)) +((-4078 (((-1235) (-620 (-1147)) (-620 (-1147))) 13) (((-1235) (-620 (-1147))) 11)) (-4080 (((-1235)) 14)) (-4079 (((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) 18))) +(((-1186) (-10 -7 (-15 -4078 ((-1235) (-620 (-1147)))) (-15 -4078 ((-1235) (-620 (-1147)) (-620 (-1147)))) (-15 -4079 ((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147)))))) (-15 -4080 ((-1235))))) (T -1186)) +((-4080 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1186)))) (-4079 (*1 *2) (-12 (-5 *2 (-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) (-5 *1 (-1186)))) (-4078 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186))))) +(-10 -7 (-15 -4078 ((-1235) (-620 (-1147)))) (-15 -4078 ((-1235) (-620 (-1147)) (-620 (-1147)))) (-15 -4079 ((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147)))))) (-15 -4080 ((-1235)))) +((-4129 (($ $) 17)) (-4081 (((-112) $) 24))) +(((-1187 |#1|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4081 ((-112) |#1|))) (-1188)) (T -1187)) +NIL +(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4081 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-4081 (((-112) $) 51)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 48)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +(((-1188) (-138)) (T -1188)) +((-4081 (*1 *2 *1) (-12 (-4 *1 (-1188)) (-5 *2 (-112)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) (-4129 (*1 *1 *1) (-4 *1 (-1188))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188))))) +(-13 (-444) (-10 -8 (-15 -4081 ((-112) $)) (-15 -4324 ((-398 $) $)) (-15 -4129 ($ $)) (-15 -4087 ((-398 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 10)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-4125 (($ $ (-536)) NIL) (($ $ (-536) (-536)) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) NIL)) (-4086 (((-1219 |#1| |#2| |#3|) $) NIL)) (-4083 (((-3 (-1219 |#1| |#2| |#3|) "failed") $) NIL)) (-4084 (((-1219 |#1| |#2| |#3|) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1219 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-536) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-3502 (((-1219 |#1| |#2| |#3|) $) NIL) (((-1147) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-400 (-536)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-536) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-1219 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-1219 |#1| |#2| |#3|))) (|:| |vec| (-1229 (-1219 |#1| |#2| |#3|)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) NIL)) (-4082 (((-400 (-920 |#1|)) $ (-536)) NIL (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) NIL (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-860 (-536))) (|has| |#1| (-356)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-860 (-371))) (|has| |#1| (-356))))) (-4126 (((-536) $) NIL) (((-536) $ (-536)) NIL)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 17) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) (-1219 |#1| |#2| |#3|)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 25 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 26 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3460 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-286 (-1219 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1219 |#1| |#2| |#3|)) (-620 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) NIL) (($ $ $) NIL (|has| (-536) (-1083))) (($ $ (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1226 |#2|)) 24) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 23 (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-4302 (((-536) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-525) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-525))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-864 (-371)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1219 |#1| |#2| |#3|)) NIL) (($ (-1226 |#2|)) 22) (($ (-1147)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543)))) (($ (-400 (-536))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-536))))))) (-4035 ((|#1| $ (-536)) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 11)) (-3461 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2986 (($) 19 T CONST)) (-2992 (($) 15 T CONST)) (-2997 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3013 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 20)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1189 |#1| |#2| |#3|) (-13 (-1193 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1189)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1193 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-4313 (((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)) 23))) +(((-1190 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)))) (-1023) (-1023) (-1147) (-1147) |#1| |#2|) (T -1190)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1190 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1147))))) +(-10 -7 (-15 -4313 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 96) (($ $ (-536) (-536)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 171)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 169 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 168 (|has| |#1| (-543)))) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-536) $) 98) (((-536) $ (-536)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 170)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-536)) 59) (($ $ (-1053) (-536)) 74) (($ $ (-620 (-1053)) (-620 (-536))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-536)))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 102) (($ $ $) 79 (|has| (-536) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-4302 (((-536) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1191 |#1|) (-138) (-1023)) (T -1191)) +((-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) (-4 *1 (-1191 *3)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1191 *3)) (-4 *3 (-1023)))) (-4082 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) (-5 *2 (-400 (-920 *4))))) (-4082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) (-5 *2 (-400 (-920 *4))))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) +(-13 (-1208 |t#1| (-536)) (-10 -8 (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |t#1|))))) (-15 -4170 ($ (-1 |t#1| (-536)) $)) (IF (|has| |t#1| (-543)) (PROGN (-15 -4082 ((-400 (-920 |t#1|)) $ (-536))) (-15 -4082 ((-400 (-920 |t#1|)) $ (-536) (-536)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-536)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-536) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-536) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T)) +((-3534 (((-112) $) 12)) (-3503 (((-3 |#3| #1="failed") $) 17) (((-3 (-1147) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL)) (-3502 ((|#3| $) 14) (((-1147) $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL))) +(((-1192 |#1| |#2| |#3|) (-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1#) |#1|)) (-15 -3534 ((-112) |#1|))) (-1193 |#2| |#3|) (-1023) (-1222 |#2|)) (T -1192)) +NIL +(-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1#) |#1|)) (-15 -3534 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 ((|#2| $) 228 (-3186 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 96) (($ $ (-536) (-536)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 103)) (-4086 ((|#2| $) 264)) (-4083 (((-3 |#2| "failed") $) 260)) (-4084 ((|#2| $) 261)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 237 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 234 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) 246 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 171)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| #2="failed") $) 267) (((-3 (-536) #2#) $) 256 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) 254 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-1147) #2#) $) 239 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356))))) (-3502 ((|#2| $) 266) (((-536) $) 257 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-400 (-536)) $) 255 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-1147) $) 240 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356))))) (-4085 (($ $) 263) (($ (-536) $) 262)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-2357 (((-667 |#2|) (-667 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 216 (-3186 (|has| |#2| (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) 215 (-3186 (|has| |#2| (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) 32)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 169 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 168 (|has| |#1| (-543)))) (-3322 (($) 230 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3532 (((-112) $) 244 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 222 (-3186 (|has| |#2| (-860 (-371))) (|has| |#1| (-356)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 221 (-3186 (|has| |#2| (-860 (-536))) (|has| |#1| (-356))))) (-4126 (((-536) $) 98) (((-536) $ (-536)) 97)) (-2497 (((-112) $) 30)) (-3324 (($ $) 226 (|has| |#1| (-356)))) (-3326 ((|#2| $) 224 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) 258 (-3186 (|has| |#2| (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) 245 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 170)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-536)) 59) (($ $ (-1053) (-536)) 74) (($ $ (-620 (-1053)) (-620 (-536))) 73)) (-3672 (($ $ $) 248 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3673 (($ $ $) 249 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4313 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4133 (($ (-536) |#2|) 265)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3799 (($) 259 (-3186 (|has| |#2| (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3458 (($ $) 229 (-3186 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3460 ((|#2| $) 232 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) 235 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) 236 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) |#2|) 209 (-3186 (|has| |#2| (-505 (-1147) |#2|)) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 |#2|)) 208 (-3186 (|has| |#2| (-505 (-1147) |#2|)) (|has| |#1| (-356)))) (($ $ (-620 (-286 |#2|))) 207 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-286 |#2|)) 206 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-620 |#2|) (-620 |#2|)) 204 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 102) (($ $ $) 79 (|has| (-536) (-1083))) (($ $ |#2|) 203 (-3186 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 213 (|has| |#1| (-356))) (($ $ (-749)) 82 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 80 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) 87 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) 86 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) 85 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) 84 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) 227 (|has| |#1| (-356)))) (-3325 ((|#2| $) 225 (|has| |#1| (-356)))) (-4302 (((-536) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-219) $) 243 (-3186 (|has| |#2| (-994)) (|has| |#1| (-356)))) (((-371) $) 242 (-3186 (|has| |#2| (-994)) (|has| |#1| (-356)))) (((-525) $) 241 (-3186 (|has| |#2| (-596 (-525))) (|has| |#1| (-356)))) (((-864 (-371)) $) 220 (-3186 (|has| |#2| (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) 219 (-3186 (|has| |#2| (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 233 (-3186 (-3186 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#1| (-356))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1147)) 238 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356)))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 57)) (-3030 (((-3 $ "failed") $) 46 (-3886 (-3186 (-3886 (|has| |#2| (-143)) (-3186 (|has| $ (-143)) (|has| |#2| (-884)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3461 ((|#2| $) 231 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) 247 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 211 (|has| |#1| (-356))) (($ $ (-749)) 83 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 81 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) 91 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) 90 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) 89 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) 88 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) 251 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2892 (((-112) $ $) 252 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 250 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3013 (((-112) $ $) 253 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1193 |#1| |#2|) (-138) (-1023) (-1222 |t#1|)) (T -1193)) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)) (-5 *2 (-536)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1193 *3 *2)) (-4 *2 (-1222 *3)))) (-4133 (*1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *4 (-1023)) (-4 *1 (-1193 *4 *3)) (-4 *3 (-1222 *4)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3)))) (-4085 (*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1222 *2)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3)))) (-4083 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) +(-13 (-1191 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -4133 ($ (-536) |t#2|)) (-15 -4302 ((-536) $)) (-15 -4086 (|t#2| $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)) (-15 -4312 ($ |t#2|)) (-15 -4084 (|t#2| $)) (-15 -4083 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-965 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-536)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-596 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-596 (-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -3886 (|has| |#1| (-15 * (|#1| (-536) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-536) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-505 (-1147) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 |#2|) |has| |#1| (-356)) ((-626 $) . T) ((-619 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))) ((-619 |#2|) |has| |#1| (-356)) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 |#2|) |has| |#1| (-356)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-769) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-772) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-775) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-798) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-823) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-825) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-825))) (-12 (|has| |#1| (-356)) (|has| |#2| (-798)))) ((-874 (-1147)) -3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))) ((-860 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536)))) ((-858 |#2|) |has| |#1| (-356)) ((-884) -12 (|has| |#1| (-356)) (|has| |#2| (-884))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-965 |#2|) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-994) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-1012 (-400 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) ((-1012 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) ((-1012 (-1147)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))) ((-1012 |#2|) . T) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 |#2|) |has| |#1| (-356)) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) -12 (|has| |#1| (-356)) (|has| |#2| (-1122))) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1183) |has| |#1| (-356)) ((-1188) |has| |#1| (-356)) ((-1191 |#1|) . T) ((-1208 |#1| #1#) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 70)) (-3459 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 88)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 97) (($ $ (-536) (-536)) 99)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 47)) (-4086 ((|#2| $) 11)) (-4083 (((-3 |#2| "failed") $) 30)) (-4084 ((|#2| $) 31)) (-3841 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 57)) (-3843 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 172 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) 144) (((-3 (-536) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-3 (-1147) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))))) (-3502 ((|#2| $) 143) (((-536) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-400 (-536)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-1147) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))))) (-4085 (($ $) 61) (($ (-536) $) 24)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 |#2|) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536))))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))))) (-3816 (((-3 $ "failed") $) 77)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 112 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 114 (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-3220 (((-112) $) 64)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536)))))) (-4126 (((-536) $) 93) (((-536) $ (-536)) 95)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 ((|#2| $) 151 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1122))))) (-3533 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-4131 (($ $ (-893)) 136)) (-4170 (($ (-1 |#1| (-536)) $) 132)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 19) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3673 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-4313 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) |#2|) 10)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 145 (|has| |#1| (-356)))) (-4167 (($ $) 214 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 219 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3799 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1122))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3460 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 126)) (-3815 (((-3 $ "failed") $ $) 116 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) (($ $ (-620 (-1147)) (-620 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 91) (($ $ $) 79 (|has| (-536) (-1083))) (($ $ |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 137 (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147)) 140 (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 ((|#2| $) 152 (|has| |#1| (-356)))) (-4302 (((-536) $) 12)) (-3844 (($ $) 198 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 174 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 170 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 166 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-219) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-994)))) (((-371) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-994)))) (((-525) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525))))) (((-864 (-371)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-884))))) (-3219 (($ $) 124)) (-4312 (((-838) $) 245) (($ (-536)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147))))) (($ (-400 (-536))) 155 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 74)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-884))) (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))))) (-3456 (((-749)) 142)) (-4127 ((|#1| $) 90)) (-3461 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-3847 (($ $) 204 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 180 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 200 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 176 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 208 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 184 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 210 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 206 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 182 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 202 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 178 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-2986 (($) 13 T CONST)) (-2992 (($) 17 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))))) (-2891 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-2892 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3382 (((-112) $ $) 63)) (-3012 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3013 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-4192 (($ $) 213) (($ $ $) 68)) (-4194 (($ $ $) 66)) (** (($ $ (-893)) NIL) (($ $ (-749)) 73) (($ $ (-536)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 158 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1194 |#1| |#2|) (-1193 |#1| |#2|) (-1023) (-1222 |#1|)) (T -1194)) +NIL +(-1193 |#1| |#2|) +((-4089 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)) 12)) (-4088 (((-398 |#1|) |#1|) 22)) (-4087 (((-398 |#1|) |#1|) 21))) +(((-1195 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)))) (-1205 (-536))) (T -1195)) +((-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) +(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)))) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4091 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4313 (((-1124 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-823)))) (-3575 ((|#1| $) 14)) (-3577 ((|#1| $) 10)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3573 (((-536) $) 18)) (-3574 ((|#1| $) 17)) (-3576 ((|#1| $) 11)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4090 (((-112) $) 16)) (-4318 (((-1124 |#1|) $) 38 (|has| |#1| (-823))) (((-1124 |#1|) (-620 $)) 37 (|has| |#1| (-823)))) (-4325 (($ |#1|) 25)) (-4312 (($ (-1060 |#1|)) 24) (((-838) $) 34 (|has| |#1| (-1072)))) (-4092 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3578 (($ $ (-536)) 13)) (-3382 (((-112) $ $) 27 (|has| |#1| (-1072))))) +(((-1196 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -4092 ($ |#1|)) (-15 -4091 ($ |#1|)) (-15 -4312 ($ (-1060 |#1|))) (-15 -4090 ((-112) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-1124 |#1|))) |%noBranch|))) (-1183)) (T -1196)) +((-4092 (*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183)))) (-4091 (*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1183)) (-5 *1 (-1196 *3)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1183))))) +(-13 (-1065 |#1|) (-10 -8 (-15 -4092 ($ |#1|)) (-15 -4091 ($ |#1|)) (-15 -4312 ($ (-1060 |#1|))) (-15 -4090 ((-112) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-1124 |#1|))) |%noBranch|))) +((-4313 (((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|)) 23 (|has| |#1| (-823))) (((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|)) 17))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -4313 ((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) |%noBranch|)) (-1183) (-1183)) (T -1197)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1197 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1196 *6)) (-5 *1 (-1197 *5 *6))))) +(-10 -7 (-15 -4313 ((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) |%noBranch|)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4121 (((-1229 |#2|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#2|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) NIL (|has| |#2| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2889 (($ $ $) NIL (|has| |#2| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#2| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) NIL (|has| |#2| (-543)))) (-4107 (((-2 (|:| -4308 |#2|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#2| (-356)))) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1053)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#2| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#2| (-1122)))) (-3415 (($ (-1141 |#2|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) 17) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4120 (((-1141 |#2|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#2| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#2| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-4093 (($ $ (-749) |#2| $) NIL)) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#2|) NIL) (($ $ (-620 (-1053)) (-620 |#2|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#2| (-356)))) (-4154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-543))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1053)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#2| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#2| (-543)))) (-4312 (((-838) $) 13) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-1053)) NIL) (($ (-1226 |#1|)) 19) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) 14 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1198 |#1| |#2|) (-13 (-1205 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))) (-15 -4093 ($ $ (-749) |#2| $)))) (-1147) (-1023)) (T -1198)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-1023)))) (-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1147)) (-4 *3 (-1023))))) +(-13 (-1205 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))) (-15 -4093 ($ $ (-749) |#2| $)))) +((-4313 (((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)) 15))) +(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)))) (-1147) (-1023) (-1147) (-1023)) (T -1199)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1147)) (-4 *6 (-1023)) (-4 *8 (-1023)) (-5 *2 (-1198 *7 *8)) (-5 *1 (-1199 *5 *6 *7 *8)) (-14 *7 (-1147))))) +(-10 -7 (-15 -4313 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4094 ((|#1| |#3|) 13)) (-4095 ((|#3| |#3|) 19))) +(((-1200 |#1| |#2| |#3|) (-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-543) (-965 |#1|) (-1205 |#2|)) (T -1200)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1200 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-1200 *3 *4 *2)) (-4 *2 (-1205 *4)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-1200 *2 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4098 (((-3 |#2| "failed") |#2| (-749) |#1|) 29)) (-4097 (((-3 |#2| "failed") |#2| (-749)) 30)) (-4100 (((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|) 43)) (-4101 (((-620 |#2|) |#2|) 45)) (-4099 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1201 |#1| |#2|) (-10 -7 (-15 -4097 ((-3 |#2| "failed") |#2| (-749))) (-15 -4098 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -4099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4100 ((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|)) (-15 -4101 ((-620 |#2|) |#2|))) (-13 (-543) (-145)) (-1205 |#1|)) (T -1201)) +((-4101 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-620 *3)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-1205 *4)))) (-4100 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-1201 *4 *3)) (-4 *3 (-1205 *4)))) (-4099 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1205 *3)))) (-4098 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4)))) (-4097 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) +(-10 -7 (-15 -4097 ((-3 |#2| "failed") |#2| (-749))) (-15 -4098 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -4099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4100 ((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|)) (-15 -4101 ((-620 |#2|) |#2|))) +((-4102 (((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|) 32))) +(((-1202 |#1| |#2|) (-10 -7 (-15 -4102 ((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|))) (-543) (-1205 |#1|)) (T -1202)) +((-4102 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1205 *4))))) +(-10 -7 (-15 -4102 ((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|))) +((-4103 ((|#2| |#2| |#2|) 19)) (-4104 ((|#2| |#2| |#2|) 30)) (-4105 ((|#2| |#2| |#2| (-749) (-749)) 36))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -4103 (|#2| |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -4105 (|#2| |#2| |#2| (-749) (-749)))) (-1023) (-1205 |#1|)) (T -1203)) +((-4105 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1205 *4)))) (-4104 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3)))) (-4103 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) +(-10 -7 (-15 -4103 (|#2| |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -4105 (|#2| |#2| |#2| (-749) (-749)))) +((-4121 (((-1229 |#2|) $ (-749)) 114)) (-3412 (((-620 (-1053)) $) 15)) (-4119 (($ (-1141 |#2|)) 67)) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) 18)) (-3035 (((-398 (-1141 $)) (-1141 $)) 185)) (-4129 (($ $) 175)) (-4324 (((-398 $) $) 173)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 82)) (-4115 (($ $ (-749)) 71)) (-4114 (($ $ (-749)) 73)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3503 (((-3 |#2| #1="failed") $) 117) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-1053) #1#) $) NIL)) (-3502 ((|#2| $) 115) (((-400 (-536)) $) NIL) (((-536) $) NIL) (((-1053) $) NIL)) (-4108 (($ $ $) 151)) (-4107 (((-2 (|:| -4308 |#2|) (|:| -2091 $) (|:| -3230 $)) $ $) 153)) (-4126 (((-749) $ $) 170)) (-3798 (((-3 $ "failed") $) 123)) (-3221 (($ |#2| (-749)) NIL) (($ $ (-1053) (-749)) 47) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) 42) (((-620 (-749)) $ (-620 (-1053))) 43)) (-4120 (((-1141 |#2|) $) 59)) (-3413 (((-3 (-1053) "failed") $) 40)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 70)) (-4167 (($ $) 197)) (-3799 (($) 119)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 182)) (-3033 (((-398 (-1141 $)) (-1141 $)) 88)) (-3034 (((-398 (-1141 $)) (-1141 $)) 86)) (-4087 (((-398 $) $) 107)) (-4122 (($ $ (-620 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#2|) 31) (($ $ (-620 (-1053)) (-620 |#2|)) 28) (($ $ (-1053) $) 25) (($ $ (-620 (-1053)) (-620 $)) 23)) (-1699 (((-749) $) 188)) (-4154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 191)) (-4165 (($ $ (-1053)) 140) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) 138) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) 16) (((-620 (-749)) $ (-620 (-1053))) 20)) (-3145 ((|#2| $) NIL) (($ $ (-1053)) 125)) (-4109 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-1053)) 51) (($ (-400 (-536))) NIL) (($ $) NIL))) +(((-1204 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4154 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -4154 (|#2| (-400 |#1|) |#2|)) (-15 -4106 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4107 ((-2 (|:| -4308 |#2|) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4109 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4109 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4126 ((-749) |#1| |#1|)) (-15 -4154 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4114 (|#1| |#1| (-749))) (-15 -4115 (|#1| |#1| (-749))) (-15 -4116 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| (-749))) (-15 -4119 (|#1| (-1141 |#2|))) (-15 -4120 ((-1141 |#2|) |#1|)) (-15 -4121 ((-1229 |#2|) |#1| (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| |#2|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3035 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3145 (|#1| |#1| (-1053))) (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3147 ((-749) |#1| (-620 (-1053)))) (-15 -3147 ((-749) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -3221 (|#1| |#1| (-1053) (-749))) (-15 -3148 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -3148 ((-749) |#1| (-1053))) (-15 -3413 ((-3 (-1053) "failed") |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -4302 ((-749) |#1| (-1053))) (-15 -3502 ((-1053) |#1|)) (-15 -3503 ((-3 (-1053) #1="failed") |#1|)) (-15 -4312 (|#1| (-1053))) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-1053) |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1053) |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 ((-749) |#1|)) (-15 -3221 (|#1| |#2| (-749))) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3148 ((-749) |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -4165 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1053) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1053)))) (-15 -4165 (|#1| |#1| (-1053))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1205 |#2|) (-1023)) (T -1204)) +NIL +(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4154 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -4154 (|#2| (-400 |#1|) |#2|)) (-15 -4106 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4107 ((-2 (|:| -4308 |#2|) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4109 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4109 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4126 ((-749) |#1| |#1|)) (-15 -4154 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4114 (|#1| |#1| (-749))) (-15 -4115 (|#1| |#1| (-749))) (-15 -4116 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| (-749))) (-15 -4119 (|#1| (-1141 |#2|))) (-15 -4120 ((-1141 |#2|) |#1|)) (-15 -4121 ((-1229 |#2|) |#1| (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| |#2|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3035 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3145 (|#1| |#1| (-1053))) (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3147 ((-749) |#1| (-620 (-1053)))) (-15 -3147 ((-749) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -3221 (|#1| |#1| (-1053) (-749))) (-15 -3148 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -3148 ((-749) |#1| (-1053))) (-15 -3413 ((-3 (-1053) "failed") |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -4302 ((-749) |#1| (-1053))) (-15 -3502 ((-1053) |#1|)) (-15 -3503 ((-3 (-1053) #1="failed") |#1|)) (-15 -4312 (|#1| (-1053))) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-1053) |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1053) |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 ((-749) |#1|)) (-15 -3221 (|#1| |#2| (-749))) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3148 ((-749) |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -4165 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1053) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1053)))) (-15 -4165 (|#1| |#1| (-1053))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4121 (((-1229 |#1|) $ (-749)) 236)) (-3412 (((-620 (-1053)) $) 108)) (-4119 (($ (-1141 |#1|)) 234)) (-3414 (((-1141 $) $ (-1053)) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 (-1053))) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-4110 (($ $ $) 221 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-1700 (((-112) $ $) 206 (|has| |#1| (-356)))) (-4115 (($ $ (-749)) 229)) (-4114 (($ $ (-749)) 228)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) 134)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) (((-1053) $) 133)) (-4111 (($ $ $ (-1053)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2889 (($ $ $) 210 (|has| |#1| (-356)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 209 (|has| |#1| (-356)))) (-4113 (($ $ $) 227)) (-4108 (($ $ $) 218 (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) 217 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 204 (|has| |#1| (-356)))) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1053)) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) 222 (|has| |#1| (-543)))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3798 (((-3 $ "failed") $) 202 (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) 115) (($ (-1141 $) (-1053)) 114)) (-4131 (($ $ (-749)) 233)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 213 (|has| |#1| (-356)))) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| (-749)) 151) (($ $ (-1053) (-749)) 117) (($ $ (-620 (-1053)) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) 118) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 231)) (-3148 (((-749) $) 168) (((-749) $ (-1053)) 120) (((-620 (-749)) $ (-620 (-1053))) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-4120 (((-1141 |#1|) $) 235)) (-3413 (((-3 (-1053) #4="failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 230)) (-3151 (((-3 (-620 $) #4#) $) 112)) (-3150 (((-3 (-620 $) #4#) $) 113)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) 111)) (-4167 (($ $) 214 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) 201 (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 211 (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 205 (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ (-1053) |#1|) 139) (($ $ (-620 (-1053)) (-620 |#1|)) 138) (($ $ (-1053) $) 137) (($ $ (-620 (-1053)) (-620 $)) 136)) (-1699 (((-749) $) 207 (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-543)))) (-4118 (((-3 $ "failed") $ (-749)) 232)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 208 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) 40) (($ $ (-620 (-1053))) 39) (($ $ (-1053) (-749)) 38) (($ $ (-620 (-1053)) (-620 (-749))) 37) (($ $ (-749)) 251) (($ $) 249) (($ $ (-1147)) 248 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 247 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 246 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 245 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4302 (((-749) $) 148) (((-749) $ (-1053)) 128) (((-620 (-749)) $ (-620 (-1053))) 127)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1053)) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ "failed") $ $) 220 (|has| |#1| (-543))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-543)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ (-1053)) 135) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ (-749)) 153) (($ $ (-1053) (-749)) 126) (($ $ (-620 (-1053)) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1053)) 36) (($ $ (-620 (-1053))) 35) (($ $ (-1053) (-749)) 34) (($ $ (-620 (-1053)) (-620 (-749))) 33) (($ $ (-749)) 252) (($ $) 250) (($ $ (-1147)) 244 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 243 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 242 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 241 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1205 |#1|) (-138) (-1023)) (T -1205)) +((-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-5 *2 (-1141 *3)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1023)) (-4 *1 (-1205 *3)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4118 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4117 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *3)))) (-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *4)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)))) (-4165 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170)))) (-4111 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170)))) (-4154 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)) (-5 *2 (-749)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4109 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4109 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) (-4108 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4107 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -4308 *3) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *3)))) (-4106 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1205 *3)))) (-4154 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536))))))) +(-13 (-924 |t#1| (-749) (-1053)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -4121 ((-1229 |t#1|) $ (-749))) (-15 -4120 ((-1141 |t#1|) $)) (-15 -4119 ($ (-1141 |t#1|))) (-15 -4131 ($ $ (-749))) (-15 -4118 ((-3 $ "failed") $ (-749))) (-15 -4117 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -4116 ((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749))) (-15 -4115 ($ $ (-749))) (-15 -4114 ($ $ (-749))) (-15 -4113 ($ $ $)) (-15 -4165 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4112 (|t#1| $)) (-15 -4111 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -4154 ((-400 $) (-400 $) (-400 $))) (-15 -4126 ((-749) $ $)) (-15 -4110 ($ $ $)) (-15 -4109 ((-3 $ "failed") $ $)) (-15 -4109 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -4108 ($ $ $)) (-15 -4107 ((-2 (|:| -4308 |t#1|) (|:| -2091 $) (|:| -3230 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4106 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4344) (-15 -4154 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (-15 -4167 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-749)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| (-1053) (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| (-1053) (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| (-1053) (-596 (-864 (-536))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-543)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #1#) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #3=(-1053) |#1|) . T) ((-505 #3# $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 #3#) . T) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| (-1053) (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| (-1053) (-860 (-536)))) ((-924 |#1| #1# #3#) . T) ((-884) |has| |#1| (-884)) ((-895) |has| |#1| (-356)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 #3#) . T) ((-1012 |#1|) . T) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-1122)) ((-1188) |has| |#1| (-884))) +((-4313 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) (-1023) (-1205 |#1|) (-1023) (-1205 |#3|)) (T -1206)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1205 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1205 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) +((-3412 (((-620 (-1053)) $) 28)) (-4314 (($ $) 25)) (-3221 (($ |#2| |#3|) NIL) (($ $ (-1053) |#3|) 22) (($ $ (-620 (-1053)) (-620 |#3|)) 21)) (-3222 (($ $) 14)) (-3520 ((|#2| $) 12)) (-4302 ((|#3| $) 10))) +(((-1207 |#1| |#2| |#3|) (-10 -8 (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 |#3|))) (-15 -3221 (|#1| |#1| (-1053) |#3|)) (-15 -4314 (|#1| |#1|)) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4302 (|#3| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3520 (|#2| |#1|))) (-1208 |#2| |#3|) (-1023) (-770)) (T -1207)) +NIL +(-10 -8 (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 |#3|))) (-15 -3221 (|#1| |#1| (-1053) |#3|)) (-15 -4314 (|#1| |#1|)) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4302 (|#3| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3520 (|#2| |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4128 (((-1124 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3220 (((-112) $) 71)) (-4126 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2497 (((-112) $) 30)) (-4131 (($ $ (-893)) 99)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59) (($ $ (-1053) |#2|) 74) (($ $ (-620 (-1053)) (-620 |#2|)) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4123 (($ $ |#2|) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4154 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4302 ((|#2| $) 62)) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-4124 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1208 |#1| |#2|) (-138) (-1023) (-770)) (T -1208)) +((-4128 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4154 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1147)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4126 (*1 *2 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4125 (*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4125 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4124 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4312 (*2 (-1147)))) (-4 *2 (-1023)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4122 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) +(-13 (-947 |t#1| |t#2| (-1053)) (-10 -8 (-15 -4128 ((-1124 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4154 (|t#1| $ |t#2|)) (-15 -4186 ((-1147) $)) (-15 -4127 (|t#1| $)) (-15 -4131 ($ $ (-893))) (-15 -4126 (|t#2| $)) (-15 -4126 (|t#2| $ |t#2|)) (-15 -4125 ($ $ |t#2|)) (-15 -4125 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4312 (|t#1| (-1147)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4124 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4123 ($ $ |t#2|)) (IF (|has| |t#2| (-1083)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4122 ((-1124 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1083)) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-947 |#1| |#2| (-1053)) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-4129 ((|#2| |#2|) 12)) (-4324 (((-398 |#2|) |#2|) 14)) (-4130 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))) 30))) +(((-1209 |#1| |#2|) (-10 -7 (-15 -4324 ((-398 |#2|) |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4130 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))))) (-543) (-13 (-1205 |#1|) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (T -1209)) +((-4130 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-536)))) (-4 *4 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (-4 *3 (-543)) (-5 *1 (-1209 *3 *4)))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-1205 *4) (-543) (-10 -8 (-15 -3490 ($ $ $)))))))) +(-10 -7 (-15 -4324 ((-398 |#2|) |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4130 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1189 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1219 |#1| |#2| |#3|) #1#) $) 22)) (-3502 (((-1189 |#1| |#2| |#3|) $) NIL) (((-1219 |#1| |#2| |#3|) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4135 (((-400 (-536)) $) 57)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) (-1189 |#1| |#2| |#3|)) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 30) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 (((-1189 |#1| |#2| |#3|) $) 60)) (-4132 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) NIL)) (-4133 (((-1189 |#1| |#2| |#3|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 39 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 40 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 38)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 89) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1189 |#1| |#2| |#3|)) 16) (($ (-1219 |#1| |#2| |#3|)) 17) (($ (-1226 |#2|)) 36) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 32 T CONST)) (-2992 (($) 26 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1210 |#1| |#2| |#3|) (-13 (-1214 |#1| (-1189 |#1| |#2| |#3|)) (-1012 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1210)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1214 |#1| (-1189 |#1| |#2| |#3|)) (-1012 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-4313 (((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)) 24))) +(((-1211 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) (-1023) (-1023) (-1147) (-1147) |#1| |#2|) (T -1211)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1211 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1147))))) +(-10 -7 (-15 -4313 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 96) (($ $ (-400 (-536)) (-400 (-536))) 95)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 169)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 98) (((-400 (-536)) $ (-400 (-536))) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99) (($ $ (-400 (-536))) 168)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-400 (-536))) 59) (($ $ (-1053) (-400 (-536))) 74) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 102) (($ $ $) 79 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1212 |#1|) (-138) (-1023)) (T -1212)) +((-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))) (-4 *4 (-1023)) (-4 *1 (-1212 *4)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-1212 *3)) (-4 *3 (-1023)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1212 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) +(-13 (-1208 |t#1| (-400 (-536))) (-10 -8 (-15 -4173 ($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |t#1|))))) (-15 -4131 ($ $ (-400 (-536)))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-536))) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-400 (-536)) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T)) +((-3534 (((-112) $) 12)) (-3503 (((-3 |#3| "failed") $) 17)) (-3502 ((|#3| $) 14))) +(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| "failed") |#1|)) (-15 -3534 ((-112) |#1|))) (-1214 |#2| |#3|) (-1023) (-1191 |#2|)) (T -1213)) +NIL +(-10 -8 (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| "failed") |#1|)) (-15 -3534 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 96) (($ $ (-400 (-536)) (-400 (-536))) 95)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 169)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| "failed") $) 180)) (-3502 ((|#2| $) 179)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4135 (((-400 (-536)) $) 177)) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) |#2|) 178)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 98) (((-400 (-536)) $ (-400 (-536))) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99) (($ $ (-400 (-536))) 168)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-400 (-536))) 59) (($ $ (-1053) (-400 (-536))) 74) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4134 ((|#2| $) 176)) (-4132 (((-3 |#2| "failed") $) 174)) (-4133 ((|#2| $) 175)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 102) (($ $ $) 79 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1214 |#1| |#2|) (-138) (-1023) (-1191 |t#1|)) (T -1214)) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) (-5 *2 (-400 (-536))))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1214 *3 *2)) (-4 *2 (-1191 *3)))) (-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-4 *4 (-1023)) (-4 *1 (-1214 *4 *3)) (-4 *3 (-1191 *4)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) (-5 *2 (-400 (-536))))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3)))) (-4132 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) +(-13 (-1212 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -4136 ($ (-400 (-536)) |t#2|)) (-15 -4135 ((-400 (-536)) $)) (-15 -4134 (|t#2| $)) (-15 -4302 ((-400 (-536)) $)) (-15 -4312 ($ |t#2|)) (-15 -4133 (|t#2| $)) (-15 -4132 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-536))) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-400 (-536)) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1012 |#2|) . T) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T) ((-1212 |#1|) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 96)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 106) (($ $ (-400 (-536)) (-400 (-536))) 108)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 51)) (-3841 (($ $) 180 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 156 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 176 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 152 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 61)) (-3843 (($ $) 184 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) NIL)) (-3502 ((|#2| $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 79)) (-4135 (((-400 (-536)) $) 13)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) |#2|) 11)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) 68)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 103) (((-400 (-536)) $ (-400 (-536))) 104)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 120) (($ $ (-400 (-536))) 118)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 31) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 115)) (-4297 (($ $) 150 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 ((|#2| $) 12)) (-4132 (((-3 |#2| "failed") $) 41)) (-4133 ((|#2| $) 42)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 93 (|has| |#1| (-356)))) (-4167 (($ $) 135 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 140 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 112)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 148 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 100) (($ $ $) 86 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 127 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 16)) (-3844 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 182 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 158 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 178 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 154 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 110)) (-4312 (((-838) $) NIL) (($ (-536)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-536))) 128 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 99)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 117)) (-4127 ((|#1| $) 98)) (-3847 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 172 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 198 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 174 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 170 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 166 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 21 T CONST)) (-2992 (($) 17 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 66)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-4192 (($ $) 131) (($ $ $) 72)) (-4194 (($ $ $) 70)) (** (($ $ (-893)) NIL) (($ $ (-749)) 76) (($ $ (-536)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 146 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1215 |#1| |#2|) (-1214 |#1| |#2|) (-1023) (-1191 |#1|)) (T -1215)) +NIL +(-1214 |#1| |#2|) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 34)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536))))) (((-3 (-1210 |#2| |#3| |#4|) #1#) $) 20)) (-3502 (((-536) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536))))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-4314 (($ $) 35)) (-3816 (((-3 $ "failed") $) 25)) (-3852 (($ $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-1716 (($ $ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 11)) (-4292 (((-112) $) NIL)) (-3221 (($ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3148 (((-312 |#2| |#3| |#4|) $) NIL)) (-1717 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-4313 (($ (-1 (-1210 |#2| |#3| |#4|) (-1210 |#2| |#3| |#4|)) $) NIL)) (-4138 (((-3 (-817 |#2|) "failed") $) 75)) (-3222 (($ $) NIL)) (-3520 (((-1210 |#2| |#3| |#4|) $) 18)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 (((-1210 |#2| |#3| |#4|) $) NIL)) (-3815 (((-3 $ "failed") $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-543))) (((-3 $ "failed") $ $) NIL)) (-4137 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $) 58)) (-4302 (((-312 |#2| |#3| |#4|) $) 14)) (-3145 (((-1210 |#2| |#3| |#4|) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-1210 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536)))) (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))))) (-4172 (((-620 (-1210 |#2| |#3| |#4|)) $) NIL)) (-4035 (((-1210 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-143)))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| (-1210 |#2| |#3| |#4|) (-170)))) (-2172 (((-112) $ $) NIL)) (-2986 (($) 63 T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-1210 |#2| |#3| |#4|)) NIL) (($ (-1210 |#2| |#3| |#4|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))))) +(((-1216 |#1| |#2| |#3| |#4|) (-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-543) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4137 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $)))) (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -1216)) +((-4138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-817 *4)) (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))))) (|:| |%type| (-1129)))) (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) +(-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-543) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4137 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $)))) +((-3756 ((|#2| $) 29)) (-4149 ((|#2| $) 18)) (-4151 (($ $) 36)) (-4139 (($ $ (-536)) 64)) (-1269 (((-112) $ (-749)) 33)) (-3353 ((|#2| $ |#2|) 61)) (-4140 ((|#2| $ |#2|) 59)) (-4142 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3354 (($ $ (-620 $)) 60)) (-4150 ((|#2| $) 17)) (-4153 (($ $) NIL) (($ $ (-749)) 42)) (-3359 (((-620 $) $) 26)) (-3355 (((-112) $ $) 50)) (-4077 (((-112) $ (-749)) 32)) (-4074 (((-112) $ (-749)) 31)) (-3876 (((-112) $) 28)) (-4152 ((|#2| $) 24) (($ $ (-749)) 46)) (-4154 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3991 (((-112) $) 22)) (-4146 (($ $) 39)) (-4144 (($ $) 65)) (-4147 (((-749) $) 41)) (-4148 (($ $) 40)) (-4156 (($ $ $) 58) (($ |#2| $) NIL)) (-3871 (((-620 $) $) 27)) (-3382 (((-112) $ $) 48)) (-4311 (((-749) $) 35))) +(((-1217 |#1| |#2|) (-10 -8 (-15 -4139 (|#1| |#1| (-536))) (-15 -4142 (|#2| |#1| "last" |#2|)) (-15 -4140 (|#2| |#1| |#2|)) (-15 -4142 (|#1| |#1| "rest" |#1|)) (-15 -4142 (|#2| |#1| "first" |#2|)) (-15 -4144 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -4150 (|#2| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3353 (|#2| |#1| |#2|)) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3354 (|#1| |#1| (-620 |#1|))) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) (-1218 |#2|) (-1183)) (T -1217)) +NIL +(-10 -8 (-15 -4139 (|#1| |#1| (-536))) (-15 -4142 (|#2| |#1| "last" |#2|)) (-15 -4140 (|#2| |#1| |#2|)) (-15 -4142 (|#1| |#1| "rest" |#1|)) (-15 -4142 (|#2| |#1| "first" |#2|)) (-15 -4144 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -4150 (|#2| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3353 (|#2| |#1| |#2|)) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3354 (|#1| |#1| (-620 |#1|))) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ "rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1218 |#1|) (-138) (-1183)) (T -1218)) +((-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4152 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4148 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4144 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4143 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4141 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4140 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4139 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) (-4 *3 (-1183))))) +(-13 (-984 |t#1|) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4156 ($ |t#1| $)) (-15 -4155 (|t#1| $)) (-15 -4154 (|t#1| $ "first")) (-15 -4155 ($ $ (-749))) (-15 -4153 ($ $)) (-15 -4154 ($ $ "rest")) (-15 -4153 ($ $ (-749))) (-15 -4152 (|t#1| $)) (-15 -4154 (|t#1| $ "last")) (-15 -4152 ($ $ (-749))) (-15 -4151 ($ $)) (-15 -4150 (|t#1| $)) (-15 -4149 (|t#1| $)) (-15 -4148 ($ $)) (-15 -4147 ((-749) $)) (-15 -4146 ($ $)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4145 ($ $ $)) (-15 -4145 ($ $ |t#1|)) (-15 -4144 ($ $)) (-15 -4143 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ "first" |t#1|)) (-15 -4141 ($ $ $)) (-15 -4142 ($ $ "rest" $)) (-15 -4140 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ "last" |t#1|)) (-15 -4139 ($ $ (-536)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 87)) (-4166 (((-1198 |#2| |#1|) $ (-749)) 73)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) 137 (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 122) (($ $ (-749) (-749)) 124)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 42)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 53) (($ (-1124 |#1|)) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4159 (($ $) 128)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4171 (($ $) 135)) (-4169 (((-920 |#1|) $ (-749)) 63) (((-920 |#1|) $ (-749) (-749)) 65)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) NIL) (((-749) $ (-749)) NIL)) (-2497 (((-112) $) NIL)) (-4162 (($ $) 112)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4158 (($ (-536) (-536) $) 130)) (-4131 (($ $ (-893)) 134)) (-4170 (($ (-1 |#1| (-536)) $) 106)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 15) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 94)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4163 (($ $) 110)) (-4164 (($ $) 108)) (-4157 (($ (-536) (-536) $) 132)) (-4167 (($ $) 145 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 151 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 146 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4160 (($ $ (-536) (-536)) 116)) (-4123 (($ $ (-749)) 118)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4161 (($ $) 114)) (-4122 (((-1124 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 91) (($ $ $) 126 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 103 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1226 |#2|)) 99)) (-4302 (((-749) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 120)) (-4312 (((-838) $) NIL) (($ (-536)) 24) (($ (-400 (-536))) 143 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 80) (($ (-1226 |#2|)) 20)) (-4172 (((-1124 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) 90)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 88)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 17 T CONST)) (-2992 (($) 13 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 102)) (-4194 (($ $ $) 18)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) +(((-1219 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (-15 -4164 ($ $)) (-15 -4163 ($ $)) (-15 -4162 ($ $)) (-15 -4161 ($ $)) (-15 -4160 ($ $ (-536) (-536))) (-15 -4159 ($ $)) (-15 -4158 ($ (-536) (-536) $)) (-15 -4157 ($ (-536) (-536) $)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1219)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-1219 *3 *4 *5)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4163 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4161 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4160 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4159 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4158 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4157 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) +(-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (-15 -4164 ($ $)) (-15 -4163 ($ $)) (-15 -4162 ($ $)) (-15 -4161 ($ $)) (-15 -4160 ($ $ (-536) (-536))) (-15 -4159 ($ $)) (-15 -4158 ($ (-536) (-536) $)) (-15 -4157 ($ (-536) (-536) $)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) +((-4313 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) (-1023) (-1023) (-1222 |#1|) (-1222 |#2|)) (T -1220)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *6 *4 *2)) (-4 *4 (-1222 *5))))) +(-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) +((-3534 (((-112) $) 15)) (-3841 (($ $) 92)) (-3997 (($ $) 68)) (-3839 (($ $) 88)) (-3996 (($ $) 64)) (-3843 (($ $) 96)) (-3995 (($ $) 72)) (-4297 (($ $) 62)) (-4298 (($ $) 60)) (-3844 (($ $) 98)) (-3994 (($ $) 74)) (-3842 (($ $) 94)) (-3993 (($ $) 70)) (-3840 (($ $) 90)) (-3992 (($ $) 66)) (-4312 (((-838) $) 48) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3847 (($ $) 104)) (-3835 (($ $) 80)) (-3845 (($ $) 100)) (-3833 (($ $) 76)) (-3849 (($ $) 108)) (-3837 (($ $) 84)) (-3850 (($ $) 110)) (-3838 (($ $) 86)) (-3848 (($ $) 106)) (-3836 (($ $) 82)) (-3846 (($ $) 102)) (-3834 (($ $) 78)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-536))) 58))) +(((-1221 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -3534 ((-112) |#1|)) (-15 -4312 ((-838) |#1|))) (-1222 |#2|) (-1023)) (T -1221)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -3534 ((-112) |#1|)) (-15 -4312 ((-838) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 96) (($ $ (-749) (-749)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 153) (($ (-1124 |#1|)) 151)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4171 (($ $) 150)) (-4169 (((-920 |#1|) $ (-749)) 148) (((-920 |#1|) $ (-749) (-749)) 147)) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) 98) (((-749) $ (-749)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 149)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-749)) 59) (($ $ (-1053) (-749)) 74) (($ $ (-620 (-1053)) (-620 (-749))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-4167 (($ $) 145 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 144 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-4123 (($ $ (-749)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 102) (($ $ $) 79 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-4302 (((-749) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4172 (((-1124 |#1|) $) 152)) (-4035 ((|#1| $ (-749)) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) +(((-1222 |#1|) (-138) (-1023)) (T -1222)) +((-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-5 *2 (-1124 *3)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) (-4171 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1222 *3)) (-4 *3 (-1023)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) (-4169 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) +(-13 (-1208 |t#1| (-749)) (-10 -8 (-15 -4173 ($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |t#1|))))) (-15 -4172 ((-1124 |t#1|) $)) (-15 -4173 ($ (-1124 |t#1|))) (-15 -4171 ($ $)) (-15 -4170 ($ (-1 |t#1| (-536)) $)) (-15 -4169 ((-920 |t#1|) $ (-749))) (-15 -4169 ((-920 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-749)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-749) |#1|))) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-749) (-1083)) ((-283) |has| |#1| (-543)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) |has| |#1| (-543)) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1208 |#1| #1#) . T)) +((-4176 (((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|))) 24)) (-4175 (((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4174 (((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|)) 13)) (-4179 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4178 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4180 ((|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|)) 54)) (-4181 (((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))) 61)) (-4177 ((|#2| |#2| |#2|) 43))) +(((-1223 |#1| |#2|) (-10 -7 (-15 -4174 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -4175 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4176 ((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|)))) (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4179 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4180 (|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|))) (-15 -4181 ((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))))) (-38 (-400 (-536))) (-1222 |#1|)) (T -1223)) +((-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 (-1 *6 (-620 *6)))) (-4 *5 (-38 (-400 (-536)))) (-4 *6 (-1222 *5)) (-5 *2 (-620 *6)) (-5 *1 (-1223 *5 *6)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-620 *2))) (-5 *4 (-620 *5)) (-4 *5 (-38 (-400 (-536)))) (-4 *2 (-1222 *5)) (-5 *1 (-1223 *5 *2)))) (-4179 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) (-4 *4 (-38 (-400 (-536)))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) (-4 *4 (-38 (-400 (-536)))))) (-4177 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-1222 *3)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-620 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-620 (-1124 *4)))) (-5 *1 (-1223 *4 *5)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) +(-10 -7 (-15 -4174 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -4175 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4176 ((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|)))) (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4179 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4180 (|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|))) (-15 -4181 ((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))))) +((-4183 ((|#2| |#4| (-749)) 30)) (-4182 ((|#4| |#2|) 25)) (-4185 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-543)))) (-4184 (((-1 |#4| (-620 |#4|)) |#3|) 46))) +(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 (|#4| |#2|)) (-15 -4183 (|#2| |#4| (-749))) (-15 -4184 ((-1 |#4| (-620 |#4|)) |#3|)) (IF (|has| |#1| (-543)) (-15 -4185 (|#4| (-400 |#2|))) |%noBranch|)) (-1023) (-1205 |#1|) (-636 |#2|) (-1222 |#1|)) (T -1224)) +((-4185 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-543)) (-4 *4 (-1023)) (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *5 *6 *2)) (-4 *6 (-636 *5)))) (-4184 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-1205 *4)) (-5 *2 (-1 *6 (-620 *6))) (-5 *1 (-1224 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1222 *4)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-1224 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1222 *5)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *3 (-1205 *4)) (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) +(-10 -7 (-15 -4182 (|#4| |#2|)) (-15 -4183 (|#2| |#4| (-749))) (-15 -4184 ((-1 |#4| (-620 |#4|)) |#3|)) (IF (|has| |#1| (-543)) (-15 -4185 (|#4| (-400 |#2|))) |%noBranch|)) +NIL +(((-1225) (-138)) (T -1225)) +NIL +(-13 (-10 -7 (-6 -2363))) +((-2893 (((-112) $ $) NIL)) (-4186 (((-1147)) 12)) (-3588 (((-1129) $) 17)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1147) $) 8)) (-3382 (((-112) $ $) 14))) +(((-1226 |#1|) (-13 (-1072) (-595 (-1147)) (-10 -8 (-15 -4312 ((-1147) $)) (-15 -4186 ((-1147))))) (-1147)) (T -1226)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2))) (-4186 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2)))) +(-13 (-1072) (-595 (-1147)) (-10 -8 (-15 -4312 ((-1147) $)) (-15 -4186 ((-1147))))) +((-4193 (($ (-749)) 18)) (-4190 (((-667 |#2|) $ $) 40)) (-4187 ((|#2| $) 48)) (-4188 ((|#2| $) 47)) (-4191 ((|#2| $ $) 35)) (-4189 (($ $ $) 44)) (-4192 (($ $) 22) (($ $ $) 28)) (-4194 (($ $ $) 15)) (* (($ (-536) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1227 |#1| |#2|) (-10 -8 (-15 -4187 (|#2| |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4190 ((-667 |#2|) |#1| |#1|)) (-15 -4191 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4193 (|#1| (-749))) (-15 -4194 (|#1| |#1| |#1|))) (-1228 |#2|) (-1183)) (T -1227)) +NIL +(-10 -8 (-15 -4187 (|#2| |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4190 ((-667 |#2|) |#1| |#1|)) (-15 -4191 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4193 (|#1| (-749))) (-15 -4194 (|#1| |#1| |#1|))) +((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749)) 112 (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) 105 (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4187 ((|#1| $) 102 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-4074 (((-112) $ (-749)) 10)) (-4188 ((|#1| $) 103 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-4191 ((|#1| $ $) 106 (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-4189 (($ $ $) 104 (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4192 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4194 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-536) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +(((-1228 |#1|) (-138) (-1183)) (T -1228)) +((-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-25)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1228 *3)) (-4 *3 (-23)) (-4 *3 (-1183)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-1023)) (-5 *2 (-667 *3)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4194 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4193 ($ (-749))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4192 ($ $)) (-15 -4192 ($ $ $)) (-15 * ($ (-536) $))) |%noBranch|) (IF (|has| |t#1| (-705)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-15 -4191 (|t#1| $ $)) (-15 -4190 ((-667 |t#1|) $ $)) (-15 -4189 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -4188 (|t#1| $)) (-15 -4187 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) +((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-4195 (($ (-620 |#1|)) 9)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 15 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) NIL (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 19 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 8)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1229 |#1|) (-13 (-1228 |#1|) (-10 -8 (-15 -4195 ($ (-620 |#1|))))) (-1183)) (T -1229)) +((-4195 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1229 *3))))) +(-13 (-1228 |#1|) (-10 -8 (-15 -4195 ($ (-620 |#1|))))) +((-4196 (((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|) 13)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|) 15)) (-4313 (((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)) 28) (((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 18))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -4196 ((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4313 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (-15 -4313 ((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)))) (-1183) (-1183)) (T -1230)) +((-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-1230 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1229 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-1229 *5)) (-5 *1 (-1230 *6 *5))))) +(-10 -7 (-15 -4196 ((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4313 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (-15 -4313 ((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)))) +((-4198 (((-460) (-620 (-620 (-917 (-219)))) (-620 (-254))) 21) (((-460) (-620 (-620 (-917 (-219))))) 20) (((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254))) 19)) (-4199 (((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254))) 27) (((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254))) 26)) (-4312 (((-1232) (-460)) 38))) +(((-1231) (-10 -7 (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4312 ((-1232) (-460))))) (T -1231)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4199 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *6 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *6 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231))))) +(-10 -7 (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4312 ((-1232) (-460)))) +((-2893 (((-112) $ $) NIL)) (-4217 (((-1129) $ (-1129)) 90) (((-1129) $ (-1129) (-1129)) 88) (((-1129) $ (-1129) (-620 (-1129))) 87)) (-4213 (($) 59)) (-4200 (((-1235) $ (-460) (-893)) 45)) (-4206 (((-1235) $ (-893) (-1129)) 73) (((-1235) $ (-893) (-848)) 74)) (-4228 (((-1235) $ (-893) (-371) (-371)) 48)) (-4238 (((-1235) $ (-1129)) 69)) (-4201 (((-1235) $ (-893) (-1129)) 78)) (-4202 (((-1235) $ (-893) (-371) (-371)) 49)) (-4239 (((-1235) $ (-893) (-893)) 46)) (-4219 (((-1235) $) 70)) (-4204 (((-1235) $ (-893) (-1129)) 77)) (-4208 (((-1235) $ (-460) (-893)) 31)) (-4205 (((-1235) $ (-893) (-1129)) 76)) (-4241 (((-620 (-254)) $) 23) (($ $ (-620 (-254))) 24)) (-4240 (((-1235) $ (-749) (-749)) 43)) (-4212 (($ $) 60) (($ (-460) (-620 (-254))) 61)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 38)) (-3589 (((-1091) $) NIL)) (-4209 (((-1229 (-3 (-460) "undefined")) $) 37)) (-4210 (((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $) 36)) (-4211 (((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536)) 68)) (-4214 (((-620 (-917 (-219))) $) NIL)) (-4207 (((-460) $ (-893)) 33)) (-4237 (((-1235) $ (-749) (-749) (-893) (-893)) 40)) (-4235 (((-1235) $ (-1129)) 79)) (-4203 (((-1235) $ (-893) (-1129)) 75)) (-4312 (((-838) $) 85)) (-4216 (((-1235) $) 80)) (-4234 (((-1235) $ (-893) (-1129)) 71) (((-1235) $ (-893) (-848)) 72)) (-3382 (((-112) $ $) NIL))) +(((-1232) (-13 (-1072) (-10 -8 (-15 -4214 ((-620 (-917 (-219))) $)) (-15 -4213 ($)) (-15 -4212 ($ $)) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4212 ($ (-460) (-620 (-254)))) (-15 -4211 ((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536))) (-15 -4210 ((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $)) (-15 -4209 ((-1229 (-3 (-460) "undefined")) $)) (-15 -4238 ((-1235) $ (-1129))) (-15 -4208 ((-1235) $ (-460) (-893))) (-15 -4207 ((-460) $ (-893))) (-15 -4234 ((-1235) $ (-893) (-1129))) (-15 -4234 ((-1235) $ (-893) (-848))) (-15 -4206 ((-1235) $ (-893) (-1129))) (-15 -4206 ((-1235) $ (-893) (-848))) (-15 -4205 ((-1235) $ (-893) (-1129))) (-15 -4204 ((-1235) $ (-893) (-1129))) (-15 -4203 ((-1235) $ (-893) (-1129))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4216 ((-1235) $)) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4202 ((-1235) $ (-893) (-371) (-371))) (-15 -4228 ((-1235) $ (-893) (-371) (-371))) (-15 -4201 ((-1235) $ (-893) (-1129))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4200 ((-1235) $ (-460) (-893))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4219 ((-1235) $)) (-15 -4215 ((-536) $)) (-15 -4312 ((-838) $))))) (T -1232)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1232)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-620 (-917 (-219)))) (-5 *1 (-1232)))) (-4213 (*1 *1) (-5 *1 (-1232))) (-4212 (*1 *1 *1) (-5 *1 (-1232))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) (-4212 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-620 (-254))) (-5 *1 (-1232)))) (-4211 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-893)) (-5 *4 (-219)) (-5 *5 (-536)) (-5 *6 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536))))) (-5 *1 (-1232)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-1229 (-3 (-460) "undefined"))) (-5 *1 (-1232)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4207 (*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-5 *2 (-460)) (-5 *1 (-1232)))) (-4234 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4234 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4205 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4204 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4237 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4202 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4228 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4201 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4200 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1232))))) +(-13 (-1072) (-10 -8 (-15 -4214 ((-620 (-917 (-219))) $)) (-15 -4213 ($)) (-15 -4212 ($ $)) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4212 ($ (-460) (-620 (-254)))) (-15 -4211 ((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536))) (-15 -4210 ((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $)) (-15 -4209 ((-1229 (-3 (-460) "undefined")) $)) (-15 -4238 ((-1235) $ (-1129))) (-15 -4208 ((-1235) $ (-460) (-893))) (-15 -4207 ((-460) $ (-893))) (-15 -4234 ((-1235) $ (-893) (-1129))) (-15 -4234 ((-1235) $ (-893) (-848))) (-15 -4206 ((-1235) $ (-893) (-1129))) (-15 -4206 ((-1235) $ (-893) (-848))) (-15 -4205 ((-1235) $ (-893) (-1129))) (-15 -4204 ((-1235) $ (-893) (-1129))) (-15 -4203 ((-1235) $ (-893) (-1129))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4216 ((-1235) $)) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4202 ((-1235) $ (-893) (-371) (-371))) (-15 -4228 ((-1235) $ (-893) (-371) (-371))) (-15 -4201 ((-1235) $ (-893) (-1129))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4200 ((-1235) $ (-460) (-893))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4219 ((-1235) $)) (-15 -4215 ((-536) $)) (-15 -4312 ((-838) $)))) +((-2893 (((-112) $ $) NIL)) (-4229 (((-1235) $ (-371)) 140) (((-1235) $ (-371) (-371) (-371)) 141)) (-4217 (((-1129) $ (-1129)) 148) (((-1129) $ (-1129) (-1129)) 146) (((-1129) $ (-1129) (-620 (-1129))) 145)) (-4245 (($) 50)) (-4236 (((-1235) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1235) $ (-536) (-536) (-371) (-371) (-371)) 117) (((-1235) $ (-371) (-371)) 118) (((-1235) $ (-371) (-371) (-371)) 125)) (-4248 (((-371)) 97) (((-371) (-371)) 98)) (-4250 (((-371)) 92) (((-371) (-371)) 94)) (-4249 (((-371)) 95) (((-371) (-371)) 96)) (-4246 (((-371)) 101) (((-371) (-371)) 102)) (-4247 (((-371)) 99) (((-371) (-371)) 100)) (-4228 (((-1235) $ (-371) (-371)) 142)) (-4238 (((-1235) $ (-1129)) 126)) (-4243 (((-1104 (-219)) $) 51) (($ $ (-1104 (-219))) 52)) (-4224 (((-1235) $ (-1129)) 154)) (-4223 (((-1235) $ (-1129)) 155)) (-4230 (((-1235) $ (-371) (-371)) 124) (((-1235) $ (-536) (-536)) 139)) (-4239 (((-1235) $ (-893) (-893)) 132)) (-4219 (((-1235) $) 112)) (-4227 (((-1235) $ (-1129)) 153)) (-4232 (((-1235) $ (-1129)) 109)) (-4241 (((-620 (-254)) $) 53) (($ $ (-620 (-254))) 54)) (-4240 (((-1235) $ (-749) (-749)) 131)) (-4242 (((-1235) $ (-749) (-917 (-219))) 160)) (-4244 (($ $) 56) (($ (-1104 (-219)) (-1129)) 57) (($ (-1104 (-219)) (-620 (-254))) 58)) (-4221 (((-1235) $ (-371) (-371) (-371)) 106)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 103)) (-4220 (((-1235) $ (-371)) 143)) (-4225 (((-1235) $ (-371)) 158)) (-3589 (((-1091) $) NIL)) (-4226 (((-1235) $ (-371)) 157)) (-4231 (((-1235) $ (-1129)) 111)) (-4237 (((-1235) $ (-749) (-749) (-893) (-893)) 130)) (-4233 (((-1235) $ (-1129)) 108)) (-4235 (((-1235) $ (-1129)) 110)) (-4218 (((-1235) $ (-155) (-155)) 129)) (-4312 (((-838) $) 137)) (-4216 (((-1235) $) 113)) (-4222 (((-1235) $ (-1129)) 156)) (-4234 (((-1235) $ (-1129)) 107)) (-3382 (((-112) $ $) NIL))) +(((-1233) (-13 (-1072) (-10 -8 (-15 -4250 ((-371))) (-15 -4250 ((-371) (-371))) (-15 -4249 ((-371))) (-15 -4249 ((-371) (-371))) (-15 -4248 ((-371))) (-15 -4248 ((-371) (-371))) (-15 -4247 ((-371))) (-15 -4247 ((-371) (-371))) (-15 -4246 ((-371))) (-15 -4246 ((-371) (-371))) (-15 -4245 ($)) (-15 -4244 ($ $)) (-15 -4244 ($ (-1104 (-219)) (-1129))) (-15 -4244 ($ (-1104 (-219)) (-620 (-254)))) (-15 -4243 ((-1104 (-219)) $)) (-15 -4243 ($ $ (-1104 (-219)))) (-15 -4242 ((-1235) $ (-749) (-917 (-219)))) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4238 ((-1235) $ (-1129))) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4236 ((-1235) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4236 ((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4236 ((-1235) $ (-536) (-536) (-371) (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371) (-371))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4234 ((-1235) $ (-1129))) (-15 -4233 ((-1235) $ (-1129))) (-15 -4232 ((-1235) $ (-1129))) (-15 -4231 ((-1235) $ (-1129))) (-15 -4230 ((-1235) $ (-371) (-371))) (-15 -4230 ((-1235) $ (-536) (-536))) (-15 -4229 ((-1235) $ (-371))) (-15 -4229 ((-1235) $ (-371) (-371) (-371))) (-15 -4228 ((-1235) $ (-371) (-371))) (-15 -4227 ((-1235) $ (-1129))) (-15 -4226 ((-1235) $ (-371))) (-15 -4225 ((-1235) $ (-371))) (-15 -4224 ((-1235) $ (-1129))) (-15 -4223 ((-1235) $ (-1129))) (-15 -4222 ((-1235) $ (-1129))) (-15 -4221 ((-1235) $ (-371) (-371) (-371))) (-15 -4220 ((-1235) $ (-371))) (-15 -4219 ((-1235) $)) (-15 -4218 ((-1235) $ (-155) (-155))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4216 ((-1235) $)) (-15 -4215 ((-536) $))))) (T -1233)) +((-4250 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4249 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4248 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4247 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4246 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4245 (*1 *1) (-5 *1 (-1233))) (-4244 (*1 *1 *1) (-5 *1 (-1233))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1129)) (-5 *1 (-1233)))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-620 (-254))) (-5 *1 (-1233)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) (-4243 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) (-4242 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) (-4240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4237 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-536)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4229 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4222 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4221 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4220 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1233))))) +(-13 (-1072) (-10 -8 (-15 -4250 ((-371))) (-15 -4250 ((-371) (-371))) (-15 -4249 ((-371))) (-15 -4249 ((-371) (-371))) (-15 -4248 ((-371))) (-15 -4248 ((-371) (-371))) (-15 -4247 ((-371))) (-15 -4247 ((-371) (-371))) (-15 -4246 ((-371))) (-15 -4246 ((-371) (-371))) (-15 -4245 ($)) (-15 -4244 ($ $)) (-15 -4244 ($ (-1104 (-219)) (-1129))) (-15 -4244 ($ (-1104 (-219)) (-620 (-254)))) (-15 -4243 ((-1104 (-219)) $)) (-15 -4243 ($ $ (-1104 (-219)))) (-15 -4242 ((-1235) $ (-749) (-917 (-219)))) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4238 ((-1235) $ (-1129))) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4236 ((-1235) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4236 ((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4236 ((-1235) $ (-536) (-536) (-371) (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371) (-371))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4234 ((-1235) $ (-1129))) (-15 -4233 ((-1235) $ (-1129))) (-15 -4232 ((-1235) $ (-1129))) (-15 -4231 ((-1235) $ (-1129))) (-15 -4230 ((-1235) $ (-371) (-371))) (-15 -4230 ((-1235) $ (-536) (-536))) (-15 -4229 ((-1235) $ (-371))) (-15 -4229 ((-1235) $ (-371) (-371) (-371))) (-15 -4228 ((-1235) $ (-371) (-371))) (-15 -4227 ((-1235) $ (-1129))) (-15 -4226 ((-1235) $ (-371))) (-15 -4225 ((-1235) $ (-371))) (-15 -4224 ((-1235) $ (-1129))) (-15 -4223 ((-1235) $ (-1129))) (-15 -4222 ((-1235) $ (-1129))) (-15 -4221 ((-1235) $ (-371) (-371) (-371))) (-15 -4220 ((-1235) $ (-371))) (-15 -4219 ((-1235) $)) (-15 -4218 ((-1235) $ (-155) (-155))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4216 ((-1235) $)) (-15 -4215 ((-536) $)))) +((-4259 (((-620 (-1129)) (-620 (-1129))) 94) (((-620 (-1129))) 90)) (-4260 (((-620 (-1129))) 88)) (-4257 (((-620 (-893)) (-620 (-893))) 63) (((-620 (-893))) 60)) (-4256 (((-620 (-749)) (-620 (-749))) 57) (((-620 (-749))) 53)) (-4258 (((-1235)) 65)) (-4262 (((-893) (-893)) 81) (((-893)) 80)) (-4261 (((-893) (-893)) 79) (((-893)) 78)) (-4254 (((-848) (-848)) 75) (((-848)) 74)) (-4264 (((-219)) 85) (((-219) (-371)) 87)) (-4263 (((-893)) 82) (((-893) (-893)) 83)) (-4255 (((-893) (-893)) 77) (((-893)) 76)) (-4251 (((-848) (-848)) 69) (((-848)) 67)) (-4252 (((-848) (-848)) 71) (((-848)) 70)) (-4253 (((-848) (-848)) 73) (((-848)) 72))) +(((-1234) (-10 -7 (-15 -4251 ((-848))) (-15 -4251 ((-848) (-848))) (-15 -4252 ((-848))) (-15 -4252 ((-848) (-848))) (-15 -4253 ((-848))) (-15 -4253 ((-848) (-848))) (-15 -4254 ((-848))) (-15 -4254 ((-848) (-848))) (-15 -4255 ((-893))) (-15 -4255 ((-893) (-893))) (-15 -4256 ((-620 (-749)))) (-15 -4256 ((-620 (-749)) (-620 (-749)))) (-15 -4257 ((-620 (-893)))) (-15 -4257 ((-620 (-893)) (-620 (-893)))) (-15 -4258 ((-1235))) (-15 -4259 ((-620 (-1129)))) (-15 -4259 ((-620 (-1129)) (-620 (-1129)))) (-15 -4260 ((-620 (-1129)))) (-15 -4261 ((-893))) (-15 -4262 ((-893))) (-15 -4261 ((-893) (-893))) (-15 -4262 ((-893) (-893))) (-15 -4263 ((-893) (-893))) (-15 -4263 ((-893))) (-15 -4264 ((-219) (-371))) (-15 -4264 ((-219))))) (T -1234)) +((-4264 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1234)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1234)))) (-4263 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4261 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4262 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4261 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4260 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4259 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4258 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1234)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) (-4257 (*1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) (-4256 (*1 *2 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) (-4256 (*1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4255 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4254 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4253 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4252 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4251 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) +(-10 -7 (-15 -4251 ((-848))) (-15 -4251 ((-848) (-848))) (-15 -4252 ((-848))) (-15 -4252 ((-848) (-848))) (-15 -4253 ((-848))) (-15 -4253 ((-848) (-848))) (-15 -4254 ((-848))) (-15 -4254 ((-848) (-848))) (-15 -4255 ((-893))) (-15 -4255 ((-893) (-893))) (-15 -4256 ((-620 (-749)))) (-15 -4256 ((-620 (-749)) (-620 (-749)))) (-15 -4257 ((-620 (-893)))) (-15 -4257 ((-620 (-893)) (-620 (-893)))) (-15 -4258 ((-1235))) (-15 -4259 ((-620 (-1129)))) (-15 -4259 ((-620 (-1129)) (-620 (-1129)))) (-15 -4260 ((-620 (-1129)))) (-15 -4261 ((-893))) (-15 -4262 ((-893))) (-15 -4261 ((-893) (-893))) (-15 -4262 ((-893) (-893))) (-15 -4263 ((-893) (-893))) (-15 -4263 ((-893))) (-15 -4264 ((-219) (-371))) (-15 -4264 ((-219)))) +((-4265 (($) 7)) (-4312 (((-838) $) 10))) +(((-1235) (-10 -8 (-15 -4265 ($)) (-15 -4312 ((-838) $)))) (T -1235)) +((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1235)))) (-4265 (*1 *1) (-5 *1 (-1235)))) +(-10 -8 (-15 -4265 ($)) (-15 -4312 ((-838) $))) +((-4303 (($ $ |#2|) 10))) +(((-1236 |#1| |#2|) (-10 -8 (-15 -4303 (|#1| |#1| |#2|))) (-1237 |#2|) (-356)) (T -1236)) +NIL +(-10 -8 (-15 -4303 (|#1| |#1| |#2|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4266 (((-133)) 28)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 29)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1237 |#1|) (-138) (-356)) (T -1237)) +((-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-356)))) (-4266 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) +(-13 (-696 |t#1|) (-10 -8 (-15 -4303 ($ $ |t#1|)) (-15 -4266 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) +((-4271 (((-620 (-1176 |#1|)) (-1147) (-1176 |#1|)) 74)) (-4269 (((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|))) 53)) (-4272 (((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))) 64)) (-4267 (((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749)) 55)) (-4270 (((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147)) 29)) (-4268 (((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749)) 54))) +(((-1238 |#1|) (-10 -7 (-15 -4267 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4268 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4269 ((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|)))) (-15 -4270 ((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147))) (-15 -4271 ((-620 (-1176 |#1|)) (-1147) (-1176 |#1|))) (-15 -4272 ((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))))) (-356)) (T -1238)) +((-4272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1238 *6)) (-5 *5 (-1124 *4)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-620 (-1176 *5))) (-5 *1 (-1238 *5)) (-5 *4 (-1176 *5)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 (-1141 (-920 *4)) (-920 *4))) (-5 *1 (-1238 *4)) (-4 *4 (-356)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-920 *5)))) (-5 *1 (-1238 *5)) (-5 *4 (-1124 (-920 *5))))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) (-5 *1 (-1238 *4)) (-4 *4 (-356)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) (-5 *1 (-1238 *4)) (-4 *4 (-356))))) +(-10 -7 (-15 -4267 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4268 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4269 ((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|)))) (-15 -4270 ((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147))) (-15 -4271 ((-620 (-1176 |#1|)) (-1147) (-1176 |#1|))) (-15 -4272 ((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))))) +((-4274 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 75)) (-4273 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 74))) +(((-1239 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) (-343) (-1205 |#1|) (-1205 |#2|) (-403 |#2| |#3|)) (T -1239)) +((-4274 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-1239 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-4273 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) +(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) +((-2893 (((-112) $ $) NIL)) (-4275 (((-1106) $) 11)) (-4276 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1240) (-13 (-1054) (-10 -8 (-15 -4276 ((-1106) $)) (-15 -4275 ((-1106) $))))) (T -1240)) +((-4276 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) +(-13 (-1054) (-10 -8 (-15 -4276 ((-1106) $)) (-15 -4275 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4277 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) +(((-1241) (-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $))))) (T -1241)) +((-4277 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1241))))) +(-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 43)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 64) (($ (-536)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3456 (((-749)) NIL)) (-4278 (((-1235) (-749)) 16)) (-2986 (($) 27 T CONST)) (-2992 (($) 67 T CONST)) (-3382 (((-112) $ $) 69)) (-4303 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) 71) (($ $ $) NIL)) (-4194 (($ $ $) 47)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-1242 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4312 ($ |#4|)) (-15 -4278 ((-1235) (-749))))) (-1023) (-825) (-771) (-924 |#1| |#3| |#2|) (-620 |#2|) (-620 (-749)) (-749)) (T -1242)) +((-4312 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4303 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-771)) (-14 *6 (-620 *3)) (-5 *1 (-1242 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-924 *2 *4 *3)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-924 *3 *5 *4)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-14 *8 (-620 *5)) (-5 *2 (-1235)) (-5 *1 (-1242 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-924 *4 *6 *5)) (-14 *9 (-620 *3)) (-14 *10 *3)))) +(-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4312 ($ |#4|)) (-15 -4278 ((-1235) (-749))))) +((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 88)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3228 (((-620 |#4|) (-620 |#4|) $) 25 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 70)) (-4043 ((|#4| |#4| $) 75)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-2063 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 76)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-4281 (((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-620 |#4|)) 35)) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) NIL)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-3 |#4| #1#) $) NIL)) (-4055 (((-620 |#4|) $) 50)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) 74)) (-4057 (((-112) $ $) 85)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 69)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) NIL)) (-4123 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 67)) (-3923 (($) 42)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) NIL)) (-3238 (($ $ |#3|) NIL)) (-3240 (($ $ |#3|) NIL)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) NIL) (((-620 |#4|) $) 57)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4280 (((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-620 |#4|)) 41)) (-4279 (((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-620 $) (-620 |#4|)) 66)) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-4288 (((-112) |#3| $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +(((-1243 |#1| |#2| |#3| |#4|) (-13 (-1178 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4281 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4281 ((-3 $ "failed") (-620 |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|))) (-15 -4279 ((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4279 ((-620 $) (-620 |#4|))))) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1243)) +((-4281 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8)))) (-4281 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) (-4280 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8)))) (-4280 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-620 (-1243 *6 *7 *8 *9))) (-5 *1 (-1243 *6 *7 *8 *9)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-1243 *4 *5 *6 *7))) (-5 *1 (-1243 *4 *5 *6 *7))))) +(-13 (-1178 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4281 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4281 ((-3 $ "failed") (-620 |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|))) (-15 -4279 ((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4279 ((-620 $) (-620 |#4|))))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 36)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1244 |#1|) (-138) (-1023)) (T -1244)) +((-4312 (*1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1023))))) +(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) +((-2893 (((-112) $ $) 60)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 45)) (-4301 (($ $ (-749)) 39)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ (-749)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ $) 63) (($ $ (-797 |#1|)) 49) (($ $ |#1|) 53)) (-3503 (((-3 (-797 |#1|) "failed") $) NIL)) (-3502 (((-797 |#1|) $) NIL)) (-4314 (($ $) 32)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) NIL)) (-4304 (($ $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) 31)) (-4291 (($ $) 33)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 12)) (-4309 (((-797 |#1|) $) NIL)) (-4310 (((-797 |#1|) $) 34)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (($ $ $) 62) (($ $ (-797 |#1|)) 51) (($ $ |#1|) 55)) (-1860 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-797 |#1|) $) 28)) (-3520 ((|#2| $) 30)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4302 (((-749) $) 36)) (-4307 (((-112) $) 40)) (-4306 ((|#2| $) NIL)) (-4312 (((-838) $) NIL) (($ (-797 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-536)) NIL)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-797 |#1|)) NIL)) (-4308 ((|#2| $ $) 65) ((|#2| $ (-797 |#1|)) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 13 T CONST)) (-2992 (($) 15 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3382 (((-112) $ $) 38)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 22)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-797 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1245 |#1| |#2|) (-13 (-377 |#2| (-797 |#1|)) (-1252 |#1| |#2|)) (-825) (-1023)) (T -1245)) +NIL +(-13 (-377 |#2| (-797 |#1|)) (-1252 |#1| |#2|)) +((-4297 ((|#3| |#3| (-749)) 23)) (-4298 ((|#3| |#3| (-749)) 27)) (-4282 ((|#3| |#3| |#3| (-749)) 28))) +(((-1246 |#1| |#2| |#3|) (-10 -7 (-15 -4298 (|#3| |#3| (-749))) (-15 -4297 (|#3| |#3| (-749))) (-15 -4282 (|#3| |#3| |#3| (-749)))) (-13 (-1023) (-696 (-400 (-536)))) (-825) (-1252 |#2| |#1|)) (T -1246)) +((-4282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) (-4297 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) (-4298 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4))))) +(-10 -7 (-15 -4298 (|#3| |#3| (-749))) (-15 -4297 (|#3| |#3| (-749))) (-15 -4282 (|#3| |#3| |#3| (-749)))) +((-4287 (((-112) $) 15)) (-4288 (((-112) $) 14)) (-4283 (($ $) 19) (($ $ (-749)) 20))) +(((-1247 |#1| |#2|) (-10 -8 (-15 -4283 (|#1| |#1| (-749))) (-15 -4283 (|#1| |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|))) (-1248 |#2|) (-356)) (T -1247)) +NIL +(-10 -8 (-15 -4283 (|#1| |#1| (-749))) (-15 -4283 (|#1| |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4287 (((-112) $) 91)) (-4284 (((-749)) 87)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 98)) (-3502 ((|#1| $) 97)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-1881 (($ $ (-749)) 84 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 81 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-4286 (((-112) $) 90)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-4285 (((-810 (-893))) 88)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 82 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) 96)) (-4302 (((-810 (-893)) $) 89)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 99)) (-3030 (((-3 $ "failed") $) 80 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-4288 (((-112) $) 92)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-4283 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62) (($ $ |#1|) 95)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1248 |#1|) (-138) (-356)) (T -1248)) +((-4288 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) (-4285 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) (-4284 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-749)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-4 *3 (-361))))) +(-13 (-356) (-1012 |t#1|) (-1237 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -4288 ((-112) $)) (-15 -4287 ((-112) $)) (-15 -4286 ((-112) $)) (-15 -4302 ((-810 (-893)) $)) (-15 -4285 ((-810 (-893)))) (-15 -4284 ((-749))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -4283 ($ $)) (-15 -4283 ($ $ (-749)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T) ((-1237 |#1|) . T)) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 38)) (-1367 (((-3 $ "failed") $ $) 19)) (-4290 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3891 (($) 17 T CONST)) (-4294 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3503 (((-3 (-797 |#1|) "failed") $) 62)) (-3502 (((-797 |#1|) $) 61)) (-3816 (((-3 $ "failed") $) 32)) (-4305 (((-112) $) 43)) (-4304 (($ $) 42)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 48)) (-4293 (($ (-797 |#1|) |#2|) 49)) (-4291 (($ $) 47)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-4309 (((-797 |#1|) $) 59)) (-4313 (($ (-1 |#2| |#2|) $) 39)) (-4295 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4307 (((-112) $) 45)) (-4306 ((|#2| $) 44)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4308 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1249 |#1| |#2|) (-138) (-825) (-1023)) (T -1249)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4))))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-797 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1023)))) (-4308 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (-4295 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4294 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4294 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4294 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4293 (*1 *1 *2 *3) (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1023)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4304 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4290 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)) (-4 *3 (-170)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-4 *4 (-170)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-620 *3))))) +(-13 (-1023) (-1244 |t#2|) (-1012 (-797 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4309 ((-797 |t#1|) $)) (-15 -4296 ((-2 (|:| |k| (-797 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4308 (|t#2| $ (-797 |t#1|))) (-15 -4308 (|t#2| $ $)) (-15 -4295 ($ $ |t#1|)) (-15 -4295 ($ $ (-797 |t#1|))) (-15 -4295 ($ $ $)) (-15 -4294 ($ $ |t#1|)) (-15 -4294 ($ $ (-797 |t#1|))) (-15 -4294 ($ $ $)) (-15 -4293 ($ (-797 |t#1|) |t#2|)) (-15 -4292 ((-112) $)) (-15 -4291 ($ $)) (-15 -4312 ($ |t#1|)) (-15 -4307 ((-112) $)) (-15 -4306 (|t#2| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4290 ($ $ $)) (-15 -4290 ($ $ (-749)))) |%noBranch|) (-15 -4313 ($ (-1 |t#2| |t#2|) $)) (-15 -4289 ((-620 |t#1|) $)) (IF (|has| |t#2| (-6 -4341)) (-6 -4341) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1244 |#2|) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 86)) (-4301 (($ $ (-749)) 89)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-749)) NIL (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-3503 (((-3 (-797 |#1|) #1="failed") $) NIL) (((-3 (-867 |#1|) #1#) $) NIL)) (-3502 (((-797 |#1|) $) NIL) (((-867 |#1|) $) NIL)) (-4314 (($ $) 88)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) 77)) (-4304 (($ $) 81)) (-4299 (($ $ $ (-749)) 90)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) NIL) (($ (-867 |#1|) |#2|) 26)) (-4291 (($ $) 103)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4309 (((-797 |#1|) $) NIL)) (-4310 (((-797 |#1|) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-4297 (($ $ (-749)) 97 (|has| |#2| (-696 (-400 (-536)))))) (-1860 (((-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-867 |#1|) $) 70)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4298 (($ $ (-749)) 94 (|has| |#2| (-696 (-400 (-536)))))) (-4302 (((-749) $) 87)) (-4307 (((-112) $) 71)) (-4306 ((|#2| $) 75)) (-4312 (((-838) $) 57) (($ (-536)) NIL) (($ |#2|) 51) (($ (-797 |#1|)) NIL) (($ |#1|) 59) (($ (-867 |#1|)) NIL) (($ (-642 |#1| |#2|)) 43) (((-1245 |#1| |#2|) $) 64) (((-1254 |#1| |#2|) $) 69)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-867 |#1|)) NIL)) (-4308 ((|#2| $ (-797 |#1|)) NIL) ((|#2| $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 21 T CONST)) (-2992 (($) 25 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4300 (((-3 (-642 |#1| |#2|) "failed") $) 102)) (-3382 (((-112) $ $) 65)) (-4192 (($ $) 96) (($ $ $) 95)) (-4194 (($ $ $) 20)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-867 |#1|)) NIL))) +(((-1250 |#1| |#2|) (-13 (-1252 |#1| |#2|) (-377 |#2| (-867 |#1|)) (-10 -8 (-15 -4312 ($ (-642 |#1| |#2|))) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1254 |#1| |#2|) $)) (-15 -4300 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -4299 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-536)))) (PROGN (-15 -4298 ($ $ (-749))) (-15 -4297 ($ $ (-749)))) |%noBranch|))) (-825) (-170)) (T -1250)) +((-4312 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-1250 *3 *4)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4300 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4299 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4298 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) (-4 *3 (-825)) (-4 *4 (-170)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) (-4 *3 (-825)) (-4 *4 (-170))))) +(-13 (-1252 |#1| |#2|) (-377 |#2| (-867 |#1|)) (-10 -8 (-15 -4312 ($ (-642 |#1| |#2|))) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1254 |#1| |#2|) $)) (-15 -4300 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -4299 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-536)))) (PROGN (-15 -4298 ($ $ (-749))) (-15 -4297 ($ $ (-749)))) |%noBranch|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 (-1147)) $) NIL)) (-4317 (($ (-1245 (-1147) |#1|)) NIL)) (-4301 (($ $ (-749)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-749)) NIL (|has| |#1| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ (-1147)) NIL) (($ $ (-797 (-1147))) NIL) (($ $ $) NIL)) (-3503 (((-3 (-797 (-1147)) "failed") $) NIL)) (-3502 (((-797 (-1147)) $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) NIL)) (-4304 (($ $) NIL)) (-2497 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 (-1147)) |#1|) NIL)) (-4291 (($ $) NIL)) (-4296 (((-2 (|:| |k| (-797 (-1147))) (|:| |c| |#1|)) $) NIL)) (-4309 (((-797 (-1147)) $) NIL)) (-4310 (((-797 (-1147)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4295 (($ $ (-1147)) NIL) (($ $ (-797 (-1147))) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4318 (((-1245 (-1147) |#1|) $) NIL)) (-4302 (((-749) $) NIL)) (-4307 (((-112) $) NIL)) (-4306 ((|#1| $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-797 (-1147))) NIL) (($ (-1147)) NIL)) (-4308 ((|#1| $ (-797 (-1147))) NIL) ((|#1| $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) NIL T CONST)) (-4316 (((-620 (-2 (|:| |k| (-1147)) (|:| |c| $))) $) NIL)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1147) $) NIL))) +(((-1251 |#1|) (-13 (-1252 (-1147) |#1|) (-10 -8 (-15 -4318 ((-1245 (-1147) |#1|) $)) (-15 -4317 ($ (-1245 (-1147) |#1|))) (-15 -4316 ((-620 (-2 (|:| |k| (-1147)) (|:| |c| $))) $)))) (-1023)) (T -1251)) +((-4318 (*1 *2 *1) (-12 (-5 *2 (-1245 (-1147) *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1245 (-1147) *3)) (-4 *3 (-1023)) (-5 *1 (-1251 *3)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-1147)) (|:| |c| (-1251 *3))))) (-5 *1 (-1251 *3)) (-4 *3 (-1023))))) +(-13 (-1252 #1=(-1147) |#1|) (-10 -8 (-15 -4318 ((-1245 #1# |#1|) $)) (-15 -4317 ($ (-1245 #1# |#1|))) (-15 -4316 ((-620 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 38)) (-4301 (($ $ (-749)) 71)) (-1367 (((-3 $ "failed") $ $) 19)) (-4290 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3891 (($) 17 T CONST)) (-4294 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3503 (((-3 (-797 |#1|) "failed") $) 62)) (-3502 (((-797 |#1|) $) 61)) (-3816 (((-3 $ "failed") $) 32)) (-4305 (((-112) $) 43)) (-4304 (($ $) 42)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 48)) (-4293 (($ (-797 |#1|) |#2|) 49)) (-4291 (($ $) 47)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-4309 (((-797 |#1|) $) 59)) (-4310 (((-797 |#1|) $) 73)) (-4313 (($ (-1 |#2| |#2|) $) 39)) (-4295 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 (((-749) $) 72)) (-4307 (((-112) $) 45)) (-4306 ((|#2| $) 44)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4308 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1252 |#1| |#2|) (-138) (-825) (-1023)) (T -1252)) +((-4310 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-749)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) +(-13 (-1249 |t#1| |t#2|) (-10 -8 (-15 -4310 ((-797 |t#1|) $)) (-15 -4302 ((-749) $)) (-15 -4301 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1244 |#2|) . T) ((-1249 |#1| |#2|) . T)) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) NIL)) (-3502 ((|#2| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 36)) (-4305 (((-112) $) 30)) (-4304 (($ $) 32)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ |#2| |#1|) NIL)) (-4309 ((|#2| $) 19)) (-4310 ((|#2| $) 16)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3222 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4307 (((-112) $) 27)) (-4306 ((|#1| $) 28)) (-4312 (((-838) $) 55) (($ (-536)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ |#2|) NIL)) (-4308 ((|#1| $ |#2|) 24)) (-3456 (((-749)) 14)) (-2986 (($) 25 T CONST)) (-2992 (($) 11 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3382 (((-112) $ $) 26)) (-4303 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 44)) (** (($ $ (-893)) NIL) (($ $ (-749)) 46)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4311 (((-749) $) 15))) +(((-1253 |#1| |#2|) (-13 (-1023) (-1244 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4311 ((-749) $)) (-15 -4312 ($ |#2|)) (-15 -4310 (|#2| $)) (-15 -4309 (|#2| $)) (-15 -4314 ($ $)) (-15 -4308 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -4306 (|#1| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4303 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023) (-821)) (T -1253)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-1253 *3 *4)) (-4 *4 (-821)))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-821)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4310 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)))) (-4309 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)))) (-4308 (*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4306 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4304 (*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-821))))) +(-13 (-1023) (-1244 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4311 ((-749) $)) (-15 -4312 ($ |#2|)) (-15 -4310 (|#2| $)) (-15 -4309 (|#2| $)) (-15 -4314 ($ $)) (-15 -4308 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -4306 (|#1| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4303 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) +((-2893 (((-112) $ $) 26)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 120)) (-4317 (($ (-1245 |#1| |#2|)) 44)) (-4301 (($ $ (-749)) 32)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-749)) 46 (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ |#1|) 102) (($ $ (-797 |#1|)) 103) (($ $ $) 25)) (-3503 (((-3 (-797 |#1|) "failed") $) NIL)) (-3502 (((-797 |#1|) $) NIL)) (-3816 (((-3 $ "failed") $) 110)) (-4305 (((-112) $) 105)) (-4304 (($ $) 106)) (-2497 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) 19)) (-4291 (($ $) NIL)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4309 (((-797 |#1|) $) 111)) (-4310 (((-797 |#1|) $) 114)) (-4313 (($ (-1 |#2| |#2|) $) 119)) (-4295 (($ $ |#1|) 100) (($ $ (-797 |#1|)) 101) (($ $ $) 56)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4318 (((-1245 |#1| |#2|) $) 84)) (-4302 (((-749) $) 117)) (-4307 (((-112) $) 70)) (-4306 ((|#2| $) 28)) (-4312 (((-838) $) 63) (($ (-536)) 77) (($ |#2|) 74) (($ (-797 |#1|)) 17) (($ |#1|) 73)) (-4308 ((|#2| $ (-797 |#1|)) 104) ((|#2| $ $) 27)) (-3456 (((-749)) 108)) (-2986 (($) 14 T CONST)) (-4316 (((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 13)) (-4192 (($ $) 88) (($ $ $) 91)) (-4194 (($ $ $) 55)) (** (($ $ (-893)) NIL) (($ $ (-749)) 49)) (* (($ (-893) $) NIL) (($ (-749) $) 47) (($ (-536) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1254 |#1| |#2|) (-13 (-1252 |#1| |#2|) (-10 -8 (-15 -4318 ((-1245 |#1| |#2|) $)) (-15 -4317 ($ (-1245 |#1| |#2|))) (-15 -4316 ((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-825) (-1023)) (T -1254)) +((-4318 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *1 (-1254 *3 *4)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| *3) (|:| |c| (-1254 *3 *4))))) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) +(-13 (-1252 |#1| |#2|) (-10 -8 (-15 -4318 ((-1245 |#1| |#2|) $)) (-15 -4317 ($ (-1245 |#1| |#2|))) (-15 -4316 ((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4319 (((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)) 15) (((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|))) 11))) +(((-1255 |#1|) (-10 -7 (-15 -4319 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -4319 ((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)))) (-1183)) (T -1255)) +((-4319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-620 (-1124 *5)) (-620 (-1124 *5)))) (-5 *4 (-536)) (-5 *2 (-620 (-1124 *5))) (-5 *1 (-1255 *5)) (-4 *5 (-1183)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1255 *4)) (-4 *4 (-1183))))) +(-10 -7 (-15 -4319 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -4319 ((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)))) +((-4321 (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|))) 148) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112)) 147) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)) 146) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112)) 145) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|)) 130)) (-4320 (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|))) 72) (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112)) 71) (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112)) 70)) (-4324 (((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|)) 61)) (-4322 (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|))) 115) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112)) 114) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112)) 113) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112)) 112) (((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|)) 107)) (-4323 (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|))) 120) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112)) 119) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112)) 118) (((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|)) 117)) (-4325 (((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) 98) (((-1141 (-998 (-400 |#1|))) (-1141 |#1|)) 89) (((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|))) 96) (((-920 (-998 (-400 |#1|))) (-920 |#1|)) 94) (((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|))) 33))) +(((-1256 |#1| |#2| |#3|) (-10 -7 (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4324 ((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|))) (-15 -4325 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-920 |#1|))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -4325 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -4325 ((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) (-13 (-823) (-300) (-145) (-994)) (-620 (-1147)) (-620 (-1147))) (T -1256)) +((-4325 (*1 *2 *3) (-12 (-5 *3 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-758 *4 (-839 *6)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4323 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4321 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1256 *4 *5 *6)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4320 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *4 *5))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4320 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4320 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147)))))) +(-10 -7 (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4324 ((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|))) (-15 -4325 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-920 |#1|))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -4325 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -4325 ((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) +((-4328 (((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|) 21)) (-4326 (((-112) (-1229 |#1|)) 12)) (-4327 (((-3 (-1229 (-536)) "failed") (-1229 |#1|)) 16))) +(((-1257 |#1|) (-10 -7 (-15 -4326 ((-112) (-1229 |#1|))) (-15 -4327 ((-3 (-1229 (-536)) "failed") (-1229 |#1|))) (-15 -4328 ((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|))) (-619 (-536))) (T -1257)) +((-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-1229 (-400 (-536)))) (-5 *1 (-1257 *4)))) (-4327 (*1 *2 *3) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-1229 (-536))) (-5 *1 (-1257 *4)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-112)) (-5 *1 (-1257 *4))))) +(-10 -7 (-15 -4326 ((-112) (-1229 |#1|))) (-15 -4327 ((-3 (-1229 (-536)) "failed") (-1229 |#1|))) (-15 -4328 ((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|))) +((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 11)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) 8)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 43)) (-3322 (($) 36)) (-2497 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) 29)) (-2121 (((-893) $) 15)) (-3588 (((-1129) $) NIL)) (-3799 (($) 25 T CONST)) (-2487 (($ (-893)) 37)) (-3589 (((-1091) $) NIL)) (-4325 (((-536) $) 13)) (-4312 (((-838) $) 22) (($ (-536)) 19)) (-3456 (((-749)) 9)) (-2986 (($) 23 T CONST)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 27)) (-4192 (($ $) 38) (($ $ $) 35)) (-4194 (($ $ $) 26)) (** (($ $ (-893)) NIL) (($ $ (-749)) 40)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 32) (($ $ $) 31))) +(((-1258 |#1|) (-13 (-170) (-361) (-596 (-536)) (-1122)) (-893)) (T -1258)) +NIL +(-13 (-170) (-361) (-596 (-536)) (-1122)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3167300 3167305 3167310 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3167285 3167290 3167295 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3167270 3167275 3167280 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3167255 3167260 3167265 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1258 3166431 3167130 3167207 "ZMOD" 3167212 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1257 3165541 3165705 3165914 "ZLINDEP" 3166263 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1256 3154917 3156669 3158628 "ZDSOLVE" 3163683 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1255 3154163 3154304 3154493 "YSTREAM" 3154763 NIL YSTREAM (NIL T) -7 NIL NIL) (-1254 3151974 3153464 3153668 "XRPOLY" 3154006 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1253 3148466 3149749 3150333 "XPR" 3151437 NIL XPR (NIL T T) -8 NIL NIL) (-1252 3146315 3147649 3147704 "XPOLYC" 3147992 NIL XPOLYC (NIL T T) -9 NIL 3148105) (-1251 3144080 3145655 3145859 "XPOLY" 3146155 NIL XPOLY (NIL T) -8 NIL NIL) (-1250 3140500 3142597 3142985 "XPBWPOLY" 3143738 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1249 3135892 3137147 3137202 "XFALG" 3139374 NIL XFALG (NIL T T) -9 NIL 3140163) (-1248 3131879 3134125 3134167 "XF" 3134788 NIL XF (NIL T) -9 NIL 3135188) (-1247 3131500 3131588 3131757 "XF-" 3131762 NIL XF- (NIL T T) -8 NIL NIL) (-1246 3130633 3130737 3130942 "XEXPPKG" 3131392 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1245 3128777 3130483 3130579 "XDPOLY" 3130584 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1244 3127693 3128259 3128302 "XALG" 3128365 NIL XALG (NIL T) -9 NIL 3128485) (-1243 3121189 3125670 3126164 "WUTSET" 3127285 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1242 3119040 3119801 3120154 "WP" 3120970 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1241 3118669 3118862 3118932 "WHILEAST" 3118992 T WHILEAST (NIL) -8 NIL NIL) (-1240 3118168 3118386 3118480 "WHEREAST" 3118597 T WHEREAST (NIL) -8 NIL NIL) (-1239 3117054 3117252 3117547 "WFFINTBS" 3117965 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1238 3114958 3115385 3115847 "WEIER" 3116626 NIL WEIER (NIL T) -7 NIL NIL) (-1237 3114105 3114529 3114571 "VSPACE" 3114707 NIL VSPACE (NIL T) -9 NIL 3114781) (-1236 3113943 3113970 3114061 "VSPACE-" 3114066 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1235 3113689 3113732 3113803 "VOID" 3113894 T VOID (NIL) -8 NIL NIL) (-1234 3110114 3110752 3111489 "VIEWDEF" 3112974 T VIEWDEF (NIL) -7 NIL NIL) (-1233 3099452 3101662 3103835 "VIEW3D" 3107963 T VIEW3D (NIL) -8 NIL NIL) (-1232 3091734 3093363 3094942 "VIEW2D" 3097895 T VIEW2D (NIL) -8 NIL NIL) (-1231 3089870 3090229 3090635 "VIEW" 3091350 T VIEW (NIL) -7 NIL NIL) (-1230 3088447 3088706 3089024 "VECTOR2" 3089600 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1229 3083851 3088217 3088309 "VECTOR" 3088390 NIL VECTOR (NIL T) -8 NIL NIL) (-1228 3077378 3081635 3081678 "VECTCAT" 3082671 NIL VECTCAT (NIL T) -9 NIL 3083257) (-1227 3076392 3076646 3077036 "VECTCAT-" 3077041 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1226 3075873 3076043 3076163 "VARIABLE" 3076307 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1225 3075806 3075811 3075841 "UTYPE" 3075846 T UTYPE (NIL) -9 NIL NIL) (-1224 3074636 3074790 3075052 "UTSODETL" 3075632 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1223 3072076 3072536 3073060 "UTSODE" 3074177 NIL UTSODE (NIL T T) -7 NIL NIL) (-1222 3063449 3068768 3068811 "UTSCAT" 3069923 NIL UTSCAT (NIL T) -9 NIL 3070680) (-1221 3060803 3061519 3062508 "UTSCAT-" 3062513 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1220 3060430 3060473 3060606 "UTS2" 3060754 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1219 3052306 3058056 3058545 "UTS" 3059999 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1218 3046582 3049146 3049189 "URAGG" 3051259 NIL URAGG (NIL T) -9 NIL 3051981) (-1217 3043524 3044386 3045508 "URAGG-" 3045513 NIL URAGG- (NIL T T) -8 NIL NIL) (-1216 3039255 3042138 3042610 "UPXSSING" 3043188 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1215 3032370 3039159 3039231 "UPXSCONS" 3039236 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1214 3022730 3029473 3029535 "UPXSCCA" 3030191 NIL UPXSCCA (NIL T T) -9 NIL 3030433) (-1213 3022368 3022453 3022627 "UPXSCCA-" 3022632 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1212 3012654 3019170 3019213 "UPXSCAT" 3019861 NIL UPXSCAT (NIL T) -9 NIL 3020469) (-1211 3012084 3012163 3012342 "UPXS2" 3012569 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1210 3004058 3011199 3011481 "UPXS" 3011860 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1209 3002715 3002967 3003317 "UPSQFREE" 3003802 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1208 2996633 2999642 2999697 "UPSCAT" 3000858 NIL UPSCAT (NIL T T) -9 NIL 3001632) (-1207 2995837 2996044 2996371 "UPSCAT-" 2996376 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1206 2995464 2995507 2995640 "UPOLYC2" 2995788 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1205 2981588 2989551 2989594 "UPOLYC" 2991695 NIL UPOLYC (NIL T) -9 NIL 2992916) (-1204 2972953 2975366 2978501 "UPOLYC-" 2978506 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1203 2972292 2972399 2972563 "UPMP" 2972842 NIL UPMP (NIL T T) -7 NIL NIL) (-1202 2971845 2971926 2972065 "UPDIVP" 2972205 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1201 2970413 2970662 2970978 "UPDECOMP" 2971594 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1200 2969648 2969760 2969945 "UPCDEN" 2970297 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1199 2969167 2969236 2969385 "UP2" 2969573 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1198 2960664 2968733 2968871 "UP" 2969077 NIL UP (NIL NIL T) -8 NIL NIL) (-1197 2959879 2960006 2960211 "UNISEG2" 2960507 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1196 2958396 2959083 2959360 "UNISEG" 2959637 NIL UNISEG (NIL T) -8 NIL NIL) (-1195 2957456 2957636 2957862 "UNIFACT" 2958212 NIL UNIFACT (NIL T) -7 NIL NIL) (-1194 2945514 2957360 2957432 "ULSCONS" 2957437 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1193 2928334 2940253 2940315 "ULSCCAT" 2941035 NIL ULSCCAT (NIL T T) -9 NIL 2941332) (-1192 2927420 2927653 2928029 "ULSCCAT-" 2928034 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1191 2917483 2923913 2923956 "ULSCAT" 2924819 NIL ULSCAT (NIL T) -9 NIL 2925549) (-1190 2916913 2916992 2917171 "ULS2" 2917398 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1189 2900898 2916090 2916341 "ULS" 2916720 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1188 2899336 2900259 2900289 "UFD" 2900501 T UFD (NIL) -9 NIL 2900615) (-1187 2899130 2899176 2899271 "UFD-" 2899276 NIL UFD- (NIL T) -8 NIL NIL) (-1186 2898212 2898395 2898611 "UDVO" 2898936 T UDVO (NIL) -7 NIL NIL) (-1185 2896028 2896437 2896908 "UDPO" 2897776 NIL UDPO (NIL T) -7 NIL NIL) (-1184 2895815 2895983 2896014 "TYPEAST" 2896019 T TYPEAST (NIL) -8 NIL NIL) (-1183 2895748 2895753 2895783 "TYPE" 2895788 T TYPE (NIL) -9 NIL NIL) (-1182 2894719 2894921 2895161 "TWOFACT" 2895542 NIL TWOFACT (NIL T) -7 NIL NIL) (-1181 2893657 2893994 2894257 "TUPLE" 2894491 NIL TUPLE (NIL T) -8 NIL NIL) (-1180 2891348 2891867 2892406 "TUBETOOL" 2893140 T TUBETOOL (NIL) -7 NIL NIL) (-1179 2890197 2890402 2890643 "TUBE" 2891141 NIL TUBE (NIL T) -8 NIL NIL) (-1178 2878864 2882956 2883053 "TSETCAT" 2888322 NIL TSETCAT (NIL T T T T) -9 NIL 2889853) (-1177 2873598 2875196 2877087 "TSETCAT-" 2877092 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1176 2868362 2872570 2872853 "TS" 2873350 NIL TS (NIL T) -8 NIL NIL) (-1175 2862625 2863471 2864413 "TRMANIP" 2867498 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1174 2862066 2862129 2862292 "TRIMAT" 2862557 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1173 2859862 2860099 2860463 "TRIGMNIP" 2861815 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1172 2859382 2859495 2859525 "TRIGCAT" 2859738 T TRIGCAT (NIL) -9 NIL NIL) (-1171 2859051 2859130 2859271 "TRIGCAT-" 2859276 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1170 2855951 2857911 2858191 "TREE" 2858806 NIL TREE (NIL T) -8 NIL NIL) (-1169 2855225 2855753 2855783 "TRANFUN" 2855818 T TRANFUN (NIL) -9 NIL 2855884) (-1168 2854504 2854695 2854975 "TRANFUN-" 2854980 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1167 2854308 2854340 2854401 "TOPSP" 2854465 T TOPSP (NIL) -7 NIL NIL) (-1166 2853656 2853771 2853925 "TOOLSIGN" 2854189 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1165 2852317 2852833 2853072 "TEXTFILE" 2853439 T TEXTFILE (NIL) -8 NIL NIL) (-1164 2852098 2852129 2852201 "TEX1" 2852280 NIL TEX1 (NIL T) -7 NIL NIL) (-1163 2849963 2850477 2850915 "TEX" 2851682 T TEX (NIL) -8 NIL NIL) (-1162 2849611 2849674 2849764 "TEMUTL" 2849895 T TEMUTL (NIL) -7 NIL NIL) (-1161 2847765 2848045 2848370 "TBCMPPK" 2849334 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1160 2839655 2845925 2845981 "TBAGG" 2846381 NIL TBAGG (NIL T T) -9 NIL 2846592) (-1159 2834725 2836213 2837967 "TBAGG-" 2837972 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1158 2834109 2834216 2834361 "TANEXP" 2834614 NIL TANEXP (NIL T) -7 NIL NIL) (-1157 2833521 2833620 2833758 "TABLEAU" 2834006 NIL TABLEAU (NIL T) -8 NIL NIL) (-1156 2827024 2833378 2833471 "TABLE" 2833476 NIL TABLE (NIL T T) -8 NIL NIL) (-1155 2821632 2822852 2824100 "TABLBUMP" 2825810 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1154 2821060 2821160 2821288 "SYSTEM" 2821526 T SYSTEM (NIL) -7 NIL NIL) (-1153 2817523 2818218 2819001 "SYSSOLP" 2820311 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1152 2813815 2814522 2815256 "SYNTAX" 2816811 T SYNTAX (NIL) -8 NIL NIL) (-1151 2810973 2811575 2812207 "SYMTAB" 2813205 T SYMTAB (NIL) -8 NIL NIL) (-1150 2806246 2807142 2808119 "SYMS" 2810018 T SYMS (NIL) -8 NIL NIL) (-1149 2803528 2805707 2805937 "SYMPOLY" 2806054 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1148 2803045 2803120 2803243 "SYMFUNC" 2803440 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1147 2799022 2800282 2801104 "SYMBOL" 2802245 T SYMBOL (NIL) -8 NIL NIL) (-1146 2792561 2794250 2795970 "SWITCH" 2797324 T SWITCH (NIL) -8 NIL NIL) (-1145 2785831 2791382 2791685 "SUTS" 2792316 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1144 2777804 2784946 2785228 "SUPXS" 2785607 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1143 2776963 2777090 2777307 "SUPFRACF" 2777672 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1142 2776584 2776643 2776756 "SUP2" 2776898 NIL SUP2 (NIL T T) -7 NIL NIL) (-1141 2768153 2776202 2776328 "SUP" 2776493 NIL SUP (NIL T) -8 NIL NIL) (-1140 2766566 2766840 2767203 "SUMRF" 2767852 NIL SUMRF (NIL T) -7 NIL NIL) (-1139 2765880 2765946 2766145 "SUMFS" 2766487 NIL SUMFS (NIL T T) -7 NIL NIL) (-1138 2749905 2765057 2765308 "SULS" 2765687 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1137 2749534 2749727 2749797 "SUCHTAST" 2749857 T SUCHTAST (NIL) -8 NIL NIL) (-1136 2748856 2749059 2749199 "SUCH" 2749442 NIL SUCH (NIL T T) -8 NIL NIL) (-1135 2742750 2743762 2744721 "SUBSPACE" 2747944 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1134 2742180 2742270 2742434 "SUBRESP" 2742638 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1133 2736353 2737473 2738620 "STTFNC" 2741080 NIL STTFNC (NIL T) -7 NIL NIL) (-1132 2729722 2731018 2732329 "STTF" 2735089 NIL STTF (NIL T) -7 NIL NIL) (-1131 2721037 2722904 2724698 "STTAYLOR" 2727963 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1130 2714283 2720901 2720984 "STRTBL" 2720989 NIL STRTBL (NIL T) -8 NIL NIL) (-1129 2709674 2714238 2714269 "STRING" 2714274 T STRING (NIL) -8 NIL NIL) (-1128 2704562 2709047 2709077 "STRICAT" 2709136 T STRICAT (NIL) -9 NIL 2709198) (-1127 2704072 2704149 2704293 "STREAM3" 2704479 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1126 2703054 2703237 2703472 "STREAM2" 2703885 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1125 2702742 2702794 2702887 "STREAM1" 2702996 NIL STREAM1 (NIL T) -7 NIL NIL) (-1124 2695457 2700265 2700885 "STREAM" 2702157 NIL STREAM (NIL T) -8 NIL NIL) (-1123 2694473 2694654 2694885 "STINPROD" 2695273 NIL STINPROD (NIL T) -7 NIL NIL) (-1122 2694051 2694235 2694265 "STEP" 2694345 T STEP (NIL) -9 NIL 2694423) (-1121 2687596 2693950 2694027 "STBL" 2694032 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1120 2682773 2686818 2686861 "STAGG" 2687014 NIL STAGG (NIL T) -9 NIL 2687103) (-1119 2680481 2681081 2681951 "STAGG-" 2681956 NIL STAGG- (NIL T T) -8 NIL NIL) (-1118 2678676 2680251 2680343 "STACK" 2680424 NIL STACK (NIL T) -8 NIL NIL) (-1117 2671428 2676817 2677273 "SREGSET" 2678306 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1116 2663854 2665222 2666735 "SRDCMPK" 2670034 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1115 2656821 2661294 2661324 "SRAGG" 2662627 T SRAGG (NIL) -9 NIL 2663235) (-1114 2655838 2656093 2656472 "SRAGG-" 2656477 NIL SRAGG- (NIL T) -8 NIL NIL) (-1113 2650337 2654785 2655206 "SQMATRIX" 2655464 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1112 2644090 2647057 2647783 "SPLTREE" 2649683 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1111 2640080 2640746 2641392 "SPLNODE" 2643516 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1110 2639127 2639360 2639390 "SPFCAT" 2639834 T SPFCAT (NIL) -9 NIL NIL) (-1109 2637864 2638074 2638338 "SPECOUT" 2638885 T SPECOUT (NIL) -7 NIL NIL) (-1108 2629553 2631297 2631327 "SPADXPT" 2635719 T SPADXPT (NIL) -9 NIL 2637753) (-1107 2629314 2629354 2629423 "SPADPRSR" 2629506 T SPADPRSR (NIL) -7 NIL NIL) (-1106 2627497 2629269 2629300 "SPADAST" 2629305 T SPADAST (NIL) -8 NIL NIL) (-1105 2619468 2621215 2621258 "SPACEC" 2625631 NIL SPACEC (NIL T) -9 NIL 2627447) (-1104 2617639 2619400 2619449 "SPACE3" 2619454 NIL SPACE3 (NIL T) -8 NIL NIL) (-1103 2616391 2616562 2616853 "SORTPAK" 2617444 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1102 2614441 2614744 2615163 "SOLVETRA" 2616055 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1101 2613452 2613674 2613948 "SOLVESER" 2614214 NIL SOLVESER (NIL T) -7 NIL NIL) (-1100 2608672 2609553 2610555 "SOLVERAD" 2612504 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1099 2604487 2605096 2605825 "SOLVEFOR" 2608039 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1098 2598811 2603836 2603933 "SNTSCAT" 2603938 NIL SNTSCAT (NIL T T T T) -9 NIL 2604008) (-1097 2592954 2597134 2597525 "SMTS" 2598501 NIL SMTS (NIL T T T) -8 NIL NIL) (-1096 2587430 2592842 2592919 "SMP" 2592924 NIL SMP (NIL T T) -8 NIL NIL) (-1095 2585589 2585890 2586288 "SMITH" 2587127 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1094 2578570 2582721 2582824 "SMATCAT" 2584178 NIL SMATCAT (NIL NIL T T T) -9 NIL 2584728) (-1093 2575531 2576347 2577518 "SMATCAT-" 2577523 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1092 2573244 2574767 2574810 "SKAGG" 2575071 NIL SKAGG (NIL T) -9 NIL 2575206) (-1091 2569362 2572348 2572626 "SINT" 2572988 T SINT (NIL) -8 NIL NIL) (-1090 2569134 2569172 2569238 "SIMPAN" 2569318 T SIMPAN (NIL) -7 NIL NIL) (-1089 2567993 2568207 2568475 "SIGNRF" 2568900 NIL SIGNRF (NIL T) -7 NIL NIL) (-1088 2566819 2566963 2567247 "SIGNEF" 2567829 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1087 2566152 2566402 2566526 "SIGAST" 2566717 T SIGAST (NIL) -8 NIL NIL) (-1086 2565459 2565687 2565827 "SIG" 2566034 T SIG (NIL) -8 NIL NIL) (-1085 2563149 2563603 2564109 "SHP" 2565000 NIL SHP (NIL T NIL) -7 NIL NIL) (-1084 2557062 2563050 2563126 "SHDP" 2563131 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1083 2556661 2556827 2556857 "SGROUP" 2556950 T SGROUP (NIL) -9 NIL 2557012) (-1082 2556519 2556545 2556618 "SGROUP-" 2556623 NIL SGROUP- (NIL T) -8 NIL NIL) (-1081 2553355 2554052 2554775 "SGCF" 2555818 T SGCF (NIL) -7 NIL NIL) (-1080 2547777 2552802 2552899 "SFRTCAT" 2552904 NIL SFRTCAT (NIL T T T T) -9 NIL 2552943) (-1079 2541201 2542216 2543352 "SFRGCD" 2546760 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1078 2534329 2535400 2536586 "SFQCMPK" 2540134 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1077 2533951 2534040 2534150 "SFORT" 2534270 NIL SFORT (NIL T T) -8 NIL NIL) (-1076 2533096 2533791 2533912 "SEXOF" 2533917 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1075 2527872 2528561 2528656 "SEXCAT" 2532427 NIL SEXCAT (NIL T T T T T) -9 NIL 2533046) (-1074 2527006 2527753 2527821 "SEX" 2527826 T SEX (NIL) -8 NIL NIL) (-1073 2525263 2525723 2526026 "SETMN" 2526749 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1072 2524869 2524995 2525025 "SETCAT" 2525142 T SETCAT (NIL) -9 NIL 2525227) (-1071 2524649 2524701 2524800 "SETCAT-" 2524805 NIL SETCAT- (NIL T) -8 NIL NIL) (-1070 2521036 2523110 2523153 "SETAGG" 2524023 NIL SETAGG (NIL T) -9 NIL 2524363) (-1069 2520494 2520610 2520847 "SETAGG-" 2520852 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1068 2517674 2520428 2520476 "SET" 2520481 NIL SET (NIL T) -8 NIL NIL) (-1067 2517144 2517370 2517471 "SEQAST" 2517595 T SEQAST (NIL) -8 NIL NIL) (-1066 2516348 2516641 2516702 "SEGXCAT" 2516988 NIL SEGXCAT (NIL T T) -9 NIL 2517108) (-1065 2515255 2515468 2515511 "SEGCAT" 2516093 NIL SEGCAT (NIL T) -9 NIL 2516331) (-1064 2514876 2514935 2515048 "SEGBIND2" 2515190 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1063 2513925 2514255 2514455 "SEGBIND" 2514711 NIL SEGBIND (NIL T) -8 NIL NIL) (-1062 2513526 2513726 2513803 "SEGAST" 2513870 T SEGAST (NIL) -8 NIL NIL) (-1061 2512745 2512871 2513075 "SEG2" 2513370 NIL SEG2 (NIL T T) -7 NIL NIL) (-1060 2511801 2512411 2512593 "SEG" 2512598 NIL SEG (NIL T) -8 NIL NIL) (-1059 2511238 2511736 2511783 "SDVAR" 2511788 NIL SDVAR (NIL T) -8 NIL NIL) (-1058 2503569 2511008 2511138 "SDPOL" 2511143 NIL SDPOL (NIL T) -8 NIL NIL) (-1057 2502162 2502428 2502747 "SCPKG" 2503284 NIL SCPKG (NIL T) -7 NIL NIL) (-1056 2501298 2501478 2501678 "SCOPE" 2501984 T SCOPE (NIL) -8 NIL NIL) (-1055 2500519 2500652 2500831 "SCACHE" 2501153 NIL SCACHE (NIL T) -7 NIL NIL) (-1054 2500228 2500388 2500418 "SASTCAT" 2500423 T SASTCAT (NIL) -9 NIL 2500436) (-1053 2499667 2499988 2500073 "SAOS" 2500165 T SAOS (NIL) -8 NIL NIL) (-1052 2499232 2499267 2499440 "SAERFFC" 2499626 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1051 2498825 2498860 2499019 "SAEFACT" 2499191 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1050 2492808 2498722 2498802 "SAE" 2498807 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1049 2491129 2491443 2491844 "RURPK" 2492474 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1048 2489765 2490044 2490356 "RULESET" 2490963 NIL RULESET (NIL T T T) -8 NIL NIL) (-1047 2489404 2489559 2489642 "RULECOLD" 2489717 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1046 2486591 2487094 2487559 "RULE" 2489085 NIL RULE (NIL T T T) -8 NIL NIL) (-1045 2486089 2486308 2486402 "RSTRCAST" 2486519 T RSTRCAST (NIL) -8 NIL NIL) (-1044 2480938 2481732 2482652 "RSETGCD" 2485288 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1043 2470222 2475247 2475344 "RSETCAT" 2479463 NIL RSETCAT (NIL T T T T) -9 NIL 2480560) (-1042 2468149 2468688 2469512 "RSETCAT-" 2469517 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1041 2460536 2461911 2463431 "RSDCMPK" 2466748 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1040 2458541 2458982 2459056 "RRCC" 2460142 NIL RRCC (NIL T T) -9 NIL 2460486) (-1039 2457892 2458066 2458345 "RRCC-" 2458350 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1038 2457362 2457588 2457689 "RPTAST" 2457813 T RPTAST (NIL) -8 NIL NIL) (-1037 2431621 2441175 2441242 "RPOLCAT" 2451906 NIL RPOLCAT (NIL T T T) -9 NIL 2455065) (-1036 2423157 2425483 2428593 "RPOLCAT-" 2428598 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1035 2414206 2421368 2421850 "ROUTINE" 2422697 T ROUTINE (NIL) -8 NIL NIL) (-1034 2410966 2413757 2413906 "ROMAN" 2414079 T ROMAN (NIL) -8 NIL NIL) (-1033 2409243 2409826 2410086 "ROIRC" 2410771 NIL ROIRC (NIL T T) -8 NIL NIL) (-1032 2405698 2407933 2407963 "RNS" 2408267 T RNS (NIL) -9 NIL 2408539) (-1031 2404207 2404590 2405124 "RNS-" 2405199 NIL RNS- (NIL T) -8 NIL NIL) (-1030 2403656 2404038 2404068 "RNG" 2404073 T RNG (NIL) -9 NIL 2404094) (-1029 2403048 2403410 2403453 "RMODULE" 2403515 NIL RMODULE (NIL T) -9 NIL 2403557) (-1028 2401884 2401978 2402314 "RMCAT2" 2402949 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1027 2398589 2401058 2401383 "RMATRIX" 2401618 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1026 2391531 2393765 2393880 "RMATCAT" 2397239 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2398221) (-1025 2390906 2391053 2391360 "RMATCAT-" 2391365 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1024 2390473 2390548 2390676 "RINTERP" 2390825 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1023 2389561 2390081 2390111 "RING" 2390223 T RING (NIL) -9 NIL 2390318) (-1022 2389353 2389397 2389494 "RING-" 2389499 NIL RING- (NIL T) -8 NIL NIL) (-1021 2388194 2388431 2388689 "RIDIST" 2389117 T RIDIST (NIL) -7 NIL NIL) (-1020 2379537 2387662 2387868 "RGCHAIN" 2388042 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1019 2378913 2379293 2379334 "RGBCSPC" 2379392 NIL RGBCSPC (NIL T) -9 NIL 2379444) (-1018 2378097 2378452 2378493 "RGBCMDL" 2378725 NIL RGBCMDL (NIL T) -9 NIL 2378839) (-1017 2377743 2377806 2377909 "RFFACTOR" 2378028 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1016 2377468 2377503 2377600 "RFFACT" 2377702 NIL RFFACT (NIL T) -7 NIL NIL) (-1015 2375585 2375949 2376331 "RFDIST" 2377108 T RFDIST (NIL) -7 NIL NIL) (-1014 2372579 2373193 2373863 "RF" 2374949 NIL RF (NIL T) -7 NIL NIL) (-1013 2372032 2372124 2372287 "RETSOL" 2372481 NIL RETSOL (NIL T T) -7 NIL NIL) (-1012 2371620 2371700 2371743 "RETRACT" 2371936 NIL RETRACT (NIL T) -9 NIL NIL) (-1011 2371469 2371494 2371581 "RETRACT-" 2371586 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1010 2371098 2371291 2371361 "RETAST" 2371421 T RETAST (NIL) -8 NIL NIL) (-1009 2363954 2370751 2370878 "RESULT" 2370993 T RESULT (NIL) -8 NIL NIL) (-1008 2362580 2363223 2363422 "RESRING" 2363857 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1007 2362216 2362265 2362363 "RESLATC" 2362517 NIL RESLATC (NIL T) -7 NIL NIL) (-1006 2361922 2361956 2362063 "REPSQ" 2362175 NIL REPSQ (NIL T) -7 NIL NIL) (-1005 2361620 2361654 2361765 "REPDB" 2361881 NIL REPDB (NIL T) -7 NIL NIL) (-1004 2355530 2356909 2358132 "REP2" 2360432 NIL REP2 (NIL T) -7 NIL NIL) (-1003 2351907 2352588 2353396 "REP1" 2354757 NIL REP1 (NIL T) -7 NIL NIL) (-1002 2349329 2349909 2350511 "REP" 2351327 T REP (NIL) -7 NIL NIL) (-1001 2342082 2347470 2347926 "REGSET" 2348959 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1000 2340895 2341230 2341480 "REF" 2341867 NIL REF (NIL T) -8 NIL NIL) (-999 2340276 2340379 2340544 "REDORDER" 2340779 NIL REDORDER (NIL T T) -7 NIL NIL) (-998 2336327 2339504 2339727 "RECLOS" 2340105 NIL RECLOS (NIL T) -8 NIL NIL) (-997 2335384 2335565 2335778 "REALSOLV" 2336134 T REALSOLV (NIL) -7 NIL NIL) (-996 2331875 2332677 2333559 "REAL0Q" 2334549 NIL REAL0Q (NIL T) -7 NIL NIL) (-995 2327486 2328474 2329533 "REAL0" 2330856 NIL REAL0 (NIL T) -7 NIL NIL) (-994 2327334 2327375 2327403 "REAL" 2327408 T REAL (NIL) -9 NIL 2327443) (-993 2326836 2327055 2327147 "RDUCEAST" 2327262 T RDUCEAST (NIL) -8 NIL NIL) (-992 2326244 2326316 2326521 "RDIV" 2326758 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-991 2325317 2325491 2325702 "RDIST" 2326066 NIL RDIST (NIL T) -7 NIL NIL) (-990 2323918 2324205 2324575 "RDETRS" 2325025 NIL RDETRS (NIL T T) -7 NIL NIL) (-989 2321735 2322189 2322725 "RDETR" 2323460 NIL RDETR (NIL T T) -7 NIL NIL) (-988 2320349 2320627 2321029 "RDEEFS" 2321451 NIL RDEEFS (NIL T T) -7 NIL NIL) (-987 2318847 2319153 2319583 "RDEEF" 2320037 NIL RDEEF (NIL T T) -7 NIL NIL) (-986 2313193 2316055 2316083 "RCFIELD" 2317360 T RCFIELD (NIL) -9 NIL 2318090) (-985 2311262 2311766 2312459 "RCFIELD-" 2312532 NIL RCFIELD- (NIL T) -8 NIL NIL) (-984 2307593 2309378 2309419 "RCAGG" 2310490 NIL RCAGG (NIL T) -9 NIL 2310955) (-983 2307224 2307318 2307478 "RCAGG-" 2307483 NIL RCAGG- (NIL T T) -8 NIL NIL) (-982 2306564 2306676 2306839 "RATRET" 2307108 NIL RATRET (NIL T) -7 NIL NIL) (-981 2306121 2306188 2306307 "RATFACT" 2306492 NIL RATFACT (NIL T) -7 NIL NIL) (-980 2305436 2305556 2305706 "RANDSRC" 2305991 T RANDSRC (NIL) -7 NIL NIL) (-979 2305173 2305217 2305288 "RADUTIL" 2305385 T RADUTIL (NIL) -7 NIL NIL) (-978 2298259 2303916 2304233 "RADIX" 2304888 NIL RADIX (NIL NIL) -8 NIL NIL) (-977 2289926 2298103 2298231 "RADFF" 2298236 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-976 2289578 2289653 2289681 "RADCAT" 2289838 T RADCAT (NIL) -9 NIL NIL) (-975 2289363 2289411 2289508 "RADCAT-" 2289513 NIL RADCAT- (NIL T) -8 NIL NIL) (-974 2287514 2289138 2289227 "QUEUE" 2289307 NIL QUEUE (NIL T) -8 NIL NIL) (-973 2287152 2287195 2287322 "QUATCT2" 2287465 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-972 2281019 2284313 2284353 "QUATCAT" 2285133 NIL QUATCAT (NIL T) -9 NIL 2285899) (-971 2277184 2278214 2279594 "QUATCAT-" 2279688 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-970 2273767 2277121 2277166 "QUAT" 2277171 NIL QUAT (NIL T) -8 NIL NIL) (-969 2271287 2272851 2272892 "QUAGG" 2273267 NIL QUAGG (NIL T) -9 NIL 2273442) (-968 2270919 2271112 2271180 "QQUTAST" 2271239 T QQUTAST (NIL) -8 NIL NIL) (-967 2269844 2270317 2270489 "QFORM" 2270791 NIL QFORM (NIL NIL T) -8 NIL NIL) (-966 2269482 2269525 2269652 "QFCAT2" 2269795 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-965 2260831 2266018 2266058 "QFCAT" 2266716 NIL QFCAT (NIL T) -9 NIL 2267715) (-964 2256439 2257628 2259207 "QFCAT-" 2259301 NIL QFCAT- (NIL T T) -8 NIL NIL) (-963 2255899 2256009 2256139 "QEQUAT" 2256329 T QEQUAT (NIL) -8 NIL NIL) (-962 2249047 2250118 2251302 "QCMPACK" 2254832 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-961 2248292 2248466 2248698 "QALGSET2" 2248867 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-960 2245874 2246293 2246719 "QALGSET" 2247949 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-959 2244565 2244788 2245105 "PWFFINTB" 2245647 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-958 2242764 2242932 2243286 "PUSHVAR" 2244379 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-957 2238682 2239736 2239777 "PTRANFN" 2241661 NIL PTRANFN (NIL T) -9 NIL NIL) (-956 2237084 2237375 2237697 "PTPACK" 2238393 NIL PTPACK (NIL T) -7 NIL NIL) (-955 2236716 2236773 2236882 "PTFUNC2" 2237021 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-954 2231182 2235527 2235568 "PTCAT" 2235941 NIL PTCAT (NIL T) -9 NIL 2236103) (-953 2230840 2230875 2230999 "PSQFR" 2231141 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-952 2229435 2229733 2230067 "PSEUDLIN" 2230538 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-951 2216204 2218569 2220893 "PSETPK" 2227195 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-950 2209248 2211962 2212058 "PSETCAT" 2215079 NIL PSETCAT (NIL T T T T) -9 NIL 2215893) (-949 2207084 2207718 2208539 "PSETCAT-" 2208544 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-948 2206433 2206598 2206626 "PSCURVE" 2206894 T PSCURVE (NIL) -9 NIL 2207061) (-947 2202914 2204396 2204461 "PSCAT" 2205305 NIL PSCAT (NIL T T T) -9 NIL 2205545) (-946 2201977 2202193 2202593 "PSCAT-" 2202598 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-945 2200629 2201262 2201476 "PRTITION" 2201783 T PRTITION (NIL) -8 NIL NIL) (-944 2200131 2200350 2200442 "PRTDAST" 2200557 T PRTDAST (NIL) -8 NIL NIL) (-943 2189229 2191435 2193623 "PRS" 2197993 NIL PRS (NIL T T) -7 NIL NIL) (-942 2187087 2188579 2188619 "PRQAGG" 2188802 NIL PRQAGG (NIL T) -9 NIL 2188904) (-941 2186473 2186702 2186730 "PROPLOG" 2186915 T PROPLOG (NIL) -9 NIL 2187037) (-940 2183643 2184287 2184751 "PROPFRML" 2186041 NIL PROPFRML (NIL T) -8 NIL NIL) (-939 2183103 2183213 2183343 "PROPERTY" 2183533 T PROPERTY (NIL) -8 NIL NIL) (-938 2177188 2181269 2182089 "PRODUCT" 2182329 NIL PRODUCT (NIL T T) -8 NIL NIL) (-937 2176984 2177016 2177075 "PRINT" 2177149 T PRINT (NIL) -7 NIL NIL) (-936 2176324 2176441 2176593 "PRIMES" 2176864 NIL PRIMES (NIL T) -7 NIL NIL) (-935 2174389 2174790 2175256 "PRIMELT" 2175903 NIL PRIMELT (NIL T) -7 NIL NIL) (-934 2174118 2174167 2174195 "PRIMCAT" 2174319 T PRIMCAT (NIL) -9 NIL NIL) (-933 2173125 2173303 2173531 "PRIMARR2" 2173936 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-932 2169286 2173063 2173108 "PRIMARR" 2173113 NIL PRIMARR (NIL T) -8 NIL NIL) (-931 2168929 2168985 2169096 "PREASSOC" 2169224 NIL PREASSOC (NIL T T) -7 NIL NIL) (-930 2166249 2168387 2168621 "PR" 2168740 NIL PR (NIL T T) -8 NIL NIL) (-929 2165724 2165857 2165885 "PPCURVE" 2166090 T PPCURVE (NIL) -9 NIL 2166226) (-928 2165346 2165519 2165602 "PORTNUM" 2165661 T PORTNUM (NIL) -8 NIL NIL) (-927 2162705 2163104 2163696 "POLYROOT" 2164927 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-926 2162088 2162146 2162380 "POLYLIFT" 2162641 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-925 2158363 2158812 2159441 "POLYCATQ" 2161633 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-924 2145416 2150758 2150823 "POLYCAT" 2154337 NIL POLYCAT (NIL T T T) -9 NIL 2156265) (-923 2138923 2140765 2143130 "POLYCAT-" 2143135 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-922 2138510 2138578 2138698 "POLY2UP" 2138849 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-921 2138142 2138199 2138308 "POLY2" 2138447 NIL POLY2 (NIL T T) -7 NIL NIL) (-920 2132118 2137746 2137906 "POLY" 2138015 NIL POLY (NIL T) -8 NIL NIL) (-919 2130803 2131042 2131318 "POLUTIL" 2131892 NIL POLUTIL (NIL T T) -7 NIL NIL) (-918 2129158 2129435 2129766 "POLTOPOL" 2130525 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-917 2124676 2129094 2129140 "POINT" 2129145 NIL POINT (NIL T) -8 NIL NIL) (-916 2122863 2123220 2123595 "PNTHEORY" 2124321 T PNTHEORY (NIL) -7 NIL NIL) (-915 2121282 2121579 2121991 "PMTOOLS" 2122561 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-914 2120875 2120953 2121070 "PMSYM" 2121198 NIL PMSYM (NIL T) -7 NIL NIL) (-913 2120385 2120454 2120628 "PMQFCAT" 2120800 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-912 2119781 2119867 2120028 "PMPREDFS" 2120286 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-911 2119136 2119246 2119402 "PMPRED" 2119658 NIL PMPRED (NIL T) -7 NIL NIL) (-910 2117779 2117987 2118372 "PMPLCAT" 2118898 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-909 2117311 2117390 2117542 "PMLSAGG" 2117694 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-908 2116786 2116862 2117043 "PMKERNEL" 2117229 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-907 2116403 2116478 2116591 "PMINS" 2116705 NIL PMINS (NIL T) -7 NIL NIL) (-906 2115831 2115900 2116116 "PMFS" 2116328 NIL PMFS (NIL T T T) -7 NIL NIL) (-905 2115059 2115177 2115382 "PMDOWN" 2115708 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-904 2114333 2114444 2114607 "PMASSFS" 2114945 NIL PMASSFS (NIL T T) -7 NIL NIL) (-903 2113496 2113655 2113837 "PMASS" 2114171 T PMASS (NIL) -7 NIL NIL) (-902 2113151 2113219 2113313 "PLOTTOOL" 2113422 T PLOTTOOL (NIL) -7 NIL NIL) (-901 2108965 2109999 2110920 "PLOT3D" 2112250 T PLOT3D (NIL) -8 NIL NIL) (-900 2107877 2108054 2108289 "PLOT1" 2108769 NIL PLOT1 (NIL T) -7 NIL NIL) (-899 2102499 2103688 2104836 "PLOT" 2106749 T PLOT (NIL) -8 NIL NIL) (-898 2077893 2082565 2087416 "PLEQN" 2097765 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-897 2077586 2077633 2077736 "PINTERPA" 2077840 NIL PINTERPA (NIL T T) -7 NIL NIL) (-896 2076904 2077026 2077206 "PINTERP" 2077451 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-895 2075336 2076277 2076305 "PID" 2076487 T PID (NIL) -9 NIL 2076621) (-894 2075061 2075098 2075186 "PICOERCE" 2075293 NIL PICOERCE (NIL T) -7 NIL NIL) (-893 2074346 2074867 2074954 "PI" 2074994 T PI (NIL) -8 NIL NIL) (-892 2073666 2073805 2073981 "PGROEB" 2074202 NIL PGROEB (NIL T) -7 NIL NIL) (-891 2069253 2070067 2070972 "PGE" 2072781 T PGE (NIL) -7 NIL NIL) (-890 2067377 2067623 2067989 "PGCD" 2068970 NIL PGCD (NIL T T T T) -7 NIL NIL) (-889 2066715 2066818 2066979 "PFRPAC" 2067261 NIL PFRPAC (NIL T) -7 NIL NIL) (-888 2063397 2065263 2065616 "PFR" 2066394 NIL PFR (NIL T) -8 NIL NIL) (-887 2061786 2062030 2062355 "PFOTOOLS" 2063144 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-886 2060319 2060558 2060909 "PFOQ" 2061543 NIL PFOQ (NIL T T T) -7 NIL NIL) (-885 2058792 2059004 2059367 "PFO" 2060103 NIL PFO (NIL T T T T T) -7 NIL NIL) (-884 2056261 2057498 2057526 "PFECAT" 2058111 T PFECAT (NIL) -9 NIL 2058495) (-883 2055706 2055860 2056074 "PFECAT-" 2056079 NIL PFECAT- (NIL T) -8 NIL NIL) (-882 2054310 2054561 2054862 "PFBRU" 2055455 NIL PFBRU (NIL T T) -7 NIL NIL) (-881 2052177 2052528 2052960 "PFBR" 2053961 NIL PFBR (NIL T T T T) -7 NIL NIL) (-880 2048767 2052066 2052135 "PF" 2052140 NIL PF (NIL NIL) -8 NIL NIL) (-879 2044033 2044974 2045844 "PERMGRP" 2047930 NIL PERMGRP (NIL T) -8 NIL NIL) (-878 2042165 2043096 2043137 "PERMCAT" 2043583 NIL PERMCAT (NIL T) -9 NIL 2043888) (-877 2041818 2041859 2041983 "PERMAN" 2042118 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-876 2037734 2039194 2039870 "PERM" 2041175 NIL PERM (NIL T) -8 NIL NIL) (-875 2035176 2037303 2037434 "PENDTREE" 2037636 NIL PENDTREE (NIL T) -8 NIL NIL) (-874 2033289 2034023 2034064 "PDRING" 2034721 NIL PDRING (NIL T) -9 NIL 2035007) (-873 2032392 2032610 2032972 "PDRING-" 2032977 NIL PDRING- (NIL T T) -8 NIL NIL) (-872 2029533 2030284 2030975 "PDEPROB" 2031721 T PDEPROB (NIL) -8 NIL NIL) (-871 2027080 2027582 2028137 "PDEPACK" 2028998 T PDEPACK (NIL) -7 NIL NIL) (-870 2025992 2026182 2026433 "PDECOMP" 2026879 NIL PDECOMP (NIL T T) -7 NIL NIL) (-869 2023597 2024414 2024442 "PDECAT" 2025229 T PDECAT (NIL) -9 NIL 2025942) (-868 2023348 2023381 2023471 "PCOMP" 2023558 NIL PCOMP (NIL T T) -7 NIL NIL) (-867 2021553 2022149 2022446 "PBWLB" 2023077 NIL PBWLB (NIL T) -8 NIL NIL) (-866 2021185 2021242 2021351 "PATTERN2" 2021490 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-865 2018942 2019330 2019787 "PATTERN1" 2020774 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-864 2011448 2013015 2014353 "PATTERN" 2017625 NIL PATTERN (NIL T) -8 NIL NIL) (-863 2011012 2011079 2011211 "PATRES2" 2011375 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-862 2008407 2008961 2009442 "PATRES" 2010577 NIL PATRES (NIL T T) -8 NIL NIL) (-861 2006290 2006695 2007102 "PATMATCH" 2008074 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-860 2005826 2006009 2006050 "PATMAB" 2006157 NIL PATMAB (NIL T) -9 NIL 2006240) (-859 2004371 2004680 2004938 "PATLRES" 2005631 NIL PATLRES (NIL T T T) -8 NIL NIL) (-858 2003917 2004040 2004081 "PATAB" 2004086 NIL PATAB (NIL T) -9 NIL 2004258) (-857 2001398 2001930 2002503 "PARTPERM" 2003364 T PARTPERM (NIL) -7 NIL NIL) (-856 2001019 2001082 2001184 "PARSURF" 2001329 NIL PARSURF (NIL T) -8 NIL NIL) (-855 2000651 2000708 2000817 "PARSU2" 2000956 NIL PARSU2 (NIL T T) -7 NIL NIL) (-854 2000415 2000455 2000522 "PARSER" 2000604 T PARSER (NIL) -7 NIL NIL) (-853 2000036 2000099 2000201 "PARSCURV" 2000346 NIL PARSCURV (NIL T) -8 NIL NIL) (-852 1999668 1999725 1999834 "PARSC2" 1999973 NIL PARSC2 (NIL T T) -7 NIL NIL) (-851 1999307 1999365 1999462 "PARPCURV" 1999604 NIL PARPCURV (NIL T) -8 NIL NIL) (-850 1998939 1998996 1999105 "PARPC2" 1999244 NIL PARPC2 (NIL T T) -7 NIL NIL) (-849 1998459 1998545 1998664 "PAN2EXPR" 1998840 T PAN2EXPR (NIL) -7 NIL NIL) (-848 1997265 1997580 1997808 "PALETTE" 1998251 T PALETTE (NIL) -8 NIL NIL) (-847 1995733 1996270 1996630 "PAIR" 1996951 NIL PAIR (NIL T T) -8 NIL NIL) (-846 1989662 1994992 1995186 "PADICRC" 1995588 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-845 1982949 1989008 1989192 "PADICRAT" 1989510 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-844 1980196 1981724 1981764 "PADICCT" 1982345 NIL PADICCT (NIL NIL) -9 NIL 1982627) (-843 1978548 1980133 1980178 "PADIC" 1980183 NIL PADIC (NIL NIL) -8 NIL NIL) (-842 1977505 1977705 1977973 "PADEPAC" 1978335 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-841 1976717 1976850 1977056 "PADE" 1977367 NIL PADE (NIL T T T) -7 NIL NIL) (-840 1974767 1975553 1975870 "OWP" 1976484 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-839 1973876 1974372 1974544 "OVAR" 1974635 NIL OVAR (NIL NIL) -8 NIL NIL) (-838 1962783 1964985 1967185 "OUTFORM" 1971696 T OUTFORM (NIL) -8 NIL NIL) (-837 1962204 1962380 1962507 "OUTBFILE" 1962676 T OUTBFILE (NIL) -8 NIL NIL) (-836 1961841 1961924 1961952 "OUTBCON" 1962103 T OUTBCON (NIL) -9 NIL 1962188) (-835 1961681 1961716 1961792 "OUTBCON-" 1961797 NIL OUTBCON- (NIL T) -8 NIL NIL) (-834 1960945 1961066 1961227 "OUT" 1961540 T OUT (NIL) -7 NIL NIL) (-833 1960353 1960674 1960763 "OSI" 1960876 T OSI (NIL) -8 NIL NIL) (-832 1959909 1960221 1960249 "OSGROUP" 1960254 T OSGROUP (NIL) -9 NIL 1960276) (-831 1958654 1958881 1959166 "ORTHPOL" 1959656 NIL ORTHPOL (NIL T) -7 NIL NIL) (-830 1956078 1958313 1958452 "OREUP" 1958597 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-829 1953530 1955769 1955896 "ORESUP" 1956020 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-828 1951058 1951558 1952119 "OREPCTO" 1953019 NIL OREPCTO (NIL T T) -7 NIL NIL) (-827 1944976 1947136 1947177 "OREPCAT" 1949525 NIL OREPCAT (NIL T) -9 NIL 1950629) (-826 1942144 1942919 1943970 "OREPCAT-" 1943975 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-825 1941321 1941593 1941621 "ORDSET" 1941930 T ORDSET (NIL) -9 NIL 1942094) (-824 1940840 1940962 1941155 "ORDSET-" 1941160 NIL ORDSET- (NIL T) -8 NIL NIL) (-823 1939494 1940251 1940279 "ORDRING" 1940481 T ORDRING (NIL) -9 NIL 1940606) (-822 1939139 1939233 1939377 "ORDRING-" 1939382 NIL ORDRING- (NIL T) -8 NIL NIL) (-821 1938545 1938982 1939010 "ORDMON" 1939015 T ORDMON (NIL) -9 NIL 1939036) (-820 1937707 1937854 1938049 "ORDFUNS" 1938394 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-819 1937218 1937577 1937605 "ORDFIN" 1937610 T ORDFIN (NIL) -9 NIL 1937631) (-818 1936484 1936611 1936797 "ORDCOMP2" 1937078 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-817 1933083 1935070 1935479 "ORDCOMP" 1936108 NIL ORDCOMP (NIL T) -8 NIL NIL) (-816 1929590 1930473 1931310 "OPTPROB" 1932266 T OPTPROB (NIL) -8 NIL NIL) (-815 1926392 1927031 1927735 "OPTPACK" 1928906 T OPTPACK (NIL) -7 NIL NIL) (-814 1924105 1924845 1924873 "OPTCAT" 1925692 T OPTCAT (NIL) -9 NIL 1926342) (-813 1923873 1923912 1923978 "OPQUERY" 1924059 T OPQUERY (NIL) -7 NIL NIL) (-812 1921041 1922184 1922688 "OP" 1923402 NIL OP (NIL T) -8 NIL NIL) (-811 1920346 1920461 1920635 "ONECOMP2" 1920913 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-810 1917198 1919143 1919512 "ONECOMP" 1920010 NIL ONECOMP (NIL T) -8 NIL NIL) (-809 1916617 1916723 1916853 "OMSERVER" 1917088 T OMSERVER (NIL) -7 NIL NIL) (-808 1913505 1916057 1916097 "OMSAGG" 1916158 NIL OMSAGG (NIL T) -9 NIL 1916222) (-807 1912128 1912391 1912673 "OMPKG" 1913243 T OMPKG (NIL) -7 NIL NIL) (-806 1910710 1911677 1911846 "OMLO" 1912009 NIL OMLO (NIL T T) -8 NIL NIL) (-805 1909635 1909782 1910009 "OMEXPR" 1910536 NIL OMEXPR (NIL T) -7 NIL NIL) (-804 1908813 1909056 1909216 "OMERRK" 1909495 T OMERRK (NIL) -8 NIL NIL) (-803 1908131 1908359 1908495 "OMERR" 1908697 T OMERR (NIL) -8 NIL NIL) (-802 1907609 1907808 1907916 "OMENC" 1908043 T OMENC (NIL) -8 NIL NIL) (-801 1901504 1902689 1903860 "OMDEV" 1906458 T OMDEV (NIL) -8 NIL NIL) (-800 1900573 1900744 1900938 "OMCONN" 1901330 T OMCONN (NIL) -8 NIL NIL) (-799 1900003 1900106 1900134 "OM" 1900433 T OM (NIL) -9 NIL NIL) (-798 1898659 1899601 1899629 "OINTDOM" 1899634 T OINTDOM (NIL) -9 NIL 1899655) (-797 1894465 1895649 1896365 "OFMONOID" 1897975 NIL OFMONOID (NIL T) -8 NIL NIL) (-796 1893903 1894402 1894447 "ODVAR" 1894452 NIL ODVAR (NIL T) -8 NIL NIL) (-795 1891115 1893400 1893585 "ODR" 1893778 NIL ODR (NIL T T NIL) -8 NIL NIL) (-794 1883500 1890891 1891017 "ODPOL" 1891022 NIL ODPOL (NIL T) -8 NIL NIL) (-793 1877383 1883372 1883477 "ODP" 1883482 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-792 1876149 1876364 1876639 "ODETOOLS" 1877157 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-791 1873118 1873774 1874490 "ODESYS" 1875482 NIL ODESYS (NIL T T) -7 NIL NIL) (-790 1868000 1868908 1869933 "ODERTRIC" 1872193 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-789 1867426 1867508 1867702 "ODERED" 1867912 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-788 1864322 1864868 1865543 "ODERAT" 1866851 NIL ODERAT (NIL T T) -7 NIL NIL) (-787 1861282 1861746 1862343 "ODEPRRIC" 1863851 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-786 1859151 1859720 1860229 "ODEPROB" 1860793 T ODEPROB (NIL) -8 NIL NIL) (-785 1855673 1856156 1856803 "ODEPRIM" 1858630 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-784 1854922 1855024 1855284 "ODEPAL" 1855565 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-783 1851084 1851875 1852739 "ODEPACK" 1854078 T ODEPACK (NIL) -7 NIL NIL) (-782 1850117 1850224 1850453 "ODEINT" 1850973 NIL ODEINT (NIL T T) -7 NIL NIL) (-781 1844218 1845643 1847090 "ODEIFTBL" 1848690 T ODEIFTBL (NIL) -8 NIL NIL) (-780 1839567 1840349 1841304 "ODEEF" 1843381 NIL ODEEF (NIL T T) -7 NIL NIL) (-779 1838902 1838991 1839221 "ODECONST" 1839472 NIL ODECONST (NIL T T T) -7 NIL NIL) (-778 1837053 1837688 1837716 "ODECAT" 1838321 T ODECAT (NIL) -9 NIL 1838852) (-777 1836691 1836734 1836861 "OCTCT2" 1837004 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-776 1833610 1836403 1836522 "OCT" 1836604 NIL OCT (NIL T) -8 NIL NIL) (-775 1832988 1833430 1833458 "OCAMON" 1833463 T OCAMON (NIL) -9 NIL 1833484) (-774 1827856 1830249 1830289 "OC" 1831386 NIL OC (NIL T) -9 NIL 1832244) (-773 1825104 1825845 1826828 "OC-" 1826922 NIL OC- (NIL T T) -8 NIL NIL) (-772 1824661 1824976 1825004 "OASGP" 1825009 T OASGP (NIL) -9 NIL 1825029) (-771 1823948 1824411 1824439 "OAMONS" 1824479 T OAMONS (NIL) -9 NIL 1824522) (-770 1823388 1823795 1823823 "OAMON" 1823828 T OAMON (NIL) -9 NIL 1823848) (-769 1822692 1823184 1823212 "OAGROUP" 1823217 T OAGROUP (NIL) -9 NIL 1823237) (-768 1822382 1822432 1822520 "NUMTUBE" 1822636 NIL NUMTUBE (NIL T) -7 NIL NIL) (-767 1815955 1817473 1819009 "NUMQUAD" 1820866 T NUMQUAD (NIL) -7 NIL NIL) (-766 1811711 1812699 1813724 "NUMODE" 1814950 T NUMODE (NIL) -7 NIL NIL) (-765 1809092 1809946 1809974 "NUMINT" 1810897 T NUMINT (NIL) -9 NIL 1811661) (-764 1808040 1808237 1808455 "NUMFMT" 1808894 T NUMFMT (NIL) -7 NIL NIL) (-763 1794399 1797344 1799876 "NUMERIC" 1805547 NIL NUMERIC (NIL T) -7 NIL NIL) (-762 1788823 1793848 1793943 "NTSCAT" 1793948 NIL NTSCAT (NIL T T T T) -9 NIL 1793987) (-761 1788017 1788182 1788375 "NTPOLFN" 1788662 NIL NTPOLFN (NIL T) -7 NIL NIL) (-760 1787649 1787706 1787815 "NSUP2" 1787954 NIL NSUP2 (NIL T T) -7 NIL NIL) (-759 1775534 1784474 1785286 "NSUP" 1786870 NIL NSUP (NIL T) -8 NIL NIL) (-758 1765579 1775308 1775441 "NSMP" 1775446 NIL NSMP (NIL T T) -8 NIL NIL) (-757 1764011 1764312 1764669 "NREP" 1765267 NIL NREP (NIL T) -7 NIL NIL) (-756 1762602 1762854 1763212 "NPCOEF" 1763754 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-755 1761668 1761783 1761999 "NORMRETR" 1762483 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-754 1759709 1759999 1760408 "NORMPK" 1761376 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-753 1759394 1759422 1759546 "NORMMA" 1759675 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-752 1759183 1759212 1759281 "NONE1" 1759358 NIL NONE1 (NIL T) -7 NIL NIL) (-751 1759010 1759140 1759169 "NONE" 1759174 T NONE (NIL) -8 NIL NIL) (-750 1758493 1758555 1758741 "NODE1" 1758942 NIL NODE1 (NIL T T) -7 NIL NIL) (-749 1756833 1757656 1757911 "NNI" 1758258 T NNI (NIL) -8 NIL NIL) (-748 1755253 1755566 1755930 "NLINSOL" 1756501 NIL NLINSOL (NIL T) -7 NIL NIL) (-747 1751420 1752388 1753310 "NIPROB" 1754351 T NIPROB (NIL) -8 NIL NIL) (-746 1750177 1750411 1750713 "NFINTBAS" 1751182 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-745 1748885 1749116 1749397 "NCODIV" 1749945 NIL NCODIV (NIL T T) -7 NIL NIL) (-744 1748647 1748684 1748759 "NCNTFRAC" 1748842 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-743 1746827 1747191 1747611 "NCEP" 1748272 NIL NCEP (NIL T) -7 NIL NIL) (-742 1745745 1746477 1746505 "NASRING" 1746615 T NASRING (NIL) -9 NIL 1746689) (-741 1745540 1745584 1745678 "NASRING-" 1745683 NIL NASRING- (NIL T) -8 NIL NIL) (-740 1744693 1745192 1745220 "NARNG" 1745337 T NARNG (NIL) -9 NIL 1745428) (-739 1744385 1744452 1744586 "NARNG-" 1744591 NIL NARNG- (NIL T) -8 NIL NIL) (-738 1743264 1743471 1743706 "NAGSP" 1744170 T NAGSP (NIL) -7 NIL NIL) (-737 1734536 1736220 1737893 "NAGS" 1741611 T NAGS (NIL) -7 NIL NIL) (-736 1733084 1733392 1733723 "NAGF07" 1734225 T NAGF07 (NIL) -7 NIL NIL) (-735 1727622 1728913 1730220 "NAGF04" 1731797 T NAGF04 (NIL) -7 NIL NIL) (-734 1720590 1722204 1723837 "NAGF02" 1726009 T NAGF02 (NIL) -7 NIL NIL) (-733 1715814 1716914 1718031 "NAGF01" 1719493 T NAGF01 (NIL) -7 NIL NIL) (-732 1709442 1711008 1712593 "NAGE04" 1714249 T NAGE04 (NIL) -7 NIL NIL) (-731 1700611 1702732 1704862 "NAGE02" 1707332 T NAGE02 (NIL) -7 NIL NIL) (-730 1696564 1697511 1698475 "NAGE01" 1699667 T NAGE01 (NIL) -7 NIL NIL) (-729 1694359 1694893 1695451 "NAGD03" 1696026 T NAGD03 (NIL) -7 NIL NIL) (-728 1686109 1688037 1689991 "NAGD02" 1692425 T NAGD02 (NIL) -7 NIL NIL) (-727 1679920 1681345 1682785 "NAGD01" 1684689 T NAGD01 (NIL) -7 NIL NIL) (-726 1676129 1676951 1677788 "NAGC06" 1679103 T NAGC06 (NIL) -7 NIL NIL) (-725 1674594 1674926 1675282 "NAGC05" 1675793 T NAGC05 (NIL) -7 NIL NIL) (-724 1673970 1674089 1674233 "NAGC02" 1674470 T NAGC02 (NIL) -7 NIL NIL) (-723 1673030 1673587 1673627 "NAALG" 1673706 NIL NAALG (NIL T) -9 NIL 1673767) (-722 1672865 1672894 1672984 "NAALG-" 1672989 NIL NAALG- (NIL T T) -8 NIL NIL) (-721 1666815 1667923 1669110 "MULTSQFR" 1671761 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-720 1666134 1666209 1666393 "MULTFACT" 1666727 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-719 1659357 1663222 1663275 "MTSCAT" 1664345 NIL MTSCAT (NIL T T) -9 NIL 1664859) (-718 1659069 1659123 1659215 "MTHING" 1659297 NIL MTHING (NIL T) -7 NIL NIL) (-717 1658861 1658894 1658954 "MSYSCMD" 1659029 T MSYSCMD (NIL) -7 NIL NIL) (-716 1655956 1658422 1658463 "MSETAGG" 1658468 NIL MSETAGG (NIL T) -9 NIL 1658502) (-715 1652068 1654711 1655031 "MSET" 1655669 NIL MSET (NIL T) -8 NIL NIL) (-714 1647953 1649447 1650192 "MRING" 1651368 NIL MRING (NIL T T) -8 NIL NIL) (-713 1647519 1647586 1647717 "MRF2" 1647880 NIL MRF2 (NIL T T T) -7 NIL NIL) (-712 1647137 1647172 1647316 "MRATFAC" 1647478 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-711 1644749 1645044 1645475 "MPRFF" 1646842 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-710 1638835 1644603 1644700 "MPOLY" 1644705 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-709 1638325 1638360 1638568 "MPCPF" 1638794 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-708 1637839 1637882 1638066 "MPC3" 1638276 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-707 1637034 1637115 1637336 "MPC2" 1637754 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-706 1635335 1635672 1636062 "MONOTOOL" 1636694 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-705 1634586 1634877 1634905 "MONOID" 1635124 T MONOID (NIL) -9 NIL 1635271) (-704 1634132 1634251 1634432 "MONOID-" 1634437 NIL MONOID- (NIL T) -8 NIL NIL) (-703 1625191 1631088 1631147 "MONOGEN" 1631821 NIL MONOGEN (NIL T T) -9 NIL 1632277) (-702 1622430 1623158 1624151 "MONOGEN-" 1624270 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-701 1621289 1621709 1621737 "MONADWU" 1622129 T MONADWU (NIL) -9 NIL 1622367) (-700 1620661 1620820 1621068 "MONADWU-" 1621073 NIL MONADWU- (NIL T) -8 NIL NIL) (-699 1620046 1620264 1620292 "MONAD" 1620499 T MONAD (NIL) -9 NIL 1620611) (-698 1619731 1619809 1619941 "MONAD-" 1619946 NIL MONAD- (NIL T) -8 NIL NIL) (-697 1618047 1618644 1618923 "MOEBIUS" 1619484 NIL MOEBIUS (NIL T) -8 NIL NIL) (-696 1617439 1617817 1617857 "MODULE" 1617862 NIL MODULE (NIL T) -9 NIL 1617888) (-695 1617007 1617103 1617293 "MODULE-" 1617298 NIL MODULE- (NIL T T) -8 NIL NIL) (-694 1614766 1615415 1615742 "MODRING" 1616831 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1611754 1612871 1613392 "MODOP" 1614295 NIL MODOP (NIL T T) -8 NIL NIL) (-692 1609941 1610393 1610734 "MODMONOM" 1611553 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-691 1599689 1608133 1608556 "MODMON" 1609569 NIL MODMON (NIL T T) -8 NIL NIL) (-690 1596906 1598557 1598833 "MODFIELD" 1599564 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1595910 1596187 1596377 "MMLFORM" 1596736 T MMLFORM (NIL) -8 NIL NIL) (-688 1595436 1595479 1595658 "MMAP" 1595861 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-687 1593705 1594438 1594479 "MLO" 1594902 NIL MLO (NIL T) -9 NIL 1595144) (-686 1591072 1591587 1592189 "MLIFT" 1593186 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-685 1590463 1590547 1590701 "MKUCFUNC" 1590983 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-684 1590062 1590132 1590255 "MKRECORD" 1590386 NIL MKRECORD (NIL T T) -7 NIL NIL) (-683 1589110 1589271 1589499 "MKFUNC" 1589873 NIL MKFUNC (NIL T) -7 NIL NIL) (-682 1588498 1588602 1588758 "MKFLCFN" 1588993 NIL MKFLCFN (NIL T) -7 NIL NIL) (-681 1587924 1588291 1588380 "MKCHSET" 1588442 NIL MKCHSET (NIL T) -8 NIL NIL) (-680 1587201 1587303 1587488 "MKBCFUNC" 1587817 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-679 1583945 1586755 1586891 "MINT" 1587085 T MINT (NIL) -8 NIL NIL) (-678 1582757 1583000 1583277 "MHROWRED" 1583700 NIL MHROWRED (NIL T) -7 NIL NIL) (-677 1578192 1581292 1581697 "MFLOAT" 1582372 T MFLOAT (NIL) -8 NIL NIL) (-676 1577549 1577625 1577796 "MFINFACT" 1578104 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-675 1573884 1574727 1575606 "MESH" 1576690 T MESH (NIL) -7 NIL NIL) (-674 1572274 1572586 1572939 "MDDFACT" 1573571 NIL MDDFACT (NIL T) -7 NIL NIL) (-673 1569116 1571433 1571474 "MDAGG" 1571729 NIL MDAGG (NIL T) -9 NIL 1571872) (-672 1558914 1568409 1568616 "MCMPLX" 1568929 T MCMPLX (NIL) -8 NIL NIL) (-671 1558055 1558201 1558401 "MCDEN" 1558763 NIL MCDEN (NIL T T) -7 NIL NIL) (-670 1555945 1556215 1556595 "MCALCFN" 1557785 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-669 1554856 1555029 1555270 "MAYBE" 1555743 NIL MAYBE (NIL T) -8 NIL NIL) (-668 1552468 1552991 1553553 "MATSTOR" 1554327 NIL MATSTOR (NIL T) -7 NIL NIL) (-667 1548473 1551840 1552088 "MATRIX" 1552253 NIL MATRIX (NIL T) -8 NIL NIL) (-666 1544242 1544946 1545682 "MATLIN" 1547830 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-665 1542836 1542989 1543322 "MATCAT2" 1544077 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-664 1532984 1536125 1536202 "MATCAT" 1541085 NIL MATCAT (NIL T T T) -9 NIL 1542502) (-663 1529348 1530361 1531717 "MATCAT-" 1531722 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-662 1527460 1527784 1528168 "MAPPKG3" 1529023 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-661 1526441 1526614 1526836 "MAPPKG2" 1527284 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-660 1524940 1525224 1525551 "MAPPKG1" 1526147 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-659 1524046 1524346 1524523 "MAPPAST" 1524783 T MAPPAST (NIL) -8 NIL NIL) (-658 1523657 1523715 1523838 "MAPHACK3" 1523982 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-657 1523249 1523310 1523424 "MAPHACK2" 1523589 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-656 1522687 1522790 1522932 "MAPHACK1" 1523140 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-655 1520793 1521387 1521691 "MAGMA" 1522415 NIL MAGMA (NIL T) -8 NIL NIL) (-654 1520299 1520517 1520608 "MACROAST" 1520722 T MACROAST (NIL) -8 NIL NIL) (-653 1516766 1518538 1518999 "M3D" 1519871 NIL M3D (NIL T) -8 NIL NIL) (-652 1510923 1515136 1515177 "LZSTAGG" 1515959 NIL LZSTAGG (NIL T) -9 NIL 1516254) (-651 1506896 1508054 1509511 "LZSTAGG-" 1509516 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-650 1504010 1504787 1505274 "LWORD" 1506441 NIL LWORD (NIL T) -8 NIL NIL) (-649 1503613 1503814 1503889 "LSTAST" 1503955 T LSTAST (NIL) -8 NIL NIL) (-648 1496845 1503384 1503518 "LSQM" 1503523 NIL LSQM (NIL NIL T) -8 NIL NIL) (-647 1496069 1496208 1496436 "LSPP" 1496700 NIL LSPP (NIL T T T T) -7 NIL NIL) (-646 1492911 1493568 1494281 "LSMP1" 1495388 NIL LSMP1 (NIL T) -7 NIL NIL) (-645 1490746 1491040 1491489 "LSMP" 1492607 NIL LSMP (NIL T T T T) -7 NIL NIL) (-644 1484674 1489914 1489955 "LSAGG" 1490017 NIL LSAGG (NIL T) -9 NIL 1490095) (-643 1481369 1482293 1483506 "LSAGG-" 1483511 NIL LSAGG- (NIL T T) -8 NIL NIL) (-642 1478995 1480513 1480762 "LPOLY" 1481164 NIL LPOLY (NIL T T) -8 NIL NIL) (-641 1478577 1478662 1478785 "LPEFRAC" 1478904 NIL LPEFRAC (NIL T) -7 NIL NIL) (-640 1478229 1478341 1478369 "LOGIC" 1478480 T LOGIC (NIL) -9 NIL 1478561) (-639 1478091 1478114 1478185 "LOGIC-" 1478190 NIL LOGIC- (NIL T) -8 NIL NIL) (-638 1477284 1477424 1477617 "LODOOPS" 1477947 NIL LODOOPS (NIL T T) -7 NIL NIL) (-637 1475822 1476057 1476410 "LODOF" 1477031 NIL LODOF (NIL T T) -7 NIL NIL) (-636 1472279 1474662 1474703 "LODOCAT" 1475141 NIL LODOCAT (NIL T) -9 NIL 1475352) (-635 1472012 1472070 1472197 "LODOCAT-" 1472202 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-634 1469381 1471853 1471971 "LODO2" 1471976 NIL LODO2 (NIL T T) -8 NIL NIL) (-633 1466865 1469318 1469363 "LODO1" 1469368 NIL LODO1 (NIL T) -8 NIL NIL) (-632 1464337 1466781 1466847 "LODO" 1466852 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1463197 1463362 1463674 "LODEEF" 1464160 NIL LODEEF (NIL T T T) -7 NIL NIL) (-630 1461544 1462291 1462544 "LO" 1463029 NIL LO (NIL T T T) -8 NIL NIL) (-629 1456830 1459674 1459715 "LNAGG" 1460662 NIL LNAGG (NIL T) -9 NIL 1461106) (-628 1455977 1456191 1456533 "LNAGG-" 1456538 NIL LNAGG- (NIL T T) -8 NIL NIL) (-627 1452140 1452902 1453541 "LMOPS" 1455392 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-626 1451535 1451897 1451938 "LMODULE" 1451999 NIL LMODULE (NIL T) -9 NIL 1452041) (-625 1448781 1451180 1451303 "LMDICT" 1451445 NIL LMDICT (NIL T) -8 NIL NIL) (-624 1448507 1448689 1448749 "LITERAL" 1448754 NIL LITERAL (NIL T) -8 NIL NIL) (-623 1448032 1448106 1448245 "LIST3" 1448427 NIL LIST3 (NIL T T T) -7 NIL NIL) (-622 1446166 1446478 1446877 "LIST2MAP" 1447679 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-621 1445173 1445351 1445579 "LIST2" 1445984 NIL LIST2 (NIL T T) -7 NIL NIL) (-620 1438402 1444119 1444417 "LIST" 1444908 NIL LIST (NIL T) -8 NIL NIL) (-619 1437152 1437788 1437829 "LINEXP" 1438084 NIL LINEXP (NIL T) -9 NIL 1438233) (-618 1435799 1436059 1436356 "LINDEP" 1436904 NIL LINDEP (NIL T T) -7 NIL NIL) (-617 1432637 1433337 1434095 "LIMITRF" 1435073 NIL LIMITRF (NIL T) -7 NIL NIL) (-616 1430936 1431224 1431633 "LIMITPS" 1432339 NIL LIMITPS (NIL T T) -7 NIL NIL) (-615 1429985 1430428 1430468 "LIECAT" 1430608 NIL LIECAT (NIL T) -9 NIL 1430759) (-614 1429826 1429853 1429941 "LIECAT-" 1429946 NIL LIECAT- (NIL T T) -8 NIL NIL) (-613 1424313 1429337 1429565 "LIE" 1429647 NIL LIE (NIL T T) -8 NIL NIL) (-612 1416927 1423762 1423927 "LIB" 1424168 T LIB (NIL) -8 NIL NIL) (-611 1412564 1413445 1414380 "LGROBP" 1416044 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-610 1411404 1412096 1412124 "LFCAT" 1412331 T LFCAT (NIL) -9 NIL 1412470) (-609 1409270 1409544 1409906 "LF" 1411125 NIL LF (NIL T T) -7 NIL NIL) (-608 1406174 1406802 1407490 "LEXTRIPK" 1408634 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-607 1402945 1403744 1404247 "LEXP" 1405754 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-606 1402448 1402666 1402758 "LETAST" 1402873 T LETAST (NIL) -8 NIL NIL) (-605 1400846 1401159 1401560 "LEADCDET" 1402130 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-604 1400036 1400110 1400339 "LAZM3PK" 1400767 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-603 1395006 1398113 1398651 "LAUPOL" 1399548 NIL LAUPOL (NIL T T) -8 NIL NIL) (-602 1394571 1394615 1394783 "LAPLACE" 1394956 NIL LAPLACE (NIL T T) -7 NIL NIL) (-601 1393672 1394222 1394263 "LALG" 1394325 NIL LALG (NIL T) -9 NIL 1394384) (-600 1393386 1393445 1393581 "LALG-" 1393586 NIL LALG- (NIL T T) -8 NIL NIL) (-599 1391360 1392487 1392738 "LA" 1393219 NIL LA (NIL T T T) -8 NIL NIL) (-598 1390160 1390577 1390806 "KTVLOGIC" 1391151 T KTVLOGIC (NIL) -8 NIL NIL) (-597 1389064 1389251 1389550 "KOVACIC" 1389960 NIL KOVACIC (NIL T T) -7 NIL NIL) (-596 1388899 1388923 1388964 "KONVERT" 1389026 NIL KONVERT (NIL T) -9 NIL NIL) (-595 1388734 1388758 1388799 "KOERCE" 1388861 NIL KOERCE (NIL T) -9 NIL NIL) (-594 1388236 1388317 1388447 "KERNEL2" 1388648 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-593 1385970 1386730 1387123 "KERNEL" 1387875 NIL KERNEL (NIL T) -8 NIL NIL) (-592 1379821 1384509 1384563 "KDAGG" 1384940 NIL KDAGG (NIL T T) -9 NIL 1385146) (-591 1379350 1379474 1379679 "KDAGG-" 1379684 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-590 1372527 1379011 1379166 "KAFILE" 1379228 NIL KAFILE (NIL T) -8 NIL NIL) (-589 1367014 1372038 1372266 "JORDAN" 1372348 NIL JORDAN (NIL T T) -8 NIL NIL) (-588 1366420 1366663 1366784 "JOINAST" 1366913 T JOINAST (NIL) -8 NIL NIL) (-587 1366149 1366208 1366295 "JAVACODE" 1366353 T JAVACODE (NIL) -8 NIL NIL) (-586 1362448 1364354 1364408 "IXAGG" 1365337 NIL IXAGG (NIL T T) -9 NIL 1365796) (-585 1361367 1361673 1362092 "IXAGG-" 1362097 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-584 1356947 1361289 1361348 "IVECTOR" 1361353 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-583 1355713 1355950 1356216 "ITUPLE" 1356714 NIL ITUPLE (NIL T) -8 NIL NIL) (-582 1354149 1354326 1354632 "ITRIGMNP" 1355535 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-581 1352894 1353098 1353381 "ITFUN3" 1353925 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-580 1352526 1352583 1352692 "ITFUN2" 1352831 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-579 1350363 1351388 1351687 "ITAYLOR" 1352260 NIL ITAYLOR (NIL T) -8 NIL NIL) (-578 1339345 1344500 1345663 "ISUPS" 1349233 NIL ISUPS (NIL T) -8 NIL NIL) (-577 1338449 1338589 1338825 "ISUMP" 1339192 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-576 1333713 1338250 1338329 "ISTRING" 1338402 NIL ISTRING (NIL NIL) -8 NIL NIL) (-575 1333216 1333434 1333526 "ISAST" 1333641 T ISAST (NIL) -8 NIL NIL) (-574 1332426 1332507 1332723 "IRURPK" 1333130 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-573 1331362 1331563 1331803 "IRSN" 1332206 T IRSN (NIL) -7 NIL NIL) (-572 1329391 1329746 1330182 "IRRF2F" 1331000 NIL IRRF2F (NIL T) -7 NIL NIL) (-571 1329138 1329176 1329252 "IRREDFFX" 1329347 NIL IRREDFFX (NIL T) -7 NIL NIL) (-570 1327753 1328012 1328311 "IROOT" 1328871 NIL IROOT (NIL T) -7 NIL NIL) (-569 1326825 1326938 1327159 "IR2F" 1327636 NIL IR2F (NIL T T) -7 NIL NIL) (-568 1324438 1324933 1325499 "IR2" 1326303 NIL IR2 (NIL T T) -7 NIL NIL) (-567 1321070 1322122 1322814 "IR" 1323778 NIL IR (NIL T) -8 NIL NIL) (-566 1320861 1320895 1320955 "IPRNTPK" 1321030 T IPRNTPK (NIL) -7 NIL NIL) (-565 1317482 1320750 1320819 "IPF" 1320824 NIL IPF (NIL NIL) -8 NIL NIL) (-564 1315847 1317407 1317464 "IPADIC" 1317469 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-563 1315347 1315551 1315661 "IOMODE" 1315757 T IOMODE (NIL) -8 NIL NIL) (-562 1315111 1315251 1315279 "IOBCON" 1315284 T IOBCON (NIL) -9 NIL 1315305) (-561 1314608 1314666 1314856 "INVLAPLA" 1315047 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-560 1304305 1306646 1309020 "INTTR" 1312284 NIL INTTR (NIL T T) -7 NIL NIL) (-559 1300649 1301391 1302255 "INTTOOLS" 1303490 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-558 1300235 1300326 1300443 "INTSLPE" 1300552 T INTSLPE (NIL) -7 NIL NIL) (-557 1298230 1300158 1300217 "INTRVL" 1300222 NIL INTRVL (NIL T) -8 NIL NIL) (-556 1295832 1296344 1296919 "INTRF" 1297715 NIL INTRF (NIL T) -7 NIL NIL) (-555 1295243 1295340 1295482 "INTRET" 1295730 NIL INTRET (NIL T) -7 NIL NIL) (-554 1293240 1293629 1294099 "INTRAT" 1294851 NIL INTRAT (NIL T T) -7 NIL NIL) (-553 1290468 1291051 1291677 "INTPM" 1292725 NIL INTPM (NIL T T) -7 NIL NIL) (-552 1287194 1287786 1288524 "INTPAF" 1289861 NIL INTPAF (NIL T T T) -7 NIL NIL) (-551 1282373 1283335 1284386 "INTPACK" 1286163 T INTPACK (NIL) -7 NIL NIL) (-550 1281625 1281777 1281985 "INTHERTR" 1282215 NIL INTHERTR (NIL T T) -7 NIL NIL) (-549 1281064 1281144 1281332 "INTHERAL" 1281539 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-548 1278910 1279353 1279810 "INTHEORY" 1280627 T INTHEORY (NIL) -7 NIL NIL) (-547 1270276 1271879 1273640 "INTG0" 1277280 NIL INTG0 (NIL T T T) -7 NIL NIL) (-546 1256549 1259914 1263299 "INTFTBL" 1266911 T INTFTBL (NIL) -8 NIL NIL) (-545 1255798 1255936 1256109 "INTFACT" 1256408 NIL INTFACT (NIL T) -7 NIL NIL) (-544 1253189 1253633 1254195 "INTEF" 1255354 NIL INTEF (NIL T T) -7 NIL NIL) (-543 1251691 1252396 1252424 "INTDOM" 1252725 T INTDOM (NIL) -9 NIL 1252932) (-542 1251060 1251234 1251476 "INTDOM-" 1251481 NIL INTDOM- (NIL T) -8 NIL NIL) (-541 1247593 1249479 1249533 "INTCAT" 1250332 NIL INTCAT (NIL T) -9 NIL 1250652) (-540 1247066 1247168 1247296 "INTBIT" 1247485 T INTBIT (NIL) -7 NIL NIL) (-539 1245737 1245891 1246205 "INTALG" 1246911 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-538 1245194 1245284 1245454 "INTAF" 1245641 NIL INTAF (NIL T T) -7 NIL NIL) (-537 1238650 1245004 1245144 "INTABL" 1245149 NIL INTABL (NIL T T T) -8 NIL NIL) (-536 1235564 1238379 1238506 "INT" 1238543 T INT (NIL) -8 NIL NIL) (-535 1230621 1233290 1233318 "INS" 1234252 T INS (NIL) -9 NIL 1234916) (-534 1227861 1228632 1229606 "INS-" 1229679 NIL INS- (NIL T) -8 NIL NIL) (-533 1226709 1226914 1227190 "INPSIGN" 1227636 NIL INPSIGN (NIL T T) -7 NIL NIL) (-532 1225827 1225944 1226141 "INPRODPF" 1226589 NIL INPRODPF (NIL T T) -7 NIL NIL) (-531 1224721 1224838 1225075 "INPRODFF" 1225707 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-530 1223721 1223873 1224133 "INNMFACT" 1224557 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-529 1222918 1223015 1223203 "INMODGCD" 1223620 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-528 1221427 1221671 1221995 "INFSP" 1222663 NIL INFSP (NIL T T T) -7 NIL NIL) (-527 1220611 1220728 1220911 "INFPROD0" 1221307 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-526 1220221 1220281 1220379 "INFORM1" 1220546 NIL INFORM1 (NIL T) -7 NIL NIL) (-525 1217103 1218286 1218801 "INFORM" 1219714 T INFORM (NIL) -8 NIL NIL) (-524 1216626 1216715 1216829 "INFINITY" 1217009 T INFINITY (NIL) -7 NIL NIL) (-523 1215243 1215492 1215813 "INEP" 1216374 NIL INEP (NIL T T T) -7 NIL NIL) (-522 1214519 1215140 1215205 "INDE" 1215210 NIL INDE (NIL T) -8 NIL NIL) (-521 1214083 1214151 1214268 "INCRMAPS" 1214446 NIL INCRMAPS (NIL T) -7 NIL NIL) (-520 1213386 1213579 1213729 "INBFILE" 1213953 T INBFILE (NIL) -8 NIL NIL) (-519 1208697 1209622 1210566 "INBFF" 1212474 NIL INBFF (NIL T) -7 NIL NIL) (-518 1208366 1208442 1208470 "INBCON" 1208603 T INBCON (NIL) -9 NIL 1208681) (-517 1208206 1208241 1208317 "INBCON-" 1208322 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1207708 1207927 1208019 "INAST" 1208134 T INAST (NIL) -8 NIL NIL) (-515 1207162 1207387 1207493 "IMPTAST" 1207622 T IMPTAST (NIL) -8 NIL NIL) (-514 1203655 1207006 1207110 "IMATRIX" 1207115 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1202367 1202490 1202805 "IMATQF" 1203511 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1200587 1200814 1201151 "IMATLIN" 1202123 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1195215 1200511 1200569 "ILIST" 1200574 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1193168 1195075 1195188 "IIARRAY2" 1195193 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1188603 1193079 1193143 "IFF" 1193148 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1187977 1188220 1188336 "IFAST" 1188507 T IFAST (NIL) -8 NIL NIL) (-507 1183020 1187269 1187457 "IFARRAY" 1187834 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1182227 1182924 1182997 "IFAMON" 1183002 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1181811 1181876 1181930 "IEVALAB" 1182137 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1181486 1181554 1181714 "IEVALAB-" 1181719 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1180763 1181375 1181450 "IDPOAMS" 1181455 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1180097 1180652 1180727 "IDPOAM" 1180732 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1179755 1180011 1180074 "IDPO" 1180079 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1178840 1179090 1179143 "IDPC" 1179556 NIL IDPC (NIL T T) -9 NIL 1179705) (-499 1178336 1178732 1178805 "IDPAM" 1178810 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1177739 1178228 1178301 "IDPAG" 1178306 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1177469 1177654 1177704 "IDENT" 1177709 T IDENT (NIL) -8 NIL NIL) (-496 1173724 1174572 1175467 "IDECOMP" 1176626 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1166597 1167647 1168694 "IDEAL" 1172760 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1165761 1165873 1166072 "ICDEN" 1166481 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1164860 1165241 1165388 "ICARD" 1165634 T ICARD (NIL) -8 NIL NIL) (-492 1162920 1163233 1163638 "IBPTOOLS" 1164537 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1158554 1162540 1162653 "IBITS" 1162839 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1155277 1155853 1156548 "IBATOOL" 1157971 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1153057 1153518 1154051 "IBACHIN" 1154812 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1150934 1152903 1153006 "IARRAY2" 1153011 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1147087 1150860 1150917 "IARRAY1" 1150922 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1141091 1145501 1145981 "IAN" 1146627 T IAN (NIL) -8 NIL NIL) (-485 1140602 1140659 1140832 "IALGFACT" 1141028 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1140130 1140243 1140271 "HYPCAT" 1140478 T HYPCAT (NIL) -9 NIL NIL) (-483 1139668 1139785 1139971 "HYPCAT-" 1139976 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1139290 1139463 1139546 "HOSTNAME" 1139605 T HOSTNAME (NIL) -8 NIL NIL) (-481 1135969 1137300 1137341 "HOAGG" 1138322 NIL HOAGG (NIL T) -9 NIL 1139001) (-480 1134563 1134962 1135488 "HOAGG-" 1135493 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1128472 1134004 1134170 "HEXADEC" 1134417 T HEXADEC (NIL) -8 NIL NIL) (-478 1127220 1127442 1127705 "HEUGCD" 1128249 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1126323 1127057 1127187 "HELLFDIV" 1127192 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1124551 1126100 1126188 "HEAP" 1126267 NIL HEAP (NIL T) -8 NIL NIL) (-475 1123842 1124103 1124237 "HEADAST" 1124437 T HEADAST (NIL) -8 NIL NIL) (-474 1117769 1123757 1123819 "HDP" 1123824 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1111551 1117404 1117556 "HDMP" 1117670 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1110876 1111015 1111179 "HB" 1111407 T HB (NIL) -7 NIL NIL) (-471 1104375 1110722 1110826 "HASHTBL" 1110831 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1103878 1104096 1104188 "HASAST" 1104303 T HASAST (NIL) -8 NIL NIL) (-469 1101696 1103502 1103683 "HACKPI" 1103717 T HACKPI (NIL) -8 NIL NIL) (-468 1097418 1101549 1101662 "GTSET" 1101667 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1090946 1097296 1097394 "GSTBL" 1097399 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1083261 1089977 1090242 "GSERIES" 1090737 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1082428 1082819 1082847 "GROUP" 1083050 T GROUP (NIL) -9 NIL 1083184) (-464 1081794 1081953 1082204 "GROUP-" 1082209 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1080163 1080482 1080869 "GROEBSOL" 1081471 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1079103 1079365 1079416 "GRMOD" 1079945 NIL GRMOD (NIL T T) -9 NIL 1080113) (-461 1078871 1078907 1079035 "GRMOD-" 1079040 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1074196 1075225 1076225 "GRIMAGE" 1077891 T GRIMAGE (NIL) -8 NIL NIL) (-459 1072663 1072923 1073247 "GRDEF" 1073892 T GRDEF (NIL) -7 NIL NIL) (-458 1072107 1072223 1072364 "GRAY" 1072542 T GRAY (NIL) -7 NIL NIL) (-457 1071338 1071718 1071769 "GRALG" 1071922 NIL GRALG (NIL T T) -9 NIL 1072015) (-456 1070999 1071072 1071235 "GRALG-" 1071240 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1067803 1070584 1070762 "GPOLSET" 1070906 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1067157 1067214 1067472 "GOSPER" 1067740 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1062916 1063595 1064121 "GMODPOL" 1066856 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1061921 1062105 1062343 "GHENSEL" 1062728 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1055972 1056815 1057842 "GENUPS" 1061005 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1055669 1055720 1055809 "GENUFACT" 1055915 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1055081 1055158 1055323 "GENPGCD" 1055587 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1054555 1054590 1054803 "GENMFACT" 1055040 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1053123 1053378 1053685 "GENEEZ" 1054298 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1047067 1052734 1052896 "GDMP" 1053046 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1036466 1040838 1041944 "GCNAALG" 1046050 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1034928 1035756 1035784 "GCDDOM" 1036039 T GCDDOM (NIL) -9 NIL 1036196) (-443 1034398 1034525 1034740 "GCDDOM-" 1034745 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1023018 1025344 1027736 "GBINTERN" 1032089 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1020855 1021147 1021568 "GBF" 1022693 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1019636 1019801 1020068 "GBEUCLID" 1020671 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1018308 1018493 1018797 "GB" 1019415 NIL GB (NIL T T T T) -7 NIL NIL) (-438 1017657 1017782 1017931 "GAUSSFAC" 1018179 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1016024 1016326 1016640 "GALUTIL" 1017376 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1014332 1014606 1014930 "GALPOLYU" 1015751 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1011697 1011987 1012394 "GALFACTU" 1014029 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1003503 1005002 1006610 "GALFACT" 1010129 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1000891 1001549 1001577 "FVFUN" 1002733 T FVFUN (NIL) -9 NIL 1003453) (-432 1000157 1000339 1000367 "FVC" 1000658 T FVC (NIL) -9 NIL 1000841) (-431 999799 999954 1000035 "FUNCTION" 1000109 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 998617 999100 999303 "FTEM" 999616 T FTEM (NIL) -8 NIL NIL) (-429 996299 996847 997333 "FT" 998151 T FT (NIL) -8 NIL NIL) (-428 994555 994844 995248 "FSUPFACT" 995990 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 992952 993241 993573 "FST" 994243 T FST (NIL) -8 NIL NIL) (-426 992123 992229 992424 "FSRED" 992834 NIL FSRED (NIL T T) -7 NIL NIL) (-425 990802 991057 991411 "FSPRMELT" 991838 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 987887 988325 988824 "FSPECF" 990365 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 987401 987455 987632 "FSINT" 987828 NIL FSINT (NIL T T) -7 NIL NIL) (-422 985728 986394 986697 "FSERIES" 987180 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 984742 984858 985089 "FSCINT" 985608 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 983784 983927 984154 "FSAGG2" 984595 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-419 980018 982728 982769 "FSAGG" 983139 NIL FSAGG (NIL T) -9 NIL 983398) (-418 977780 978381 979177 "FSAGG-" 979272 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 975435 975714 976268 "FS2UPS" 977498 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 974292 974463 974772 "FS2EXPXP" 975260 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-415 973874 973917 974072 "FS2" 974243 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 956345 964758 964798 "FS" 968646 NIL FS (NIL T) -9 NIL 970935) (-413 945076 948039 952068 "FS-" 952365 NIL FS- (NIL T T) -8 NIL NIL) (-412 944502 944617 944769 "FRUTIL" 944956 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 939609 942220 942260 "FRNAALG" 943656 NIL FRNAALG (NIL T) -9 NIL 944263) (-410 935338 936392 937650 "FRNAALG-" 938400 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 934976 935019 935146 "FRNAAF2" 935289 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 933383 933830 934125 "FRMOD" 934788 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 932578 932665 932954 "FRIDEAL2" 933290 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 930357 930961 931278 "FRIDEAL" 932369 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 929606 930013 930054 "FRETRCT" 930059 NIL FRETRCT (NIL T) -9 NIL 930235) (-404 928739 928963 929307 "FRETRCT-" 929312 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 925989 927165 927224 "FRAMALG" 928106 NIL FRAMALG (NIL T T) -9 NIL 928398) (-402 924123 924578 925208 "FRAMALG-" 925431 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 923759 923816 923923 "FRAC2" 924060 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 917740 923234 923510 "FRAC" 923515 NIL FRAC (NIL T) -8 NIL NIL) (-399 917376 917433 917540 "FR2" 917677 NIL FR2 (NIL T T) -7 NIL NIL) (-398 908952 912956 914285 "FR" 916079 NIL FR (NIL T) -8 NIL NIL) (-397 903686 906530 906558 "FPS" 907677 T FPS (NIL) -9 NIL 908234) (-396 903135 903244 903408 "FPS-" 903554 NIL FPS- (NIL T) -8 NIL NIL) (-395 900643 902276 902304 "FPC" 902529 T FPC (NIL) -9 NIL 902671) (-394 900436 900476 900573 "FPC-" 900578 NIL FPC- (NIL T) -8 NIL NIL) (-393 899314 899924 899965 "FPATMAB" 899970 NIL FPATMAB (NIL T) -9 NIL 900122) (-392 897014 897490 897916 "FPARFRAC" 898951 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 892446 892945 893627 "FORTRAN" 896446 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 890122 890684 890712 "FORTFN" 891772 T FORTFN (NIL) -9 NIL 892396) (-389 889886 889936 889964 "FORTCAT" 890023 T FORTCAT (NIL) -9 NIL 890085) (-388 887602 888102 888641 "FORT" 889367 T FORT (NIL) -7 NIL NIL) (-387 887390 887420 887489 "FORMULA1" 887566 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 885450 885933 886332 "FORMULA" 887011 T FORMULA (NIL) -8 NIL NIL) (-385 884973 885025 885198 "FORDER" 885392 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 884069 884233 884426 "FOP" 884800 T FOP (NIL) -7 NIL NIL) (-383 882677 883349 883523 "FNLA" 883951 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 881345 881734 881762 "FNCAT" 882334 T FNCAT (NIL) -9 NIL 882627) (-381 880911 881304 881332 "FNAME" 881337 T FNAME (NIL) -8 NIL NIL) (-380 879609 880538 880566 "FMTC" 880571 T FMTC (NIL) -9 NIL 880607) (-379 875971 877132 877761 "FMONOID" 879013 NIL FMONOID (NIL T) -8 NIL NIL) (-378 873395 874041 874069 "FMFUN" 875213 T FMFUN (NIL) -9 NIL 875921) (-377 870607 871441 871495 "FMCAT" 872690 NIL FMCAT (NIL T T) -9 NIL 873185) (-376 869876 870057 870085 "FMC" 870375 T FMC (NIL) -9 NIL 870557) (-375 868769 869642 869742 "FM1" 869821 NIL FM1 (NIL T T) -8 NIL NIL) (-374 867988 868511 868660 "FM" 868665 NIL FM (NIL T T) -8 NIL NIL) (-373 865762 866178 866672 "FLOATRP" 867539 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 863200 863700 864278 "FLOATCP" 865229 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 856755 860856 861486 "FLOAT" 862590 T FLOAT (NIL) -8 NIL NIL) (-370 855584 856388 856429 "FLINEXP" 856434 NIL FLINEXP (NIL T) -9 NIL 856527) (-369 854738 854973 855301 "FLINEXP-" 855306 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 853814 853958 854182 "FLASORT" 854590 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 851031 851873 851925 "FLALG" 853152 NIL FLALG (NIL T T) -9 NIL 853619) (-366 850073 850216 850443 "FLAGG2" 850884 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 843857 847559 847600 "FLAGG" 848862 NIL FLAGG (NIL T) -9 NIL 849514) (-364 842583 842922 843412 "FLAGG-" 843417 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 839596 840570 840629 "FINRALG" 841757 NIL FINRALG (NIL T T) -9 NIL 842265) (-362 838756 838985 839324 "FINRALG-" 839329 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 838162 838375 838403 "FINITE" 838599 T FINITE (NIL) -9 NIL 838706) (-360 830620 832781 832821 "FINAALG" 836488 NIL FINAALG (NIL T) -9 NIL 837941) (-359 825961 827002 828146 "FINAALG-" 829525 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 824645 824957 825011 "FILECAT" 825695 NIL FILECAT (NIL T T) -9 NIL 825911) (-357 824040 824400 824503 "FILE" 824575 NIL FILE (NIL T) -8 NIL NIL) (-356 821962 823454 823482 "FIELD" 823522 T FIELD (NIL) -9 NIL 823602) (-355 820582 820967 821478 "FIELD-" 821483 NIL FIELD- (NIL T) -8 NIL NIL) (-354 818460 819217 819564 "FGROUP" 820268 NIL FGROUP (NIL T) -8 NIL NIL) (-353 817550 817714 817934 "FGLMICPK" 818292 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 813419 817475 817532 "FFX" 817537 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 813020 813081 813216 "FFSLPE" 813352 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 812524 812560 812769 "FFPOLY2" 812978 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 808517 809296 810092 "FFPOLY" 811760 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 804405 808436 808499 "FFP" 808504 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 799568 803748 803938 "FFNBX" 804259 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 794544 798703 798961 "FFNBP" 799422 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 789214 793828 794039 "FFNB" 794377 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 788046 788244 788559 "FFINTBAS" 789011 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 784332 786505 786533 "FFIELDC" 787153 T FFIELDC (NIL) -9 NIL 787529) (-342 782995 783365 783862 "FFIELDC-" 783867 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 782565 782610 782734 "FFHOM" 782937 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 780263 780747 781264 "FFF" 782080 NIL FFF (NIL T) -7 NIL NIL) (-339 775918 780005 780106 "FFCGX" 780206 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 771587 775650 775757 "FFCGP" 775861 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 766807 771314 771422 "FFCG" 771523 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 766218 766261 766496 "FFCAT2" 766758 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-335 748285 757312 757398 "FFCAT" 762563 NIL FFCAT (NIL T T T) -9 NIL 764014) (-334 743483 744530 745844 "FFCAT-" 747074 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 738918 743394 743458 "FF" 743463 NIL FF (NIL NIL NIL) -8 NIL NIL) (-332 728132 731890 733110 "FEXPR" 737770 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 727132 727567 727608 "FEVALAB" 727692 NIL FEVALAB (NIL T) -9 NIL 727953) (-330 726291 726501 726839 "FEVALAB-" 726844 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 723357 724072 724187 "FDIVCAT" 725755 NIL FDIVCAT (NIL T T T T) -9 NIL 726192) (-328 723119 723146 723316 "FDIVCAT-" 723321 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 722339 722426 722703 "FDIV2" 723026 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 720932 721722 721925 "FDIV" 722238 NIL FDIV (NIL T T T T) -8 NIL NIL) (-325 719618 719877 720166 "FCPAK1" 720663 T FCPAK1 (NIL) -7 NIL NIL) (-324 718746 719118 719259 "FCOMP" 719509 NIL FCOMP (NIL T) -8 NIL NIL) (-323 702381 705795 709356 "FC" 715205 T FC (NIL) -8 NIL NIL) (-322 695036 699015 699055 "FAXF" 700857 NIL FAXF (NIL T) -9 NIL 701549) (-321 692315 692970 693795 "FAXF-" 694260 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 687415 691691 691867 "FARRAY" 692172 NIL FARRAY (NIL T) -8 NIL NIL) (-319 682829 684854 684907 "FAMR" 685930 NIL FAMR (NIL T T) -9 NIL 686390) (-318 681719 682021 682456 "FAMR-" 682461 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 680915 681641 681694 "FAMONOID" 681699 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 678745 679429 679482 "FAMONC" 680423 NIL FAMONC (NIL T T) -9 NIL 680809) (-315 677437 678499 678636 "FAGROUP" 678641 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 675232 675551 675954 "FACUTIL" 677118 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 674331 674516 674738 "FACTFUNC" 675042 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 666738 673582 673794 "EXPUPXS" 674187 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 664221 664761 665347 "EXPRTUBE" 666172 T EXPRTUBE (NIL) -7 NIL NIL) (-310 660415 661007 661744 "EXPRODE" 663560 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 654822 655409 656222 "EXPR2UPS" 659713 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 654458 654515 654622 "EXPR2" 654759 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 639893 653113 653541 "EXPR" 654062 NIL EXPR (NIL T) -8 NIL NIL) (-306 631326 639025 639322 "EXPEXPAN" 639730 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 630833 631050 631141 "EXITAST" 631255 T EXITAST (NIL) -8 NIL NIL) (-304 630660 630790 630819 "EXIT" 630824 T EXIT (NIL) -8 NIL NIL) (-303 630287 630349 630462 "EVALCYC" 630592 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 629828 629946 629987 "EVALAB" 630157 NIL EVALAB (NIL T) -9 NIL 630261) (-301 629309 629431 629652 "EVALAB-" 629657 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 626812 628080 628108 "EUCDOM" 628663 T EUCDOM (NIL) -9 NIL 629013) (-299 625217 625659 626249 "EUCDOM-" 626254 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 624849 624906 625015 "ESTOOLS2" 625154 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 624600 624642 624722 "ESTOOLS1" 624801 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 612140 614898 617648 "ESTOOLS" 621870 T ESTOOLS (NIL) -7 NIL NIL) (-295 611885 611917 611999 "ESCONT1" 612102 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-294 608260 609020 609800 "ESCONT" 611125 T ESCONT (NIL) -7 NIL NIL) (-293 607935 607985 608085 "ES2" 608204 NIL ES2 (NIL T T) -7 NIL NIL) (-292 607565 607623 607732 "ES1" 607871 NIL ES1 (NIL T T) -7 NIL NIL) (-291 601490 603218 603246 "ES" 606014 T ES (NIL) -9 NIL 607423) (-290 596437 597724 599541 "ES-" 599705 NIL ES- (NIL T) -8 NIL NIL) (-289 595653 595782 595958 "ERROR" 596281 T ERROR (NIL) -7 NIL NIL) (-288 589158 595512 595603 "EQTBL" 595608 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 588790 588847 588956 "EQ2" 589095 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 581347 584104 585553 "EQ" 587374 NIL -3885 (NIL T) -8 NIL NIL) (-285 576639 577685 578778 "EP" 580286 NIL EP (NIL T) -7 NIL NIL) (-284 575221 575522 575839 "ENV" 576342 T ENV (NIL) -8 NIL NIL) (-283 574420 574940 574968 "ENTIRER" 574973 T ENTIRER (NIL) -9 NIL 575019) (-282 570978 572429 572799 "EMR" 574219 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 570122 570307 570361 "ELTAGG" 570741 NIL ELTAGG (NIL T T) -9 NIL 570952) (-280 569841 569903 570044 "ELTAGG-" 570049 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 569630 569659 569713 "ELTAB" 569797 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 568756 568902 569101 "ELFUTS" 569481 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 568498 568554 568582 "ELEMFUN" 568687 T ELEMFUN (NIL) -9 NIL NIL) (-276 568368 568389 568457 "ELEMFUN-" 568462 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 563259 566468 566509 "ELAGG" 567449 NIL ELAGG (NIL T) -9 NIL 567912) (-274 561544 561978 562641 "ELAGG-" 562646 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 560201 560481 560776 "ELABEXPR" 561269 T ELABEXPR (NIL) -8 NIL NIL) (-272 553194 554868 555695 "EFUPXS" 559477 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 546771 548445 549255 "EFULS" 552470 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 544193 544551 545030 "EFSTRUC" 546403 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 533265 534830 536390 "EF" 542708 NIL EF (NIL T T) -7 NIL NIL) (-268 532366 532750 532899 "EAB" 533136 T EAB (NIL) -8 NIL NIL) (-267 531575 532325 532353 "E04UCFA" 532358 T E04UCFA (NIL) -8 NIL NIL) (-266 530784 531534 531562 "E04NAFA" 531567 T E04NAFA (NIL) -8 NIL NIL) (-265 529993 530743 530771 "E04MBFA" 530776 T E04MBFA (NIL) -8 NIL NIL) (-264 529202 529952 529980 "E04JAFA" 529985 T E04JAFA (NIL) -8 NIL NIL) (-263 528413 529161 529189 "E04GCFA" 529194 T E04GCFA (NIL) -8 NIL NIL) (-262 527624 528372 528400 "E04FDFA" 528405 T E04FDFA (NIL) -8 NIL NIL) (-261 526833 527583 527611 "E04DGFA" 527616 T E04DGFA (NIL) -8 NIL NIL) (-260 521011 522358 523722 "E04AGNT" 525489 T E04AGNT (NIL) -7 NIL NIL) (-259 519735 520215 520255 "DVARCAT" 520730 NIL DVARCAT (NIL T) -9 NIL 520929) (-258 518939 519151 519465 "DVARCAT-" 519470 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 511880 518738 518867 "DSMP" 518872 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 511545 511604 511702 "DROPT1" 511815 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 506660 507786 508923 "DROPT0" 510428 T DROPT0 (NIL) -7 NIL NIL) (-254 501470 502605 503673 "DROPT" 505612 T DROPT (NIL) -8 NIL NIL) (-253 499815 500140 500526 "DRAWPT" 501104 T DRAWPT (NIL) -7 NIL NIL) (-252 499448 499501 499619 "DRAWHACK" 499756 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 498179 498448 498739 "DRAWCX" 499177 T DRAWCX (NIL) -7 NIL NIL) (-250 497695 497763 497914 "DRAWCURV" 498105 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 488166 490125 492240 "DRAWCFUN" 495600 T DRAWCFUN (NIL) -7 NIL NIL) (-248 482753 483676 484755 "DRAW" 487140 NIL DRAW (NIL T) -7 NIL NIL) (-247 479566 481448 481489 "DQAGG" 482118 NIL DQAGG (NIL T) -9 NIL 482391) (-246 468121 474782 474865 "DPOLCAT" 476717 NIL DPOLCAT (NIL T T T T) -9 NIL 477262) (-245 463011 464340 466281 "DPOLCAT-" 466286 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456173 462872 462970 "DPMO" 462975 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 449238 455953 456120 "DPMM" 456125 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 448658 448861 448975 "DOMAIN" 449144 T DOMAIN (NIL) -8 NIL NIL) (-241 442440 448293 448445 "DMP" 448559 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442040 442096 442240 "DLP" 442378 NIL DLP (NIL T) -7 NIL NIL) (-239 435686 441141 441368 "DLIST" 441845 NIL DLIST (NIL T) -8 NIL NIL) (-238 432533 434541 434582 "DLAGG" 435132 NIL DLAGG (NIL T) -9 NIL 435361) (-237 431383 432013 432041 "DIVRING" 432133 T DIVRING (NIL) -9 NIL 432216) (-236 430620 430810 431110 "DIVRING-" 431115 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 428722 429079 429485 "DISPLAY" 430234 T DISPLAY (NIL) -7 NIL NIL) (-234 427570 427773 428038 "DIRPROD2" 428515 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 421519 427484 427547 "DIRPROD" 427552 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 411064 417009 417062 "DIRPCAT" 417472 NIL DIRPCAT (NIL NIL T) -9 NIL 418312) (-231 408390 409032 409913 "DIRPCAT-" 410250 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 407677 407837 408023 "DIOSP" 408224 T DIOSP (NIL) -7 NIL NIL) (-229 404379 406589 406630 "DIOPS" 407064 NIL DIOPS (NIL T) -9 NIL 407293) (-228 403928 404042 404233 "DIOPS-" 404238 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 402840 403434 403462 "DIFRING" 403649 T DIFRING (NIL) -9 NIL 403759) (-226 402486 402563 402715 "DIFRING-" 402720 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 400311 401549 401590 "DIFEXT" 401953 NIL DIFEXT (NIL T) -9 NIL 402247) (-224 398596 399024 399690 "DIFEXT-" 399695 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 395918 398128 398169 "DIAGG" 398174 NIL DIAGG (NIL T) -9 NIL 398194) (-222 395302 395459 395711 "DIAGG-" 395716 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 390766 394261 394538 "DHMATRIX" 395071 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 386378 387287 388297 "DFSFUN" 389776 T DFSFUN (NIL) -7 NIL NIL) (-219 381498 385309 385621 "DFLOAT" 386086 T DFLOAT (NIL) -8 NIL NIL) (-218 379726 380007 380403 "DFINTTLS" 381206 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 376791 377747 378147 "DERHAM" 379392 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 374640 376566 376655 "DEQUEUE" 376735 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 373855 373988 374184 "DEGRED" 374502 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 370430 371130 371938 "DEFINTRF" 373128 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368069 368510 369081 "DEFINTEF" 369977 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367446 367689 367804 "DEFAST" 367974 T DEFAST (NIL) -8 NIL NIL) (-211 361355 366887 367053 "DECIMAL" 367300 T DECIMAL (NIL) -8 NIL NIL) (-210 358867 359325 359831 "DDFACT" 360899 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358463 358506 358657 "DBLRESP" 358818 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356173 356507 356876 "DBASE" 358221 NIL DBASE (NIL T) -8 NIL NIL) (-207 355442 355653 355799 "DATABUF" 356072 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 354575 355401 355429 "D03FAFA" 355434 T D03FAFA (NIL) -8 NIL NIL) (-205 353709 354534 354562 "D03EEFA" 354567 T D03EEFA (NIL) -8 NIL NIL) (-204 351659 352125 352614 "D03AGNT" 353240 T D03AGNT (NIL) -7 NIL NIL) (-203 350975 351618 351646 "D02EJFA" 351651 T D02EJFA (NIL) -8 NIL NIL) (-202 350291 350934 350962 "D02CJFA" 350967 T D02CJFA (NIL) -8 NIL NIL) (-201 349607 350250 350278 "D02BHFA" 350283 T D02BHFA (NIL) -8 NIL NIL) (-200 348923 349566 349594 "D02BBFA" 349599 T D02BBFA (NIL) -8 NIL NIL) (-199 342121 343709 345315 "D02AGNT" 347337 T D02AGNT (NIL) -7 NIL NIL) (-198 339890 340412 340958 "D01WGTS" 341595 T D01WGTS (NIL) -7 NIL NIL) (-197 338985 339849 339877 "D01TRNS" 339882 T D01TRNS (NIL) -8 NIL NIL) (-196 338080 338944 338972 "D01GBFA" 338977 T D01GBFA (NIL) -8 NIL NIL) (-195 337175 338039 338067 "D01FCFA" 338072 T D01FCFA (NIL) -8 NIL NIL) (-194 336270 337134 337162 "D01ASFA" 337167 T D01ASFA (NIL) -8 NIL NIL) (-193 335365 336229 336257 "D01AQFA" 336262 T D01AQFA (NIL) -8 NIL NIL) (-192 334460 335324 335352 "D01APFA" 335357 T D01APFA (NIL) -8 NIL NIL) (-191 333555 334419 334447 "D01ANFA" 334452 T D01ANFA (NIL) -8 NIL NIL) (-190 332650 333514 333542 "D01AMFA" 333547 T D01AMFA (NIL) -8 NIL NIL) (-189 331745 332609 332637 "D01ALFA" 332642 T D01ALFA (NIL) -8 NIL NIL) (-188 330840 331704 331732 "D01AKFA" 331737 T D01AKFA (NIL) -8 NIL NIL) (-187 329935 330799 330827 "D01AJFA" 330832 T D01AJFA (NIL) -8 NIL NIL) (-186 323232 324783 326344 "D01AGNT" 328394 T D01AGNT (NIL) -7 NIL NIL) (-185 322569 322697 322849 "CYCLOTOM" 323100 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319304 320017 320744 "CYCLES" 321862 T CYCLES (NIL) -7 NIL NIL) (-183 318616 318750 318921 "CVMP" 319165 NIL CVMP (NIL T) -7 NIL NIL) (-182 316387 316645 317021 "CTRIGMNP" 318344 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 315898 316087 316186 "CTORCALL" 316308 T CTORCALL (NIL) -8 NIL NIL) (-180 315272 315371 315524 "CSTTOOLS" 315795 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311071 311728 312486 "CRFP" 314584 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310573 310792 310884 "CRCEAST" 310999 T CRCEAST (NIL) -8 NIL NIL) (-177 309620 309805 310033 "CRAPACK" 310377 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309004 309105 309309 "CPMATCH" 309496 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308729 308757 308863 "CPIMA" 308970 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305093 305765 306483 "COORDSYS" 308064 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304477 304606 304756 "CONTOUR" 304963 T CONTOUR (NIL) -8 NIL NIL) (-172 300405 302480 302972 "CONTFRAC" 304017 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300285 300306 300334 "CONDUIT" 300371 T CONDUIT (NIL) -9 NIL NIL) (-170 299478 299998 300026 "COMRING" 300031 T COMRING (NIL) -9 NIL 300083) (-169 298559 298836 299020 "COMPPROP" 299314 T COMPPROP (NIL) -8 NIL NIL) (-168 298220 298255 298383 "COMPLPAT" 298518 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297856 297913 298020 "COMPLEX2" 298157 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287933 297665 297774 "COMPLEX" 297779 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287651 287686 287784 "COMPFACT" 287892 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272058 282265 282305 "COMPCAT" 283309 NIL COMPCAT (NIL T) -9 NIL 284704) (-163 261594 264511 268131 "COMPCAT-" 268487 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261323 261351 261454 "COMMUPC" 261560 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261118 261151 261210 "COMMONOP" 261284 T COMMONOP (NIL) -7 NIL NIL) (-160 260722 260922 260997 "COMMAAST" 261063 T COMMAAST (NIL) -8 NIL NIL) (-159 260305 260473 260560 "COMM" 260655 T COMM (NIL) -8 NIL NIL) (-158 259554 259748 259776 "COMBOPC" 260114 T COMBOPC (NIL) -9 NIL 260289) (-157 258450 258660 258902 "COMBINAT" 259344 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254648 255221 255861 "COMBF" 257872 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253434 253764 253999 "COLOR" 254433 T COLOR (NIL) -8 NIL NIL) (-154 252937 253155 253247 "COLONAST" 253362 T COLONAST (NIL) -8 NIL NIL) (-153 252577 252624 252749 "CMPLXRT" 252884 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252052 252277 252376 "CLLCTAST" 252498 T CLLCTAST (NIL) -8 NIL NIL) (-151 247554 248582 249662 "CLIP" 250992 T CLIP (NIL) -7 NIL NIL) (-150 245936 246660 246899 "CLIF" 247381 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242158 244082 244123 "CLAGG" 245052 NIL CLAGG (NIL T) -9 NIL 245588) (-148 240580 241037 241620 "CLAGG-" 241625 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240124 240209 240349 "CINTSLPE" 240489 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237625 238096 238644 "CHVAR" 239652 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236888 237408 237436 "CHARZ" 237441 T CHARZ (NIL) -9 NIL 237456) (-144 236642 236682 236760 "CHARPOL" 236842 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235789 236342 236370 "CHARNZ" 236417 T CHARNZ (NIL) -9 NIL 236473) (-142 233814 234479 234814 "CHAR" 235474 T CHAR (NIL) -8 NIL NIL) (-141 233540 233601 233629 "CFCAT" 233740 T CFCAT (NIL) -9 NIL NIL) (-140 232785 232896 233078 "CDEN" 233424 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228777 231938 232218 "CCLASS" 232525 T CCLASS (NIL) -8 NIL NIL) (-138 228696 228722 228757 "CATEGORY" 228762 T -10 (NIL) -8 NIL NIL) (-137 228170 228396 228495 "CATAST" 228617 T CATAST (NIL) -8 NIL NIL) (-136 227673 227891 227983 "CASEAST" 228098 T CASEAST (NIL) -8 NIL NIL) (-135 226781 226929 227150 "CARTEN2" 227520 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221833 222810 223563 "CARTEN" 226084 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 220175 220983 221240 "CARD" 221596 T CARD (NIL) -8 NIL NIL) (-132 219778 219979 220054 "CAPSLAST" 220120 T CAPSLAST (NIL) -8 NIL NIL) (-131 219150 219478 219506 "CACHSET" 219638 T CACHSET (NIL) -9 NIL 219715) (-130 218646 218942 218970 "CABMON" 219020 T CABMON (NIL) -9 NIL 219076) (-129 214594 218593 218627 "BYTEARY" 218632 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213949 214145 "BYTE" 214418 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 33f1c1d4..c684054d 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,13122 +1,12502 @@ -(738152 . 3431897907) -(((*1 *1 *2) - (-12 (-5 *2 (-1111 *3 *4)) (-14 *3 (-895)) (-4 *4 (-356)) - (-5 *1 (-967 *3 *4))))) +(730437 . 3432414587) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) + (-5 *2 (-1229 (-400 (-536)))) (-5 *1 (-1257 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) - (-5 *1 (-1153 *4)) (-4 *4 (-825))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-395)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1053 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1053 *2))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1) (-5 *1 (-801)))) + (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) + (-5 *2 (-1229 (-536))) (-5 *1 (-1257 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) - (-5 *1 (-792 *4 *5)) (-4 *5 (-634 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-356)) - (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-634 *5))))) -(((*1 *2) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-1045 *3 *4 *5))) (-4 *3 (-1069)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) - (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) - (-5 *1 (-1046 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-735))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-112)) + (-5 *1 (-1257 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-864 *4)) (-5 *1 (-168 *4 *5 *3)) + (-4 *4 (-1072)) (-4 *3 (-164 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-1060 (-817 (-371))))) + (-5 *2 (-620 (-1060 (-817 (-219))))) (-5 *1 (-296)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1205 *3)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3)))) - (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1213 *4 *5 *6)) - (|:| |%expon| (-312 *4 *5 *6)) - (|:| |%expTerms| - (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))))) - (|:| |%type| (-1127)))) - (-5 *1 (-1214 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) - (-14 *5 (-1145)) (-14 *6 *4)))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-5 *1 (-962 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-5 *1 (-1076 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *7 (-1204 *5)) (-4 *4 (-703 *5 *7)) - (-5 *2 (-2 (|:| -3121 (-667 *6)) (|:| |vec| (-1228 *5)))) - (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-525 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-526))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) - (-4 *5 (-1204 *4)) - (-5 *2 (-2 (|:| -3230 (-400 *5)) (|:| |coeff| (-400 *5)))) - (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1252 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) - (-4 *2 (-170)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-797 *4)) (-4 *1 (-1245 *4 *2)) (-4 *4 (-825)) - (-4 *2 (-1021)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1021)) (-5 *1 (-1251 *2 *3)) (-4 *3 (-821))))) -(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-550)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) - (-4 *3 (-1204 *4)) (-5 *2 (-550)))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) + (-5 *2 (-1229 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-525)))) + ((*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) + (-4 *5 (-596 (-1147))) (-4 *4 (-771)) (-4 *5 (-825)))) + ((*1 *1 *2) + (-3886 + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)))) ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) - (-5 *2 (-550)) (-5 *1 (-1085 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-818 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) - (-5 *2 (-550)) (-5 *1 (-1085 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-1127)) - (-4 *6 (-13 (-542) (-825) (-1012 *2) (-619 *2) (-444))) - (-5 *2 (-550)) (-5 *1 (-1085 *6 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))))) + (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) + (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) + (-5 *1 (-1041 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1053)))) + ((*1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *2 (-1072)) (-4 *6 (-1072)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *2 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *2 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) + (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) + ((*1 *2 *3) + (-12 (-5 *3 (-758 *4 (-839 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *5 (-620 (-1147))) (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *6 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-758 *4 (-839 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *6 (-620 (-1147))) (-5 *2 (-920 (-998 (-400 *4)))) + (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) + (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) + (-5 *2 (-620 (-758 *4 (-839 *6)))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147)))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) + (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-924 *6 *4 *5)) + (-5 *2 (-398 (-1141 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-398 *1)) (-4 *1 (-924 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-444)) (-5 *2 (-550)) - (-5 *1 (-1086 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-818 (-400 (-926 *6)))) - (-5 *3 (-400 (-926 *6))) (-4 *6 (-444)) (-5 *2 (-550)) - (-5 *1 (-1086 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-400 (-926 *6))) (-5 *4 (-1145)) - (-5 *5 (-1127)) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1086 *6)))) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-398 *3)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1164 *3)) (-4 *3 (-1021))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-807))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) ((*1 *1) (-4 *1 (-535))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) - (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3121 (-667 (-400 (-926 *4)))) - (|:| |vec| (-623 (-400 (-926 *4)))) (|:| -3398 (-749)) - (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) - (-5 *2 - (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *4))))))) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1204 (-167 *2))))) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) + (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) + (-5 *3 (-1141 (-400 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1204 (-167 *2)))))) + (-12 (-4 *4 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-1209 *4 *3)) + (-4 *3 (-13 (-1205 *4) (-543) (-10 -8 (-15 -3490 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *5 (-620 (-1147))) + (-5 *2 (-620 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) + (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147)))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) - (-5 *2 - (-2 (|:| -3048 (-749)) (|:| |curves| (-749)) - (|:| |polygons| (-749)) (|:| |constructs| (-749))))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) + (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) + (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) + (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) + (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-620 (-1147))) + (-5 *2 (-620 (-620 (-371)))) (-5 *1 (-997)) (-5 *5 (-371)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) + (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) + (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) + (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) + (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-14 *5 (-620 (-1147))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) + (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) + (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) + (-14 *7 (-620 (-1147))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1102 (-219))) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) - (-5 *1 (-252 *6)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) + (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) + (-14 *7 (-620 (-1147))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) + (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) + (-14 *7 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) + (-5 *1 (-1256 *4 *5 *6)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))) + (-14 *6 (-620 (-1147)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) + (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1061 (-372))) - (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) - (-5 *1 (-252 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-5 *2 (-1102 (-219))) (-5 *1 (-252 *3)) - (-4 *3 (-13 (-596 (-526)) (-1069))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1102 (-219))) (-5 *1 (-252 *3)) - (-4 *3 (-13 (-596 (-526)) (-1069))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) - (-5 *1 (-252 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1061 (-372))) - (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1102 (-219))) - (-5 *1 (-252 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-932 *3)) (-5 *1 (-1132 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 *1)) (-4 *1 (-423 *4)) - (-4 *4 (-825)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1149))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) - (-4 *2 (-1219 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1219 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) - (-5 *1 (-1121 *3))))) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) + (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) + (-5 *2 (-620 (-1020 *4 *5))) (-5 *1 (-1256 *4 *5 *6)) + (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) (((*1 *2 *3) - (-12 (-4 *4 (-771)) - (-4 *5 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *6 (-542)) - (-5 *2 (-2 (|:| -4250 (-926 *6)) (|:| -3947 (-926 *6)))) - (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-923 (-400 (-926 *6)) *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-142))) (-5 *1 (-139)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-139))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) - (-5 *2 (-623 (-1145))) (-5 *1 (-1045 *3 *4 *5)) - (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3))))))) + (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1255 *4)) + (-4 *4 (-1183)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-620 (-1124 *5)) (-620 (-1124 *5)))) (-5 *4 (-536)) + (-5 *2 (-620 (-1124 *5))) (-5 *1 (-1255 *5)) (-4 *5 (-1183))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) - (-5 *4 (-749)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1233)) - (-5 *1 (-1039 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) - (-5 *4 (-749)) (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1233)) - (-5 *1 (-1114 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-623 (-256))) (-5 *1 (-1230)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-1127)) (-5 *1 (-1230)))) - ((*1 *1 *1) (-5 *1 (-1230)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) -(((*1 *2 *2) - (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) + (-12 (-5 *4 (-893)) (-4 *6 (-13 (-543) (-825))) (-5 *2 (-620 (-307 *6))) + (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1023)))) + ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) ((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904))))) -(((*1 *2 *3) - (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) - (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) - (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) + (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1169))) + (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 *5)) + (-5 *1 (-569 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-567 (-400 (-920 *4)))) + (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) + (-5 *2 (-620 (-307 *4))) (-5 *1 (-572 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1120 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) - (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) + (-12 (-5 *3 (-620 *1)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) + (-4 *2 (-1120 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169))))) ((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-825)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) + (-12 (-5 *2 (-1245 (-1147) *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1023))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1245 (-1147) *3)) (-4 *3 (-1023)) (-5 *1 (-1251 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) + (-5 *1 (-1254 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |k| (-1147)) (|:| |c| (-1251 *3))))) + (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |k| *3) (|:| |c| (-1254 *3 *4))))) + (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-536)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-893)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169))) (-5 *1 (-221 *3)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) + (-2 (|:| -2487 *5) (|:| -2488 *6)))) + (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) + (-4 *2 (-924 *4 *6 (-839 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-525))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-4 *7 (-1072)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-664 *3 *2 *4)) (-4 *3 (-1023)) (-4 *2 (-365 *3)) + (-4 *4 (-365 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-664 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *2 (-365 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1021)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *7)))) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-699))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550))))) -(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *5 (-361)) - (-5 *2 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |ir| (-569 (-400 *6))) (|:| |specpart| (-400 *6)) - (|:| |polypart| *6))) - (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1228 *1)) (-4 *1 (-360 *3))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-550)))) - (-4 *4 (-13 (-1204 *3) (-542) (-10 -8 (-15 -3260 ($ $ $))))) - (-4 *3 (-542)) (-5 *1 (-1207 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-4 *7 (-966 *4)) (-4 *2 (-665 *7 *8 *9)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) - (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) + (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) + (-5 *1 (-943 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *1) (-4 *1 (-1083))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *2 (-232 *3 *4)) + (-4 *5 (-232 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1094 *3 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) + (-4 *2 (-232 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) + (-4 *2 (-924 *3 (-522 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1180)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-536)) (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) ((*1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)) (-4 *2 (-300)))) - ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) - (-4 *2 (-665 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) + (-14 *3 (-620 (-1147))))) + ((*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) ((*1 *1 *1) - (-12 (-4 *1 (-1024 *2 *3 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-623 - (-2 (|:| -3398 (-749)) - (|:| |eqns| - (-623 - (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) - (|:| |cols| (-623 (-550)))))) - (|:| |fgb| (-623 *7))))) - (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-749)) - (-5 *1 (-898 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) - (-4 *3 (-13 (-1167) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-1012 (-550)) (-145))) - (-5 *2 (-569 (-400 (-926 *5)))) (-5 *1 (-556 *5)) - (-5 *3 (-400 (-926 *5)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-4 *2 (-1204 *4)) - (-5 *1 (-896 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) - ((*1 *1 *1 *1) (-4 *1 (-771)))) -(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + (-12 (-14 *2 (-620 (-1147))) (-4 *3 (-170)) (-4 *5 (-232 (-4311 *2) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) + (-2 (|:| -2487 *4) (|:| -2488 *5)))) + (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) + (-4 *7 (-924 *3 *5 (-839 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) + ((*1 *1 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1) + (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1023)) (-4 *3 (-705)))) + ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-620 (-1147))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1229)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1229)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) + (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) + (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1023) (-825))) + (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *5 (-623 (-256))) (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1063 (-372))) - (-5 *2 (-1230)) (-5 *1 (-248)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-287 *7)) (-5 *4 (-1145)) (-5 *5 (-623 (-256))) - (-4 *7 (-423 *6)) (-4 *6 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *2 (-1229)) (-5 *1 (-249 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) - (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) + (-4 *7 (-1183)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) - (-4 *3 (-13 (-596 (-526)) (-1069))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-593 *1)) (-4 *1 (-291)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-851 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1229)) - (-5 *1 (-252 *6)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1129)) (-5 *5 (-593 *6)) (-4 *6 (-291)) + (-4 *2 (-1183)) (-5 *1 (-292 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-851 *5)) (-5 *4 (-1061 (-372))) - (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1229)) - (-5 *1 (-252 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) - (-5 *1 (-252 *6)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-593 *5)) (-4 *5 (-291)) (-4 *2 (-291)) + (-5 *1 (-293 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1061 (-372))) - (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) - (-5 *1 (-252 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1230)) - (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1069))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1061 (-372))) (-5 *2 (-1230)) (-5 *1 (-252 *3)) - (-4 *3 (-13 (-596 (-526)) (-1069))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 *6)) (-5 *4 (-1061 (-372))) (-5 *5 (-623 (-256))) - (-4 *6 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) - (-5 *1 (-252 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1061 (-372))) - (-4 *5 (-13 (-596 (-526)) (-1069))) (-5 *2 (-1230)) - (-5 *1 (-252 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1229)) (-5 *1 (-253)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) - (-5 *1 (-253)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *2 (-1229)) (-5 *1 (-253)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-5 *2 (-667 *6)) (-5 *1 (-298 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *4 (-623 (-256))) - (-5 *2 (-1229)) (-5 *1 (-253)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1230)) (-5 *1 (-253)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1230)) - (-5 *1 (-253))))) -(((*1 *2 *3) - (-12 (-4 *4 (-342)) - (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -4123 *3)))) - (-5 *1 (-210 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-5 *2 (-1233)) - (-5 *1 (-1183 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-5 *2 (-1233)) - (-5 *1 (-1183 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-943 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1175 *5 *6 *7 *3)) - (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3260 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-815)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) - (-5 *6 (-623 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1009)) - (-5 *1 (-815)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) - (-5 *5 (-623 (-818 (-372)))) (-5 *2 (-1009)) (-5 *1 (-815)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-825)) (-4 *6 (-825)) + (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *2 (-1009)) - (-5 *1 (-815)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) + (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *9 (-356)) (-4 *10 (-1205 *9)) (-4 *11 (-1205 (-400 *10))) + (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-335 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1072)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) - (-5 *2 (-1009)) (-5 *1 (-815))))) -(((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-799))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-848)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-825)) - (-5 *1 (-594 *5))))) -(((*1 *1 *1) (-4 *1 (-171))) - ((*1 *1 *1) - (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-594 *1))) (-5 *3 (-623 *1)) (-4 *1 (-295)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *1))) (-4 *1 (-295)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 (-550))))) - (-5 *2 (-623 (-623 (-287 (-926 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1188)) (-4 *8 (-1188)) (-4 *6 (-1205 *5)) + (-4 *7 (-1205 (-400 *6))) (-4 *9 (-1205 *8)) (-4 *2 (-335 *8 *9 *10)) + (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) + (-4 *10 (-1205 (-400 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-287 (-400 (-926 (-550)))))) - (-5 *2 (-623 (-623 (-287 (-926 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *2 (-365 *6)) + (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) + (-4 *4 (-1072)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-543)) (-5 *1 (-398 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 (-550)))) (-5 *2 (-623 (-287 (-926 *4)))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-543)) (-4 *6 (-543)) + (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-287 (-400 (-926 (-550))))) - (-5 *2 (-623 (-287 (-926 *4)))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1145)) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-4 *4 (-13 (-29 *6) (-1167) (-933))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2206 (-623 *4)))) - (-5 *1 (-630 *6 *4 *3)) (-4 *3 (-634 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 *2)) - (-4 *2 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *1 (-630 *6 *2 *3)) (-4 *3 (-634 *2)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-543)) (-4 *6 (-543)) + (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1228 *5) "failed")) - (|:| -2206 (-623 (-1228 *5))))) - (-5 *1 (-645 *5)) (-5 *4 (-1228 *5)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) + (-4 *6 (-965 *5)) (-4 *7 (-1205 *6)) (-4 *8 (-13 (-403 *6 *7) (-1012 *6))) + (-4 *9 (-300)) (-4 *10 (-965 *9)) (-4 *11 (-1205 *10)) + (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-403 *10 *11) (-1012 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1228 *5) "failed")) - (|:| -2206 (-623 (-1228 *5))))) - (-5 *1 (-645 *5)) (-5 *4 (-1228 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) + (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) - (-5 *2 - (-623 - (-2 (|:| |particular| (-3 (-1228 *5) "failed")) - (|:| -2206 (-623 (-1228 *5)))))) - (-5 *1 (-645 *5)) (-5 *4 (-623 (-1228 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1023) (-825))) + (-4 *6 (-13 (-1023) (-825))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) + (-4 *4 (-414 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) - (-5 *2 - (-623 - (-2 (|:| |particular| (-3 (-1228 *5) "failed")) - (|:| -2206 (-623 (-1228 *5)))))) - (-5 *1 (-645 *5)) (-5 *4 (-623 (-1228 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-419 *6)) + (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-825)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) + (-5 *2 (-567 *6)) (-5 *1 (-568 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) + (-4 *6 (-356)) (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6))) + (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) - (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4345)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) + (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 - (-623 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2206 (-623 *7))))) - (-5 *1 (-646 *5 *6 *7 *3)) (-5 *4 (-623 *7)) - (-4 *3 (-665 *5 *6 *7)))) + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-748 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-748 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1145)) - (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1167) (-933))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1145)) - (-4 *7 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 - (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) - (-5 *1 (-780 *6 *7)) (-5 *4 (-1228 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1145)) - (-4 *6 (-13 (-29 *5) (-1167) (-933))) - (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-1228 *6))) (-5 *1 (-780 *5 *6)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-583 *8)) + (-5 *1 (-581 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) - (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 - (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) - (-5 *1 (-780 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) + (-5 *1 (-581 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) - (-5 *5 (-1145)) (-4 *7 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 - (-2 (|:| |particular| (-1228 *7)) (|:| -2206 (-623 (-1228 *7))))) - (-5 *1 (-780 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) + (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) + (-5 *1 (-581 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-620 *6)) (-5 *1 (-621 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1145)) - (-4 *7 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2206 (-623 *7))) *7 "failed")) - (-5 *1 (-780 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-620 *6)) (-5 *5 (-620 *7)) + (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-620 *8)) + (-5 *1 (-623 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) + (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) + (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) + (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1023)) + (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) + (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) + (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-543)) (-4 *7 (-543)) (-4 *6 (-1205 *5)) + (-4 *2 (-1205 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1205 (-400 *6))) (-4 *8 (-1205 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1023)) (-4 *9 (-1023)) (-4 *5 (-825)) + (-4 *6 (-771)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) + (-4 *9 (-1023)) (-4 *2 (-924 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-771)) (-4 *4 (-924 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-759 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-5 *2 (-759 *6)) (-5 *1 (-760 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-774 *6)) + (-5 *1 (-777 *4 *5 *2 *6)) (-4 *4 (-774 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-810 *6)) (-5 *1 (-811 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-810 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) + (-4 *6 (-1072)) (-5 *1 (-811 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-817 *6)) (-5 *1 (-818 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-817 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) + (-4 *6 (-1072)) (-5 *1 (-818 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-4 *7 (-1072)) (-5 *2 (-862 *5 *7)) (-5 *1 (-863 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-864 *6)) (-5 *1 (-866 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-920 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-5 *2 (-920 *6)) (-5 *1 (-921 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1145)) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2206 (-623 *3))) *3 "failed")) - (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1167) (-933))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-623 *2)) - (-4 *2 (-13 (-29 *6) (-1167) (-933))) (-5 *1 (-780 *6 *2)) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-623 *2)) - (-4 *2 (-13 (-29 *6) (-1167) (-933))) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *1 (-780 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) + (-4 *6 (-771)) + (-4 *2 + (-13 (-1072) + (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) + (-5 *1 (-926 *6 *7 *8 *5 *2)) (-4 *5 (-924 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) - (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1228 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) - (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1228 (-309 *4))) (-5 *5 (-623 (-372))) - (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-932 *6)) (-5 *1 (-933 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-920 *4))) (-4 *4 (-1023)) (-4 *2 (-924 (-920 *4) *5 *6)) + (-4 *5 (-771)) + (-4 *6 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) + (-5 *1 (-958 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-4 *2 (-965 *6)) + (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-965 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-972 *6)) + (-5 *1 (-973 *4 *5 *2 *6)) (-4 *4 (-972 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1023)) (-4 *10 (-1023)) (-14 *5 (-749)) + (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) + (-4 *2 (-1026 *5 *6 *10 *11 *12)) + (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) + (-4 *12 (-232 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-1060 *6)) (-5 *1 (-1061 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) + (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-1061 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-1063 *6)) (-5 *1 (-1064 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) + (-4 *2 (-1120 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-1124 *6)) (-5 *1 (-1126 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2206 (-623 *6))) "failed") - *7 *6)) - (-4 *6 (-356)) (-4 *7 (-634 *6)) - (-5 *2 (-2 (|:| |particular| (-1228 *6)) (|:| -2206 (-667 *6)))) - (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1228 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) + (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) + (-5 *1 (-1127 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872)) (-5 *4 (-1033)) (-5 *2 (-1009)) (-5 *1 (-871)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1127)) - (-5 *8 (-219)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) - (-5 *2 (-1009)) (-5 *1 (-871)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1127)) - (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1009)) - (-5 *1 (-871)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) + (-5 *2 (-1141 *6)) (-5 *1 (-1142 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-1072)) + (-4 *4 (-1072)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *2 (-623 (-372))) - (-5 *1 (-997)) (-5 *4 (-372)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1023)) + (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1190 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1147)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 (-550))) (-5 *2 (-623 (-372))) (-5 *1 (-997)) - (-5 *4 (-372)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1100 *4)) - (-5 *3 (-309 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1100 *4)) - (-5 *3 (-287 (-309 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1100 *5)) - (-5 *3 (-287 (-309 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1100 *5)) - (-5 *3 (-309 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1145))) - (-4 *5 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1100 *5)) - (-5 *3 (-623 (-287 (-309 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) - (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1145))) (-4 *5 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-1151 *5)) - (-5 *3 (-623 (-287 (-400 (-926 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-400 (-926 *4)))) (-4 *4 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-1151 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) - (-5 *1 (-1151 *4)) (-5 *3 (-623 (-287 (-400 (-926 *4))))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-1196 *6)) (-5 *1 (-1197 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) + (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1197 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1147)) + (-4 *6 (-1023)) (-4 *8 (-1023)) (-5 *2 (-1198 *7 *8)) + (-5 *1 (-1199 *5 *6 *7 *8)) (-14 *7 (-1147)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1205 *6)) + (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1205 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1023)) + (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1211 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1147)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1222 *6)) + (-5 *1 (-1220 *5 *6 *4 *2)) (-4 *4 (-1222 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-542)) - (-5 *2 (-623 (-287 (-400 (-926 *5))))) (-5 *1 (-1151 *5)) - (-5 *3 (-400 (-926 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-542)) - (-5 *2 (-623 (-287 (-400 (-926 *5))))) (-5 *1 (-1151 *5)) - (-5 *3 (-287 (-400 (-926 *5)))))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1229 *5)) + (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1023)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-1253 *3 *4)) + (-4 *4 (-821))))) +(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-14 *6 (-1229 (-667 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))))) + ((*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-3879 'X) (-3879) (-677))) (-5 *1 (-60 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'JINT 'X 'ELAM) (-3879) (-677)))) + (-5 *1 (-61 *3)) (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'XC) (-677)))) (-5 *1 (-63 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-3879) (-3879 'X 'HESS) (-677)))) (-5 *1 (-64 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-3879) (-3879 'XC) (-677))) (-5 *1 (-65 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879 '-4319) (-677)))) (-5 *1 (-70 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-73 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-3879) (-3879 'X) (-677))) (-5 *1 (-74 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'X 'EPS) (-3879 '-4319) (-677)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'EPS) (-3879 'YA 'YB) (-677)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-3879) (-3879 'X) (-677))) (-5 *1 (-77 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'XC) (-677)))) (-5 *1 (-78 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-79 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-80 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879 '-4319) (-677)))) (-5 *1 (-81 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'X '-4319) (-3879) (-677)))) (-5 *1 (-82 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-3879 'X '-4319) (-3879) (-677)))) (-5 *1 (-83 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-3879 'X) (-3879) (-677)))) (-5 *1 (-84 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879) (-677)))) (-5 *1 (-85 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-3879 'XL 'XR 'ELAM) (-3879) (-677)))) + (-5 *1 (-87 *3)) (-14 *3 (-1147)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-3879 'X) (-3879 '-4319) (-677))) (-5 *1 (-88 *3)) + (-14 *3 (-1147)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-92)))) + ((*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) + ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) + (-14 *4 (-749)) (-4 *5 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) + (-14 *4 (-749)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1113 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) + ((*1 *1 *2) + (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *4))))) - (-5 *1 (-1151 *4)) (-5 *3 (-400 (-926 *4))))) + (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) + (-5 *2 (-1229 (-667 (-400 (-920 *4))))) (-5 *1 (-183 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) + (-15 -2082 ((-1235) $))))) + (-5 *1 (-208 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-926 *4))))) - (-5 *1 (-1151 *4)) (-5 *3 (-287 (-400 (-926 *4))))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-749)) (-5 *1 (-547))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-430)) (-5 *1 (-1149))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) - (-4 *1 (-827 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-837)))) (-5 *1 (-837)))) + (-12 (-5 *3 (-1063 (-307 *4))) (-4 *4 (-13 (-825) (-543) (-596 (-371)))) + (-5 *2 (-1063 (-371))) (-5 *1 (-252 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) ((*1 *2 *1) - (-12 (-5 *2 (-1111 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-356)))) + (-12 (-4 *2 (-1205 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *5))) (-4 *5 (-1021)) - (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)) - (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))))) + (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) + (-14 *5 (-1147)) (-14 *6 *4) + (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) + (-5 *1 (-306 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-323)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| -4304 *3) (|:| -3227 *4)))) - (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-705)))) + (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) + (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) + (-4 *3 (-322 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) + (-4 *3 (-322 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-1125 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1184)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1184))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-1254 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-1245 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-378)))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-386)))) + ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) + (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-536)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-536))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-286 (-307 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) + (-14 *6 (-1151)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 (-920 (-400 *3)))) (-4 *3 (-543)) (-4 *3 (-825)) + (-4 *1 (-414 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 (-400 *3))) (-4 *3 (-543)) (-4 *3 (-825)) + (-4 *1 (-414 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 *3)) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-1023)) (-4 *3 (-825)) + (-4 *1 (-414 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-422 *3 *4)) + (-4 *3 (-13 (-170) (-38 (-400 (-536))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-536))))) + (-4 *3 (-13 (-825) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-427)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-429)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-677))) (-4 *1 (-432)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-433)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-400 (-920 *3)))) (-4 *3 (-170)) + (-14 *6 (-1229 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-893)) + (-14 *5 (-620 (-1147))))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-460)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) + (-5 *1 (-466 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) + ((*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-493)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-587)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1023)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-723 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) + (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) + (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *2)) (-4 *4 (-365 *3)) + (-4 *2 (-365 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) + ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-536))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-677)))) + ((*1 *2 *3) (-12 (-5 *3 (-307 (-536))) (-5 *2 (-307 (-679))) (-5 *1 (-679)))) + ((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1072)))) + ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) + ((*1 *2 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-5 *1 (-692 *3 *4 *5)) + (-4 *3 (-825)) (-4 *4 (-1072)) (-14 *5 (-1 (-112) *2 *2)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-4 *3 (-825)) + (-4 *4 (-1072)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-4 *3 (-1023)) + (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-742)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| |mdnia| + (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) + (-5 *1 (-747)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) + (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *1 (-747)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1078 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *1 (-747)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-747)))) + ((*1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-752 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4)))) + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *1 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-786)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) - ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1069) (-34))) - (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-13 (-1069) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-974 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1308 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *1) + (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1072)) (-14 *4 *3))) + ((*1 *1 *2) + (-12 (-4 *3 (-1072)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-874 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-804)))) + ((*1 *1 *2) (-12 (-5 *2 - (-623 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))) - (-5 *1 (-545)))) - ((*1 *2 *1) - (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-5 *2 (-623 *3)))) - ((*1 *2 *1) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) + (-5 *1 (-816)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) + (-5 *1 (-816)))) + ((*1 *1 *2) (-12 (-5 *2 - (-623 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219))))) - (-5 *1 (-781))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-623 (-1145))) (-4 *2 (-170)) - (-4 *3 (-232 (-3307 *4) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *3)) - (-2 (|:| -3690 *5) (|:| -3068 *3)))) - (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) - (-4 *7 (-923 *2 *3 (-839 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1) (-5 *1 (-612)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1125 *7))) (-4 *6 (-825)) - (-4 *7 (-923 *5 (-522 *6) *6)) (-4 *5 (-1021)) - (-5 *2 (-1 (-1125 *7) *7)) (-5 *1 (-1095 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-818 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| -1735 (-1141 *6)) (|:| -3068 (-550))))) - (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) - (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-623 *5)) - (-5 *1 (-864 *4 *5)) (-4 *5 (-1182))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *1)) (|has| *1 (-6 -4345)) (-4 *1 (-984 *3)) - (-4 *3 (-1182))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-799))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-811 (-550))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1069))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1233))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4300 *3) (|:| -3068 (-749)))) (-5 *1 (-570 *3)) - (-4 *3 (-535))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-730))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) - ((*1 *1 *1) (-4 *1 (-823))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)) (-4 *2 (-1030)))) - ((*1 *1 *1) (-4 *1 (-1030))) ((*1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2) - (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-542))))) - ((*1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-623 (-594 *6))) (-5 *4 (-1145)) (-5 *2 (-594 *6)) - (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) - (-5 *2 (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1228 *5))))) - (-5 *1 (-952 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1228 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) - (-5 *2 (-623 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) - (-4 *3 (-1204 *6)) (-4 *7 (-923 *6 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) - (-5 *2 (-1141 *3)))) + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (-5 *1 (-816)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-816)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-830 *3 *4 *5 *6)) + (-4 *4 (-1023)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-840 *3 *4 *5 *6)) + (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) - (-5 *2 (-1141 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-550)))) - (-5 *2 - (-623 - (-2 (|:| |outval| *4) (|:| |outmult| (-550)) - (|:| |outvect| (-623 (-667 *4)))))) - (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *2 - (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) - (|:| |genIdeal| (-495 *4 *5 *6 *7)))) - (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) - (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-550)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) - (-4 *4 (-342)) (-5 *2 (-749)) (-5 *1 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) - (-14 *4 (-895)))) - ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) - (-14 *4 - (-3 (-1141 *3) - (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089))))))))) - ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) - (-14 *4 (-895))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-400 (-926 *6)) (-1134 (-1145) (-926 *6)))) - (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *6))))) - (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-926 *6)))))) - ((*1 *2 *3 *4) + (-12 (-5 *2 (-920 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-920 (-48))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-920 (-48)))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) + ((*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-400 (-926 *5)) (-1134 (-1145) (-926 *5)))) - (|:| |eigmult| (-749)) (|:| |eigvec| (-623 *4)))) - (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *5))))) - (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-926 *5))))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-90 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1069)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-661 *4 *5)) (-4 *4 (-1069)))) - ((*1 *2 *2) - (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) + (-5 *2 + (-2 (|:| |pde| (-620 (-307 (-219)))) + (|:| |constraints| + (-620 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) + (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) + (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) + (|:| |tol| (-219)))) + (-5 *1 (-872)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-872)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) ((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904)))) + (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-894 *4)) + (-4 *4 (-13 (-825) (-543))))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) + ((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) + ((*1 *2 *3) (-12 (-5 *2 (-1235)) (-5 *1 (-1007 *3)) (-4 *3 (-1183)))) + ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1007 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) + ((*1 *2 *3) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-543)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1023)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) + (-12 (-5 *2 (-667 *5)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) + (-14 *4 (-749)) (-4 *5 (-1023)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) + (-4 *2 (-924 *3 (-522 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) + (-4 *4 (-924 *3 (-522 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1115)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) + (-5 *1 (-1145 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1146)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156 (-1147) (-429))) (-5 *1 (-1151)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1163)))) + ((*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1164 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-1176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-1023)))) + ((*1 *1 *2) (-12 (-5 *2 (-932 *3)) (-4 *3 (-1183)) (-5 *1 (-1181 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1193 *3 *2)) (-4 *2 (-1222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1183)) (-5 *1 (-1196 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-1198 *3 *4)) + (-4 *4 (-1023)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1214 *3 *2)) (-4 *2 (-1191 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) + (-5 *1 (-1219 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1232)) (-5 *1 (-1231)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1235)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) + (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-924 *3 *5 *4)) + (-14 *7 (-620 (-749))) (-14 *8 (-749)))) + ((*1 *2 *1) + (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) + (-14 *7 (-620 (-749))) (-14 *8 (-749)))) + ((*1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1023)))) + ((*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) ((*1 *2 *1) - (-12 (-4 *2 (-1021)) (-5 *1 (-1251 *2 *3)) (-4 *3 (-821))))) + (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *1 (-1250 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-821))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-34)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-536)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023))))) (((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1219 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1254 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) + (-4 *2 (-170)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-797 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1023)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) ((*1 *2 *1) - (-12 (-4 *3 (-966 *2)) (-4 *4 (-1204 *3)) (-4 *2 (-300)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1012 *3))))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-825)) (-5 *2 (-1094 *3 (-594 *1))) - (-4 *1 (-423 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) + (-4 *4 (-1072)))) + ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) + ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) + ((*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) - (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) +(((*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-219)))) + ((*1 *1 *1 *1) + (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) + ((*1 *1 *1 *1) (-4 *1 (-356))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-543)) (-4 *3 (-825)) + (-4 *1 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-465))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-525))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)) (-4 *2 (-356)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-696 *4)) + (-4 *3 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)) + (-4 *2 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1023)) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-749))) (-14 *5 (-749)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) + (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-771)) + (-14 *6 (-620 *3)) (-5 *1 (-1242 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-924 *2 *4 *3)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-821))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) - (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-848)) - (-5 *5 (-895)) (-5 *6 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1232)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *2 (-460)) - (-5 *1 (-1232)))) + (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *1) + (-12 (-5 *2 (-536)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-623 (-256))) - (-5 *2 (-460)) (-5 *1 (-1232))))) -(((*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *3 (-825)) (-4 *6 (-1035 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1219 *4)) - (-4 *4 (-38 (-400 (-550)))) - (-5 *2 (-1 (-1125 *4) (-1125 *4) (-1125 *4))) (-5 *1 (-1221 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-1141 *8)) (-5 *4 (-620 *6)) (-4 *6 (-825)) + (-4 *8 (-924 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1023)) (-5 *2 (-620 (-749))) + (-5 *1 (-314 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) - (-5 *2 (-1228 *6)) (-5 *1 (-406 *3 *4 *5 *6)) - (-4 *6 (-13 (-402 *4 *5) (-1012 *4))))) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *3 (-825)) (-5 *2 (-1094 *3 (-594 *1))) - (-4 *1 (-423 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) + (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 (-749))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-749)))) ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-705) *3)))) + (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *2 (-770)))) ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-640 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-705) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-4 *7 (-825)) - (-4 *9 (-923 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) - (-5 *2 (-623 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-219)) - (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 *4)))) - (|:| |xValues| (-1063 *4)) (|:| |yValues| (-1063 *4)))) - (-5 *1 (-151)) (-5 *3 (-623 (-623 (-917 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)) + (-5 *2 (-536)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) + (-5 *2 (-400 (-536))))) + ((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-749))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *1 (-642 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-5 *1 (-156 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-536))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) (-4 *1 (-277))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-5 *1 (-607 *3 *4 *5)) + (-14 *5 (-893)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-497))) (-5 *1 (-475))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))) -(((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1204 *4)) - (-5 *2 (-2 (|:| -2942 (-603 *4 *5)) (|:| -1261 (-400 *5)))) - (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) - (-14 *3 (-895)) (-4 *4 (-1021)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1204 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) + (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *2 (-923 *3 *5 *4)) (-5 *1 (-961 *3 *4 *5 *2)) - (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) - (-4 *3 (-164 *6)) (-4 (-926 *6) (-860 *5)) - (-4 *6 (-13 (-860 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-863 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-860 *4)) - (-4 *4 (-1069)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) - (-4 *6 (-13 (-1069) (-1012 *3))) (-4 *3 (-860 *5)) - (-5 *1 (-905 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) - (-4 *3 (-13 (-423 *6) (-596 *4) (-860 *5) (-1012 (-594 $)))) - (-5 *4 (-866 *5)) (-4 *6 (-13 (-542) (-825) (-860 *5))) - (-5 *1 (-906 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 (-550) *3)) (-5 *4 (-866 (-550))) (-4 *3 (-535)) - (-5 *1 (-907 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *6)) (-5 *3 (-594 *6)) (-4 *5 (-1069)) - (-4 *6 (-13 (-825) (-1012 (-594 $)) (-596 *4) (-860 *5))) - (-5 *4 (-866 *5)) (-5 *1 (-908 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) - (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-863 *6 *3) *8 (-866 *6) (-863 *6 *3))) - (-4 *8 (-825)) (-5 *2 (-863 *6 *3)) (-5 *4 (-866 *6)) - (-4 *6 (-1069)) (-4 *3 (-13 (-923 *9 *7 *8) (-596 *4))) - (-4 *7 (-771)) (-4 *9 (-13 (-1021) (-825) (-860 *6))) - (-5 *1 (-910 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) - (-4 *3 (-13 (-923 *8 *6 *7) (-596 *4))) (-5 *4 (-866 *5)) - (-4 *7 (-860 *5)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-13 (-1021) (-825) (-860 *5))) - (-5 *1 (-910 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 *3)) (-4 *5 (-1069)) (-4 *3 (-966 *6)) - (-4 *6 (-13 (-542) (-860 *5) (-596 *4))) (-5 *4 (-866 *5)) - (-5 *1 (-913 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-863 *5 (-1145))) (-5 *3 (-1145)) (-5 *4 (-866 *5)) - (-4 *5 (-1069)) (-5 *1 (-914 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-623 (-866 *7))) (-5 *5 (-1 *9 (-623 *9))) - (-5 *6 (-1 (-863 *7 *9) *9 (-866 *7) (-863 *7 *9))) (-4 *7 (-1069)) - (-4 *9 (-13 (-1021) (-596 (-866 *7)) (-1012 *8))) - (-5 *2 (-863 *7 *9)) (-5 *3 (-623 *9)) (-4 *8 (-13 (-1021) (-825))) - (-5 *1 (-915 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-112)) - (-5 *1 (-350 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-1204 *3))))) + (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) + (-4 *3 (-825)) (-4 *4 (-170))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) (-4 *1 (-277))) + ((*1 *2 *3) + (-12 (-5 *3 (-398 *4)) (-4 *4 (-543)) + (-5 *2 (-620 (-2 (|:| -4308 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *1) + (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-800))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) + (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) + (-4 *3 (-825)) (-4 *4 (-170))))) (((*1 *2 *1) - (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) - (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1309 (-623 *9)) (|:| -1608 *4) (|:| |ineq| (-623 *9)))) - (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) - (-4 *4 (-1041 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) - (-4 *8 (-825)) (-4 *9 (-1035 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1309 (-623 *9)) (|:| -1608 *4) (|:| |ineq| (-623 *9)))) - (-5 *1 (-1076 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) - (-4 *4 (-1041 *6 *7 *8 *9))))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) + (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-536)) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) + (-12 (-4 *3 (-543)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) + (-4 *3 (-13 (-170) (-696 (-400 (-536))))) (-14 *4 (-893)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)) (-4 *3 (-170))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-784 *5 *6 *7 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-356))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) - (-4 *3 (-13 (-423 *4) (-976)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-818 *4)) (-5 *3 (-594 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1167) (-29 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-218 *6 *4))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1167) (-29 *4))))) + (-12 (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-204)) (-5 *3 (-1147)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *2 (-309 *5)) (-5 *1 (-572 *5))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) (-4 *6 (-444)) - (-5 *2 (-623 (-623 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) - (-4 *5 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-307 (-219))) (-5 *4 (-749)) (-5 *2 (-620 (-1147))) + (-5 *1 (-260)))) + ((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-620 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1178 *4 *5 *3 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) + (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1188 *4)) (-4 *4 (-1021)) (-4 *4 (-542)) - (-5 *2 (-400 (-926 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1188 *4)) (-4 *4 (-1021)) (-4 *4 (-542)) - (-5 *2 (-400 (-926 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-623 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-623 *4)))) - (-5 *1 (-1153 *6)) (-5 *5 (-623 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-945))))) + (-12 (-4 *4 (-356)) (-5 *2 (-893)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-810 (-893))) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) + ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893)))))) +(((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-749))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-961 (-400 (-550)) (-839 *3) (-234 *4 (-749)) - (-241 *3 (-400 (-550))))) - (-14 *3 (-623 (-1145))) (-14 *4 (-749)) (-5 *1 (-960 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-837))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-186))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-1229)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1229)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1229)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-1230)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1230)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1230))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1127)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) - (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-716 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1069)))) - ((*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1069)) - (-4 *3 (-1182)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-527 *4 *2)) - (-4 *2 (-1219 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) - (-4 *5 (-1204 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) - (-4 *2 (-1219 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) - (-5 *1 (-532 *4 *2)) (-4 *2 (-1219 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1121 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) - (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1145)) (-5 *2 (-1 (-219) (-219) (-219))) - (-5 *1 (-682 *3)) (-4 *3 (-596 (-526)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1182)) - (-4 *5 (-366 *4)) (-4 *3 (-366 *4))))) + (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1205 *4)) + (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1205 *5)) (-14 *6 (-893)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-356)) (-4 *2 (-361))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) + (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) - (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-4 *6 (-402 *4 *5)) - (-14 *7 (-1228 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-966 *3)) - (-4 *5 (-1204 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) + (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-300)) - (-5 *2 (-400 (-411 (-926 *4)))) (-5 *1 (-1016 *4))))) -(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-444)) (-4 *4 (-825)) - (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1204 *6)) - (-4 *6 (-13 (-27) (-423 *5))) - (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) (-4 *8 (-1204 (-400 *7))) - (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) - (-4 *3 (-335 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1228 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-273))) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1150))))) -(((*1 *2 *1) - (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *2)) - (-2 (|:| -3690 *5) (|:| -3068 *2)))) - (-4 *2 (-232 (-3307 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-825)) (-4 *7 (-923 *4 *2 (-839 *3)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1145)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-926 *5)) (-4 *5 (-1021)) (-5 *2 (-473 *4 *5)) - (-5 *1 (-918 *4 *5)) (-14 *4 (-623 (-1145)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 (-1243 *4 *5 *6 *7))) + (-5 *1 (-1243 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) + (-5 *2 (-620 (-1243 *6 *7 *8 *9))) (-5 *1 (-1243 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-186)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-293)))) + (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-840 *4 *5 *6 *7)) + (-4 *4 (-1023)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-1125 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-298))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-119 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3) (-12 (-5 *3 (-400 (-550))) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-4 *3 (-1182)) (-5 *2 (-623 *1)) (-4 *1 (-984 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) - (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $)))))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *3 (-1182)) (-5 *2 (-623 *1)) (-4 *1 (-984 *3)))) + (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) + (-14 *8 (-620 *5)) (-5 *2 (-1235)) (-5 *1 (-1242 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-924 *4 *6 *5)) (-14 *9 (-620 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) - (-14 *3 (-895)) (-4 *4 (-1021))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1159 *4 *5)) - (-4 *4 (-1069)) (-4 *5 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-895)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-895)) - (-5 *1 (-519 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-323))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-623 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-300)) - (-5 *1 (-177 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *8)) - (-5 *4 - (-623 - (-2 (|:| -2206 (-667 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-667 *7))))) - (-5 *5 (-749)) (-4 *8 (-1204 *7)) (-4 *7 (-1204 *6)) (-4 *6 (-342)) + (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *2)) + (-4 *3 (-13 (-1072) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1241))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *2 - (-2 (|:| -2206 (-667 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-667 *7)))) - (-5 *1 (-489 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) -(((*1 *2 *3) - (-12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-864 *4 *5)) (-4 *5 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1135))))) -(((*1 *1) (-5 *1 (-781)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-623 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1021)) (-4 *6 (-923 *5 *4 *2)) - (-4 *2 (-825)) (-5 *1 (-924 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *6)) (-15 -4153 (*6 $)) - (-15 -4163 (*6 $))))))) + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) - (-5 *2 (-1145)) (-5 *1 (-1017 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-803))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) - ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-736))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-550)) (-4 *7 (-923 *4 *5 *6)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-441 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *4 (-966 *3)) (-5 *1 (-140 *3 *4 *2)) - (-4 *2 (-366 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) (-4 *2 (-366 *4)) - (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) + (-12 (-5 *3 (-536)) (-4 *4 (-1205 *3)) + (-5 *2 + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-5 *1 (-746 *4 *5)) (-4 *5 (-403 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-966 *4)) (-4 *4 (-542)) - (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *4 (-966 *3)) (-5 *1 (-1197 *3 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) - ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-1125 (-550)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-411 (-1141 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1141 *1)) - (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) + (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) + (-5 *2 + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1182))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1127)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1069)) - (-4 *4 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 (-594 *4))) (-4 *4 (-423 *3)) (-4 *3 (-825)) - (-5 *1 (-559 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-980))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1035 *4 *5 *6)) - (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-951 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-879 *3))) (-4 *3 (-1069)) (-5 *1 (-878 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) -(((*1 *1) (-5 *1 (-139)))) + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-5 *1 (-1239 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) (((*1 *2) - (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1021)) - (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1133 *4 *5)) - (-14 *4 (-895)) (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1021)) - (-5 *1 (-1133 *4 *5)) (-14 *4 (-895))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-623 *6))) - (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-623 *6)) (-4 *4 (-596 (-866 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-5 *2 (-623 (-287 *3))) (-5 *1 (-861 *5 *3 *4)) - (-4 *3 (-1012 (-1145))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-5 *2 (-623 (-287 (-926 *3)))) - (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1021)) - (-3548 (-4 *3 (-1012 (-1145)))) (-4 *3 (-860 *5)) - (-4 *4 (-596 (-866 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-5 *2 (-863 *5 *3)) (-5 *1 (-861 *5 *3 *4)) - (-3548 (-4 *3 (-1012 (-1145)))) (-3548 (-4 *3 (-1021))) - (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1125 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *3) - (-12 (-5 *2 (-594 *4)) (-5 *1 (-593 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-825))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) + (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1205 (-536))) (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-216 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-247 *3)))) - ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1069)) (-5 *2 (-863 *3 *4)) (-5 *1 (-859 *3 *4 *5)) - (-4 *3 (-1069)) (-4 *5 (-644 *4))))) -(((*1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-1021)) (-4 *2 (-1204 *5)) - (-5 *1 (-1222 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1219 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1069))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1021)) - (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-923 *2 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-235)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1233)) (-5 *1 (-235))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 (-167 (-550))))) (-5 *2 (-623 (-167 *4))) - (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-400 (-926 (-167 (-550)))))) - (-5 *4 (-623 (-1145))) (-5 *2 (-623 (-623 (-167 *5)))) - (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-823)))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-106 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96))))) -(((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-895)) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) + (-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) + (|:| |basisInv| (-667 (-536))))) + (-5 *1 (-746 *3 *4)) (-4 *4 (-403 (-536) *3)))) ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-811 (-895))) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-895)))) + (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) + (-5 *2 + (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) + (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-895)))))) + (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) + (-5 *2 + (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) + (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) - (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-5 *2 (-901)) (-5 *1 (-899 *3)) - (-4 *3 (-596 (-526))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-901)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) - ((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) (-4 *1 (-843 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-770)) - (-4 *4 (-825))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-729))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1153 *4)) - (-5 *3 (-623 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-298)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1009))) (-5 *2 (-1009)) (-5 *1 (-298)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *1) (-5 *1 (-1033))) - ((*1 *2 *3) - (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1122 *4)) - (-4 *4 (-1182)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021))))) -(((*1 *1 *1) (-4 *1 (-843 *2)))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) + (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1238 *6)) (-5 *5 (-1124 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) - (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *1)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1021)) (-5 *1 (-667 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *4)) (-4 *4 (-1021)) (-4 *1 (-1092 *3 *4 *5 *6)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-801)) (-5 *1 (-800))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1145)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-623 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1167) (-27) (-423 *8))) - (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) - (-5 *3 (-550)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3490 *4) (|:| |sol?| (-112)))) - (-5 *1 (-987 *8 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 *4))) (-5 *3 (-1141 *4)) - (-4 *4 (-883)) (-5 *1 (-641 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-229 *3)) - (-4 *3 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182))))) + (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-620 (-1176 *5))) + (-5 *1 (-1238 *5)) (-5 *4 (-1176 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)) - (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) - (-5 *2 (-667 *3))))) + (-12 (-5 *3 (-1147)) (-5 *2 (-1 (-1141 (-920 *4)) (-920 *4))) + (-5 *1 (-1238 *4)) (-4 *4 (-356))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-757 *4)) - (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) - (-5 *2 (-1009)) (-5 *1 (-815))))) + (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-920 *5)))) + (-5 *1 (-1238 *5)) (-5 *4 (-1124 (-920 *5)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-771)) (-4 *2 (-923 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) - (-4 *4 (-444)) (-4 *6 (-825))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) - (-4 *2 (-1188 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-805 *2 *3)) (-4 *2 (-687 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) + (-5 *1 (-1238 *4)) (-4 *4 (-356))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) - (-5 *2 (-550)) (-5 *1 (-1083 *4 *5))))) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) + (-5 *1 (-1238 *4)) (-4 *4 (-356))))) +(((*1 *2) + (-12 (-14 *4 (-749)) (-4 *5 (-1183)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) + (-4 *3 (-232 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 (-536)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1023)) (-5 *2 (-893)))) + ((*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) +(((*1 *1) (-5 *1 (-1235)))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1234)))) + ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1234))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) + ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) +(((*1 *1) (-5 *1 (-1233)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-620 (-254))) (-5 *1 (-1233)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1129)) (-5 *1 (-1233)))) + ((*1 *1 *1) (-5 *1 (-1233)))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-1135 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-623 *2) *2 *2 *2)) (-4 *2 (-1069)) - (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-102 *2))))) + (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233))))) (((*1 *1 *2) - (-12 (-5 *2 (-1243 (-1145) *3)) (-4 *3 (-1021)) (-5 *1 (-1250 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1243 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *1 (-1252 *3 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) - (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) - (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-1042 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-1077 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 - (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) - (|:| |expense| (-372)) (|:| |accuracy| (-372)) - (|:| |intermediateResults| (-372)))) - (-5 *1 (-781))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-1 (-219) (-219) (-219) (-219))) - (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-298))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-623 (-623 (-550)))) - (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-550)) (-4 *7 (-923 *4 *6 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-4 *2 (-1069)) (-5 *1 (-658 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-771)) (-4 *2 (-259 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *3 (-623 (-256))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-460))))) -(((*1 *1 *1) (-5 *1 (-1033)))) + ((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *3 (-620 (-254))) (-5 *1 (-255)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-536)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *1 (-1233)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1232)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1233)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-917 (-219)))) (-5 *1 (-1232))))) +(((*1 *1) (-5 *1 (-1232)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-620 (-254))) (-5 *1 (-1232)))) + ((*1 *1 *1) (-5 *1 (-1232)))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-893)) (-5 *4 (-219)) (-5 *5 (-536)) (-5 *6 (-848)) + (-5 *2 (-1235)) (-5 *1 (-1232))))) (((*1 *2 *1) - (-12 (-5 *2 (-1071 (-1071 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 + (-5 *2 + (-1229 + (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) + (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) + (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) + (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536))))) + (-5 *1 (-1232))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1229 (-3 (-460) "undefined"))) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-5 *2 (-460)) (-5 *1 (-1232))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-620 (-371))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) + (-5 *6 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-818 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-298)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-137))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) - (-5 *2 (-623 (-400 (-926 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) - (-4 *7 (-923 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) + (-5 *2 (-1232)) (-5 *1 (-1231))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) + (-5 *6 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-460)) (-5 *1 (-1231)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-460)) + (-5 *1 (-1231))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (|has| *1 (-6 -4348)) + (-4 *1 (-149 *2)) (-4 *2 (-1183)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) + (-4 *2 (-1183)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) + (-4 *2 (-1183)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2115 (-1141 *4)) (|:| |deg| (-893)))) + (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-543) (-825))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) + (-4 *6 (-1183)) (-4 *2 (-1183)) (-5 *1 (-234 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1205 *4)) + (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-543)) (-4 *2 (-825)))) ((*1 *1 *1) - (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) - (-14 *4 *2)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1182))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1205 *2)) + (-4 *4 (-1205 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1072)) (-4 *2 (-1072)) + (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) + ((*1 *1 *1) (-5 *1 (-486))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-621 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-365 *5)) + (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) + (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-664 *5 *6 *7)) + (-4 *10 (-664 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1021)) (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1149))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-1069)) (-4 *4 (-1182)) (-5 *2 (-112)) - (-5 *1 (-1125 *4))))) + (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-356)) + (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-933 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1023)) (-4 *2 (-1023)) (-14 *5 (-749)) + (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) + (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) + (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *12 (-1026 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-1126 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1178 *5 *6 *7 *2)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *2 (-1037 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-5 *1 (-1230 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3490 *6) (|:| |sol?| (-112))) (-550) - *6)) - (-4 *6 (-356)) (-4 *7 (-1204 *6)) - (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) + (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-749)) + (-4 *7 (-1183)) (-4 *5 (-1183)) (-5 *2 (-233 *6 *5)) + (-5 *1 (-234 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-4 *2 (-365 *5)) + (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1072)) (-4 *5 (-1072)) (-4 *2 (-419 *5)) + (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-620 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) + (-5 *2 (-620 *5)) (-5 *1 (-621 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) + (-5 *2 (-932 *5)) (-5 *1 (-933 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1183)) (-4 *3 (-1183)) + (-5 *2 (-1124 *3)) (-5 *1 (-1126 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1229 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) + (-5 *2 (-1229 *5)) (-5 *1 (-1230 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1229 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-208 *2)) + (-4 *2 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) + (-15 -2082 ((-1235) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-525))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-25))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1228 *3)) (-4 *3 (-23)) (-4 *3 (-1183))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-208 *2)) + (-4 *2 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) + (-15 -2082 ((-1235) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1180)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-1023)) (-5 *2 (-667 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1023)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825))) (-5 *2 (-167 *5)) - (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-976) (-1167))) - (-4 *3 (-13 (-423 (-167 *4)) (-976) (-1167)))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) - (-5 *1 (-1098 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1098 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-287 (-400 (-926 *5)))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) - (-5 *1 (-1098 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-287 (-400 (-926 *4)))) - (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) - (-5 *1 (-1098 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-400 (-926 *4)))) - (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1098 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-287 (-400 (-926 *5))))) (-5 *4 (-623 (-1145))) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1098 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-287 (-400 (-926 *4))))) - (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1098 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1127)) (-5 *1 (-764))))) -(((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-535))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) + (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) + ((*1 *1 *1) (-4 *1 (-535))) + ((*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1181 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-848)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1145)) - (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *1 (-1148))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-623 (-550))) (-5 *3 (-667 (-550))) (-5 *1 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1127)) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1145)) - (-4 *5 (-13 (-542) (-1012 (-550)) (-145))) - (-5 *2 - (-2 (|:| -3230 (-400 (-926 *5))) (|:| |coeff| (-400 (-926 *5))))) - (-5 *1 (-556 *5)) (-5 *3 (-400 (-926 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) - ((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) - (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2815 *6))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-293)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1127)) (-5 *1 (-298))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) - (-4 *3 (-1069)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-112)) - (-5 *1 (-878 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-883)) - (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-883)) - (-5 *1 (-880 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-883)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1204 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) - (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) + (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-839 *3)) (-14 *3 (-620 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) ((*1 *2 *1) - (-12 (-5 *2 (-1228 (-3 (-460) "undefined"))) (-5 *1 (-1229))))) -(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1021))))) + (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1147)))) + ((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 (-623 *4)))) - (-5 *1 (-1153 *4)) (-5 *3 (-623 (-623 *4)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1198 *4 *2)) (-4 *2 (-1204 *4))))) + (-12 (-5 *3 (-400 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-543)) (-4 *4 (-1023)) + (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *5 *6 *2)) (-4 *6 (-636 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-818 (-372))) (-5 *2 (-818 (-219))) (-5 *1 (-298))))) + (-12 (-4 *4 (-1023)) (-4 *5 (-1205 *4)) (-5 *2 (-1 *6 (-620 *6))) + (-5 *1 (-1224 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1222 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-4 *2 (-1205 *5)) + (-5 *1 (-1224 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1222 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-926 (-550))))) (-5 *2 (-623 (-309 (-550)))) - (-5 *1 (-1005))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1054))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2305 *1) (|:| -4331 *1) (|:| |associate| *1))) - (-4 *1 (-542))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-2 (|:| -1735 (-1141 *6)) (|:| -3068 (-550))))) - (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-5 *1 (-1045 *4 *5 *2)) - (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1069)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) - (-5 *1 (-1045 *3 *4 *2)) - (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3))))))) + (-12 (-4 *4 (-1023)) (-4 *3 (-1205 *4)) (-4 *2 (-1222 *4)) + (-5 *1 (-1224 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-1145)) (-4 *6 (-423 *5)) - (-4 *5 (-825)) (-5 *2 (-623 (-594 *6))) (-5 *1 (-559 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1238))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3))))) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 (-1 *6 (-620 *6)))) + (-4 *5 (-38 (-400 (-536)))) (-4 *6 (-1222 *5)) (-5 *2 (-620 *6)) + (-5 *1 (-1223 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-620 *2))) (-5 *4 (-620 *5)) (-4 *5 (-38 (-400 (-536)))) + (-4 *2 (-1222 *5)) (-5 *1 (-1223 *5 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) + (-4 *4 (-38 (-400 (-536))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) + (-4 *4 (-38 (-400 (-536))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1204 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-1222 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-372)) (-5 *1 (-199))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-623 (-1145))) - (-5 *2 (-623 (-623 (-372)))) (-5 *1 (-997)) (-5 *5 (-372)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) - (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550))))) -(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1228 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-770)) (-4 *3 (-170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-895)) (-4 *5 (-825)) - (-5 *2 (-623 (-650 *5))) (-5 *1 (-650 *5))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) - (-5 *4 (-623 (-895))) (-5 *5 (-623 (-256))) (-5 *1 (-460)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) - (-5 *4 (-623 (-895))) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460)))) - ((*1 *1 *1) (-5 *1 (-460)))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-623 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-550))))) - (-4 *2 (-542)) (-5 *1 (-411 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-550)) - (|:| -1610 (-623 (-2 (|:| |irr| *4) (|:| -1635 (-550))))))) - (-4 *4 (-1204 (-550))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1021)) (-4 *3 (-825)) - (-4 *4 (-259 *3)) (-4 *5 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3))))) + (-12 (-5 *3 (-1 *5 (-620 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) + (-5 *2 (-1 (-1124 *4) (-620 (-1124 *4)))) (-5 *1 (-1223 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1167) (-933) (-29 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-836)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-836))))) -(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) - (-4 *5 (-542)) (-5 *2 (-623 (-623 (-926 *5)))) (-5 *1 (-1151 *5))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1069))))) -(((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1031 (-998 *3) (-1141 (-998 *3)))) - (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-996)))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1021)) - (-5 *1 (-1003 *4))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) + (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) - (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) + (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-536))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) + (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) + (-4 *6 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) + (-4 *7 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) + (-4 *3 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) + (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) + (-4 *8 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) + (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) + (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) + (-5 *1 (-578 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-579 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) + (-4 *1 (-1191 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-5 *3 (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))) + (-4 *4 (-1023)) (-4 *1 (-1212 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1023)) + (-4 *1 (-1222 *3))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3985 (-114)) (|:| |arg| (-623 (-866 *3))))) - (-5 *1 (-866 *3)) (-4 *3 (-1069)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-5 *2 (-1124 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1191 *3)) (-4 *3 (-1023)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1222 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) + (-5 *2 (-920 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-866 *4))) - (-5 *1 (-866 *4)) (-4 *4 (-1069))))) -(((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1175 *2 *3 *4 *5)) (-4 *2 (-542)) - (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1035 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) - (-4 *2 (-1219 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *1 (-1129 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) - ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230))))) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) + (-5 *2 (-920 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-550))) (-4 *4 (-1012 (-550))) - (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) + (-12 (-5 *3 (-400 (-536))) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) + (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) ((*1 *1 *1 *1) (-5 *1 (-133))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) ((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-550)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-536)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) - (-4 *5 (-1219 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1190 *4 *5)))) + (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) + (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1193 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) - (-4 *5 (-1188 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1211 *4 *5)) - (-4 *6 (-957 *5)))) + (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1191 *4)) + (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1214 *4 *5)) (-4 *6 (-957 *5)))) ((*1 *1 *1 *1) (-4 *1 (-277))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) (-5 *1 (-372))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1069)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *1) (-5 *1 (-371))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-1081)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-550)))) + (-12 (-5 *2 (-749)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-1083)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-536)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-550)) (-4 *4 (-342)) - (-5 *1 (-519 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-526)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-526)))) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-525)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-525)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1069)) - (-5 *1 (-660 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1072)) (-5 *1 (-660 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356)))) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-356)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + (-12 (-5 *2 (-749)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1021)) - (-5 *1 (-668 *4)))) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *3 (-1021)) (-5 *1 (-693 *3 *4)) - (-4 *4 (-626 *3)))) + (-12 (-5 *2 (-536)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-4 *4 (-1021)) - (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895)))) + (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *5)) + (-4 *5 (-626 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-812 *3)) (-4 *3 (-1021)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-812 *3)) (-4 *3 (-1023)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-5 *1 (-812 *4)) (-4 *4 (-1021)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-550))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1081)) (-5 *2 (-895)))) + (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-5 *1 (-812 *4)) (-4 *4 (-1023)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-536))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1083)) (-5 *2 (-893)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *4 (-1021)) + (-12 (-5 *2 (-536)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1063 (-817 *3))) (-4 *3 (-13 (-1169) (-934) (-29 *5))) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) + (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) + (-5 *1 (-213 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1063 (-817 *3))) (-5 *5 (-1129)) + (-4 *3 (-13 (-1169) (-934) (-29 *6))) + (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) + (|:| |pole| #2#))) + (-5 *1 (-213 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1063 (-817 (-307 *5)))) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) + (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) + (-5 *1 (-214 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1063 (-817 (-307 *6)))) + (-5 *5 (-1129)) + (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-214 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1063 (-817 (-400 (-920 *5))))) (-5 *3 (-400 (-920 *5))) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-214 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1063 (-817 (-400 (-920 *6))))) (-5 *5 (-1129)) + (-5 *3 (-400 (-920 *6))) + (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-214 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-3 *3 (-620 *3))) (-5 *1 (-423 *5 *3)) + (-4 *3 (-13 (-1169) (-934) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) + (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) + (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) + (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *2 (-1009)) + (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) + (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) + (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) + (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) + (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) + (-5 *5 (-1129)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) + (-5 *5 (-1147)) (-5 *2 (-1009)) (-5 *1 (-551)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) + (-5 *2 (-567 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) + (-5 *2 (-3 (-307 *5) (-620 (-307 *5)))) (-5 *1 (-572 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)) + (-4 *3 (-38 (-400 (-536)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1147)) (-5 *1 (-920 *3)) (-4 *3 (-38 (-400 (-536)))) + (-4 *3 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-4 *2 (-825)) + (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-730))))) -(((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) - (-4 *3 (-941))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-545))))) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-536)))) + (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3886 + (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) + (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) + (-4 *3 (-38 (-400 (-536)))))) + (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) + (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) + (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1191 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3886 + (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) + (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) + (-4 *3 (-38 (-400 (-536)))))) + (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) + (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) + (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1212 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3886 + (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) + (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) + (-4 *3 (-38 (-400 (-536)))))) + (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) + (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) + (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1145 *4 *5 *6)) + (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) + (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) + ((*1 *1 *1) (-4 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825)))) + ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) + (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) + (-4 *4 (-1205 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1147)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) + (-4 *4 (-1072)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-1023)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-14 *5 *3)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-14 *5 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-296)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-1009))) (-5 *2 (-1009)) (-5 *1 (-296)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *1) (-5 *1 (-1035))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1125 *4)) + (-4 *4 (-1183)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1069)) (-4 *3 (-825)) - (-4 *2 (-1182)))) + (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *3 (-825)) (-4 *2 (-1183)))) ((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) ((*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1182)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1182)))) + ((*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1183)))) ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-620 (-536))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 (-536)) (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-749)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-749)))) + ((*1 *2 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-536)) (-14 *4 (-749)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *2 (-1072)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1147)) (-5 *2 (-239 (-1129))) (-5 *1 (-208 *4)) + (-4 *4 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ *3)) (-15 -3975 ((-1235) $)) + (-15 -2082 ((-1235) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-185)) (-5 *3 (-550)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-1141 *3)) - (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) - (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1141 *3))) - (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) - (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) + (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) + (-15 -2082 ((-1235) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1205 *3)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) + (-4 *4 (-1205 (-400 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1129)) (-5 *1 (-493)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-51)) (-5 *1 (-612)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-620 (-864 *4))) (-5 *1 (-864 *4)) + (-4 *4 (-1072)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-893)) (-4 *2 (-356)) + (-5 *1 (-967 *4 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *2 (-1023)) + (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) + (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-893)) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-5 *1 (-1046 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-893)) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-5 *1 (-1048 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-536))) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-536)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) + ((*1 *1 *1 *1) (-4 *1 (-1115))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-400 *1)) (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1067)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) - (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) - (|:| |args| (-623 (-837))))) - (-5 *1 (-1145))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-411 (-1141 *6)) (-1141 *6))) - (-4 *6 (-356)) - (-5 *2 - (-623 - (-2 (|:| |outval| *7) (|:| |outmult| (-550)) - (|:| |outvect| (-623 (-667 *7)))))) - (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823)))))) + (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) + ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) +(((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) + (-4 *3 (-1183)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) + (-4 *2 (-1183)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1147)) (-5 *1 (-612)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1196 (-536))) (|has| *1 (-6 -4349)) (-4 *1 (-629 *2)) + (-4 *2 (-1183)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) + (-4 *2 (-1183)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) + (-4 *2 (-1183)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) + (-4 *3 (-1183)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) + (-4 *2 (-1183))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) + (-4 *3 (-1183))))) (((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 *2))) - (-5 *2 (-866 *3)) (-5 *1 (-1045 *3 *4 *5)) - (-4 *5 (-13 (-423 *4) (-860 *3) (-596 *2)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1167) (-933)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-550)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-771)) (-4 *4 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) - (-5 *1 (-441 *5 *6 *7 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1109 *4 *5)) (-4 *4 (-13 (-1069) (-34))) - (-4 *5 (-13 (-1069) (-34))) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-877 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 (-1228 (-550)))) (-5 *3 (-895)) (-5 *1 (-458))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) + (-5 *2 (-817 *4)) (-5 *1 (-306 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) + (-5 *2 (-817 *4)) (-5 *1 (-1216 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1210 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) + (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))))) + (|:| |%type| (-1129)))) + (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) + (-14 *5 (-1147)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-536))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) + (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) + (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) + (-4 *8 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) + (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) + (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-400 (-536))) (-4 *4 (-1023)) (-4 *1 (-1214 *4 *3)) + (-4 *3 (-1191 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) + (-5 *2 (-400 (-536)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) - ((*1 *1 *1) (-4 *1 (-535))) - ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1179 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-976)) - (-4 *2 (-1021))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-623 (-760 *3))) (-5 *1 (-760 *3)) (-4 *3 (-542)) - (-4 *3 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-356)) - (-5 *2 (-112)) (-5 *1 (-645 *5)))) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-112)) - (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) - (-4 *2 (-1204 *4))))) -(((*1 *1) (-5 *1 (-430)))) + (-12 (-5 *4 (-536)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) + (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-536)) + (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) + (-4 *7 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) + (-4 *3 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-536)) (-4 *4 (-1023)) (-4 *1 (-1193 *4 *3)) + (-4 *3 (-1222 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-893)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-1212 *3)) (-4 *3 (-1023))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-536)))) + (-4 *4 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (-4 *3 (-543)) + (-5 *1 (-1209 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) + (-4 *1 (-1043 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1188))) + ((*1 *2 *2) + (-12 (-4 *3 (-543)) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-423 *3)))) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) + (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) - (-4 *3 (-1069)))) + (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-5 *1 (-714 *3 *4)) + (-4 *3 (-1023)) (-4 *4 (-705)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) + (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) + (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-620 (-1129))) (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *1 (-235)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023))))) +(((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-893)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *3)) - (-5 *1 (-924 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) - (-15 -4163 (*7 $)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1012 (-550))) (-4 *3 (-13 (-825) (-542))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1021)) (-4 *1 (-295)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) - ((*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *2)) (-4 *3 (-13 (-823) (-356))) - (-4 *2 (-1204 *3))))) -(((*1 *1) (-5 *1 (-1230)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-542)) - (-4 *7 (-923 *3 *5 *6)) - (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *8) (|:| |radicand| *8))) - (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) - (-4 *8 - (-13 (-356) - (-10 -8 (-15 -4153 (*7 $)) (-15 -4163 (*7 $)) (-15 -2233 ($ *7)))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1087)) (-5 *1 (-1084))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1182)) (-5 *2 (-749)) - (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) + (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) + (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) + (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-810 (-893))))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) ((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-130)) - (-5 *2 (-749)))) - ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) - ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) + (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) + (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-749)) + (-5 *1 (-885 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) + (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) + (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-886 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) + (-4 *7 (-1205 *6)) (-4 *4 (-1205 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) + (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-992 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)) (-5 *2 (-749)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) + ((*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) +(((*1 *1 *1) (-4 *1 (-1032))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-536)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-845 *4)) (-14 *4 *3) (-5 *3 (-536)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-400 (-536))) (-5 *1 (-846 *4 *5)) (-5 *3 (-536)) + (-4 *5 (-844 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-536))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4312 (*2 (-1147)))) (-4 *2 (-1023))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-825)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1023)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-400 *5)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-667 (-307 (-219)))) (-5 *3 (-620 (-1147))) + (-5 *4 (-1229 (-307 (-219)))) (-5 *1 (-199)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1072)) + (-4 *3 (-1183)) (-5 *1 (-286 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-302 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)) (-5 *1 (-286 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-536))) (-5 *4 (-1149 (-400 (-536)))) (-5 *1 (-303 *2)) + (-4 *2 (-38 (-400 (-536)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) + (-4 *5 (-170)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) + (-4 *5 (-825)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-620 *1))) + (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) + (-5 *4 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-825)) + (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 *1))) + (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 *1)) (-5 *4 (-1147)) + (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-525))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1147)) (-4 *1 (-414 *4)) (-4 *4 (-825)) + (-4 *4 (-596 (-525))))) + ((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-525))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-1147))) (-4 *1 (-414 *3)) (-4 *3 (-825)) + (-4 *3 (-596 (-525))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1183)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1072)) + (-4 *5 (-1183)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-543)) + (-5 *1 (-1014 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-620 (-1147))) (-5 *4 (-620 (-400 (-920 *5)))) + (-5 *2 (-400 (-920 *5))) (-4 *5 (-543)) (-5 *1 (-1014 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) + (-5 *1 (-1014 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-5 *2 (-400 (-920 *4))) + (-4 *4 (-543)) (-5 *1 (-1014 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-5 *2 (-1141 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1023)) (-4 *1 (-1205 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-924 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) + (-4 *1 (-1205 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-1023)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023))))) +(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1205 *2)) + (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *4 (-1069)) (-5 *2 (-749)) (-5 *1 (-417 *3 *4)) - (-4 *3 (-418 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-23)) (-14 *5 *4))) + (-12 (-4 *4 (-1205 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) + (-4 *3 (-403 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1204 *4)) (-5 *2 (-749)) - (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980)))) + (-12 (-4 *3 (-1205 *2)) (-5 *2 (-536)) (-5 *1 (-746 *3 *4)) + (-4 *4 (-403 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *3 (-170)))) + ((*1 *2 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *3 (-170)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) + (-4 *3 (-543)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -4308 *4) (|:| -2091 *3) (|:| -3230 *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| -4308 *3) (|:| -2091 *1) (|:| -3230 *1))) + (-4 *1 (-1205 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *4 (-543)) (-4 *5 (-1205 *4)) + (-5 *2 (-2 (|:| -1879 (-603 *4 *5)) (|:| -1878 (-400 *5)))) + (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2))))) + (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-444)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1205 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-1203 *4 *2)) + (-4 *2 (-1205 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1792 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-1078 *5 *6 *7 *8)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-574 *5 *6 *7 *8 *3))))) -(((*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1069))))) -(((*1 *1 *1) (-5 *1 (-526)))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-4 *1 (-877 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *2 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021)))) - ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-623 (-1141 *13))) (-5 *3 (-1141 *13)) - (-5 *4 (-623 *12)) (-5 *5 (-623 *10)) (-5 *6 (-623 *13)) - (-5 *7 (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| *13))))) - (-5 *8 (-623 (-749))) (-5 *9 (-1228 (-623 (-1141 *10)))) - (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-923 *10 *11 *12)) - (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-736))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-623 (-112))) (-5 *7 (-667 (-219))) - (-5 *8 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *5 (-112)) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (|partial| -12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) + (-5 *1 (-1202 *4 *3)) (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) - (-4 *2 - (-13 (-395) - (-10 -7 (-15 -2233 (*2 *4)) (-15 -4073 ((-895) *2)) - (-15 -2206 ((-1228 *2) (-895))) (-15 -3020 (*2 *2))))) - (-5 *1 (-349 *2 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1069))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2206 (-623 *1)))) - (-4 *1 (-360 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2206 (-623 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-623 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-771)) (-4 *3 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *1 (-441 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-323))))) + (-12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-620 *3)) (-5 *1 (-1201 *4 *3)) + (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-926 (-550))))) - (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1021)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-667 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1021)) - (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2))))) + (|partial| -12 (-4 *4 (-13 (-543) (-145))) + (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-1201 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1201 *3 *2)) + (-4 *2 (-1205 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) + (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) + (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) + (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) - (-4 *3 (-366 *5)))) + (-4 *3 (-365 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) + (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) + (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-966 *4)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) - (-5 *1 (-671 *4 *5)))) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) + (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) - (-5 *2 (-2 (|:| -1309 *7) (|:| |rh| (-623 (-400 *6))))) - (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-623 (-400 *6))) - (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) + (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) + (-5 *2 (-2 (|:| -3612 *7) (|:| |rh| (-620 (-400 *6))))) + (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-620 (-400 *6))) (-4 *7 (-636 *6)) + (-4 *3 (-636 (-400 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-966 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1197 *4 *5 *3)) - (-4 *3 (-1204 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-167 *4))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) - (-5 *2 (-1009)) (-5 *1 (-724))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-542)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) + (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1200 *4 *5 *3)) + (-4 *3 (-1205 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-623 (-473 *3 *4))) (-14 *3 (-623 (-1145))) - (-4 *4 (-444)) (-5 *1 (-611 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-800))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) - ((*1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-926 *4))) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) - (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1141 (-926 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) - (-4 *4 (-771)) (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-550))) (-5 *1 (-1088)))) + (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-365 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-4 *2 (-365 *4)) + (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-667 *4)) + (-5 *1 (-671 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1228 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) - (-5 *1 (-645 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-356)) - (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4345)))) - (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345)))) - (-5 *1 (-646 *4 *5 *2 *3)) (-4 *3 (-665 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-623 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) - (-5 *1 (-792 *2 *3)) (-4 *3 (-634 *2)))) + (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-1200 *3 *4 *2)) + (-4 *2 (-1205 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-365 *4)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) - (-5 *2 (-1141 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1127)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-411 *4)) (-4 *4 (-542))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1069)) (-4 *5 (-1069)) - (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-801)) (-5 *1 (-800))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-623 (-167 *4))) (-5 *1 (-153 *3 *4)) - (-4 *3 (-1204 (-167 (-550)))) (-4 *4 (-13 (-356) (-823))))) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-494 *2 *4 *5 *3)) + (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-108)) (-5 *1 (-173)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-108)) (-5 *1 (-1054))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-366 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-1182))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-917 *4)) (-4 *4 (-1021)) (-5 *1 (-1133 *3 *4)) - (-14 *3 (-895))))) -(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-803))))) + (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-543)) + (-5 *1 (-671 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-1200 *2 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-930 *3 *2)) (-4 *2 (-130)) (-4 *3 (-543)) (-4 *3 (-1023)) + (-4 *2 (-770)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1149 *3)) (-4 *3 (-543)) + (-4 *3 (-1023)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1147)) (-4 *3 (-1023))))) +(((*1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1183))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-839 *5))) (-14 *5 (-623 (-1145))) (-4 *6 (-444)) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |dpolys| (-623 (-241 *5 *6))) - (|:| |coords| (-623 (-550))))) - (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-4 *7 (-966 *4)) (-4 *2 (-665 *7 *8 *9)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) - (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) - (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) - (-4 *2 (-665 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1021)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1092 *2 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-1153 *3))))) + (-2 (|:| |contp| (-536)) + (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) + (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-536)) + (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) + (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) - (-5 *2 (-2 (|:| -4304 (-400 *5)) (|:| |poly| *3))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-169)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-560 *5 *3))))) -(((*1 *1) (-5 *1 (-460)))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1186)) (-4 *5 (-1204 *3)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-623 *3)) (-5 *1 (-935 *3)) (-4 *3 (-535))))) + (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) + (-4 *3 (-1205 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3) + (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *1)) (-5 *4 (-1228 *1)) (-4 *1 (-619 *5)) - (-4 *5 (-1021)) - (-5 *2 (-2 (|:| -3121 (-667 *5)) (|:| |vec| (-1228 *5)))))) + (-12 (-5 *4 (-620 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1205 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-924 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) + (-4 *7 (-924 (-48) *6 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1141 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1021)) - (-5 *2 (-667 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-634 *3)) (-4 *3 (-1021)) (-4 *3 (-356)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-5 *1 (-637 *5 *2)) (-4 *2 (-634 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-594 *4)) (-5 *6 (-1145)) - (-4 *4 (-13 (-423 *7) (-27) (-1167))) - (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-241 *3 *4)) - (-14 *3 (-623 (-1145))) (-4 *4 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-14 *3 (-623 (-1145))) - (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1021)) - (-4 *5 (-232 (-3307 *3) (-749))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-473 *3 *4)) - (-14 *3 (-623 (-1145))) (-4 *4 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) + (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) + (-4 *3 (-1205 (-166 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1205 (-166 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-112)) - (-5 *1 (-350 *4)))) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1205 (-166 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-112)) - (-5 *1 (-519 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1182))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-895)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-623 (-114)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1009)) (-5 *3 (-1145)) (-5 *1 (-186))))) -(((*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1145))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) + (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) + (-4 *3 (-1205 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536))))) + ((*1 *2 *3) + (-12 (-5 *2 (-398 (-166 (-536)))) (-5 *1 (-438)) (-5 *3 (-166 (-536))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) + (-4 *5 (-771)) (-4 *7 (-543)) (-5 *2 (-398 *3)) + (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-543)) (-4 *3 (-924 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1141 *4))) (-5 *1 (-450 *4)) + (-5 *3 (-1141 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-398 *3)) + (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1205 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) + (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-530 *5 *6 *7 *3)) + (-4 *3 (-924 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) + (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-924 *7 *6 *5)) + (-5 *2 (-398 (-1141 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *6 (-1205 *5)) (-5 *2 (-620 (-633 (-400 *6)))) (-5 *1 (-637 *5 *6)) + (-5 *3 (-633 (-400 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) + (-5 *3 (-633 (-400 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-650 *4))) + (-5 *1 (-650 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-536)) (-5 *2 (-620 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-5 *2 (-398 *3)) + (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-4 *7 (-924 *6 *5 *4)) + (-5 *2 (-398 (-1141 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) + (-4 *5 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) + (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) + (-4 *3 (-924 (-920 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) + (-4 *6 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-711 *4 *5 *6 *3)) + (-4 *3 (-924 (-400 (-920 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) + (-5 *2 (-398 *3)) (-5 *1 (-712 *4 *5 *6 *3)) + (-4 *3 (-924 (-400 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) + (-5 *2 (-398 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-720 *4 *5 *6 *7)) + (-5 *3 (-1141 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-398 *3)) (-5 *1 (-1016 *3)) + (-4 *3 (-1205 (-400 (-920 (-536))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1205 (-400 (-536)))) + (-4 *5 (-13 (-356) (-145) (-703 (-400 (-536)) *4))) (-5 *2 (-398 *3)) + (-5 *1 (-1051 *4 *5 *3)) (-4 *3 (-1205 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1205 (-400 (-920 (-536))))) + (-4 *5 (-13 (-356) (-145) (-703 (-400 (-920 (-536))) *4))) (-5 *2 (-398 *3)) + (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1205 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) + (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) + (-5 *3 (-1141 (-400 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) + ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-536)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-845 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-536)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-536)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-536)) (-5 *1 (-846 *2 *3)) (-4 *3 (-844 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-536)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) + (-4 *4 (-1222 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1222 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) - (-4 *4 (-342)) (-5 *2 (-667 *4)) (-5 *1 (-339 *4))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) + (-4 *6 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-749))) + (-4 *7 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-749))) + (-4 *3 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) + (-5 *1 (-451 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-526))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1792 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) + (|partial| -12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) + (-5 *2 (-400 (-920 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) + (-5 *2 (-400 (-920 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-536))) (-5 *2 (-112)) (-5 *1 (-438)))) ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) - ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230))))) -(((*1 *2 *1 *1) (-12 - (-5 *2 - (-2 (|:| |polnum| (-760 *3)) (|:| |polden| *3) (|:| -3867 (-749)))) - (-5 *1 (-760 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3867 (-749)))) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1012 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) - ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-939))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1127) (-752))) (-5 *1 (-114))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1182)) (-4 *3 (-1182))))) -(((*1 *2 *3) - (-12 (-5 *3 (-926 *4)) (-4 *4 (-13 (-300) (-145))) - (-4 *2 (-923 *4 *6 *5)) (-5 *1 (-898 *4 *5 *6 *2)) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) - (-5 *1 (-325)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-1061 (-926 (-550)))) (-5 *2 (-323)) - (-5 *1 (-325)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1021)) - (-4 *3 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) - (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5))))) + (-5 *3 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) + (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-936 *3)) (-4 *3 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1186))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -1270 (-623 *3)) (|:| -3338 (-623 *3)))) - (-5 *1 (-1183 *3)) (-4 *3 (-1069))))) + (-12 (-5 *2 (-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) + (-5 *1 (-1186))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-825)) (-4 *3 (-1072))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1145))) (-4 *6 (-356)) - (-5 *2 (-623 (-287 (-926 *6)))) (-5 *1 (-528 *5 *6 *7)) - (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *2 (-1009)) (-5 *1 (-298)))) + (-12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1185 *2)) + (-4 *2 (-1072)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) - (-5 *2 (-1009)) (-5 *1 (-298))))) -(((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-1185 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1072)) (-5 *2 (-112)) + (-5 *1 (-1185 *3))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3575 (-620 *3)) (|:| -3574 (-620 *3)))) + (-5 *1 (-1185 *3)) (-4 *3 (-1072))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-771)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) - (-5 *1 (-255 *2)) (-4 *2 (-1182)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) (-5 *2 (-52)) - (-5 *1 (-256))))) + (-12 (-5 *4 (-536)) (-4 *5 (-343)) (-5 *2 (-398 (-1141 (-1141 *5)))) + (-5 *1 (-1182 *5)) (-5 *3 (-1141 (-1141 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) + (-5 *3 (-1141 (-1141 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) + (-5 *3 (-1141 (-1141 *4)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) + (-4 *3 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1178 *4 *5 *3 *2)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *3 (-825)) (-4 *2 (-1037 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1181 *2)) (-4 *2 (-1183))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-620 (-620 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 (-917 *4))) + (-5 *1 (-1180)) (-5 *3 (-917 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-1180))))) +(((*1 *1 *2) + (-12 (-5 *2 (-893)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1023)) (-4 *4 (-1183)))) + ((*1 *1 *2) + (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) + (-2 (|:| -2487 *2) (|:| -2488 *5)))) + (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) + (-4 *7 (-924 *4 *5 (-839 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-460)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-917 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)) (-5 *3 (-219))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-219)) (-5 *5 (-536)) (-5 *2 (-1179 *3)) (-5 *1 (-768 *3)) + (-4 *3 (-948)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-112)) (-5 *1 (-1179 *2)) + (-4 *2 (-948))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-948))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *9)))) (-5 *3 (-620 *9)) + (-4 *1 (-1178 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *8)))) (-5 *3 (-620 *8)) + (-4 *1 (-1178 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-2 (|:| -4216 (-620 *6)) (|:| -1813 (-620 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) + (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5))))) -(((*1 *2) - (-12 (-5 *2 (-1228 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) - (-14 *3 (-895)) (-14 *4 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) - ((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) - (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-623 *5)) (-4 *5 (-825)) (-5 *1 (-1153 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) - (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) + (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1178 *5 *6 *7 *3)) (-4 *5 (-543)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-623 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-4 *3 (-542))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) - (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-623 (-256))) - (-5 *1 (-254)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) - (-14 *5 (-623 (-1145))) (-4 *6 (-444)) (-5 *2 (-1228 *6)) - (-5 *1 (-611 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-361)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) - (-4 *4 (-342)))) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1069)) - (-14 *4 - (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *3)) - (-2 (|:| -3690 *2) (|:| -3068 *3))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-594 *5))) (-5 *3 (-1145)) (-4 *5 (-423 *4)) - (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-620 *7))) (-4 *1 (-1178 *4 *5 *6 *7)) + (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1125 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-1221 *4 *2)) - (-4 *4 (-38 (-400 (-550))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-623 (-749))) - (-5 *1 (-878 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387))))) -(((*1 *2 *3) - (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) - (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1204 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) - (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) - (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) + (-4 *1 (-1178 *5 *6 *7 *8)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1037 *5 *6 *7))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)) - (-4 *3 (-542)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-623 *6) "failed") (-550) *6 *6)) (-4 *6 (-356)) - (-4 *7 (-1204 *6)) - (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) - (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1219 *5)) (-4 *6 (-1204 *5))))) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *5 (-1037 *2 *3 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) - (-4 *4 (-342)) (-5 *2 (-1233)) (-5 *1 (-519 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1182)) (-5 *1 (-180 *3 *2)) - (-4 *2 (-652 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1145)) - (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *10)) + (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1043 *5 *6 *7 *8)) + (-4 *10 (-1080 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-620 (-1147))) + (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) + (-5 *1 (-608 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) + (-5 *1 (-1001 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) + (-5 *1 (-1001 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1020 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-1043 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) + (-5 *1 (-1117 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) + (-5 *1 (-1117 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1178 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) - (-5 *2 - (-623 - (-2 (|:| |eigval| (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4)))) - (|:| |geneigvec| (-623 (-667 (-400 (-926 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-926 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1021)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) - ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))))) - ((*1 *2 *1) - (-12 (-5 *2 (-550)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) - (-14 *4 (-623 (-1145))))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-620 (-2 (|:| -4216 *1) (|:| -1813 (-620 *7))))) (-5 *3 (-620 *7)) + (-4 *1 (-1178 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *8)) (-5 *4 (-623 *6)) (-4 *6 (-825)) - (-4 *8 (-923 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1021)) - (-5 *2 (-623 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-895)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) + (-12 (-5 *3 (-620 (-893))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-893)) (-14 *5 (-967 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) + (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) + (-4 *4 (-1023)) (-4 *5 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) + (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *2 (-825)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *3 (-825)) (-5 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *2 (-770)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1219 *3)) - (-5 *2 (-550)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1211 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1188 *3)) - (-5 *2 (-400 (-550))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-895))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-749))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) - (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-923 *8 *6 *7)) (-4 *6 (-771)) - (-5 *2 - (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-623 *8)) - (|:| |Lfact| - (-623 (-2 (|:| -1735 (-1141 *8)) (|:| -3068 (-550))))) - (|:| |ctpol| *8))) - (-5 *1 (-721 *6 *7 *8 *9))))) + (-12 (-5 *3 (-749)) (-4 *2 (-924 *4 (-522 *5) *5)) (-5 *1 (-1097 *4 *5 *2)) + (-4 *4 (-1023)) (-4 *5 (-825)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-920 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1023))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1097 *4 *3 *5))) (-4 *4 (-38 (-400 (-536)))) + (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *1 (-1097 *4 *3 *5)) + (-4 *5 (-924 *4 (-522 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1147)) (-5 *1 (-1176 *4)) + (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) +(((*1 *2 *2) + (-12 (-4 *3 (-596 (-864 *3))) (-4 *3 (-860 *3)) (-4 *3 (-13 (-825) (-444))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-596 (-864 *3))) (-4 *2 (-860 *3)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) + (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-536))) (-5 *1 (-1090)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1169)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-14 *5 (-623 (-1145))) (-5 *2 (-623 (-623 (-998 (-400 *4))))) - (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *5))))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-166 (-307 *4))) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-623 (-998 (-400 *4))))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145)))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-749)) - (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-550)))))) - (-5 *1 (-240 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-5 *2 (-1228 *3)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1204 *3))))) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-166 *3)) (-5 *1 (-1173 *4 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) - (-4 *4 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182))))) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-112)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) + (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) + (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) + (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + ((*1 *1 *1) (-4 *1 (-1172)))) +(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-1170 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-620 (-1170 *2))) (-5 *1 (-1170 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) (((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1182)))) + (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-543))))) + ((*1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1169)))) +(((*1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1167))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-1166 *4)) (-4 *4 (-1023))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-5 *2 (-536)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) + (-5 *2 (-536)) (-5 *1 (-1088 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) + (-5 *1 (-1088 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-1129)) + (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) + (-5 *1 (-1088 *6 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-536)) + (-5 *1 (-1089 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 (-400 (-920 *6)))) + (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1147)) (-5 *5 (-1129)) + (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-109)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1072)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-838))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) - (-14 *4 (-550))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-752)) (-5 *1 (-52))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) + (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) + (-15 -2082 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-386)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) + ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-689)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1163)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1163))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-749)) (-4 *3 (-1183)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)))) + ((*1 *1) (-5 *1 (-169))) + ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1072)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) + ((*1 *1) (-5 *1 (-386))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *1) + (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) + (-4 *4 (-644 *3)))) + ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1023)))) + ((*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) + ((*1 *1 *1) (-5 *1 (-1147))) ((*1 *1) (-5 *1 (-1147))) + ((*1 *1) (-5 *1 (-1163)))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) +(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1162))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-1162))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-275 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -4215 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2186 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1556 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-546)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -4215 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (|:| -2186 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))))) + (-5 *1 (-781)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) + (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) (((*1 *2 *3) - (-12 (-4 *1 (-778)) - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-1009))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550))))) + (|partial| -12 (-4 *2 (-1072)) (-5 *1 (-1161 *3 *2)) (-4 *3 (-1072))))) (((*1 *2) - (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-336 *3 *4)) (-14 *3 (-895)) - (-14 *4 (-895)))) - ((*1 *2) - (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) - (-14 *4 (-1141 *3)))) - ((*1 *2) - (-12 (-5 *2 (-932 (-1089))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) - (-14 *4 (-895))))) -(((*1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *2) + (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *2) + (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) + (-4 *5 (-1072))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) + (-4 *5 (-1072))))) +(((*1 *2) + (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-2 (|:| -4215 *3) (|:| -2186 *4)))) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *1 (-1160 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1114 *5 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133))))) + (-12 (-5 *4 (-893)) (-5 *2 (-1141 *3)) (-5 *1 (-1158 *3)) (-4 *3 (-356))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) (((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-623 *6)) - (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-516))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1181))) (-5 *3 (-1181)) (-5 *1 (-659))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1175 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *3 (-825)) (-4 *6 (-1035 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-620 (-620 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-620 (-620 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-620 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-1157 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-372)))) (-5 *2 (-1063 (-818 (-219)))) - (-5 *1 (-298))))) + (-12 (-4 *4 (-825)) + (-5 *2 + (-2 (|:| |f1| (-620 *4)) (|:| |f2| (-620 (-620 (-620 *4)))) + (|:| |f3| (-620 (-620 *4))) (|:| |f4| (-620 (-620 (-620 *4)))))) + (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 (-620 *4))))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-825)) (-5 *3 (-620 *6)) (-5 *5 (-620 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-620 *5)) (|:| |f3| *5) (|:| |f4| (-620 *5)))) + (-5 *1 (-1155 *6)) (-5 *4 (-620 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-423 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145)))) - ((*1 *1 *1) (-4 *1 (-158)))) + (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) + (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) + (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-356)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1023)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1094 *2 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-1155 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-526)) (-5 *1 (-525 *4)) - (-4 *4 (-1182))))) + (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) + (-5 *3 (-620 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-825)) (-5 *1 (-1155 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-825)) (-5 *2 (-1157 (-620 *4))) (-5 *1 (-1155 *4)) + (-5 *3 (-620 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 (-620 *4)))) (-5 *1 (-1155 *4)) + (-5 *3 (-620 (-620 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157 (-620 *4))) (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) + (-5 *1 (-1155 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) + (-5 *1 (-1155 *4)) (-4 *4 (-825))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-4 *4 (-825)) + (-5 *1 (-1155 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-620 *4)) (-4 *4 (-825)) + (-5 *1 (-1155 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-620 *5)) (-4 *5 (-825)) (-5 *1 (-1155 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1228 (-623 *3))) (-4 *4 (-300)) - (-5 *2 (-623 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1031 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-837)) - (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-996)))))) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-620 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-620 *4)))) + (-5 *1 (-1155 *6)) (-5 *5 (-620 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-667 (-1141 *8))) (-4 *5 (-1021)) (-4 *8 (-1021)) - (-4 *6 (-1204 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) - (-4 *7 (-1204 *6))))) -(((*1 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) - (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-920 *5)))) (-5 *1 (-1153 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-542)) - (-5 *2 (-2 (|:| -3121 (-667 *5)) (|:| |vec| (-1228 (-623 (-895)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-634 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1084)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1150))) (-5 *3 (-1150)) (-5 *1 (-1087))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *2 *3) - (-12 (-5 *3 (-747)) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) - (-5 *1 (-551)))) + (-12 (-5 *3 (-620 (-400 (-920 (-536))))) + (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-1033)) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))) (|:| |extra| (-1009)))) - (-5 *1 (-551)))) + (-12 (-5 *3 (-620 (-286 (-400 (-920 (-536)))))) + (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-765)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |fn| (-309 (-219))) - (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) - (|:| |extra| (-1009)))))) + (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 (-286 (-920 *4)))) + (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-765)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)) - (|:| |extra| (-1009)))))) + (-12 (-5 *3 (-286 (-400 (-920 (-536))))) (-5 *2 (-620 (-286 (-920 *4)))) + (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1147)) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-4 *4 (-13 (-29 *6) (-1169) (-934))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) + (-5 *1 (-631 *6 *4 *3)) (-4 *3 (-636 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *2)) + (-4 *2 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *1 (-631 *6 *2 *3)) (-4 *3 (-636 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-778)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-786)) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-783)))) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786)) (-5 *4 (-1033)) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-5 *2 (-620 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2123 (-620 *7))))) + (-5 *1 (-645 *5 *6 *7 *3)) (-5 *4 (-620 *7)) (-4 *3 (-664 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-783)))) + (-2 (|:| |particular| (-3 (-1229 *5) #2="failed")) + (|:| -2123 (-620 (-1229 *5))))) + (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-814)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) - (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) + (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1229 *5) #2#)) (|:| -2123 (-620 (-1229 *5))))) + (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-814)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-816)) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-815)))) + (-620 + (-2 (|:| |particular| (-3 (-1229 *5) #2#)) + (|:| -2123 (-620 (-1229 *5)))))) + (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-1033)) + (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-815)))) + (-620 + (-2 (|:| |particular| (-3 (-1229 *5) #2#)) + (|:| -2123 (-620 (-1229 *5)))))) + (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-869)) (-5 *3 (-1033)) - (-5 *4 - (-2 (|:| |pde| (-623 (-309 (-219)))) - (|:| |constraints| - (-623 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) - (|:| |grid| (-749)) (|:| |boundaryType| (-550)) - (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) - (|:| |tol| (-219)))) - (-5 *2 (-2 (|:| -3612 (-372)) (|:| |explanations| (-1127)))))) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-872)) - (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-871)))) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1147)) + (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1169) (-934))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1147)) + (-4 *7 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) + (-5 *1 (-780 *6 *7)) (-5 *4 (-1229 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1147)) + (-4 *6 (-13 (-29 *5) (-1169) (-934))) + (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-1229 *6))) (-5 *1 (-780 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) + (-4 *7 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) + (-4 *7 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1147)) + (-4 *7 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-620 *7))) *7 #3="failed")) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-1147)) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-620 *3))) *3 #3#)) + (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1169) (-934))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-620 *2)) + (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-5 *1 (-780 *6 *2)) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-620 *2)) + (-4 *2 (-13 (-29 *6) (-1169) (-934))) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *1 (-780 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) + (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) + (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) + (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) + (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) + (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) + (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-620 *6))) "failed") *7 *6)) + (-4 *6 (-356)) (-4 *7 (-636 *6)) + (-5 *2 (-2 (|:| |particular| (-1229 *6)) (|:| -2123 (-667 *6)))) + (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872)) (-5 *4 (-1033)) + (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-871)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) + (-5 *8 (-219)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) + (-5 *1 (-871)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) + (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) + (-5 *4 (-371)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) + (-5 *4 (-371)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-307 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) + (-5 *3 (-286 (-307 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) + (-5 *3 (-286 (-307 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-307 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1147))) + (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1102 *5)) + (-5 *3 (-620 (-286 (-307 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)) + (-5 *3 (-620 (-286 (-400 (-920 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) + (-5 *1 (-1153 *4)) (-5 *3 (-620 (-286 (-400 (-920 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) + (-5 *1 (-1153 *5)) (-5 *3 (-400 (-920 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) + (-5 *1 (-1153 *5)) (-5 *3 (-286 (-400 (-920 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) + (-5 *3 (-400 (-920 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) + (-5 *3 (-286 (-400 (-920 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-497)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-470)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-606)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1067)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1062)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-944)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-178)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1010)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-305)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-649)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1241)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1038)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-659)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-95)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1087)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1240)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-654)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-212)))) + ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-515)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-1152))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-536) (-219) (-1147) (-1129) (-1152))) (-5 *1 (-1152))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-273))) (-5 *1 (-273)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2317)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2318)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2319)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2441)) (-5 *2 (-112)) (-5 *1 (-669 *4)) + (-4 *4 (-595 (-838))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-838))) (-5 *2 (-112)) + (-5 *1 (-669 *4)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1241))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1240))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)) (-5 *1 (-1152)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-112)) (-5 *1 (-1152)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1152)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)) (-5 *1 (-1152))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) ((*1 *1) (-5 *1 (-838))) + ((*1 *1) + (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1056))) + ((*1 *1) + (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34))))) + ((*1 *1) (-5 *1 (-1150))) ((*1 *1) (-5 *1 (-1151)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *4 (-1147)) (-5 *1 (-1150)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1151)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *1 (-1151))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-429)) (-5 *1 (-1151))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-427)) (-5 *2 - (-2 (|:| -3612 (-372)) (|:| -1856 (-1127)) - (|:| |explanations| (-623 (-1127))))) - (-5 *1 (-871))))) + (-620 + (-3 (|:| -3900 (-1147)) + (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) + (-5 *1 (-1151))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) - (-5 *2 (-623 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-542)))) - ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) - (-12 (-4 *1 (-869)) - (-5 *3 - (-2 (|:| |pde| (-623 (-309 (-219)))) - (|:| |constraints| - (-623 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) - (|:| |grid| (-749)) (|:| |boundaryType| (-550)) - (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) - (|:| |tol| (-219)))) - (-5 *2 (-1009))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-726))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-543 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1069))))) + (-12 + (-5 *2 + (-620 + (-620 + (-3 (|:| -3900 (-1147)) + (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))))) + (-5 *1 (-1151))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1151))))) +(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1151))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) + (-5 *1 (-1151))))) +(((*1 *1) (-5 *1 (-1150)))) +(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150))))) +(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) +(((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150))))) +(((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1186)) - (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) - (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *2 *2 *2) + (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *2 (-1235)) + (-5 *1 (-1150)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) + (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) + (-5 *2 (-1235)) (-5 *1 (-1150))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1147)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 "void"))) + (-5 *1 (-1150))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1150)) (-5 *3 (-1147))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1151)) (-5 *1 (-1150))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)) + (-5 *1 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-893)) (-5 *2 (-1229 *3)) (-5 *1 (-1148 *3)) (-4 *3 (-1023))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1147))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-431 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1047 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1087)))) ((*1 *1 *1) (-5 *1 (-1147)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 - (-623 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-771)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) - (-5 *1 (-441 *3 *4 *5 *6))))) + (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) + (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) + (|:| |args| (-620 (-838))))) + (-5 *1 (-1147))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) + (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) + (|:| |args| (-620 (-838))))) + (-5 *1 (-1147)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-1147))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) +(((*1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1147))))) +(((*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1147))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128))) + ((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + ((*1 *1) (-4 *1 (-705))) ((*1 *1) (-5 *1 (-1147)))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *1 *1) (-5 *1 (-1146))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) + (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) + (-5 *1 (-1146))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-838) (-838) (-838))) (-5 *4 (-536)) (-5 *2 (-838)) + (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1072)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-838)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-98 *3)) + (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1141 *3)) (-4 *3 (-1023))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-400 (-926 (-550))))) (-5 *4 (-623 (-1145))) - (-5 *2 (-623 (-623 *5))) (-5 *1 (-373 *5)) - (-4 *5 (-13 (-823) (-356))))) + (-12 (-5 *5 (-1060 *3)) (-4 *3 (-924 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) + (-4 *7 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) + (-5 *1 (-577 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-1186)) - (-4 *6 (-1204 (-400 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-335 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $))))))))) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-543)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *5 *4 *6 *3)) + (-4 *3 (-924 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1) (-5 *1 (-838))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) - (-15 -4163 ((-1094 *4 (-594 $)) $)) - (-15 -2233 ($ (-1094 *4 (-594 $))))))) - (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1139 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-594 *2))) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) - (-15 -4163 ((-1094 *4 (-594 $)) $)) - (-15 -2233 ($ (-1094 *4 (-594 $))))))) - (-4 *4 (-542)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-623 *3)) - (-5 *1 (-1198 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *2 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069))))) -(((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-356)) (-5 *2 (-623 (-1125 *4))) (-5 *1 (-278 *4 *5)) - (-5 *3 (-1125 *4)) (-4 *5 (-1219 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1145)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-623 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1167) (-27) (-423 *8))) - (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) - (-5 *3 (-550)) (-5 *2 (-623 *4)) (-5 *1 (-988 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-623 (-1150))) (-5 *1 (-1105))))) -(((*1 *1) - (-12 (-4 *3 (-1069)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1069)) - (-4 *4 (-644 *3)))) - ((*1 *1) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1228 - (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3048 (-550)) - (|:| -1642 (-550)) (|:| |spline| (-550)) (|:| -4235 (-550)) - (|:| |axesColor| (-848)) (|:| -2220 (-550)) - (|:| |unitsColor| (-848)) (|:| |showing| (-550))))) - (-5 *1 (-1229))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-300)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) - (-4 *1 (-300))))) -(((*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-361))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-837))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) - (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-594 *3)) - (-4 *3 (-13 (-423 *5) (-27) (-1167))) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) - (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))) + (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-1139 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) + (-5 *2 (-400 (-920 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-920 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) + (-5 *2 (-3 (-400 (-920 *5)) (-307 *5))) (-5 *1 (-1140 *5)) + (-5 *3 (-400 (-920 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1063 (-920 *5))) (-5 *3 (-920 *5)) + (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 *3)) + (-5 *1 (-1140 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1063 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) + (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 *3 (-307 *5))) + (-5 *1 (-1140 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-623 (-1141 *7))) (-5 *3 (-1141 *7)) - (-4 *7 (-923 *5 *6 *4)) (-4 *5 (-883)) (-4 *6 (-771)) - (-4 *4 (-825)) (-5 *1 (-880 *5 *6 *4 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-749)) (-4 *5 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170)))) - ((*1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) + (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1137))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-149 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *1 (-665 *3 *2 *4)) (-4 *2 (-366 *3)) - (-4 *4 (-366 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1111 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1021))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1021)) (-14 *3 (-623 (-1145))))) - ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) - (-14 *3 (-623 (-1145)))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1113)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) - (-5 *1 (-1129 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) - (-14 *4 (-1145)) (-14 *5 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) - (-14 *4 (-749)) (-4 *5 (-170))))) -(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1204 *2)) - (-4 *2 (-170)))) - ((*1 *2) - (-12 (-4 *4 (-1204 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) - (-4 *3 (-402 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) - ((*1 *2) - (-12 (-4 *3 (-1204 *2)) (-5 *2 (-550)) (-5 *1 (-746 *3 *4)) - (-4 *4 (-402 *2 *3)))) + (-12 (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) + (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) + (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-112)) (-5 *1 (-429)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-1147))) + (-5 *4 (-112)) (-5 *1 (-429)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *2 *3) - (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-170))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-169)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *5 *6)) (-4 *6 (-596 (-1145))) - (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-1134 (-623 (-926 *4)) (-623 (-287 (-926 *4))))) - (-5 *1 (-495 *4 *5 *6 *7))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) -(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) - (-4 *3 (-626 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) - (-4 *3 (-626 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021)))) - ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) - (-4 *3 (-1035 *5 *6 *7)))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-623 *6)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1115 *5 *6 *7 *3))) (-5 *1 (-1115 *5 *6 *7 *3)) - (-4 *3 (-1035 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1229)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1230))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1) (-4 *1 (-941))) ((*1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-848)) - (-5 *5 (-895)) (-5 *6 (-623 (-256))) (-5 *2 (-1229)) - (-5 *1 (-1232)))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-620 (-620 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1072)) + (-14 *4 + (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) + (-2 (|:| -2487 *2) (|:| -2488 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-4 *4 (-1072)) + (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-623 (-256))) - (-5 *2 (-1229)) (-5 *1 (-1232))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) - (-5 *1 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-623 (-1145))) - (-4 *2 (-13 (-423 (-167 *5)) (-976) (-1167))) - (-4 *5 (-13 (-542) (-825))) (-5 *1 (-582 *5 *6 *2)) - (-4 *6 (-13 (-423 *5) (-976) (-1167)))))) -(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-550)) (-5 *1 (-198))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1148)))) - ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) - (-5 *2 (-623 (-2 (|:| -4165 *5) (|:| -1309 *3)))) - (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) - (-4 *7 (-634 (-400 *6)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-167 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231))))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1201 *4 *5)) (-5 *3 (-623 *5)) (-14 *4 (-1145)) - (-4 *5 (-356)) (-5 *1 (-897 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) - (-5 *1 (-897 *4 *5)) (-14 *4 (-1145)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-749)) (-4 *6 (-356)) - (-5 *2 (-400 (-926 *6))) (-5 *1 (-1022 *5 *6)) (-14 *5 (-1145))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-130)) - (-4 *3 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) - (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3940 (-623 *9)))) - (-5 *3 (-623 *9)) (-4 *1 (-1175 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3940 (-623 *8)))) - (-5 *3 (-623 *8)) (-4 *1 (-1175 *5 *6 *7 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 (-1 *6 (-623 *6)))) - (-4 *5 (-38 (-400 (-550)))) (-4 *6 (-1219 *5)) (-5 *2 (-623 *6)) - (-5 *1 (-1221 *5 *6))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (-5 *1 (-260))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-1129 *4)) (-4 *4 (-1021)) - (-5 *3 (-550))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + (-12 (-5 *4 (-620 *5)) (-4 *5 (-13 (-1072) (-34))) + (-5 *2 (-620 (-1111 *3 *5))) (-5 *1 (-1111 *3 *5)) + (-4 *3 (-13 (-1072) (-34))))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-550))))) + (-12 (-5 *3 (-620 (-2 (|:| |val| *4) (|:| -1655 *5)))) + (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) + (-5 *2 (-620 (-1111 *4 *5))) (-5 *1 (-1111 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)) + (-4 *2 (-13 (-1072) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1111 *2 *3))) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1112 *2 *3))) (-5 *1 (-1112 *2 *3)) + (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1136 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) - (-4 *5 (-1204 *4)) (-5 *2 (-623 (-400 *5))) (-5 *1 (-990 *4 *5)) - (-5 *3 (-400 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) - (-4 *2 (-13 (-825) (-21)))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260))))) + (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) + (-5 *1 (-1046 *3 *4 *2)) + (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *2 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) + (-5 *1 (-1046 *3 *4 *2)) + (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-797 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-821)) (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-550)) (-5 *5 (-1127)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-623 (-1141 *11))) (-5 *3 (-1141 *11)) - (-5 *4 (-623 *10)) (-5 *5 (-623 *8)) (-5 *6 (-623 (-749))) - (-5 *7 (-1228 (-623 (-1141 *8)))) (-4 *10 (-825)) - (-4 *8 (-300)) (-4 *11 (-923 *8 *9 *10)) (-4 *9 (-771)) - (-5 *1 (-686 *9 *10 *8 *11))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) - (-5 *2 (-1228 (-550))) (-5 *1 (-1255 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1228 *5)) (-5 *3 (-749)) (-5 *4 (-1089)) (-4 *5 (-342)) - (-5 *1 (-519 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1204 *2)) (-4 *2 (-1186)) (-5 *1 (-146 *2 *4 *3)) - (-4 *3 (-1204 (-400 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-300)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2))))) + (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) +(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *2 (-749)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) + (-5 *1 (-1135 *4 *5)) (-14 *4 (-893))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34)))))) + (-12 (-5 *2 (-917 *4)) (-4 *4 (-1023)) (-5 *1 (-1135 *3 *4)) + (-14 *3 (-893))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) + (-5 *1 (-1135 *4 *5)) (-14 *4 (-893))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-112)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)) (-4 *5 (-1023))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-749))) (-5 *3 (-169)) (-5 *1 (-1135 *4 *5)) + (-14 *4 (-893)) (-4 *5 (-1023))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825))))) + (-12 (-5 *2 (-917 *4)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023))))) (((*1 *2 *1) - (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96))))) -(((*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) - (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-665 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-678 *3)) - (-4 *3 (-300))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) + (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-169)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-305)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1167) (-933))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *3) - (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1021))))) + (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) +(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-917 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-1023))))) +(((*1 *1 *1) + (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-444)))) + ((*1 *1 *1) + (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) + (-4 *4 (-1205 (-400 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *3 (-444)))) + ((*1 *1 *1) + (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-932 *3)) (-5 *1 (-1134 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -1608 *7)))) - (-4 *6 (-1035 *3 *4 *5)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) ((*1 *2 *2) - (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -1608 *7)))) - (-4 *6 (-1035 *3 *4 *5)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1076 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 (-309 (-219)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) - (-5 *1 (-199))))) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) - (-5 *2 - (-3 (-1141 *4) - (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089))))))) - (-5 *1 (-339 *4)) (-4 *4 (-342))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1228 (-677))) (-5 *1 (-298))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) - (-5 *3 (-623 (-550))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) - (-5 *3 (-623 (-550)))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1156 *2)) (-4 *2 (-356))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *1 *1) (-5 *1 (-372))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) - (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) - (-5 *1 (-325))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-542)) (-5 *2 (-411 *4)) - (-5 *1 (-412 *4)))) - ((*1 *1 *1) (-5 *1 (-900))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) - ((*1 *1 *1) (-5 *1 (-901))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) - (-5 *4 (-400 (-550))) (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) - (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) - (-5 *4 (-400 (-550))) (-5 *1 (-995 *3)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) - (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550)))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1125 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-172 (-550))) (-5 *1 (-744 *3)) (-4 *3 (-397)))) - ((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-845 *3)) (-14 *3 (-550)))) - ((*1 *2 *1) - (-12 (-14 *3 (-550)) (-5 *2 (-172 (-400 (-550)))) - (-5 *1 (-846 *3 *4)) (-4 *4 (-843 *3))))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) - (-4 *2 (-1219 *3)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1219 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) - (-5 *1 (-1121 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1 *1) (-5 *1 (-371))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) + (-4 *2 (-1193 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1910 (-550)) (|:| -1610 (-623 *3)))) - (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1069)) (-5 *2 (-863 *3 *5)) (-5 *1 (-859 *3 *4 *5)) - (-4 *3 (-1069)) (-4 *5 (-644 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-309 *5))) - (-5 *1 (-1098 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 *5)))) (-5 *4 (-623 (-1145))) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-309 *5)))) - (-5 *1 (-1098 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) - (-5 *2 (-1009)) (-5 *1 (-727))))) + (-12 (-4 *4 (-38 (-400 (-536)))) + (-5 *2 (-2 (|:| -3839 (-1124 *4)) (|:| -3840 (-1124 *4)))) + (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-400 (-536)))) + (-5 *2 (-2 (|:| -3996 (-1124 *4)) (|:| -3992 (-1124 *4)))) + (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) - (-4 *2 (-170))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *5 (-883)) (-5 *1 (-449 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-883))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-536))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) + (-4 *4 (-1023)) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) - (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-923 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *6 *4 *5)) - (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-300))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) - (-4 *3 (-1069)) (-5 *2 (-749)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) - (-4 *4 (-1182)) (-5 *2 (-749))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1141 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) - (-5 *1 (-32 *4 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) - (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-667 *3)) - (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1125 (-926 *4)) (-1125 (-926 *4)))) - (-5 *1 (-1236 *4)) (-4 *4 (-356))))) + (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1023)) + (-5 *3 (-400 (-536))) (-5 *1 (-1131 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) - (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-981 *3)) - (-4 *3 (-1204 (-400 (-550)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1178)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-1021))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) - (-5 *2 (-623 (-1063 (-219)))) (-5 *1 (-902))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-735))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-1141 *3)) - (-4 *3 (-13 (-423 *7) (-27) (-1167))) - (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1069)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) - (-5 *6 (-400 (-1141 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1167))) - (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1069))))) -(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231))))) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) + (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) - (-5 *2 - (-2 (|:| A (-667 *5)) - (|:| |eqs| - (-623 - (-2 (|:| C (-667 *5)) (|:| |g| (-1228 *5)) (|:| -1309 *6) - (|:| |rh| *5)))))) - (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) - (-4 *6 (-634 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) - (-5 *2 (-2 (|:| -3121 (-667 *6)) (|:| |vec| (-1228 *5)))) - (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1228 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-576 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-1089))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-588))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-705)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-799)) (-5 *4 (-52)) (-5 *2 (-1233)) (-5 *1 (-809))))) + (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) + (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023))))) (((*1 *2 *3) - (-12 (-4 *1 (-342)) (-5 *3 (-550)) (-5 *2 (-1155 (-895) (-749)))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1127)) (-5 *1 (-298))))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-998 *3)) - (-4 *3 (-13 (-823) (-356) (-996))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1038 *2 *3)) (-4 *2 (-13 (-823) (-356))) - (-4 *3 (-1204 *2))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-112)) (-5 *1 (-866 *4)) - (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430))))) -(((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-52))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) -(((*1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1231))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) - (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) - (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) - (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1145)) (-14 *5 *3)))) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) + (-4 *4 (-1023))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1205 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-536))) (-4 *4 (-1023)) + (-5 *1 (-1131 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) + (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) + (-5 *3 (-536))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) + (-5 *3 (-536))))) (((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444))))) -(((*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) - (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-1160))))) -(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) - ((*1 *1 *1) (-5 *1 (-1089)))) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-893)) (-4 *3 (-356)) + (-14 *4 (-967 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *1) (|partial| -4 *1 (-701))) ((*1 *1 *1) (|partial| -4 *1 (-705))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) + (-4 *4 (-1043 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) + (-4 *2 (-1205 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) - (-4 *2 (-542)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-542))) + (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) + (-4 *2 (-543)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-543))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) - (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-542)))) + (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-543)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-749))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-542)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-542)) + (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) (-5 *1 (-943 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1024 *3 *4 *2 *5 *6)) (-4 *2 (-1021)) - (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) + (|partial| -12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) + (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-543)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1070 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-235))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1063 *3)) (-4 *3 (-923 *7 *6 *4)) (-4 *6 (-771)) - (-4 *4 (-825)) (-4 *7 (-542)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) - (-5 *1 (-577 *6 *4 *7 *3)))) + (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)) + (-5 *1 (-1124 *4))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749)))) + (-5 *1 (-1124 *4)) (-4 *4 (-1183)) (-5 *3 (-749))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1183))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1183))))) +(((*1 *1) (-5 *1 (-563))) + ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-834)))) + ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-542)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) - (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-923 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1137 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1167))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1061 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1167))) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1137 *4 *2)))) + (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1124 *4)) (-4 *4 (-1072)) + (-4 *4 (-1183))))) +(((*1 *2 *1) + (-12 (-5 *2 (-838)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1229 (-620 (-536)))) (-5 *1 (-472)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-527 *4 *2)) + (-4 *2 (-1222 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1205 *4)) + (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1222 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) + (-5 *1 (-532 *4 *2)) (-4 *2 (-1222 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) + (-5 *1 (-1123 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1222 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) + ((*1 *1) (-4 *1 (-1122)))) +(((*1 *1 *1) (|partial| -4 *1 (-1122)))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1118 *3))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-620 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) + (-4 *3 (-1037 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-620 *6)) (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1043 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *2 (-1037 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-620 (-1117 *5 *6 *7 *3))) (-5 *1 (-1117 *5 *6 *7 *3)) + (-4 *3 (-1037 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) + (-5 *1 (-1001 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) + (-5 *1 (-1117 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1037 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1001 *5 *6 *7 *8))))) + (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1037 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1117 *5 *6 *7 *8))))) + (-5 *1 (-1117 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) + (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) + (-5 *1 (-1116 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-620 *11)) + (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) + (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) + (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) + (-4 *11 (-1043 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) + (-5 *1 (-1041 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-620 *11)) + (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) + (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) + (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) + (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) + (-5 *1 (-1116 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-5 *2 + (-2 (|:| -2412 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *2 (-400 (-926 *5))) (-5 *1 (-1138 *5)) (-5 *3 (-926 *5)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3420 (-400 *6)) (|:| |special| (-400 *6)))) + (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-870 *3 *4)) + (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-870 *3 *5)) + (-4 *3 (-1205 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *7 *8 *9 *3 *4)) (-4 *4 (-1043 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *2 (-3 (-400 (-926 *5)) (-309 *5))) (-5 *1 (-1138 *5)) - (-5 *3 (-400 (-926 *5))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1061 (-926 *5))) (-5 *3 (-926 *5)) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-400 *3)) - (-5 *1 (-1138 *5)))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1061 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-3 *3 (-309 *5))) - (-5 *1 (-1138 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) - (-4 *4 (-1182)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-535))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-620 *4)) + (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) + (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) - ((*1 *1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) - (-14 *4 *2) (-4 *5 (-170)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-895)))) - ((*1 *2) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) - (-5 *2 (-895)))) - ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-356)) - (-5 *2 (-749)) (-5 *1 (-645 *5)))) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4345)))) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4345)))) (-5 *2 (-749)) - (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-665 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) - (-5 *2 (-749))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-550)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-536)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-323))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-623 (-2 (|:| -1953 *1) (|:| -4046 (-623 *7))))) - (-5 *3 (-623 *7)) (-4 *1 (-1175 *4 *5 *6 *7))))) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) + (-5 *1 (-622 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 *5)) (-4 *6 (-1072)) (-4 *5 (-1183)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) + (-5 *1 (-622 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) + (-4 *6 (-1183)) (-5 *1 (-622 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1072)) + (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-749))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1196 (-536)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-536)) (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-536)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) + (-5 *2 (-536)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-825)))) + ((*1 *2 *2) + (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1169))) + (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) + (-5 *1 (-569 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-567 (-400 (-920 *3)))) + (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-572 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -3420 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) + (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) + (-5 *3 (-620 (-667 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1229 (-1229 *5))) (-4 *5 (-356)) (-4 *5 (-1023)) + (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) + (-5 *3 (-620 (-667 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-620 *1)) (-4 *1 (-1115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-4 *5 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + ((*1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *2 *4)) (-4 *2 (-365 *3)) + (-4 *4 (-365 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1023))))) +(((*1 *1 *2) + (-12 (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1113 *3 *4)) + (-14 *3 (-749))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2 *3) - (-12 (-4 *4 (-883)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-880 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) - (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) - ((*1 *1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4)) - (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1021))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-1093 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) - (-5 *2 (-1009)) (-5 *1 (-728)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) - (-5 *8 (-381)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1204 *4)) - (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) + (-12 (-5 *2 (-620 *4)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-623 (-623 *3))))) + (-12 (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1112 *3 *4)) + (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34))) + (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1111 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) + (-5 *1 (-1112 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) + (-4 *2 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) + (-4 *3 (-1183)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) + (-5 *1 (-715 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) + (-4 *3 (-1072)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-229 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) + (-5 *1 (-715 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1111 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) + (-5 *1 (-1112 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-620 (-1111 *3 *4))) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-623 (-623 *5))))) + (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 (-623 *3))) (-5 *1 (-1154 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-963)))) + ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1183)))) ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) - (-4 *3 (-1204 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-734))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-926 (-550))))) - (-5 *2 - (-623 - (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) - (|:| |radvect| (-623 (-667 (-309 (-550)))))))) - (-5 *1 (-1005))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-749)) (-4 *3 (-1182)) (-4 *1 (-56 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1) (-5 *1 (-169))) - ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1069)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382)))) - ((*1 *1) (-5 *1 (-387))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *1) - (-12 (-4 *3 (-1069)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1069)) - (-4 *4 (-644 *3)))) - ((*1 *1) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1111 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1021)))) - ((*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) - ((*1 *1 *1) (-5 *1 (-1145))) ((*1 *1) (-5 *1 (-1145))) - ((*1 *1) (-5 *1 (-1162)))) + (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *2 *3)) + (-4 *3 (-13 (-1072) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3)))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *1 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) - (-4 *4 (-170))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1147 (-400 (-550)))) - (-5 *1 (-184))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *5)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1226 *3)) (-4 *3 (-23)) (-4 *3 (-1182))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-926 *4))) (-5 *3 (-623 (-1145))) (-4 *4 (-444)) - (-5 *1 (-892 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-879 (-550))) (-5 *4 (-550)) (-5 *2 (-667 *4)) - (-5 *1 (-1002 *5)) (-4 *5 (-1021)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1002 *4)) - (-4 *4 (-1021)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-879 (-550)))) (-5 *4 (-550)) - (-5 *2 (-623 (-667 *4))) (-5 *1 (-1002 *5)) (-4 *5 (-1021)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-623 (-550)))) (-5 *2 (-623 (-667 (-550)))) - (-5 *1 (-1002 *4)) (-4 *4 (-1021))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-2 (|:| -3549 *3) (|:| -3859 *4)))) - (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *1 (-1158 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *1 *1) (-4 *1 (-35))) + (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) + ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-535))) + ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))) + (-4 *2 (-13 (-1072) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) + (-4 *4 (-13 (-1072) (-34)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) + (-4 *3 (-13 (-1072) (-34)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) + (-5 *1 (-1111 *5 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) + (-5 *1 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *1 *1) (-5 *1 (-219))) ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1110))) ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1110)))) +(((*1 *1 *1 *1) (-5 *1 (-219))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) + ((*1 *1 *1 *1) (-4 *1 (-1110)))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) + ((*1 *1 *1) (-4 *1 (-823))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) + ((*1 *1 *1) (-4 *1 (-1032))) ((*1 *1 *1) (-4 *1 (-1110)))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-62 *3)) (-14 *3 (-1147)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-68 *3)) (-14 *3 (-1147)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-71 *3)) (-14 *3 (-1147)))) + ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1235)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) + ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-1107))))) +(((*1 *1 *2) (-12 (-5 *2 (-1135 3 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023))))) +(((*1 *2) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749))))) +(((*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 (-917 *4))) (-4 *1 (-1105 *4)) (-4 *4 (-1023)) + (-5 *2 (-749))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-917 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1023)) + (-4 *1 (-1105 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-620 (-917 *3)))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) + (-4 *4 (-1023)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) + (-4 *4 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) + (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-620 (-620 (-917 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) + (-4 *1 (-1105 *5)) (-4 *5 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-749)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) + (-5 *2 (-620 (-620 (-620 (-917 *3)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-169))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-169)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) + (-5 *2 + (-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) + (|:| |constructs| (-749))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) + (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) + (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) + (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) + (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) + (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-623 (-52))) (-5 *2 (-1233)) (-5 *1 (-838))))) + (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) + (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) - (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) - (|:| |wcond| (-623 (-926 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *4)))))))))) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-170)) (-4 *2 (-1204 *4)) (-5 *1 (-175 *4 *2 *3)) - (-4 *3 (-703 *4 *2)))) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-1023)) (-4 *2 (-1205 *4)) + (-5 *1 (-436 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-400 (-1141 (-307 *5)))) (-5 *3 (-1229 (-307 *5))) + (-5 *4 (-536)) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-1101 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-400 (-1141 (-307 *3)))) (-4 *3 (-13 (-543) (-825))) + (-5 *1 (-1101 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) + (-5 *1 (-1100 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) + (-5 *1 (-1100 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-307 *5))) + (-5 *1 (-1100 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-926 *5)))) (-5 *4 (-1145)) - (-5 *2 (-926 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444)))) + (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-307 *5)))) + (-5 *1 (-1100 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) + (-5 *1 (-1100 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-926 *4)))) (-5 *2 (-926 *4)) - (-5 *1 (-285 *4)) (-4 *4 (-444)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) + (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) + (-5 *1 (-1100 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-167 (-400 (-550))))) - (-5 *2 (-926 (-167 (-400 (-550))))) (-5 *1 (-743 *4)) - (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *4 (-1145)) - (-5 *2 (-926 (-167 (-400 (-550))))) (-5 *1 (-743 *5)) - (-4 *5 (-13 (-356) (-823))))) + (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) + (-5 *1 (-1100 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-926 (-400 (-550)))) - (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *4 (-1145)) - (-5 *2 (-926 (-400 (-550)))) (-5 *1 (-757 *5)) - (-4 *5 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-620 (-286 (-400 (-920 *5))))) (-5 *4 (-620 (-1147))) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) + (-5 *1 (-1100 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) + (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) + (-5 *1 (-1100 *4))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1069)) (-4 *6 (-1069)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1069))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) - (-5 *2 (-623 *4)) (-5 *1 (-1083 *4 *5))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-3 *3 (-623 *1))) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) - ((*1 *2 *1) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *5 (-1204 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5))))) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1204 (-550))) (-5 *1 (-478 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-749)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *3 (-825)) (-5 *2 (-749))))) -(((*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 (-749))) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3260 (-760 *3)) (|:| |coef1| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3260 *1) (|:| |coef1| *1))) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3))))) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-4 *5 (-356)) - (-4 *5 (-1021)) (-5 *2 (-112)) (-5 *1 (-1003 *5)))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *2 + (-2 (|:| |solns| (-620 *5)) + (|:| |maps| (-620 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1099 *3 *5)) (-4 *3 (-1205 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4349)))) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-5 *1 (-645 *4 *5 *2 *3)) + (-4 *3 (-664 *4 *5 *2)))) + ((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1229 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) + (-5 *1 (-646 *4)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-620 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) + (-5 *1 (-792 *2 *3)) (-4 *3 (-636 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1021)) - (-5 *2 (-112)) (-5 *1 (-1003 *4))))) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1124 *7))) (-4 *6 (-825)) + (-4 *7 (-924 *5 (-522 *6) *6)) (-4 *5 (-1023)) (-5 *2 (-1 (-1124 *7) *7)) + (-5 *1 (-1097 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-1095 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-895))) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-1101 *4 *2)) - (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4344) (-6 -4345)))))) + (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) + (-4 *3 (-664 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) ((*1 *2 *2) - (-12 (-4 *3 (-825)) (-4 *3 (-1182)) (-5 *1 (-1101 *3 *2)) - (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4344) (-6 -4345))))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4))))))) -(((*1 *1 *1) - (-12 (-4 *2 (-342)) (-4 *2 (-1021)) (-5 *1 (-691 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3490 *7) (|:| |sol?| (-112))) - (-550) *7)) - (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1204 *7)) - (-5 *3 (-400 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-560 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-837)) (-5 *1 (-1125 *3)) (-4 *3 (-1069)) - (-4 *3 (-1182))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) - (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) - (-4 *2 (-1069)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-1069)) (-5 *1 (-627 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-797 *2)) (-4 *2 (-825))))) + (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1023)) (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 *1)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-667 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *4)) (-4 *4 (-1023)) (-4 *1 (-1094 *3 *4 *5 *6)) + (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-749)))) + (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) + (-4 *2 (-232 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) - (-5 *2 (-749)))) + (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) + (-4 *2 (-1023))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 *2)) (-4 *4 (-1205 *2)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-705))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-104))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) - (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) - (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) - (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) - (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) - (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) - (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) - (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) - (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) - (-4 *2 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-948))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-749))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *4 (-1145)) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) + (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) + (-4 *2 (-1023))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) + (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 (-749)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4345)) (-4 *1 (-481 *3)) - (-4 *3 (-1182))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-429))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *7)) (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4344)) (-4 *1 (-34)) (-5 *2 (-749)))) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) + (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) + (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-550)))) + (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) + (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023))))) +(((*1 *2 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) + (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) + (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-821))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) - (-5 *2 (-1 (-1125 *4) (-1125 *4))) (-5 *1 (-1236 *6)) - (-5 *5 (-1125 *4))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-837) (-837) (-837))) (-5 *4 (-550)) (-5 *2 (-837)) - (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-837)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1021)) - (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-837)) (-5 *1 (-1141 *3)) (-4 *3 (-1021))))) + (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) + (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) +(((*1 *1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1) + (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) + (-3671 (|has| *1 (-6 -4331))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-4 *1 (-825))) + ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) ((*1 *1) (-5 *1 (-1091)))) +(((*1 *1) + (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) + (-3671 (|has| *1 (-6 -4331))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-4 *1 (-825))) ((*1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1) (-4 *1 (-941))) ((*1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) + ((*1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) + ((*1 *1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) + ((*1 *1 *1 *1) (-5 *1 (-1091)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1087))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1152))) (-5 *3 (-1152)) (-5 *1 (-1086)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1087))))) +(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-944)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1086))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1086))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) + (-5 *2 (-536)) (-5 *1 (-1085 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1147 (-400 (-550)))) (-5 *2 (-400 (-550))) - (-5 *1 (-184))))) -(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1182)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) - (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) - (-4 *2 (-665 *3 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1021)) (-4 *1 (-1204 *3))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1175 *5 *6 *7 *8)) (-4 *5 (-542)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) - (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6))))) + (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) + (-5 *2 (-536)) (-5 *1 (-1085 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1233)) (-5 *1 (-1148)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1233)) - (-5 *1 (-1148)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1233)) - (-5 *1 (-1148))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1063 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219)))))) -(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1032)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1032))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1070 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) - (-4 *3 (-941))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-807))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3))))) + (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) + (-5 *1 (-1085 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) - (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-948))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1063 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1063 (-219)))))) + (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) + (-5 *1 (-1085 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 *4)) + (-5 *1 (-1085 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) + (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) + (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1081))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-536)) (-5 *1 (-1081)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-620 (-536))) (-5 *4 (-536)) + (-5 *1 (-1081))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-112)) (-5 *1 (-1081))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-667 (-536))) (-5 *3 (-620 (-536))) (-5 *1 (-1081))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1081))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) - (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4))))) + (-12 (-5 *2 (-620 (-536))) (-5 *3 (-667 (-536))) (-5 *1 (-1081))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1127)) (-5 *1 (-1163))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) - ((*1 *1 *1) (|partial| -4 *1 (-701)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) - (-5 *2 (-623 (-623 (-623 (-749)))))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) - (-4 *3 (-923 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| (-623 *3)))) - (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) - (-4 *8 - (-13 (-356) - (-10 -8 (-15 -4153 (*3 $)) (-15 -4163 (*3 $)) (-15 -2233 ($ *3)))))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) + (-4 *4 (-1043 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-256))) (-5 *4 (-1145)) (-5 *2 (-112)) - (-5 *1 (-256))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) - (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1145))) - (-4 *5 (-444)) (-5 *2 (-623 (-241 *4 *5))) (-5 *1 (-611 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1021)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1204 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -3701 (-623 (-837))) (|:| -4250 (-623 (-837))) - (|:| |presup| (-623 (-837))) (|:| -1464 (-623 (-837))) - (|:| |args| (-623 (-837))))) - (-5 *1 (-1145)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 (-837)))) (-5 *1 (-1145))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) - (-4 *5 (-366 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) - (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1021))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1021)) (-5 *1 (-693 *4 *2)) - (-4 *2 (-626 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-812 *2)) (-4 *2 (-1021))))) -(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-1156 *2)) (-4 *2 (-356))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1204 (-550))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-749))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) - (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-923 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *6 *4 *5)) - (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-300)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-923 *5 *3 *4)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-300)) (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) - (-4 *7 (-923 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-895))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) - (-4 *2 (-1204 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-550)) (-14 *4 (-749))))) -(((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) -(((*1 *1 *1) (-5 *1 (-219))) - ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1) (-4 *1 (-1108))) ((*1 *1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *5)) (-4 *5 (-1204 *3)) (-4 *3 (-300)) - (-5 *2 (-112)) (-5 *1 (-447 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-623 (-1145))) (-5 *2 (-1145)) (-5 *1 (-323))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-1241 *4 *5 *6 *7))) - (-5 *1 (-1241 *4 *5 *6 *7)))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) + (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) + (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1079 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) - (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-623 (-1241 *6 *7 *8 *9))) - (-5 *1 (-1241 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-726))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-229 *3)))) - ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1110 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34)))))) + (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) + (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) + (-4 *7 (-771)) (-4 *4 (-825)) + (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) + (-5 *1 (-1079 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) + (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *9 (-1037 *6 *7 *8)) + (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) + (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) + (-4 *4 (-1043 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *9 (-1037 *6 *7 *8)) + (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) + (-5 *1 (-1078 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) + (-4 *4 (-1043 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-1069)) (-4 *7 (-874 *6)) - (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-366 *7)) - (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4344))))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-170)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *1 (-666 *4 *5 *6 *2)) - (-4 *2 (-665 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-1033))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1063 (-219))) - (-5 *2 (-1230)) (-5 *1 (-250))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1175 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *5 (-1035 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444)))) -(((*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) - (-5 *1 (-199))))) + (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) + (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) + (-5 *2 + (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) + (-5 *1 (-1078 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) + (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) + (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1078 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1021)) (-4 *2 (-665 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1204 *4)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1069)))) + (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) + (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) + (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1078 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *1 (-962 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *1 (-1078 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) - (-4 *3 (-1021)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1245 *4 *3)) - (-4 *3 (-1021))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-667 *2)) (-5 *4 (-550)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *5 (-1204 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) - (-5 *2 - (-623 - (-2 (|:| |eigval| (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4)))) - (|:| |eigmult| (-749)) - (|:| |eigvec| (-623 (-667 (-400 (-926 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-926 *4))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-372))) (-5 *2 (-372)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550))))) - (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-256)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-550)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -3173 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-1230)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1204 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-959 *4 *2 *3 *5)) - (-4 *4 (-342)) (-4 *5 (-703 *2 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1145)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-926 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1145)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-962 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1145)) (-4 *2 (-423 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-542))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-895)) (-4 *1 (-986)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-895)) (-5 *4 (-837)) - (-4 *1 (-986)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-823) (-356))) - (-4 *1 (-1038 *4 *2)) (-4 *2 (-1204 *4))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-545))))) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1078 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) + (-4 *3 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) + (-4 *3 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *1 (-962 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *1 (-1078 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *2 (-1235)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-962 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) + (-4 *8 (-1043 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1077 *5 *4)) + (-4 *4 (-414 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-879 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-155)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1063 (-219))) - (-5 *5 (-112)) (-5 *2 (-1230)) (-5 *1 (-250))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-837)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) - (-14 *4 (-749)) (-4 *5 (-170))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-749)) (-4 *4 (-342)) - (-5 *1 (-519 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1) (-5 *1 (-563)))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3) - (-12 (-5 *3 (-550)) (|has| *1 (-6 -4335)) (-4 *1 (-397)) - (-5 *2 (-895))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) - (-4 *7 (-771)) - (-5 *2 - (-623 - (-2 (|:| -3398 (-749)) - (|:| |eqns| - (-623 - (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) - (|:| |cols| (-623 (-550)))))) - (|:| |fgb| (-623 *8))))) - (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) - (-14 *4 *2)))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1610 (-623 (-2 (|:| |irr| *10) (|:| -1635 (-550))))))) - (-5 *6 (-623 *3)) (-5 *7 (-623 *8)) (-4 *8 (-825)) (-4 *3 (-300)) - (-4 *10 (-923 *3 *9 *8)) (-4 *9 (-771)) - (-5 *2 - (-2 (|:| |polfac| (-623 *10)) (|:| |correct| *3) - (|:| |corrfact| (-623 (-1141 *3))))) - (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-623 (-1141 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) - ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-623 (-1145))) (|:| |pred| (-52)))) - (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) - (|:| -2815 *6))) - (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-536))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) + (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) - (-4 *3 (-542)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) + (-12 (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-4 *7 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) +(((*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) + (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-4 *1 (-397)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-397)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) - (-4 *3 (-1069)))) + (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) + (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-649)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) - (-4 *3 (-1069)))) + (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) + (-14 *4 (-893))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) + (-14 *4 (-893))))) +(((*1 *2) + (-12 (-5 *2 (-1229 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) + (-14 *4 (-893))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) + (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-879 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-893)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-749)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-576 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1091))))) +(((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1129))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) + ((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) + ((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-620 (-593 *4))) (-4 *4 (-414 *3)) (-4 *3 (-825)) + (-5 *1 (-559 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-160)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-654)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1038)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1067))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1065 *3)) (-4 *3 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1183)) (-5 *2 (-536))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-963)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1060 *4)) (-4 *4 (-1183)) (-5 *1 (-1063 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1062))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1229 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1205 *4)) (-5 *2 (-1229 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) + (-5 *2 (-1229 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-982 *3)) - (-4 *3 (-1012 *2))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) - (|:| |genIdeal| (-495 *3 *4 *5 *6)))) - (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1021)) - (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) + (-5 *2 (-1229 *5)) (-5 *1 (-1057 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1093 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-879 *4)) (-4 *4 (-1069)) (-5 *2 (-623 (-749))) - (-5 *1 (-878 *4))))) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-1229 (-667 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 (-667 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) + (-5 *2 (-1229 (-667 (-400 (-920 *5))))) (-5 *1 (-1057 *5)) + (-5 *4 (-667 (-400 (-920 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-920 *5)))) + (-5 *1 (-1057 *5)) (-5 *4 (-667 (-920 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1229 (-667 *4))) + (-5 *1 (-1057 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-173))) (-5 *1 (-1056))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-173)))) + ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-1056))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056))))) +(((*1 *1) (-5 *1 (-1056)))) +(((*1 *1) (-5 *1 (-1056)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-536) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2))))) +(((*1 *2) (-12 (-5 *2 (-620 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) +(((*1 *1) (-5 *1 (-1053)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *10)) - (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1041 *5 *6 *7 *8)) - (-4 *10 (-1078 *5 *6 *7 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-620 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) + (-4 *3 (-1080 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) - (-5 *1 (-608 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-623 (-1145))) - (-5 *2 - (-623 (-1115 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) - (-5 *1 (-608 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) + (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) + (-5 *1 (-1049 *4 *5)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) - (-5 *1 (-1018 *5 *6)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) + (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) + (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-1046 *3 *4 *5))) (-4 *3 (-1072)) + (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) + (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) + (-5 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) + (-5 *2 (-620 (-1046 *3 *4 *5))) (-5 *1 (-1048 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-5 *1 (-1046 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) + (-5 *1 (-1046 *3 *4 *2)) + (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-864 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1072)) (-4 *5 (-1183)) + (-5 *1 (-865 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-864 *4)) (-5 *3 (-620 (-1 (-112) *5))) (-4 *4 (-1072)) + (-4 *5 (-1183)) (-5 *1 (-865 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-864 *5)) (-5 *3 (-620 (-1147))) (-5 *4 (-1 (-112) (-620 *6))) + (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-865 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1175 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1012 (-48))) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) - (-5 *2 (-411 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) - (-4 *3 (-1204 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-1018 *5 *6))) (-5 *1 (-1254 *5 *6 *7)) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-623 (-1018 *4 *5))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-108))) (-5 *1 (-173))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1183)) + (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1147)) (-5 *4 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) + (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1183)) (-4 *4 (-825)) + (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-4 *4 (-825)) + (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1 (-112) (-620 *6))) + (-4 *6 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-5 *1 (-1046 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 *2))) + (-5 *2 (-864 *3)) (-5 *1 (-1046 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-860 *3) (-596 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) + (-5 *2 (-620 (-1147))) (-5 *1 (-1046 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-305)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-944)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1010)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 *4)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) + (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) + (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) + (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) + (-4 *7 (-771)) (-4 *4 (-825)) + (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) + (-5 *1 (-1044 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) + (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-3 (-112) (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) + (-4 *1 (-1043 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-3 *3 (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-543)) (-4 *2 (-1023)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) + (-4 *1 (-1043 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1041 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)))) + (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *7)))) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)))) + (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1148))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-372)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) + (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1012 (-536))) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1023)) (-4 *1 (-291)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) + ((*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + ((*1 *2 *3) + (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1141 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-620 *1)) + (-4 *1 (-1040 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1147)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-13 (-825) (-543))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-4 *1 (-986)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-5 *4 (-838)) + (-4 *1 (-986)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-893)) (-4 *4 (-13 (-823) (-356))) + (-4 *1 (-1040 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-998 *3)) + (-4 *3 (-13 (-823) (-356) (-994))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1038))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) + (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *5 (-1037 *3 *4 *2)) (-4 *2 (-825)))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) - (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) + ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) + ((*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) ((*1 *2 *1) - (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) + (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) - (-4 *3 (-1069)))) + (-12 (-14 *3 (-620 (-1147))) (-4 *5 (-232 (-4311 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) + (-2 (|:| -2487 *4) (|:| -2488 *5)))) + (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) + (-4 *7 (-924 *2 *5 (-839 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) - (-4 *3 (-1069)))) + (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-550))))) - ((*1 *2 *3) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1228 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) - (-5 *2 (-1228 *4)) (-5 *1 (-618 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) + (-12 (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3940 (-623 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) - (-4 *2 (-13 (-825) (-21)))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-515))))) (((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) + (-4 *1 (-1037 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-623 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-550))))) - (-5 *1 (-411 *3)) (-4 *3 (-542)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-749)) (-4 *3 (-342)) (-4 *5 (-1204 *3)) - (-5 *2 (-623 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) - (-4 *6 (-1204 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-356)) (-4 *6 (-361)) - (-4 *6 (-1021)) (-5 *2 (-623 (-623 (-667 *6)))) (-5 *1 (-1003 *6)) - (-5 *3 (-623 (-667 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1021)) - (-5 *2 (-623 (-623 (-667 *4)))) (-5 *1 (-1003 *4)) - (-5 *3 (-623 (-667 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021)) - (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) - (-5 *3 (-623 (-667 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021)) - (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) - (-5 *3 (-623 (-667 *5)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) - (-4 *2 (-1204 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1076 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1021)) - (-5 *1 (-1129 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) + (-2 (|:| -4308 *3) (|:| |gap| (-749)) (|:| -2091 (-759 *3)) + (|:| -3230 (-759 *3)))) + (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) + (-4 *1 (-1037 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |polnum| (-759 *3)) (|:| |polden| *3) (|:| -3830 (-749)))) + (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-749)))) + (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) + (-14 *4 (-620 *2)) (-4 *5 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) + (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) + (-14 *7 (-893)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (|partial| -3886 + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) + (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (|partial| -3886 + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) + (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) + (-14 *4 (-620 *2)) (-4 *5 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) + (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-2 (|:| -2206 (-623 (-400 *6))) (|:| -3121 (-667 *5)))) - (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| |mdnia| + (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) + (-5 *1 (-747)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-2 (|:| -2206 (-623 (-400 *6))) (|:| -3121 (-667 *5)))) - (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *1 (-786)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-427)) (-4 *5 (-825)) - (-5 *1 (-1075 *5 *4)) (-4 *4 (-423 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) + (-5 *1 (-816)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-620 (-307 (-219)))) + (|:| |constraints| + (-620 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) + (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) + (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) + (|:| |tol| (-219)))) + (-5 *1 (-872)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) + ((*1 *1 *2) + (-3886 + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) + (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 *3)) + (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (-3886 + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) + (-4 *5 (-596 (-1147)))) + (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) + (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825))))) (((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444))))) -(((*1 *2 *3) - (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-806) (-825) (-1021))) - (-5 *2 (-1127)) (-5 *1 (-804 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-806) (-825) (-1021))) (-5 *2 (-1127)) - (-5 *1 (-804 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-800)) (-5 *4 (-309 *5)) - (-4 *5 (-13 (-806) (-825) (-1021))) (-5 *2 (-1233)) - (-5 *1 (-804 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-800)) (-5 *4 (-309 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-806) (-825) (-1021))) (-5 *2 (-1233)) - (-5 *1 (-804 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-806)) (-5 *2 (-1127)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-806)) (-5 *3 (-112)) (-5 *2 (-1127)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *2 (-1233)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *4 (-112)) (-5 *2 (-1233))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-653 *2)) (-4 *2 (-1021)) (-4 *2 (-1069))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-623 (-623 *4))) (-5 *1 (-334 *3 *4 *5 *6)) - (-4 *3 (-335 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-623 (-623 *3)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-423 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1061 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) - (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-1148)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1148))))) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-926 (-167 *4))) (-4 *4 (-170)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-926 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-170)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-926 (-167 *4)))) (-4 *4 (-542)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-926 (-167 *5)))) (-5 *4 (-895)) - (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) - (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) - (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) - (-5 *1 (-763 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1252 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-797 *3)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021)))) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1204 (-550))) (-5 *1 (-478 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1241 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1241 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1150))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1079))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1204 *5)) - (-5 *1 (-785 *5 *2 *3 *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *3 (-634 *2)) (-4 *6 (-634 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-400 *2))) (-4 *2 (-1204 *5)) - (-5 *1 (-785 *5 *2 *3 *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) - (-4 *6 (-634 (-400 *2)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-550))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) - (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *2) - (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-235))))) -(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-623 (-749)))) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) - (-5 *1 (-298))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-550))) (-5 *4 (-550)) (-5 *2 (-52)) - (-5 *1 (-979))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -2714 (-411 *3)) (|:| |special| (-411 *3)))) - (-5 *1 (-706 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *2 (-1078 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) - (-5 *2 (-1009)) (-5 *1 (-725))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4345)) (-4 *4 (-356)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-512 *4 *5 *6 *3)) - (-4 *3 (-665 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4345)) (-4 *4 (-542)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-4 *7 (-966 *4)) (-4 *8 (-366 *7)) - (-4 *9 (-366 *7)) (-5 *2 (-623 *6)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-665 *4 *5 *6)) - (-4 *10 (-665 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-623 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-665 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) - (-5 *2 (-623 *7))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-1145)) (-5 *1 (-526)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-623 (-1145))) (-5 *2 (-1145)) (-5 *1 (-683 *3)) - (-4 *3 (-596 (-526)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3) - (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-1228 (-667 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-667 *4)) (-4 *5 (-634 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-550)) (-5 *1 (-1164 *4)) - (-4 *4 (-1021))))) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3260 (-760 *3)) (|:| |coef1| (-760 *3)) - (|:| |coef2| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) + (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) + (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3260 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *2 (-623 (-1141 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) -(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-550))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-623 *3)) (|:| |image| (-623 *3)))) - (-5 *1 (-879 *3)) (-4 *3 (-1069))))) -(((*1 *2) - (-12 (-4 *3 (-1021)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1204 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1037 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-623 *1)) (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) + (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)))) + (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1))) (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef2| (-759 *3)))) + (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-1228 *5)) (-4 *5 (-300)) - (-4 *5 (-1021)) (-5 *2 (-667 *5)) (-5 *1 (-1003 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1182)) (-4 *2 (-1069)) - (-4 *2 (-825))))) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3490 *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *3 (-543))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *3 (-543))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-543))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) + ((*1 *1 *1 *1) (-4 *1 (-444))) + ((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) + (-4 *2 (-924 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) + (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-893))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-444)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *2 (-444))))) +(((*1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-371)) (-5 *1 (-1035))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1035)) (-5 *3 (-1129))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1035))))) +(((*1 *1) (-5 *1 (-1035)))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-1035))))) +(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1034)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) + (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) + (-4 *3 (-232 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-749)))) + ((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) + ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + ((*1 *2) + (-12 (-4 *4 (-1072)) (-5 *2 (-749)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) + (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) + (-4 *3 (-703 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-569 *3)) (-4 *3 (-356))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1233)) (-5 *1 (-460))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-623 (-1 *4 (-623 *4)))) (-4 *4 (-1069)) - (-5 *1 (-113 *4)))) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1069)) - (-5 *1 (-113 *4)))) + (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-543)) (-5 *2 (-398 *4)) + (-5 *1 (-412 *4)))) + ((*1 *1 *1) (-5 *1 (-899))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *1) (-5 *1 (-901))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) + (-5 *4 (-400 (-536))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) + (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) + (-5 *4 (-400 (-536))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) + (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1033 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-593 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-620 (-593 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-593 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-1 *4 (-623 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1069))))) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1205 (-166 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) + (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1012 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) + (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1229 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-893)) (-4 *5 (-1023)) + (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) + (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-486)))) (-5 *1 (-486)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-593 (-486))) (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-620 (-593 (-486)))) (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-593 (-486))) (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1205 *4)) + (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1205 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) + ((*1 *1 *1) (-4 *1 (-1032)))) +(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) + ((*1 *1 *1) (-4 *1 (-1032)))) +(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) + ((*1 *1 *1) (-4 *1 (-1032)))) +(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) + ((*1 *1 *1) (-4 *1 (-1032)))) +(((*1 *1 *1) (-4 *1 (-1032)))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1182)) (-5 *2 (-749)) - (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) + (-4 *3 (-232 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-422 *3 *4)) - (-4 *3 (-423 *4)))) + (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535)))) ((*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-774 *3 *4)) - (-4 *3 (-775 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-773 *3 *4)) (-4 *3 (-774 *4)))) ((*1 *2) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-965 *3 *4)) - (-4 *3 (-966 *4)))) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) (-4 *3 (-965 *4)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-970 *3 *4)) - (-4 *3 (-971 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-971 *3 *4)) (-4 *3 (-972 *4)))) ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-985 *3)) (-4 *3 (-986)))) - ((*1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-749)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1029 *3)) (-4 *3 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-323))))) + ((*1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-749)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) +(((*1 *1 *2) + (-12 (-5 *2 (-667 *5)) (-4 *5 (-1023)) (-5 *1 (-1027 *3 *4 *5)) + (-14 *3 (-749)) (-14 *4 (-749))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-838)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1113 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-893)) + (-4 *4 (-356)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 (-620 *5))) (-4 *5 (-1023)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) - (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-366 *3)) (-4 *3 (-1182)) - (-4 *3 (-1069)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) - (-5 *2 (-550)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1182)) - (-5 *2 (-550)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-550)) (-5 *3 (-139)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-550))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-623 *1)) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1204 *5)) - (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-112)) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) - (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) - (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-886 *4 *5 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3230 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1204 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1147 (-400 (-550)))) - (-5 *1 (-184))))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1125 (-926 *4)) (-1125 (-926 *4)))) - (-5 *1 (-1236 *4)) (-4 *4 (-356))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-400 (-550))) - (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-594 *3)) (-4 *3 (-423 *5)) - (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) - (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-426 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) - ((*1 *2 *3) - (-12 (-5 *3 (-411 *4)) (-4 *4 (-542)) - (-5 *2 (-623 (-2 (|:| -4304 (-749)) (|:| |logand| *4)))) - (-5 *1 (-313 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) - (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) - (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1009)) - (-5 *1 (-733))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-594 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) (-5 *5 (-1141 *2)) - (-4 *2 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1069)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-594 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) - (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1069))))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1182)) (-5 *2 (-749))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-926 *6)) (-5 *4 (-1145)) - (-5 *5 (-818 *7)) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-4 *7 (-13 (-1167) (-29 *6))) (-5 *1 (-218 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-818 *6)) - (-4 *6 (-13 (-1167) (-29 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-218 *5 *6))))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-1213 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1145)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) - (-14 *4 - (-1 (-112) (-2 (|:| -3690 *3) (|:| -3068 *2)) - (-2 (|:| -3690 *3) (|:| -3068 *2))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-130))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| -1337 *4) (|:| -3609 (-550))))) - (-4 *4 (-1069)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-623 (-550))) - (|:| |cols| (-623 (-550))))) - (-5 *4 (-667 *12)) (-5 *5 (-623 (-400 (-926 *9)))) - (-5 *6 (-623 (-623 *12))) (-5 *7 (-749)) (-5 *8 (-550)) - (-4 *9 (-13 (-300) (-145))) (-4 *12 (-923 *9 *11 *10)) - (-4 *10 (-13 (-825) (-596 (-1145)))) (-4 *11 (-771)) - (-5 *2 - (-2 (|:| |eqzro| (-623 *12)) (|:| |neqzro| (-623 *12)) - (|:| |wcond| (-623 (-926 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *9)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *9))))))))) - (-5 *1 (-898 *9 *10 *11 *12))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3260 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) - (-4 *4 (-1069)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) - (-14 *4 *2)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1163))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-550)) (-5 *5 (-1127)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-1228 *4)) - (-5 *1 (-792 *4 *3)) (-4 *3 (-634 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) - (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1127)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) -(((*1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *2) (-12 (-5 *2 (-1063 (-818 (-219)))) (-5 *1 (-298))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-894))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-800))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-1204 *3))))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) - (-5 *2 (-818 *4)) (-5 *1 (-306 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) - (-14 *6 *4))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) - (-5 *2 (-818 *4)) (-5 *1 (-1214 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1167) (-423 *3))) (-14 *5 (-1145)) - (-14 *6 *4)))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1182)) (-5 *2 (-1233))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1021)) - (-5 *1 (-668 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-550)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-771)) - (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *5 (-542)) - (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-923 (-400 (-926 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *3 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-923 (-926 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *6)) - (-4 *6 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-4 *4 (-1021)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) - (-4 *2 (-923 (-926 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) - (-4 *4 (-342))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1079)) (-5 *3 (-550))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-623 (-309 (-219)))) - (|:| |constraints| - (-623 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) - (|:| |grid| (-749)) (|:| |boundaryType| (-550)) - (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) - (|:| |tol| (-219)))) - (-5 *2 (-112)) (-5 *1 (-204))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-895)) (-5 *1 (-764))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-550))) (-5 *1 (-298))))) -(((*1 *2 *2) - (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1204 *4)) - (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1204 *5)) (-14 *6 (-895)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-356)) (-4 *2 (-361))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-945))) - ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170))))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-423 *3)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-536)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) - (-4 *3 (-1069)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-536)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-623 *1)) (-4 *1 (-923 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *3)) - (-5 *1 (-924 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) - (-15 -4163 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-623 (-1145))) (-5 *1 (-204)) - (-5 *3 (-1145)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 (-219))) (-5 *4 (-749)) (-5 *2 (-623 (-1145))) - (-5 *1 (-260)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-536)))) ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-623 *3)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-536)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-749)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-623 *3))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-5 *2 (-623 (-2 (|:| -1735 *3) (|:| -3661 *4)))) - (-5 *1 (-674 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1183 *2)) - (-4 *2 (-1069)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-1069)) (-4 *2 (-825)) - (-5 *1 (-1183 *2))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-372))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) (((*1 *2 *1) - (-12 (-4 *1 (-673 *3)) (-4 *3 (-1069)) - (-5 *2 (-623 (-2 (|:| -3859 *3) (|:| -3457 (-749)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) - (-4 *7 (-923 *6 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-667 (-926 *4))) (-5 *1 (-1002 *4)) - (-4 *4 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))) - (-5 *2 (-400 (-550))) (-5 *1 (-994 *4)) (-4 *4 (-1204 (-550)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) - (-5 *1 (-650 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) - (-4 *7 (-825)) (-4 *8 (-1035 *5 *6 *7)) (-5 *2 (-623 *3)) - (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1078 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) - (-5 *1 (-1047 *5 *6)) (-5 *3 (-623 (-926 *5))) - (-14 *6 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) - (-5 *1 (-1047 *4 *5)) (-5 *3 (-623 (-926 *4))) - (-14 *5 (-623 (-1145))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) - (-5 *1 (-1047 *5 *6)) (-5 *3 (-623 (-926 *5))) - (-14 *6 (-623 (-1145)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-256)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) - (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1228 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) + (-4 *7 (-232 *4 *2)) (-4 *2 (-1023))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) + (-4 *2 (-365 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-1228 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *2 *7)) (-4 *6 (-1023)) + (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) + (-4 *2 (-365 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1204 *4)) (-5 *2 (-1228 *4)))) + (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *7 *2)) (-4 *6 (-1023)) + (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) - (-5 *2 (-1228 *3)))) + (-12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) + (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-300)))) + ((*1 *2 *2) + (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) + (-4 *6 (-232 *2 *4)) (-4 *4 (-300))))) +(((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-893)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-893)))) + ((*1 *2) + (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-893)))) ((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 *3)))) + (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) + (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) - (-5 *2 (-1228 *5)) (-5 *1 (-1055 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-926 *4)))) (-4 *4 (-444)) - (-5 *2 (-623 (-3 (-400 (-926 *4)) (-1134 (-1145) (-926 *4))))) - (-5 *1 (-285 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-4 *3 (-13 (-27) (-1167) (-423 *6) (-10 -8 (-15 -2233 ($ *7))))) - (-4 *7 (-823)) - (-4 *8 - (-13 (-1206 *3 *7) (-356) (-1167) - (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) - (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1127)) (-4 *9 (-957 *8)) - (-14 *10 (-1145))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1116 (-1127))) (-5 *1 (-384))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170)))) - ((*1 *1) (-4 *1 (-705))) ((*1 *1) (-5 *1 (-1145)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-287 (-400 (-926 *5)))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-1134 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) - (-5 *1 (-1098 *5)))) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-749)) + (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-1134 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) - (-5 *1 (-1098 *5))))) -(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) - ((*1 *1 *1) (|partial| -4 *1 (-701)))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-642 *4 *5))) - (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-550))))) - (-14 *6 (-895))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-976)) - (-4 *2 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-800))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1069)) - (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3230 (-400 *6)) (|:| |coeff| (-400 *6)))) - (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1228 (-550))) (-5 *3 (-550)) (-5 *1 (-1079)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1228 (-550))) (-5 *3 (-623 (-550))) (-5 *4 (-550)) - (-5 *1 (-1079))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1089)) (-4 *4 (-342)) - (-5 *1 (-519 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *1 (-1129 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-623 *3)))) + (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-749)) + (-5 *1 (-646 *5)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) - (-5 *2 (-623 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-623 *3)))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) - (-5 *2 (-623 *3)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) + (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-1125 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-705)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1021)) (-5 *2 (-623 *3)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4349)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-620 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4349)) (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-4 *7 (-965 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-620 *6)) + (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-664 *4 *5 *6)) + (-4 *10 (-664 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1021)) (-5 *2 (-1125 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-5 *1 (-430))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) - ((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1145)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-926 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1145)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) - (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *9)) (-4 *9 (-1021)) (-4 *5 (-825)) (-4 *6 (-771)) - (-4 *8 (-1021)) (-4 *2 (-923 *9 *7 *5)) - (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) - (-4 *4 (-923 *8 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-550)))) + (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-620 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-620 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1167)))) - ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-594 *3)) (-4 *3 (-825))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) + (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-620 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-620 *5)) (-14 *4 (-1147)) (-4 *5 (-356)) + (-5 *1 (-896 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) (-5 *1 (-896 *4 *5)) + (-14 *4 (-1147)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-920 *6))) + (-5 *1 (-1024 *5 *6)) (-14 *5 (-1147))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1021))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-545))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) (((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-823)) (-5 *1 (-296 *3))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)) + (-5 *3 (-536))))) (((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-1204 *4)) (-5 *2 (-1 *6 (-623 *6))) - (-5 *1 (-1222 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1219 *4))))) + (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) + ((*1 *2 *3) (-12 (-5 *3 (-1060 (-536))) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) +(((*1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) (((*1 *2 *3) - (-12 (-4 *3 (-1204 (-400 (-550)))) - (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) - (-5 *1 (-887 *3 *4)) (-4 *4 (-1204 (-400 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1204 (-400 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) - (-4 *5 (-1012 (-550))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-423 *5)) + (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-920 *4)))) + (-5 *1 (-1017 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) + (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-371)) (-5 *1 (-1015))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-593 *2)) + (-4 *2 (-13 (-414 *5) (-27) (-1169))) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *1 (-547 *5 *2 *6)) (-4 *6 (-1072)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) + (-4 *5 (-771)) (-4 *3 (-825)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1023)) (-4 *1 (-924 *4 *5 *3)) + (-4 *5 (-771)) (-4 *3 (-825)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *5 (-594 $)) $)) - (-15 -4163 ((-1094 *5 (-594 $)) $)) - (-15 -2233 ($ (-1094 *5 (-594 $)))))))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-623 - (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 *2)) - (|:| |logand| (-1141 *2))))) - (-5 *4 (-623 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-356)) (-5 *1 (-569 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) - (-14 *4 (-749)) (-4 *5 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-623 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) - (-4 *2 (-1204 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-1228 (-667 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1228 (-667 *4))) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) - (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 (-667 *3))))) + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) + (-5 *1 (-925 *5 *4 *6 *7 *2)) (-4 *7 (-924 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-1145))) (-4 *5 (-356)) - (-5 *2 (-1228 (-667 (-400 (-926 *5))))) (-5 *1 (-1055 *5)) - (-5 *4 (-667 (-400 (-926 *5)))))) + (-12 (-5 *3 (-400 (-1141 (-400 (-920 *5))))) (-5 *4 (-1147)) + (-5 *2 (-400 (-920 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-543))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-593 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-543)) + (-5 *2 (-400 (-1141 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-547 *6 *3 *7)) (-5 *5 (-1141 *3)) + (-4 *7 (-1072)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-1145))) (-4 *5 (-356)) - (-5 *2 (-1228 (-667 (-926 *5)))) (-5 *1 (-1055 *5)) - (-5 *4 (-667 (-926 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) - (-5 *2 (-1228 (-667 *4))) (-5 *1 (-1055 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 *8)) - (-4 *7 (-825)) (-4 *8 (-1021)) (-4 *9 (-923 *8 *6 *7)) - (-4 *6 (-771)) (-5 *2 (-1141 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1204 *3)) (-5 *1 (-392 *3 *2)) - (-4 *3 (-13 (-356) (-145)))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4)))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-951 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) - (-5 *3 (-623 (-550)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -4304 (-550)) (|:| |var| (-594 *1)))) - (-4 *1 (-423 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-242))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1145)) (-5 *2 (-1149)) (-5 *1 (-1148))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1069) (-34))) (-4 *6 (-13 (-1069) (-34))) - (-5 *2 (-112)) (-5 *1 (-1109 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -1308 *4))) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-4 *7 (-1204 (-400 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1544 *3))) - (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))) + (-12 (-5 *4 (-1226 *5)) (-14 *5 (-1147)) (-4 *6 (-1023)) + (-5 *2 (-1198 *5 (-920 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-920 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-1141 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) + (-4 *1 (-924 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |answer| (-400 *6)) (|:| -1544 (-400 *6)) - (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) - (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) - (-4 *2 (-665 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-5 *1 (-48))) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *5 *4)) + (-5 *2 (-400 (-1141 *3))) (-5 *1 (-925 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1182)) - (-4 *2 (-1182)) (-5 *1 (-57 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1069)) (|has| *1 (-6 -4344)) - (-4 *1 (-149 *2)) (-4 *2 (-1182)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) - (-4 *2 (-1182)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) - (-4 *2 (-1182)))) + (-12 (-5 *2 (-1141 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) + (-4 *7 (-924 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) + (-5 *1 (-925 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-400 (-1141 (-400 (-920 *5))))) + (-5 *1 (-1014 *5)) (-5 *3 (-400 (-920 *5)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *2 (-825)))) ((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-5 *2 (-2 (|:| -2054 (-1141 *4)) (|:| |deg| (-895)))) - (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-542) (-825))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) - (-4 *6 (-1182)) (-4 *2 (-1182)) (-5 *1 (-233 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1204 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-542)) (-4 *2 (-825)))) - ((*1 *1 *1) - (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1204 *2)) - (-4 *4 (-1204 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1182)) (-4 *2 (-1182)) - (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) - (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) - ((*1 *1 *1) (-5 *1 (-486))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-623 *5)) (-4 *5 (-1182)) - (-4 *2 (-1182)) (-5 *1 (-621 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1021)) (-4 *2 (-1021)) - (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) - (-4 *9 (-366 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-665 *5 *6 *7)) (-4 *10 (-665 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-356)) - (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1182)) - (-4 *2 (-1182)) (-5 *1 (-931 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-923 *3 *4 *5)) - (-14 *6 (-623 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1021)) (-4 *2 (-1021)) - (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) - (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) - (-5 *1 (-1026 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1024 *5 *6 *7 *8 *9)) (-4 *12 (-1024 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1125 *5)) (-4 *5 (-1182)) - (-4 *2 (-1182)) (-5 *1 (-1123 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1175 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-771)) - (-4 *7 (-825)) (-4 *2 (-1035 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1228 *5)) (-4 *5 (-1182)) - (-4 *2 (-1182)) (-5 *1 (-1227 *5 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-725))))) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1023)) (-4 *6 (-924 *5 *4 *2)) + (-4 *2 (-825)) (-5 *1 (-925 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *6)) (-15 -3326 (*6 $)) (-15 -3325 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-1147)) + (-5 *1 (-1014 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))))) + (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) + (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1182)))) + (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1023)) (-5 *2 (-620 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) - (-14 *4 (-623 (-1145))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) -(((*1 *1) (-5 *1 (-801)))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) - (-5 *1 (-1129 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) - (-14 *4 (-1145)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-594 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1167))) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-546 *5 *6 *7)) - (-5 *3 (-1141 *6)) (-4 *7 (-1069)))) + (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-620 (-1147))))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) ((*1 *2 *1) - (-12 (-4 *2 (-1204 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1021)))) + (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-620 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) + (-5 *2 (-620 *5)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 (-1147))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) ((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1204 *3)))) + (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) + (-5 *2 (-620 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-1147))) + (-5 *1 (-1014 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) + (-4 *6 (-13 (-543) (-1012 *5))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *6)))))) (-5 *1 (-1013 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-593 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1169))) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-547 *5 *6 *7)) (-5 *3 (-1141 *6)) + (-4 *7 (-1072)))) + ((*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) + ((*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-623 *10)) - (-5 *7 (-623 (-749))) (-5 *8 (-623 *11)) (-4 *10 (-825)) - (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-923 *11 *9 *10)) - (-5 *2 (-623 (-1141 *5))) (-5 *1 (-721 *9 *10 *11 *5)) - (-5 *3 (-1141 *5)))) + (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-620 *10)) (-5 *7 (-620 (-749))) + (-5 *8 (-620 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) + (-4 *5 (-924 *11 *9 *10)) (-5 *2 (-620 (-1141 *5))) + (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1141 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-923 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) - (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-623 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-749)) (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-749)) (-4 *5 (-170)))) + (-12 (-4 *2 (-924 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-356)) + (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-620 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-893)) (-5 *1 (-1006 *2)) + (-4 *2 (-13 (-1072) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-893)) (-5 *1 (-1005 *2)) + (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-1229 *5))) (-5 *4 (-536)) (-5 *2 (-1229 *5)) + (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-536)) (-4 *6 (-356)) (-4 *6 (-361)) + (-4 *6 (-1023)) (-5 *2 (-620 (-620 (-667 *6)))) (-5 *1 (-1004 *6)) + (-5 *3 (-620 (-667 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1023)) + (-5 *2 (-620 (-620 (-667 *4)))) (-5 *1 (-1004 *4)) + (-5 *3 (-620 (-667 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) + (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) + (-5 *3 (-620 (-667 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-893)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) + (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) + (-5 *3 (-620 (-667 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-4 *5 (-356)) (-4 *5 (-1023)) + (-5 *2 (-112)) (-5 *1 (-1004 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-112)) + (-5 *1 (-1004 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-620 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-536)) (-5 *2 (-667 *6)) + (-5 *1 (-1004 *6)) (-4 *6 (-356)) (-4 *6 (-1023)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4)) + (-4 *4 (-356)) (-4 *4 (-1023)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-5 *2 (-667 *5)) + (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-1023))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-1229 *5)) (-4 *5 (-300)) + (-4 *5 (-1023)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1023)) + (-5 *2 (-1229 (-1229 *5))) (-5 *1 (-1004 *5)) (-5 *4 (-1229 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1023)) + (-5 *1 (-1004 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 (-1229 *4))) (-4 *4 (-1023)) (-5 *2 (-667 *4)) + (-5 *1 (-1004 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-876 (-536))) (-5 *4 (-536)) (-5 *2 (-667 *4)) + (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1003 *4)) + (-4 *4 (-1023)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-876 (-536)))) (-5 *4 (-536)) (-5 *2 (-620 (-667 *4))) + (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-620 (-536)))) (-5 *2 (-620 (-667 (-536)))) + (-5 *1 (-1003 *4)) (-4 *4 (-1023))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550))))) - (-5 *3 (-623 (-839 *4))) (-14 *4 (-623 (-1145))) (-14 *5 (-749)) - (-5 *1 (-496 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1182)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 (-926 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) - (-14 *4 (-623 (-1145))))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) + (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (-4 *4 (-1023)) + (-5 *1 (-1003 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-667 (-920 *4))) (-5 *1 (-1003 *4)) + (-4 *4 (-1023))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) + (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-442 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-442 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 (-758 *3 (-839 *4)))) (-4 *3 (-444)) - (-14 *4 (-623 (-1145))) (-5 *1 (-608 *3 *4))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) + (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) + (-4 *4 (-1023)) (-5 *1 (-1003 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-623 *3)) (-5 *1 (-898 *4 *5 *6 *3)) - (-4 *3 (-923 *4 *6 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-623 (-400 *6))) (-5 *3 (-400 *6)) - (-4 *6 (-1204 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-550)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-554 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1145)) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-186)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1145)) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-749)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749))))) -(((*1 *1) (-5 *1 (-1054)))) + (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) + (-5 *1 (-1002))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002))))) +(((*1 *2 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-342)) (-5 *2 (-1228 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-883)) - (-5 *2 (-1228 *1))))) + (|partial| -12 (-5 *3 (-667 (-400 (-920 (-536))))) + (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-307 (-536)))) + (-5 *1 (-1002))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *4 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) + (-5 *1 (-1002)) (-5 *3 (-307 (-536)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 - (-2 (|:| |contp| (-550)) - (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) + (-620 + (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) + (|:| |radvect| (-620 (-667 (-307 (-536)))))))) + (-5 *1 (-1002))))) +(((*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1183))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-636 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-550)) - (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) - (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219))) + (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3612 *3) (|:| -2831 (-620 *5)))) + (-5 *1 (-999 *5 *3)) (-5 *4 (-620 *5)) (-4 *3 (-636 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1033 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-838)) + (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-994)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1033 (-998 *3) (-1141 (-998 *3)))) (-5 *1 (-998 *3)) + (-4 *3 (-13 (-823) (-356) (-994)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) + (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-400 (-536))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) + (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) + (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))) + (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *4) (|:| -3467 *4)))) + (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) + (-5 *1 (-996 *3)) (-4 *3 (-1205 *5)) + (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *2 (-620 (-400 (-536)))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) + (-5 *2 (-400 (-536))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-113)) (-5 *1 (-161)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *4)) + (-4 *4 (-13 (-414 *3) (-976))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) + ((*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1 *1) (-5 *1 (-372))) + (-12 (-5 *2 (-113)) (-4 *4 (-825)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) - (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1204 (-550))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *4)) + (-4 *4 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1229 *6)) (-5 *4 (-1229 (-536))) (-5 *5 (-536)) (-4 *6 (-1072)) + (-5 *2 (-1 *6)) (-5 *1 (-991 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-2 (|:| -3756 *4) (|:| -1572 (-536))))) (-4 *4 (-1072)) + (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) + (-5 *2 (-620 (-400 *5))) (-5 *1 (-990 *4 *5)) (-5 *3 (-400 *5))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 - (-2 (|:| -2206 (-667 (-550))) (|:| |basisDen| (-550)) - (|:| |basisInv| (-667 (-550))))) - (-5 *1 (-746 *3 *4)) (-4 *4 (-402 (-550) *3)))) - ((*1 *2) - (-12 (-4 *3 (-342)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 *4)) + (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) + (|:| |c2| (-400 *6)) (|:| -3424 *6))) + (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1205 *6)) + (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-536)) (-5 *2 - (-2 (|:| -2206 (-667 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-667 *4)))) - (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-342)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 *4)) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3612 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-989 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) + (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-989 *4 *5)) + (-5 *3 (-400 *5))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 - (-2 (|:| -2206 (-667 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-667 *4)))) - (-5 *1 (-1237 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1145)) (-4 *4 (-1021)) (-4 *4 (-825)) - (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) - (-4 *1 (-423 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1021)) (-4 *4 (-825)) - (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) - (-4 *1 (-423 *4)))) + (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3424 *6))) + (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1147)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-620 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1169) (-27) (-414 *8))) + (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) + (-5 *2 (-620 *4)) (-5 *1 (-988 *8 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1147)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-620 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1169) (-27) (-414 *8))) + (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112)))) + (-5 *1 (-987 *8 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) + ((*1 *1 *1) (-4 *1 (-976))) ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-986)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-986)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-893)))) + ((*1 *1 *1) (-4 *1 (-986)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-838))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838))))) +(((*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-536))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-620 *1)) (|has| *1 (-6 -4349)) (-4 *1 (-984 *3)) + (-4 *3 (-1183))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-536))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) + (-4 *3 (-543)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3068 (-550)))) - (-4 *1 (-423 *3)))) + (|partial| -12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-536))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -3068 (-749)))) - (-5 *1 (-866 *3)) (-4 *3 (-1069)))) + (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) + (-4 *3 (-1072)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -3068 (-749)))))) + (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) + (-4 *3 (-1072)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-536))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3068 (-550)))) - (-5 *1 (-924 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) - (-15 -4163 (*7 $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1201 *5 *4)) (-5 *1 (-1143 *4 *5 *6)) - (-4 *4 (-1021)) (-14 *5 (-1145)) (-14 *6 *4))) + (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-536))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) + ((*1 *2 *1) + (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) + ((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) +(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-980))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-536))) (-5 *4 (-536)) (-5 *2 (-51)) (-5 *1 (-979))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 *5)) (-4 *5 (-543)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *5) (|:| |radicand| (-620 *5)))) + (-5 *1 (-313 *5)) (-5 *4 (-749)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-536))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-974 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *1 *1 *1) (-4 *1 (-465))) + ((*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-945))) + ((*1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1113 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)) + (-5 *1 (-967 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) + (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) + ((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-705) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-630 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-705) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-4 *2 (-300)) + (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-543)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) + ((*1 *2 *1) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) + (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) + (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) +(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-1023)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) +(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-543)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) + ((*1 *1) (-4 *1 (-361))) + ((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-535))) ((*1 *1) (-4 *1 (-535))) + ((*1 *1 *1) (-5 *1 (-536))) ((*1 *1 *1) (-5 *1 (-749))) + ((*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1201 *5 *4)) (-5 *1 (-1220 *4 *5 *6)) - (-4 *4 (-1021)) (-14 *5 (-1145)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-4 *4 (-825)) + (-12 (-5 *3 (-536)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) + ((*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-543))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |f1| (-623 *4)) (|:| |f2| (-623 (-623 (-623 *4)))) - (|:| |f3| (-623 (-623 *4))) (|:| |f4| (-623 (-623 (-623 *4)))))) - (-5 *1 (-1153 *4)) (-5 *3 (-623 (-623 (-623 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) - (-5 *2 (-1141 *3))))) + (-960 (-400 (-536)) (-839 *3) (-233 *4 (-749)) (-241 *3 (-400 (-536))))) + (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-961 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-620 *3)) (-4 *3 (-924 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) + (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021))))) -(((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323))))) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) + (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1188 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1109 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1069) (-34))) (-4 *5 (-13 (-1069) (-34))) - (-5 *1 (-1110 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-623 (-1109 *3 *4))) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) -(((*1 *1 *1) (-4 *1 (-1030))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-5 *2 (-667 (-884 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) - (-14 *4 (-895)))) - ((*1 *2) - (-12 (-5 *2 (-667 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) - (-14 *4 - (-3 (-1141 *3) - (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089))))))))) - ((*1 *2) - (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) - (-14 *4 (-895))))) + (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-620 *6)) + (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-481 *3)) (-4 *3 (-1182)) - (-5 *2 (-623 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1069))))) + (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) (-4 *3 (-444)) + (-4 *4 (-825)) (-4 *5 (-771))))) +(((*1 *1 *1) + (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) - (-5 *2 - (-3 (|:| |overq| (-1141 (-400 (-550)))) - (|:| |overan| (-1141 (-48))) (|:| -3585 (-112)))) - (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1021)) - (-5 *1 (-693 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-812 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-400 (-550))))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-550)) (-5 *1 (-1125 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) + (-12 (-4 *3 (-1205 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-959 *4 *2 *3 *5)) + (-4 *4 (-343)) (-4 *5 (-703 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) + (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) + (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) + (-15 -4186 ((-3 $ #1="failed") (-1147)))))) + (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *6)) + (-4 *6 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) + (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) + (-4 *2 (-924 (-920 *4) *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) + (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) + (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) + (-15 -4186 ((-3 $ #1="failed") (-1147)))))) + (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *6)) + (-4 *6 + (-13 (-825) + (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) + (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) + (-4 *2 (-924 (-920 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) + ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1228 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1204 *5)) - (-5 *2 (-667 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-926 (-219))) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3))))) + (-12 (-4 *5 (-356)) + (-5 *2 (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5))))) (-5 *1 (-952 *5)) + (-5 *3 (-667 *5)) (-5 *4 (-1229 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-5 *1 (-677)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) + (-5 *1 (-952 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) + (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) + (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) + (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *3 (-550)) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) + (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) + (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-495 (-400 (-550)) (-234 *4 (-749)) (-839 *3) - (-241 *3 (-400 (-550))))) - (-14 *3 (-623 (-1145))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-770))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-96))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-895)) (-4 *5 (-300)) (-4 *3 (-1204 *5)) - (-5 *2 (-2 (|:| |plist| (-623 *3)) (|:| |modulo| *5))) - (-5 *1 (-452 *5 *3)) (-5 *4 (-623 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-550)) (-5 *1 (-235)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-550)) (-5 *1 (-235))))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) + (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *1 (-951 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-620 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) + (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| -4304 *4) (|:| -3123 *3) (|:| -2545 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-1035 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| -4304 *3) (|:| -3123 *1) (|:| -2545 *1))) - (-4 *1 (-1204 *3))))) -(((*1 *1 *1) (-5 *1 (-1033)))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3678 (-620 *7)))) + (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-169)) (-5 *1 (-1133 *4 *5)) - (-14 *4 (-895)) (-4 *5 (-1021))))) -(((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-5 *2 (-372)) (-5 *1 (-763 *3)) - (-4 *3 (-596 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 *2)) - (-5 *2 (-372)) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) - (-5 *2 (-372)) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) + (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) + (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) + ((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) - (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5))))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1069)) (-4 *5 (-1069)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1109 *3 *2)) (-4 *3 (-13 (-1069) (-34))) - (-4 *2 (-13 (-1069) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-550)))) - (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) + (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-1073)) (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *2 (-1204 *4)) (-5 *1 (-787 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) - (-4 *5 (-634 (-400 *2)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) + (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) + (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) + (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) + (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) + (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) + (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) + (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) (-5 *2 (-623 (-631 (-400 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5)))))) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-1037 *5 *6 *7)) + (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) + (-5 *1 (-951 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3230 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1204 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -3230 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-5 *2 (-1141 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-539))))) -(((*1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-895)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) - (-4 *1 (-322 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) - (-4 *2 (-1204 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-1141 *4)) - (-5 *1 (-519 *4))))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) + (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-620 *3)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-620 *7) (-620 *7))) (-5 *2 (-620 *7)) + (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-951 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-825)) (-4 *5 (-883)) (-4 *6 (-771)) - (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-411 (-1141 *8))) - (-5 *1 (-880 *5 *6 *7 *8)) (-5 *4 (-1141 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) - (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5))))) + (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) + (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112)))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *5 (-1037 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *5 (-1037 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *5 (-1037 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3460 *1) (|:| |upper| *1))) + (-4 *1 (-950 *4 *5 *3 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543))))) +(((*1 *2 *1) + (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-620 (-620 (-917 (-219))))))) + ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-620 (-620 (-917 (-219)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) + ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) +(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) + ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) +(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) + ((*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-623 *7) *7 (-1141 *7))) (-5 *5 (-1 (-411 *7) *7)) - (-4 *7 (-1204 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-5 *2 (-623 (-2 (|:| |frac| (-400 *7)) (|:| -1309 *3)))) - (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-634 *7)) - (-4 *8 (-634 (-400 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 - (-623 (-2 (|:| |frac| (-400 *6)) (|:| -1309 (-632 *6 (-400 *6)))))) - (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-866 *6))) - (-5 *5 (-1 (-863 *6 *8) *8 (-866 *6) (-863 *6 *8))) (-4 *6 (-1069)) - (-4 *8 (-13 (-1021) (-596 (-866 *6)) (-1012 *7))) - (-5 *2 (-863 *6 *8)) (-4 *7 (-13 (-1021) (-825))) - (-5 *1 (-915 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-1069)) (-4 *3 (-874 *6)) - (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-366 *3)) - (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4344))))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1127)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *4 (-1035 *6 *7 *8)) (-5 *2 (-1233)) - (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1041 *6 *7 *8 *4))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1231))))) -(((*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-749)) (-5 *1 (-573))))) -(((*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) + (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) + (-2 (|:| -2487 *5) (|:| -2488 *6)))) + (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) + (-4 *8 (-924 *4 *6 (-839 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1023)))) + ((*1 *1 *1) + (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1204 *4)) (-4 *4 (-1186)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1204 (-400 *3))))) + (-12 (-5 *3 (-620 (-893))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) + (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1228 *1)) (-4 *4 (-170)) - (-4 *1 (-360 *4)))) + (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-4311 *4) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) + (-2 (|:| -2487 *5) (|:| -2488 *6)))) + (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-924 *2 *6 (-839 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-1228 *1)) (-4 *4 (-170)) - (-4 *1 (-363 *4 *5)) (-4 *5 (-1204 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-705)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) + (-4 *4 (-1023)) (-4 *5 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) + (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 *5)) (-4 *1 (-947 *4 *5 *6)) + (-4 *4 (-1023)) (-4 *5 (-770)) (-4 *6 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1023)) (-4 *3 (-770)) (-4 *2 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + ((*1 *2 *1) + (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) + (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) + ((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) + ((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) (-4 *1 (-844 *2))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) - ((*1 *1) (-5 *1 (-837))) - ((*1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) - (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1054))) - ((*1 *1) - (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34))))) - ((*1 *1) (-5 *1 (-1148))) ((*1 *1) (-5 *1 (-1149)))) -(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1061 (-926 (-550)))) (-5 *3 (-926 (-550))) - (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1061 (-926 (-550)))) (-5 *1 (-323))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1021)) (-4 *4 (-1204 *3)) (-5 *1 (-162 *3 *4 *2)) - (-4 *2 (-1204 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-400 (-926 *4))) (-5 *3 (-1145)) - (-4 *4 (-13 (-542) (-1012 (-550)) (-145))) (-5 *1 (-556 *4))))) + (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) +(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945))))) (((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550)))) - ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-1093 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) + (-12 (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-945)) (-5 *3 (-620 (-536)))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-945))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *2 (-543)) (-5 *1 (-943 *2 *4)) (-4 *4 (-1205 *2))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-300)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) + (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2091 (-749)) (|:| -3230 (-749)))) (-5 *1 (-749)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-543)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 (-749))) (-5 *1 (-943 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-943 *4 *3)) + (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 (-309 (-219)))) - (-5 *2 - (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) - (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) - (-5 *1 (-298))))) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4112 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-12 (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4112 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3490 *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3490 *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3490 *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) + (-4 *3 (-1205 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) + (-4 *3 (-1205 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4111 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-543)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) + (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) (-4 *1 (-941)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *1) (-4 *1 (-941)))) +(((*1 *1 *1 *1) (-4 *1 (-941)))) +(((*1 *1 *1 *1) (-4 *1 (-941)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) + (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) + (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) + (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1) + (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-751)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-939))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-838)))) + ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-937))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-620 *3)) (-5 *1 (-936 *3)) (-4 *3 (-535))))) +(((*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535))))) +(((*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535))))) +(((*1 *1) (-4 *1 (-343))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-543) (-825) (-145))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-186))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-356)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-442 *4 *5 *6 *2)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-620 (-1141 *5))) + (|:| |prim| (-1141 *5)))) + (-5 *1 (-425 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-543) (-825) (-145))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) (|:| |pol2| (-1141 *3)) + (|:| |prim| (-1141 *3)))) + (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-920 *5)) (-5 *4 (-1147)) (-4 *5 (-13 (-356) (-145))) + (-5 *2 + (-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 *5)))) + (-5 *1 (-935 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) + (-4 *5 (-13 (-356) (-145))) + (-5 *2 + (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *5))) + (|:| |prim| (-1141 *5)))) + (-5 *1 (-935 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) + (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-5 *5 (-1147)) + (-4 *6 (-13 (-356) (-145))) (-5 *2 - (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) - (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-623 (-1145))) (-4 *2 (-170)) - (-4 *4 (-232 (-3307 *5) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *3) (|:| -3068 *4)) - (-2 (|:| -3690 *3) (|:| -3068 *4)))) - (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) - (-4 *7 (-923 *2 *4 (-839 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-976) (-1167))) - (-4 *4 (-13 (-542) (-825))) - (-4 *2 (-13 (-423 (-167 *4)) (-976) (-1167))) - (-5 *1 (-582 *4 *5 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-529 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-372)) (-5 *1 (-1033))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) - (-4 *4 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825)))) - ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) - (-4 *3 (-1204 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-569 *2)) - (-5 *3 (-1145)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-874 *4)) - (-4 *4 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *1 *1) (-4 *1 (-1170)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-895)) (-4 *1 (-397)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-397)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *2 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *1) - (-12 (-4 *1 (-397)) (-3548 (|has| *1 (-6 -4335))) - (-3548 (|has| *1 (-6 -4327))))) - ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-4 *1 (-825))) ((*1 *1) (-5 *1 (-1089)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1127)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) - (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-27) (-423 *4))) - (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) - (-4 *7 (-1204 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) - (-4 *2 (-335 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-825) (-542))) - (-5 *2 (-837)) (-5 *1 (-32 *4 *5))))) + (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *6))) + (|:| |prim| (-1141 *6)))) + (-5 *1 (-935 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1147)) (-5 *1 (-567 *2)) (-4 *2 (-1012 *3)) (-4 *2 (-356)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)) + (-4 *2 (-13 (-414 *4) (-976) (-1169))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))) + (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-1147)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-934))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) - (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-923 *6 *5 *4))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-895)) (-5 *1 (-434 *2)) - (-4 *2 (-1204 (-550))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-895)) (-5 *4 (-749)) (-5 *1 (-434 *2)) - (-4 *2 (-1204 (-550))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *1 (-434 *2)) - (-4 *2 (-1204 (-550))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) - (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-895)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) - (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-411 *2)) (-4 *2 (-1204 *5)) - (-5 *1 (-436 *5 *2)) (-4 *5 (-1021))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-4 *3 (-13 (-27) (-1167) (-423 *6) (-10 -8 (-15 -2233 ($ *7))))) - (-4 *7 (-823)) + (|partial| -12 (-5 *4 (-893)) (-4 *5 (-543)) (-5 *2 (-667 *5)) + (-5 *1 (-931 *5 *3)) (-4 *3 (-636 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-928))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *3 (-924 *7 *5 *6)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| (-620 *3)))) + (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) (-4 *8 - (-13 (-1206 *3 *7) (-356) (-1167) - (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) - (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1127)) (-4 *9 (-957 *8)) - (-14 *10 (-1145))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1228 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1071 *4)) (-4 *4 (-1069)) (-5 *2 (-1 *4)) - (-5 *1 (-991 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1019))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-550)))) - (-5 *2 (-2 (|:| -2796 (-1125 *4)) (|:| -2807 (-1125 *4)))) - (-5 *1 (-1131 *4)) (-5 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-13 (-356) + (-10 -8 (-15 -3326 (*3 $)) (-15 -3325 (*3 $)) (-15 -4312 ($ *3)))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) - (-4 *8 (-923 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) - (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-112)) - (-5 *1 (-898 *5 *6 *7 *8))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-623 (-926 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-623 (-926 *4))) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) - (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-623 (-926 *3))))) - ((*1 *2) - (-12 (-5 *2 (-623 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3))))) + (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) + (-4 *8 (-924 *7 *5 *6)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *3))) + (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-536))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) + (-4 *8 (-924 *7 *5 *6)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *9) (|:| |radicand| *9))) + (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) + (-4 *9 + (-13 (-356) + (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-543)) (-4 *7 (-924 *3 *5 *6)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *8) (|:| |radicand| *8))) + (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) + (-4 *8 + (-13 (-356) + (-10 -8 (-15 -3326 (*7 $)) (-15 -3325 (*7 $)) (-15 -4312 ($ *7)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-864 *3)))) + (-5 *1 (-864 *3)) (-4 *3 (-1072)))) ((*1 *2 *3) - (-12 (-5 *3 (-1228 (-445 *4 *5 *6 *7))) (-5 *2 (-623 (-926 *4))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) - (-14 *5 (-895)) (-14 *6 (-623 (-1145))) (-14 *7 (-1228 (-667 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1164 *3)) (-4 *3 (-1021))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-1101 *4 *2)) - (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4344) (-6 -4345)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-825)) (-4 *3 (-1182)) (-5 *1 (-1101 *3 *2)) - (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4344) (-6 -4345))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1145)) (-5 *6 (-112)) - (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-4 *3 (-13 (-1167) (-933) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *7 *3)) (-5 *5 (-818 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1159 *4 *5)) - (-4 *4 (-1069)) (-4 *5 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) + (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2488 (-536)))) + (-5 *1 (-925 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1204 *4)) (-5 *2 (-667 *4)))) + (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-1023)) (-4 *4 (-825)) + (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1023)) (-4 *4 (-825)) + (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) - (-5 *2 (-667 *3))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-5 *2 (-112)) - (-5 *1 (-863 *4 *5)) (-4 *5 (-1069)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-866 *5)) (-4 *5 (-1069)) (-5 *2 (-112)) - (-5 *1 (-864 *5 *3)) (-4 *3 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) - (-4 *6 (-1182)) (-5 *2 (-112)) (-5 *1 (-864 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-550)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 *2)) (-4 *4 (-1204 *2)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4)))) + (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2)) (-4 *2 (-1021))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-878 *4)) - (-4 *4 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-807))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) - (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) - (-4 *5 (-366 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 (-550))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 (-550)) (-14 *5 (-749)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-749)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-749)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-749)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-749)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-749)))) + (-5 *1 (-864 *3)) (-4 *3 (-1072)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) - (-14 *4 (-749)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-1069)) (-5 *1 (-207 *4 *2)) - (-14 *4 (-895)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-239 (-1127))) (-5 *1 (-208 *4)) - (-4 *4 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ *3)) (-15 -1970 ((-1233) $)) - (-15 -1858 ((-1233) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) + (|partial| -12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-749)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) + (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-536)))) + (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) - (-15 -1858 ((-1233) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1182)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1204 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-1204 *2)) - (-4 *4 (-1204 (-400 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1127)) (-5 *1 (-493)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-612)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-623 (-866 *4))) (-5 *1 (-866 *4)) - (-4 *4 (-1069)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-879 *4)) (-5 *1 (-878 *4)) - (-4 *4 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-895)) (-4 *2 (-356)) - (-5 *1 (-967 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) (-4 *2 (-1021)) - (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *2 *6 *7)) - (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1021)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-895)) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-5 *1 (-1045 *4 *5 *2)) - (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-895)) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-5 *1 (-1046 *4 *5 *2)) - (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-4 *1 (-1072 *3 *4 *5 *6 *7)) - (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *7 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)))) - ((*1 *1 *1 *1) (-4 *1 (-1113))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-400 *1)) (-4 *1 (-1204 *2)) (-4 *2 (-1021)) - (-4 *2 (-356)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-400 *1)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)) - (-4 *3 (-542)))) + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) + (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) + (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-377 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) + (-4 *4 (-705)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-924 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) + (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-620 (-749))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) + (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-749))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-749))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) + (-4 *1 (-924 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)) (-4 *2 (-444)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-1205 (-536))) (-5 *2 (-620 (-536))) + (-5 *1 (-478 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1182)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) - (-14 *4 (-550))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1182)) (-4 *3 (-1021)) - (-5 *2 (-667 *3))))) + (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-4 *3 (-444))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-536)) (-4 *5 (-823)) (-4 *5 (-356)) + (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1205 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1125 (-1125 *4))) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4)) - (-4 *4 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1021)) - (-4 *7 (-1021)) (-4 *2 (-1204 *5)) (-5 *1 (-492 *5 *2 *6 *7)) - (-4 *6 (-1204 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1021)) (-4 *7 (-1021)) - (-4 *4 (-1204 *5)) (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) - (-4 *6 (-1204 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-623 *11)) - (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -1608 *11)))))) - (-5 *6 (-749)) - (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -1608 *11)))) - (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1035 *7 *8 *9)) - (-4 *11 (-1041 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-5 *1 (-1039 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-623 *11)) - (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -1608 *11)))))) - (-5 *6 (-749)) - (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -1608 *11)))) - (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1035 *7 *8 *9)) - (-4 *11 (-1078 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-5 *1 (-1114 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) + (-5 *1 (-919 *4 *5)) (-4 *5 (-1205 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) - (-4 *5 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-550))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) - (-4 *6 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) + (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) + (-4 *3 (-1205 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) + (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) + (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) + (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) + (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) + (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) + (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-536)) (-5 *1 (-916))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-185)) (-5 *3 (-536)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) + ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-864 *6))) + (-5 *5 (-1 (-862 *6 *8) *8 (-864 *6) (-862 *6 *8))) (-4 *6 (-1072)) + (-4 *8 (-13 (-1023) (-596 (-864 *6)) (-1012 *7))) (-5 *2 (-862 *6 *8)) + (-4 *7 (-13 (-1023) (-825))) (-5 *1 (-915 *6 *7 *8))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *3 (-164 *6)) + (-4 (-920 *6) (-860 *5)) (-4 *6 (-13 (-860 *5) (-170))) + (-5 *1 (-176 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-864 *4)) (-4 *1 (-860 *4)) + (-4 *4 (-1072)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) + (-4 *6 (-13 (-1072) (-1012 *3))) (-4 *3 (-860 *5)) (-5 *1 (-905 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) + (-4 *3 (-13 (-414 *6) (-596 *4) (-860 *5) (-1012 (-593 $)))) + (-5 *4 (-864 *5)) (-4 *6 (-13 (-543) (-825) (-860 *5))) + (-5 *1 (-906 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 (-536) *3)) (-5 *4 (-864 (-536))) (-4 *3 (-535)) + (-5 *1 (-907 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-593 *6)) (-4 *5 (-1072)) + (-4 *6 (-13 (-825) (-1012 (-593 $)) (-596 *4) (-860 *5))) (-5 *4 (-864 *5)) + (-5 *1 (-908 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) + (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-864 *6) (-862 *6 *3))) (-4 *8 (-825)) + (-5 *2 (-862 *6 *3)) (-5 *4 (-864 *6)) (-4 *6 (-1072)) + (-4 *3 (-13 (-924 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) + (-4 *9 (-13 (-1023) (-825) (-860 *6))) (-5 *1 (-910 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) + (-4 *3 (-13 (-924 *8 *6 *7) (-596 *4))) (-5 *4 (-864 *5)) (-4 *7 (-860 *5)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1023) (-825) (-860 *5))) + (-5 *1 (-910 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-965 *6)) + (-4 *6 (-13 (-543) (-860 *5) (-596 *4))) (-5 *4 (-864 *5)) + (-5 *1 (-913 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 (-1147))) (-5 *3 (-1147)) (-5 *4 (-864 *5)) + (-4 *5 (-1072)) (-5 *1 (-914 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-620 (-864 *7))) (-5 *5 (-1 *9 (-620 *9))) + (-5 *6 (-1 (-862 *7 *9) *9 (-864 *7) (-862 *7 *9))) (-4 *7 (-1072)) + (-4 *9 (-13 (-1023) (-596 (-864 *7)) (-1012 *8))) (-5 *2 (-862 *7 *9)) + (-5 *3 (-620 *9)) (-4 *8 (-13 (-1023) (-825))) (-5 *1 (-915 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1072) (-1012 *5))) + (-4 *5 (-860 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-905 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) + ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) + ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1147)) (-5 *4 (-1129)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-825)) (-5 *1 (-904 *4 *2)) (-4 *2 (-414 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-1060 (-219)))) + (-5 *1 (-902))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) + (-5 *1 (-901)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) + (-5 *1 (-901))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-550))) - (-4 *7 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-550))) - (-4 *3 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) - (-5 *5 (-1195 (-400 (-550)))) (-5 *6 (-400 (-550))) - (-4 *8 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-400 (-550)))) - (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *8))) - (-4 *8 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) - (-4 *3 (-1021)) (-5 *1 (-578 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-579 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) - (-4 *3 (-1021)) (-4 *1 (-1188 *3)))) + (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) + (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) + (-4 *3 (-596 (-525))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901))))) +(((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-899)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-749)) - (-5 *3 (-1125 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))) - (-4 *4 (-1021)) (-4 *1 (-1209 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-4 *1 (-1219 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1125 (-2 (|:| |k| (-749)) (|:| |c| *3)))) - (-4 *3 (-1021)) (-4 *1 (-1219 *3))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *1) (-5 *1 (-142))) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) + (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) + (-5 *1 (-898 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-256))))) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) + (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) + (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-924 *3 *5 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) + (-5 *4 (-667 *12)) (-5 *5 (-620 (-400 (-920 *9)))) (-5 *6 (-620 (-620 *12))) + (-5 *7 (-749)) (-5 *8 (-536)) (-4 *9 (-13 (-300) (-145))) + (-4 *12 (-924 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1147)))) + (-4 *11 (-771)) + (-5 *2 + (-2 (|:| |eqzro| (-620 *12)) (|:| |neqzro| (-620 *12)) + (|:| |wcond| (-620 (-920 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1229 (-400 (-920 *9)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *9))))))))) + (-5 *1 (-898 *9 *10 *11 *12))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *7)) (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-667 (-550))) (-5 *3 (-623 (-550))) (-5 *1 (-1079))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-924 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) + (-4 *7 (-771)) + (-5 *2 + (-620 + (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) + (|:| |cols| (-620 (-536)))))) + (-5 *1 (-898 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-924 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) + (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-898 *4 *5 *6 *7)) + (-5 *3 (-536)) (-4 *7 (-924 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 (-620 *6))) (-4 *6 (-924 *3 *5 *4)) + (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) + (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3563 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-366 *2)) (-4 *2 (-1182)) - (-4 *2 (-825)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4345)) - (-4 *1 (-366 *3)) (-4 *3 (-1182))))) + (-12 + (-5 *3 + (-620 + (-2 (|:| -3439 (-749)) + (|:| |eqns| + (-620 + (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) + (|:| |cols| (-620 (-536)))))) + (|:| |fgb| (-620 *7))))) + (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) + (-5 *1 (-898 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-620 + (-2 (|:| -3439 (-749)) + (|:| |eqns| + (-620 + (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) + (|:| |cols| (-620 (-536)))))) + (|:| |fgb| (-620 *7))))) + (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) + (-5 *1 (-898 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) (-5 *2 (-620 *3)) (-5 *1 (-898 *4 *5 *6 *3)) + (-4 *3 (-924 *4 *6 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1695 (-667 (-400 (-920 *4)))) (|:| |vec| (-620 (-400 (-920 *4)))) + (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) + (-5 *2 + (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) + (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) + (-5 *3 (-620 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-924 *4 *6 *5)) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-5 *1 (-898 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-1228 *2)) (-4 *5 (-300)) - (-4 *6 (-966 *5)) (-4 *2 (-13 (-402 *6 *7) (-1012 *6))) - (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1204 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) -(((*1 *1 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) - (-4 *2 (-444)))) - ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-1204 *2)) - (-4 *4 (-1204 (-400 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-444)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *3 (-444)))) - ((*1 *1 *1) - (-12 (-4 *1 (-923 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1132 *3 *2)) - (-4 *2 (-1204 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2256 *1))) - (-4 *1 (-827 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-863 *4 *5)) (-5 *3 (-863 *4 *6)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6))))) + (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) + (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) + (-5 *2 + (-620 + (-2 (|:| -3439 (-749)) + (|:| |eqns| + (-620 + (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) + (|:| |cols| (-620 (-536)))))) + (|:| |fgb| (-620 *8))))) + (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) (-4 *7 (-924 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-620 *7)) (|:| |n0| (-620 *7)))) + (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-924 *4 *6 *5)) + (-5 *1 (-898 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) + (-4 *7 (-924 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) + (-4 *6 (-771)) (-5 *2 (-400 (-920 *4))) (-5 *1 (-898 *4 *5 *6 *3)) + (-4 *3 (-924 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-5 *2 (-667 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-667 *11)) (-5 *4 (-620 (-400 (-920 *8)))) (-5 *5 (-749)) + (-5 *6 (-1129)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-924 *8 *10 *9)) + (-4 *9 (-13 (-825) (-596 (-1147)))) (-4 *10 (-771)) + (-5 *2 + (-2 + (|:| |rgl| + (-620 + (-2 (|:| |eqzro| (-620 *11)) (|:| |neqzro| (-620 *11)) + (|:| |wcond| (-620 (-920 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1229 (-400 (-920 *8)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *8)))))))))) + (|:| |rgsz| (-536)))) + (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-536))))) (((*1 *2 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-1233)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) - (-4 *2 (-1204 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) - (-4 *3 (-1069))))) + (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-5 *2 + (-620 + (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) + (|:| |wcond| (-620 (-920 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) + (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) - (-4 *7 (-771)) + (-12 + (-5 *3 + (-620 + (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) + (|:| |wcond| (-620 (-920 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) + (-5 *4 (-1129)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-924 *5 *7 *6)) + (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) + (-5 *1 (-898 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) + (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) - (|:| |wcond| (-623 (-926 *5))) + (-620 + (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) + (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) - (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) + (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-623 (-1145))) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-620 (-1147))) (-4 *8 (-924 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) - (|:| |wcond| (-623 (-926 *5))) + (-620 + (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) + (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *7)) (-4 *7 (-923 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) + (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) - (|:| |wcond| (-623 (-926 *4))) + (-620 + (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) + (|:| |wcond| (-620 (-920 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *4)))))))))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *5 (-895)) (-4 *9 (-923 *6 *8 *7)) - (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1145)))) + (-12 (-5 *3 (-667 *9)) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) + (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) - (|:| |wcond| (-623 (-926 *6))) + (-620 + (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) + (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *6)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *6)))))))))) - (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-623 *9)))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) + (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-620 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1145))) (-5 *5 (-895)) - (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) + (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) - (|:| |wcond| (-623 (-926 *6))) + (-620 + (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) + (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *6)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *6)))))))))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-895)) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-893)) (-4 *8 (-924 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 - (-623 - (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) - (|:| |wcond| (-623 (-926 *5))) + (-620 + (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) + (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) + (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) + (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 *9)) (-5 *5 (-1127)) - (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 *9)) (-5 *5 (-1129)) + (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1145))) (-5 *5 (-1127)) - (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-1129)) + (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-1127)) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) - (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-898 *5 *6 *7 *8)))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-1129)) (-4 *8 (-924 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) + (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 *10)) (-5 *5 (-895)) - (-5 *6 (-1127)) (-4 *10 (-923 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-825) (-596 (-1145)))) (-4 *9 (-771)) (-5 *2 (-550)) + (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 *10)) (-5 *5 (-893)) (-5 *6 (-1129)) + (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) + (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 (-1145))) (-5 *5 (-895)) - (-5 *6 (-1127)) (-4 *10 (-923 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-825) (-596 (-1145)))) (-4 *9 (-771)) (-5 *2 (-550)) + (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-5 *6 (-1129)) + (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) + (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-895)) (-5 *5 (-1127)) - (-4 *9 (-923 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1145)))) (-4 *8 (-771)) (-5 *2 (-550)) - (-5 *1 (-898 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-1042 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-1233)) - (-5 *1 (-1077 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-667 *11)) (-5 *4 (-623 (-400 (-926 *8)))) - (-5 *5 (-749)) (-5 *6 (-1127)) (-4 *8 (-13 (-300) (-145))) - (-4 *11 (-923 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1145)))) - (-4 *10 (-771)) - (-5 *2 - (-2 - (|:| |rgl| - (-623 - (-2 (|:| |eqzro| (-623 *11)) (|:| |neqzro| (-623 *11)) - (|:| |wcond| (-623 (-926 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *8)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *8)))))))))) - (|:| |rgsz| (-550)))) - (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-550))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-1021)) (-5 *2 (-550)) - (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1204 *5)) - (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1204 *4)) - (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277)))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-623 (-594 *3))) - (|:| |vals| (-623 *3)))) - (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1033))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837))))) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-893)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) + (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) + (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1233)) - (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-954 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-917 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)) (-5 *3 (-219))))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-4 *2 (-1205 *4)) + (-5 *1 (-897 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *1 (-895)) (-5 *2 (-2 (|:| -4308 (-620 *1)) (|:| -2496 *1))) + (-5 *3 (-620 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-895))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) + (-5 *1 (-892 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) + (-5 *1 (-892 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) + (-4 *2 (-924 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-145))) + (-5 *2 (-51)) (-5 *1 (-889 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-398 (-920 *6))) (-5 *5 (-1147)) (-5 *3 (-920 *6)) + (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) +(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)) - (-4 *2 (-1069))))) + (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *1 (-887 *3 *2)) + (-4 *2 (-1205 (-400 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-825)) - (-5 *2 (-623 (-623 *4))) (-5 *1 (-1153 *4))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-781))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2))))) + (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) + (-4 *3 (-1205 (-400 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1021)) (-4 *3 (-825)) - (-4 *4 (-259 *3)) (-4 *5 (-771))))) + (-12 (-5 *3 (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) + (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *5)) + (-4 *5 (-1205 (-400 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1141 (-1141 *4)))) - (-5 *1 (-1180 *4)) (-5 *3 (-1141 (-1141 *4)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-1089)) (-5 *2 (-112)) (-5 *1 (-799))))) -(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-526))) ((*1 *1) (-4 *1 (-701))) - ((*1 *1) (-4 *1 (-705))) - ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825))))) + (-12 (-4 *3 (-1205 (-400 (-536)))) + (-5 *2 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))) (-5 *1 (-887 *3 *4)) + (-4 *4 (-1205 (-400 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) + (-4 *3 (-1205 (-400 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-350 *4)) - (-5 *3 (-1141 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-273)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-550) (-219) (-1145) (-1127) (-1150))) - (-5 *1 (-1150))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1009)) - (-5 *1 (-735))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) - (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) - (-4 *3 (-1204 *4)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-372))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-550))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-167 (-372))))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-372)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-550)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-167 (-372))))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-372)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-550)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-550))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-926 (-550)))) - (-5 *4 (-309 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-672)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-677)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-309 (-679)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-672)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-677)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-309 (-679)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-309 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1127)) (-5 *1 (-323)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) + (-12 (-5 *3 (-536)) (-4 *4 (-1205 (-400 *3))) (-5 *2 (-893)) + (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) + (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) + (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *8))) + (-5 *1 (-885 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) + (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) + (-4 *6 (-335 (-400 (-536)) *4 *5)) + (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *6))) (-5 *1 (-886 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) + (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-112)) + (-5 *1 (-885 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) + (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-886 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) + (-4 *5 (-884)) (-5 *1 (-449 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-884))))) +(((*1 *2 *3) + (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) + (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) + ((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) + (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) + ((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-164 *4)) + (-4 *4 (-535)) (-5 *1 (-147 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-1205 *4)) + (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 (-536)))) (-5 *3 (-1141 (-536))) + (-5 *1 (-558)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 *1))) (-5 *3 (-1141 *1)) (-4 *1 (-884))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-343)) (-5 *2 (-1229 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-884)) + (-5 *2 (-1229 *1))))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-343))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-884))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *2)) (-4 *2 (-923 (-400 (-926 *6)) *5 *4)) - (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) - (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) - (-4 *6 (-542))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-526))) - ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069))))) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-825)) (-4 *5 (-884)) (-4 *6 (-771)) + (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-881 *5 *6 *7 *8)) + (-5 *4 (-1141 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) + (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) (((*1 *2) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-449 *3 *4 *2 *5)) + (-4 *5 (-924 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) - (-5 *2 (-1228 (-400 (-550)))) (-5 *1 (-1255 *4))))) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-881 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-884)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) + (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) + (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) + (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) + (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) + (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-881 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) + (-4 *5 (-1205 *4)) (-4 *4 (-884)) (-5 *1 (-882 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) + (-4 *7 (-924 *5 *6 *4)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *4 (-825)) + (-5 *1 (-881 *5 *6 *4 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1213 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) - (-14 *4 (-1145)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1014)) (-5 *3 (-372))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-550)) (-4 *5 (-823)) (-4 *5 (-356)) - (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1204 *5))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-733))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021))))) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *6)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) ((*1 *1) (-4 *1 (-535))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) (((*1 *2 *1) - (-12 (-4 *2 (-687 *3)) (-5 *1 (-805 *2 *3)) (-4 *3 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-717))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1292)) (-5 *2 (-112)) (-5 *1 (-598)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1377)) (-5 *2 (-112)) (-5 *1 (-598)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3271)) (-5 *2 (-112)) (-5 *1 (-598)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3733)) (-5 *2 (-112)) (-5 *1 (-669 *4)) - (-4 *4 (-595 (-837))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-837))) (-5 *2 (-112)) - (-5 *1 (-669 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1239))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + (-12 (-5 *2 (-620 (-620 (-749)))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-1068 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-620 *4))) (-5 *1 (-879 *4)) + (-5 *3 (-620 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-1238))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1106)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)) (-5 *1 (-1150)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1150)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1150)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1150))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-569 *3) *3 (-1145))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1145))) - (-4 *3 (-277)) (-4 *3 (-609)) (-4 *3 (-1012 *4)) (-4 *3 (-423 *7)) - (-5 *4 (-1145)) (-4 *7 (-596 (-866 (-550)))) (-4 *7 (-444)) - (-4 *7 (-860 (-550))) (-4 *7 (-825)) (-5 *2 (-569 *3)) - (-5 *1 (-559 *7 *3))))) + (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-879 *4)) + (-5 *3 (-1068 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) + (-5 *1 (-879 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) + (-5 *1 (-879 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-878 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-4 *1 (-878 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1021)) - (-5 *2 (-1228 (-1228 *5))) (-5 *1 (-1003 *5)) (-5 *4 (-1228 *5))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535))))) + (-12 (-5 *3 (-1113 *4 *2)) (-14 *4 (-893)) + (-4 *2 (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (-5 *1 (-877 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-620 *3)) (|:| |image| (-620 *3)))) + (-5 *1 (-876 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) + ((*1 *1 *1) (-4 *1 (-227))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) + (-4 *4 (-1205 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) + (-4 *4 (-1072)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072))))) (((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-825)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1182))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1069))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) - (-4 *5 (-825)) (-5 *2 (-926 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1021)) - (-4 *5 (-825)) (-5 *2 (-926 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1219 *4)) (-4 *4 (-1021)) - (-5 *2 (-926 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1219 *4)) (-4 *4 (-1021)) - (-5 *2 (-926 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *1) (-4 *1 (-342))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) - (-4 *4 (-13 (-542) (-825) (-145))) + (-12 (-5 *3 (-747)) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-623 (-1141 *5))) - (|:| |prim| (-1141 *5)))) - (-5 *1 (-425 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-145))) + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) + (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-747)) (-5 *4 (-1035)) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) - (|:| |pol2| (-1141 *3)) (|:| |prim| (-1141 *3)))) - (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-926 *5)) (-5 *4 (-1145)) (-4 *5 (-13 (-356) (-145))) + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) + (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-765)) (-5 *3 (-1035)) + (-5 *4 + (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) - (|:| |prim| (-1141 *5)))) - (-5 *1 (-934 *5)))) + (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) + (|:| |extra| (-1009)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) - (-4 *5 (-13 (-356) (-145))) + (-12 (-4 *1 (-765)) (-5 *3 (-1035)) + (-5 *4 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 *5))) - (|:| |prim| (-1141 *5)))) - (-5 *1 (-934 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) (-5 *5 (-1145)) - (-4 *6 (-13 (-356) (-145))) + (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) + (|:| |extra| (-1009)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-778)) (-5 *3 (-1035)) + (-5 *4 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-786)) (-5 *2 - (-2 (|:| -4304 (-623 (-550))) (|:| |poly| (-623 (-1141 *6))) - (|:| |prim| (-1141 *6)))) - (-5 *1 (-934 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1182))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-848)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-219)) (-5 *5 (-550)) (-5 *2 (-1177 *3)) - (-5 *1 (-768 *3)) (-4 *3 (-948)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *4 (-112)) - (-5 *1 (-1177 *2)) (-4 *2 (-948))))) -(((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-1219 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-460)) (-5 *1 (-1229))))) -(((*1 *2 *1) - (-12 + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-783)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 - (-623 - (-623 - (-3 (|:| -1856 (-1145)) - (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550)))))))))) - (-5 *1 (-1149))))) -(((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) - (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-623 (-917 (-219))))) (-5 *2 (-623 (-219))) - (-5 *1 (-460))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) - ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230))))) -(((*1 *1 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1145))) - (-4 *5 (-444)) + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-783)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-814)) (-5 *3 (-1035)) + (-5 *4 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) + (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-814)) (-5 *3 (-1035)) + (-5 *4 + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-816)) (-5 *2 - (-2 (|:| |gblist| (-623 (-241 *4 *5))) - (|:| |gvlist| (-623 (-550))))) - (-5 *1 (-611 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1021))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-542)))))) + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-816)) (-5 *4 (-1035)) + (-5 *2 + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-869)) (-5 *3 (-1035)) + (-5 *4 + (-2 (|:| |pde| (-620 (-307 (-219)))) + (|:| |constraints| + (-620 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) + (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) + (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) + (|:| |tol| (-219)))) + (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-872)) + (-5 *2 + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-871)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-872)) (-5 *4 (-1035)) + (-5 *2 + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *1 (-871))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) (-4 *2 (-1205 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1205 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-596 (-866 *3))) (-4 *3 (-860 *3)) - (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-596 (-866 *3))) (-4 *2 (-860 *3)) - (-4 *2 (-13 (-423 *3) (-1167)))))) + (-12 (-4 *1 (-869)) + (-5 *3 + (-2 (|:| |pde| (-620 (-307 (-219)))) + (|:| |constraints| + (-620 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) + (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) + (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) + (|:| |tol| (-219)))) + (-5 *2 (-1009))))) +(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-4 *1 (-701))) ((*1 *1) (-4 *1 (-705))) + ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + ((*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825))))) (((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) + (-5 *2 (-620 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1228 (-1228 (-550)))) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-181))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1125 *3))) (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-980))))) + (-12 (-5 *2 (-620 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) + (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825))))) (((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1183)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-821))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-1228 *5))) (-5 *4 (-550)) (-5 *2 (-1228 *5)) - (-5 *1 (-1003 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-444)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *4 *2)) (-14 *4 (-895)) - (-4 *2 (-13 (-1021) (-10 -7 (-6 (-4346 "*"))))) - (-5 *1 (-876 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *2) - (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1021) (-825))) - (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1145)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1243 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *1 (-642 *3 *4)))) + (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-620 *5)) (-5 *1 (-865 *4 *5)) + (-4 *5 (-1183))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1183))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) + (-5 *1 (-862 *4 *5)) (-4 *5 (-1072)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-865 *5 *3)) + (-4 *3 (-1183)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1183)) + (-5 *2 (-112)) (-5 *1 (-865 *5 *6))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 (-864 *3))))) + (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-864 *4))) (-5 *1 (-864 *4)) + (-4 *4 (-1072))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1248 *3 *4)) - (-4 *3 (-825)) (-4 *4 (-170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-801)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 (-400 (-926 (-550))))) - (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1005))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-623 - (-2 - (|:| -3549 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -3859 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-545))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -3985 (-114)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-863 *4 *3)) - (-4 *3 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 - (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1127)) (|:| |prob| (-1127)))))) - (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-14 *6 (-1145)) (-14 *7 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-1153 *4)) - (-5 *3 (-623 *4))))) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-864 *3)) (|:| |den| (-864 *3)))) + (-5 *1 (-864 *3)) (-4 *3 (-1072))))) (((*1 *2 *1) - (-12 (-4 *1 (-1211 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1188 *3)) - (-5 *2 (-400 (-550)))))) -(((*1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1165))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1220 *2 *3 *4)) (-4 *2 (-1021)) (-14 *3 (-1145)) - (-14 *4 *2)))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1053 *3)) (-4 *3 (-131))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-372))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-594 *4)) (-5 *6 (-1141 *4)) - (-4 *4 (-13 (-423 *7) (-27) (-1167))) - (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-594 *4)) (-5 *6 (-400 (-1141 *4))) - (-4 *4 (-13 (-423 *7) (-27) (-1167))) - (-4 *7 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1069))))) + (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-112)) (-5 *1 (-864 *4)) (-4 *4 (-1072))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-51)) (-5 *1 (-864 *4)) (-4 *4 (-1072))))) (((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) - (-5 *2 (-1141 *3))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-594 *4)) (-4 *4 (-825)) (-4 *2 (-825)) - (-5 *1 (-593 *2 *4))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) + (-12 (-5 *2 (-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51)))) + (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) +(((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) - (-4 *2 (-665 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-760 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-937 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) - (-4 *3 (-1021)) (-4 *2 (-770)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1147 *3)) (-4 *3 (-542)) - (-4 *3 (-1021)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1201 *4 *3)) (-14 *4 (-1145)) - (-4 *3 (-1021))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-730))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-4 *5 (-356)) (-5 *2 (-1125 (-1125 (-926 *5)))) - (-5 *1 (-1236 *5)) (-5 *4 (-1125 (-926 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342))))) + (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) (((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1021)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-895)))) - ((*1 *2 *3) - (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) - (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) - (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-811 (-895))))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) + (-12 (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) + (-4 *5 (-644 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1021)) - (-4 *3 (-825)))) + (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *1) + (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) + (-4 *4 (-644 *3)))) + ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-4 *2 (-1072)) + (-5 *1 (-862 *4 *2))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-620 *6))) + (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-620 *6)) (-4 *4 (-596 (-864 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 *3))) (-5 *1 (-861 *5 *3 *4)) + (-4 *3 (-1012 (-1147))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 (-920 *3)))) (-5 *1 (-861 *5 *3 *4)) + (-4 *3 (-1023)) (-3671 (-4 *3 (-1012 (-1147)))) (-4 *3 (-860 *5)) + (-4 *4 (-596 (-864 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-5 *2 (-862 *5 *3)) (-5 *1 (-861 *5 *3 *4)) + (-3671 (-4 *3 (-1012 (-1147)))) (-3671 (-4 *3 (-1023))) (-4 *3 (-860 *5)) + (-4 *4 (-596 (-864 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1021)) (-4 *3 (-825)) - (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) - (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) - (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-749)) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-860 *5)) + (-4 *4 (-596 (-864 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) + (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-864 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1072)) + (-4 *5 (-1072)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *4)) (-5 *1 (-859 *3 *4 *5)) + (-4 *3 (-1072)) (-4 *5 (-644 *4))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *5)) (-5 *1 (-859 *3 *4 *5)) + (-4 *3 (-1072)) (-4 *5 (-644 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) - (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) - (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-749)) - (-5 *1 (-886 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) - (-4 *7 (-1204 *6)) (-4 *4 (-1204 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) - (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) - (-5 *1 (-992 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1021)) (-4 *3 (-542)) - (-5 *2 (-749)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182))))) -(((*1 *1 *2) - (-12 (-5 *2 (-667 *5)) (-4 *5 (-1021)) (-5 *1 (-1025 *3 *4 *5)) - (-14 *3 (-749)) (-14 *4 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-1069)))) - ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4)))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3338 (-623 (-1145))) (|:| -1270 (-623 (-1145))))) - (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *3 (-620 (-536))) (-5 *1 (-857))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) + ((*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1183))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-854))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(((*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)) (-5 *3 (-1129)))) + ((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-117 *3)) (-14 *3 (-536)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-172 (-536))) (-5 *1 (-744 *3)) (-4 *3 (-397)))) ((*1 *2 *1) - (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-845 *3)) (-14 *3 (-536)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) + (-12 (-14 *3 (-536)) (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-846 *3 *4)) + (-4 *4 (-844 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) + ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) + ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-1124 (-536)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1205 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1069)))) + (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-550))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-5 *1 (-962 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 *7)) (-4 *7 (-1041 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-5 *1 (-1076 *3 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1228 (-1145))) (-5 *3 (-1228 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) - (-14 *6 (-623 (-1145))) (-14 *7 (-1228 (-667 *4))))) + (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536))))) +(((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536))))) +(((*1 *1 *1) (-4 *1 (-844 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *3 (-536)) (-4 *1 (-844 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) + (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) + (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) + (-5 *1 (-842 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) + (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) + (-5 *1 (-842 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) + (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-749)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) + ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838))))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) + ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) + (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-371))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-536))) + (-5 *1 (-323)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1228 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) - (-14 *6 (-623 *2)) (-14 *7 (-1228 (-667 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) - (-14 *6 (-1228 (-667 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-1145))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))) - (-14 *6 (-1228 (-667 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-895)) (-14 *5 (-623 *2)) (-14 *6 (-1228 (-667 *3))))) - ((*1 *1) - (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895)) - (-14 *4 (-623 (-1145))) (-14 *5 (-1228 (-667 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-825)))) - ((*1 *2 *2) - (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1167))) - (-4 *3 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *1 (-567 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-569 (-400 (-926 *3)))) - (-4 *3 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *1 (-572 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -2714 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1228 *5)) (-4 *5 (-356)) (-4 *5 (-1021)) - (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) - (-5 *3 (-623 (-667 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1228 (-1228 *5))) (-4 *5 (-356)) (-4 *5 (-1021)) - (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1003 *5)) - (-5 *3 (-623 (-667 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-623 *1)) (-4 *1 (-1113)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-623 *1)) (-4 *1 (-1113))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1127)) (-5 *1 (-963)))) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-166 (-371))))) (-5 *1 (-323)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1063 *4)) (-4 *4 (-1182)) - (-5 *1 (-1061 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) - (-4 *2 (-1219 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1204 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1219 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1219 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-13 (-542) (-145))) - (-5 *1 (-1121 *3))))) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-371)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-536)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-166 (-371))))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-371)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-536)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-536))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-672))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-677))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-679))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-672)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-677)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-679)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-672)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-677)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-679)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-323)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) + ((*1 *1 *1) (-4 *1 (-291))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-186)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1069)))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) + (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *1 *1 *1) (-5 *1 (-838)))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-837)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-837))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-128)) (-5 *2 (-1091))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-129)) (-5 *2 (-1091))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-51))) (-5 *2 (-1235)) (-5 *1 (-834))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-536)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) + (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) + (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4)))) ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) - (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(((*1 *1) (-5 *1 (-1229)))) -(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) + (-12 (-4 *3 (-356)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) + (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) + (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-543)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) + (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1023)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-828 *2 *3)) + (-4 *3 (-827 *2))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1023)) (-5 *1 (-828 *5 *2)) + (-4 *2 (-827 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-411 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1150))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-917 *5)) (-4 *5 (-1021)) (-5 *2 (-749)) - (-5 *1 (-1133 *4 *5)) (-14 *4 (-895)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1133 *4 *5)) - (-14 *4 (-895)) (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1021)) - (-5 *1 (-1133 *4 *5)) (-14 *4 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) - (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) - (-5 *1 (-675))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-923 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1036))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1021)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1204 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) - (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *5)) - (-4 *5 (-1204 (-400 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *7)) (-4 *7 (-825)) - (-4 *8 (-923 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1228 (-400 *8)) "failed")) - (|:| -2206 (-623 (-1228 (-400 *8)))))) - (-5 *1 (-647 *5 *6 *7 *8))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-802)) (-5 *3 (-623 (-1145))) (-5 *1 (-803))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-400 (-926 (-167 (-550)))))) - (-5 *2 (-623 (-623 (-287 (-926 (-167 *4)))))) (-5 *1 (-371 *4)) - (-4 *4 (-13 (-356) (-823))))) + (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) + (-4 *1 (-827 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1023)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) + (-4 *1 (-827 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) + (-14 *4 (-749))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) + (-14 *4 (-749))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) + (-14 *4 (-749))))) +(((*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072))))) +(((*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-287 (-400 (-926 (-167 (-550))))))) - (-5 *2 (-623 (-623 (-287 (-926 (-167 *4)))))) (-5 *1 (-371 *4)) - (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) + (-5 *1 (-815))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-815)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) + (-5 *6 (-620 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1009)) + (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) + (-5 *2 (-1009)) (-5 *1 (-815)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 (-167 (-550))))) - (-5 *2 (-623 (-287 (-926 (-167 *4))))) (-5 *1 (-371 *4)) - (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) + (-5 *1 (-815)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-287 (-400 (-926 (-167 (-550)))))) - (-5 *2 (-623 (-287 (-926 (-167 *4))))) (-5 *1 (-371 *4)) - (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-825)) (-5 *1 (-903 *3 *2)) (-4 *2 (-423 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-309 (-550))) (-5 *1 (-904))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-1127)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1009)) - (-5 *1 (-729))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-800))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-839 *3)) (-14 *3 (-623 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1061 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-1145)))) - ((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1224 *3)) (-14 *3 *2)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-542)) (-4 *4 (-825)) - (-5 *1 (-559 *4 *2)) (-4 *2 (-423 *4))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-623 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-771)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) - (-5 *1 (-441 *3 *4 *5 *6))))) + (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) + (-5 *1 (-815))))) (((*1 *2 *3) - (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1167))) - (-5 *1 (-567 *4 *2)) - (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))))) + (-12 (-4 *1 (-814)) + (-5 *3 + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (-5 *2 (-1009)))) ((*1 *2 *3) - (-12 (-5 *3 (-569 (-400 (-926 *4)))) - (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *2 (-309 *4)) (-5 *1 (-572 *4))))) -(((*1 *2) - (-12 (-4 *3 (-1186)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-1228 *1)) (-4 *1 (-335 *3 *4 *5))))) + (-12 (-4 *1 (-814)) + (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) + (-5 *2 (-1009))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) +(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) + ((*1 *2 *3) + (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) + (-4 *3 (-664 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) + ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023))))) +(((*1 *2 *2) + (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-839 *5))) (-14 *5 (-623 (-1145))) (-4 *6 (-444)) - (-5 *2 (-623 (-623 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) - (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *2 (-1228 (-309 (-372)))) - (-5 *1 (-298))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-372)) (-5 *1 (-199))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3)) (-4 *3 (-1069)) - (-4 *3 (-1182))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-372)) (-5 *1 (-1033))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-771)) - (-4 *3 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *5 (-542)) - (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-923 (-400 (-926 *5)) *4 *3)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-620 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1072)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *3 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-923 (-926 *4) *5 *3)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-620 *4))) (-4 *4 (-1072)) + (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *6)) - (-4 *6 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-4 *4 (-1021)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) - (-4 *2 (-923 (-926 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1167) (-933)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1089))))) -(((*1 *2 *1) - (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) - (-4 *5 (-232 (-3307 *3) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *5)) - (-2 (|:| -3690 *2) (|:| -3068 *5)))) - (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-923 *4 *5 (-839 *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1021)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-550))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-542)) (-4 *8 (-923 *7 *5 *6)) - (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *9) (|:| |radicand| *9))) - (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) - (-4 *9 - (-13 (-356) - (-10 -8 (-15 -4153 (*8 $)) (-15 -4163 (*8 $)) (-15 -2233 ($ *8)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) - (-4 *3 (-366 *4)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) - (-4 *5 (-366 *2)) (-4 *3 (-366 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-667 *4)) (-4 *4 (-966 *2)) (-4 *2 (-542)) - (-5 *1 (-671 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-966 *2)) (-4 *2 (-542)) (-5 *1 (-1197 *2 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-620 *4))) (-5 *1 (-114 *4)) + (-4 *4 (-1072)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) + (-5 *1 (-693 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021)) (-4 *4 (-170)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)) - (-4 *3 (-170))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-939))) (-5 *1 (-108))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-623 (-2 (|:| |totdeg| (-749)) (|:| -2054 *3)))) - (-5 *4 (-749)) (-4 *3 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1069)) - (-4 *2 (-130))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) + (-5 *1 (-693 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825))) - (-4 *2 (-13 (-423 (-167 *4)) (-976) (-1167))) - (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-976) (-1167)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-356)) (-5 *2 (-749))))) + (-12 (-5 *3 (-113)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1023)) (-5 *1 (-693 *2 *4)) + (-4 *4 (-626 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) +(((*1 *2) (-12 (-5 *2 (-810 (-536))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1072))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1235)) (-5 *1 (-809))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-287 (-811 *3))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-811 *3)) (-5 *1 (-616 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 (-811 (-926 *5)))) (-4 *5 (-444)) - (-5 *2 (-811 (-400 (-926 *5)))) (-5 *1 (-617 *5)) - (-5 *3 (-400 (-926 *5))))) + (-12 (-5 *3 (-800)) (-5 *4 (-51)) (-5 *2 (-1235)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-51)) (-5 *1 (-809))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-807))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807))))) +(((*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)) (-5 *3 (-1129))))) +(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807))))) +(((*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-51)) (-5 *1 (-807))))) +(((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-806 *2 *3)) (-4 *2 (-687 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-799)) (-5 *2 (-1129)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-799)) (-5 *3 (-112)) (-5 *2 (-1129)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *2 (-1235)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *4 (-112)) (-5 *2 (-1235)))) + ((*1 *2 *3) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) + (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) - (-4 *5 (-444)) (-5 *2 (-811 *3)) (-5 *1 (-617 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) - (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) - (-5 *2 (-2 (|:| -2983 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *2 (-623 (-400 (-550)))) (-5 *1 (-994 *4)) - (-4 *4 (-1204 (-550)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1127)) (-4 *4 (-825)) (-5 *1 (-903 *4 *2)) - (-4 *2 (-423 *4)))) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-799) (-825) (-1023))) + (-5 *2 (-1129)) (-5 *1 (-805 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-1127)) (-5 *2 (-309 (-550))) - (-5 *1 (-904))))) + (-12 (-5 *3 (-801)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-799) (-825) (-1023))) + (-5 *2 (-1235)) (-5 *1 (-805 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-801)) (-5 *4 (-307 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-803))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-620 (-1147))) (-5 *1 (-803))))) +(((*1 *1) (-5 *1 (-802)))) +(((*1 *1) (-5 *1 (-802)))) +(((*1 *1) (-5 *1 (-802)))) +(((*1 *1) (-5 *1 (-802)))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1129)) (|:| -3900 (-1129)))) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-800))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-800))))) +(((*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800))))) +(((*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-800))))) +(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-800))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-623 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-423 *4) (-976))) (-4 *4 (-13 (-825) (-542))) - (-5 *1 (-269 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) + (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) + (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1072)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1072)) + (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-1072)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-797 *2)) (-4 *2 (-825))))) (((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *2)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1069)) (-4 *4 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) + (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-536))))) (-5 *1 (-354 *3)) + (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-379 *3)) + (-4 *3 (-1072)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -2488 (-536))))) (-5 *1 (-398 *3)) + (-4 *3 (-543)))) + ((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-797 *3)) + (-4 *3 (-825))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-749)) (-5 *5 (-623 *3)) (-4 *3 (-300)) (-4 *6 (-825)) - (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) - (-4 *8 (-923 *3 *7 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) + (|partial| -12 (-5 *5 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-1229 *4)) + (-5 *1 (-792 *4 *3)) (-4 *3 (-636 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) + (-4 *5 (-636 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) + (-5 *1 (-792 *5 *6)) (-4 *6 (-636 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-895)) (-4 *5 (-825)) - (-5 *2 (-58 (-623 (-650 *5)))) (-5 *1 (-650 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2) - (-12 - (-5 *2 - (-1228 (-623 (-2 (|:| -1337 (-884 *3)) (|:| -3690 (-1089)))))) - (-5 *1 (-344 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) - ((*1 *2) - (-12 (-5 *2 (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089)))))) - (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1141 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1228 (-623 (-2 (|:| -1337 *3) (|:| -3690 (-1089)))))) - (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-895))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-289)))) + (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-305)) (-5 *1 (-289)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-289)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1127))) (-5 *3 (-1127)) (-5 *2 (-305)) - (-5 *1 (-289))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-866 *4)) (-4 *4 (-1069)) (-5 *1 (-864 *4 *3)) - (-4 *3 (-1182)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-895)) (-5 *1 (-1006 *2)) - (-4 *2 (-13 (-1069) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1182)) (-4 *2 (-1069)) - (-4 *2 (-825))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-229 *3)) - (-4 *3 (-1069)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-229 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1069)) - (-5 *1 (-716 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4346 "*"))) - (-4 *4 (-1021)) (-5 *1 (-1002 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-895)) - (|has| *4 (-6 (-4346 "*"))) (-4 *4 (-1021)) (-5 *1 (-1002 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-728))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-550)) (|has| *1 (-6 -4345)) (-4 *1 (-366 *3)) - (-4 *3 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1031 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) + (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-667 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-620 *6))) *7 *6)) + (-4 *6 (-356)) (-4 *7 (-636 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1229 *6) "failed")) + (|:| -2123 (-620 (-1229 *6))))) + (-5 *1 (-791 *6 *7)) (-5 *4 (-1229 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1127)) (|:| -1856 (-1127)))) - (-5 *1 (-800))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1182)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1069)) - (-4 *2 (-1182))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-749))) (-5 *3 (-112)) (-5 *1 (-1133 *4 *5)) - (-14 *4 (-895)) (-4 *5 (-1021))))) -(((*1 *2 *3) - (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-825)) (-5 *1 (-1153 *3))))) -(((*1 *1) (-5 *1 (-1233)))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1204 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) - (-4 *10 (-923 *9 *7 *8)) + (-12 (-4 *5 (-356)) (-5 *2 - (-2 (|:| |deter| (-623 (-1141 *10))) - (|:| |dterm| - (-623 (-623 (-2 (|:| -2507 (-749)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-623 *6)) (|:| |nlead| (-623 *10)))) - (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-623 *6)) - (-5 *5 (-623 *10))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) - (-4 *3 (-13 (-170) (-696 (-400 (-550))))) (-14 *4 (-895)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1148)) (-5 *3 (-1145))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-837))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1125 *4)) (-5 *3 (-550)) (-4 *4 (-1021)) - (-5 *1 (-1129 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-550)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1021)) - (-14 *4 (-1145)) (-14 *5 *3)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-273))))) + (-2 (|:| A (-667 *5)) + (|:| |eqs| + (-620 + (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5)) (|:| -3612 *6) + (|:| |rh| *5)))))) + (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) + (-4 *6 (-636 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *6 (-636 *5)) + (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) + (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1204 (-400 *2))) - (-4 *2 (-1204 *5)) (-5 *1 (-209 *5 *2 *6 *3)) - (-4 *3 (-335 *5 *2 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)))) - ((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-550)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-575)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-470)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-606)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1065)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1059)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1043)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-944)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1010)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-304)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-649)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1239)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1036)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-508)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-659)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1084)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-654)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-515)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1150))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-845 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-550)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) - (-4 *4 (-843 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-550)) (-5 *1 (-846 *2 *3)) (-4 *3 (-843 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-550)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-1219 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1219 *2))))) + (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-633 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) + (-5 *5 (-1 (-398 *7) *7)) + (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-634 *7 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) + (-5 *5 (-1 (-398 *7) *7)) + (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-633 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-27)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-634 *5 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-27)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) + (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 *3)))) + (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *6 (-1205 *5)) + (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 (-634 *6 (-400 *6)))))) + (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-623 (-400 *7))) - (-4 *7 (-1204 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-5 *2 (-2 (|:| -1953 (-623 *6)) (|:| -4046 (-623 *6))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-623 (-1201 *5 *4))) - (-5 *1 (-1083 *4 *5)) (-5 *3 (-1201 *5 *4))))) -(((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)))) - ((*1 *1) (-4 *1 (-1120)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-142)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1182)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4345))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-623 (-1150))) (-5 *1 (-854))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *1 (-923 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-173))) (-5 *1 (-1054))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-112)) (-5 *1 (-799))))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) + (-12 (-5 *4 (-1 (-620 *7) *7 (-1141 *7))) (-5 *5 (-1 (-398 *7) *7)) + (-4 *7 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-2 (|:| |frac| (-400 *7)) (|:| -3612 *3)))) + (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-400 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-620 (-2 (|:| |frac| (-400 *6)) (|:| -3612 (-634 *6 (-400 *6)))))) + (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *7 (-1205 *5)) (-4 *4 (-703 *5 *7)) + (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) + (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 *2)) - (-5 *2 (-372)) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-633 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) - (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-634 *2 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-788 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-633 (-400 *6))) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) + (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) - (-5 *1 (-763 *5))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-866 *4)) - (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1069)) (-4 *3 (-164 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-1063 (-818 (-372))))) - (-5 *2 (-623 (-1063 (-818 (-219))))) (-5 *1 (-298)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1204 *3)) - (-5 *2 (-1228 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1228 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-542)) - (-4 *3 (-825)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-526)))) - ((*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1021)) (-4 *1 (-954 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1032)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) - (-4 *5 (-596 (-1145))) (-4 *4 (-771)) (-4 *5 (-825)))) - ((*1 *1 *2) - (-1489 - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) - (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) - (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1041 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1127)) - (-5 *1 (-1039 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1051)))) - ((*1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *2)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1072 *3 *4 *5 *2 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *2 (-1069)) (-4 *6 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *2 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1072 *3 *2 *4 *5 *6)) (-4 *3 (-1069)) (-4 *2 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *2 (-1069)) (-4 *3 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) - (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -1608 *8))) - (-4 *7 (-1035 *4 *5 *6)) (-4 *8 (-1078 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1127)) - (-5 *1 (-1114 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1150)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-1162)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-550)) (-5 *1 (-1162)))) - ((*1 *2 *3) - (-12 (-5 *3 (-758 *4 (-839 *5))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *5 (-623 (-1145))) - (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *6 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-926 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-758 *4 (-839 *6))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *6 (-623 (-1145))) - (-5 *2 (-926 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1115 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) - (-4 *4 (-13 (-823) (-300) (-145) (-996))) (-14 *6 (-623 (-1145))) - (-5 *2 (-623 (-758 *4 (-839 *6)))) (-5 *1 (-1254 *4 *5 *6)) - (-14 *5 (-623 (-1145)))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1021)) (-5 *1 (-1200 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) - (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-736))))) -(((*1 *1) (-5 *1 (-1054)))) + (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) + (-5 *1 (-788 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *6 (-400 *6))) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) + (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-1205 *4)) + (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-400 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) + (-4 *5 (-1205 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-636 *5)) + (-4 *6 (-636 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-550))) (-5 *4 (-879 (-550))) - (-5 *2 (-667 (-550))) (-5 *1 (-573)))) + (-12 (-5 *4 (-1 (-620 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) + (-5 *2 (-620 (-2 (|:| -4306 *5) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) + (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) + (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -3612 *5)))) + (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1205 *4)) (-5 *1 (-787 *4 *2 *3 *5)) + (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) + (-4 *5 (-636 (-400 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *3 *5)) + (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) + (-4 *5 (-636 (-400 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *5 *3)) + (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-636 *2)) + (-4 *3 (-636 (-400 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) + (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) + (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) + (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) + (-4 *3 (-636 *4)) (-4 *6 (-636 (-400 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) - (-5 *1 (-573)))) + (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) + (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) + (-4 *6 (-636 *5)) (-4 *3 (-636 (-400 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-550))) (-5 *4 (-623 (-879 (-550)))) - (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) + (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) + (-4 *6 (-636 *4)) (-4 *3 (-636 (-400 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) + (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1205 *5)) + (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) + (-4 *3 (-636 *2)) (-4 *6 (-636 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) + (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) + (-4 *6 (-636 (-400 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-623 (-1145))) (-5 *2 (-623 (-1018 *5 *6))) - (-5 *1 (-608 *5 *6))))) + (-12 (-5 *3 (-633 *4)) (-4 *4 (-335 *5 *6 *7)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-784 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) + (-12 (-5 *3 (-1147)) + (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1169) (-934)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) + (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-1204 *3)) + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))) + (-5 *1 (-781))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-5 *1 (-746 *4 *5)) (-4 *5 (-402 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-342)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 *3)) + (-620 + (-2 + (|:| -4215 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (|:| -2186 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371))))))) + (-5 *1 (-781))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-342)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 *3)) + (-620 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219))))) + (-5 *1 (-546)))) + ((*1 *2 *1) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2206 (-667 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-667 *3)))) - (-5 *1 (-1237 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5))))) + (-620 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219))))) + (-5 *1 (-781))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-781))))) +(((*1 *1) (-5 *1 (-781)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3230 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1204 *6)) - (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)) (-4 *2 (-825)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *1)) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) - (-14 *3 (-895)) (-4 *4 (-1021)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021))))) + (-12 (-5 *5 (-1147)) + (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) + (-4 *4 (-13 (-29 *6) (-1169) (-934))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) + (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-636 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-623 *3)) (-5 *1 (-951 *4 *5 *6 *3)) - (-4 *3 (-1035 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-535))) - ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021)))) + (-12 (-4 *1 (-778)) + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-1009))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-776 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) +(((*1 *1 *1) (-4 *1 (-237))) ((*1 *1 *1) - (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-895)) - (-5 *2 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) - (-5 *1 (-339 *4)) (-4 *4 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-400 (-1141 (-309 *3)))) (-4 *3 (-13 (-542) (-825))) - (-5 *1 (-1099 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1204 (-167 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-482))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) - (-5 *2 (-926 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1792 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *6))) (-5 *4 (-623 (-1145))) - (-4 *6 (-13 (-542) (-1012 *5))) (-4 *5 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *6)))))) (-5 *1 (-1013 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1167)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-550)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) -(((*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1069))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1145)) - (-5 *2 (-550)) (-5 *1 (-1083 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1182)) - (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4345)) (-4 *1 (-119 *3)) - (-4 *3 (-1182)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4345)) (-4 *1 (-119 *3)) - (-4 *3 (-1182)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-895)) - (-4 *2 (-1069)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1069)) - (-4 *2 (-1182)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1145)) (-5 *1 (-612)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1195 (-550))) (|has| *1 (-6 -4345)) (-4 *1 (-629 *2)) - (-4 *2 (-1182)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4345)) (-4 *1 (-984 *2)) - (-4 *2 (-1182)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) - (-4 *2 (-1182)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *3)) - (-4 *3 (-1182)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) - (-4 *2 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1182)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *2 *5)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2) - (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230)))) - ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1230))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-429))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-917 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 *7)) (-5 *3 (-550)) (-4 *7 (-923 *6 *4 *5)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-5 *1 (-314 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1204 *6)) - (-4 *6 (-13 (-27) (-423 *5))) - (-4 *5 (-13 (-825) (-542) (-1012 (-550)))) (-4 *8 (-1204 (-400 *7))) - (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) - (-4 *3 (-335 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1792 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *7)) (-4 *7 (-923 *6 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1021)) (-5 *2 (-1141 *6)) - (-5 *1 (-314 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) + (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) + (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) + ((*1 *1 *1) (-4 *1 (-465))) + ((*1 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) + ((*1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) - (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1204 (-400 *5)))))) + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-536))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) + (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-536)) + (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) + (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) + (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-536)) + (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) + (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) + (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) + (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) + (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) + (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-765)) (-5 *2 (-1009)) + (-5 *3 + (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-765)) (-5 *2 (-1009)) + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-770)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-623 (-1145))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) - (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) - (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1021) (-825))) - (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1145))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-5 *2 (-234 *5 *7)) - (-5 *1 (-233 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-287 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1127)) (-5 *5 (-594 *6)) - (-4 *6 (-295)) (-4 *2 (-1182)) (-5 *1 (-290 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-594 *5)) (-4 *5 (-295)) - (-4 *2 (-295)) (-5 *1 (-291 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-594 *1)) (-4 *1 (-295)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-5 *2 (-667 *6)) (-5 *1 (-297 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-825)) - (-4 *6 (-825)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) - (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *9 (-356)) (-4 *10 (-1204 *9)) (-4 *11 (-1204 (-400 *10))) - (-5 *2 (-329 *9 *10 *11 *12)) - (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-335 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1186)) (-4 *8 (-1186)) - (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) (-4 *9 (-1204 *8)) - (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1204 (-400 *9))))) + (|partial| -12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1182)) (-4 *6 (-1182)) - (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-1069)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-542)) - (-4 *6 (-542)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) - (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) - (-4 *6 (-966 *5)) (-4 *7 (-1204 *6)) - (-4 *8 (-13 (-402 *6 *7) (-1012 *6))) (-4 *9 (-300)) - (-4 *10 (-966 *9)) (-4 *11 (-1204 *10)) - (-5 *2 (-406 *9 *10 *11 *12)) - (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-402 *10 *11) (-1012 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-411 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1021) (-825))) - (-4 *6 (-13 (-1021) (-825))) (-4 *2 (-423 *6)) - (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-825)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-356)) - (-4 *6 (-356)) (-5 *2 (-569 *6)) (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3230 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-356)) (-4 *6 (-356)) - (-5 *2 (-2 (|:| -3230 *6) (|:| |coeff| *6))) - (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-356)) (-4 *6 (-356)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-583 *8)) - (-5 *1 (-581 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1125 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) - (-5 *1 (-581 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1125 *7)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) - (-5 *1 (-581 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-623 *6)) (-5 *1 (-621 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-623 *6)) (-5 *5 (-623 *7)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-623 *8)) - (-5 *1 (-622 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1021)) (-4 *8 (-1021)) - (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) - (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) - (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1021)) - (-4 *8 (-1021)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) - (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) - (-4 *6 (-1204 *5)) (-4 *2 (-1204 (-400 *8))) - (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1204 (-400 *6))) - (-4 *8 (-1204 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1021)) (-4 *9 (-1021)) - (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-923 *9 *7 *5)) - (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) - (-4 *4 (-923 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) - (-4 *9 (-1021)) (-4 *2 (-923 *9 *8 *6)) - (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) - (-4 *4 (-923 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) - (-5 *1 (-713 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-714 *3 *4)) - (-4 *4 (-705)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-760 *5)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-5 *2 (-760 *6)) (-5 *1 (-759 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-775 *6)) (-5 *1 (-776 *4 *5 *2 *6)) (-4 *4 (-775 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-811 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *1 (-810 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *1 (-817 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-863 *5 *6)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-863 *5 *7)) - (-5 *1 (-862 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-866 *6)) (-5 *1 (-865 *5 *6)))) + (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-926 *5)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-5 *2 (-926 *6)) (-5 *1 (-920 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) - (-4 *8 (-1021)) (-4 *6 (-771)) - (-4 *2 - (-13 (-1069) - (-10 -8 (-15 -2358 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) - (-5 *1 (-925 *6 *7 *8 *5 *2)) (-4 *5 (-923 *8 *6 *7)))) + (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) + (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-932 *6)) (-5 *1 (-931 *5 *6)))) + (|partial| -12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) + (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-926 *4))) (-4 *4 (-1021)) - (-4 *2 (-923 (-926 *4) *5 *6)) (-4 *5 (-771)) - (-4 *6 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-5 *1 (-958 *4 *5 *6 *2)))) + (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) + (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) - (-4 *2 (-966 *6)) (-5 *1 (-964 *5 *6 *4 *2)) (-4 *4 (-966 *5)))) + (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) + (-5 *1 (-763 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) + (-5 *2 (-371)) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-971 *6)) (-5 *1 (-972 *4 *5 *2 *6)) (-4 *4 (-971 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1024 *3 *4 *5 *6 *7)) - (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1024 *3 *4 *5 *6 *7)) - (-4 *5 (-1021)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1021)) (-4 *10 (-1021)) - (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) - (-4 *9 (-232 *5 *7)) (-4 *2 (-1024 *5 *6 *10 *11 *12)) - (-5 *1 (-1026 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1024 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) - (-4 *12 (-232 *5 *10)))) + (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) + (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) + (-5 *2 (-371)) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-1063 *6)) (-5 *1 (-1058 *5 *6)))) + (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) + (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-823)) - (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-623 *6)) - (-5 *1 (-1058 *5 *6)))) + (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) + (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-1061 *6)) (-5 *1 (-1060 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1064 *4 *2)) (-4 *4 (-823)) - (-4 *2 (-1118 *4)))) + (-12 (-5 *4 (-893)) (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) + (-4 *3 (-596 (-371))))) + ((*1 *2 *3) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-1125 *6)) (-5 *1 (-1123 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1125 *6)) (-5 *5 (-1125 *7)) - (-4 *6 (-1182)) (-4 *7 (-1182)) (-4 *8 (-1182)) (-5 *2 (-1125 *8)) - (-5 *1 (-1124 *6 *7 *8)))) + (-12 (-5 *3 (-166 *5)) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-5 *2 (-1141 *6)) (-5 *1 (-1139 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069)))) + (-12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5 *7 *9)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-14 *7 (-1145)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1192 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1145)))) + (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1195 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-1195 *6)) (-5 *1 (-1194 *5 *6)))) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1195 *5)) (-4 *5 (-823)) - (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1125 *6)) - (-5 *1 (-1194 *5 *6)))) + (-12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1201 *5 *6)) (-14 *5 (-1145)) - (-4 *6 (-1021)) (-4 *8 (-1021)) (-5 *2 (-1201 *7 *8)) - (-5 *1 (-1196 *5 *6 *7 *8)) (-14 *7 (-1145)))) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) + (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) - (-4 *2 (-1204 *6)) (-5 *1 (-1202 *5 *4 *6 *2)) (-4 *4 (-1204 *5)))) + (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) + (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1021)) - (-4 *6 (-1021)) (-14 *7 (-1145)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1208 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1145)))) + (-12 (-5 *4 (-893)) (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) + (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1021)) (-4 *6 (-1021)) - (-4 *2 (-1219 *6)) (-5 *1 (-1217 *5 *6 *4 *2)) (-4 *4 (-1219 *5)))) + (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) + (-5 *2 (-371)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) + (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5)) (-4 *5 (-1182)) - (-4 *6 (-1182)) (-5 *2 (-1228 *6)) (-5 *1 (-1227 *5 *6)))) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) + (-5 *2 (-371)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) + (-5 *2 (-371)) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1228 *5)) - (-4 *5 (-1182)) (-4 *6 (-1182)) (-5 *2 (-1228 *6)) - (-5 *1 (-1227 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-1251 *3 *4)) - (-4 *4 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-14 *5 (-623 (-1145))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) - (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) - (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) + (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) + (-4 *2 (-170))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-620 (-759 *3))) (-5 *1 (-759 *3)) (-4 *3 (-543)) + (-4 *3 (-1023))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) + (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) + (-4 *3 (-543)) (-4 *3 (-1023))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) + (-4 *3 (-543)) (-4 *3 (-1023))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) - (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) + (-620 + (-2 (|:| |outval| *4) (|:| |outmult| (-536)) + (|:| |outvect| (-620 (-667 *4)))))) + (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-757 *4)) + (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-170)) (-4 *2 (-1205 *4)) (-5 *1 (-175 *4 *2 *3)) + (-4 *3 (-703 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *5)) (|:| -2999 (-623 (-926 *5)))))) - (-5 *1 (-1254 *5 *6 *7)) (-5 *3 (-623 (-926 *5))) - (-14 *6 (-623 (-1145))) (-14 *7 (-623 (-1145))))) + (-12 (-5 *3 (-667 (-400 (-920 *5)))) (-5 *4 (-1147)) (-5 *2 (-920 *5)) + (-5 *1 (-285 *5)) (-4 *5 (-444)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-5 *2 - (-623 (-2 (|:| -4018 (-1141 *4)) (|:| -2999 (-623 (-926 *4)))))) - (-5 *1 (-1254 *4 *5 *6)) (-5 *3 (-623 (-926 *4))) - (-14 *5 (-623 (-1145))) (-14 *6 (-623 (-1145)))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) + (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-5 *2 (-920 *4)) (-5 *1 (-285 *4)) + (-4 *4 (-444)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-575)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-606)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1069)) - (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) - (-5 *1 (-1045 *3 *4 *2)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1069))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *6 (-1204 *5)) - (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1309 *3)))) - (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) - (-4 *7 (-634 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) - (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1309 (-632 *6 (-400 *6)))))) - (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)) - (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-219)))) - ((*1 *1 *1 *1) - (-1489 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1182))) - (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1182))))) - ((*1 *1 *1 *1) (-4 *1 (-356))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1094 *3 (-594 *1))) (-4 *3 (-542)) (-4 *3 (-825)) - (-4 *1 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-526))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-705) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-705) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)) (-4 *2 (-356)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-696 *4)) - (-4 *3 (|SubsetCategory| (-705) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)) - (-4 *2 (|SubsetCategory| (-705) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) - (-4 *2 (-1021)) (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-749))) - (-14 *5 (-749)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1024 *3 *4 *2 *5 *6)) (-4 *2 (-1021)) - (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1021)) (-4 *3 (-825)) - (-4 *4 (-771)) (-14 *6 (-623 *3)) - (-5 *1 (-1240 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-923 *2 *4 *3)) - (-14 *7 (-623 (-749))) (-14 *8 (-749)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1021)) - (-4 *3 (-821))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-1199 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-444)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) - (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-623 - (-2 - (|:| -3549 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) - (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) - (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -3859 - (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) - (|:| |expense| (-372)) (|:| |accuracy| (-372)) - (|:| |intermediateResults| (-372))))))) - (-5 *1 (-781))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-128)) (-5 *2 (-1089))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-725))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-575)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-606)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1069)) - (-4 *2 (-13 (-423 *4) (-860 *3) (-596 (-866 *3)))) - (-5 *1 (-1045 *3 *4 *2)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-1134 *2 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-594 *5))) (-4 *4 (-825)) (-5 *2 (-594 *5)) - (-5 *1 (-559 *4 *5)) (-4 *5 (-423 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1035 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-623 *8)) - (|:| |towers| (-623 (-1001 *5 *6 *7 *8))))) - (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1035 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-623 *8)) - (|:| |towers| (-623 (-1115 *5 *6 *7 *8))))) - (-5 *1 (-1115 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) - (-4 *2 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) - (-15 -1858 ((-1233) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-21))))) -(((*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1054))) (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1145)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) + (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-920 (-166 (-400 (-536))))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) - (-4 *3 (-860 *5)) (-4 *4 (-596 (-866 *5))))) + (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *4 (-1147)) + (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *5)) + (-4 *5 (-13 (-356) (-823))))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-920 (-400 (-536)))) + (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1069)) - (-5 *2 (-112)) (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-866 *5)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-623 (-1228 *4))) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) - (-5 *2 (-623 (-1228 *3)))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1198 *4 *2)) (-4 *2 (-1204 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) - (-4 *2 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) - (-15 -1858 ((-1233) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-130)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) - (-4 *2 (-1204 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-526))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-25))))) + (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *4 (-1147)) + (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-879 *3)) (-4 *3 (-1069))))) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-620 (-749))) + (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *6)) (-4 *7 (-924 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 (-400 (-926 *6)))) - (-5 *3 (-400 (-926 *6))) - (-4 *6 (-13 (-542) (-1012 (-550)) (-145))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-556 *6))))) -(((*1 *2 *3) - (-12 + (-12 (-4 *6 (-1205 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) + (-4 *10 (-924 *9 *7 *8)) (-5 *2 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))) - (-5 *4 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) + (-2 (|:| |deter| (-620 (-1141 *10))) + (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-620 *6)) (|:| |nlead| (-620 *10)))) + (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-620 *6)) + (-5 *5 (-620 *10))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-620 *3)) + (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) + (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1129)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *4 (-1037 *6 *7 *8)) (-5 *2 (-1235)) (-5 *1 (-754 *6 *7 *8 *4 *5)) + (-4 *5 (-1043 *6 *7 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) + ((*1 *1 *1) (-5 *1 (-371))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *1 (-994 *3)) (-4 *3 (-1204 (-550))) (-5 *4 (-400 (-550))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-550))) - (-5 *2 (-623 (-2 (|:| -3480 *5) (|:| -3490 *5)))) (-5 *1 (-994 *3)) - (-4 *3 (-1204 (-550))) (-5 *4 (-2 (|:| -3480 *5) (|:| -3490 *5))))) - ((*1 *2 *3) - (-12 + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) + (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1037 *4 *5 *6)) + (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1043 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) + ((*1 *1 *1 *1) (-4 *1 (-535))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550)))))) + (-620 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-536)) + (|:| |outvect| (-620 (-667 (-166 *4))))))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-166 *4))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-740)))) +(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-740)))) +(((*1 *1 *1 *1) (-4 *1 (-740)))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-738))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-920 (-536)))) (-5 *1 (-429)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *1 (-995 *3)) (-4 *3 (-1204 (-400 (-550)))) - (-5 *4 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550))))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-219))) (-5 *2 (-1074)) (-5 *1 (-738)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-550))) - (-5 *2 (-623 (-2 (|:| -3480 *4) (|:| -3490 *4)))) (-5 *1 (-995 *3)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-550))) - (-5 *2 (-623 (-2 (|:| -3480 *5) (|:| -3490 *5)))) (-5 *1 (-995 *3)) - (-4 *3 (-1204 *5)) (-5 *4 (-2 (|:| -3480 *5) (|:| -3490 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1059))))) -(((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1204 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1204 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-550)))) - (-5 *1 (-298))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-536))) (-5 *2 (-1074)) (-5 *1 (-738))))) +(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-623 (-623 (-917 (-219))))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-623 (-623 (-917 (-219)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1) (-5 *1 (-563))) - ((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-838)))) - ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-838)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-837)) (-5 *2 (-1233)) (-5 *1 (-838)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1125 *4)) - (-4 *4 (-1069)) (-4 *4 (-1182))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-400 (-926 *4))) (-5 *1 (-898 *4 *5 *6 *3)) - (-4 *3 (-923 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-667 *7)) (-4 *7 (-923 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-667 (-400 (-926 *4)))) - (-5 *1 (-898 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-623 (-400 (-926 *4)))) - (-5 *1 (-898 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-320 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-507 *3 *4)) - (-14 *4 (-550))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1230)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) - (-5 *2 (-623 (-623 (-917 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-623 (-623 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1021)) - (-4 *1 (-1103 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 (-917 *3)))) (-4 *3 (-1021)) - (-4 *1 (-1103 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-112)) - (-4 *1 (-1103 *4)) (-4 *4 (-1021)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-623 (-623 (-917 *4)))) (-5 *3 (-112)) - (-4 *1 (-1103 *4)) (-4 *4 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-623 (-169))) - (-5 *4 (-169)) (-4 *1 (-1103 *5)) (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-623 (-623 (-917 *5)))) (-5 *3 (-623 (-169))) - (-5 *4 (-169)) (-4 *1 (-1103 *5)) (-4 *5 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-550)) (-5 *4 (-411 *2)) (-4 *2 (-923 *7 *5 *6)) - (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825))))) -(((*1 *1 *1) (-5 *1 (-837)))) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-166 (-219))) (-5 *6 (-1129)) (-5 *4 (-219)) + (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) + (-5 *1 (-737))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) + (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-166 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-736))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-736))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) + (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-736))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) + (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) + (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1009)) + (-5 *1 (-735))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) + (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-735))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) + (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) + (-5 *1 (-735))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-166 (-219)))) + (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-734))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-734))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) + (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) + (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) + (-5 *1 (-733))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-733))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) + (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-620 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) + (-5 *7 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-667 (-536))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) + (-5 *3 (-536)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-620 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-536))) + (-5 *3 (-536)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1009)) + (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 + *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) + (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-536)) + (-5 *2 (-1009)) (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 + *8) + (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-536))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-536)) + (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1009)) + (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1009)) + (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1009)) + (-5 *1 (-732))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1009)) + (-5 *1 (-732))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) + (-5 *2 (-1009)) (-5 *1 (-732))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) + (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) + (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) + (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) + (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *3 (-536)) + (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-731))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) + (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 + *4) + (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) + (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-1129)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1009)) + (-5 *1 (-729))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) + (-5 *1 (-729))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1009)) + (-5 *1 (-728)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1009)) + (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *3 (-219)) + (-5 *2 (-1009)) (-5 *1 (-727))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) + (-5 *1 (-727))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) + (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) + (-5 *1 (-725))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) + (-5 *1 (-725))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-536)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) + (-5 *1 (-725))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) + (-5 *1 (-724))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) + (-5 *1 (-724))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1141 *6)) (-5 *3 (-536)) (-4 *6 (-300)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-4 *7 (-825)) + (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-620 (-749))) + (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-536)) (-5 *4 (-398 *2)) (-4 *2 (-924 *7 *5 *6)) + (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) + (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) + (-5 *2 + (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-620 *8)) + (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 *8)) (|:| -2488 (-536))))) + (|:| |ctpol| *8))) + (-5 *1 (-721 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) + (-4 *6 (-771)) (-4 *9 (-924 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 *9)) (|:| -2488 (-536))))))) + (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-536)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) + (-4 *9 (-924 *8 *6 *7)) + (-5 *2 (-2 (|:| -2115 (-1141 *9)) (|:| |polval| (-1141 *8)))) + (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) + (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) + (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) + (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) + (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-717))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-715 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) + ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072))))) (((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-1069)) (-5 *2 (-623 *1)) - (-4 *1 (-375 *3 *4)))) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) + (-5 *2 (-620 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-749)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-705)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-749)))) ((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-923 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1152))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-550)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) - (-4 *9 (-923 *8 *6 *7)) - (-5 *2 (-2 (|:| -2054 (-1141 *9)) (|:| |polval| (-1141 *8)))) - (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8))))) + (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-543)) (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) + (-5 *3 (-400 (-920 *6))) (-4 *5 (-771)) + (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 (-920 *6))) (-4 *6 (-543)) + (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) + (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 *2)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) + (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) + (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550))))) - (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) + (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) + (-4 *6 (-543)) (-5 *2 (-2 (|:| -2728 (-920 *6)) (|:| -2168 (-920 *6)))) + (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) + (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) + (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1114 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-112)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-112)) (-5 *1 (-1171 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1219 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) + (-12 (-5 *3 (-620 *9)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) + (-4 *8 (-1023)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-623 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1069)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-623 *4))) (-4 *4 (-1069)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1069)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-623 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1021)) - (-5 *1 (-693 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-812 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1145)) (-5 *1 (-260))))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *1 (-1097 *3 *2)) (-4 *3 (-1204 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-923 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *1)))) - (-4 *1 (-1041 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1186))) - ((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-1207 *3 *2)) - (-4 *2 (-13 (-1204 *3) (-542) (-10 -8 (-15 -3260 ($ $ $)))))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-730))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))) - (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1069)) (-4 *2 (-825)) - (-5 *1 (-113 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-145) (-27) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) - (-5 *3 (-400 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-13 (-145) (-27) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) - (-4 *2 (-634 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1205 *5)) + (-5 *1 (-706 *5 *2)) (-4 *5 (-356))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -3420 (-398 *3)) (|:| |special| (-398 *3)))) + (-5 *1 (-706 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) - (-5 *2 (-406 *4 (-400 *4) *5 *6)))) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *6)) (-4 *6 (-13 (-402 *4 *5) (-1012 *4))) - (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) (-4 *3 (-300)) - (-5 *1 (-406 *3 *4 *5 *6)))) + (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147))))) + ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) + (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1205 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) - (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) - (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-256)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1182)) - (-4 *5 (-1182)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-749)) - (-4 *7 (-1182)) (-4 *5 (-1182)) (-5 *2 (-234 *6 *5)) - (-5 *1 (-233 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1182)) (-4 *5 (-1182)) - (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1069)) (-4 *5 (-1069)) - (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-623 *6)) (-4 *6 (-1182)) - (-4 *5 (-1182)) (-5 *2 (-623 *5)) (-5 *1 (-621 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1182)) - (-4 *5 (-1182)) (-5 *2 (-932 *5)) (-5 *1 (-931 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1125 *6)) (-4 *6 (-1182)) - (-4 *3 (-1182)) (-5 *2 (-1125 *3)) (-5 *1 (-1123 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1228 *6)) (-4 *6 (-1182)) - (-4 *5 (-1182)) (-5 *2 (-1228 *5)) (-5 *1 (-1227 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1145)) - (-4 *6 (-13 (-825) (-300) (-1012 (-550)) (-619 (-550)) (-145))) - (-4 *4 (-13 (-29 *6) (-1167) (-933))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2206 (-623 *4)))) - (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-634 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1 *1) (-5 *1 (-1089)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)) (-4 *2 (-825)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) - (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) + (-12 (-5 *3 (-1229 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) + (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) + ((*1 *1 *1) (|partial| -4 *1 (-701)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) + ((*1 *1 *1) (|partial| -4 *1 (-701)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) + (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1204 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1204 (-400 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429))))) + (-12 (-4 *2 (-1072)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) + (-14 *4 + (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *2)) + (-2 (|:| -2487 *3) (|:| -2488 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-361)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) + ((*1 *2 *1) + (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1072)) + (-14 *4 + (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) + (-2 (|:| -2487 *2) (|:| -2488 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1205 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1205 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1205 *3))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-623 (-1045 *4 *5 *2))) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-4 *2 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-623 (-1045 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1069)) - (-4 *6 (-13 (-1021) (-860 *5) (-825) (-596 (-866 *5)))) - (-4 *2 (-13 (-423 *6) (-860 *5) (-596 (-866 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3563 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184))))) + (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1205 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1205 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-343)) (-4 *2 (-1023)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-620 (-1141 *13))) (-5 *3 (-1141 *13)) + (-5 *4 (-620 *12)) (-5 *5 (-620 *10)) (-5 *6 (-620 *13)) + (-5 *7 (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *13))))) + (-5 *8 (-620 (-749))) (-5 *9 (-1229 (-620 (-1141 *10)))) (-4 *12 (-825)) + (-4 *10 (-300)) (-4 *13 (-924 *10 *11 *12)) (-4 *11 (-771)) + (-5 *1 (-686 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-620 *11)) (-5 *5 (-620 (-1141 *9))) (-5 *6 (-620 *9)) + (-5 *7 (-620 *12)) (-5 *8 (-620 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) + (-4 *12 (-924 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-620 (-1141 *12))) + (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-620 (-1141 *11))) (-5 *3 (-1141 *11)) + (-5 *4 (-620 *10)) (-5 *5 (-620 *8)) (-5 *6 (-620 (-749))) + (-5 *7 (-1229 (-620 (-1141 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) + (-4 *11 (-924 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) + (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) + (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-926 (-372))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-926 (-372)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-926 (-550))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-926 (-550)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) - (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-400 (-926 (-550))))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-400 (-926 (-372))))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-926 (-550)))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-926 (-372)))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-926 (-550)))) (-4 *1 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-926 (-372)))) (-4 *1 (-389)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-550))) (-4 *1 (-389)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-926 (-372))) (-4 *1 (-389)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-400 (-926 (-550))))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-400 (-926 (-372))))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-926 (-550)))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-926 (-372)))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-309 (-550)))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1228 (-309 (-372)))) (-4 *1 (-433)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1204 *5)) - (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) - (-4 *3 (-1204 *6)) (-14 *7 (-895)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *1 (-950 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (|partial| -1489 - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) - (-3548 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))) - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-535))) (-3548 (-4 *3 (-38 (-400 (-550))))) - (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))) - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-966 (-550)))) (-4 *3 (-38 (-400 (-550)))) - (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))))) - ((*1 *1 *2) - (|partial| -1489 - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) - (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) -(((*1 *1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3490 *6) (|:| |sol?| (-112))) (-550) - *6)) - (-4 *6 (-356)) (-4 *7 (-1204 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -3230 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460))))) + (-12 (-5 *3 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) + (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) + (-4 *3 (-1183)) (-4 *4 (-1183))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1147)) (-5 *1 (-525)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-683 *3)) + (-4 *3 (-596 (-525)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) + (-4 *3 (-596 (-525))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) + (-4 *3 (-596 (-525)))))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-1204 *4)) - (-4 *5 (-1204 (-400 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) + (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-666 *3 *4 *5 *6)) + (-4 *6 (-664 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-678 *3)) + (-4 *3 (-300))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) + ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) +(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) + ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-1 (-219) (-219) (-219) (-219))) + (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) + (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) + (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) + (-5 *1 (-675))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) + (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) + (-5 *1 (-675)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) + (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *1 (-675))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-667 (-550))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) - (-5 *3 (-550)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-437 *3)) (-4 *3 (-1021))))) + (-12 (-5 *3 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *5)))) (-4 *5 (-1205 *4)) + (-4 *4 (-343)) (-5 *2 (-620 *5)) (-5 *1 (-210 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-2 (|:| -4087 *5) (|:| -4302 (-536))))) (-5 *4 (-536)) + (-4 *5 (-1205 *4)) (-5 *2 (-620 *5)) (-5 *1 (-674 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-536)) (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -4302 *4)))) + (-5 *1 (-674 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) + ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1072))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1145)) - (|:| |arrayIndex| (-623 (-926 (-550)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1145)) (|:| |rand| (-837)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1144)) (|:| |thenClause| (-323)) - (|:| |elseClause| (-323)))) - (|:| |returnBranch| - (-2 (|:| -4217 (-112)) - (|:| -1337 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2520 (-837)))))) - (|:| |blockBranch| (-623 (-323))) - (|:| |commentBranch| (-623 (-1127))) (|:| |callBranch| (-1127)) - (|:| |forBranch| - (-2 (|:| -2873 (-1061 (-926 (-550)))) - (|:| |span| (-926 (-550))) (|:| -1865 (-323)))) - (|:| |labelBranch| (-1089)) - (|:| |loopBranch| (-2 (|:| |switch| (-1144)) (|:| -1865 (-323)))) - (|:| |commonBranch| - (-2 (|:| -1856 (-1145)) (|:| |contents| (-623 (-1145))))) - (|:| |printBranch| (-623 (-837))))) - (-5 *1 (-323))))) -(((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1021)) - (-4 *3 (-1069))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-52))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1792 *3) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825))) - (-4 *2 (-13 (-423 *4) (-976) (-1167))) (-5 *1 (-582 *4 *2 *3)) - (-4 *3 (-13 (-423 (-167 *4)) (-976) (-1167)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-623 (-550))) (-5 *3 (-112)) (-5 *1 (-1079))))) -(((*1 *1 *2) - (-12 (-5 *2 (-400 (-550))) (-4 *1 (-540 *3)) - (-4 *3 (-13 (-397) (-1167))))) - ((*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1167)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-634 *3)))) + (-12 (-4 *1 (-673 *3)) (-4 *3 (-1072)) + (-5 *2 (-620 (-2 (|:| -2186 *3) (|:| -2064 (-749)))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *7 (-874 *6)) (-5 *2 (-667 *7)) + (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-365 *7)) + (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) + (-5 *2 (-667 (-307 (-219)))) (-5 *1 (-199)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -1309 *3) (|:| -3985 (-623 *5)))) - (-5 *1 (-999 *5 *3)) (-5 *4 (-623 *5)) (-4 *3 (-634 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) - (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) + (-12 (-4 *5 (-1072)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) + (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-365 *6)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *3 (-874 *6)) (-5 *2 (-667 *3)) + (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-365 *3)) + (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) + (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1072)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) + (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4348))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) + (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-1229 *3)) + (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) +(((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) + (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) + (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-536)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-664 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) - (-14 *5 (-1145)) (-5 *2 (-550)) (-5 *1 (-1083 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1043)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1087))))) -(((*1 *2 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1005))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-895)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *3 (-1204 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-634 *3)) - (-4 *5 (-634 (-400 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 *5)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-1204 *4)) - (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1072))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1072))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1072)) (-4 *4 (-1072)) (-4 *6 (-1072)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-661 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5)) + (-5 *1 (-661 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1072)) + (-4 *3 (-1072))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1072)) + (-5 *1 (-656 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1072)) (-5 *1 (-660 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1072))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1072)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-620 *5) (-620 *5))) (-5 *4 (-536)) (-5 *2 (-620 *5)) + (-5 *1 (-660 *5)) (-4 *5 (-1072))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1184))) (-5 *3 (-1184)) (-5 *1 (-659))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) + (-4 *2 (-1072)) (-5 *1 (-658 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1147)) (-5 *4 (-1063 (-920 (-536)))) (-5 *2 (-323)) + (-5 *1 (-325)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072))))) (((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))))) - ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) - (-14 *4 (-623 (-1145))))) - ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) - (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-4 *2 (-335 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1204 *2))))) + (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1023)) (-4 *2 (-1072))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1229 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-167 (-400 (-550))))) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) + (-5 *2 (-57 (-620 (-650 *5)))) (-5 *1 (-650 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-620 (-650 *5))) + (-5 *1 (-650 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *7)) (-4 *7 (-825)) + (-4 *8 (-924 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-5 *2 - (-623 - (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-550)) - (|:| |outvect| (-623 (-667 (-167 *4))))))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) + (-2 (|:| |particular| (-3 (-1229 (-400 *8)) "failed")) + (|:| -2123 (-620 (-1229 (-400 *8)))))) + (-5 *1 (-647 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 (-926 *6))) (-4 *6 (-542)) - (-4 *2 (-923 (-400 (-926 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) - (-4 *5 (-771)) - (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)))))))) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-112)) + (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-112)) + (-5 *1 (-646 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-1141 *4))) (-5 *3 (-1141 *4)) (-4 *4 (-884)) + (-5 *1 (-641 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) + (-4 *2 (-636 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-636 *3)) (-4 *3 (-1023)) (-4 *3 (-356)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-638 *5 *2)) + (-4 *2 (-636 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) + (-4 *2 (-636 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) + (-5 *3 (-633 (-400 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-629 *2)) (-4 *2 (-1183))))) (((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-1035 *3 *4 *5))))) + (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-1204 *4)) (-4 *4 (-1186)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1204 (-400 *3)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1145))) (-5 *4 (-1145)) - (-5 *1 (-1148)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1148)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-430)) (-5 *3 (-1145)) (-5 *1 (-1149)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1145))) (-5 *1 (-1149))))) -(((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-5 *2 (-112))))) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-4 *3 (-1072)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)))) + ((*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)))) + ((*1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-536) (-536))) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) + (-4 *3 (-1072))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-354 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-379 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1072))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1072))))) +(((*1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-620 *3)) (-4 *3 (-1183))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-667 *1)) (-5 *4 (-1229 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1023)) + (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1023)) (-5 *2 (-667 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-623 (-1145))) - (-5 *2 - (-623 (-1115 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) - (-5 *1 (-608 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-4 *1 (-149 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-623 (-2 (|:| -3068 (-749)) (|:| -1808 *4) (|:| |num| *4)))) - (-4 *4 (-1204 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-5 *3 (-623 (-926 (-550)))) (-5 *4 (-112)) (-5 *1 (-430)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-5 *3 (-623 (-1145))) (-5 *4 (-112)) (-5 *1 (-430)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1125 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-170)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-170)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 (-623 *3)))) (-4 *3 (-1069)) - (-5 *1 (-653 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1069)) - (-14 *4 - (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *3)) - (-2 (|:| -3690 *2) (|:| -3068 *3)))))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1182)) (-4 *3 (-1182)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 *4)))) - (-4 *4 (-1069)) (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)))) + (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) + (-4 *5 (-543)) (-5 *2 (-1229 *5)) (-5 *1 (-618 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *5)) (-4 *5 (-13 (-1069) (-34))) - (-5 *2 (-623 (-1109 *3 *5))) (-5 *1 (-1109 *3 *5)) - (-4 *3 (-13 (-1069) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| |val| *4) (|:| -1608 *5)))) - (-4 *4 (-13 (-1069) (-34))) (-4 *5 (-13 (-1069) (-34))) - (-5 *2 (-623 (-1109 *4 *5))) (-5 *1 (-1109 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1608 *4))) - (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34))) - (-5 *1 (-1109 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-1069) (-34))) - (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1109 *2 *3))) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34))) (-5 *1 (-1110 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-623 (-1110 *2 *3))) (-5 *1 (-1110 *2 *3)) - (-4 *2 (-13 (-1069) (-34))) (-4 *3 (-13 (-1069) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1021)) - (-5 *3 (-400 (-550))) (-5 *1 (-1129 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 (-917 *4))) (-4 *1 (-1103 *4)) (-4 *4 (-1021)) - (-5 *2 (-749))))) + (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-3671 (-4 *5 (-356))) + (-4 *5 (-543)) (-5 *2 (-1229 (-400 *5))) (-5 *1 (-618 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) + (|partial| -12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) + (-5 *2 (-1229 *4)) (-5 *1 (-618 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1116 *3))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1167) (-29 *4)))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1167) (-423 *3))) - (-14 *4 (-1145)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-4 *2 (-13 (-27) (-1167) (-423 *3) (-10 -8 (-15 -2233 ($ *4))))) - (-4 *4 (-823)) - (-4 *5 - (-13 (-1206 *2 *4) (-356) (-1167) - (-10 -8 (-15 -2798 ($ $)) (-15 -2149 ($ $))))) - (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1145))))) -(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-356)) (-14 *6 (-1228 (-667 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-623 (-1145))))) - ((*1 *1 *2) (-12 (-5 *2 (-1094 (-550) (-594 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'JINT 'X 'ELAM) (-2245) (-677)))) - (-5 *1 (-60 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 'XC) (-677)))) - (-5 *1 (-62 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-2245 'X) (-2245) (-677))) (-5 *1 (-63 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-2245) (-2245 'X 'HESS) (-677)))) - (-5 *1 (-64 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-2245) (-2245 'XC) (-677))) (-5 *1 (-65 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'X) (-2245 '-1932) (-677)))) - (-5 *1 (-70 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 'X) (-677)))) - (-5 *1 (-73 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'X 'EPS) (-2245 '-1932) (-677)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1145)) (-14 *4 (-1145)) - (-14 *5 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'EPS) (-2245 'YA 'YB) (-677)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1145)) (-14 *4 (-1145)) - (-14 *5 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-2245) (-2245 'X) (-677))) (-5 *1 (-76 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-2245) (-2245 'X) (-677))) (-5 *1 (-77 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 'XC) (-677)))) - (-5 *1 (-78 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 'X) (-677)))) - (-5 *1 (-79 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245) (-2245 'X) (-677)))) - (-5 *1 (-80 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'X '-1932) (-2245) (-677)))) - (-5 *1 (-81 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-2245 'X '-1932) (-2245) (-677)))) - (-5 *1 (-82 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-2245 'X) (-2245) (-677)))) (-5 *1 (-83 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'X) (-2245) (-677)))) - (-5 *1 (-84 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-332 (-2245 'X) (-2245 '-1932) (-677)))) - (-5 *1 (-85 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-2245 'XL 'XR 'ELAM) (-2245) (-677)))) - (-5 *1 (-86 *3)) (-14 *3 (-1145)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-2245 'X) (-2245 '-1932) (-677))) (-5 *1 (-88 *3)) - (-14 *3 (-1145)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-92)))) - ((*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) - ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-550)) (-14 *4 (-749)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1111 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) - ((*1 *1 *2) - (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 (-667 *4))) (-4 *4 (-170)) - (-5 *2 (-1228 (-667 (-400 (-926 *4))))) (-5 *1 (-183 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) - (-4 *3 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 ((-1233) $)) - (-15 -1858 ((-1233) $))))) - (-5 *1 (-208 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1061 (-309 *4))) - (-4 *4 (-13 (-825) (-542) (-596 (-372)))) (-5 *2 (-1061 (-372))) - (-5 *1 (-251 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1204 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1213 *4 *5 *6)) (-4 *4 (-13 (-27) (-1167) (-423 *3))) - (-14 *5 (-1145)) (-14 *6 *4) - (-4 *3 (-13 (-825) (-1012 (-550)) (-619 (-550)) (-444))) - (-5 *1 (-306 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-323)))) - ((*1 *2 *1) - (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *2 *3) - (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) - (-4 *3 (-322 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) - (-4 *3 (-322 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-1252 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-1243 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-377)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-4 *1 (-382)))) - ((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-387)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-389)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-550)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-550))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-287 (-309 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1145)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1145)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-14 *5 (-623 (-1145))) (-14 *6 (-1149)))) - ((*1 *1 *2) - (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) - (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-550))))) - (-4 *3 (-13 (-825) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 (-926 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-825)) - (-4 *1 (-423 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-825)) - (-4 *1 (-423 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-825)) - (-4 *1 (-423 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1094 *3 (-594 *1))) (-4 *3 (-1021)) (-4 *3 (-825)) - (-4 *1 (-423 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-427)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-430)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-677))) (-4 *1 (-432)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1149)) (|:| -2278 (-623 (-323))))) - (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-433)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1228 (-400 (-926 *3)))) (-4 *3 (-170)) - (-14 *6 (-1228 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-14 *4 (-895)) (-14 *5 (-623 (-1145))))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-460)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1213 *3 *4 *5)) (-4 *3 (-1021)) (-14 *4 (-1145)) - (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) - ((*1 *1 *2) (-12 (-5 *2 (-1094 (-550) (-594 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-493)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-356)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-515)))) - ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-587)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-588)))) - ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1021)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1248 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) - ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-723 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) - (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) - (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1069)) - (-5 *1 (-653 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-659)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *1 (-665 *3 *4 *2)) (-4 *4 (-366 *3)) - (-4 *2 (-366 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) - ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-837))))) - ((*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-550))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-677)))) - ((*1 *2 *3) - (-12 (-5 *3 (-309 (-550))) (-5 *2 (-309 (-679))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1069)))) - ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689)))) - ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3690 *3) (|:| -3068 *4))) - (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1069)) - (-14 *5 (-1 (-112) *2 *2)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -3690 *3) (|:| -3068 *4))) (-4 *3 (-825)) - (-4 *4 (-1069)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-2 (|:| -4304 *3) (|:| -3227 *4)))) - (-4 *3 (-1021)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-742)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| |mdnia| - (-2 (|:| |fn| (-309 (-219))) - (|:| -2873 (-623 (-1063 (-818 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-747)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-309 (-219))) - (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *1 (-747)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *1 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-747)))) - ((*1 *2 *3) (-12 (-5 *2 (-752)) (-5 *1 (-751 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-786)))) - ((*1 *2 *1) - (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1069)) - (-14 *4 *3))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) - (-4 *2 (-874 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-802)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) - (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-623 (-309 (-219)))) - (|:| -2463 (-623 (-219))))))) - (-5 *1 (-816)))) - ((*1 *1 *2) - (-12 + (-12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-112)) + (-5 *1 (-618 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-817 *3))) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 - (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) - (-5 *1 (-816)))) - ((*1 *1 *2) - (-12 + (-3 (-817 *3) + (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-817 *3) #1#))) + "failed")) + (-5 *1 (-616 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1129)) + (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-817 *3)) + (-5 *1 (-616 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-817 (-920 *5)))) (-4 *5 (-444)) (-5 *2 - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (-5 *1 (-816)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-816)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-14 *3 (-1145)) (-5 *1 (-830 *3 *4 *5 *6)) - (-4 *4 (-1021)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-5 *1 (-840 *3 *4 *5 *6)) - (-14 *4 (-623 (-1145))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) - ((*1 *2 *1) - (-12 (-5 *2 (-926 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 (-48))) (-5 *2 (-309 (-550))) (-5 *1 (-849)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 (-48)))) (-5 *2 (-309 (-550))) - (-5 *1 (-849)))) - ((*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) - ((*1 *1 *2) - (-12 + (-3 (-817 (-400 (-920 *5))) + (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-817 (-400 (-920 *5))) #2#))) + #3="failed")) + (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) (-5 *2 - (-2 (|:| |pde| (-623 (-309 (-219)))) - (|:| |constraints| - (-623 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) - (|:| |grid| (-749)) (|:| |boundaryType| (-550)) - (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) - (|:| |tol| (-219)))) - (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-872)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1168 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-879 *3))) (-4 *3 (-1069)) (-5 *1 (-878 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-879 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-893 *4)) - (-4 *4 (-13 (-825) (-542))))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) - ((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-945)))) - ((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) - ((*1 *2 *3) (-12 (-5 *2 (-1233)) (-5 *1 (-1007 *3)) (-4 *3 (-1182)))) - ((*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1007 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-923 *3 *4 *5)) - (-14 *6 (-623 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1182)))) - ((*1 *2 *3) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-1017 *3)) (-4 *3 (-542)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1021)))) - ((*1 *2 *1) - (-12 (-5 *2 (-667 *5)) (-5 *1 (-1025 *3 *4 *5)) (-14 *3 (-749)) - (-14 *4 (-749)) (-4 *5 (-1021)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-5 *1 (-1095 *3 *4 *2)) - (-4 *2 (-923 *3 (-522 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *2 (-825)) (-5 *1 (-1095 *3 *2 *4)) - (-4 *4 (-923 *3 (-522 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1113)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1021)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1201 *4 *3)) (-4 *3 (-1021)) (-14 *4 (-1145)) - (-14 *5 *3) (-5 *1 (-1143 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1144)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155 (-1145) (-430))) (-5 *1 (-1149)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1150)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *1 (-1161 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) (-12 (-5 *2 (-837)) (-5 *1 (-1162)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 *3)) (-4 *3 (-1021)) (-5 *1 (-1176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1176 *3)) (-4 *3 (-1021)))) - ((*1 *1 *2) - (-12 (-5 *2 (-932 *3)) (-4 *3 (-1182)) (-5 *1 (-1179 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1219 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1063 *3)) (-4 *3 (-1182)) (-5 *1 (-1195 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-14 *3 (-1145)) (-5 *1 (-1201 *3 *4)) - (-4 *4 (-1021)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *1 (-1211 *3 *2)) (-4 *2 (-1188 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1201 *4 *3)) (-4 *3 (-1021)) (-14 *4 (-1145)) - (-14 *5 *3) (-5 *1 (-1220 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1224 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1229)))) - ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1229)) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-1233)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) - (-5 *1 (-1240 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-923 *3 *5 *4)) - (-14 *7 (-623 (-749))) (-14 *8 (-749)))) - ((*1 *2 *1) - (-12 (-4 *2 (-923 *3 *5 *4)) (-5 *1 (-1240 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) - (-14 *7 (-623 (-749))) (-14 *8 (-749)))) - ((*1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1021)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *1 (-1248 *3 *4)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-821))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1152))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-400 (-550))) - (-4 *4 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) -(((*1 *2 *3) - (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-807)) (-5 *3 (-1127))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-3 (-817 *3) + (-2 (|:| |leftHandLimit| (-3 (-817 *3) #2#)) + (|:| |rightHandLimit| (-3 (-817 *3) #2#))) + #3#)) + (-5 *1 (-617 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-286 (-400 (-920 *6)))) (-5 *5 (-1129)) + (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-817 *3)) + (-5 *1 (-617 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-300)) - (-5 *2 (-749)) (-5 *1 (-447 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-895)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-895)) (-4 *4 (-342)) - (-5 *1 (-519 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2)) (-4 *2 (-1021))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-623 (-372))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-848)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1145)) (-5 *5 (-623 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-543 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-5 *2 (-1127))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1231)))) - ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1231))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1109 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1069) (-34))) (-4 *6 (-13 (-1069) (-34))) - (-5 *2 (-112)) (-5 *1 (-1110 *5 *6))))) + (|partial| -12 (-5 *4 (-286 (-810 *3))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-810 *3)) + (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-810 (-920 *5)))) (-4 *5 (-444)) + (-5 *2 (-810 (-400 (-920 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) + (-5 *2 (-810 *3)) (-5 *1 (-617 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612))))) +(((*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1072)))) + ((*1 *1 *1) (-5 *1 (-612)))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) + (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-620 (-1147))) + (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-839 *4)) (-14 *4 (-620 (-1147))) + (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-241 *5 *6))) (-4 *6 (-444)) + (-5 *2 (-241 *5 *6)) (-14 *5 (-620 (-1147))) (-5 *1 (-611 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-620 (-254))) + (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-620 (-1147))) + (-4 *6 (-444)) (-5 *2 (-1229 *6)) (-5 *1 (-611 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 (-473 *3 *4))) (-14 *3 (-620 (-1147))) (-4 *4 (-444)) + (-5 *1 (-611 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) - (-5 *2 (-623 (-2 (|:| -1610 (-623 *3)) (|:| -2511 *5)))) - (-5 *1 (-179 *5 *3)) (-4 *3 (-1204 (-167 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-823))) - (-5 *2 (-623 (-2 (|:| -1610 (-623 *3)) (|:| -2511 *4)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) - (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-923 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-411 *1)) (-4 *1 (-923 *3 *4 *5)))) + (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) + (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) + (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) + (-5 *2 (-620 (-241 *4 *5))) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *3) + (-12 (-14 *4 (-620 (-1147))) (-4 *5 (-444)) + (-5 *2 (-2 (|:| |glbase| (-620 (-241 *4 *5))) (|:| |glval| (-620 (-536))))) + (-5 *1 (-611 *4 *5)) (-5 *3 (-620 (-241 *4 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) + (-5 *2 (-2 (|:| |gblist| (-620 (-241 *4 *5))) (|:| |gvlist| (-620 (-536))))) + (-5 *1 (-611 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976) (-1169))))) + ((*1 *1 *1) (-4 *1 (-610)))) +(((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-411 *3)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-923 *6 *5 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) + (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 (-400 *7)))) - (-5 *1 (-1140 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1186)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) + (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-976))))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-1207 *4 *3)) - (-4 *3 (-13 (-1204 *4) (-542) (-10 -8 (-15 -3260 ($ $ $))))))) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291)))) + ((*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1018 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-996))) - (-14 *5 (-623 (-1145))) - (-5 *2 - (-623 (-1115 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) - (-5 *1 (-1254 *4 *5 *6)) (-14 *6 (-623 (-1145)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1228 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) - (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) + (-12 (-5 *3 (-113)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) + (-4 *4 (-414 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-895)) (-4 *4 (-356)) (-5 *2 (-1228 *1)) - (-4 *1 (-322 *4)))) - ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1228 *1)) (-4 *1 (-322 *3)))) - ((*1 *2) - (-12 (-4 *3 (-170)) (-4 *4 (-1204 *3)) (-5 *2 (-1228 *1)) - (-4 *1 (-402 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) - (-5 *2 (-1228 *6)) (-5 *1 (-406 *3 *4 *5 *6)) - (-4 *6 (-13 (-402 *4 *5) (-1012 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-966 *3)) (-4 *5 (-1204 *4)) - (-5 *2 (-1228 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) - (-4 *6 (-402 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1228 *1)) (-4 *1 (-410 *3)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) + (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1228 (-1228 *4))) (-5 *1 (-519 *4)) - (-4 *4 (-342))))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) + (-5 *1 (-609 *4 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-620 (-1147))) + (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) + (-5 *1 (-608 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1035 *4 *5 *6)))) + (-12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-623 *7) (-623 *7))) (-5 *2 (-623 *7)) - (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1181))) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1087))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 (-372))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 (-926 (-372)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-372))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 (-550))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 (-926 (-550)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-550))) (-14 *3 (-623 (-1145))) - (-14 *4 (-623 (-1145))) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) - (-14 *4 (-623 *2)) (-4 *5 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-623 (-1145))) (-14 *4 (-623 (-1145))))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-926 (-550))))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-926 (-372))))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-926 (-550)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-926 (-372)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-550)))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-926 (-372)))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-926 (-550))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-926 (-372))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-400 (-926 (-550))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-400 (-926 (-372))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-926 (-550)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-926 (-372)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-309 (-550)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1228 (-309 (-372)))) (-4 *1 (-433)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| |mdnia| - (-2 (|:| |fn| (-309 (-219))) - (|:| -2873 (-623 (-1063 (-818 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-747)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) + (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) + (-14 *4 (-620 (-1147))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) + (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-112)) + (-5 *1 (-353 *4 *5)) (-14 *5 (-620 (-1147))))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-758 *4 (-839 *5)))) (-4 *4 (-444)) + (-14 *5 (-620 (-1147))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-642 *4 *5))) + (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-536))))) + (-14 *6 (-893))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) + (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-620 (-286 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2762 (-620 (-2 (|:| |irr| *10) (|:| -2482 (-536))))))) + (-5 *6 (-620 *3)) (-5 *7 (-620 *8)) (-4 *8 (-825)) (-4 *3 (-300)) + (-4 *10 (-924 *3 *9 *8)) (-4 *9 (-771)) (-5 *2 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-786)))) - ((*1 *2 *1) + (-2 (|:| |polfac| (-620 *10)) (|:| |correct| *3) + (|:| |corrfact| (-620 (-1141 *3))))) + (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-620 (-1141 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-749)) (-5 *5 (-620 *3)) (-4 *3 (-300)) (-4 *6 (-825)) + (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) + (-4 *8 (-924 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) + (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1043 *3 *4 *5 *6)) + (-4 *2 (-1080 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1147)) + (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-29 *4)))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) +(((*1 *1) (-5 *1 (-598)))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) + (-4 *5 (-1205 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) + (-5 *3 (-400 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) + (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-593 *4)) (-4 *4 (-825)) (-4 *2 (-825)) + (-5 *1 (-594 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-593 *4)) (-5 *1 (-594 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1169)))) + ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-593 *3)) (-4 *3 (-825))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-113)) (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-825)) + (-5 *1 (-593 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) - (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-623 (-309 (-219)))) - (|:| -2463 (-623 (-219))))))) - (-5 *1 (-816)))) + (-620 + (-2 + (|:| -4215 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2186 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1556 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-546)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-623 (-309 (-219)))) - (|:| |constraints| - (-623 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) - (|:| |grid| (-749)) (|:| |boundaryType| (-550)) - (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1127)) - (|:| |tol| (-219)))) - (-5 *1 (-872)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-1489 - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) - (-3548 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))) - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-535))) (-3548 (-4 *3 (-38 (-400 (-550))))) - (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))) - (-12 (-5 *2 (-926 *3)) - (-12 (-3548 (-4 *3 (-966 (-550)))) (-4 *3 (-38 (-400 (-550)))) - (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *1 (-1035 *3 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825))))) - ((*1 *1 *2) - (-1489 - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-3548 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) - (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-926 (-550))) (-4 *1 (-1035 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145)))) - (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825))))) - ((*1 *1 *2) - (-12 (-5 *2 (-926 (-400 (-550)))) (-4 *1 (-1035 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1145))) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) -(((*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-52)) (-5 *1 (-807))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) (-5 *2 (-932 (-1089))) - (-5 *1 (-339 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-596 (-866 (-550)))) - (-4 *5 (-860 (-550))) - (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) - (-4 *3 (-13 (-27) (-1167) (-423 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) - (-5 *1 (-99 *4 *3)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-1204 *5)) (-4 *5 (-13 (-444) (-145))) - (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3))))) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *3))))) (((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3578 (-749)) (|:| |period| (-749)))) - (-5 *1 (-1125 *4)) (-4 *4 (-1182)) (-5 *3 (-749))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1095 *4 *3 *5))) (-4 *4 (-38 (-400 (-550)))) - (-4 *4 (-1021)) (-4 *3 (-825)) (-5 *1 (-1095 *4 *3 *5)) - (-4 *5 (-923 *4 (-522 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1145)) (-5 *1 (-1176 *4)) - (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1021))))) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1072)) + (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825))))) +(((*1 *2 *1) + (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) + (-4 *2 (-1183))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) + (-4 *4 (-1183)) (-5 *2 (-1235))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-620 (-1147))) + (-4 *2 (-13 (-414 (-166 *5)) (-976) (-1169))) (-4 *5 (-13 (-543) (-825))) + (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-976) (-1169)))))) (((*1 *2 *3) - (-12 (-14 *4 (-623 (-1145))) (-14 *5 (-749)) - (-5 *2 - (-623 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550)))))) - (-5 *1 (-496 *4 *5)) - (-5 *3 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550)))))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-526))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-472))))) -(((*1 *1) (-5 *1 (-1033)))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1127)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) - (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1127)) (-5 *2 (-752)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-1073)) (-5 *1 (-939))))) + (-12 (-4 *4 (-13 (-543) (-825))) (-5 *2 (-166 *5)) (-5 *1 (-582 *4 *5 *3)) + (-4 *5 (-13 (-414 *4) (-976) (-1169))) + (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1069) (-1012 *5))) - (-4 *5 (-860 *4)) (-4 *4 (-1069)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-905 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-543) (-825))) + (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *3 *2)) + (-4 *3 (-13 (-414 *4) (-976) (-1169)))))) (((*1 *2 *3) - (-12 (-5 *2 (-411 (-1141 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1141 *1)) - (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) - ((*1 *2 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-411 (-1141 *1))) (-5 *3 (-1141 *1))))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) + (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 *4) (-976) (-1169))) + (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) + (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) + (-5 *1 (-582 *4 *5 *2))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-623 (-497))) (-5 *2 (-497)) (-5 *1 (-475))))) -(((*1 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-623 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) - (-4 *3 (-542))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-939))) (-5 *1 (-284))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231))))) -(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-372)))) + (-12 (-5 *2 (-1000 (-817 (-536)))) + (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *4)))) (-4 *4 (-1023)) + (-5 *1 (-578 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *1 (-578 *3)) (-4 *3 (-1023))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-5 *1 (-578 *3)) + (-4 *3 (-1023))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023))))) +(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *6)))) + (-5 *4 (-1000 (-817 (-536)))) (-5 *5 (-1147)) (-5 *7 (-400 (-536))) + (-4 *6 (-1023)) (-5 *2 (-838)) (-5 *1 (-578 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-536))) (-5 *4 (-876 (-536))) (-5 *2 (-667 (-536))) + (-5 *1 (-573)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-536))) (-5 *4 (-620 (-876 (-536)))) + (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-749)) (-5 *1 (-573))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-1172 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(((*1 *1) - (-12 (-4 *1 (-397)) (-3548 (|has| *1 (-6 -4335))) - (-3548 (|has| *1 (-6 -4327))))) - ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1069)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-4 *1 (-825))) - ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) - ((*1 *1) (-5 *1 (-1089)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) + (-12 (-5 *3 (-1147)) + (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1169) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *5)) + (-5 *1 (-572 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) + (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1169))) (-5 *1 (-569 *4 *2)) + (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-567 (-400 (-920 *4)))) + (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *4)) + (-5 *1 (-572 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 (-550))) (-5 *2 (-550)) (-5 *1 (-916))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550)))) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) (-4 *4 (-343))))) +(((*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) ((*1 *2 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857)) (-5 *3 (-550))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) - (-4 *5 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-623 *7)) - (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) - (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-623 (-287 *8))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *8)) - (-5 *6 (-623 *8)) (-4 *8 (-423 *7)) - (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) - (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-114))) (-5 *6 (-623 (-287 *8))) - (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) - (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) - (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) - (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) - (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) - (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-623 *3)) - (-4 *3 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) - (-5 *2 (-52)) (-5 *1 (-310 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-895)) (-5 *1 (-1004 *2)) - (-4 *2 (-13 (-1069) (-10 -8 (-15 -2358 ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) + (-12 (-5 *2 (-2 (|:| -3022 *3) (|:| -2488 (-749)))) (-5 *1 (-570 *3)) + (-4 *3 (-535))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-684 *3 *4)) (-4 *3 (-1182)) (-4 *4 (-1182))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1141 (-1141 *4)))) - (-5 *1 (-1180 *4)) (-5 *3 (-1141 (-1141 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-550)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-845 *4)) (-14 *4 *3) - (-5 *3 (-550)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-400 (-550))) (-5 *1 (-846 *4 *5)) - (-5 *3 (-550)) (-4 *5 (-843 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-550))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1038 *2 *3)) (-4 *2 (-13 (-823) (-356))) - (-4 *3 (-1204 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2233 (*2 (-1145)))) - (-4 *2 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-821))))) -(((*1 *2 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-594 *3)) (-5 *5 (-1141 *3)) - (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1141 *3))) - (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1069))))) + (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-620 + (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *2)) + (|:| |logand| (-1141 *2))))) + (-5 *4 (-620 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) + (-5 *1 (-567 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-620 + (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *3)) + (|:| |logand| (-1141 *3))))) + (-5 *1 (-567 *3)) (-4 *3 (-356))))) +(((*1 *2 *1) + (-12 (-5 *2 (-620 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-567 *3)) (-4 *3 (-356))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-566))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-563)))) +(((*1 *1) (-5 *1 (-563)))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1147)) + (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-1110) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) - (-5 *1 (-325))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1061 (-818 *3))) (-4 *3 (-13 (-1167) (-933) (-29 *5))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 - (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1061 (-818 *3))) (-5 *5 (-1127)) - (-4 *3 (-13 (-1167) (-933) (-29 *6))) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) + (|:| |polypart| *6))) + (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-603 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112))) (-536) *4)) + (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *1 (-560 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-620 (-400 *7))) (-4 *7 (-1205 *6)) + (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 - (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1061 (-818 (-309 *5)))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *6 *7))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -2246 (-400 *6)) (|:| |coeff| (-400 *6)))) + (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3467 *7) (|:| |sol?| (-112))) (-536) *7)) + (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 - (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-400 (-926 *6))) (-5 *4 (-1061 (-818 (-309 *6)))) - (-5 *5 (-1127)) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-560 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 - (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1061 (-818 (-400 (-926 *5))))) (-5 *3 (-400 (-926 *5))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-560 *7 *8))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) + (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 - (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1061 (-818 (-400 (-926 *6))))) (-5 *5 (-1127)) - (-5 *3 (-400 (-926 *6))) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) + (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) + (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 - (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-3 *3 (-623 *3))) (-5 *1 (-421 *5 *3)) - (-4 *3 (-13 (-1167) (-933) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) - (-5 *5 (-372)) (-5 *6 (-1033)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) - (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) - (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1063 (-818 (-372)))) - (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) - (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) - (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) - (-5 *5 (-372)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1063 (-818 (-372))))) - (-5 *5 (-372)) (-5 *6 (-1033)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-818 (-372)))) - (-5 *5 (-1127)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-818 (-372)))) - (-5 *5 (-1145)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) - (-5 *2 (-569 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *2 (-3 (-309 *5) (-623 (-309 *5)))) (-5 *1 (-572 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-825)) - (-4 *3 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1145)) (-5 *1 (-926 *3)) (-4 *3 (-38 (-400 (-550)))) - (-4 *3 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-4 *2 (-825)) - (-5 *1 (-1095 *3 *2 *4)) (-4 *4 (-923 *3 (-522 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) - (-5 *1 (-1129 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1136 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1142 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-550)))) - (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-1489 - (-12 (-5 *2 (-1145)) (-4 *1 (-1188 *3)) (-4 *3 (-1021)) - (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) - (-4 *3 (-38 (-400 (-550)))))) - (-12 (-5 *2 (-1145)) (-4 *1 (-1188 *3)) (-4 *3 (-1021)) - (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) - (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2) - (-1489 - (-12 (-5 *2 (-1145)) (-4 *1 (-1209 *3)) (-4 *3 (-1021)) - (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) - (-4 *3 (-38 (-400 (-550)))))) - (-12 (-5 *2 (-1145)) (-4 *1 (-1209 *3)) (-4 *3 (-1021)) - (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) - (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-1489 - (-12 (-5 *2 (-1145)) (-4 *1 (-1219 *3)) (-4 *3 (-1021)) - (-12 (-4 *3 (-29 (-550))) (-4 *3 (-933)) (-4 *3 (-1167)) - (-4 *3 (-38 (-400 (-550)))))) - (-12 (-5 *2 (-1145)) (-4 *1 (-1219 *3)) (-4 *3 (-1021)) - (-12 (|has| *3 (-15 -1516 ((-623 *2) *3))) - (|has| *3 (-15 -2149 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1021)) (-4 *2 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 *4)) (-14 *4 (-1145)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1021)) (-14 *5 *3)))) + (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) + (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-620 *6) "failed") (-536) *6 *6)) + (-4 *6 (-356)) (-4 *7 (-1205 *6)) + (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) + (-4 *6 (-356)) (-4 *7 (-1205 *6)) + (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-356)) (-4 *7 (-1205 *6)) + (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-567 *3) *3 (-1147))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1147))) + (-4 *3 (-277)) (-4 *3 (-610)) (-4 *3 (-1012 *4)) (-4 *3 (-414 *7)) + (-5 *4 (-1147)) (-4 *7 (-596 (-864 (-536)))) (-4 *7 (-444)) + (-4 *7 (-860 (-536))) (-4 *7 (-825)) (-5 *2 (-567 *3)) + (-5 *1 (-559 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) + (-4 *2 (-277)) (-4 *2 (-414 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-543)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) + (-4 *2 (-414 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-167 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) - (-5 *1 (-737))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-923 *4 *3 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1182))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-520)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-241 *5 *6))) (-4 *6 (-444)) - (-5 *2 (-241 *5 *6)) (-14 *5 (-623 (-1145))) (-5 *1 (-611 *5 *6))))) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-1147)) (-4 *6 (-414 *5)) (-4 *5 (-825)) + (-5 *2 (-620 (-593 *6))) (-5 *1 (-559 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-620 (-593 *6))) (-5 *4 (-1147)) (-5 *2 (-593 *6)) + (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-372)) (-5 *1 (-199))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-825)) (-5 *3 (-623 *6)) (-5 *5 (-623 *3)) + (-12 (-5 *3 (-620 (-593 *5))) (-4 *4 (-825)) (-5 *2 (-593 *5)) + (-5 *1 (-559 *4 *5)) (-4 *5 (-414 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-620 (-593 *5))) (-5 *3 (-1147)) (-4 *5 (-414 *4)) + (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) + (-5 *2 (-2 (|:| -2246 (-400 (-920 *5))) (|:| |coeff| (-400 (-920 *5))))) + (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 (-400 (-920 *6)))) + (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-623 *5)) (|:| |f3| *5) - (|:| |f4| (-623 *5)))) - (-5 *1 (-1153 *6)) (-5 *4 (-623 *5))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-771)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) - (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4344))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1) - (-12 (-4 *3 (-227)) (-4 *3 (-1021)) (-4 *4 (-825)) (-4 *5 (-259 *4)) - (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) - (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1110 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1204 *4)) - (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1167) (-277)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) - (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) (-4 *3 (-1204 *4)) (-4 *2 (-1219 *4)) - (-5 *1 (-1222 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-943 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-667 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) + (|partial| -12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) + (-4 *4 (-13 (-543) (-1012 (-536)) (-145))) (-5 *1 (-556 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *6)) (-4 *5 (-1186)) (-4 *6 (-1204 *5)) - (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| *6))) - (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1204 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |k| (-1145)) (|:| |c| (-1250 *3))))) - (-5 *1 (-1250 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |k| *3) (|:| |c| (-1252 *3 *4))))) - (-5 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) - (-5 *1 (-727))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-623 *11)) (-5 *5 (-623 (-1141 *9))) - (-5 *6 (-623 *9)) (-5 *7 (-623 *12)) (-5 *8 (-623 (-749))) - (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-923 *9 *10 *11)) - (-4 *10 (-771)) (-5 *2 (-623 (-1141 *12))) - (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1125 *4))) (-4 *4 (-356)) - (-4 *4 (-1021)) (-5 *2 (-1125 *4)) (-5 *1 (-1129 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1035 *4 *5 *6)) - (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-951 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) + (-5 *2 (-567 (-400 (-920 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1233)) - (-5 *1 (-441 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *3)))) - (-5 *1 (-578 *3)) (-4 *3 (-1021))))) -(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) + (|partial| -12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-667 (-400 (-926 (-550))))) - (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1005)) - (-5 *3 (-309 (-550)))))) -(((*1 *1 *1) (-4 *1 (-1113)))) -(((*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 (-623 *6))) (-4 *6 (-923 *3 *5 *4)) - (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1145)))) - (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (|partial| -12 (-5 *4 (-620 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-765)) (-5 *2 (-1009)) - (-5 *3 - (-2 (|:| |fn| (-309 (-219))) - (|:| -2873 (-623 (-1063 (-818 (-219))))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-765)) (-5 *2 (-1009)) - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *5 *6))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) + (-5 *2 (-2 (|:| -2246 (-400 *5)) (|:| |coeff| (-400 *5)))) + (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) + (-4 *3 (-13 (-356) (-145) (-1012 (-536)))) (-5 *1 (-554 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *4 (-749)) - (-5 *2 (-667 (-219))) (-5 *1 (-260))))) -(((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1069)) (-5 *2 (-749))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1041 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *1)))) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) + (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) + (-4 *5 (-860 (-536))) + (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) + (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1147)) (-5 *4 (-817 *2)) (-4 *2 (-1110)) + (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-596 (-864 (-536)))) + (-4 *5 (-860 (-536))) + (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) + (-5 *1 (-553 *5 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-411 *6)) (-4 *6 (-1204 *5)) - (-4 *5 (-1021)) (-5 *2 (-623 *6)) (-5 *1 (-436 *5 *6))))) + (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) + (-4 *5 (-860 (-536))) + (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) + (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) + (-5 *2 (-2 (|:| -2414 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-593 *4)) (-5 *6 (-1147)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) + (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1147))) + (-4 *2 (-13 (-414 *5) (-27) (-1169))) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1072))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1072))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) + (-4 *6 (-1072))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) + (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2245 *3))) + (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-5 *2 + (-2 (|:| |answer| (-400 *6)) (|:| -2245 (-400 *6)) + (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) + (-5 *1 (-550 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-749)) (-5 *1 (-548))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-620 (-620 *4))) (-5 *2 (-620 *4)) (-4 *4 (-300)) + (-5 *1 (-177 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 *8)) + (-5 *4 + (-620 + (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-667 *7))))) + (-5 *5 (-749)) (-4 *8 (-1205 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-343)) + (-5 *2 + (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) + (-5 *1 (-489 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-593 *4)) (-5 *6 (-1141 *4)) + (-4 *4 (-13 (-414 *7) (-27) (-1169))) + (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) + (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-593 *4)) (-5 *6 (-400 (-1141 *4))) + (-4 *4 (-13 (-414 *7) (-27) (-1169))) + (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) + (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-593 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1147))) (-5 *5 (-1141 *2)) + (-4 *2 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1147))) + (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-1141 *3)) + (-4 *3 (-13 (-414 *7) (-27) (-1169))) + (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-400 (-1141 *3))) + (-4 *3 (-13 (-414 *7) (-27) (-1169))) + (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) + (-4 *7 (-1072)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) + (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) + (-4 *7 (-1072))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) + (-4 *3 (-13 (-414 *6) (-27) (-1169))) + (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072))))) (((*1 *2 *3) (-12 (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -13124,5293 +12504,4041 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1009)) (-5 *1 (-298))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *3)) - (-4 *3 (-1182)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1175 *4 *5 *3 *2)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1035 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *1 (-1179 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *5 (-542)) - (-5 *2 - (-2 (|:| |minor| (-623 (-895))) (|:| -1309 *3) - (|:| |minors| (-623 (-623 (-895)))) (|:| |ops| (-623 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-634 *5))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) - (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1182)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) - (-4 *3 (-652 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) + (-5 *1 (-546))))) (((*1 *2 *3) - (-12 (-5 *3 (-901)) - (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901)) (-5 *4 (-400 (-550))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151)))) - ((*1 *2 *3) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1556 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-546))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151)) (-5 *3 (-623 (-917 (-219)))))) - ((*1 *2 *3) - (-12 + (-620 + (-2 + (|:| -4215 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2186 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1556 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-546))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-546))))) +(((*1 *1) (-5 *1 (-546)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-545 *2)) (-4 *2 (-535))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1147)) (-5 *6 (-620 (-593 *3))) (-5 *5 (-593 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *7))) + (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-544 *5 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1147)) + (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-544 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *6))) + (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151)) (-5 *3 (-623 (-623 (-917 (-219))))))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-1063 (-372)))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-550)) - (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-160))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-160))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-544 *6 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1147)) + (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *5 *3)) + (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-5 *2 (-623 *1)) (-4 *1 (-1103 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-109))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3))))) + (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4335 *1) (|:| |associate| *1))) + (-4 *1 (-543))))) +(((*1 *1 *1) (-4 *1 (-543)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-1067 *3)))) - ((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) + (-12 (-5 *2 (-400 (-536))) (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))))) + ((*1 *1 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) +(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-540))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1205 *5)) + (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) + (-4 *7 (-1205 (-400 *6))) (-5 *1 (-539 *4 *5 *6 *7 *2)) + (-4 *2 (-335 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) + (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) + (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) + (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) + (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-593 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) + (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-825) (-543))) (-5 *2 (-567 *3)) + (-5 *1 (-538 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1) (-4 *1 (-535)))) (((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *2) - (-12 (-4 *1 (-342)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-623 (-169))))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-536) #1="failed") *5)) (-4 *5 (-1023)) + (-5 *2 (-536)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1205 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) + (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) + (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) + (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1205 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) + (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) + (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1147))) (-4 *6 (-356)) + (-5 *2 (-620 (-286 (-920 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) + (-4 *7 (-13 (-356) (-823)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-444)) + (-5 *2 (-620 (-620 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) + (-4 *5 (-13 (-356) (-823)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) + (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-920 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) + (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-525)))) + ((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-526 *2)) (-4 *2 (-1183))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1147)) (-5 *2 (-525)) (-5 *1 (-526 *4)) (-4 *4 (-1183))))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-525))) (-5 *1 (-525))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-525))))) +(((*1 *1 *1) (-5 *1 (-525)))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-525))) (-5 *2 (-1147)) (-5 *1 (-525))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-525))) (-5 *1 (-525))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-398 (-1141 *6)) (-1141 *6))) + (-4 *6 (-356)) (-5 *2 - (-2 (|:| |solns| (-623 *5)) - (|:| |maps| (-623 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1097 *3 *5)) (-4 *3 (-1204 *5))))) -(((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-1233)) - (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1041 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1184))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) - (-5 *1 (-675)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1063 (-219))) - (-5 *5 (-623 (-256))) (-5 *2 (-1102 (-219))) (-5 *1 (-675)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1102 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) - (-5 *4 (-1063 (-219))) (-5 *5 (-623 (-256))) (-5 *1 (-675))))) + (-620 + (-2 (|:| |outval| *7) (|:| |outmult| (-536)) + (|:| |outvect| (-620 (-667 *7)))))) + (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-620 *6)) + (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1219 *4)) - (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1125 *4) (-1125 *4))) - (-5 *1 (-1221 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-4 *7 (-923 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-623 *7)) (|:| |n0| (-623 *7)))) - (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-623 *4)) (-4 *4 (-825)) - (-5 *1 (-1153 *4))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1145)) (-5 *6 (-623 (-594 *3))) - (-5 *5 (-594 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-2 (|:| -3230 *3) (|:| |coeff| *3))) - (-5 *1 (-543 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1204 (-167 *2)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-895)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1021)) - (-4 *4 (-1182)))) - ((*1 *1 *2) - (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) - (-4 *5 (-232 (-3307 *3) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *2) (|:| -3068 *5)) - (-2 (|:| -3690 *2) (|:| -3068 *5)))) - (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) - (-4 *7 (-923 *4 *5 (-839 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-749)))) + (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) + (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-520)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-893)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) + (-4 *1 (-322 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-4 *6 (-13 (-542) (-825))) - (-5 *2 (-623 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) - (-4 *5 (-1021)))) - ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) + (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1205 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1167))) - (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *2 (-623 *5)) (-5 *1 (-567 *4 *5)))) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4))))) +(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) ((*1 *2 *3) - (-12 (-5 *3 (-569 (-400 (-926 *4)))) - (-4 *4 (-13 (-444) (-1012 (-550)) (-825) (-619 (-550)))) - (-5 *2 (-623 (-309 *4))) (-5 *1 (-572 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1118 *3)))) + (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1229 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-543)) + (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-1064 *4 *2)) (-4 *4 (-823)) - (-4 *2 (-1118 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167))))) + (-12 (-5 *3 (-893)) (-4 *4 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *4)))) + ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *3)))) + ((*1 *2) + (-12 (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *1)) + (-4 *1 (-403 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1243 (-1145) *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1021)))) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) + (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-926 (-550)))) (-5 *1 (-430)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-667 (-219))) (-5 *2 (-1073)) - (-5 *1 (-738)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-667 (-550))) (-5 *2 (-1073)) - (-5 *1 (-738))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| -1735 *4) (|:| -3661 (-550))))) - (-4 *4 (-1204 (-550))) (-5 *2 (-716 (-749))) (-5 *1 (-434 *4)))) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) + (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-411 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-411 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-1021)) - (-5 *2 (-716 (-749))) (-5 *1 (-436 *4 *5))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| |coef1| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-895)) - (-14 *4 (-895))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-342)) (-5 *2 (-1141 *4)) - (-5 *1 (-519 *4))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-423 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-542)))))) -(((*1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1182))))) + (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 *4))) (-5 *1 (-519 *4)) + (-4 *4 (-343))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) -(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1021)) (-4 *7 (-1021)) - (-4 *6 (-1204 *5)) (-5 *2 (-1141 (-1141 *7))) - (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1204 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-1204 *4)) (-5 *1 (-529 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 (-400 *2))) - (-4 *2 (-1204 *4)) (-5 *1 (-334 *3 *4 *2 *5)) - (-4 *3 (-335 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1186)) - (-4 *4 (-1204 (-400 *2))) (-4 *2 (-1204 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-295))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-305)) (-5 *1 (-807))))) -(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612))))) -(((*1 *1) (-4 *1 (-342)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-238 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1145)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-561 *4 *2)) - (-4 *2 (-13 (-1167) (-933) (-1108) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-623 *6)) - (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1069)) - (-4 *6 (-1182)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1069)) - (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 *5)) (-4 *6 (-1069)) - (-4 *5 (-1182)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1069)) - (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) - (-4 *5 (-1069)) (-4 *6 (-1182)) (-5 *1 (-620 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1069)) (-4 *2 (-1182)) (-5 *1 (-620 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (-142)) (-5 *2 (-749))))) -(((*1 *2 *3) - (-12 (-4 *4 (-883)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-880 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-893)))) ((*1 *2 *3) - (-12 (-4 *4 (-883)) (-4 *5 (-1204 *4)) (-5 *2 (-411 (-1141 *5))) - (-5 *1 (-881 *4 *5)) (-5 *3 (-1141 *5))))) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-893)) (-5 *1 (-519 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1091)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1229 *5)) (-5 *3 (-749)) (-5 *4 (-1091)) (-4 *5 (-343)) + (-5 *1 (-519 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-550))) (-5 *1 (-298))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1228 (-623 (-550)))) (-5 *1 (-472)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1182)) (-5 *1 (-1125 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1071 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1071 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-623 *4)) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-1062 *3)) (-4 *3 (-1182))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-563)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1021)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1021)) (-5 *1 (-98 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-895)) (-5 *4 (-219)) (-5 *5 (-550)) (-5 *6 (-848)) - (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) + (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *4 (-594 $)) $)) - (-15 -4163 ((-1094 *4 (-594 $)) $)) - (-15 -2233 ($ (-1094 *4 (-594 $)))))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 *4)) (-5 *1 (-1110 *3 *4)) - (-4 *3 (-13 (-1069) (-34))) (-4 *4 (-13 (-1069) (-34)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-923 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-923 *3 *4 *5))))) + (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1012 *4)) (-4 *3 (-13 (-825) (-542)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1069)) (-4 *2 (-1069)) - (-5 *1 (-863 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1127) (-752))) (-5 *1 (-114))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-738))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-526))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1103 *4)) - (-4 *4 (-1021)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1233)) - (-5 *1 (-1230))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1204 *6)) - (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-550)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -1309 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-989 *6 *3))))) + (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) + (-4 *4 (-343)) (-5 *2 (-1235)) (-5 *1 (-519 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1091))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1091))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515))))) (((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-923 *3 *4 *5)) (-4 *3 (-300)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) - (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-439 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-1127)) (-4 *7 (-923 *4 *5 *6)) - (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-439 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-5 *2 (-2 (|:| -3549 *3) (|:| -3859 *4)))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1021)) (-4 *2 (-665 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1204 *4)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1065)))) + (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-320 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-507 *3 *4)) (-14 *4 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5)))) + (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1216 *3)) (-4 *3 (-1182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) - (-4 *5 (-771)) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-923 *3 *5 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)))) + (-12 (-5 *2 (-536)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) ((*1 *2 *2) - (-12 (-4 *3 (-1021)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1145))) (-4 *5 (-1021)) - (-5 *2 (-926 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-837)))) - ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-936))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-1228 *6)) (-5 *1 (-329 *3 *4 *5 *6)) - (-4 *6 (-335 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749))))) + (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) +(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-825))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-4 *5 (-170)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-4 *5 (-170)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) + (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) + (-5 *1 (-496 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1069)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-372))))) + (-12 (-14 *4 (-620 (-1147))) (-14 *5 (-749)) + (-5 *2 + (-620 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))) + (-5 *1 (-496 *4 *5)) + (-5 *3 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-495 (-400 (-536)) (-233 *4 (-749)) (-839 *3) (-241 *3 (-400 (-536))))) + (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-342)) - (-5 *2 (-1228 (-623 (-2 (|:| -1337 *4) (|:| -3690 (-1089)))))) - (-5 *1 (-339 *4))))) + (-12 + (-5 *3 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) + (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-323))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1145)) (-4 *5 (-596 (-866 (-550)))) - (-4 *5 (-860 (-550))) - (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1145)) (-5 *4 (-818 *2)) (-4 *2 (-1108)) - (-4 *2 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-596 (-866 (-550)))) (-4 *5 (-860 (-550))) - (-4 *5 (-13 (-825) (-1012 (-550)) (-444) (-619 (-550)))) - (-5 *1 (-553 *5 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-623 (-112))) (-5 *5 (-667 (-219))) - (-5 *6 (-667 (-550))) (-5 *7 (-219)) (-5 *3 (-550)) (-5 *2 (-1009)) - (-5 *1 (-733))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4344)) (-4 *1 (-149 *2)) (-4 *2 (-1182)) - (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4344)) (-4 *1 (-149 *3)) - (-4 *3 (-1182)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1069)) - (-5 *1 (-716 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34))) (-5 *1 (-1110 *3 *4))))) + (-12 + (-5 *3 + (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) + (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 (-1228 *4))) (-4 *4 (-1021)) (-5 *2 (-667 *4)) - (-5 *1 (-1003 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-4 *3 (-1069)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-839 *5)) - (-14 *5 (-623 (-1145))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) - (-4 *6 (-444)))) + (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-839 *5)) - (-14 *5 (-623 (-1145))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) - (-4 *6 (-444))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1792 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1204 *4)) - (-5 *2 (-1228 (-623 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-623 *6))))) + (-12 (-5 *4 (-1060 (-817 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) + (-5 *1 (-296)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) - (-5 *2 (-112)) (-5 *1 (-961 *3 *4 *5 *6)) - (-4 *6 (-923 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1069) (-34))) - (-4 *4 (-13 (-1069) (-34)))))) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) + (-4 *2 (-924 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 + (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) + (|:| |genIdeal| (-495 *4 *5 *6 *7)))) + (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) + (|:| |genIdeal| (-495 *3 *4 *5 *6)))) + (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) + (-4 *6 (-924 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) + (-4 *5 (-924 *2 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-5 *2 (-406 *4 (-400 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))) + (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) + (-5 *1 (-406 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-924 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) + (-4 *2 (-924 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-1 (-1141 (-926 *4)) (-926 *4))) - (-5 *1 (-1236 *4)) (-4 *4 (-356))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) - (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1219 *5)) (-4 *6 (-1204 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1220 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1145)) (-14 *7 *5) (-5 *2 (-400 (-1201 *6 *5))) - (-5 *1 (-842 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1220 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1145)) (-14 *7 *5) (-5 *2 (-400 (-1201 *6 *5))) - (-5 *1 (-842 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-837) (-837))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-837) (-623 (-837)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-837) (-623 (-837)))) (-5 *1 (-114)))) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *6 (-596 (-1147))) + (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-1136 (-620 (-920 *4)) (-620 (-286 (-920 *4))))) + (-5 *1 (-495 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-208 *4)) + (-4 *4 + (-13 (-825) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) + (-15 -2082 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1233)) (-5 *1 (-208 *3)) + (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) - (-15 -1858 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-387)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-387)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-493)))) - ((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1162)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1233)) (-5 *1 (-1162))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) - (-4 *6 (-542)) (-4 *7 (-923 *6 *5 *3)) - (-5 *1 (-454 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1012 (-400 (-550))) (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) - (-15 -4163 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1127)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1127)) (-5 *1 (-96))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-129)) (-5 *2 (-1089))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) - (-5 *5 (-1063 (-219))) (-5 *6 (-550)) (-5 *2 (-1177 (-900))) - (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) - (-5 *5 (-1063 (-219))) (-5 *6 (-550)) (-5 *7 (-1127)) - (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) - (-5 *5 (-1063 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) - (-5 *2 (-1177 (-900))) (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) - (-5 *5 (-1063 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *8 (-1127)) - (-5 *2 (-1177 (-900))) (-5 *1 (-311))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) + (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) + (-15 -2082 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-798)) (-14 *5 (-1145)) (-5 *2 (-623 (-1201 *5 *4))) - (-5 *1 (-1083 *4 *5)) (-5 *3 (-1201 *5 *4))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) - (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) - (-4 *2 (-665 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-623 *5))) (-4 *5 (-1219 *4)) - (-4 *4 (-38 (-400 (-550)))) - (-5 *2 (-1 (-1125 *4) (-623 (-1125 *4)))) (-5 *1 (-1221 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) - (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-623 (-309 (-219)))) - (|:| -2463 (-623 (-219))))))) - (-5 *2 (-623 (-1127))) (-5 *1 (-260))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-372)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *6 (-1205 *5)) + (-5 *2 (-1141 (-1141 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1205 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-895)) (-4 *5 (-542)) (-5 *2 (-667 *5)) - (-5 *1 (-930 *5 *3)) (-4 *3 (-634 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) - (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1145)) (-5 *5 (-1063 (-219))) (-5 *2 (-901)) - (-5 *1 (-899 *3)) (-4 *3 (-596 (-526))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-900)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-900)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-900)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 (-219))) (-5 *1 (-901)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1141 *8))) + (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *6)) + (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1205 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-818 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 *4)) - (-5 *1 (-260))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *1 (-916)) (-5 *3 (-550))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) + (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) + (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) - (-5 *5 (-1 (-411 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *7 (-1204 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) - (-5 *5 (-1 (-411 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *7 (-1204 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1204 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) - (-4 *6 (-1204 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1204 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) - (-4 *6 (-1204 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1009)) - (-5 *1 (-735))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-839 *4)) - (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1145))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) + (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *4 (-1205 *5)) + (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1205 *4))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) + (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) + (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) + (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-667 *2)) (-5 *4 (-536)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) + (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) + (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-343)) (-4 *6 (-1205 *5)) + (-5 *2 + (-620 + (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-667 *6))))) + (-5 *1 (-489 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) + (-4 *7 (-1205 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-877 *3)) (-4 *3 (-1069)) (-5 *2 (-1071 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-1071 (-623 *4))) (-5 *1 (-878 *4)) - (-5 *3 (-623 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-1071 (-1071 *4))) (-5 *1 (-878 *4)) - (-5 *3 (-1071 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1071 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127))))) -(((*1 *2 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-837))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-749)) (-5 *1 (-1070 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) + (-12 + (-5 *2 + (-620 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-536))))) + (-5 *1 (-398 *3)) (-4 *3 (-543)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-623 (-1115 *5 *6 *7 *8))) (-5 *1 (-1115 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *1 (-857))))) + (-12 (-5 *4 (-749)) (-4 *3 (-343)) (-4 *5 (-1205 *3)) + (-5 *2 (-620 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1205 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-482))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-481 *3)) + (-4 *3 (-1183))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) + (-4 *4 (-1183)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) + (-4 *4 (-1183)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) + (-5 *2 (-749)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) + (-4 *4 (-1183)) (-5 *2 (-749))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-620 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) + (-5 *2 (-620 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-536)) (-5 *1 (-478 *4)) + (-4 *4 (-1205 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536)))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-620 (-497))) (-5 *2 (-497)) (-5 *1 (-475))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-497))) (-5 *1 (-475))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1204 *3)) (-4 *3 (-1021)))) + (-12 (-5 *2 (-620 (-536))) (-5 *1 (-241 *3 *4)) (-14 *3 (-620 (-1147))) + (-4 *4 (-1023)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-895)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) - (-4 *4 (-770)))) + (-12 (-5 *2 (-620 (-536))) (-14 *3 (-620 (-1147))) (-5 *1 (-446 *3 *4 *5)) + (-4 *4 (-1023)) (-4 *5 (-232 (-4311 *3) (-749))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-400 (-550))) (-4 *1 (-1209 *3)) (-4 *3 (-1021))))) -(((*1 *1) (-5 *1 (-1033)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1069))))) -(((*1 *2) - (-12 (-4 *1 (-342)) - (-5 *2 (-623 (-2 (|:| -1735 (-550)) (|:| -3068 (-550)))))))) + (-12 (-5 *2 (-620 (-536))) (-5 *1 (-473 *3 *4)) (-14 *3 (-620 (-1147))) + (-4 *4 (-1023))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-472))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-472))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-5 *2 (-1141 *3)) (-5 *1 (-1156 *3)) - (-4 *3 (-356))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1125 *4) (-1125 *4))) (-5 *2 (-1125 *4)) - (-5 *1 (-1253 *4)) (-4 *4 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-623 (-1125 *5)) (-623 (-1125 *5)))) (-5 *4 (-550)) - (-5 *2 (-623 (-1125 *5))) (-5 *1 (-1253 *5)) (-4 *5 (-1182))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-1021)) (-4 *2 (-1204 *4)) - (-5 *1 (-436 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-400 (-1141 (-309 *5)))) (-5 *3 (-1228 (-309 *5))) - (-5 *4 (-550)) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-1099 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1233)) (-5 *1 (-809))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-1145)) - (-4 *2 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-270 *5 *2))))) + (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) + (-5 *2 (-2 (|:| |dpolys| (-620 (-241 *5 *6))) (|:| |coords| (-620 (-536))))) + (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-620 (-839 *4))) + (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) + (-4 *6 (-444))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) + (-5 *2 (-620 (-620 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) + (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) +(((*1 *1) (-5 *1 (-460)))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) + (-5 *4 (-620 (-893))) (-5 *5 (-620 (-254))) (-5 *1 (-460)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) + (-5 *4 (-620 (-893))) (-5 *1 (-460)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) + ((*1 *1 *1) (-5 *1 (-460)))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) + (-5 *1 (-460)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-893)) + (-5 *2 (-1235)) (-5 *1 (-460))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) + (-5 *1 (-460))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1610 (-411 *3)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4)))))) + (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-219))) + (-5 *1 (-460))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) - (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-594 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1145))) - (-4 *2 (-13 (-423 *5) (-27) (-1167))) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-623 (-287 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-372))) - ((*1 *1) (-5 *1 (-372)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-300))))) -(((*1 *2 *3) - (-12 (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-945)) - (-5 *3 (-623 (-550)))))) + (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 (-536)))) (-5 *1 (-458))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1229 (-1229 (-536)))) (-5 *3 (-893)) (-5 *1 (-458))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-543)) + (-4 *7 (-924 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1012 (-400 (-536))) (-356) + (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 *4)))) - (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) - (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-730))))) -(((*1 *1 *2) - (-12 (-5 *2 (-667 *4)) (-4 *4 (-1021)) (-5 *1 (-1111 *3 *4)) - (-14 *3 (-749))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) + (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *2)) + (-2 (|:| -2487 *5) (|:| -2488 *2)))) + (-4 *2 (-232 (-4311 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-825)) (-4 *7 (-924 *4 *2 (-839 *3)))))) +(((*1 *2 *1) + (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) + (-2 (|:| -2487 *2) (|:| -2488 *5)))) + (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-924 *4 *5 (-839 *3)))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-620 (-1147))) (-4 *2 (-170)) (-4 *4 (-232 (-4311 *5) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *4)) + (-2 (|:| -2487 *3) (|:| -2488 *4)))) + (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) + (-4 *7 (-924 *2 *4 (-839 *5)))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-4 *3 (-232 (-4311 *4) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *3)) + (-2 (|:| -2487 *5) (|:| -2488 *3)))) + (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) + (-4 *7 (-924 *2 *3 (-839 *4)))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-620 *3)) (-5 *5 (-893)) (-4 *3 (-1205 *4)) (-4 *4 (-300)) + (-5 *1 (-452 *4 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-893)) (-4 *5 (-300)) (-4 *3 (-1205 *5)) + (-5 *2 (-2 (|:| |plist| (-620 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) + (-5 *4 (-620 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 *5)) (-4 *5 (-1205 *3)) (-4 *3 (-300)) (-5 *2 (-112)) + (-5 *1 (-447 *3 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) - (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-923 *8 *6 *7)) + (|partial| -12 (-5 *5 (-1229 (-620 *3))) (-4 *4 (-300)) (-5 *2 (-620 *3)) + (-5 *1 (-447 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1205 *4)) + (-5 *2 (-1229 (-620 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-620 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-300)) (-5 *2 (-749)) + (-5 *1 (-447 *5 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) + ((*1 *2) + (|partial| -12 (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-623 (-2 (|:| -1735 (-1141 *9)) (|:| -3068 (-550))))))) - (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9))))) + (-2 (|:| |particular| (-445 *3 *4 *5 *6)) + (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) + (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-445 *3 *4 *5 *6)) + (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) + (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1229 (-1147))) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) + (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 *2)) + (-14 *7 (-1229 (-667 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 (-1147))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1147)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-893)) (-14 *5 (-620 *2)) (-14 *6 (-1229 (-667 *3))))) + ((*1 *1) + (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-893)) + (-14 *4 (-620 (-1147))) (-14 *5 (-1229 (-667 *2)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) + (-5 *2 (-1141 (-920 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) + (-5 *2 (-1141 (-920 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) - (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) - (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-976))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295)))) - ((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) - (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) - (-5 *1 (-610 *4 *5)) (-4 *5 (-13 (-423 *4) (-976) (-1167)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1021)) - (-5 *1 (-1133 *4 *5)) (-14 *4 (-895))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-749)) - (-4 *3 (-13 (-300) (-10 -8 (-15 -2207 ((-411 $) $))))) - (-4 *4 (-1204 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) - (-4 *4 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-227))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1204 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) - (-4 *3 (-1204 *2)))) - ((*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-874 *4)) - (-4 *4 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-429))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1113)))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-620 (-920 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-620 (-920 *3))))) + ((*1 *2) + (-12 (-5 *2 (-620 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) + (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) + (-14 *6 (-1229 (-667 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *2 (-620 (-920 *4))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *4 (-170)) (-14 *5 (-893)) + (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) + ((*1 *1 *1 *1) (-4 *1 (-444)))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2054 *4))) (-5 *5 (-749)) - (-4 *4 (-923 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2115 *4))) (-5 *5 (-749)) + (-4 *4 (-924 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) + (-5 *1 (-442 *6 *7 *8 *4))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-536)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-536)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-441 *6 *7 *8 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1182)) (-5 *2 (-550))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-411 *5)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-536)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-536)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| -3068 (-749)) (|:| -4304 *5) (|:| |radicand| (-623 *5)))) - (-5 *1 (-313 *5)) (-5 *4 (-749)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) + (-620 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) + (-5 *1 (-442 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-112)) - (-5 *1 (-1255 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) - ((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) - (-4 *4 (-342))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-771)) (-4 *2 (-924 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) + (-4 *4 (-444)) (-4 *6 (-825))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 *3)))) (-5 *4 (-749)) + (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *1 (-442 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *2 (-170)) (-4 *2 (-1021)) (-5 *1 (-693 *2 *3)) - (-4 *3 (-626 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1021))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1125 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-550)) - (-5 *6 - (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372)))) - (-5 *7 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-550)) - (-5 *6 - (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -2601 (-372)))) - (-5 *7 (-1 (-1233) (-1228 *5) (-1228 *5) (-372))) - (-5 *3 (-1228 (-372))) (-5 *5 (-372)) (-5 *2 (-1233)) - (-5 *1 (-766))))) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *2)) + (-4 *2 (-924 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-442 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-620 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-771)) (-4 *6 (-924 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) + (-5 *1 (-442 *4 *3 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-945))))) -(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231))))) + (-12 + (-5 *2 + (-620 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) + (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-620 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-771)) (-4 *3 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *1 (-442 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) - (-4 *5 (-542)) (-5 *2 (-1228 *5)) (-5 *1 (-618 *5 *4)))) + (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) + (-5 *3 (-620 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) + (-5 *3 (-620 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) + (-5 *3 (-620 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1228 *4)) (-4 *4 (-619 *5)) - (-3548 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1228 (-400 *5))) - (-5 *1 (-618 *5 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2) - (-12 (-14 *4 (-749)) (-4 *5 (-1182)) (-5 *2 (-133)) - (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *2 (-550)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-923 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1021)) (-5 *2 (-895)))) - ((*1 *2) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-526))) (-5 *1 (-526))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) + (-5 *3 (-620 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) + (-5 *3 (-620 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) + (-5 *3 (-620 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-825) (-1012 (-550)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1167) (-423 (-167 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3))))) + (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-440 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *4)))))) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-438)) (-5 *3 (-536))))) +(((*1 *2 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) +(((*1 *2 *3) + (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1069)))) + (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) +(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) +(((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-536)) (-5 *1 (-437 *2)) (-4 *2 (-1023))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-398 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-1023)) + (-5 *2 (-620 *6)) (-5 *1 (-436 *5 *6))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-893)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-893)) (-5 *4 (-749)) (-5 *1 (-434 *2)) + (-4 *2 (-1205 (-536))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *1 (-434 *2)) + (-4 *2 (-1205 (-536))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) + (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) + (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-623 *5) (-623 *5))) (-5 *4 (-550)) - (-5 *2 (-623 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-372)) (-5 *1 (-1014))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1231))))) + (-12 (-5 *3 (-893)) (-5 *4 (-398 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-436 *5 *2)) + (-4 *5 (-1023))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *4)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) - (-5 *2 (-623 *3)) (-5 *1 (-1097 *4 *3)) (-4 *4 (-1204 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-654)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-993)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1036)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-1065))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342)))) - ((*1 *1) (-4 *1 (-361))) + (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) + (-4 *4 (-1205 (-536))) (-5 *2 (-715 (-749))) (-5 *1 (-434 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1228 *4)) (-5 *1 (-519 *4)) - (-4 *4 (-342)))) - ((*1 *1 *1) (-4 *1 (-535))) ((*1 *1) (-4 *1 (-535))) - ((*1 *1 *1) (-5 *1 (-550))) ((*1 *1 *1) (-5 *1 (-749))) - ((*1 *2 *1) (-12 (-5 *2 (-879 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-879 *4)) (-5 *1 (-878 *4)) - (-4 *4 (-1069)))) - ((*1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-535)) (-4 *2 (-542))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-526))) (-5 *1 (-526))))) + (-12 (-5 *3 (-398 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1023)) + (-5 *2 (-715 (-749))) (-5 *1 (-436 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-926 *5)) (-4 *5 (-1021)) (-5 *2 (-241 *4 *5)) - (-5 *1 (-918 *4 *5)) (-14 *4 (-623 (-1145)))))) + (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) - (-4 *5 (-1021)) (-4 *7 (-1021)) (-4 *2 (-1204 *5)) - (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1204 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1233)) (-5 *1 (-208 *4)) - (-4 *4 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) - (-15 -1858 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1233)) (-5 *1 (-208 *3)) - (-4 *3 - (-13 (-825) - (-10 -8 (-15 -2757 ((-1127) $ (-1145))) (-15 -1970 (*2 $)) - (-15 -1858 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-493))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) + (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *5 *3 *6)) + (-4 *3 (-1205 *5)) (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| -1735 *4) (|:| -3661 (-550))))) - (-4 *4 (-1204 (-550))) (-5 *2 (-749)) (-5 *1 (-434 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-431 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1044 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1084)))) - ((*1 *1 *1) (-5 *1 (-1145)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1019))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1204 (-400 (-550)))) (-5 *1 (-887 *3 *2)) - (-4 *2 (-1204 (-400 *3)))))) + (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-893)) (-4 *5 (-1023)) + (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) + (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3230 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1204 *7)) - (-5 *3 (-400 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-560 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-438)) (-5 *3 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *2 (-1035 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) - (-4 *3 (-1041 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-734))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-423 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1061 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) - (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1145))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1021)) - (-5 *2 (-797 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-821)) (-5 *1 (-1251 *3 *2)) (-4 *3 (-1021))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $)))))))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1145))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-749))) (-5 *6 (-749)) (-5 *2 - (-2 (|:| -4304 *3) (|:| |gap| (-749)) (|:| -3123 (-760 *3)) - (|:| -2545 (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-1021)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 - (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -3123 *1) - (|:| -2545 *1))) - (-4 *1 (-1035 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) + (-2 (|:| |contp| (-536)) + (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) + (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2903 (-536)) (|:| -2762 (-620 *3)))) (-5 *1 (-434 *3)) + (-4 *3 (-1205 (-536)))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) + (-4 *4 (-1205 (-536))) (-5 *2 (-749)) (-5 *1 (-434 *4))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-620 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-536))))) + (-4 *2 (-543)) (-5 *1 (-398 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-536)) + (|:| -2762 (-620 (-2 (|:| |irr| *4) (|:| -2482 (-536))))))) + (-4 *4 (-1205 (-536))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-430))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 "void"))) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1012 (-48))) + (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) + (-5 *2 (-398 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 - (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -3123 *1) - (|:| -2545 *1))) - (-4 *1 (-1035 *3 *4 *5))))) + (-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) + (|:| -2965 (-112)))) + (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) + (-5 *2 (-398 (-1141 (-400 (-536))))) (-5 *1 (-428 *4 *5 *3)) + (-4 *3 (-1205 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) + (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *1 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-356)) (-14 *5 (-967 *3 *4))))) + (-12 (-4 *3 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1235)) + (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-400 *5)) (-4 *5 (-1204 *4)) (-4 *4 (-542)) - (-4 *4 (-1021)) (-4 *2 (-1219 *4)) (-5 *1 (-1222 *4 *5 *6 *2)) - (-4 *6 (-634 *5))))) + (-12 (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-400 (-536))) + (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-593 *3)) (-4 *3 (-414 *5)) + (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1141 (-400 (-536)))) + (-5 *1 (-426 *5 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) + (-4 *2 (-13 (-825) (-21)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) + (-4 *2 (-13 (-825) (-21)))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-542)) (-4 *2 (-923 *3 *5 *4)) - (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-926 *6))) (-4 *5 (-771)) - (-4 *4 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $)))))))) + (-12 (-5 *4 (-1147)) + (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1072)) (-5 *2 (-749))))) +(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-361))))) +(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1072))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1169) (-414 *3))) + (-14 *4 (-1147)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-4 *2 (-13 (-27) (-1169) (-414 *3) (-10 -8 (-15 -4312 ($ *4))))) + (-4 *4 (-823)) + (-4 *5 + (-13 (-1208 *2 *4) (-356) (-1169) + (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) + (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1147))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) + (-4 *7 (-823)) + (-4 *8 + (-13 (-1208 *3 *7) (-356) (-1169) + (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) + (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) + (-14 *10 (-1147))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) + (-4 *7 (-823)) + (-4 *8 + (-13 (-1208 *3 *7) (-356) (-1169) + (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) + (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) + (-14 *10 (-1147))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) + (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) + (-14 *6 (-1147)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-1182)) (-4 *3 (-825)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1182)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) - (-5 *2 (-1009)) (-5 *1 (-732))))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) + ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1147)) (-5 *3 (-620 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -4308 (-536)) (|:| |var| (-593 *1)))) (-4 *1 (-414 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-543)) (-5 *1 (-412 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) + (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) + (-4 *1 (-363 *4 *5)) (-4 *5 (-1205 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1205 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) - (-4 *4 (-342))))) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) + (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *6 (-403 *4 *5)) + (-14 *7 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-965 *3)) + (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1) + (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) + (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-1229 *2)) (-4 *5 (-300)) (-4 *6 (-965 *5)) + (-4 *2 (-13 (-403 *6 *7) (-1012 *6))) (-5 *1 (-406 *5 *6 *7 *2)) + (-4 *7 (-1205 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976))))) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) ((*1 *2) - (|partial| -12 (-4 *4 (-1186)) (-4 *5 (-1204 (-400 *2))) - (-4 *2 (-1204 *4)) (-5 *1 (-334 *3 *4 *2 *5)) - (-4 *3 (-335 *4 *2 *5)))) + (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)) + (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1186)) - (-4 *4 (-1204 (-400 *2))) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-550)) (-5 *1 (-437 *2)) (-4 *2 (-1021))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) + (-5 *2 (-667 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) + (-5 *2 (-667 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-398 *4)) (-4 *4 (-543))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-536)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-254)))) + ((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1167) (-976)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-923 *4 *3 *5))))) + (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) - (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-167 *3)) (-5 *1 (-1171 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-323))))) + (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-749)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749)))) + ((*1 *1 *1) (-4 *1 (-395)))) +(((*1 *1 *2) + (-12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) + (-5 *1 (-392 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1205 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-356) (-145))) + (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) + (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-388))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) + (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) + (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-620 (-1147))) (-5 *5 (-1150)) (-5 *3 (-1147)) (-5 *2 (-1074)) + (-5 *1 (-388))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-384))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-384)))) + ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-384))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-384))))) +(((*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) +(((*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) +(((*1 *2 *1) + (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) + (-4 *5 (-170))))) +(((*1 *2 *1) + (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) + (-4 *5 (-170))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-926 (-550))) (-5 *2 (-323)) - (-5 *1 (-325))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1204 (-167 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550))))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *4 (-620 (-1147))) + (-5 *2 (-620 (-620 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-166 *4))) + (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *4 (-620 (-1147))) + (-5 *2 (-620 (-620 (-166 *5)))) (-5 *1 (-372 *5)) + (-4 *5 (-13 (-356) (-823)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) - (-4 *3 (-13 (-1167) (-29 *5)))))) + (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) + (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-286 (-400 (-920 (-166 (-536))))))) + (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-920 (-166 (-536))))) + (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-400 (-920 (-166 (-536)))))) + (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-536)) (-5 *1 (-371))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371))))) +(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-371))) + ((*1 *1) (-5 *1 (-371)))) +(((*1 *1 *1) (-5 *1 (-219))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) + (-4 *4 (-380)))) + ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371)))) +(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-371)))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) (((*1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1069)) (-5 *1 (-1154 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1182)) (-4 *2 (-825)))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170))))) +(((*1 *2 *1) + (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-825)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1182)))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) - (-4 *6 (-1035 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3925 *1) (|:| |upper| *1))) - (-4 *1 (-950 *4 *5 *3 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-4 *5 (-356)) (-5 *2 (-623 (-1176 *5))) - (-5 *1 (-1236 *5)) (-5 *4 (-1176 *5))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-1231))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1127)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-256)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1127)) (-5 *3 (-550)) (-5 *1 (-235)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-623 (-1127))) (-5 *3 (-550)) (-5 *4 (-1127)) - (-5 *1 (-235)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1206 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *5 (-1186)) (-4 *6 (-1204 *5)) - (-4 *7 (-1204 (-400 *6))) (-5 *2 (-623 (-926 *5))) - (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1186)) - (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) (-4 *4 (-356)) - (-5 *2 (-623 (-926 *4)))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) - (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298))))) -(((*1 *2 *3) - (-12 (-5 *3 (-550)) (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-1178))))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) + (-4 *3 (-1183))))) +(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-360 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) (((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1021)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3068 (-550)))) (-4 *1 (-423 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -3068 (-866 *3)))) - (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3068 (-550)))) - (-5 *1 (-924 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) - (-15 -4163 (*7 $)))))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-895)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-542)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1204 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-52)) (-5 *1 (-807))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1113)) (-5 *2 (-142))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-620 (-1229 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) + (-5 *2 (-620 (-1229 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) - (-5 *2 (-623 (-623 (-623 (-917 *3)))))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-3 (-112) (-623 *1))) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-738))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) - (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-52)) (-5 *1 (-809))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542))))) -(((*1 *1 *1) (-4 *1 (-609))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976) (-1167)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) -(((*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) +(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *1 (-569 *2)) (-4 *2 (-1012 *3)) - (-4 *2 (-356)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)) - (-4 *2 (-13 (-423 *4) (-976) (-1167))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1061 *2)) (-4 *2 (-13 (-423 *4) (-976) (-1167))) - (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-1145)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 *1)) (-4 *1 (-933))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-668 *3))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-170)) (-5 *1 (-777 *3))))) + (-12 (-5 *3 (-1129)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1072)) (-4 *4 (-1072)))) + ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1129)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) +(((*1 *1 *1) (-4 *1 (-171))) + ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1030)) (-4 *3 (-1167)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-623 *7))) (-4 *1 (-1175 *4 *5 *6 *7)) - (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-926 *3))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-1129))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199))))) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) + (-4 *2 + (-13 (-395) + (-10 -7 (-15 -4312 (*2 *4)) (-15 -2121 ((-893) *2)) + (-15 -2123 ((-1229 *2) (-893))) (-15 -4283 (*2 *2))))) + (-5 *1 (-350 *2 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-349 *4)) + (-5 *3 (-1141 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-923 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1021)) (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) - (-4 *1 (-1204 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-1035 *3 *4 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825))))) + (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-304)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1010)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1043))))) -(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) + (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-623 (-219))) (-5 *1 (-198))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-926 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-986)) (-5 *2 (-623 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1141 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1141 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-623 *1)))) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) +(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1204 *4)) (-5 *2 (-623 *1)) - (-4 *1 (-1038 *4 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1021)) (-4 *2 (-356)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) - (-4 *2 (-634 *4))))) -(((*1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1069)))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1126)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1145))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-5 *2 (-623 *1)) (-4 *1 (-1103 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-623 (-939))) (-5 *1 (-284))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-895)) - (-5 *2 (-1233)) (-5 *1 (-460)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1233)) (-5 *1 (-460)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-623 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-895)) - (-5 *2 (-1233)) (-5 *1 (-460))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1204 *5))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-372)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *3)) (-5 *2 (-550)))) - ((*1 *1 *1) (-4 *1 (-976))) - ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-986)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-986)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-895)))) - ((*1 *1 *1) (-4 *1 (-986)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1108)))) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 (-880 *3)) (|:| -2487 (-1091)))))) + (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) + ((*1 *2) + (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) + (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) + (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) +(((*1 *2) + (-12 (-5 *2 (-667 (-880 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) + (-14 *4 (-893)))) + ((*1 *2) + (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) + ((*1 *2) + (-12 (-5 *2 (-667 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) (((*1 *2 *3) - (-12 (-5 *3 (-287 (-926 (-550)))) + (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) + (-4 *4 (-343)) (-5 *2 (-749)) (-5 *1 (-340 *4)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) +(((*1 *2) + (-12 (-4 *1 (-343)) + (-5 *2 (-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-536)) (-5 *2 (-1156 (-893) (-749)))))) +(((*1 *1) (-4 *1 (-343)))) +(((*1 *2) + (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893)) (-5 *2 - (-2 (|:| |varOrder| (-623 (-1145))) - (|:| |inhom| (-3 (-623 (-1228 (-749))) "failed")) - (|:| |hom| (-623 (-1228 (-749)))))) - (-5 *1 (-230))))) + (-3 (-1141 *4) (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091))))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1204 *4)) (-5 *1 (-788 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1204 *4)) - (-5 *1 (-788 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550)))))))) + (|partial| -12 (-5 *3 (-893)) + (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1204 *4)) (-5 *2 (-1233)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1204 (-400 *5))) (-14 *7 *6)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1145)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) - (-4 *3 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182)) - (-4 *7 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) - (-4 *3 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1033)) (-5 *3 (-1127))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-1145))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-112)) (-5 *1 (-807))))) -(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1148))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1204 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1204 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) - (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-923 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) - (-4 *7 (-923 (-48) *6 *5)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1141 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) - (-4 *3 (-1204 (-167 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1204 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) - (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1204 (-550))))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 (-167 (-550)))) (-5 *1 (-438)) - (-5 *3 (-167 (-550))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-4 *5 (-771)) (-4 *7 (-542)) (-5 *2 (-411 *3)) - (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) - (-4 *3 (-923 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1141 *4))) (-5 *1 (-450 *4)) - (-5 *3 (-1141 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-411 *3)) - (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1204 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-411 (-1141 *7)) (-1141 *7))) - (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) - (-5 *2 (-411 *3)) (-5 *1 (-530 *5 *6 *7 *3)) - (-4 *3 (-923 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-411 (-1141 *7)) (-1141 *7))) - (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) - (-4 *8 (-923 *7 *6 *5)) (-5 *2 (-411 (-1141 *8))) - (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-623 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *6 (-1204 *5)) (-5 *2 (-623 (-631 (-400 *6)))) - (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-550)) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) (-5 *2 (-623 (-631 (-400 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-650 *4))) - (-5 *1 (-650 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-5 *2 (-623 *3)) (-5 *1 (-674 *3)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-5 *2 (-411 *3)) - (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-923 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) - (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) - (-4 *5 - (-13 (-825) - (-10 -8 (-15 -2451 ((-1145) $)) - (-15 -2564 ((-3 $ "failed") (-1145)))))) - (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-923 (-926 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) - (-4 *5 (-13 (-825) (-10 -8 (-15 -2451 ((-1145) $))))) (-4 *6 (-542)) - (-5 *2 (-411 *3)) (-5 *1 (-711 *4 *5 *6 *3)) - (-4 *3 (-923 (-400 (-926 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-411 *3)) (-5 *1 (-712 *4 *5 *6 *3)) - (-4 *3 (-923 (-400 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-411 *3)) (-5 *1 (-720 *4 *5 *6 *3)) - (-4 *3 (-923 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-411 (-1141 *7))) - (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-981 *3)) - (-4 *3 (-1204 (-400 (-550)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-1015 *3)) - (-4 *3 (-1204 (-400 (-926 (-550))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1204 (-400 (-550)))) - (-4 *5 (-13 (-356) (-145) (-703 (-400 (-550)) *4))) - (-5 *2 (-411 *3)) (-5 *1 (-1048 *4 *5 *3)) (-4 *3 (-1204 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1204 (-400 (-926 (-550))))) - (-4 *5 (-13 (-356) (-145) (-703 (-400 (-926 (-550))) *4))) - (-5 *2 (-411 *3)) (-5 *1 (-1050 *4 *5 *3)) (-4 *3 (-1204 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-411 (-1141 (-400 *7)))) - (-5 *1 (-1140 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1186)))) - ((*1 *2 *3) - (-12 (-5 *2 (-411 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1104))) (-5 *1 (-649)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-895))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-895)) - (-14 *4 (-895))))) + (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) + (-4 *4 (-343)) (-5 *2 (-667 *4)) (-5 *1 (-340 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1204 (-550)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))) - (-5 *1 (-1042 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1063 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1102 (-219))) - (-5 *1 (-675))))) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) + (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) + (-5 *1 (-340 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-542) (-145))) - (-5 *2 (-2 (|:| -3480 *3) (|:| -3490 *3))) (-5 *1 (-1198 *4 *3)) - (-4 *3 (-1204 *4))))) + (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-932 (-1091))) + (-5 *1 (-340 *4))))) (((*1 *2) - (-12 (-4 *3 (-13 (-825) (-542) (-1012 (-550)))) (-5 *2 (-1233)) - (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3))))) -(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1231))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-460)) (-5 *3 (-623 (-256))) (-5 *1 (-1229)))) - ((*1 *1 *1) (-5 *1 (-1229)))) + (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-337 *3 *4)) (-14 *3 (-893)) + (-14 *4 (-893)))) + ((*1 *2) + (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-1141 *3)))) + ((*1 *2) + (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-893))))) +(((*1 *2) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749))))) +(((*1 *2) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1188)) (-4 *5 (-1205 *3)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-923 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) - (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) - (-4 *7 (-825)) (-4 *8 (-923 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) - (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) - ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) - ((*1 *2 *1) - (-12 (-5 *2 (-400 (-550))) (-5 *1 (-978 *3)) (-14 *3 (-550)))) - ((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-508)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1069) (-34))) (-5 *1 (-1109 *3 *2)) - (-4 *3 (-13 (-1069) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1093 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-542)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) + (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-372)) (-5 *1 (-199))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1000 (-818 (-550)))) (-5 *1 (-578 *3)) (-4 *3 (-1021))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-275 *2)) (-4 *2 (-1182)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3549 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -3859 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-545)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3549 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1228 (-309 (-219)))) (|:| |yinit| (-623 (-219))) - (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (|:| -3859 - (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) - (|:| |expense| (-372)) (|:| |accuracy| (-372)) - (|:| |intermediateResults| (-372)))))) - (-5 *1 (-781)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1233)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-926 *4))) (-5 *3 (-623 (-1145))) (-4 *4 (-444)) - (-5 *1 (-892 *4))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) -(((*1 *2 *1) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1167))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *3)) (-4 *4 (-13 (-823) (-356))) - (-4 *3 (-1204 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1021))))) -(((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) - (-14 *3 (-623 (-1145)))))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) + (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) + (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1021)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1145))))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) + (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-623 (-895))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) - (-14 *4 (-895)) (-14 *5 (-967 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) - (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1021)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) - (-4 *4 (-1204 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1021)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1021)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) - (-4 *4 (-1021)) (-4 *5 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1021)) - (-4 *2 (-825)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-923 *4 *5 *6)) - (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-923 *4 *5 *2)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *2 (-825)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-923 *4 (-522 *5) *5)) - (-5 *1 (-1095 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-825)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-926 *4)) (-5 *1 (-1176 *4)) - (-4 *4 (-1021))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3327)))) - (-5 *2 (-1009)) (-5 *1 (-727))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *1 *1) (-4 *1 (-1108)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-594 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)) - (-4 *4 (-542)) (-5 *2 (-400 (-1141 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1167))) - (-4 *6 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-546 *6 *3 *7)) - (-5 *5 (-1141 *3)) (-4 *7 (-1069)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1224 *5)) (-14 *5 (-1145)) (-4 *6 (-1021)) - (-5 *2 (-1201 *5 (-926 *6))) (-5 *1 (-921 *5 *6)) (-5 *3 (-926 *6)))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-1141 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) - (-4 *1 (-923 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *5 *4)) (-5 *2 (-400 (-1141 *3))) - (-5 *1 (-924 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1141 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))) - (-4 *7 (-923 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) - (-4 *6 (-1021)) (-5 *1 (-924 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1145)) (-4 *5 (-542)) - (-5 *2 (-400 (-1141 (-400 (-926 *5))))) (-5 *1 (-1017 *5)) - (-5 *3 (-400 (-926 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4346 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) - (-4 *2 (-1021)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1204 *2)) - (-4 *4 (-665 *2 *5 *6))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) + (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) + (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) + (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) (((*1 *2 *1) - (-12 (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) - (-4 *3 (-1069)) (-4 *5 (-644 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1069))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) + (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1204 (-550)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1069)) (-5 *2 (-112)) - (-5 *1 (-1183 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1195 (-550)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) + (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4346 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) - (-4 *2 (-1021)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1204 *2)) - (-4 *4 (-665 *2 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-320 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1182)) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1021)) (-14 *3 (-623 (-1145))))) - ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1021) (-825))) - (-14 *3 (-623 (-1145))))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1069)))) - ((*1 *1 *1) - (-12 (-14 *2 (-623 (-1145))) (-4 *3 (-170)) - (-4 *5 (-232 (-3307 *2) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *4) (|:| -3068 *5)) - (-2 (|:| -3690 *4) (|:| -3068 *5)))) - (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) - (-4 *7 (-923 *3 *5 (-839 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-825)))) - ((*1 *1 *1) - (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1) - (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1021)) - (-4 *3 (-705)))) - ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *3) (-12 (-5 *3 (-1228 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) - ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) + (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) + (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-550)) (|has| *1 (-6 -4345)) (-4 *1 (-1216 *3)) - (-4 *3 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-5 *2 (-1228 *6)) (-5 *1 (-329 *3 *4 *5 *6)) - (-4 *6 (-335 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-102 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) - (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1241 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1241 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) - (-4 *1 (-923 *3 *4 *5))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-900)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-900)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1063 (-219))) - (-5 *1 (-901))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-516))))) + (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) + (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) + (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1188)) + (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) + (-4 *1 (-335 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1233)) - (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) + (-12 (-5 *3 (-1147)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) + (-4 *7 (-1205 (-400 *6))) (-5 *2 (-620 (-920 *5))) + (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) + (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *4 (-356)) + (-5 *2 (-620 (-920 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) + (-5 *2 (-620 (-620 *4))) (-5 *1 (-334 *3 *4 *5 *6)) + (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-620 (-620 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1252 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-797 *3)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021))))) + (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) + (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) + (-14 *4 (-620 (-1147))) (-4 *5 (-380))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-356)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) + (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-536)) (-4 *2 (-356)) (-4 *4 (-1205 *2)) + (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) + (-4 *6 (-335 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) + (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) + (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) + (-4 *1 (-329 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) + (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) + (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-4 *5 (-342)) (-5 *2 (-411 (-1141 (-1141 *5)))) - (-5 *1 (-1180 *5)) (-5 *3 (-1141 (-1141 *5)))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) - (-5 *2 (-1009)) (-5 *1 (-735))))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *2 *3) - (-12 (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) - (-4 *3 (-596 (-372))))) - ((*1 *2 *3) - (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-372))) - (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-167 *5)) (-5 *4 (-895)) (-4 *5 (-170)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) - (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-170)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-926 *4)) (-4 *4 (-1021)) (-4 *4 (-596 (-372))) - (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-926 *5)) (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) - (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 (-167 *4)))) (-4 *4 (-542)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 (-167 *5)))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-542)) (-4 *5 (-825)) - (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) - (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-895)) (-4 *5 (-542)) - (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) - (-5 *1 (-763 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1035 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *3)) (-4 *3 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1021)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1145))))) - ((*1 *2 *1) - (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) - (-4 *3 (-13 (-1021) (-825))) (-14 *4 (-623 (-1145))))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1069)) (-4 *2 (-1021)))) - ((*1 *2 *1) - (-12 (-14 *3 (-623 (-1145))) (-4 *5 (-232 (-3307 *3) (-749))) - (-14 *6 - (-1 (-112) (-2 (|:| -3690 *4) (|:| -3068 *5)) - (-2 (|:| -3690 *4) (|:| -3068 *5)))) - (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) - (-4 *7 (-923 *2 *5 (-839 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1204 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1021)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) - (-4 *3 (-705)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) - (-4 *2 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3260 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1071 (-749))) (-5 *6 (-749)) - (-5 *2 - (-2 (|:| |contp| (-550)) - (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1204 (-550)))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-342)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1610 (-623 (-2 (|:| |irr| *3) (|:| -1635 (-550))))))) - (-5 *1 (-210 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-2 (|:| |deg| (-749)) (|:| -4123 *5)))) - (-4 *5 (-1204 *4)) (-4 *4 (-342)) (-5 *2 (-623 *5)) - (-5 *1 (-210 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-2 (|:| -1735 *5) (|:| -3661 (-550))))) - (-5 *4 (-550)) (-4 *5 (-1204 *4)) (-5 *2 (-623 *5)) - (-5 *1 (-674 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1182))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) - (-4 *4 (-825)) (-5 *1 (-1153 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1021)) (-5 *1 (-693 *2 *4)) - (-4 *4 (-626 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-354 (-114))) (-5 *1 (-812 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1230))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) - (-4 *6 (-232 (-3307 *3) (-749))) - (-14 *7 - (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) - (-2 (|:| -3690 *5) (|:| -3068 *6)))) - (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-825)) (-4 *8 (-923 *4 *6 (-839 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) - (-4 *3 (-1021)))) - ((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-770)) - (-4 *4 (-825))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -1608 *4)))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-52)) (-5 *1 (-866 *4)) - (-4 *4 (-1069))))) -(((*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-526))) (-5 *2 (-1145)) (-5 *1 (-526))))) + (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *3 (-920 (-536))) (-5 *1 (-323)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *1 (-323))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) + ((*1 *1) (-5 *1 (-323)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-323))))) +(((*1 *1) (-5 *1 (-323)))) +(((*1 *1) (-5 *1 (-323)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-323))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-323))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") + (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") + (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") + (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1146)) (|:| |thenClause| (-323)) + (|:| |elseClause| (-323)))) + (|:| |returnBranch| + (-2 (|:| -3757 (-112)) + (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) + (|:| |blockBranch| (-620 (-323))) (|:| |commentBranch| (-620 (-1129))) + (|:| |callBranch| (-1129)) + (|:| |forBranch| + (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) + (|:| -3579 (-323)))) + (|:| |labelBranch| (-1091)) + (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 (-323)))) + (|:| |commonBranch| + (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) + (|:| |printBranch| (-620 (-838))))) + (-5 *1 (-323))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-323))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-323))))) +(((*1 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) +(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356))))) +(((*1 *2 *1) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) + (-5 *2 (-1141 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) + (-4 *3 (-170))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-536)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1072)) (-4 *2 (-130))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)) (-4 *3 (-770))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-1127))) (-5 *2 (-1127)) (-5 *1 (-186)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1228 *5)) (-4 *5 (-770)) (-5 *2 (-112)) - (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) -(((*1 *2) - (-12 (-4 *4 (-1186)) (-4 *5 (-1204 *4)) (-4 *6 (-1204 (-400 *5))) - (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-749))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1182)) - (-4 *3 (-366 *4)) (-4 *5 (-366 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1219 *3)) - (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1190 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1188 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1211 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-5 *1 (-607 *3 *4 *5)) - (-14 *5 (-895)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1130 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-38 (-400 (-550)))) - (-5 *1 (-1131 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1021) (-696 (-400 (-550))))) - (-4 *5 (-825)) (-5 *1 (-1244 *4 *5 *2)) (-4 *2 (-1249 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1248 *3 *4)) - (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229))))) + (-12 (-5 *3 (-536)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1023)) + (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-924 *2 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1141 *7)) (-5 *3 (-536)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *1 (-314 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-314 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 *8)) (-4 *7 (-825)) + (-4 *8 (-1023)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1141 *8)) + (-5 *1 (-314 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-536))) (-5 *1 (-312 *3 *4 *5)) + (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) + (-5 *6 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) + (-5 *6 (-536)) (-5 *7 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) + (-5 *6 (-219)) (-5 *7 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) + (-5 *6 (-219)) (-5 *7 (-536)) (-5 *8 (-1129)) (-5 *2 (-1179 (-901))) + (-5 *1 (-311))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) + (-4 *5 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-620 *7)) (-4 *7 (-414 *6)) + (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-620 (-286 *8))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *8)) + (-5 *6 (-620 *8)) (-4 *8 (-414 *7)) + (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-113))) (-5 *6 (-620 (-286 *8))) + (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) + (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) + (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) + (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) + (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-620 *3)) (-4 *3 (-414 *7)) + (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) + (-5 *1 (-310 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-536)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-300)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) + (-4 *1 (-300))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-300))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-823)) (-5 *1 (-297 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1127)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)))) - ((*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825))))) -(((*1 *1 *1) (-5 *1 (-219))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1145))) - (-14 *3 (-623 (-1145))) (-4 *4 (-380)))) - ((*1 *1 *1) (-5 *1 (-372))) ((*1 *1) (-5 *1 (-372)))) + (-12 (-5 *3 (-620 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) + (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-400 (-536))) (-5 *2 (-219)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-1125 (-219))) (-5 *1 (-186)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1145))) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *4 (-623 (-1145))) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *2) - (-12 (-4 *3 (-1021)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1204 *3))))) + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))) + (-5 *2 (-1009)) (-5 *1 (-296))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) - (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -1309 *5)))) - (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-634 *5)) - (-4 *6 (-634 (-400 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-550)) (-5 *1 (-478 *4)) - (-4 *4 (-1204 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-926 *5))) (-5 *4 (-1145)) - (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-889 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-411 (-926 *6))) (-5 *5 (-1145)) (-5 *3 (-926 *6)) - (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-889 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-1035 *4 *5 *6)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1182)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-5 *2 (-550)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-984 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) - (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-827 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1021)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-323))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1556 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1009)) (-5 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) - (|:| |expense| (-372)) (|:| |accuracy| (-372)) - (|:| |intermediateResults| (-372)))) - (-5 *2 (-1009)) (-5 *1 (-298))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-542)) (-4 *2 (-1021)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1035 *4 *5 *6)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *1)))) - (-4 *1 (-1041 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1021)) - (-4 *2 (-444)))) + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))))) + (-5 *2 (-1009)) (-5 *1 (-296)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-1204 (-550))) (-5 *2 (-623 (-550))) - (-5 *1 (-478 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-444)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-923 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *3 (-444))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1035 *3 *4 *5))))) -(((*1 *1 *1) (|partial| -4 *1 (-1120)))) -(((*1 *1 *1) (-4 *1 (-237))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1489 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1182))) - (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1182))))) - ((*1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2) (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1204 *5)) - (-5 *1 (-706 *5 *2)) (-4 *5 (-356))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1145))))) - (-5 *6 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1073)) - (-5 *1 (-390)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1145))))) - (-5 *6 (-623 (-1145))) (-5 *3 (-1145)) (-5 *2 (-1073)) - (-5 *1 (-390)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-623 (-1145))) (-5 *5 (-1148)) (-5 *3 (-1145)) - (-5 *2 (-1073)) (-5 *1 (-390))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) - (-4 *2 (-1182))))) -(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-342))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-883))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-550))))) - (-5 *1 (-354 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-749))))) - (-5 *1 (-379 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| -1735 *3) (|:| -3068 (-550))))) - (-5 *1 (-411 *3)) (-4 *3 (-542)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1644 (-749))))) - (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-550)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) - (-4 *4 (-170)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167))) - (-5 *1 (-221 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-287 *2)) (-4 *2 (-1081)) (-4 *2 (-1182)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-287 *2)) (-4 *2 (-1081)) (-4 *2 (-1182)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-825)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-623 (-1145))) (-4 *4 (-170)) - (-4 *6 (-232 (-3307 *3) (-749))) - (-14 *7 - (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) - (-2 (|:| -3690 *5) (|:| -3068 *6)))) - (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) - (-4 *2 (-923 *4 *6 (-839 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) - (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-923 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1228 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-526))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-579 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1021)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1021)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-662 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-665 *3 *2 *4)) (-4 *3 (-1021)) (-4 *2 (-366 *3)) - (-4 *4 (-366 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-665 *3 *4 *2)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *2 (-366 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-366 *2)) - (-4 *4 (-366 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-699))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1069)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-542)) - (-5 *1 (-943 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *1) (-4 *1 (-1081))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *2 *5)) (-4 *4 (-1021)) (-4 *2 (-232 *3 *4)) - (-4 *5 (-232 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *4 (-1021)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-825)) (-5 *1 (-1095 *3 *4 *2)) - (-4 *2 (-923 *3 (-522 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1178)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-705)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-550)) (-4 *1 (-1226 *3)) (-4 *3 (-1182)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1251 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-821))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-895)) (-4 *4 (-1021)) - (-5 *1 (-1002 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-895)) (-4 *4 (-1021)) - (-5 *1 (-1002 *4))))) + (-12 + (-5 *3 + (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) + (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) + (-5 *2 (-1009)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) + ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) + ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-186)))) + ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-1229 (-307 (-371)))) + (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1229 (-677))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) + (-5 *2 (-620 (-219))) (-5 *1 (-296))))) +(((*1 *2 *2) (-12 (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-536)))) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 (-307 (-219)))) + (-5 *2 + (-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) + (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536)))) + (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) + (-5 *2 (-371)) (-5 *1 (-260)))) + ((*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-536))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-536))) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1060 (-817 (-371)))) (-5 *2 (-1060 (-817 (-219)))) + (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-817 (-371))) (-5 *2 (-817 (-219))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1228 *6)) (-5 *4 (-1228 (-550))) (-5 *5 (-550)) - (-4 *6 (-1069)) (-5 *2 (-1 *6)) (-5 *1 (-991 *6))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-726))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-1035 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-603 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3490 *4) (|:| |sol?| (-112))) - (-550) *4)) - (-4 *4 (-356)) (-4 *5 (-1204 *4)) (-5 *1 (-560 *4 *5))))) + (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *4 (-1147)) + (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) - (-5 *1 (-919 *4 *5)) (-4 *5 (-1204 *4))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) + (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) + (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1145)) (-4 *1 (-27)) - (-5 *2 (-623 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) + (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-1133 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102 (-219))) (-5 *1 (-1230))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1069) (-34))) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-801)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) - (-4 *5 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-550))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) - (-5 *5 (-1195 (-400 (-550)))) (-5 *6 (-400 (-550))) - (-4 *8 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-400 (-550)))) - (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1167) (-423 *8))) - (-4 *8 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-400 (-550))) (-4 *4 (-1021)) (-4 *1 (-1211 *4 *3)) - (-4 *3 (-1188 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1021)) (-5 *2 (-1228 *3)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1204 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1069)) - (-5 *1 (-656 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1069)) (-5 *1 (-660 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1125 (-623 (-550)))) (-5 *3 (-623 (-550))) - (-5 *1 (-857))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1204 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) - (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1204 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *6)))) - (-5 *4 (-1000 (-818 (-550)))) (-5 *5 (-1145)) (-5 *7 (-400 (-550))) - (-4 *6 (-1021)) (-5 *2 (-837)) (-5 *1 (-578 *6))))) + (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) + (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) + (-5 *2 (-620 (-219))) (-5 *1 (-186)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) + (-5 *2 (-620 (-219))) (-5 *1 (-294))))) (((*1 *2 *3) - (-12 (-5 *3 (-1228 (-667 *4))) (-4 *4 (-170)) - (-5 *2 (-1228 (-667 (-926 *4)))) (-5 *1 (-183 *4))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-112)) (-5 *1 (-294))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1183)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-620 (-593 *1))) (-5 *3 (-620 *1)) (-4 *1 (-291)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *1))) (-4 *1 (-291)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291))))) +(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-4 *1 (-291)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-593 *1)) (-4 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291))))) +(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-620 (-113)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-593 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1012 (-536))) + (-4 *4 (-13 (-825) (-543))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 *1)) (-4 *1 (-1023)) (-4 *1 (-291)) (-5 *2 (-1141 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-304)) (-5 *1 (-289)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 (-1129))) (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1023)) (-4 *4 (-1205 *3)) (-5 *1 (-162 *3 *4 *2)) + (-4 *2 (-1205 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183))))) (((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) + (-12 (-5 *2 (-620 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-543)) + (-4 *3 (-1183))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-4 *5 (-423 *4)) - (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112))))) + (-12 (-4 *4 (-444)) + (-5 *2 + (-620 + (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) + (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 *4)))))))) + (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) - (-4 *5 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-550)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) + (-12 (-4 *4 (-444)) + (-5 *2 + (-620 + (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) + (|:| |geneigvec| (-620 (-667 (-400 (-920 *4)))))))) + (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-400 (-920 *6)) (-1136 (-1147) (-920 *6)))) (-5 *5 (-749)) + (-4 *6 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *6))))) (-5 *1 (-285 *6)) + (-5 *4 (-667 (-400 (-920 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-550)) - (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-550))) - (-4 *7 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-550))) - (-4 *3 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-550)) (-4 *4 (-1021)) (-4 *1 (-1190 *4 *3)) - (-4 *3 (-1219 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1188 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *1 (-1177 *3)) - (-4 *3 (-948))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-109)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1127)) (-5 *1 (-1163))))) -(((*1 *2 *1) - (-12 (-5 *2 (-917 *4)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-1221 *4 *2)) - (-4 *4 (-38 (-400 (-550))))))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4335)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-895)))) - ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677)))) - ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-677))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-542)))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1127)) (-5 *1 (-52))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1167))) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *2 (-569 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-550)))) - (-5 *2 (-2 (|:| -4137 (-1125 *4)) (|:| -4149 (-1125 *4)))) - (-5 *1 (-1131 *4)) (-5 *3 (-1125 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1133 3 *3)) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) - ((*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1021))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1021)) - (-14 *4 (-623 (-1145))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1021) (-825))) - (-14 *4 (-623 (-1145)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-623 (-594 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-594 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1204 (-167 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-895)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1204 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1204 *2)) (-4 *2 (-966 *3)) (-5 *1 (-406 *3 *2 *4 *5)) - (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1012 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1204 *2)) (-4 *2 (-966 *3)) - (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) - (-14 *6 (-1228 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-4 *5 (-1021)) - (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1167) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1204 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-486))) (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-623 (-594 (-486)))) - (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-594 (-486))) (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-895)) (-4 *4 (-342)) - (-5 *1 (-519 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1204 *4)) - (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1204 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) - ((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145)) - (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) - (-4 *5 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-287 *3)) (-5 *5 (-749)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) - (-4 *6 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1195 (-749))) - (-4 *7 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1145)) (-5 *5 (-287 *3)) (-5 *6 (-1195 (-749))) - (-4 *3 (-13 (-27) (-1167) (-423 *7))) - (-4 *7 (-13 (-542) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1021)) (-4 *2 (-1219 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-1021)) (-5 *1 (-1002 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1021)) (-5 *1 (-1002 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-167 (-550))) (-5 *2 (-112)) (-5 *1 (-438)))) - ((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-550)) (-234 *5 (-749)) (-839 *4) - (-241 *4 (-400 (-550))))) - (-14 *4 (-623 (-1145))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-1186)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *2 *3) - (-12 (-5 *3 (-550)) (|has| *1 (-6 -4335)) (-4 *1 (-397)) - (-5 *2 (-895))))) + (-2 (|:| |eigval| (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) + (|:| |eigmult| (-749)) (|:| |eigvec| (-620 *4)))) + (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) + (-5 *4 (-667 (-400 (-920 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (-4 *5 (-444)) + (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) + (-5 *4 (-667 (-400 (-920 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-901)) - (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901)) (-5 *4 (-400 (-550))) - (-5 *2 - (-2 (|:| |brans| (-623 (-623 (-917 (-219))))) - (|:| |xValues| (-1063 (-219))) (|:| |yValues| (-1063 (-219))))) - (-5 *1 (-151))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-1069)) - (-5 *2 (-623 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) - (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-895)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1) (-5 *1 (-1051)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-623 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-550)) - (-5 *2 (-667 *6)) (-5 *1 (-1003 *6)) (-4 *6 (-356)) (-4 *6 (-1021)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1003 *4)) - (-4 *4 (-356)) (-4 *4 (-1021)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-5 *2 (-667 *5)) - (-5 *1 (-1003 *5)) (-4 *5 (-356)) (-4 *5 (-1021))))) + (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-4 *4 (-444)) + (-5 *2 (-620 (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4))))) + (-5 *1 (-285 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1056))) (-5 *1 (-284))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-284))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-284))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-620 (-939))) (-5 *1 (-284))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-284))))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) + (-4 *2 (-1183))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1035 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) -(((*1 *1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) - (-5 *1 (-961 *2 *3 *4 *5)) (-4 *5 (-923 *2 *4 *3))))) + (-12 (-4 *4 (-356)) (-5 *2 (-620 (-1124 *4))) (-5 *1 (-278 *4 *5)) + (-5 *3 (-1124 *4)) (-4 *5 (-1222 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) + (-4 *3 (-1072)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-273))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-400 (-536))) + (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-593 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))) + (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *4 *2))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-1147)) + (-4 *2 (-13 (-27) (-1169) (-414 *5))) + (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-400 *5)) (-4 *4 (-1186)) (-4 *5 (-1204 *4)) - (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1204 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1147 (-400 (-550)))) (-5 *2 (-400 (-550))) - (-5 *1 (-184)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-667 (-309 (-219)))) (-5 *3 (-623 (-1145))) - (-5 *4 (-1228 (-309 (-219)))) (-5 *1 (-199)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1069)) - (-4 *3 (-1182)) (-5 *1 (-287 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-302 *2)) (-4 *2 (-1069)) (-4 *2 (-1182)) - (-5 *1 (-287 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 (-623 *1)))) - (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-1 *1 (-623 *1)))) - (-4 *1 (-295)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1147 (-400 (-550)))) - (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-550)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *1)) (-4 *1 (-367 *4 *5)) - (-4 *4 (-825)) (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-623 *1))) - (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-749))) - (-5 *4 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-825)) - (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-623 (-749))) - (-5 *4 (-623 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) - (-4 *5 (-1021)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 *1)) (-5 *4 (-1145)) - (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-526))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1145)) (-4 *1 (-423 *4)) (-4 *4 (-825)) - (-4 *4 (-596 (-526))))) - ((*1 *1 *1) - (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-526))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-1145))) (-4 *1 (-423 *3)) (-4 *3 (-825)) - (-4 *3 (-596 (-526))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1145)) (-4 *1 (-423 *3)) (-4 *3 (-825)) - (-4 *3 (-596 (-526))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *5)) (-4 *1 (-505 *4 *5)) - (-4 *4 (-1069)) (-4 *5 (-1182)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-811 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1069)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-400 (-926 *4))) (-5 *3 (-1145)) (-4 *4 (-542)) - (-5 *1 (-1017 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-623 (-1145))) (-5 *4 (-623 (-400 (-926 *5)))) - (-5 *2 (-400 (-926 *5))) (-4 *5 (-542)) (-5 *1 (-1017 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-287 (-400 (-926 *4)))) (-5 *2 (-400 (-926 *4))) - (-4 *4 (-542)) (-5 *1 (-1017 *4)))) + (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-287 (-400 (-926 *4))))) (-5 *2 (-400 (-926 *4))) - (-4 *4 (-542)) (-5 *1 (-1017 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-1021)) (-4 *4 (-770)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1125 *3))))) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-620 (-593 *3))) (|:| |vals| (-620 *3)))) + (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) (((*1 *2 *3) - (-12 (-4 *1 (-814)) - (-5 *3 - (-2 (|:| |fn| (-309 (-219))) (|:| -2463 (-623 (-219))) - (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) - (|:| |ub| (-623 (-818 (-219)))))) - (-5 *2 (-1009)))) - ((*1 *2 *3) - (-12 (-4 *1 (-814)) - (-5 *3 - (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) - (-5 *2 (-1009))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1071 *3)) (-5 *1 (-879 *3)) (-4 *3 (-361)) - (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) + (-12 (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) + (-4 *3 (-13 (-414 *4) (-976)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-620 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-414 *4) (-976))) (-4 *4 (-13 (-825) (-543))) + (-5 *1 (-269 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-414 *3) (-976)))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-926 *4))) (-5 *1 (-409 *3 *4)) - (-4 *3 (-410 *4)))) - ((*1 *2) - (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1141 (-926 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1141 (-400 (-926 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-342)) (-4 *6 (-1204 *5)) - (-5 *2 - (-623 - (-2 (|:| -2206 (-667 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-667 *6))))) - (-5 *1 (-489 *5 *6 *7)) + (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-543)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-543)))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268))))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| -2206 (-667 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-667 *6)))) - (-4 *7 (-1204 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1021)) (-5 *1 (-578 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1188 *3)) (-4 *3 (-1021)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1219 *3)) (-4 *3 (-1021))))) -(((*1 *2 *2 *3) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) + (-5 *2 (-620 (-1129))) (-5 *1 (-260))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-260))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) + (-5 *1 (-260))))) +(((*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1228 (-400 (-926 *4)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *4))))))) - (-5 *3 (-623 *7)) (-4 *4 (-13 (-300) (-145))) - (-4 *7 (-923 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7))))) + (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) + (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) + (|:| |ub| (-620 (-817 (-219)))))) + (-5 *1 (-260))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-817 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 *4)) + (-5 *1 (-260))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-623 - (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1141 *3)) - (|:| |logand| (-1141 *3))))) - (-5 *1 (-569 *3)) (-4 *3 (-356))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1127)) (-5 *3 (-752)) (-5 *1 (-114))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) - (-4 *3 (-356))))) -(((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1) (-4 *1 (-1113)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) - ((*1 *1 *1 *1) (-4 *1 (-535))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-749))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-356)) - (-14 *4 (-967 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *1) (|partial| -4 *1 (-701))) - ((*1 *1 *1) (|partial| -4 *1 (-705))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1038 *3 *2)) (-4 *3 (-13 (-823) (-356))) - (-4 *2 (-1204 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1125 *3)) (-4 *3 (-1021)) (-5 *1 (-1129 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) - (-4 *6 (-1204 *5)) (-4 *7 (-1204 (-400 *6))) - (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-542) (-1012 (-550)))) - (-5 *2 (-2 (|:| -2603 (-749)) (|:| -3112 *8))) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) + (-12 (-4 *3 (-227)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) + (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) - (-4 *4 (-1204 (-400 (-550)))) (-4 *5 (-1204 (-400 *4))) - (-4 *6 (-335 (-400 (-550)) *4 *5)) - (-5 *2 (-2 (|:| -2603 (-749)) (|:| -3112 *6))) - (-5 *1 (-886 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-4 *3 (-1035 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *7 *8 *9 *3 *4)) (-4 *4 (-1041 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) + (-12 (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) + (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-51)) + (-5 *1 (-254)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1041 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-4 *3 (-1035 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *7 *8 *9 *3 *4)) (-4 *4 (-1078 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) + (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *1 (-256 *2)) + (-4 *2 (-1183))))) +(((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *1) (-5 *1 (-142))) + ((*1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-254)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-255))))) +(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) +(((*1 *2 *3) + (-12 (-5 *3 (-899)) (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1078 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *3 (-1035 *5 *6 *7)) + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) (-5 *2 - (-2 (|:| |done| (-623 *4)) - (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -1608 *4)))))) - (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1078 *5 *6 *7 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) -(((*1 *1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-4 *1 (-295)))) -(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-926 (-550))) (-5 *3 (-1145)) - (-5 *4 (-1063 (-400 (-550)))) (-5 *1 (-30))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-878 (-550))) (-5 *1 (-891)))) + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-878 (-550))) (-5 *1 (-891))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1182)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-400 (-926 *5)) (-1134 (-1145) (-926 *5)))) - (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-926 *5))))) - (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-926 *5))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1145)) (-5 *1 (-653 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2206 (-623 *4)))) - (-5 *1 (-1093 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-444))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3260 (-760 *3)) (|:| |coef2| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3260 *1) (|:| |coef2| *1))) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) - (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021)))) + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151)) (-5 *3 (-620 (-917 (-219)))))) ((*1 *2 *3) - (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) - (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4346 "*"))) (-4 *2 (-1021))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) - (-5 *2 (-623 (-1145))) (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1141 *7)) (-4 *7 (-923 *6 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1021)) (-5 *2 (-623 *5)) - (-5 *1 (-314 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-380)))) - ((*1 *2 *1) - (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-623 (-1145))))) - ((*1 *2 *1) - (-12 (-5 *2 (-623 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *1 (-923 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-623 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1021)) - (-4 *7 (-923 *6 *4 *5)) (-5 *2 (-623 *5)) - (-5 *1 (-924 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1071 (-1145))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-770)) - (-4 *5 (-825)) (-5 *2 (-623 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-623 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-926 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-1145))) - (-5 *1 (-1017 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *3) - (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1204 *5)) - (-5 *2 (-623 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1204 *6)) - (-14 *7 (-895))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1127)) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1195 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-1053 *3)) (-4 *3 (-131))))) + (-5 *2 + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 (-219))))))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))) +(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) +(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-400 (-536))))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1145)) (-4 *1 (-27)) - (-5 *2 (-623 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-926 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-112)) (-5 *1 (-254))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) + (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) + (-4 *3 (-13 (-596 (-525)) (-1072))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1145))) - (-5 *5 (-1063 (-818 (-219)))) (-5 *2 (-1125 (-219))) (-5 *1 (-293))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1021)) (-4 *2 (-542))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-58 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1182)) (-5 *1 (-58 *3))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1204 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3123 *1) (|:| -2545 *1))) (-4 *1 (-300)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3123 (-749)) (|:| -2545 (-749)))) - (-5 *1 (-749)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3123 *3) (|:| -2545 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) - (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) - (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $)))))))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-594 *2)) - (-4 *2 (-13 (-423 *5) (-27) (-1167))) - (-4 *5 (-13 (-444) (-1012 (-550)) (-825) (-145) (-619 (-550)))) - (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1069)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 *1)) (-4 *1 (-923 *4 *5 *3)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *3 (-825)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1021)) (-4 *1 (-923 *4 *5 *3)) - (-4 *5 (-771)) (-4 *3 (-825)))) + (-12 (-5 *3 (-851 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) + (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) - (-4 *6 (-1021)) - (-4 *2 - (-13 (-356) - (-10 -8 (-15 -2233 ($ *7)) (-15 -4153 (*7 $)) (-15 -4163 (*7 $))))) - (-5 *1 (-924 *5 *4 *6 *7 *2)) (-4 *7 (-923 *6 *5 *4)))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1063 (-371))) + (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) + (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1141 (-400 (-926 *5))))) (-5 *4 (-1145)) - (-5 *2 (-400 (-926 *5))) (-5 *1 (-1017 *5)) (-4 *5 (-542))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) - (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-444)) (-5 *2 (-112)) - (-5 *1 (-353 *4 *5)) (-14 *5 (-623 (-1145))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-758 *4 (-839 *5)))) (-4 *4 (-444)) - (-14 *5 (-623 (-1145))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) - (-5 *2 (-1233)) (-5 *1 (-1148)))) + (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) + (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) + (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) + (-4 *3 (-13 (-596 (-525)) (-1072))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) + (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) + (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) + (-5 *2 (-1232)) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) - (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *2 (-1233)) - (-5 *1 (-1148)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1145)) - (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2487 "void"))) (-5 *2 (-1233)) - (-5 *1 (-1148))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-923 *4 *5 *6))))) + (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) + (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) + (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) + (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) + (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) + (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1233)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-1147)) (-5 *5 (-620 (-254))) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-1232)) + (-5 *1 (-250 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1232)) (-5 *1 (-253)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) + (-5 *1 (-253)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *2 (-1232)) (-5 *1 (-253)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) + (-5 *1 (-253)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1233)) (-5 *1 (-253)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1233)) + (-5 *1 (-253))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251))))) +(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) + (-5 *2 (-1233)) (-5 *1 (-251))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) + (-5 *5 (-112)) (-5 *2 (-1233)) (-5 *1 (-251))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) + (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) + (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) + (-5 *1 (-248 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) + (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) + (-5 *1 (-248 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) + (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) + (-4 *3 (-13 (-596 (-525)) (-1072))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) + (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) + (-5 *1 (-248 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) + (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) + (-5 *1 (-248 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) + (-5 *2 (-1104 (-219))) (-5 *1 (-249))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-216 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-247 *3)))) + ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) (((*1 *2 *1) - (-12 (-5 *2 (-837)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) - (-14 *4 (-749)) (-4 *5 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) - ((*1 *2 *1) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *2 *1) (-12 (-5 *2 (-752)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1163)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-1163))))) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) + ((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 (-749)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) + (-4 *2 (-259 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-770)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-623 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) - (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) - (-4 *6 (-232 (-3307 *4) (-749))) - (-14 *7 - (-1 (-112) (-2 (|:| -3690 *5) (|:| -3068 *6)) - (-2 (|:| -3690 *5) (|:| -3068 *6)))) - (-14 *4 (-623 (-1145))) (-4 *2 (-170)) - (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-923 *2 *6 (-839 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-825)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) - (-4 *4 (-1204 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1021)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1021)) (-4 *3 (-705)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) - (-4 *4 (-1021)) (-4 *5 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1021)) - (-4 *2 (-825)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1021)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-923 *4 *5 *6)) - (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *6 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-923 *4 *5 *2)) (-4 *4 (-1021)) - (-4 *5 (-771)) (-4 *2 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 *5)) (-4 *1 (-947 *4 *5 *6)) - (-4 *4 (-1021)) (-4 *5 (-770)) (-4 *6 (-825)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1021)) (-4 *3 (-770)) - (-4 *2 (-825))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1145)))) - (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-923 *3 *5 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1021))))) + (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) + (-4 *4 (-259 *3)) (-4 *5 (-771))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-1021)))) - ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-542))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-623 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-771)) (-4 *6 (-923 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) - (-5 *1 (-441 *4 *3 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) - (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-923 *4 *6 *5)) (-4 *4 (-444)) - (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-961 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-167 (-219))) (-5 *6 (-1127)) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-923 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1145)))) - (-4 *7 (-771)) - (-5 *2 - (-623 - (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) - (|:| |cols| (-623 (-550)))))) - (-5 *1 (-898 *5 *6 *7 *8))))) -(((*1 *1 *1) (-5 *1 (-1144))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-309 (-550))) (|:| -3327 (-309 (-372))) - (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1144)))) - (-5 *1 (-1144))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1182)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-629 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-427)) + (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) + (-4 *4 (-259 *3)) (-4 *5 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) +(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-242))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-749)) + (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-536)))))) + (-5 *1 (-240 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-235)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-536)) (-5 *1 (-235))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-235)))) + ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1235)) (-5 *1 (-235))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235))))) +(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-235))))) +(((*1 *1 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1183)) (-4 *1 (-232 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-286 (-920 (-536)))) (-5 *2 - (-623 - (-3 (|:| -1856 (-1145)) - (|:| -2352 (-623 (-3 (|:| S (-1145)) (|:| P (-926 (-550))))))))) - (-5 *1 (-1149))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1150))) (-5 *1 (-1150)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-623 (-1150))) (-5 *1 (-1150))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-390))))) -(((*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1182))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256))))) -(((*1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-384))))) -(((*1 *2 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-535))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) - ((*1 *1 *1) (-4 *1 (-295))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-837)))) -(((*1 *1 *1 *1) (-5 *1 (-837)))) -(((*1 *1) (-5 *1 (-801)))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-623 *3)) (-5 *5 (-895)) (-4 *3 (-1204 *4)) - (-4 *4 (-300)) (-5 *1 (-452 *4 *3))))) + (-2 (|:| |varOrder| (-620 (-1147))) + (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) + (|:| |hom| (-620 (-1229 (-749)))))) + (-5 *1 (-230))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-229 *3)))) + ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1072))))) +(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-920 *6)) (-5 *4 (-1147)) + (-5 *5 (-817 *7)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-4 *7 (-13 (-1169) (-29 *6))) (-5 *1 (-218 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-817 *6)) + (-4 *6 (-13 (-1169) (-29 *5))) + (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-218 *5 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-817 *4)) (-5 *3 (-593 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1169) (-29 *6))) + (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *1 (-218 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1169) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) + ((*1 *1 *1) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) + (-14 *3 (-620 (-1147)))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *6)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-923 *3 *4 *5)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) + (-14 *4 (-620 (-1147))))) ((*1 *2 *1) - (-12 (-5 *2 (-623 (-879 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145)) + (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) + (-14 *4 (-620 (-1147)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) + (-14 *4 (-620 (-1147)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) + (-14 *3 (-620 (-1147)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1147)) (-5 *6 (-112)) + (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-4 *3 (-13 (-1169) (-934) (-29 *7))) (-5 *2 - (-2 (|:| |zeros| (-1125 (-219))) (|:| |ones| (-1125 (-219))) - (|:| |singularities| (-1125 (-219))))) - (-5 *1 (-104))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-96))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-736))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1182)) - (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *6 *7 *2)) (-4 *6 (-1021)) - (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1182)) (-5 *2 (-550))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-623 *2))) (-5 *4 (-623 *5)) - (-4 *5 (-38 (-400 (-550)))) (-4 *2 (-1219 *5)) - (-5 *1 (-1221 *5 *2))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) - (-5 *5 (-112)) (-4 *8 (-1035 *6 *7 *4)) (-4 *9 (-1041 *6 *7 *4 *8)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) - (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -1608 *9)))) - (-5 *1 (-1077 *6 *7 *4 *8 *9))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-354 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-379 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-627 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| "failed") + (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *7 *3)) (-5 *5 (-817 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019))))) -(((*1 *1 *1 *1) (-5 *1 (-837))) ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 (-550))) (-5 *3 (-550)) (-4 *1 (-843 *4))))) + (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *3)))) + (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-287 (-818 *3))) (-4 *3 (-13 (-27) (-1167) (-423 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 - (-3 (-818 *3) - (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) - (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) - "failed")) - (-5 *1 (-616 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1127)) - (-4 *3 (-13 (-27) (-1167) (-423 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *2 (-818 *3)) (-5 *1 (-616 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 (-818 (-926 *5)))) (-4 *5 (-444)) + (-12 (-5 *4 (-112)) (-4 *5 (-343)) (-5 *2 - (-3 (-818 (-400 (-926 *5))) - (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-926 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-818 (-400 (-926 *5))) "failed"))) - "failed")) - (-5 *1 (-617 *5)) (-5 *3 (-400 (-926 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-287 (-400 (-926 *5)))) (-5 *3 (-400 (-926 *5))) - (-4 *5 (-444)) - (-5 *2 - (-3 (-818 *3) - (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) - (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) - "failed")) - (-5 *1 (-617 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-287 (-400 (-926 *6)))) (-5 *5 (-1127)) - (-5 *3 (-400 (-926 *6))) (-4 *6 (-444)) (-5 *2 (-818 *3)) - (-5 *1 (-617 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) - (-4 *3 (-13 (-356) (-145) (-1012 (-550)))) (-5 *1 (-554 *3 *4))))) + (-2 (|:| |cont| *5) + (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) + (-5 *1 (-210 *5 *3)) (-4 *3 (-1205 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1205 (-400 *2))) + (-4 *2 (-1205 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-372)) (-5 *1 (-186))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1079))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *2 (-825)) (-4 *5 (-1035 *3 *4 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3)) (-4 *3 (-825)) - (-4 *3 (-1069))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 *4)))) - (-5 *1 (-863 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-1069)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *7 (-1069)) (-5 *2 (-623 *1)) (-4 *1 (-1072 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-1033)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1021)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1178)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1182)) (-4 *2 (-1021))))) + (-2 (|:| |pde| (-620 (-307 (-219)))) + (|:| |constraints| + (-620 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) + (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) + (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) + (|:| |tol| (-219)))) + (-5 *2 (-112)) (-5 *1 (-204))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-620 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) + (-5 *1 (-204))))) +(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204))))) (((*1 *2 *3) - (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-235)) (-5 *3 (-1127)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-235)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-371)) (-5 *1 (-199))))) (((*1 *2 *3) - (-12 (-5 *2 (-1125 (-550))) (-5 *1 (-1129 *4)) (-4 *4 (-1021)) - (-5 *3 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-371)) (-5 *1 (-199))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-423 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) - ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1019)) - (-5 *3 (-550))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-371)) (-5 *1 (-199))))) (((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) - (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-366 *3)) - (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) - (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-665 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *5 (-1021)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) - (-5 *2 (-749))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-542)) - (-4 *3 (-1182))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-371)) (-5 *1 (-199))))) (((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) - (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-923 *6 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542))))) -(((*1 *1) (-5 *1 (-430)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1204 *4)) (-4 *4 (-1021)) - (-5 *2 (-1228 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) + (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) + (-5 *1 (-199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-307 (-219)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) + (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199)))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-620 (-371))) (-5 *2 (-371)) (-5 *1 (-199))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1233)) (-5 *1 (-840 *4 *5 *6 *7)) - (-4 *4 (-1021)) (-14 *5 (-623 (-1145))) (-14 *6 (-623 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1021)) (-4 *5 (-825)) (-4 *6 (-771)) - (-14 *8 (-623 *5)) (-5 *2 (-1233)) - (-5 *1 (-1240 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-923 *4 *6 *5)) - (-14 *9 (-623 *3)) (-14 *10 *3)))) -(((*1 *2 *3 *4) (-12 (-5 *3 - (-623 - (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) - (|:| |wcond| (-623 (-926 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1228 (-400 (-926 *5)))) - (|:| -2206 (-623 (-1228 (-400 (-926 *5)))))))))) - (-5 *4 (-1127)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-923 *5 *7 *6)) - (-4 *6 (-13 (-825) (-596 (-1145)))) (-4 *7 (-771)) (-5 *2 (-550)) - (-5 *1 (-898 *5 *6 *7 *8))))) + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-536)) (-5 *1 (-198))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-410 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *1) (-5 *1 (-1148)))) -(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1141 (-400 (-550)))) (-5 *1 (-916)) (-5 *3 (-550))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-4 *4 (-1182)) (-4 *1 (-232 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) - (-4 *4 (-13 (-1021) (-860 *3) (-825) (-596 (-866 *3)))) - (-5 *2 (-623 (-1045 *3 *4 *5))) (-5 *1 (-1046 *3 *4 *5)) - (-4 *5 (-13 (-423 *4) (-860 *3) (-596 (-866 *3))))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-837))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4345)) (-4 *1 (-119 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-733))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-4 *3 (-874 *5)) (-5 *2 (-1228 *3)) - (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-309 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3)))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1021)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -2545 *1))) - (-4 *1 (-1035 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1021)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -4304 *1) (|:| |gap| (-749)) (|:| -2545 *1))) - (-4 *1 (-1035 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) - (-4 *3 (-941))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) (-5 *2 (-623 (-2 (|:| -1808 *5) (|:| -2589 *5)))) - (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) - (-4 *6 (-634 (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *4 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -1808 *4) (|:| -2589 *4)))) - (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-634 *4)) - (-4 *6 (-634 (-400 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *5 (-1204 *4)) (-5 *2 (-623 (-2 (|:| -1808 *5) (|:| -2589 *5)))) - (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-634 *5)) - (-4 *3 (-634 (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-550))))) - (-4 *4 (-1204 *5)) (-5 *2 (-623 (-2 (|:| -1808 *4) (|:| -2589 *4)))) - (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-634 *4)) - (-4 *3 (-634 (-400 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) - (-5 *7 (-667 (-550))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) - (-5 *3 (-550)) (-5 *2 (-1009)) (-5 *1 (-732))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4344)) (-4 *1 (-481 *4)) - (-4 *4 (-1182)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-400 *4)) (-4 *4 (-1204 *3)) (-4 *3 (-13 (-356) (-145))) - (-5 *1 (-392 *3 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) - (-4 *2 (-1204 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *4 (-623 (-1145))) - (-5 *2 (-667 (-309 (-219)))) (-5 *1 (-199)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1069)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) - (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-366 *6)) - (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4344))))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) (-5 *2 (-309 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1167) (-423 (-167 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-550)) (-619 (-550)))) - (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-27) (-1167) (-423 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-387)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1127))) (-5 *1 (-1162))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1175 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1035 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1175 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) - (-4 *6 (-825)) (-4 *3 (-1035 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3 *4 *5)) (-4 *3 (-1021)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-323))))) -(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1182))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-895)) (-5 *1 (-677)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-356)) (-5 *1 (-952 *5))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-620 (-219))) (-5 *1 (-198))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) - (-4 *4 (-596 (-526))) (-4 *5 (-1182)) (-4 *6 (-1182)) - (-4 *7 (-1182))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-1145))) (-5 *1 (-1149))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| -2831 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-186))))) (((*1 *2 *3) (-12 (-5 *3 - (-623 (-2 (|:| -3480 (-400 (-550))) (|:| -3490 (-400 (-550)))))) - (-5 *2 (-623 (-219))) (-5 *1 (-298))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1021)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-901))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-371)) (-5 *1 (-186))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-181))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1127)) (-5 *2 (-1233)) (-5 *1 (-1229))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2 *2) - (-12 (-5 *2 (-623 *6)) (-4 *6 (-1035 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-951 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1167) (-976))) - (-5 *1 (-174 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-926 *5))) (-5 *4 (-623 (-1145))) (-4 *5 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *5)))))) (-5 *1 (-748 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-542)) - (-5 *2 (-623 (-623 (-287 (-400 (-926 *4)))))) (-5 *1 (-748 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2206 (-623 *6))) - *7 *6)) - (-4 *6 (-356)) (-4 *7 (-634 *6)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| |particular| (-3 (-1228 *6) "failed")) - (|:| -2206 (-623 (-1228 *6))))) - (-5 *1 (-791 *6 *7)) (-5 *4 (-1228 *6))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| "There is a singularity at the lower end point") + (|:| |upperSingular| "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-186))))) (((*1 *2 *3) (-12 (-5 *3 - (-623 - (-2 (|:| -3398 (-749)) - (|:| |eqns| - (-623 - (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) - (|:| |cols| (-623 (-550)))))) - (|:| |fgb| (-623 *7))))) - (-4 *7 (-923 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-749)) - (-5 *1 (-898 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) + (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) (-5 *2 - (-2 (|:| -1337 *4) (|:| -2511 *4) (|:| |totalpts| (-550)) - (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-186))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-620 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-923 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1145)))) - (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-926 *4))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1145)))) (-4 *6 (-771)) (-5 *2 (-112)) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-923 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1228 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1069))))) + (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-550)))) (-4 *5 (-1204 *4)) - (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-989 *4 *5)) (-5 *3 (-400 *5))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *1) (-5 *1 (-598)))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1182))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-623 - (-2 - (|:| -3549 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -3859 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1125 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2873 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-545)))) - ((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1182)) - (-5 *2 (-623 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 *7))) (-5 *3 (-1141 *7)) - (-4 *7 (-923 *4 *5 *6)) (-4 *4 (-883)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-880 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 *5))) (-5 *3 (-1141 *5)) - (-4 *5 (-1204 *4)) (-4 *4 (-883)) (-5 *1 (-881 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 *6)) (-5 *3 (-550)) (-4 *6 (-300)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-923 *6 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1204 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-1127)) (-5 *5 (-667 (-219))) - (-5 *2 (-1009)) (-5 *1 (-726))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 *5))) (-5 *3 (-1141 *5)) - (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 *3)) (-4 *3 (-1204 *5)) - (-4 *5 (-1204 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 (-550)))) (-5 *3 (-1141 (-550))) - (-5 *1 (-558)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-1141 *1))) (-5 *3 (-1141 *1)) - (-4 *1 (-883))))) + (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) + (-5 *2 (-1229 (-667 (-920 *4)))) (-5 *1 (-183 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-181))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-181))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1183)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-411 (-1141 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) + (-12 (-4 *4 (-13 (-356) (-823))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-398 *3)))) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1205 (-166 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1205 (-166 *2)))))) (((*1 *2 *3) - (-12 (-14 *4 (-623 (-1145))) (-4 *5 (-444)) - (-5 *2 - (-2 (|:| |glbase| (-623 (-241 *4 *5))) (|:| |glval| (-623 (-550))))) - (-5 *1 (-611 *4 *5)) (-5 *3 (-623 (-241 *4 *5)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1167))))) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) + (-4 *3 (-1205 *2))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1205 (-166 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1205 (-166 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1205 (-166 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1205 (-166 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1205 (-166 *3)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) + (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *5)))) + (-5 *1 (-179 *5 *3)) (-4 *3 (-1205 (-166 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-356) (-823))) + (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *4)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) - (-4 *8 (-923 *7 *5 *6)) - (-5 *2 (-2 (|:| -3068 (-749)) (|:| -4304 *3) (|:| |radicand| *3))) - (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4153 (*8 $)) (-15 -4163 (*8 $)) (-15 -2233 ($ *8)))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) + (-12 (-5 *2 (-620 (-166 *4))) (-5 *1 (-153 *3 *4)) + (-4 *3 (-1205 (-166 (-536)))) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-1035 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1041 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1069))))) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1169) (-976)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-423 *3) (-976)))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-304)))) - ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1173 *3 *2)) - (-4 *2 (-13 (-423 *3) (-1167)))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-5 *1 (-174 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-108))) (-5 *1 (-173))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) (((*1 *2 *1) - (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1021)) (-5 *2 (-623 (-917 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *3 (-1021)) (-4 *1 (-1103 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-917 *3))) (-4 *1 (-1103 *3)) (-4 *3 (-1021))))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1032)) (-4 *3 (-1169)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-159))) + ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-159))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-423 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-749)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *4)) - (-4 *4 (-423 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-114)) (-5 *1 (-161)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *4)) - (-4 *4 (-13 (-423 *3) (-976))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) - ((*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-825)) (-5 *1 (-422 *3 *4)) - (-4 *3 (-423 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *4)) - (-4 *4 (-423 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) + ((*1 *1 *1) (-4 *1 (-158)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-5 *1 (-156 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2))))) +(((*1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *4)) - (-4 *4 (-13 (-423 *3) (-976) (-1167))))) - ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-993))))) -(((*1 *2 *1) - (-12 (-5 *2 (-623 (-52))) (-5 *1 (-866 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1031 *4 *3)) - (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-594 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) - (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-825) (-542))) - (-5 *2 (-569 *3)) (-5 *1 (-537 *6 *3))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2206 (-623 *1)))) - (-4 *1 (-360 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2206 (-623 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) - (-14 *5 (-623 (-1145))) (-14 *6 (-1228 (-667 *3)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-300)) (-4 *3 (-966 *2)) (-4 *4 (-1204 *3)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1012 *3)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-800))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) (((*1 *2 *3) - (-12 (-4 *1 (-894)) (-5 *2 (-2 (|:| -4304 (-623 *1)) (|:| -2256 *1))) - (-5 *3 (-623 *1))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1228 *4)) (-5 *3 (-550)) (-4 *4 (-342)) - (-5 *1 (-519 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) - (-4 *2 (-170))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-900))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1182))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-895)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1145)) (|:| |fn| (-309 (-219))) - (|:| -2873 (-1063 (-818 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-112)) (-5 *1 (-293))))) -(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1182)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1069) (-34))) (-5 *1 (-1109 *2 *3)) - (-4 *3 (-13 (-1069) (-34)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1041 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *9 (-1035 *6 *7 *8)) - (-5 *2 - (-623 - (-2 (|:| -1309 (-623 *9)) (|:| -1608 *10) (|:| |ineq| (-623 *9))))) - (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1041 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *9 (-1035 *6 *7 *8)) - (-5 *2 - (-623 - (-2 (|:| -1309 (-623 *9)) (|:| -1608 *10) (|:| |ineq| (-623 *9))))) - (-5 *1 (-1076 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-167 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-734))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1000 (-818 (-550)))) - (-5 *3 (-1125 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1021)) - (-5 *1 (-578 *4))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) (((*1 *2 *3) - (-12 (-5 *3 (-594 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1012 (-550))) - (-4 *4 (-13 (-825) (-542))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-594 *1)) (-4 *1 (-1021)) (-4 *1 (-295)) - (-5 *2 (-1141 *1))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-354 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1069))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-410 *3))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-1021)) (-5 *2 (-1228 *4)) - (-5 *1 (-1146 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-895)) (-5 *2 (-1228 *3)) (-5 *1 (-1146 *3)) - (-4 *3 (-1021))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1145)) (-5 *3 (-372)) (-5 *1 (-1033))))) -(((*1 *1 *2) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-5 *1 (-1168 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-623 (-1168 *2))) (-5 *1 (-1168 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-623 (-917 (-219)))) (-5 *1 (-1229))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-623 (-839 *4))) - (-14 *4 (-623 (-1145))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) - (-4 *6 (-444))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1035 *2 *3 *4)) (-4 *2 (-1021)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *2 (-542))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) (((*1 *2 *3) - (-12 (-5 *3 (-550)) (-4 *4 (-1204 (-400 *3))) (-5 *2 (-895)) - (-5 *1 (-887 *4 *5)) (-4 *5 (-1204 (-400 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| |coef2| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1021))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1069)) - (-5 *1 (-656 *2))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) - (-5 *1 (-1172 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-61 *3)) (-14 *3 (-1145)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-68 *3)) (-14 *3 (-1145)))) - ((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-71 *3)) (-14 *3 (-1145)))) - ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1233)))) - ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1233)) (-5 *1 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1127)) (-5 *4 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) - ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107))))) + (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-543)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-155))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-219)) + (-5 *2 + (-2 (|:| |brans| (-620 (-620 (-917 *4)))) (|:| |xValues| (-1060 *4)) + (|:| |yValues| (-1060 *4)))) + (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 *4))))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1012 (-550)))) - (-4 *5 (-423 *4)) (-5 *2 (-411 (-1141 (-400 (-550))))) - (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1204 *5))))) + (-12 (-5 *3 (-899)) + (-5 *2 + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) + (-5 *2 + (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) + (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-5 *1 (-151))))) +(((*1 *1 *2) + (-12 (-5 *2 (-893)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) + (-14 *5 (-967 *3 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1183))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1021))))) -(((*1 *2) (-12 (-5 *2 (-1116 (-1127))) (-5 *1 (-384))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1145)) (-5 *3 (-1073)) (-5 *1 (-284))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) - (-5 *2 (-1009)) (-5 *1 (-724))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *3 (-1069)) (-4 *4 (-1069)) - (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-1069)) (-5 *2 (-112))))) + (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) + (-4 *2 (-1072))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) - (-4 *3 (-1204 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1089))))) -(((*1 *2) (-12 (-5 *2 (-1233)) (-5 *1 (-384))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1147 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *2 *3) - (-12 (-5 *3 (-895)) (-5 *2 (-1141 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-342))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-623 (-623 (-219)))) (-5 *4 (-219)) - (-5 *2 (-623 (-917 *4))) (-5 *1 (-1178)) (-5 *3 (-917 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 - (-2 (|:| -3345 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1204 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -2714 (-400 *6)) - (|:| |special| (-400 *6)))) - (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-870 *3 *4)) - (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3480 *3) (|:| -3490 *3))) (-5 *1 (-870 *3 *5)) - (-4 *3 (-1204 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) - (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) - (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1041 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1039 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) - (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1114 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) - (-4 *8 (-1035 *5 *6 *7)) (-4 *9 (-1078 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1114 *5 *6 *7 *8 *9))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) + (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1205 *2)) (-4 *2 (-1188)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1205 (-400 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 *6)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) + (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1205 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-926 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) -(((*1 *1 *2) (-12 (-5 *2 (-623 (-837))) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-1069)) (-4 *1 (-1067 *3)))) - ((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) + (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) + (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-186)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-293)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1127))) (-5 *1 (-298))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1182)) - (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-550)) (-4 *1 (-1024 *4 *5 *6 *2 *7)) (-4 *6 (-1021)) - (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1233)) (-5 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *3 (-1127)) (-5 *2 (-1233)) (-5 *1 (-384))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-542)) (-5 *1 (-943 *2 *4)) - (-4 *4 (-1204 *2))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1182)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-749)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1021)) - (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1167) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1204 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) - ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837)))) - ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-837))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-550) "failed") *5)) (-4 *5 (-1021)) - (-5 *2 (-550)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1204 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1021)) - (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1204 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1021)) - (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1204 *4))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1035 *6 *7 *8)) - (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -1608 *4)))) - (-5 *1 (-1042 *6 *7 *8 *3 *4)) (-4 *4 (-1041 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -1608 *9)))) - (-5 *5 (-112)) (-4 *8 (-1035 *6 *7 *4)) (-4 *9 (-1041 *6 *7 *4 *8)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) - (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -1608 *9)))) - (-5 *1 (-1042 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 (-623 (-917 (-219))))) (-5 *3 (-623 (-848))) - (-5 *1 (-460))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1069))))) + (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) + (-5 *2 (-2 (|:| -4308 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) + (-4 *3 (-1205 (-400 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-139))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-137))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-620 (-536))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) (((*1 *2 *1) - (-12 (-4 *1 (-1012 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1069))))) + (-12 (-5 *2 (-620 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *1 *2) + (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) + (-14 *4 (-749))))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1235))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) (((*1 *2 *3) - (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1021))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-623 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1035 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) - (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9))))) + (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-536)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1205 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1127)) (-5 *2 (-372)) (-5 *1 (-764))))) + (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1072)) (-4 *2 (-825)) + (-5 *1 (-114 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -2463 (-623 (-219))))) - (-5 *2 (-372)) (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1228 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298))))) + (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-825)) (-4 *3 (-1072))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1167))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1204 *4)) (-5 *1 (-785 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *3 (-634 *2)) - (-4 *5 (-634 (-400 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1204 *4)) (-5 *1 (-785 *4 *2 *5 *3)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-550))))) (-4 *5 (-634 *2)) - (-4 *3 (-634 (-400 *2)))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-356)) (-4 *3 (-1204 *4)) (-4 *5 (-1204 (-400 *3))) - (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-550)) (-4 *2 (-356)) (-4 *4 (-1204 *2)) - (-4 *5 (-1204 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) - (-4 *6 (-335 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-356)) (-4 *3 (-1204 *2)) (-4 *4 (-1204 (-400 *3))) - (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-1204 *3)) (-4 *5 (-1204 (-400 *4))) - (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1204 *3)) - (-4 *5 (-1204 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) - (-4 *1 (-328 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 (-2 (|:| -3549 (-1145)) (|:| -3859 (-430))))) - (-5 *1 (-1149))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1021)) (-4 *2 (-356))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1069)) - (-4 *5 (-1182)) (-5 *1 (-864 *4 *5)))) + (-12 (-5 *2 (-113)) (-5 *3 (-620 (-1 *4 (-620 *4)))) (-4 *4 (-1072)) + (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-866 *4)) (-5 *3 (-623 (-1 (-112) *5))) (-4 *4 (-1069)) - (-4 *5 (-1182)) (-5 *1 (-864 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-866 *5)) (-5 *3 (-623 (-1145))) - (-5 *4 (-1 (-112) (-623 *6))) (-4 *5 (-1069)) (-4 *6 (-1182)) - (-5 *1 (-864 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1182)) (-4 *4 (-825)) - (-5 *1 (-911 *4 *2 *5)) (-4 *2 (-423 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-623 (-1 (-112) *5))) (-4 *5 (-1182)) (-4 *4 (-825)) - (-5 *1 (-911 *4 *2 *5)) (-4 *2 (-423 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1182)) - (-5 *2 (-309 (-550))) (-5 *1 (-912 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145)) (-5 *4 (-623 (-1 (-112) *5))) (-4 *5 (-1182)) - (-5 *2 (-309 (-550))) (-5 *1 (-912 *5)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-1 *4 (-620 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-620 (-939))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-751)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-109))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-106 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-104))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1147)) + (-5 *2 + (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) + (|:| |singularities| (-1124 (-219))))) + (-5 *1 (-104))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4350 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) + (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) + (-4 *4 (-664 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4350 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) + (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) + (-4 *4 (-664 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) + (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) + (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1072))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-620 *2) *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-623 (-1145))) (-5 *3 (-1 (-112) (-623 *6))) - (-4 *6 (-13 (-423 *5) (-860 *4) (-596 (-866 *4)))) (-4 *4 (-1069)) - (-4 *5 (-13 (-1021) (-860 *4) (-825) (-596 (-866 *4)))) - (-5 *1 (-1045 *4 *5 *6))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) + (-4 *3 (-1205 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-13 (-444) (-145))) + (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-96))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96))))) +(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-90 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *5 (-543)) + (-5 *2 + (-2 (|:| |minor| (-620 (-893))) (|:| -3612 *3) + (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6))))) + (-12 (-4 *4 (-543)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-667 *4)) (-4 *5 (-636 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-543)) + (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 (-620 (-893)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-57 *3)) (-4 *3 (-1183)))) + ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-57 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-365 *4)) + (-4 *5 (-365 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) + (-4 *3 (-365 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1127)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-256))))) + (-12 (-5 *3 (-620 (-1046 *4 *5 *2))) (-4 *4 (-1072)) + (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-620 (-1046 *5 *6 *2))) (-5 *4 (-893)) (-4 *5 (-1072)) + (-4 *6 (-13 (-1023) (-860 *5) (-825) (-596 (-864 *5)))) + (-4 *2 (-13 (-414 *6) (-860 *5) (-596 (-864 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-751)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-51))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1129)) (-5 *1 (-51))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2) + (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-113)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) + (-4 *5 (-1012 (-536))) (-4 *5 (-543)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *5 (-593 $)) $)) + (-15 -3325 ((-1096 *5 (-593 $)) $)) + (-15 -4312 ($ (-1096 *5 (-593 $)))))))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-623 (-926 *3))) (-4 *3 (-444)) - (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1145))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-623 (-758 *3 (-839 *4)))) (-4 *3 (-444)) - (-14 *4 (-623 (-1145))) (-5 *1 (-608 *3 *4))))) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) - (-4 *2 (-423 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1182))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-623 *3)) (-4 *3 (-923 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-441 *5 *6 *7 *3))))) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-550))) - (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 - (-13 (-356) (-295) - (-10 -8 (-15 -4153 ((-1094 *3 (-594 $)) $)) - (-15 -4163 ((-1094 *3 (-594 $)) $)) - (-15 -2233 ($ (-1094 *3 (-594 $)))))))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1233)) (-5 *1 (-1107)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-837))) (-5 *2 (-1233)) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-543)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) + (-15 -3325 ((-1096 *4 (-593 $)) $)) + (-15 -4312 ($ (-1096 *4 (-593 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 *2)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) + (-15 -3325 ((-1096 *4 (-593 $)) $)) + (-15 -4312 ($ (-1096 *4 (-593 $))))))) + (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-620 (-593 *2))) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) + (-15 -3325 ((-1096 *4 (-593 $)) $)) + (-15 -4312 ($ (-1096 *4 (-593 $))))))) + (-4 *4 (-543)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-291) + (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) + (-15 -3325 ((-1096 *3 (-593 $)) $)) + (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *2 (-1235)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1205 (-400 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) + (-5 *2 (-2 (|:| -4215 *3) (|:| -2186 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1035 *5 *6 *7)) - (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-550)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-771)) (-4 *4 (-923 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) - (-5 *1 (-441 *5 *6 *7 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-895)) - (-4 *4 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) - (-5 *2 (-623 (-2 (|:| -3068 (-749)) (|:| -1808 *4) (|:| |num| *4)))) - (-5 *1 (-392 *3 *4)) (-4 *4 (-1204 *3))))) -((-1261 . 737985) (-1262 . 737879) (-1263 . 737626) (-1264 . 737379) - (-1265 . 737280) (-1266 . 737206) (-1267 . 737061) (-1268 . 736759) - (-1269 . 736564) (-1270 . 736507) (-1271 . 736413) (-1272 . 736155) - (-1273 . 736024) (-1274 . 735881) (-1275 . 734724) (-1276 . 734571) - (-1277 . 734469) (-1278 . 734441) (-1279 . 733683) (-1280 . 733341) - (-1281 . 733255) (-1282 . 733037) (-1283 . 732957) (-1284 . 732729) - (-1285 . 732641) (-1286 . 732445) (-1287 . 732327) (-1288 . 732224) - (-1289 . 732105) (-1290 . 731575) (-1291 . 731114) (-1292 . 731061) - (-1293 . 730634) (-1294 . 730476) (-1295 . 730373) (-1296 . 730238) - (-1297 . 729986) (-1298 . 729738) (-1299 . 729523) (-1300 . 729440) - (-1301 . 727863) (-1302 . 727721) (-1303 . 727627) (-1304 . 727530) - (-1305 . 727446) (-1306 . 727396) (-1307 . 727343) (-1308 . 727243) - (-1309 . 727087) (-1310 . 726968) (-1311 . 726880) (-1312 . 726800) - (-1313 . 726742) (-1314 . 726656) (-1315 . 726469) (-1316 . 725918) - (-1317 . 725785) (-1318 . 725701) (-1319 . 725600) (-1320 . 725463) - (-1321 . 725332) (-1322 . 725202) (-1323 . 724972) (-1324 . 724917) - (-1325 . 724844) (-1326 . 724664) (-1327 . 724597) (-1328 . 724379) - (-1329 . 724302) (-1330 . 724106) (-1331 . 724011) (-1332 . 723724) - (-1333 . 723478) (-1334 . 723330) (-1335 . 723180) (-1336 . 722547) - (-1337 . 722236) (-1338 . 722026) (-1339 . 721918) (-1340 . 721862) - (-1341 . 721796) (-1342 . 721643) (-1343 . 721579) (-1344 . 721473) - (-1345 . 721376) (-1346 . 721266) (-1347 . 721162) (-1348 . 721085) - (-1349 . 720941) (-1350 . 720533) (-1351 . 720344) (-1352 . 720230) - (-1353 . 720165) (-1354 . 720086) (-1355 . 718999) (-1356 . 718663) - (-1357 . 718611) (-1358 . 718483) (-1359 . 718374) (-1360 . 718228) - (-1361 . 718121) (-1362 . 717981) (-1363 . 717594) (-1364 . 717508) - (-1365 . 717177) (-1366 . 717111) (-1367 . 717012) (-1368 . 716814) - (-1369 . 716730) (-1370 . 716242) (-1371 . 716110) (-1372 . 715950) - (-1373 . 715790) (-1374 . 715459) (-1375 . 713917) (-1376 . 713861) - (-1377 . 713833) (-1378 . 713747) (-1379 . 713613) (-1380 . 713423) - (-1381 . 713342) (-1382 . 712951) (-1383 . 712899) (-1384 . 712677) - (-1385 . 712284) (-1386 . 711680) (-1387 . 711581) (-1388 . 711406) - (-1389 . 711320) (-1390 . 711227) (-1391 . 711174) (-1392 . 711088) - (-1393 . 711002) (-1394 . 710856) (-1395 . 710723) (-1396 . 710580) - (-1397 . 710519) (-1398 . 710463) (-1399 . 710298) (-1400 . 710104) - (-1401 . 710034) (-1402 . 709978) (-1403 . 709862) (-1404 . 709581) - (-1405 . 709456) (-1406 . 709001) (-1407 . 708702) (-1408 . 708599) - (-1409 . 708486) (-1410 . 708362) (-1411 . 707958) (-1412 . 707070) - (-1413 . 706975) (-1414 . 706642) (-1415 . 706293) (-1416 . 706203) - (-1417 . 706028) (-1418 . 705880) (-1419 . 705797) (-1420 . 705742) - (-1421 . 705529) (-1422 . 705449) (-1423 . 705293) (-1424 . 705223) - (-1425 . 705194) (-1426 . 705100) (-1427 . 705005) (-1428 . 704557) - (-1429 . 704177) (-1430 . 704068) (-1431 . 703969) (-1432 . 703941) - (-1433 . 703711) (-1434 . 703570) (-1435 . 703469) (-1436 . 702887) - (-1437 . 702566) (-1438 . 702468) (-1439 . 702416) (-1440 . 702316) - (-1441 . 702130) (-1442 . 701934) (-1443 . 701902) (-1444 . 701613) - (-1445 . 701451) (-1446 . 701323) (-1447 . 701233) (-1448 . 701023) - (-1449 . 700882) (-1450 . 699570) (-1451 . 699427) (-1452 . 699342) - (-1453 . 698972) (-1454 . 698442) (-1455 . 698296) (-1456 . 698222) - (-1457 . 697970) (-1458 . 697866) (-1459 . 697796) (-1460 . 697619) - (-1461 . 697397) (-1462 . 697273) (-1463 . 697245) (-1464 . 697211) - (-1465 . 697041) (-1466 . 696988) (-1467 . 696900) (-1468 . 696845) - (-1469 . 696795) (-1470 . 696584) (-1471 . 696527) (-1472 . 696467) - (-1473 . 696373) (-1474 . 696229) (-1475 . 696048) (-1476 . 695892) - (-1477 . 695693) (-1478 . 695387) (-1479 . 695246) (-1480 . 695102) - (-1481 . 694978) (-1482 . 694926) (-1483 . 694687) (-1484 . 694563) - (-1485 . 694477) (-1486 . 694418) (-1487 . 694261) (-1488 . 692632) - (-1489 . 692460) (-1490 . 692387) (-1491 . 692289) (-1492 . 692180) - (-1493 . 692129) (-1494 . 692010) (-1495 . 691958) (-1496 . 691845) - (-1497 . 691704) (-1498 . 691331) (-1499 . 691069) (-1500 . 690850) - (-1501 . 689984) (-1502 . 689862) (-12 . 689690) (-1504 . 689388) - (-1505 . 688953) (-1506 . 688812) (-1507 . 688152) (-1508 . 688008) - (-1509 . 687931) (-1510 . 687357) (-1511 . 687286) (-1512 . 687130) - (-1513 . 686992) (-1514 . 686827) (-1515 . 686662) (-1516 . 685288) - (-1517 . 684891) (-1518 . 684591) (-1519 . 684478) (-1520 . 684267) - (-1521 . 684187) (-1522 . 684080) (-1523 . 683887) (-1524 . 683816) - (-1525 . 683703) (-1526 . 683548) (-1527 . 683439) (-1528 . 683373) - (-1529 . 683252) (-1530 . 683168) (-1531 . 683060) (-1532 . 682998) - (-1533 . 682913) (-1534 . 682876) (-1535 . 681146) (-1536 . 680592) - (-1537 . 679376) (-1538 . 679127) (-1539 . 679095) (-1540 . 679039) - (-1541 . 678970) (-1542 . 678873) (-1543 . 678799) (-1544 . 678621) - (-1545 . 678327) (-1546 . 678077) (-1547 . 677748) (-1548 . 677583) - (-1549 . 677201) (-1550 . 677148) (-1551 . 677053) (-1552 . 676683) - (-1553 . 672685) (-1554 . 672570) (-1555 . 672518) (-1556 . 672411) - (-1557 . 672288) (-1558 . 672048) (-1559 . 671629) (-1560 . 671573) - (-1561 . 671544) (-1562 . 671492) (-1563 . 671401) (-1564 . 671017) - (-1565 . 670619) (-1566 . 670525) (-1567 . 670473) (-1568 . 670084) - (-1569 . 669762) (-1570 . 667924) (-1571 . 666141) (-1572 . 665925) - (-1573 . 665793) (-1574 . 665638) (-1575 . 665424) (-1576 . 665357) - (-1577 . 665245) (-1578 . 665027) (-1579 . 664909) (-1580 . 664810) - (-1581 . 664621) (-1582 . 664524) (-1583 . 663014) (-1584 . 662958) - (-1585 . 662870) (-1586 . 662721) (-1587 . 662568) (-1588 . 662232) - (-1589 . 662113) (-1590 . 661903) (-1591 . 661613) (-1592 . 661516) - (-1593 . 661326) (-1594 . 661224) (-1595 . 659676) (-1596 . 659648) - (-1597 . 659506) (-1598 . 659401) (-1599 . 659129) (-1600 . 658699) - (-1601 . 658569) (-1602 . 658351) (-1603 . 658206) (-1604 . 658077) - (-1605 . 657936) (-1606 . 657796) (-1607 . 657595) (-1608 . 657533) - (* . 652987) (-1610 . 652535) (-1611 . 652480) (-1612 . 652410) - (-1613 . 652281) (-1614 . 652181) (-1615 . 652062) (-1616 . 651459) - (-1617 . 651337) (-1618 . 651249) (-1619 . 650513) (-1620 . 650471) - (-1621 . 650343) (-1622 . 649961) (-1623 . 649508) (-1624 . 649430) - (-1625 . 649210) (-1626 . 649157) (-1627 . 648871) (-1628 . 648709) - (-1629 . 648626) (-1630 . 648380) (-1631 . 647853) (-1632 . 647496) - (-1633 . 647395) (-1634 . 647166) (-1635 . 647058) (-1636 . 647030) - (-1637 . 646516) (-1638 . 646319) (-1639 . 646192) (-1640 . 646124) - (-1641 . 646036) (-1642 . 645943) (-1643 . 645870) (-1644 . 644658) - (-1645 . 644535) (-1646 . 644262) (-1647 . 644146) (-1648 . 644080) - (-1649 . 644046) (-1650 . 643911) (-1651 . 643396) (-1652 . 643319) - (-1653 . 643264) (-1654 . 643160) (-1655 . 643086) (-1656 . 642692) - (-1657 . 642048) (-1658 . 641975) (-1659 . 641923) (-1660 . 641735) - (-1661 . 641614) (-1662 . 641557) (-1663 . 641245) (-1664 . 641211) - (-1665 . 641012) (-1666 . 640778) (-1667 . 640687) (-1668 . 640622) - (-1669 . 640492) (-1670 . 639320) (-1671 . 638969) (-1672 . 636837) - (-1673 . 636806) (-1674 . 636668) (-1675 . 636528) (-1676 . 635971) - (-1677 . 635862) (-1678 . 635776) (-1679 . 635710) (-1680 . 635571) - (-1681 . 635518) (-1682 . 635101) (-1683 . 634986) (-1684 . 634610) - (-1685 . 634531) (-1686 . 634371) (-1687 . 634269) (-1688 . 634111) - (-1689 . 634059) (-1690 . 633864) (-1691 . 633812) (-1692 . 633704) - (-1693 . 632567) (-1694 . 632505) (-1695 . 632342) (-1696 . 632286) - (-1697 . 632207) (-1698 . 632024) (-1699 . 631957) (-1700 . 631696) - (-1701 . 631613) (-1702 . 631404) (-1703 . 631218) (-1704 . 631146) - (-1705 . 629738) (-1706 . 629507) (-1707 . 629341) (-1708 . 627753) - (-1709 . 627539) (-1710 . 627438) (-1711 . 627314) (-1712 . 627066) - (-1713 . 626987) (-1714 . 626876) (-1715 . 624461) (-1716 . 624373) - (-1717 . 624314) (-1718 . 624022) (-1719 . 623969) (-1720 . 623788) - (-1721 . 623754) (-1722 . 623572) (-1723 . 623364) (-1724 . 623015) - (-1725 . 622775) (-1726 . 622395) (-1727 . 622285) (-1728 . 622184) - (-1729 . 622062) (-1730 . 621904) (-1731 . 621684) (-1732 . 621459) - (-1733 . 621379) (-1734 . 621218) (-1735 . 615705) (-1736 . 615654) - (-1737 . 615586) (-1738 . 615523) (-1739 . 615441) (-1740 . 615129) - (-1741 . 614973) (-1742 . 614655) (-1743 . 614438) (-1744 . 614195) - (-1745 . 613807) (-1746 . 613727) (-1747 . 613425) (-1748 . 613373) - (-1749 . 613046) (-1750 . 612956) (-1751 . 612813) (-1752 . 612728) - (-1753 . 612651) (-1754 . 612565) (-1755 . 612295) (-1756 . 612117) - (-1757 . 612044) (-1758 . 611935) (-1759 . 611354) (-1760 . 611302) - (-1761 . 611060) (-1762 . 610986) (-1763 . 610676) (-1764 . 610567) - (-1765 . 610346) (-1766 . 610094) (-1767 . 609985) (-1768 . 609902) - (-1769 . 609720) (-1770 . 609541) (-1771 . 609408) (-1772 . 609254) - (-1773 . 609172) (-1774 . 608640) (-1775 . 608527) (-1776 . 608317) - (-1777 . 608262) (-1778 . 608204) (-1779 . 608060) (-1780 . 607947) - (-1781 . 607881) (-1782 . 607715) (-1783 . 607627) (-1784 . 607577) - (-1785 . 607416) (-1786 . 607315) (-1787 . 607181) (-1788 . 607093) - (-1789 . 606998) (-1790 . 606888) (-1791 . 606821) (-1792 . 606434) - (-1793 . 606368) (-1794 . 606174) (-1795 . 605589) (-1796 . 605534) - (-1797 . 605381) (-1798 . 605304) (-1799 . 605125) (-1800 . 605023) - (-1801 . 604939) (-1802 . 604865) (-1803 . 604592) (-1804 . 604240) - (-1805 . 604188) (-1806 . 604122) (-1807 . 604015) (-1808 . 603684) - (-1809 . 603411) (-1810 . 603337) (-1811 . 603195) (-1812 . 603144) - (-1813 . 603019) (-1814 . 602588) (-1815 . 602504) (-1816 . 602318) - (-1817 . 602230) (-1818 . 602150) (-1819 . 602095) (-1820 . 602042) - (-1821 . 601968) (-1822 . 601866) (-1823 . 601768) (-1824 . 601740) - (-1825 . 601610) (-1826 . 601558) (-1827 . 601499) (-1828 . 601172) - (-1829 . 601025) (-1830 . 600846) (-1831 . 600732) (-1832 . 600673) - (-1833 . 600582) (-1834 . 600195) (-1835 . 600101) (-1836 . 599924) - (-1837 . 599733) (-1838 . 599540) (-1839 . 599377) (-1840 . 599262) - (-1841 . 599169) (-1842 . 598623) (-1843 . 598572) (-1844 . 598344) - (-1845 . 598171) (-1846 . 597833) (-1847 . 597690) (-1848 . 597529) - (-1849 . 597428) (-1850 . 597197) (-1851 . 597123) (-1852 . 596656) - (-1853 . 596552) (-1854 . 596490) (-1855 . 596426) (-1856 . 595762) - (-1857 . 595557) (-1858 . 595135) (-1859 . 595075) (-1860 . 595023) - (-1861 . 594825) (-1862 . 594698) (-1863 . 594618) (-1864 . 593968) - (-1865 . 593377) (-1866 . 593328) (-1867 . 593031) (-1868 . 592930) - (-1869 . 592862) (-1870 . 592704) (-1871 . 592576) (-1872 . 592453) - (-1873 . 592346) (-1874 . 592141) (-1875 . 591546) (-1876 . 591427) - (-1877 . 590692) (-1878 . 590585) (-1879 . 590266) (-1880 . 590163) - (-1881 . 590062) (-1882 . 589950) (-1883 . 589893) (-1884 . 589786) - (-1885 . 589243) (-1886 . 589164) (-1887 . 588998) (-1888 . 588839) - (-1889 . 588676) (-1890 . 588624) (-1891 . 588522) (-1892 . 588367) - (-1893 . 588137) (-1894 . 588065) (-1895 . 588006) (-1896 . 587716) - (-1897 . 587630) (-1898 . 587544) (-1899 . 587475) (-1900 . 587287) - (-1901 . 586455) (-1902 . 586288) (-1903 . 586231) (-1904 . 586108) - (-1905 . 585204) (-1906 . 585051) (-1907 . 584733) (-1908 . 584624) - (-1909 . 584517) (-1910 . 584433) (-1911 . 584334) (-1912 . 584178) - (-1913 . 584035) (-1914 . 583942) (-1915 . 583874) (-1916 . 583789) - (-1917 . 583717) (-1918 . 583525) (-1919 . 583453) (-1920 . 583301) - (-1921 . 582907) (-1922 . 582630) (-1923 . 582596) (-1924 . 582530) - (-1925 . 582356) (-1926 . 582219) (-1927 . 582062) (-1928 . 581847) - (-1929 . 581775) (-1930 . 581638) (-1931 . 581384) (-1932 . 581115) - (-1933 . 581017) (-1934 . 580920) (-1935 . 580843) (-1936 . 580814) - (-1937 . 580559) (-1938 . 580492) (-1939 . 580084) (-1940 . 579975) - (-1941 . 579922) (-1942 . 579869) (-1943 . 579497) (-1944 . 579401) - (-1945 . 579348) (-1946 . 579209) (-1947 . 579135) (-1948 . 579025) - (-1949 . 577247) (-1950 . 577170) (-1951 . 577063) (-1952 . 576986) - (-1953 . 576827) (-1954 . 575647) (-1955 . 575517) (-1956 . 575388) - (-1957 . 574989) (-1958 . 574822) (-1959 . 574666) (-1960 . 574531) - (-1961 . 574443) (-1962 . 574362) (-1963 . 574328) (-1964 . 574103) - (-1965 . 573349) (-1966 . 573278) (-1967 . 573137) (-1968 . 572984) - (-1969 . 572678) (-1970 . 571924) (-1971 . 571388) (-1972 . 571270) - (-1973 . 570995) (-1974 . 570835) (-1975 . 570685) (-1976 . 570364) - (-1977 . 570269) (-1978 . 570162) (-1979 . 569563) (-1980 . 569376) - (-1981 . 568776) (-1982 . 568723) (-1983 . 568563) (-1984 . 568418) - (-1985 . 568350) (-1986 . 568270) (-1987 . 568182) (-1988 . 568130) - (-1989 . 567970) (-1990 . 567851) (-1991 . 567724) (-1992 . 567672) - (-1993 . 567628) (-1994 . 567540) (-1995 . 567474) (-1996 . 567365) - (-1997 . 567313) (-1998 . 567233) (-1999 . 567008) (-2000 . 566853) - (-2001 . 566479) (-2002 . 566421) (-2003 . 566348) (-2004 . 566288) - (-2005 . 566200) (-2006 . 566042) (-2007 . 565947) (-2008 . 565809) - (-2009 . 565343) (-2010 . 565000) (-2011 . 564799) (-2012 . 564736) - (-2013 . 564686) (-2014 . 564617) (-2015 . 564543) (-2016 . 564475) - (-2017 . 564361) (-2018 . 564231) (-2019 . 563960) (-2020 . 563837) - (-2021 . 563590) (-2022 . 563504) (-2023 . 563346) (-2024 . 563114) - (-2025 . 562933) (-2026 . 562856) (-2027 . 562676) (-2028 . 562524) - (-2029 . 562209) (-2030 . 562051) (-2031 . 561866) (-2032 . 561783) - (-2033 . 561487) (-2034 . 560614) (-2035 . 560465) (-2036 . 560260) - (-2037 . 559899) (-2038 . 559871) (-2039 . 559819) (-2040 . 559748) - (-2041 . 559683) (-2042 . 559630) (-2043 . 559355) (-2044 . 559210) - (-2045 . 559151) (-2046 . 558975) (-2047 . 558887) (-2048 . 558799) - (-2049 . 558749) (-2050 . 558503) (-2051 . 558328) (-2052 . 558224) - (-2053 . 558174) (-2054 . 558076) (-2055 . 557973) (-2056 . 557864) - (-2057 . 557733) (-2058 . 557636) (-2059 . 557371) (-2060 . 557111) - (-2061 . 557083) (-2062 . 556073) (-2063 . 555827) (-2064 . 555755) - (-2065 . 555317) (-2066 . 555215) (-2067 . 554921) (-2068 . 554847) - (-2069 . 554815) (-2070 . 554701) (-2071 . 554437) (-2072 . 554328) - (-2073 . 554161) (-2074 . 554008) (-2075 . 553463) (-2076 . 553412) - (-2077 . 553071) (-2078 . 552815) (-2079 . 552727) (-2080 . 552583) - (-2081 . 552504) (-2082 . 552413) (-2083 . 552376) (-2084 . 552269) - (-2085 . 552140) (-2086 . 551973) (-2087 . 551917) (-2088 . 551840) - (-2089 . 551756) (-2090 . 551618) (-2091 . 551506) (-2092 . 550590) - (-2093 . 550437) (-2094 . 550340) (-2095 . 549967) (-2096 . 549728) - (-2097 . 549241) (-2098 . 548176) (-2099 . 548039) (-2100 . 547969) - (-2101 . 547640) (-2102 . 547569) (-2103 . 547458) (-2104 . 547283) - (-2105 . 546876) (-2106 . 546657) (-2107 . 546472) (-2108 . 546420) - (-2109 . 546307) (-2110 . 546233) (-2111 . 546201) (-2112 . 546058) - (-2113 . 546006) (-2114 . 545894) (-2115 . 545734) (-2116 . 545491) - (-2117 . 545182) (-2118 . 545100) (-2119 . 544951) (-2120 . 544865) - (-2121 . 544735) (-2122 . 544404) (-2123 . 544352) (-2124 . 544286) - (-2125 . 544182) (-2126 . 543926) (-2127 . 543715) (-2128 . 543456) - (-2129 . 543185) (-2130 . 543082) (-2131 . 542955) (-2132 . 542838) - (-2133 . 542667) (-2134 . 542509) (-2135 . 542391) (-2136 . 542025) - (-2137 . 541972) (-2138 . 541819) (-2139 . 541578) (-2140 . 541353) - (-2141 . 541061) (-2142 . 540901) (-2143 . 540798) (-2144 . 540703) - (-2145 . 540630) (-2146 . 540547) (-2147 . 540406) (-2148 . 540308) - (-2149 . 533309) (-2150 . 533211) (-2151 . 532719) (-2152 . 532622) - (-2153 . 532315) (-2154 . 531640) (-2155 . 531585) (-2156 . 531519) - (-2157 . 531397) (-2158 . 531342) (-2159 . 531217) (-2160 . 531131) - (-2161 . 531001) (-2162 . 530930) (-2163 . 530815) (-2164 . 530657) - (-2165 . 528806) (-2166 . 528729) (-2167 . 528671) (-2168 . 528564) - (-2169 . 528307) (-2170 . 528230) (-2171 . 528150) (-2172 . 528008) - (-2173 . 527728) (-2174 . 527595) (-2175 . 527542) (-2176 . 527441) - (-2177 . 527358) (-2178 . 527194) (-2179 . 527039) (-2180 . 526960) - (-2181 . 526926) (-2182 . 526709) (-2183 . 526542) (-2184 . 526389) - (-2185 . 526286) (-2186 . 526102) (-2187 . 526073) (-2188 . 526018) - (-2189 . 525965) (-2190 . 525937) (-2191 . 525652) (-2192 . 525337) - (-2193 . 525277) (-2194 . 525114) (-2195 . 525018) (-2196 . 524772) - (-2197 . 524454) (-2198 . 524361) (-2199 . 524259) (-2200 . 524193) - (-2201 . 524083) (-2202 . 518745) (-2203 . 518626) (-2204 . 518563) - (-2205 . 517810) (-2206 . 516944) (-2207 . 515672) (-2208 . 515644) - (-2209 . 515534) (-2210 . 515461) (-2211 . 515115) (-2212 . 514938) - (-2213 . 514872) (-2214 . 514756) (-2215 . 514632) (-2216 . 514536) - (-2217 . 514187) (-2218 . 513973) (-2219 . 513622) (-2220 . 513238) - (-2221 . 513151) (-2222 . 513123) (-2223 . 512697) (-2224 . 512526) - (-2225 . 512422) (-2226 . 512352) (-2227 . 512234) (-2228 . 512130) - (-2229 . 512052) (-2230 . 511972) (-2231 . 511801) (-2232 . 511750) - (-2233 . 488427) (-2234 . 487909) (-2235 . 487799) (-2236 . 487643) - (-2237 . 487473) (-2238 . 487387) (-2239 . 487310) (-2240 . 487226) - (-2241 . 487050) (-2242 . 486913) (-2243 . 486808) (-2244 . 486685) - (-2245 . 483933) (-2246 . 483710) (-2247 . 483622) (-2248 . 483464) - (-2249 . 482978) (-2250 . 482672) (-2251 . 482606) (-2252 . 482472) - (-2253 . 482356) (-2254 . 482145) (-2255 . 481907) (-2256 . 481296) - (-2257 . 480943) (-2258 . 480814) (-2259 . 480685) (-2260 . 480548) - (-2261 . 480410) (-2262 . 480343) (-2263 . 480084) (-2264 . 479812) - (-2265 . 479679) (-2266 . 479563) (-2267 . 479332) (-2268 . 479099) - (-2269 . 479016) (-2270 . 478894) (-2271 . 478816) (-2272 . 478757) - (-2273 . 478590) (-2274 . 478428) (-2275 . 478377) (-2276 . 478303) - (-2277 . 478211) (-2278 . 477030) (-2279 . 476961) (-2280 . 476778) - (-2281 . 476726) (-2282 . 476632) (-2283 . 476380) (-2284 . 476307) - (-2285 . 475957) (-2286 . 475904) (-2287 . 475838) (-2288 . 471296) - (-2289 . 471226) (-2290 . 470995) (-2291 . 470942) (-2292 . 470815) - (-2293 . 470371) (-2294 . 470213) (-2295 . 470108) (-2296 . 469993) - (-2297 . 469771) (-2298 . 469552) (-2299 . 469334) (-2300 . 469268) - (-2301 . 469009) (-2302 . 468922) (-2303 . 468852) (-2304 . 467671) - (-2305 . 467482) (-2306 . 467187) (-2307 . 467132) (-2308 . 466654) - (-2309 . 466601) (-2310 . 466423) (-2311 . 466371) (-2312 . 465938) - (-2313 . 465779) (-2314 . 465675) (-2315 . 465532) (-2316 . 465425) - (-2317 . 465287) (-2318 . 464840) (-2319 . 464701) (-2320 . 464560) - (-2321 . 464488) (-2322 . 463886) (-2323 . 463679) (-2324 . 463592) - (-2325 . 463510) (-2326 . 463149) (-2327 . 463016) (-2328 . 462592) - (-2329 . 462497) (-2330 . 462299) (-2331 . 462049) (-2332 . 461858) - (-2333 . 461787) (-2334 . 461493) (-2335 . 461423) (-2336 . 461107) - (-2337 . 460569) (-2338 . 460538) (-2339 . 460468) (-2340 . 460306) - (-2341 . 460092) (-2342 . 459285) (-2343 . 459133) (-2344 . 458963) - (-2345 . 458356) (-2346 . 457998) (-2347 . 457945) (-2348 . 457801) - (-2349 . 457583) (-2350 . 457490) (-2351 . 456777) (-2352 . 456716) - (-2353 . 456660) (-2354 . 455236) (-2355 . 454910) (-2356 . 454839) - (-2357 . 454699) (-2358 . 453513) (-2359 . 453386) (-2360 . 453313) - (-2361 . 453178) (-2362 . 453115) (-2363 . 453035) (-2364 . 452835) - (-2365 . 452746) (-2366 . 452091) (-2367 . 451982) (-2368 . 451922) - (-2369 . 451868) (-2370 . 450686) (-2371 . 450567) (-2372 . 450057) - (-2373 . 449933) (-2374 . 449367) (-2375 . 449184) (-2376 . 449113) - (-2377 . 449061) (-2378 . 448515) (-2379 . 448385) (-2380 . 448256) - (-2381 . 448108) (-2382 . 445902) (-2383 . 445383) (-2384 . 445274) - (-2385 . 445115) (-2386 . 444549) (-2387 . 444404) (-2388 . 444376) - (-2389 . 443079) (-2390 . 442998) (-2391 . 442925) (-2392 . 428811) - (-2393 . 428563) (-2394 . 428330) (-2395 . 428275) (-2396 . 428110) - (-2397 . 427980) (-2398 . 427732) (-2399 . 427568) (-2400 . 427476) - (-2401 . 427370) (-2402 . 427261) (-2403 . 427211) (-2404 . 427110) - (-2405 . 427016) (-2406 . 426967) (-2407 . 426854) (-2408 . 426722) - (-2409 . 425320) (-2410 . 425224) (-2411 . 425103) (-2412 . 425015) - (-2413 . 424964) (-2414 . 424857) (-2415 . 424611) (-2416 . 424542) - (-2417 . 424511) (-2418 . 424264) (-2419 . 424026) (-2420 . 423830) - (-2421 . 423700) (-2422 . 423643) (-2423 . 423548) (-2424 . 423474) - (-2425 . 423347) (-2426 . 423279) (-2427 . 423172) (-2428 . 423098) - (-2429 . 423036) (-2430 . 422983) (-2431 . 422881) (-2432 . 422768) - (-2433 . 422716) (-2434 . 422559) (-2435 . 422232) (-2436 . 422095) - (-2437 . 422024) (-2438 . 421917) (-2439 . 421844) (-2440 . 421684) - (-2441 . 421146) (-2442 . 420886) (-2443 . 420007) (-2444 . 419835) - (-2445 . 419616) (-2446 . 419322) (-2447 . 418997) (-2448 . 418968) - (-2449 . 418814) (-2450 . 418706) (-2451 . 413987) (-2452 . 413147) - (-2453 . 413048) (-2454 . 412977) (-2455 . 412891) (-2456 . 412831) - (-2457 . 412588) (-2458 . 412482) (-2459 . 412404) (-2460 . 412267) - (-2461 . 412179) (-2462 . 412105) (-2463 . 411980) (-2464 . 411638) - (-2465 . 411503) (-2466 . 411318) (-2467 . 411015) (-2468 . 410419) - (-2469 . 408561) (-2470 . 408354) (-2471 . 408302) (-2472 . 408139) - (-2473 . 408076) (-2474 . 407849) (-2475 . 407631) (-2476 . 407569) - (-2477 . 407514) (-2478 . 407432) (-2479 . 407320) (-2480 . 407288) - (-2481 . 406912) (-2482 . 406829) (-2483 . 406691) (-2484 . 406611) - (-2485 . 406202) (-2486 . 406171) (-2487 . 406142) (-2488 . 406059) - (-2489 . 405976) (-2490 . 405852) (-2491 . 405644) (-2492 . 405550) - (-2493 . 405498) (-2494 . 405470) (-2495 . 405327) (-2496 . 405254) - (-2497 . 405004) (-2498 . 404846) (-2499 . 404750) (-2500 . 404584) - (-2501 . 404488) (-2502 . 404384) (-2503 . 404183) (-2504 . 403926) - (-2505 . 403183) (-2506 . 403088) (-2507 . 402977) (-2508 . 402925) - (-2509 . 402753) (-2510 . 402639) (-2511 . 402330) (-2512 . 401890) - (-2513 . 401819) (-2514 . 401745) (-2515 . 401602) (-2516 . 401475) - (-2517 . 401296) (-2518 . 401116) (-2519 . 400973) (-2520 . 400835) - (-2521 . 400783) (-2522 . 400675) (-2523 . 400568) (-2524 . 400377) - (-2525 . 400291) (-2526 . 400076) (-2527 . 399825) (-2528 . 399646) - (-2529 . 399432) (-2530 . 399262) (-2531 . 398759) (-2532 . 398600) - (-2533 . 398486) (-2534 . 398319) (-2535 . 398190) (-2536 . 398093) - (-2537 . 397889) (-2538 . 397809) (-2539 . 397723) (-2540 . 397514) - (-2541 . 397339) (-2542 . 397273) (-2543 . 396851) (-2544 . 396513) - (-2545 . 396305) (-2546 . 396018) (-2547 . 395947) (-2548 . 395756) - (-2549 . 395099) (-2550 . 395016) (-2551 . 394938) (-2552 . 394861) - (-2553 . 394771) (-2554 . 394479) (-2555 . 394336) (-2556 . 394223) - (-2557 . 394195) (-2558 . 394093) (-2559 . 393894) (-2560 . 393766) - (-2561 . 393456) (-2562 . 393220) (-2563 . 393105) (-2564 . 392616) - (-2565 . 392560) (-2566 . 392508) (-2567 . 392436) (-2568 . 392190) - (-2569 . 392037) (-2570 . 391385) (-2571 . 391305) (-2572 . 391027) - (-2573 . 390848) (-2574 . 390746) (-2575 . 390451) (-2576 . 390332) - (-2577 . 390101) (-2578 . 389957) (-2579 . 389780) (-2580 . 389727) - (-2581 . 389363) (-2582 . 389205) (-2583 . 389152) (-2584 . 389074) - (-2585 . 388950) (-2586 . 388921) (-2587 . 388630) (-2588 . 388184) - (-2589 . 387957) (-2590 . 386848) (-2591 . 385852) (-2592 . 385501) - (-2593 . 384852) (-2594 . 384781) (-2595 . 384716) (-2596 . 384643) - (-2597 . 384533) (-2598 . 384402) (-2599 . 384276) (-2600 . 384158) - (-2601 . 384102) (-2602 . 384031) (-2603 . 381763) (-2604 . 381669) - (-2605 . 381529) (-2606 . 381395) (-2607 . 380898) (-2608 . 380841) - (-2609 . 380678) (-2610 . 380565) (-2611 . 380456) (-2612 . 380428) - (-2613 . 380334) (-2614 . 379680) (-2615 . 379546) (-2616 . 379430) - (-2617 . 379361) (-2618 . 379276) (-2619 . 379190) (-2620 . 379017) - (-2621 . 378959) (-2622 . 378853) (-2623 . 378748) (-2624 . 378419) - (-2625 . 378367) (-2626 . 378263) (-2627 . 377994) (-2628 . 376548) - (-2629 . 376427) (-2630 . 376356) (-2631 . 376132) (-2632 . 376013) - (-2633 . 375979) (-2634 . 375870) (-2635 . 375733) (-2636 . 375570) - (-2637 . 375431) (-2638 . 375276) (-2639 . 375088) (-2640 . 374989) - (-2641 . 374853) (-2642 . 374793) (-2643 . 374708) (-2644 . 374461) - (-2645 . 374260) (-2646 . 373969) (-2647 . 373865) (-2648 . 373762) - (-2649 . 373555) (-2650 . 373498) (-2651 . 373397) (-2652 . 373295) - (-2653 . 373195) (-2654 . 373118) (-2655 . 373065) (-2656 . 372970) - (-2657 . 372793) (-2658 . 372722) (-2659 . 372623) (-2660 . 372589) - (-2661 . 372358) (-2662 . 372279) (-2663 . 372208) (-2664 . 371043) - (-2665 . 370977) (-2666 . 370551) (-2667 . 370455) (-2668 . 370383) - (-2669 . 370311) (-2670 . 370223) (-2671 . 370150) (-2672 . 370004) - (-2673 . 369853) (-2674 . 369605) (-2675 . 369228) (-2676 . 365892) - (-2677 . 365823) (-2678 . 365770) (-2679 . 365691) (-2680 . 365613) - (-2681 . 365518) (-2682 . 365411) (-2683 . 365260) (-2684 . 365056) - (-2685 . 364969) (-2686 . 364836) (-2687 . 364563) (-2688 . 364392) - (-2689 . 364188) (-2690 . 364136) (-2691 . 361355) (-2692 . 361289) - (-2693 . 361118) (-2694 . 360870) (-2695 . 360717) (-2696 . 360514) - (-2697 . 360391) (-2698 . 360236) (-2699 . 360131) (-2700 . 359884) - (-2701 . 359792) (-2702 . 359670) (-2703 . 359552) (-2704 . 359293) - (-2705 . 359187) (-2706 . 359137) (-2707 . 359025) (-2708 . 358926) - (-2709 . 358827) (-2710 . 358772) (-2711 . 358738) (-2712 . 358100) - (-2713 . 358066) (-2714 . 357988) (-2715 . 357935) (-2716 . 357878) - (-2717 . 357829) (-2718 . 357570) (-2719 . 357542) (-2720 . 357210) - (-2721 . 356590) (-2722 . 356198) (-2723 . 356149) (-2724 . 351989) - (-2725 . 351882) (-2726 . 351810) (-2727 . 351712) (-2728 . 351558) - (-2729 . 351412) (-2730 . 351268) (-2731 . 350673) (-2732 . 350570) - (-2733 . 350386) (-2734 . 350178) (-2735 . 350031) (-2736 . 349868) - (-2737 . 349778) (-2738 . 349598) (-2739 . 349430) (-2740 . 349348) - (-2741 . 349320) (-2742 . 349250) (-2743 . 349106) (-2744 . 346179) - (-2745 . 346113) (-2746 . 346058) (-2747 . 345256) (-2748 . 345182) - (-2749 . 345067) (-2750 . 344733) (-2751 . 344572) (-2752 . 344516) - (-2753 . 344428) (-2754 . 344320) (-2755 . 344221) (-2756 . 344057) - (-2757 . 338849) (-2758 . 338792) (-2759 . 338624) (-2760 . 338542) - (-2761 . 338264) (-2762 . 338212) (-2763 . 338138) (-2764 . 338039) - (-2765 . 337664) (-2766 . 337444) (-2767 . 337373) (-2768 . 337266) - (-2769 . 337195) (-2770 . 337082) (-2771 . 337027) (-2772 . 336928) - (-2773 . 336586) (-2774 . 336470) (-2775 . 336404) (-2776 . 336108) - (-2777 . 336024) (-2778 . 335356) (-2779 . 335212) (-2780 . 334988) - (-2781 . 334850) (-2782 . 334695) (-2783 . 334442) (-2784 . 334365) - (-2785 . 333873) (-2786 . 333122) (-2787 . 332978) (-2788 . 332852) - (-2789 . 332800) (-2790 . 332548) (-2791 . 332438) (-2792 . 332318) - (-2793 . 332039) (-2794 . 331821) (-2795 . 331559) (-2796 . 330818) - (-2797 . 330600) (-2798 . 328438) (-2799 . 328381) (-2800 . 328250) - (-2801 . 328178) (-2802 . 328033) (-2803 . 327845) (-2804 . 327552) - (-2805 . 327466) (-2806 . 327107) (-2807 . 326366) (-2808 . 325793) - (-2809 . 325580) (-2810 . 325375) (-2811 . 325230) (-2812 . 325035) - (-2813 . 324964) (-2814 . 324886) (-2815 . 324813) (-2816 . 324654) - (-2817 . 324486) (-2818 . 324418) (-2819 . 324042) (-2820 . 323354) - (-2821 . 322757) (-2822 . 322683) (-2823 . 322568) (-2824 . 322452) - (-2825 . 322368) (-2826 . 322210) (-2827 . 322011) (-2828 . 321819) - (-2829 . 321539) (-2830 . 320965) (-2831 . 320438) (-2832 . 319862) - (-2833 . 319545) (-2834 . 319382) (-2835 . 319007) (-2836 . 318954) - (-2837 . 318884) (-2838 . 318806) (-2839 . 318476) (-2840 . 318367) - (-2841 . 318158) (-2842 . 318009) (-2843 . 317840) (-2844 . 317264) - (-2845 . 317177) (-2846 . 317052) (-2847 . 316974) (-2848 . 316921) - (-2849 . 316815) (-2850 . 316744) (-2851 . 316636) (-2852 . 316569) - (-2853 . 316448) (-2854 . 315527) (-2855 . 315403) (-2856 . 314827) - (-2857 . 314795) (-2858 . 314368) (-2859 . 314282) (-2860 . 314139) - (-2861 . 313957) (-2862 . 313908) (-2863 . 313807) (-2864 . 313627) - (-2865 . 313549) (-2866 . 313372) (-2867 . 313323) (-2868 . 313045) - (-2869 . 312359) (-2870 . 312285) (-2871 . 312126) (-2872 . 311964) - (-2873 . 311825) (-2874 . 311643) (-2875 . 311403) (-2876 . 311230) - (-2877 . 310871) (-2878 . 310819) (-2879 . 310628) (-2880 . 309942) - (-2881 . 309632) (-2882 . 309578) (-2883 . 309430) (-2884 . 309326) - (-2885 . 309245) (-2886 . 309192) (-2887 . 309115) (-2888 . 309021) - (-2889 . 308784) (-2890 . 308512) (-2891 . 307437) (-2892 . 306439) - (-2893 . 305690) (-2894 . 305560) (-2895 . 305388) (-2896 . 305009) - (-2897 . 304818) (-2898 . 304789) (-2899 . 304674) (-2900 . 304514) - (-2901 . 304341) (-2902 . 304067) (-2903 . 303758) (-2904 . 303580) - (-2905 . 303006) (-2906 . 302189) (-2907 . 302017) (-2908 . 301935) - (-2909 . 301495) (-2910 . 300646) (-2911 . 300574) (-2912 . 300494) - (-2913 . 300276) (-2914 . 300160) (-2915 . 300072) (-2916 . 299898) - (-2917 . 299870) (-2918 . 299366) (-2919 . 299194) (-2920 . 299080) - (-2921 . 298900) (-2922 . 298834) (-2923 . 298447) (-2924 . 294826) - (-2925 . 294771) (-2926 . 294624) (-2927 . 294173) (-2928 . 294025) - (-2929 . 293841) (-2930 . 293768) (-2931 . 293682) (-2932 . 293510) - (-2933 . 293457) (-2934 . 293310) (-2935 . 293213) (-2936 . 293014) - (-2937 . 292878) (-2938 . 292747) (-2939 . 292610) (-2940 . 292554) - (-2941 . 292396) (-2942 . 292301) (-2943 . 292094) (-2944 . 291891) - (-2945 . 291822) (-2946 . 291121) (-2947 . 291015) (-2948 . 290964) - (-2949 . 290912) (-2950 . 290840) (-2951 . 290766) (-2952 . 290650) - (-2953 . 290404) (-2954 . 290063) (-2955 . 289940) (-2956 . 289666) - (-2957 . 289513) (-2958 . 289440) (-2959 . 289346) (-2960 . 289309) - (-2961 . 288013) (-2962 . 287885) (-2963 . 287690) (-2964 . 287444) - (-2965 . 287043) (-2966 . 286713) (-2967 . 286613) (-2968 . 286520) - (-2969 . 286009) (-2970 . 285882) (-2971 . 285663) (-2972 . 285593) - (-2973 . 285494) (-2974 . 285393) (-2975 . 285202) (-2976 . 285090) - (-2977 . 284875) (-2978 . 284820) (-2979 . 284768) (-2980 . 284661) - (-2981 . 284583) (-2982 . 284380) (-2983 . 284281) (-2984 . 284228) - (-2985 . 284130) (-2986 . 284037) (-2987 . 283864) (-2988 . 283743) - (-2989 . 283693) (-2990 . 283312) (-2991 . 283116) (-2992 . 283058) - (-2993 . 282915) (-2994 . 282423) (-2995 . 282265) (-2996 . 282156) - (-2997 . 282013) (-2998 . 281951) (-2999 . 280759) (-3000 . 279895) - (-3001 . 279802) (-3002 . 279714) (-3003 . 279628) (-3004 . 279473) - (-3005 . 279420) (-3006 . 279318) (-3007 . 279211) (-3008 . 279046) - (-3009 . 278931) (-3010 . 278857) (-3011 . 278802) (-3012 . 278600) - (-3013 . 278468) (-3014 . 278253) (-3015 . 278154) (-3016 . 277338) - (-3017 . 276731) (-3018 . 276452) (-3019 . 276379) (-3020 . 276077) - (-3021 . 276003) (-3022 . 275971) (-3023 . 275879) (-3024 . 275811) - (-3025 . 275383) (-3026 . 275300) (-3027 . 275206) (-3028 . 274549) - (-3029 . 274489) (-3030 . 274366) (-3031 . 274140) (-3032 . 274069) - (-3033 . 273956) (-3034 . 273903) (-3035 . 273845) (-3036 . 273739) - (-3037 . 273615) (-3038 . 273162) (-3039 . 273050) (-3040 . 272998) - (-3041 . 272930) (-3042 . 272878) (-3043 . 272804) (-3044 . 272453) - (-3045 . 272369) (-3046 . 272235) (-3047 . 271988) (-3048 . 271895) - (-3049 . 271828) (-3050 . 271797) (-3051 . 271653) (-3052 . 271524) - (-3053 . 271425) (-3054 . 271207) (-3055 . 271070) (-3056 . 270682) - (-3057 . 270628) (-3058 . 270517) (-3059 . 270445) (-3060 . 270386) - (-3061 . 270213) (-3062 . 269853) (-3063 . 269703) (-3064 . 269069) - (-3065 . 268938) (-3066 . 268652) (-3067 . 268551) (-3068 . 268070) - (-3069 . 267610) (-3070 . 267536) (-3071 . 267412) (-3072 . 267271) - (-3073 . 267162) (-3074 . 267092) (-3075 . 267038) (-3076 . 266929) - (-3077 . 266742) (-3078 . 266136) (-3079 . 266022) (-3080 . 264784) - (-3081 . 264492) (-3082 . 264367) (-3083 . 264312) (-3084 . 264218) - (-3085 . 264037) (-3086 . 263603) (-3087 . 263454) (-3088 . 262933) - (-3089 . 262834) (-3090 . 262775) (-3091 . 261916) (-3092 . 261588) - (-3093 . 261508) (-3094 . 261389) (-3095 . 261312) (-3096 . 261217) - (-3097 . 261075) (-3098 . 260433) (-3099 . 260299) (-3100 . 260243) - (-3101 . 259900) (-3102 . 259792) (-3103 . 259667) (-3104 . 259440) - (-3105 . 259356) (-3106 . 259268) (-3107 . 258915) (-3108 . 258822) - (-3109 . 258698) (-3110 . 258615) (-3111 . 258549) (-3112 . 258103) - (-3113 . 257216) (-3114 . 257108) (-3115 . 256905) (-3116 . 256745) - (-3117 . 256556) (-3118 . 256388) (-3119 . 256302) (-3120 . 256206) - (-3121 . 256102) (-3122 . 256015) (-3123 . 255765) (-3124 . 255666) - (-3125 . 255595) (-3126 . 255482) (-3127 . 255388) (-3128 . 255108) - (-3129 . 254705) (-3130 . 254618) (-3131 . 254565) (-3132 . 254189) - (-3133 . 254106) (-3134 . 253549) (-3135 . 253454) (-3136 . 253395) - (-3137 . 251539) (-3138 . 251453) (-3139 . 251334) (-3140 . 251179) - (-3141 . 250569) (-3142 . 250258) (-3143 . 250100) (-3144 . 249832) - (-3145 . 249019) (-3146 . 248906) (-3147 . 248840) (-3148 . 248781) - (-3149 . 248682) (-3150 . 248563) (-3151 . 248344) (-3152 . 247316) - (-3153 . 247179) (-3154 . 247052) (-3155 . 246998) (-3156 . 246891) - (-3157 . 246839) (-3158 . 246103) (-3159 . 245917) (-3160 . 245240) - (-3161 . 244905) (-3162 . 244845) (-3163 . 244726) (-3164 . 244654) - (-3165 . 244421) (-3166 . 244323) (-3167 . 244191) (-3168 . 244138) - (-3169 . 243426) (-3170 . 243313) (-3171 . 243261) (-3172 . 243173) - (-3173 . 242894) (-3174 . 242843) (-3175 . 242715) (-3176 . 242092) - (-3177 . 242033) (-3178 . 241980) (-3179 . 241339) (-3180 . 241287) - (-3181 . 241113) (-3182 . 240906) (-3183 . 240765) (-3184 . 240692) - (-3185 . 240591) (-3186 . 238623) (-3187 . 238519) (-3188 . 238309) - (-3189 . 238182) (-3190 . 238069) (-3191 . 237833) (-3192 . 237017) - (-3193 . 236743) (-3194 . 236623) (-3195 . 236522) (-3196 . 236367) - (-3197 . 235916) (-3198 . 235867) (-3199 . 235694) (-3200 . 235280) - (-3201 . 234999) (-3202 . 234905) (-3203 . 234750) (-3204 . 234655) - (-3205 . 234627) (-3206 . 234541) (-3207 . 234444) (-3208 . 234385) - (-3209 . 234272) (-3210 . 234176) (-3211 . 234030) (-3212 . 233996) - (-3213 . 233919) (-3214 . 233845) (-3215 . 233729) (-3216 . 233679) - (-3217 . 232903) (-3218 . 232775) (-3219 . 232715) (-3220 . 232649) - (-3221 . 231309) (-3222 . 231111) (-3223 . 230979) (-3224 . 230711) - (-3225 . 230520) (-3226 . 230438) (-3227 . 230162) (-3228 . 230004) - (-3229 . 229645) (-3230 . 229590) (-3231 . 229503) (-3232 . 229424) - (-3233 . 229324) (-3234 . 229169) (-3235 . 229084) (-3236 . 228959) - (-3237 . 228831) (-3238 . 228744) (-3239 . 228675) (-3240 . 228522) - (-3241 . 228473) (-3242 . 228396) (-3243 . 228362) (-3244 . 228167) - (-3245 . 228009) (-3246 . 227884) (-3247 . 227758) (-3248 . 227341) - (-3249 . 227234) (-3250 . 227153) (-3251 . 226959) (-3252 . 226906) - (-3253 . 226788) (-3254 . 226729) (-3255 . 226674) (-3256 . 226509) - (-3257 . 226122) (-3258 . 226045) (-3259 . 225929) (-3260 . 224827) - (-3261 . 224753) (-3262 . 224581) (-3263 . 224245) (-3264 . 223967) - (-3265 . 223893) (-3266 . 223770) (-3267 . 223627) (-3268 . 223469) - (-3269 . 223354) (-3270 . 223256) (-3271 . 223203) (-3272 . 222876) - (-3273 . 222778) (-3274 . 222657) (-3275 . 222550) (-3276 . 222497) - (-3277 . 222413) (-3278 . 222349) (-3279 . 222321) (-3280 . 222233) - (-3281 . 222080) (-3282 . 221962) (-3283 . 221906) (-3284 . 221833) - (-3285 . 221422) (-3286 . 221342) (-3287 . 221275) (-3288 . 221180) - (-3289 . 221076) (-3290 . 220971) (-3291 . 220853) (-3292 . 220792) - (-3293 . 220512) (-3294 . 220374) (-3295 . 220242) (-3296 . 220039) - (-3297 . 219961) (-3298 . 219805) (-3299 . 219752) (-3300 . 219680) - (-3301 . 219620) (-3302 . 219523) (-3303 . 218959) (-3304 . 218801) - (-3305 . 218640) (-3306 . 218539) (-3307 . 218222) (-3308 . 218170) - (-3309 . 217971) (-3310 . 217902) (-3311 . 217675) (-3312 . 217394) - (-3313 . 217249) (-3314 . 217177) (-3315 . 217103) (-3316 . 217031) - (-3317 . 216799) (-3318 . 216035) (-3319 . 215976) (-3320 . 215754) - (-3321 . 215647) (-3322 . 215590) (-3323 . 215410) (-3324 . 215131) - (-3325 . 214639) (-3326 . 214471) (-3327 . 214393) (-3328 . 214327) - (-3329 . 214128) (-3330 . 214035) (-3331 . 213549) (-3332 . 213451) - (-3333 . 213246) (-3334 . 213194) (-3335 . 212898) (-3336 . 212719) - (-3337 . 212637) (-3338 . 212580) (-3339 . 212497) (-3340 . 212247) - (-3341 . 212165) (-3342 . 211865) (-3343 . 211758) (-3344 . 211677) - (-3345 . 211621) (-3346 . 211158) (-3347 . 211075) (-3348 . 210991) - (-3349 . 210803) (-3350 . 210660) (-3351 . 210542) (-3352 . 210382) - (-3353 . 210258) (-3354 . 210118) (-3355 . 210066) (-3356 . 209471) - (-3357 . 209416) (-3358 . 209116) (-3359 . 208031) (-3360 . 207922) - (-3361 . 207495) (-3362 . 207421) (-3363 . 206847) (-3364 . 206645) - (-3365 . 206503) (-3366 . 206396) (-3367 . 205922) (-3368 . 205853) - (-3369 . 205742) (-3370 . 205535) (-3371 . 205438) (-3372 . 205342) - (-3373 . 205310) (-3374 . 205226) (-3375 . 204456) (-3376 . 204243) - (-3377 . 204112) (-3378 . 203813) (-3379 . 203739) (-3380 . 203390) - (-3381 . 203283) (-3382 . 203125) (-3383 . 202582) (-3384 . 202530) - (-3385 . 202369) (-3386 . 202239) (-3387 . 202173) (-3388 . 202037) - (-3389 . 201945) (-3390 . 201649) (-3391 . 201600) (-3392 . 201474) - (-3393 . 201268) (-3394 . 201215) (-3395 . 200899) (-3396 . 200811) - (-3397 . 200565) (-3398 . 199315) (-3399 . 199223) (-3400 . 199135) - (-3401 . 199050) (-3402 . 198995) (-3403 . 198936) (-3404 . 198812) - (-3405 . 197342) (-3406 . 197259) (-3407 . 197209) (-3408 . 197102) - (-3409 . 196241) (-3410 . 196155) (-3411 . 196087) (-3412 . 195999) - (-3413 . 195819) (-3414 . 195673) (-3415 . 195600) (-3416 . 195487) - (-3417 . 195357) (-3418 . 195249) (-3419 . 195086) (-3420 . 194906) - (-3421 . 194754) (-3422 . 194601) (-3423 . 194486) (-3424 . 194434) - (-3425 . 194383) (-3426 . 194331) (-3427 . 194230) (-3428 . 193925) - (-3429 . 193828) (-3430 . 193760) (-3431 . 193616) (-3432 . 193546) - (-3433 . 193490) (-3434 . 193148) (-3435 . 193064) (-3436 . 192977) - (-3437 . 192925) (-3438 . 192390) (-3439 . 192316) (-3440 . 192244) - (-3441 . 192188) (-3442 . 192132) (-3443 . 192080) (-3444 . 192020) - (-3445 . 191901) (-3446 . 191429) (-3447 . 191328) (-3448 . 190524) - (-3449 . 190417) (-3450 . 190309) (-3451 . 189993) (-3452 . 189196) - (-3453 . 189071) (-3454 . 188730) (-3455 . 188633) (-3456 . 188518) - (-3457 . 188279) (-3458 . 187868) (-3459 . 187609) (-3460 . 187390) - (-3461 . 187284) (-3462 . 187118) (-3463 . 186793) (-3464 . 186727) - (-3465 . 186575) (-3466 . 186453) (-3467 . 186331) (-3468 . 186200) - (-3469 . 185754) (-3470 . 185245) (-3471 . 184179) (-3472 . 184081) - (-3473 . 183982) (-3474 . 183875) (-3475 . 183792) (-3476 . 183704) - (-3477 . 183607) (-3478 . 183060) (-3479 . 182986) (-3480 . 182648) - (-3481 . 182459) (-3482 . 182364) (-3483 . 182280) (-3484 . 182114) - (-3485 . 182005) (-3486 . 181852) (-3487 . 181800) (-3488 . 181371) - (-3489 . 181028) (-3490 . 180690) (-3491 . 180597) (-3492 . 180300) - (-3493 . 180183) (-3494 . 180048) (-3495 . 179990) (-3496 . 179931) - (-3497 . 179852) (-3498 . 179769) (-3499 . 179646) (-3500 . 179502) - (-3501 . 179387) (-3502 . 179332) (-3503 . 179216) (-3504 . 178973) - (-3505 . 178920) (-3506 . 178866) (-3507 . 178743) (-3508 . 178694) - (-3509 . 178349) (-3510 . 178027) (-3511 . 177890) (-3512 . 177838) - (-3513 . 177665) (-3514 . 177599) (-3515 . 177480) (-3516 . 177302) - (-3517 . 177021) (-3518 . 176921) (-3519 . 176835) (-3520 . 176747) - (-3521 . 176688) (-3522 . 176601) (-3523 . 176382) (-3524 . 176211) - (-3525 . 176125) (-3526 . 175607) (-3527 . 175487) (-3528 . 175390) - (-3529 . 175000) (-3530 . 174948) (-3531 . 174847) (-3532 . 174572) - (-3533 . 174318) (-3534 . 174128) (-3535 . 174079) (-3536 . 173869) - (-3537 . 173741) (-3538 . 173689) (-3539 . 173465) (-3540 . 173408) - (-3541 . 173314) (-3542 . 173034) (-3543 . 172925) (-3544 . 172856) - (-3545 . 172712) (-3546 . 172657) (-3547 . 172604) (-3548 . 172487) - (-3549 . 172333) (-3550 . 172260) (-3551 . 172153) (-3552 . 171493) - (-3553 . 171348) (-3554 . 171262) (-3555 . 171109) (-3556 . 170993) - (-3557 . 170409) (-3558 . 170305) (-3559 . 170222) (-3560 . 169995) - (-3561 . 169914) (-3562 . 169798) (-3563 . 169095) (-3564 . 168972) - (-3565 . 168754) (-3566 . 168695) (-3567 . 168609) (-3568 . 168426) - (-3569 . 167937) (-3570 . 167744) (-3571 . 167661) (-3572 . 167559) - (-3573 . 167507) (-3574 . 167235) (-3575 . 167165) (-3576 . 167109) - (-3577 . 166921) (-3578 . 166859) (-3579 . 166804) (-3580 . 166733) - (-3581 . 166520) (-3582 . 166160) (-3583 . 166048) (-3584 . 165968) - (-3585 . 165800) (-3586 . 165721) (-3587 . 165200) (-3588 . 165070) - (-3589 . 165014) (-3590 . 164876) (-3591 . 164845) (-3592 . 164731) - (-3593 . 164637) (-3594 . 164254) (-3595 . 163290) (-3596 . 163123) - (-3597 . 162897) (-3598 . 162610) (-3599 . 162371) (-3600 . 162200) - (-3601 . 162095) (-3602 . 162022) (-3603 . 161838) (-3604 . 161761) - (-3605 . 161568) (-3606 . 161442) (-3607 . 161013) (-3608 . 160890) - (-3609 . 160452) (-3610 . 160354) (-3611 . 160256) (-3612 . 156957) - (-3613 . 156929) (-3614 . 156895) (-3615 . 156821) (-3616 . 156755) - (-3617 . 156646) (-3618 . 156583) (-3619 . 156398) (-3620 . 156228) - (-3621 . 156175) (-3622 . 156109) (-3623 . 156060) (-3624 . 155932) - (-3625 . 155805) (-3626 . 155737) (-3627 . 155630) (-3628 . 155556) - (-3629 . 155401) (-3630 . 155172) (-3631 . 155030) (-3632 . 154885) - (-3633 . 154793) (-3634 . 154505) (-3635 . 154403) (-3636 . 154191) - (-3637 . 154136) (-3638 . 154055) (-3639 . 154002) (-3640 . 153861) - (-3641 . 153809) (-3642 . 153385) (-3643 . 153209) (-3644 . 152911) - (-3645 . 152774) (-3646 . 152630) (-3647 . 152337) (-3648 . 152075) - (-3649 . 151923) (-3650 . 151824) (-3651 . 151715) (-3652 . 151645) - (-3653 . 151481) (-3654 . 151139) (-3655 . 150999) (-3656 . 150897) - (-3657 . 150803) (-3658 . 150657) (-3659 . 149782) (-3660 . 149416) - (-3661 . 147302) (-3662 . 147171) (-3663 . 147100) (-3664 . 146981) - (-3665 . 146695) (-3666 . 146588) (-3667 . 146346) (-3668 . 146104) - (-3669 . 146009) (-3670 . 145870) (-3671 . 145728) (-3672 . 145569) - (-3673 . 145326) (-3674 . 145055) (-3675 . 145002) (-3676 . 144750) - (-3677 . 144661) (-3678 . 144582) (-3679 . 144363) (-3680 . 144250) - (-3681 . 144187) (-3682 . 144083) (-3683 . 143979) (-3684 . 143732) - (-3685 . 143608) (-3686 . 143525) (-3687 . 143430) (-3688 . 143402) - (-3689 . 143277) (-3690 . 142950) (-3691 . 142605) (-3692 . 142434) - (-3693 . 142330) (-3694 . 142166) (-3695 . 141919) (-3696 . 141829) - (-3697 . 141715) (-3698 . 141599) (-3699 . 141456) (-3700 . 141317) - (-3701 . 141283) (-3702 . 140906) (-3703 . 140798) (-3704 . 140655) - (-3705 . 140128) (-3706 . 139905) (-3707 . 139804) (-3708 . 139586) - (-3709 . 139505) (-3710 . 139267) (-3711 . 139109) (-3712 . 138773) - (-3713 . 138693) (-3714 . 138505) (-3715 . 138389) (-3716 . 138253) - (-3717 . 138151) (-3718 . 137847) (-3719 . 137775) (-3720 . 137597) - (-3721 . 137517) (-3722 . 137394) (-3723 . 137320) (-3724 . 137068) - (-3725 . 136872) (-3726 . 136556) (-3727 . 136455) (-3728 . 136302) - (-3729 . 136168) (-3730 . 136085) (-3731 . 135955) (-3732 . 135902) - (-3733 . 135843) (-3734 . 135598) (-3735 . 135545) (-3736 . 135432) - (-3737 . 135348) (-3738 . 135207) (-3739 . 135155) (-3740 . 134976) - (-3741 . 134879) (-3742 . 134676) (-3743 . 134561) (-3744 . 134484) - (-3745 . 134425) (-3746 . 134357) (-3747 . 134216) (-3748 . 134007) - (-3749 . 133851) (-3750 . 133771) (-3751 . 133500) (-3752 . 133126) - (-3753 . 132988) (-3754 . 132671) (-3755 . 132461) (-3756 . 132204) - (-3757 . 132126) (-3758 . 131841) (-3759 . 131813) (-3760 . 131655) - (-3761 . 131600) (-3762 . 131462) (-3763 . 131366) (-3764 . 131200) - (-3765 . 130234) (-3766 . 129984) (-3767 . 129932) (-3768 . 129830) - (-3769 . 129753) (-3770 . 129528) (-3771 . 129347) (-3772 . 129155) - (-3773 . 128990) (-3774 . 128603) (-3775 . 128532) (-3776 . 128141) - (-3777 . 128023) (-3778 . 127903) (-3779 . 127826) (-3780 . 127746) - (-3781 . 127622) (-3782 . 127569) (-3783 . 127501) (-3784 . 127407) - (-3785 . 127225) (-3786 . 126642) (-3787 . 126532) (-3788 . 126200) - (-3789 . 125818) (-3790 . 125706) (-3791 . 125629) (-3792 . 125595) - (-3793 . 125542) (-3794 . 125471) (-3795 . 125356) (-3796 . 125304) - (-3797 . 125251) (-3798 . 125070) (-3799 . 124907) (-3800 . 124788) - (-3801 . 124681) (-3802 . 124571) (-3803 . 124519) (-3804 . 124382) - (-3805 . 123512) (-3806 . 123121) (-3807 . 123006) (-3808 . 122895) - (-3809 . 122788) (-3810 . 122549) (-3811 . 122141) (-3812 . 122056) - (-3813 . 121999) (-3814 . 121773) (-3815 . 121720) (-3816 . 121515) - (-3817 . 121386) (-3818 . 120965) (-3819 . 120794) (-3820 . 120701) - (-3821 . 120618) (-3822 . 120587) (-3823 . 120519) (-3824 . 120309) - (-3825 . 120196) (-3826 . 120074) (-3827 . 119924) (-3828 . 118921) - (-3829 . 118849) (-3830 . 118533) (-3831 . 118504) (-3832 . 118007) - (-3833 . 117398) (-3834 . 117370) (-3835 . 117270) (-3836 . 117112) - (-3837 . 116797) (-3838 . 116693) (-3839 . 116019) (-3840 . 115797) - (-3841 . 115723) (-3842 . 115586) (-3843 . 115498) (-3844 . 115424) - (-3845 . 115279) (-3846 . 115023) (-3847 . 114851) (-3848 . 114669) - (-3849 . 114379) (-3850 . 114112) (-3851 . 114017) (-3852 . 113983) - (-3853 . 113758) (-3854 . 113156) (-3855 . 112933) (-3856 . 112823) - (-3857 . 112771) (-3858 . 112158) (-3859 . 110956) (-3860 . 110846) - (-3861 . 110764) (-3862 . 110669) (-3863 . 110535) (** . 107446) - (-3865 . 107345) (-3866 . 107229) (-3867 . 107130) (-3868 . 106779) - (-3869 . 106682) (-3870 . 106255) (-3871 . 105999) (-3872 . 105747) - (-3873 . 105639) (-3874 . 105586) (-3875 . 105488) (-3876 . 105414) - (-3877 . 105277) (-3878 . 105245) (-3879 . 105183) (-3880 . 105032) - (-3881 . 104961) (-3882 . 104858) (-3883 . 104683) (-3884 . 104419) - (-3885 . 104261) (-3886 . 104047) (-3887 . 103974) (-3888 . 103856) - (-3889 . 103485) (-3890 . 103100) (-3891 . 102979) (-3892 . 102898) - (-3893 . 102726) (-3894 . 102655) (-3895 . 102540) (-3896 . 102397) - (-3897 . 102231) (-3898 . 102160) (-3899 . 102077) (-3900 . 100826) - (-3901 . 100730) (-3902 . 100438) (-3903 . 100331) (-3904 . 100169) - (-3905 . 100092) (-3906 . 100038) (-3907 . 99895) (-3908 . 99503) - (-3909 . 99242) (-3910 . 99118) (-3911 . 99012) (-3912 . 98934) - (-3913 . 98878) (-3914 . 98770) (-3915 . 98687) (-3916 . 98557) - (-3917 . 98439) (-3918 . 98383) (-3919 . 98221) (-3920 . 98002) - (-3921 . 97692) (-3922 . 97376) (-3923 . 97176) (-3924 . 96864) - (-3925 . 96764) (-3926 . 96519) (-3927 . 96446) (-3928 . 96206) - (-3929 . 96154) (-3930 . 96086) (-3931 . 95996) (-3932 . 95883) - (-3933 . 95591) (-3934 . 95512) (-3935 . 95372) (-3936 . 95306) - (-3937 . 95241) (-3938 . 95167) (-3939 . 95069) (-3940 . 95012) - (-3941 . 94916) (-3942 . 94863) (-3943 . 94734) (-3944 . 94666) - (-3945 . 93381) (-3946 . 93297) (-3947 . 93228) (-3948 . 93043) - (-3949 . 92763) (-3950 . 92649) (-3951 . 92588) (-3952 . 92533) - (-3953 . 92481) (-3954 . 92380) (-3955 . 92148) (-3956 . 92086) - (-3957 . 91913) (-3958 . 91695) (-3959 . 91468) (-3960 . 91415) - (-3961 . 91071) (-3962 . 91001) (-3963 . 90916) (-3964 . 90884) - (-3965 . 90589) (-3966 . 90346) (-3967 . 90272) (-3968 . 90154) - (-3969 . 90011) (-3970 . 89804) (-3971 . 89737) (-3972 . 89684) - (-3973 . 89514) (-3974 . 89035) (-3975 . 88968) (-3976 . 88576) - (-3977 . 88520) (-3978 . 88063) (-3979 . 87959) (-3980 . 87773) - (-3981 . 87590) (-3982 . 87472) (-3983 . 87420) (-3984 . 87291) - (-3985 . 87212) (-3986 . 87129) (-3987 . 87022) (-3988 . 86925) - (-3989 . 86702) (-3990 . 86524) (-3991 . 86401) (-3992 . 86068) - (-3993 . 85985) (-3994 . 85794) (-3995 . 85653) (-3996 . 85532) - (-3997 . 85012) (-3998 . 84914) (-3999 . 84840) (-4000 . 84396) - (-4001 . 84222) (-4002 . 84132) (-4003 . 83986) (-4004 . 83952) - (-4005 . 83874) (-4006 . 83244) (-4007 . 83140) (-4008 . 83078) - (-4009 . 82979) (-4010 . 82927) (-4011 . 82790) (-4012 . 82472) - (-4013 . 82085) (-4014 . 81704) (-4015 . 81373) (-4016 . 81322) - (-4017 . 81248) (-4018 . 80933) (-4019 . 80797) (-4020 . 80652) - (-4021 . 80602) (-4022 . 80463) (-4023 . 80380) (-4024 . 80295) - (-4025 . 80150) (-4026 . 80090) (-4027 . 79968) (-4028 . 79771) - (-4029 . 79685) (-4030 . 79125) (-4031 . 79029) (-4032 . 78946) - (-4033 . 78893) (-4034 . 78183) (-4035 . 77994) (-4036 . 77842) - (-4037 . 77475) (-4038 . 77381) (-4039 . 77353) (-4040 . 77251) - (-4041 . 77168) (-4042 . 76922) (-4043 . 76586) (-4044 . 76518) - (-4045 . 76157) (-4046 . 75983) (-4047 . 75931) (-4048 . 75845) - (-4049 . 75762) (-4050 . 75545) (-4051 . 75230) (-4052 . 75152) - (-4053 . 74962) (-4054 . 74522) (-4055 . 74357) (-4056 . 74237) - (-4057 . 74136) (-4058 . 74076) (-4059 . 73598) (-4060 . 73546) - (-4061 . 73458) (-4062 . 73351) (-4063 . 73265) (-4064 . 73183) - (-4065 . 72980) (-4066 . 72952) (-4067 . 72779) (-4068 . 72193) - (-4069 . 72116) (-4070 . 72063) (-4071 . 71701) (-4072 . 70741) - (-4073 . 70597) (-4074 . 70481) (-4075 . 70299) (-4076 . 70126) - (-4077 . 69824) (-4078 . 69685) (-4079 . 69611) (-4080 . 69537) - (-4081 . 69454) (-4082 . 69203) (-4083 . 69018) (-4084 . 68912) - (-4085 . 68835) (-4086 . 68708) (-4087 . 68584) (-4088 . 68300) - (-4089 . 68172) (-4090 . 68006) (-4091 . 67758) (-4092 . 67628) - (-4093 . 67575) (-4094 . 67508) (-4095 . 67390) (-4096 . 67029) - (-4097 . 66906) (-4098 . 66672) (-4099 . 66147) (-4100 . 66011) - (-4101 . 65832) (-4102 . 65712) (-4103 . 65318) (-4104 . 64827) - (-4105 . 64799) (-4106 . 64730) (-4107 . 64593) (-4108 . 64413) - (-4109 . 64361) (-4110 . 64333) (-4111 . 64262) (-4112 . 64210) - (-4113 . 64012) (-4114 . 63924) (-4115 . 63683) (-4116 . 63571) - (-4117 . 62997) (-4118 . 62839) (-4119 . 62645) (-4120 . 62300) - (-4121 . 62166) (-4122 . 62067) (-4123 . 61970) (-4124 . 61746) - (-4125 . 61693) (-4126 . 61571) (-4127 . 60997) (-4128 . 60927) - (-4129 . 60871) (-4130 . 60578) (-4131 . 59939) (-4132 . 59752) - (-4133 . 59715) (-4134 . 59662) (-4135 . 59628) (-4136 . 59526) - (-4137 . 58839) (-4138 . 58755) (-4139 . 58611) (-4140 . 58540) - (-4141 . 56277) (-4142 . 56211) (-4143 . 56174) (-4144 . 56051) - (-4145 . 55598) (-4146 . 55175) (-4147 . 55046) (-4148 . 54930) - (-4149 . 54243) (-4150 . 54025) (-4151 . 53934) (-4152 . 53728) - (-4153 . 53027) (-4154 . 52860) (-4155 . 52790) (-4156 . 52681) - (-4157 . 52616) (-4158 . 52485) (-4159 . 52342) (-4160 . 51655) - (-4161 . 51599) (-4162 . 51232) (-4163 . 50554) (-4164 . 50473) - (-4165 . 50057) (-4166 . 49984) (-4167 . 49499) (-4168 . 49020) - (-4169 . 48937) (-4170 . 48822) (-4171 . 48247) (-4172 . 48169) - (-4173 . 48048) (-4174 . 47954) (-4175 . 47764) (-4176 . 47657) - (-4177 . 47403) (-4178 . 47186) (-4179 . 47115) (-4180 . 46913) - (-4181 . 46743) (-4182 . 46648) (-4183 . 46073) (-4184 . 45920) - (-4185 . 45758) (-4186 . 45612) (-4187 . 45347) (-4188 . 44846) - (-4189 . 44688) (-4190 . 44615) (-4191 . 44536) (-4192 . 44408) - (-4193 . 44218) (-4194 . 43643) (-4195 . 43572) (-4196 . 43474) - (-4197 . 43367) (-4198 . 43314) (-4199 . 43228) (-4200 . 43175) - (-4201 . 42997) (-4202 . 42893) (-4203 . 42793) (-4204 . 42677) - (-4205 . 42474) (-4206 . 41900) (-4207 . 41828) (-4208 . 41762) - (-4209 . 41571) (-4210 . 41486) (-4211 . 41193) (-4212 . 40598) - (-4213 . 40433) (-4214 . 40359) (-4215 . 40207) (-4216 . 40012) - (-4217 . 39707) (-4218 . 39133) (-4219 . 38015) (-4220 . 37856) - (-4221 . 37783) (-4222 . 37402) (-4223 . 37313) (-4224 . 36880) - (-4225 . 36783) (-4226 . 36639) (-4227 . 36567) (-4228 . 36497) - (-4229 . 26937) (-4230 . 26658) (-4231 . 26552) (-4232 . 26245) - (-4233 . 25671) (-4234 . 25618) (-4235 . 25364) (-4236 . 25311) - (-4237 . 24632) (-4238 . 24559) (-4239 . 24429) (-4240 . 24008) - (-4241 . 23955) (-4242 . 23834) (-4243 . 23720) (-4244 . 23146) - (-4245 . 23043) (-4246 . 22850) (-4247 . 22711) (-4248 . 18648) - (-4249 . 18578) (-4250 . 18477) (-4251 . 18374) (-4252 . 18272) - (-4253 . 18155) (-4254 . 17804) (-4255 . 17230) (-4256 . 16837) - (-4257 . 16019) (-4258 . 15784) (-4259 . 15713) (-4260 . 15491) - (-4261 . 15435) (-4262 . 15371) (-4263 . 15316) (-4264 . 15260) - (-4265 . 15102) (-4266 . 15050) (-4267 . 14902) (-4268 . 13704) - (-4269 . 13652) (-4270 . 13128) (-4271 . 12975) (-4272 . 12826) - (-4273 . 12740) (-4274 . 12542) (-4275 . 12038) (-4276 . 11834) - (-4277 . 11724) (-4278 . 11485) (-4279 . 11039) (-4280 . 10917) - (-4281 . 10862) (-4282 . 10453) (-4283 . 10384) (-4284 . 10280) - (-4285 . 7935) (-4286 . 7841) (-4287 . 7807) (-4288 . 7704) - (-4289 . 7625) (-4290 . 7593) (-4291 . 7418) (-4292 . 7348) - (-4293 . 7253) (-4294 . 7048) (-4295 . 6795) (-4296 . 6692) - (-4297 . 6244) (-4298 . 5861) (-4299 . 5643) (-4300 . 5397) - (-4301 . 5331) (-4302 . 5260) (-4303 . 3884) (-4304 . 3526) - (-4305 . 3392) (-4306 . 3177) (-4307 . 3057) (-4308 . 2845) - (-4309 . 2494) (-4310 . 2018) (-4311 . 1814) (-4312 . 1704) - (-4313 . 1491) (-4314 . 1401) (-4315 . 1225) (-4316 . 975) - (-4317 . 947) (-4318 . 838) (-4319 . 649) (-4320 . 502) (-4321 . 333) - (-4322 . 249) (-4323 . 131) (-4324 . 30))
\ No newline at end of file + (-12 (-5 *4 (-536)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1012 *4)) + (-4 *3 (-13 (-825) (-543)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-5 *2 (-838)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1141 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-5 *1 (-32 *4 *2))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-920 (-536))) (-5 *3 (-1147)) (-5 *4 (-1060 (-400 (-536)))) + (-5 *1 (-30))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543)))))) +((-1263 . 730107) (-1264 . 729680) (-1265 . 729559) (-1266 . 729444) + (-1267 . 729318) (-1268 . 729188) (-1269 . 729119) (-1270 . 729065) + (-1271 . 728930) (-1272 . 728854) (-1273 . 728698) (-1274 . 728470) + (-1275 . 727506) (-1276 . 727259) (-1277 . 726957) (-1278 . 726655) + (-1279 . 726353) (-1280 . 726015) (-1281 . 725923) (-1282 . 725831) + (-1283 . 725739) (-1284 . 725647) (-1285 . 725555) (-1286 . 725463) + (-1287 . 725368) (-1288 . 725273) (-1289 . 725181) (-1290 . 725089) + (-1291 . 724997) (-1292 . 724905) (-1293 . 724813) (-1294 . 724711) + (-1295 . 724609) (-1296 . 724507) (-1297 . 724415) (-1298 . 724348) + (-1299 . 724297) (-1300 . 724245) (-1301 . 724194) (-1302 . 724143) + (-1303 . 724073) (-1304 . 723635) (-1305 . 723433) (-1306 . 723310) + (-1307 . 723187) (-1308 . 723043) (-1309 . 722873) (-1310 . 722749) + (-1311 . 722510) (-1312 . 722437) (-1313 . 722296) (-1314 . 722245) + (-1315 . 722196) (-1316 . 722126) (-1317 . 721991) (-1318 . 721856) + (-1319 . 721628) (-1320 . 721382) (-1321 . 721202) (-1322 . 721031) + (-1323 . 720954) (-1324 . 720880) (-1325 . 720725) (-1326 . 720570) + (-1327 . 720384) (-1328 . 720201) (-1329 . 720024) (-1330 . 719967) + (-1331 . 719911) (-1332 . 719855) (-1333 . 719781) (-1334 . 719703) + (-1335 . 719647) (-1336 . 719616) (-1337 . 719547) (-1338 . 719473) + (-1339 . 719417) (-1340 . 719346) (-1341 . 719272) (-1342 . 719198) + (-1343 . 719146) (-1344 . 719094) (-1345 . 719042) (-1346 . 718980) + (-1347 . 718857) (-1348 . 718535) (-1349 . 718447) (-1350 . 718346) + (-1351 . 718225) (-1352 . 718144) (-1353 . 718063) (-1354 . 717906) + (-1355 . 717755) (-1356 . 717677) (-1357 . 717619) (-1358 . 717546) + (-1359 . 717481) (-1360 . 717416) (-1361 . 717354) (-1362 . 717281) + (-1363 . 717165) (-1364 . 717131) (-1365 . 717097) (-1366 . 717045) + (-1367 . 717001) (-1368 . 716930) (-1369 . 716878) (-1370 . 716829) + (-1371 . 716777) (-1372 . 716725) (-1373 . 716609) (-1374 . 716493) + (-1375 . 716401) (-1376 . 716309) (-1377 . 716186) (-1378 . 716133) + (-1379 . 716105) (-1380 . 716077) (-1381 . 716049) (-1382 . 716021) + (-1383 . 715911) (-1384 . 715859) (-1385 . 715807) (-1386 . 715755) + (-1387 . 715703) (-1388 . 715651) (-1389 . 715599) (-1390 . 715571) + (-1391 . 715468) (-1392 . 715416) (-1393 . 715250) (-1394 . 715066) + (-1395 . 714855) (-1396 . 714740) (-1397 . 714507) (-1398 . 714408) + (-1399 . 714314) (-1400 . 714199) (-1401 . 713801) (-1402 . 713583) + (-1403 . 713534) (-1404 . 713506) (-1405 . 713415) (-1406 . 713303) + (-1407 . 713191) (-1408 . 713079) (-1409 . 712967) (-1410 . 712855) + (-1411 . 712743) (-1412 . 712570) (-1413 . 712494) (-1414 . 712312) + (-1415 . 712254) (-1416 . 712196) (-1417 . 711858) (-1418 . 711573) + (-1419 . 711489) (-1420 . 711356) (-1421 . 711298) (-1422 . 711246) + (-1423 . 711191) (-1424 . 711139) (-1425 . 711065) (-1426 . 710991) + (-1427 . 710910) (-1428 . 710829) (-1429 . 710774) (-1430 . 710700) + (-1431 . 710626) (-1432 . 710552) (-1433 . 710475) (-1434 . 710420) + (-1435 . 710361) (-1436 . 710262) (-1437 . 710163) (-1438 . 710064) + (-1439 . 709965) (-1440 . 709866) (-1441 . 709767) (-1442 . 709668) + (-1443 . 709554) (-1444 . 709440) (-1445 . 709326) (-1446 . 709212) + (-1447 . 709098) (-1448 . 708984) (-1449 . 708867) (-1450 . 708791) + (-1451 . 708715) (-1452 . 708328) (-1453 . 707982) (-1454 . 707880) + (-1455 . 707618) (-1456 . 707516) (-1457 . 707311) (-1458 . 707198) + (-1459 . 707096) (-1460 . 706939) (-1461 . 706850) (-1462 . 706756) + (-1463 . 706676) (-1464 . 706616) (-1465 . 706563) (-1466 . 706444) + (-1467 . 706362) (-1468 . 706280) (-1469 . 706198) (-1470 . 706116) + (-1471 . 706034) (-1472 . 705940) (-1473 . 705870) (-1474 . 705800) + (-1475 . 705709) (-1476 . 705615) (-1477 . 705533) (-1478 . 705451) + (-1479 . 704960) (-1480 . 704407) (-1481 . 704197) (-1482 . 704122) + (-1483 . 703868) (-1484 . 703641) (-1485 . 703431) (-1486 . 703301) + (-1487 . 703220) (-1488 . 703071) (-1489 . 702716) (-1490 . 702424) + (-1491 . 702132) (-1492 . 701840) (-1493 . 701548) (-1494 . 701489) + (-1495 . 701382) (-1496 . 700954) (-1497 . 700794) (-1498 . 700595) + (-1499 . 700459) (-1500 . 700359) (-1501 . 700259) (-1502 . 700165) + (-1503 . 700106) (-1504 . 699764) (-1505 . 699663) (-1506 . 699544) + (-1507 . 699328) (-1508 . 699147) (-1509 . 698980) (-1510 . 698765) + (-1511 . 698326) (-1512 . 698217) (-1513 . 698102) (-1514 . 698033) + (-1515 . 697964) (-1516 . 697895) (-1517 . 697829) (-1518 . 697704) + (-1519 . 697487) (-1520 . 697409) (-1521 . 697359) (-1522 . 697288) + (-1523 . 697145) (-1524 . 697004) (-1525 . 696923) (-1526 . 696842) + (-1527 . 696786) (-1528 . 696730) (-1529 . 696657) (-1530 . 696517) + (-1531 . 696464) (-1532 . 696412) (-1533 . 696360) (-1534 . 696242) + (-1535 . 696124) (-1536 . 696006) (-1537 . 695873) (-1538 . 695592) + (-1539 . 695456) (-1540 . 695400) (-1541 . 695344) (-1542 . 695285) + (-1543 . 695226) (-1544 . 695170) (-1545 . 695114) (-1546 . 694917) + (-1547 . 692575) (-1548 . 692448) (-1549 . 692302) (-1550 . 692174) + (-1551 . 692122) (-1552 . 692070) (-1553 . 692018) (-1554 . 687979) + (-1555 . 687884) (-1556 . 687745) (-1557 . 687536) (-1558 . 687434) + (-1559 . 687332) (-1560 . 686416) (-1561 . 686339) (-1562 . 686210) + (-1563 . 686083) (-1564 . 686006) (-1565 . 685929) (-1566 . 685802) + (-1567 . 685675) (-1568 . 685509) (-1569 . 685382) (-1570 . 685255) + (-1571 . 685038) (-1572 . 684600) (-1573 . 684234) (-1574 . 684127) + (-1575 . 683908) (-1576 . 683839) (-1577 . 683780) (-1578 . 683699) + (-1579 . 683588) (-1580 . 683522) (-1581 . 683456) (-1582 . 683382) + (-1583 . 683310) (-1584 . 682933) (-1585 . 682881) (-1586 . 682822) + (-1587 . 682718) (-1588 . 682614) (-1589 . 682507) (-1590 . 682400) + (-1591 . 682293) (-1592 . 682186) (-1593 . 682079) (-1594 . 681972) + (-1595 . 681865) (-1596 . 681758) (-1597 . 681651) (-1598 . 681544) + (-1599 . 681437) (-1600 . 681330) (-1601 . 681223) (-1602 . 681116) + (-1603 . 681009) (-1604 . 680902) (-1605 . 680795) (-1606 . 680688) + (-1607 . 680581) (-1608 . 680474) (-1609 . 680367) (-1610 . 680260) + (-1611 . 680153) (-1612 . 680046) (-1613 . 679939) (-1614 . 679832) + (-1615 . 679653) (-1616 . 679531) (-1617 . 679280) (-1618 . 678977) + (-1619 . 678771) (-1620 . 678604) (-1621 . 678433) (-1622 . 678381) + (-1623 . 678318) (-1624 . 678255) (-1625 . 678203) (-1626 . 678014) + (-1627 . 677860) (-1628 . 677780) (-1629 . 677700) (-1630 . 677620) + (-1631 . 677490) (-1632 . 677258) (-1633 . 677230) (-1634 . 677202) + (-1635 . 677121) (-1636 . 677031) (-1637 . 676953) (-1638 . 676866) + (-1639 . 676806) (-1640 . 676648) (-1641 . 676455) (-1642 . 675970) + (-1643 . 675728) (-1644 . 675466) (-1645 . 675365) (-1646 . 675284) + (-1647 . 675203) (-1648 . 675133) (-1649 . 675063) (-1650 . 674904) + (-1651 . 674600) (-1652 . 674357) (-1653 . 674233) (-1654 . 674174) + (-1655 . 674112) (-1656 . 674050) (-1657 . 673985) (-1658 . 673923) + (-1659 . 673644) (-1660 . 673434) (-1661 . 673160) (-1662 . 672589) + (-1663 . 672075) (-1664 . 671930) (-1665 . 671863) (-1666 . 671782) + (-1667 . 671701) (-1668 . 671599) (-1669 . 671525) (-1670 . 671444) + (-1671 . 671370) (-1672 . 671161) (-1673 . 670948) (-1674 . 670858) + (-1675 . 670791) (-1676 . 670655) (-1677 . 670588) (-1678 . 670506) + (-1679 . 670425) (-1680 . 670323) (-1681 . 670123) (-1682 . 670055) + (-1683 . 669813) (-1684 . 669562) (-1685 . 669320) (-1686 . 669078) + (-1687 . 669010) (-1688 . 668674) (-1689 . 667673) (-1690 . 667453) + (-1691 . 667372) (-1692 . 667298) (-1693 . 667224) (-1694 . 667150) + (-1695 . 667046) (-1696 . 666973) (-1697 . 666905) (-1698 . 666695) + (-1699 . 666643) (-1700 . 666588) (-1701 . 666498) (-1702 . 666411) + (-1703 . 664560) (-1704 . 664481) (-1705 . 663736) (-1706 . 663606) + (-1707 . 663399) (-1708 . 663237) (-1709 . 663075) (-1710 . 662914) + (-1711 . 662775) (-1712 . 662681) (-1713 . 662583) (-1714 . 662489) + (-1715 . 662374) (-1716 . 662289) (-1717 . 662191) (-1718 . 661995) + (-1719 . 661904) (-1720 . 661810) (-1721 . 661743) (-1722 . 661690) + (-1723 . 661637) (-1724 . 661584) (-1725 . 660446) (-1726 . 659936) + (-1727 . 659857) (-1728 . 659798) (-1729 . 659770) (-1730 . 659742) + (-1731 . 659683) (-1732 . 659570) (-1733 . 659193) (-1734 . 659140) + (-1735 . 659029) (-1736 . 658976) (-1737 . 658923) (-1738 . 658867) + (-1739 . 658811) (-1740 . 658646) (-1741 . 658576) (-1742 . 658481) + (-1743 . 658386) (-1744 . 658291) (-1745 . 658134) (-1746 . 657977) + (-1747 . 657824) (-1748 . 657066) (-1749 . 656813) (-1750 . 656502) + (-1751 . 656150) (-1752 . 655933) (-1753 . 655670) (-1754 . 655295) + (-1755 . 655111) (-1756 . 654977) (-1757 . 654811) (-1758 . 654645) + (-1759 . 654511) (-1760 . 654377) (-1761 . 654243) (-1762 . 654109) + (-1763 . 653978) (-1764 . 653847) (-1765 . 653716) (-1766 . 653333) + (-1767 . 653206) (-1768 . 653078) (-1769 . 652826) (-1770 . 652702) + (-1771 . 652450) (-1772 . 652326) (-1773 . 652074) (-1774 . 651950) + (-1775 . 651665) (-1776 . 651392) (-1777 . 651119) (-1778 . 650821) + (-1779 . 650719) (-1780 . 650574) (-1781 . 650433) (-1782 . 650282) + (-1783 . 650121) (-1784 . 650033) (-1785 . 650005) (-1786 . 649923) + (-1787 . 649826) (-1788 . 649358) (-1789 . 649007) (-1790 . 648574) + (-1791 . 648433) (-1792 . 648363) (-1793 . 648293) (-1794 . 648223) + (-1795 . 648132) (-1796 . 648041) (-1797 . 647950) (-1798 . 647859) + (-1799 . 647768) (-1800 . 647682) (-1801 . 647596) (-1802 . 647510) + (-1803 . 647424) (-1804 . 647338) (-1805 . 647264) (-1806 . 647159) + (-1807 . 646933) (-1808 . 646855) (-1809 . 646780) (-1810 . 646687) + (-1811 . 646583) (-1812 . 646487) (-1813 . 646318) (-1814 . 646241) + (-1815 . 646164) (-1816 . 646073) (-1817 . 645982) (-1818 . 645782) + (-1819 . 645627) (-1820 . 645472) (-1821 . 645317) (-1822 . 645162) + (-1823 . 645007) (-1824 . 644852) (-1825 . 644785) (-1826 . 644630) + (-1827 . 644475) (-1828 . 644320) (-1829 . 644165) (-1830 . 644010) + (-1831 . 643855) (-1832 . 643700) (-1833 . 643545) (-1834 . 643471) + (-1835 . 643397) (-1836 . 643342) (-1837 . 643287) (-1838 . 643232) + (-1839 . 643177) (-1840 . 643106) (-1841 . 642901) (-1842 . 642800) + (-1843 . 642609) (-1844 . 642516) (-1845 . 642379) (-1846 . 642242) + (-1847 . 642105) (-1848 . 642037) (-1849 . 641921) (-1850 . 641805) + (-1851 . 641689) (-1852 . 641636) (-1853 . 641439) (-1854 . 641354) + (-1855 . 641046) (-1856 . 640991) (-1857 . 640339) (-1858 . 640024) + (-1859 . 639740) (-1860 . 639621) (-1861 . 639569) (-1862 . 639517) + (-1863 . 639465) (-1864 . 639412) (-1865 . 639359) (-1866 . 639300) + (-1867 . 639187) (-1868 . 639074) (-1869 . 639016) (-1870 . 638958) + (-1871 . 638908) (-1872 . 638773) (-1873 . 638723) (-1874 . 638660) + (-1875 . 638600) (-1876 . 638003) (-1877 . 637943) (-1878 . 637776) + (-1879 . 637684) (-1880 . 637571) (-1881 . 637487) (-1882 . 637372) + (-1883 . 637281) (-1884 . 637190) (-1885 . 637001) (-1886 . 636946) + (-1887 . 636759) (-1888 . 636636) (-1889 . 636563) (-1890 . 636490) + (-1891 . 636370) (-1892 . 636297) (-1893 . 636224) (-1894 . 636151) + (-1895 . 635931) (-1896 . 635598) (-1897 . 635414) (-1898 . 635270) + (-1899 . 634909) (-1900 . 634741) (-1901 . 634573) (-1902 . 634317) + (-1903 . 634061) (-1904 . 633866) (-1905 . 633671) (-1906 . 633077) + (-1907 . 633001) (-1908 . 632863) (-1909 . 632461) (-1910 . 632334) + (-1911 . 632175) (-1912 . 631849) (-1913 . 631360) (-1914 . 630871) + (-1915 . 630353) (-1916 . 630285) (-1917 . 630214) (-1918 . 630143) + (-1919 . 629960) (-1920 . 629841) (-1921 . 629722) (-1922 . 629631) + (-1923 . 629540) (-1924 . 629248) (-1925 . 629126) (-1926 . 629074) + (-1927 . 629022) (-1928 . 628970) (-1929 . 628918) (-1930 . 628866) + (-1931 . 628717) (-1932 . 628536) (-1933 . 628296) (-1934 . 628101) + (-1935 . 628073) (-1936 . 628045) (-1937 . 628017) (-1938 . 627989) + (-1939 . 627961) (-1940 . 627933) (-1941 . 627905) (-1942 . 627853) + (-1943 . 627763) (-1944 . 627713) (-1945 . 627644) (-1946 . 627575) + (-1947 . 627470) (-1948 . 627099) (-1949 . 626948) (-1950 . 626797) + (-1951 . 626592) (-1952 . 626470) (-1953 . 626395) (-1954 . 626317) + (-1955 . 626242) (-1956 . 626164) (-1957 . 626086) (-1958 . 626011) + (-1959 . 625933) (-1960 . 625699) (-1961 . 625544) (-1962 . 625245) + (-1963 . 625090) (-1964 . 624764) (-1965 . 624624) (-1966 . 624484) + (-1967 . 624403) (-1968 . 624322) (-1969 . 624057) (-1970 . 623324) + (-1971 . 623187) (-1972 . 623096) (-1973 . 622959) (-1974 . 622891) + (-1975 . 622822) (-1976 . 622734) (-1977 . 622646) (-1978 . 622475) + (-1979 . 622401) (-1980 . 622257) (-1981 . 621797) (-1982 . 621417) + (-1983 . 620653) (-1984 . 620509) (-1985 . 620365) (-1986 . 620203) + (-1987 . 619965) (-1988 . 619824) (-1989 . 619677) (-1990 . 619438) + (-1991 . 619202) (-1992 . 618963) (-1993 . 618771) (-1994 . 618648) + (-1995 . 618444) (-1996 . 618221) (-1997 . 617982) (-1998 . 617841) + (-1999 . 617703) (-2000 . 617564) (-2001 . 617311) (-2002 . 617055) + (-2003 . 616898) (-2004 . 616744) (-2005 . 616503) (-2006 . 616218) + (-2007 . 616080) (-2008 . 615993) (-2009 . 615327) (-2010 . 615151) + (-2011 . 614969) (-2012 . 614793) (-2013 . 614611) (-2014 . 614432) + (-2015 . 614253) (-2016 . 614066) (-2017 . 613684) (-2018 . 613505) + (-2019 . 613326) (-2020 . 613139) (-2021 . 612757) (-2022 . 611764) + (-2023 . 611380) (-2024 . 610996) (-2025 . 610878) (-2026 . 610721) + (-2027 . 610579) (-2028 . 610461) (-2029 . 610279) (-2030 . 610155) + (-2031 . 609865) (-2032 . 609575) (-2033 . 609291) (-2034 . 609007) + (-2035 . 608728) (-2036 . 608640) (-2037 . 608555) (-2038 . 608456) + (-2039 . 608357) (-2040 . 608133) (-2041 . 608033) (-2042 . 607930) + (-2043 . 607852) (-2044 . 607527) (-2045 . 607235) (-2046 . 607162) + (-2047 . 606777) (-2048 . 606749) (-2049 . 606550) (-2050 . 606376) + (-2051 . 606135) (-2052 . 606080) (-2053 . 606004) (-2054 . 605633) + (-2055 . 605517) (-2056 . 605440) (-2057 . 605367) (-2058 . 605286) + (-2059 . 605205) (-2060 . 605124) (-2061 . 605023) (-2062 . 604964) + (-2063 . 604745) (-2064 . 604506) (-2065 . 604382) (-2066 . 604258) + (-2067 . 604031) (-2068 . 603978) (-2069 . 603923) (-2070 . 603591) + (-2071 . 603267) (-2072 . 603079) (-2073 . 602888) (-2074 . 602724) + (-2075 . 602389) (-2076 . 602222) (-2077 . 601981) (-2078 . 601653) + (-2079 . 601461) (-2080 . 601244) (-2081 . 601071) (-2082 . 600649) + (-2083 . 600422) (-2084 . 600151) (-2085 . 600013) (-2086 . 599872) + (-2087 . 599394) (-2088 . 599271) (-2089 . 599035) (-2090 . 598781) + (-2091 . 598531) (-2092 . 598236) (-2093 . 598095) (-2094 . 597751) + (-2095 . 597610) (-2096 . 597417) (-2097 . 597224) (-2098 . 597049) + (-2099 . 596775) (-2100 . 596340) (-2101 . 596266) (-2102 . 596105) + (-2103 . 595942) (-2104 . 595781) (-2105 . 595614) (-2106 . 595561) + (-2107 . 595508) (-2108 . 595379) (-2109 . 595319) (-2110 . 595266) + (-2111 . 595213) (-2112 . 595142) (-2113 . 595089) (-2114 . 594947) + (-2115 . 594852) (-2116 . 594761) (-2117 . 594645) (-2118 . 594551) + (-2119 . 594453) (-2120 . 594359) (-2121 . 594218) (-2122 . 593953) + (-2123 . 593096) (-2124 . 592940) (-2125 . 592571) (-2126 . 592519) + (-2127 . 592416) (-2128 . 592331) (-2129 . 592243) (-2130 . 592097) + (-2131 . 591948) (-2132 . 591658) (-2133 . 591580) (-2134 . 591505) + (-2135 . 591452) (-2136 . 591399) (-2137 . 591368) (-2138 . 591305) + (-2139 . 591186) (-2140 . 591097) (-2141 . 590977) (-2142 . 590682) + (-2143 . 590488) (-2144 . 590300) (-2145 . 590155) (-2146 . 590010) + (-2147 . 589724) (-2148 . 589279) (-2149 . 589245) (-2150 . 589208) + (-2151 . 589171) (-2152 . 589134) (-2153 . 589097) (-2154 . 589066) + (-2155 . 589035) (-2156 . 589004) (-2157 . 588970) (-2158 . 588936) + (-2159 . 588881) (-2160 . 588692) (-2161 . 588450) (-2162 . 588208) + (-2163 . 587971) (-2164 . 587919) (-2165 . 587864) (-2166 . 587794) + (-2167 . 587705) (-2168 . 587636) (-2169 . 587564) (-2170 . 587334) + (-2171 . 587282) (-2172 . 587227) (-2173 . 587196) (-2174 . 587090) + (-2175 . 586857) (-2176 . 586539) (-2177 . 586357) (-2178 . 586164) + (-2179 . 585885) (-2180 . 585812) (-2181 . 585747) (-2182 . 585719) + (-2183 . 585669) (-2184 . 584246) (-2185 . 583098) (-2186 . 581960) + (-2187 . 581468) (-2188 . 580890) (-2189 . 580148) (-2190 . 579571) + (-2191 . 578927) (-2192 . 578348) (-2193 . 578274) (-2194 . 578222) + (-2195 . 578170) (-2196 . 578096) (-2197 . 578041) (-2198 . 577989) + (-2199 . 577937) (-2200 . 577885) (-2201 . 577815) (-2202 . 577367) + (-2203 . 577153) (-2204 . 576896) (-2205 . 576554) (-2206 . 576292) + (-2207 . 575982) (-2208 . 575771) (-2209 . 575471) (-2210 . 574901) + (-2211 . 574763) (-2212 . 574560) (-2213 . 574279) (-2214 . 574193) + (-2215 . 573848) (-2216 . 573706) (-2217 . 573414) (-2218 . 573193) + (-2219 . 573068) (-2220 . 572944) (-2221 . 572798) (-2222 . 572655) + (-2223 . 572540) (-2224 . 572410) (-2225 . 572038) (-2226 . 571778) + (-2227 . 571503) (-2228 . 571263) (-2229 . 570933) (-2230 . 570588) + (-2231 . 570180) (-2232 . 569757) (-2233 . 569560) (-2234 . 569285) + (-2235 . 569117) (-2236 . 568916) (-2237 . 568694) (-2238 . 568539) + (-2239 . 568346) (-2240 . 568318) (-2241 . 568139) (-2242 . 568070) + (-2243 . 568000) (-2244 . 567881) (-2245 . 567703) (-2246 . 567648) + (-2247 . 567402) (-2248 . 567312) (-2249 . 567122) (-2250 . 567049) + (-2251 . 566979) (-2252 . 566914) (-2253 . 566859) (-2254 . 566768) + (-2255 . 566461) (-2256 . 566116) (-2257 . 566042) (-2258 . 565720) + (-2259 . 565513) (-2260 . 565427) (-2261 . 565341) (-2262 . 565255) + (-2263 . 565169) (-2264 . 565083) (-2265 . 564997) (-2266 . 564911) + (-2267 . 564825) (-2268 . 564739) (-2269 . 564653) (-2270 . 564567) + (-2271 . 564481) (-2272 . 564395) (-2273 . 564309) (-2274 . 564223) + (-2275 . 564137) (-2276 . 564051) (-2277 . 563965) (-2278 . 563879) + (-2279 . 563793) (-2280 . 563707) (-2281 . 563621) (-2282 . 563535) + (-2283 . 563449) (-2284 . 563363) (-2285 . 563277) (-2286 . 563174) + (-2287 . 563085) (-2288 . 562875) (-2289 . 562816) (-2290 . 562760) + (-2291 . 562671) (-2292 . 562559) (-2293 . 562471) (-2294 . 562323) + (-2295 . 562138) (-2296 . 561974) (-2297 . 561807) (-2298 . 561622) + (-2299 . 561401) (-2300 . 561277) (-2301 . 561069) (-2302 . 560977) + (-2303 . 560885) (-2304 . 560749) (-2305 . 560654) (-2306 . 560559) + (-2307 . 559043) (-2308 . 558983) (-2309 . 558893) (-2310 . 558798) + (-2311 . 558717) (-2312 . 558410) (-2313 . 558215) (-2314 . 558122) + (-2315 . 558016) (-2316 . 557598) (-2317 . 557545) (-2318 . 557517) + (-2319 . 557464) (-2320 . 557289) (-2321 . 557212) (-2322 . 557023) + (-2323 . 556843) (-2324 . 556419) (-2325 . 556267) (-2326 . 556087) + (-2327 . 555914) (-2328 . 555652) (-2329 . 555400) (-2330 . 554589) + (-2331 . 554420) (-2332 . 554201) (-2333 . 553297) (-2334 . 553153) + (-2335 . 553009) (-2336 . 552865) (-2337 . 552721) (-2338 . 552577) + (-2339 . 552433) (-2340 . 552238) (-2341 . 552044) (-2342 . 551901) + (-2343 . 551586) (-2344 . 551471) (-2345 . 551131) (-2346 . 550971) + (-2347 . 550832) (-2348 . 550693) (-2349 . 550564) (-2350 . 550479) + (-2351 . 550427) (-2352 . 549939) (-2353 . 548661) (-2354 . 548546) + (-2355 . 548417) (-2356 . 548110) (-2357 . 547859) (-2358 . 547784) + (-2359 . 547709) (-2360 . 547634) (-2361 . 547575) (-2362 . 547504) + (-2363 . 547451) (-2364 . 547389) (-2365 . 547318) (-2366 . 546955) + (-2367 . 546668) (-2368 . 546557) (-2369 . 546464) (-2370 . 546371) + (-2371 . 546284) (-2372 . 546064) (-2373 . 545844) (-2374 . 545701) + (-2375 . 545608) (-2376 . 545465) (-2377 . 545313) (-2378 . 545159) + (-2379 . 545088) (-2380 . 544879) (-2381 . 544701) (-2382 . 544491) + (-2383 . 544313) (-2384 . 544195) (-2385 . 543880) (-2386 . 543602) + (-2387 . 543481) (-2388 . 543354) (-2389 . 543269) (-2390 . 543196) + (-2391 . 543106) (-2392 . 543035) (-2393 . 542979) (-2394 . 542923) + (-2395 . 542867) (-2396 . 542796) (-2397 . 542725) (-2398 . 542654) + (-2399 . 542575) (-2400 . 542497) (-2401 . 542412) (-2402 . 542152) + (-2403 . 542063) (-2404 . 541765) (-2405 . 541667) (-2406 . 541589) + (-2407 . 541511) (-2408 . 541368) (-2409 . 541289) (-2410 . 541217) + (-2411 . 541014) (-2412 . 540958) (-2413 . 540770) (-2414 . 540671) + (-2415 . 540553) (-2416 . 540432) (-2417 . 540289) (-2418 . 540146) + (-2419 . 540006) (-2420 . 539866) (-2421 . 539723) (-2422 . 539596) + (-2423 . 539466) (-2424 . 539342) (-2425 . 539218) (-2426 . 539112) + (-2427 . 539006) (-2428 . 538903) (-2429 . 538753) (-2430 . 538600) + (-2431 . 538447) (-2432 . 538303) (-2433 . 538149) (-2434 . 538072) + (-2435 . 537992) (-2436 . 537837) (-2437 . 537757) (-2438 . 537677) + (-2439 . 537597) (-2440 . 537494) (-2441 . 537435) (-2442 . 537260) + (-2443 . 537107) (-2444 . 536954) (-2445 . 536780) (-2446 . 536588) + (-2447 . 536289) (-2448 . 536094) (-2449 . 535979) (-2450 . 535853) + (-2451 . 535776) (-2452 . 535644) (-2453 . 535338) (-2454 . 535155) + (-2455 . 534610) (-2456 . 534390) (-2457 . 534216) (-2458 . 534046) + (-2459 . 533947) (-2460 . 533848) (-2461 . 533630) (-2462 . 533528) + (-2463 . 533455) (-2464 . 533379) (-2465 . 533300) (-2466 . 533003) + (-2467 . 532904) (-2468 . 532742) (-2469 . 532508) (-2470 . 532066) + (-2471 . 531936) (-2472 . 531796) (-2473 . 531487) (-2474 . 531185) + (-2475 . 530869) (-2476 . 530463) (-2477 . 530395) (-2478 . 530327) + (-2479 . 530259) (-2480 . 530164) (-2481 . 530056) (-2482 . 529948) + (-2483 . 529846) (-2484 . 529744) (-2485 . 529642) (-2486 . 529564) + (-2487 . 529240) (-2488 . 528759) (-2489 . 528132) (-2490 . 528068) + (-2491 . 527949) (-2492 . 527830) (-2493 . 527722) (-2494 . 527614) + (-2495 . 527458) (-2496 . 526856) (-2497 . 526618) (-2498 . 526450) + (-2499 . 526328) (-2500 . 525930) (-2501 . 525694) (-2502 . 525493) + (-2503 . 525285) (-2504 . 525092) (-2505 . 524822) (-2506 . 524649) + (-2507 . 524470) (-2508 . 524401) (-2509 . 524325) (-2510 . 524184) + (-2511 . 523981) (-2512 . 523837) (-2513 . 523587) (-2514 . 523279) + (-2515 . 522923) (-2516 . 522764) (-2517 . 522558) (-2518 . 522398) + (-2519 . 522325) (-2520 . 522206) (-2521 . 522087) (-2522 . 521927) + (-2523 . 521747) (-2524 . 521564) (-2525 . 521466) (-2526 . 521368) + (-2527 . 521267) (-2528 . 521163) (-2529 . 521037) (-2530 . 520911) + (-2531 . 520782) (-2532 . 520650) (-2533 . 520552) (-2534 . 520454) + (-2535 . 520353) (-2536 . 520252) (-2537 . 520086) (-2538 . 519920) + (-2539 . 519726) (-2540 . 519560) (-2541 . 519392) (-2542 . 519221) + (-2543 . 519056) (-2544 . 518891) (-2545 . 518791) (-2546 . 518599) + (-2547 . 518498) (-2548 . 518303) (-2549 . 518053) (-2550 . 517808) + (-2551 . 517486) (-2552 . 517098) (-2553 . 516897) (-2554 . 516633) + (-2555 . 516090) (-2556 . 515796) (-2557 . 515659) (-2558 . 515413) + (-2559 . 515209) (-2560 . 515102) (-2561 . 515001) (-2562 . 514891) + (-2563 . 514781) (-2564 . 514653) (-2565 . 514546) (-2566 . 514442) + (-2567 . 514286) (-2568 . 514152) (-2569 . 514018) (-2570 . 513908) + (-2571 . 513789) (-2572 . 513612) (-2573 . 513478) (-2574 . 513341) + (-2575 . 513210) (-2576 . 513100) (-2577 . 512978) (-2578 . 512853) + (-2579 . 512752) (-2580 . 512568) (-2581 . 512394) (-2582 . 512195) + (-2583 . 512021) (-2584 . 511905) (-2585 . 511780) (-2586 . 511652) + (-2587 . 511533) (-2588 . 511308) (-2589 . 511137) (-2590 . 510966) + (-2591 . 510789) (-2592 . 510637) (-2593 . 510360) (-2594 . 509968) + (-2595 . 509837) (-2596 . 509632) (-2597 . 509449) (-2598 . 509265) + (-2599 . 509136) (-2600 . 509032) (-2601 . 508891) (-2602 . 508759) + (-2603 . 508645) (-2604 . 508497) (-2605 . 508358) (-2606 . 508257) + (-2607 . 508153) (-2608 . 508046) (-2609 . 507936) (-2610 . 507835) + (-2611 . 507728) (-2612 . 507621) (-2613 . 507508) (-2614 . 507401) + (-2615 . 507288) (-2616 . 507157) (-2617 . 507008) (-2618 . 506470) + (-2619 . 506327) (-2620 . 506177) (-2621 . 506054) (-2622 . 505950) + (-2623 . 505846) (-2624 . 505739) (-2625 . 505601) (-2626 . 505494) + (-2627 . 505363) (-2628 . 505207) (-2629 . 504934) (-2630 . 504787) + (-2631 . 504584) (-2632 . 504483) (-2633 . 504329) (-2634 . 504209) + (-2635 . 504080) (-2636 . 503985) (-2637 . 503897) (-2638 . 503809) + (-2639 . 503721) (-2640 . 503633) (-2641 . 503545) (-2642 . 503451) + (-2643 . 503363) (-2644 . 503275) (-2645 . 503187) (-2646 . 503099) + (-2647 . 503011) (-2648 . 502923) (-2649 . 502835) (-2650 . 502747) + (-2651 . 502659) (-2652 . 502571) (-2653 . 502433) (-2654 . 502295) + (-2655 . 502175) (-2656 . 502055) (-2657 . 501914) (-2658 . 501826) + (-2659 . 501738) (-2660 . 501650) (-2661 . 501562) (-2662 . 501424) + (-2663 . 501286) (-2664 . 501198) (-2665 . 501110) (-2666 . 501022) + (-2667 . 500934) (-2668 . 500846) (-2669 . 500758) (-2670 . 500667) + (-2671 . 500573) (-2672 . 500479) (-2673 . 500382) (-2674 . 500332) + (-2675 . 500282) (-2676 . 500229) (-2677 . 499975) (-2678 . 499926) + (-2679 . 499876) (-2680 . 499842) (-2681 . 499777) (-2682 . 499740) + (-2683 . 499603) (-2684 . 499365) (-2685 . 499116) (-2686 . 498958) + (-2687 . 498417) (-2688 . 498218) (-2689 . 498003) (-2690 . 497841) + (-2691 . 497442) (-2692 . 497275) (-2693 . 496200) (-2694 . 496077) + (-2695 . 495860) (-2696 . 495729) (-2697 . 495598) (-2698 . 495440) + (-2699 . 495336) (-2700 . 495277) (-2701 . 495218) (-2702 . 495112) + (-2703 . 495006) (-2704 . 494088) (-2705 . 491959) (-2706 . 491143) + (-2707 . 489338) (-2708 . 489270) (-2709 . 489202) (-2710 . 489134) + (-2711 . 489066) (-2712 . 488998) (-2713 . 488920) (-2714 . 488518) + (-2715 . 488162) (-2716 . 487980) (-2717 . 487451) (-2718 . 487275) + (-2719 . 487053) (-2720 . 486831) (-2721 . 486609) (-2722 . 486390) + (-2723 . 486171) (-2724 . 485952) (-2725 . 485733) (-2726 . 485514) + (-2727 . 485295) (-2728 . 485194) (-2729 . 484461) (-2730 . 484406) + (-2731 . 484351) (-2732 . 484296) (-2733 . 484241) (-2734 . 484091) + (-2735 . 483798) (-2736 . 483539) (-2737 . 483511) (-2738 . 483461) + (-2739 . 482869) (-2740 . 482335) (-2741 . 481886) (-2742 . 481714) + (-2743 . 481523) (-2744 . 481234) (-2745 . 480846) (-2746 . 479970) + (-2747 . 479628) (-2748 . 479459) (-2749 . 479236) (-2750 . 478985) + (-2751 . 478635) (-2752 . 477617) (-2753 . 477302) (-2754 . 477090) + (-2755 . 476523) (-2756 . 476007) (-2757 . 474229) (-2758 . 473757) + (-2759 . 473158) (-2760 . 472908) (-2761 . 472774) (-2762 . 472322) + (-2763 . 471833) (-2764 . 471473) (-2765 . 471190) (-2766 . 471075) + (-2767 . 470960) (-2768 . 470745) (-2769 . 470692) (-2770 . 470639) + (-2771 . 470587) (-2772 . 470535) (-2773 . 470443) (-2774 . 470372) + (-2775 . 470298) (-2776 . 470227) (-2777 . 470174) (-2778 . 470103) + (-2779 . 470050) (-2780 . 469997) (-2781 . 469944) (-2782 . 469891) + (-2783 . 469838) (-2784 . 469785) (-2785 . 469732) (-2786 . 469679) + (-2787 . 469626) (-2788 . 469573) (-2789 . 469520) (-2790 . 469467) + (-2791 . 469414) (-2792 . 469361) (-2793 . 469290) (-2794 . 469219) + (-2795 . 469147) (-2796 . 469075) (-2797 . 469000) (-2798 . 468947) + (-2799 . 468894) (-2800 . 468841) (-2801 . 468788) (-2802 . 468735) + (-2803 . 468682) (-2804 . 468629) (-2805 . 468576) (-2806 . 468523) + (-2807 . 468470) (-2808 . 468417) (-2809 . 468364) (-2810 . 468311) + (-2811 . 468258) (-2812 . 468206) (-2813 . 468154) (-2814 . 468101) + (-2815 . 468048) (-2816 . 467957) (-2817 . 467904) (-2818 . 467876) + (-2819 . 467848) (-2820 . 467820) (-2821 . 467792) (-2822 . 467714) + (-2823 . 467654) (-2824 . 467602) (-2825 . 467550) (-2826 . 467498) + (-2827 . 467446) (-2828 . 467394) (-2829 . 466590) (-2830 . 466513) + (-2831 . 466436) (-2832 . 466370) (-2833 . 466303) (-2834 . 466236) + (-2835 . 466179) (-2836 . 466103) (-2837 . 466035) (-2838 . 465964) + (-2839 . 465893) (-2840 . 465827) (-2841 . 465740) (-2842 . 465668) + (-2843 . 465561) (-2844 . 465375) (-2845 . 465206) (-2846 . 465026) + (-2847 . 464435) (-2848 . 464272) (-2849 . 463694) (-2850 . 463619) + (-2851 . 463253) (-2852 . 462574) (-2853 . 462396) (-2854 . 462324) + (-2855 . 462184) (-2856 . 461994) (-2857 . 461887) (-2858 . 461780) + (-2859 . 461664) (-2860 . 461548) (-2861 . 461432) (-2862 . 461281) + (-2863 . 461137) (-2864 . 461063) (-2865 . 460977) (-2866 . 460903) + (-2867 . 460829) (-2868 . 460755) (-2869 . 460611) (-2870 . 460460) + (-2871 . 460285) (-2872 . 460134) (-2873 . 459983) (-2874 . 459856) + (-2875 . 459467) (-2876 . 459181) (-2877 . 458895) (-2878 . 458484) + (-2879 . 458198) (-2880 . 458125) (-2881 . 457978) (-2882 . 457872) + (-2883 . 457798) (-2884 . 457727) (-2885 . 457656) (-2886 . 457554) + (-2887 . 457451) (-2888 . 457354) (-2889 . 457257) (-2890 . 457097) + (-2891 . 457010) (-2892 . 456923) (-2893 . 456836) (-2894 . 456777) + (-2895 . 456718) (-2896 . 456585) (-2897 . 456526) (-2898 . 456356) + (-2899 . 456268) (-2900 . 456171) (-2901 . 456137) (-2902 . 456106) + (-2903 . 456022) (-2904 . 455966) (-2905 . 455904) (-2906 . 455870) + (-2907 . 455836) (-2908 . 455802) (-2909 . 455768) (-2910 . 455734) + (-2911 . 452981) (-2912 . 452947) (-2913 . 452913) (-2914 . 452879) + (-2915 . 452767) (-2916 . 452733) (-2917 . 452681) (-2918 . 452647) + (-2919 . 452550) (-2920 . 452488) (-2921 . 452397) (-2922 . 452306) + (-2923 . 452251) (-2924 . 452199) (-2925 . 452147) (-2926 . 452095) + (-2927 . 452043) (-2928 . 451619) (-2929 . 451453) (-2930 . 451400) + (-2931 . 451331) (-2932 . 451278) (-2933 . 451122) (-2934 . 450601) + (-2935 . 450460) (-2936 . 450426) (-2937 . 450371) (-2938 . 449660) + (-2939 . 449345) (-2940 . 448840) (-2941 . 448762) (-2942 . 448710) + (-2943 . 448658) (-2944 . 448474) (-2945 . 448422) (-2946 . 448370) + (-2947 . 448294) (-2948 . 448232) (-2949 . 448014) (-2950 . 447759) + (-2951 . 447692) (-2952 . 447598) (-2953 . 447504) (-2954 . 447321) + (-2955 . 447239) (-2956 . 447117) (-2957 . 446995) (-2958 . 446849) + (-2959 . 446194) (-2960 . 445487) (-2961 . 445383) (-2962 . 445282) + (-2963 . 445181) (-2964 . 445070) (-2965 . 444902) (-2966 . 444696) + (-2967 . 444603) (-2968 . 444526) (-2969 . 444470) (-2970 . 444399) + (-2971 . 444279) (-2972 . 444178) (-2973 . 444080) (-2974 . 444000) + (-2975 . 443920) (-2976 . 443843) (-2977 . 443772) (-2978 . 443701) + (-2979 . 443630) (-2980 . 443559) (-2981 . 443488) (-2982 . 443417) + (-2983 . 443324) (-2984 . 443129) (-2985 . 442885) (-2986 . 442715) + (-2987 . 442343) (-2988 . 442174) (-2989 . 442058) (-2990 . 441554) + (-2991 . 441172) (-2992 . 440926) (-2993 . 440497) (-2994 . 440405) + (-2995 . 440308) (-2996 . 437018) (-2997 . 436198) (-2998 . 436085) + (-2999 . 436011) (-3000 . 435919) (-3001 . 435725) (-3002 . 435531) + (-3003 . 435460) (-3004 . 435389) (-3005 . 435308) (-3006 . 435227) + (-3007 . 435102) (-3008 . 434968) (-3009 . 434887) (-3010 . 434813) + (-3011 . 434648) (-3012 . 434489) (-3013 . 434258) (-3014 . 434110) + (-3015 . 434006) (-3016 . 433902) (-3017 . 433817) (-3018 . 433449) + (-3019 . 433368) (-3020 . 433281) (-3021 . 433200) (-3022 . 432954) + (-3023 . 432734) (-3024 . 432547) (-3025 . 432225) (-3026 . 431932) + (-3027 . 431639) (-3028 . 431329) (-3029 . 431012) (-3030 . 430883) + (-3031 . 430695) (-3032 . 430222) (-3033 . 430140) (-3034 . 429925) + (-3035 . 429710) (-3036 . 429451) (-3037 . 429020) (-3038 . 428499) + (-3039 . 428369) (-3040 . 428095) (-3041 . 427916) (-3042 . 427801) + (-3043 . 427697) (-3044 . 427642) (-3045 . 427565) (-3046 . 427495) + (-3047 . 427422) (-3048 . 427367) (-3049 . 427294) (-3050 . 427239) + (-3051 . 426884) (-3052 . 426476) (-3053 . 426323) (-3054 . 426170) + (-3055 . 426089) (-3056 . 425936) (-3057 . 425783) (-3058 . 425648) + (-3059 . 425513) (-3060 . 425378) (-3061 . 425243) (-3062 . 425108) + (-3063 . 424973) (-3064 . 424917) (-3065 . 424764) (-3066 . 424653) + (-3067 . 424542) (-3068 . 424474) (-3069 . 424364) (-3070 . 424261) + (-3071 . 420110) (-3072 . 419662) (-3073 . 419235) (-3074 . 418618) + (-3075 . 418017) (-3076 . 417799) (-3077 . 417621) (-3078 . 417361) + (-3079 . 416950) (-3080 . 416656) (-3081 . 416213) (-3082 . 416035) + (-3083 . 415642) (-3084 . 415249) (-3085 . 415064) (-3086 . 414857) + (-3087 . 414636) (-3088 . 414330) (-3089 . 414131) (-3090 . 413502) + (-3091 . 413345) (-3092 . 412954) (-3093 . 412902) (-3094 . 412853) + (-3095 . 412801) (-3096 . 412752) (-3097 . 412700) (-3098 . 412554) + (-3099 . 412502) (-3100 . 412356) (-3101 . 412304) (-3102 . 412158) + (-3103 . 412106) (-3104 . 411731) (-3105 . 411679) (-3106 . 411630) + (-3107 . 411578) (-3108 . 411529) (-3109 . 411477) (-3110 . 411428) + (-3111 . 411376) (-3112 . 411327) (-3113 . 411275) (-3114 . 411226) + (-3115 . 411160) (-3116 . 411042) (-3117 . 409880) (-3118 . 409463) + (-3119 . 409355) (-3120 . 409110) (-3121 . 408961) (-3122 . 408812) + (-3123 . 408645) (-3124 . 406394) (-3125 . 406117) (-3126 . 405963) + (-3127 . 405817) (-3128 . 405671) (-3129 . 405452) (-3130 . 405320) + (-3131 . 405245) (-3132 . 405170) (-3133 . 405035) (-3134 . 404905) + (-3135 . 404775) (-3136 . 404648) (-3137 . 404521) (-3138 . 404394) + (-3139 . 404267) (-3140 . 404164) (-3141 . 404064) (-3142 . 403970) + (-3143 . 403840) (-3144 . 403689) (-3145 . 403310) (-3146 . 403195) + (-3147 . 402952) (-3148 . 402489) (-3149 . 402176) (-3150 . 401608) + (-3151 . 401038) (-3152 . 400026) (-3153 . 399483) (-3154 . 399170) + (-3155 . 398832) (-3156 . 398501) (-3157 . 398181) (-3158 . 398128) + (-3159 . 398001) (-3160 . 397472) (-3161 . 396315) (-3162 . 396260) + (-3163 . 396205) (-3164 . 396129) (-3165 . 396010) (-3166 . 395935) + (-3167 . 395860) (-3168 . 395782) (-3169 . 395631) (-3170 . 395539) + (-3171 . 395469) (-3172 . 395377) (-3173 . 395307) (-3174 . 395215) + (-3175 . 395145) (-3176 . 395053) (-3177 . 394983) (-3178 . 394928) + (-3179 . 394858) (-3180 . 394738) (-3181 . 394683) (-3182 . 394613) + (-3183 . 394579) (-3184 . 394545) (-3185 . 394448) (-3186 . 394351) + (-3187 . 394133) (-3188 . 393983) (-3189 . 393853) (-3190 . 393723) + (-3191 . 393623) (-3192 . 393446) (-3193 . 393286) (-3194 . 393186) + (-3195 . 393009) (-3196 . 392849) (-3197 . 392690) (-3198 . 392551) + (-3199 . 392401) (-3200 . 392271) (-3201 . 392141) (-3202 . 391994) + (-3203 . 391867) (-3204 . 391764) (-3205 . 391657) (-3206 . 391560) + (-3207 . 391395) (-3208 . 391247) (-3209 . 390818) (-3210 . 390718) + (-3211 . 390615) (-3212 . 390527) (-3213 . 390447) (-3214 . 390297) + (-3215 . 390167) (-3216 . 390115) (-3217 . 390025) (-3218 . 389913) + (-3219 . 389600) (-3220 . 389419) (-3221 . 387808) (-3222 . 387175) + (-3223 . 387115) (-3224 . 386997) (-3225 . 386879) (-3226 . 386735) + (-3227 . 386580) (-3228 . 386419) (-3229 . 386258) (-3230 . 386050) + (-3231 . 385861) (-3232 . 385706) (-3233 . 385548) (-3234 . 385390) + (-3235 . 385235) (-3236 . 385095) (-3237 . 384669) (-3238 . 384541) + (-3239 . 384413) (-3240 . 384285) (-3241 . 384142) (-3242 . 383999) + (-3243 . 383857) (-3244 . 383712) (-3245 . 382959) (-3246 . 382799) + (-3247 . 382611) (-3248 . 382454) (-3249 . 382214) (-3250 . 381967) + (-3251 . 381720) (-3252 . 381509) (-3253 . 381370) (-3254 . 381159) + (-3255 . 380869) (-3256 . 380658) (-3257 . 380519) (-3258 . 380308) + (-3259 . 380002) (-3260 . 379857) (-3261 . 379715) (-3262 . 379491) + (-3263 . 379349) (-3264 . 379124) (-3265 . 378925) (-3266 . 378768) + (-3267 . 378438) (-3268 . 378278) (-3269 . 378118) (-3270 . 377958) + (-3271 . 377786) (-3272 . 377614) (-3273 . 377439) (-3274 . 377087) + (-3275 . 376893) (-3276 . 376731) (-3277 . 376657) (-3278 . 376583) + (-3279 . 376509) (-3280 . 376435) (-3281 . 376361) (-3282 . 376287) + (-3283 . 376163) (-3284 . 375989) (-3285 . 375865) (-3286 . 375779) + (-3287 . 375713) (-3288 . 375647) (-3289 . 375581) (-3290 . 375515) + (-3291 . 375449) (-3292 . 375383) (-3293 . 375317) (-3294 . 375251) + (-3295 . 375185) (-3296 . 375119) (-3297 . 375053) (-3298 . 374987) + (-3299 . 374921) (-3300 . 374855) (-3301 . 374789) (-3302 . 374723) + (-3303 . 374657) (-3304 . 374591) (-3305 . 374525) (-3306 . 374459) + (-3307 . 374393) (-3308 . 374327) (-3309 . 374261) (-3310 . 374195) + (-3311 . 374129) (-3312 . 374063) (-3313 . 373414) (-3314 . 372765) + (-3315 . 372637) (-3316 . 372514) (-3317 . 372391) (-3318 . 372250) + (-3319 . 372095) (-3320 . 371951) (-3321 . 371776) (-3322 . 371138) + (-3323 . 371015) (-3324 . 370891) (-3325 . 370213) (-3326 . 369515) + (-3327 . 369414) (-3328 . 369358) (-3329 . 369302) (-3330 . 369246) + (-3331 . 369190) (-3332 . 369131) (-3333 . 369067) (-3334 . 368959) + (-3335 . 368851) (-3336 . 368743) (-3337 . 368464) (-3338 . 368390) + (-3339 . 368164) (-3340 . 368083) (-3341 . 368005) (-3342 . 367927) + (-3343 . 367849) (-3344 . 367770) (-3345 . 367692) (-3346 . 367599) + (-3347 . 367500) (-3348 . 367432) (-3349 . 367383) (-3350 . 366691) + (-3351 . 366042) (-3352 . 365250) (-3353 . 365169) (-3354 . 365065) + (-3355 . 364973) (-3356 . 364881) (-3357 . 364807) (-3358 . 364733) + (-3359 . 364659) (-3360 . 364604) (-3361 . 364549) (-3362 . 364483) + (-3363 . 364417) (-3364 . 364355) (-3365 . 363968) (-3366 . 363467) + (-3367 . 363001) (-3368 . 362747) (-3369 . 362557) (-3370 . 362214) + (-3371 . 361917) (-3372 . 361748) (-3373 . 361617) (-3374 . 361477) + (-3375 . 360393) (-3376 . 360238) (-3377 . 360069) (-3378 . 358683) + (-3379 . 358549) (-3380 . 358407) (-3381 . 358178) (-3382 . 357908) + (-3383 . 357848) (-3384 . 357791) (-3385 . 357734) (-3386 . 357521) + (-3387 . 357381) (-3388 . 357273) (-3389 . 357155) (-3390 . 357088) + (-3391 . 357014) (-3392 . 356899) (-3393 . 356642) (-3394 . 356540) + (-3395 . 356342) (-3396 . 356026) (-3397 . 355552) (-3398 . 355445) + (-3399 . 355337) (-3400 . 355186) (-3401 . 355044) (-3402 . 354625) + (-3403 . 354375) (-3404 . 353698) (-3405 . 353543) (-3406 . 353428) + (-3407 . 353317) (-3408 . 352487) (-3409 . 352434) (-3410 . 352381) + (-3411 . 352185) (-3412 . 350830) (-3413 . 350379) (-3414 . 348977) + (-3415 . 348114) (-3416 . 348064) (-3417 . 348014) (-3418 . 347964) + (-3419 . 347896) (-3420 . 347820) (-3421 . 347616) (-3422 . 347543) + (-3423 . 347467) (-3424 . 347394) (-3425 . 347276) (-3426 . 347224) + (-3427 . 347144) (-3428 . 347064) (-3429 . 346984) (-3430 . 346932) + (-3431 . 346686) (-3432 . 346368) (-3433 . 346283) (-3434 . 346198) + (-3435 . 346136) (-3436 . 345746) (-3437 . 344871) (-3438 . 344295) + (-3439 . 343057) (-3440 . 342247) (-3441 . 341995) (-3442 . 341743) + (-3443 . 341409) (-3444 . 341163) (-3445 . 340917) (-3446 . 340671) + (-3447 . 340425) (-3448 . 340179) (-3449 . 339933) (-3450 . 339686) + (-3451 . 339439) (-3452 . 339192) (-3453 . 338945) (-3454 . 338515) + (-3455 . 338397) (-3456 . 337553) (-3457 . 337521) (-3458 . 337174) + (-3459 . 336947) (-3460 . 336847) (-3461 . 336747) (-3462 . 334977) + (-3463 . 334863) (-3464 . 333812) (-3465 . 333719) (-3466 . 332728) + (-3467 . 332393) (-3468 . 332058) (-3469 . 331953) (-3470 . 331866) + (-3471 . 331837) (-3472 . 331780) (-3473 . 331700) (-3474 . 331628) + (-3475 . 331553) (-3476 . 331478) (-3477 . 331446) (-3478 . 331414) + (-3479 . 331382) (-3480 . 331350) (-3481 . 331318) (-3482 . 331286) + (-3483 . 331254) (-3484 . 331222) (-3485 . 331193) (-3486 . 331080) + (-3487 . 330967) (-3488 . 330854) (-3489 . 330741) (-3490 . 329652) + (-3491 . 329530) (-3492 . 329393) (-3493 . 329259) (-3494 . 329125) + (-3495 . 328828) (-3496 . 328531) (-3497 . 328183) (-3498 . 327953) + (-3499 . 327723) (-3500 . 327610) (-3501 . 327497) (-3502 . 322216) + (-3503 . 317843) (-3504 . 317531) (-3505 . 317376) (-3506 . 316848) + (-3507 . 316515) (-3508 . 316318) (-3509 . 316121) (-3510 . 315924) + (-3511 . 315727) (-3512 . 315611) (-3513 . 315485) (-3514 . 315369) + (-3515 . 315253) (-3516 . 315158) (-3517 . 315063) (-3518 . 314950) + (-3519 . 314744) (-3520 . 313587) (-3521 . 313492) (-3522 . 313376) + (-3523 . 313281) (-3524 . 313032) (-3525 . 312919) (-3526 . 312701) + (-3527 . 312582) (-3528 . 312283) (-3529 . 311513) (-3530 . 310936) + (-3531 . 310442) (-3532 . 310194) (-3533 . 309946) (-3534 . 309647) + (-3535 . 309033) (-3536 . 308585) (-3537 . 308428) (-3538 . 308282) + (-3539 . 307956) (-3540 . 307798) (-3541 . 307655) (-3542 . 307512) + (-3543 . 307369) (-3544 . 307088) (-3545 . 306866) (-3546 . 306339) + (-3547 . 306124) (-3548 . 305909) (-3549 . 305521) (-3550 . 305341) + (-3551 . 305129) (-3552 . 304819) (-3553 . 304618) (-3554 . 304436) + (-3555 . 303282) (-3556 . 302893) (-3557 . 302683) (-3558 . 302470) + (-3559 . 301627) (-3560 . 301598) (-3561 . 301529) (-3562 . 301458) + (-3563 . 301291) (-3564 . 301262) (-3565 . 301233) (-3566 . 301177) + (-3567 . 301016) (-3568 . 300956) (-3569 . 300260) (-3570 . 299082) + (-3571 . 299021) (-3572 . 298797) (-3573 . 298725) (-3574 . 298668) + (-3575 . 298611) (-3576 . 298554) (-3577 . 298497) (-3578 . 298422) + (-3579 . 297831) (-3580 . 297472) (-3581 . 297397) (-3582 . 297337) + (-3583 . 297219) (-3584 . 296268) (-3585 . 296141) (-3586 . 295928) + (-3587 . 295853) (-3588 . 295799) (-3589 . 295680) (-3590 . 295571) + (-3591 . 295258) (-3592 . 295150) (-3593 . 295047) (-3594 . 294886) + (-3595 . 294785) (-3596 . 294687) (-3597 . 294549) (-3598 . 294411) + (-3599 . 294273) (-3600 . 294011) (-3601 . 293801) (-3602 . 293663) + (-3603 . 293374) (-3604 . 293221) (-3605 . 292942) (-3606 . 292720) + (-3607 . 292567) (-3608 . 292414) (-3609 . 292261) (-3610 . 292108) + (-3611 . 291955) (-3612 . 291799) (-3613 . 291680) (-3614 . 291289) + (-3615 . 290954) (-3616 . 290609) (-3617 . 290258) (-3618 . 289913) + (-3619 . 289568) (-3620 . 289181) (-3621 . 288794) (-3622 . 288407) + (-3623 . 288036) (-3624 . 287306) (-3625 . 286955) (-3626 . 286501) + (-3627 . 286072) (-3628 . 285455) (-3629 . 284854) (-3630 . 284462) + (-3631 . 284126) (-3632 . 283734) (-3633 . 283398) (-3634 . 283176) + (-3635 . 282649) (-3636 . 282434) (-3637 . 282219) (-3638 . 282003) + (-3639 . 281823) (-3640 . 281607) (-3641 . 281427) (-3642 . 281039) + (-3643 . 280859) (-3644 . 280647) (-3645 . 280557) (-3646 . 280467) + (-3647 . 280376) (-3648 . 280289) (-3649 . 280199) (-3650 . 280118) + (-3651 . 279929) (-3652 . 279873) (-3653 . 279792) (-3654 . 279711) + (-3655 . 279630) (-3656 . 279495) (-3657 . 279360) (-3658 . 279236) + (-3659 . 279115) (-3660 . 278997) (-3661 . 278861) (-3662 . 278728) + (-3663 . 278609) (-3664 . 278350) (-3665 . 278167) (-3666 . 278095) + (-3667 . 278003) (-3668 . 277911) (-3669 . 277825) (-3670 . 277727) + (-3671 . 277610) (-3672 . 277331) (-3673 . 277052) (-3674 . 276992) + (-3675 . 276926) (-3676 . 276860) (-3677 . 276719) (-3678 . 276662) + (-3679 . 276605) (-3680 . 276545) (-3681 . 276148) (-3682 . 275624) + (-3683 . 275346) (-3684 . 274925) (-3685 . 274812) (-3686 . 274370) + (-3687 . 274138) (-3688 . 273935) (-3689 . 273753) (-3690 . 273623) + (-3691 . 273417) (-3692 . 273210) (-3693 . 273019) (-3694 . 272454) + (-3695 . 272198) (-3696 . 271907) (-3697 . 271613) (-3698 . 271316) + (-3699 . 271016) (-3700 . 270886) (-3701 . 270753) (-3702 . 270617) + (-3703 . 270478) (-3704 . 269199) (-3705 . 268874) (-3706 . 268493) + (-3707 . 268380) (-3708 . 268126) (-3709 . 267830) (-3710 . 267534) + (-3711 . 267273) (-3712 . 267098) (-3713 . 267019) (-3714 . 266931) + (-3715 . 266830) (-3716 . 266735) (-3717 . 266653) (-3718 . 266581) + (-3719 . 265780) (-3720 . 265708) (-3721 . 265376) (-3722 . 265304) + (-3723 . 264972) (-3724 . 264900) (-3725 . 264451) (-3726 . 264379) + (-3727 . 264274) (-3728 . 264199) (-3729 . 264124) (-3730 . 264052) + (-3731 . 263709) (-3732 . 263579) (-3733 . 263502) (-3734 . 262953) + (-3735 . 262810) (-3736 . 262667) (-3737 . 262169) (-3738 . 261823) + (-3739 . 261595) (-3740 . 261325) (-3741 . 260945) (-3742 . 260705) + (-3743 . 260465) (-3744 . 260225) (-3745 . 259985) (-3746 . 259757) + (-3747 . 259529) (-3748 . 259377) (-3749 . 259193) (-3750 . 259088) + (-3751 . 258965) (-3752 . 258857) (-3753 . 258749) (-3754 . 258422) + (-3755 . 258156) (-3756 . 257845) (-3757 . 257540) (-3758 . 257230) + (-3759 . 256495) (-3760 . 255900) (-3761 . 255723) (-3762 . 255578) + (-3763 . 255423) (-3764 . 255300) (-3765 . 255195) (-3766 . 255080) + (-3767 . 254981) (-3768 . 254497) (-3769 . 254387) (-3770 . 254277) + (-3771 . 254167) (-3772 . 253063) (-3773 . 252548) (-3774 . 252481) + (-3775 . 252407) (-3776 . 251534) (-3777 . 251460) (-3778 . 251404) + (-3779 . 251348) (-3780 . 251316) (-3781 . 251230) (-3782 . 251198) + (-3783 . 251112) (-3784 . 250688) (-3785 . 250264) (-3786 . 249707) + (-3787 . 248595) (-3788 . 246871) (-3789 . 245309) (-3790 . 244513) + (-3791 . 244009) (-3792 . 243517) (-3793 . 243109) (-3794 . 242449) + (-3795 . 242374) (-3796 . 242302) (-3797 . 242230) (-3798 . 242188) + (-3799 . 242066) (-3800 . 241626) (-3801 . 241186) (-3802 . 240746) + (-3803 . 240224) (-3804 . 240059) (-3805 . 239894) (-3806 . 239583) + (-3807 . 239496) (-3808 . 239406) (-3809 . 239048) (-3810 . 238931) + (-3811 . 238850) (-3812 . 238691) (-3813 . 238577) (-3814 . 238502) + (-3815 . 237650) (-3816 . 236464) (-3817 . 236364) (-3818 . 236264) + (-3819 . 235923) (-3820 . 235844) (-3821 . 235768) (-3822 . 235661) + (-3823 . 235503) (-3824 . 235395) (-3825 . 235259) (-3826 . 235123) + (-3827 . 235000) (-3828 . 234904) (-3829 . 234755) (-3830 . 234659) + (-3831 . 234504) (-3832 . 234349) (-3833 . 233669) (-3834 . 232989) + (-3835 . 232246) (-3836 . 231678) (-3837 . 231110) (-3838 . 230542) + (-3839 . 229861) (-3840 . 229180) (-3841 . 228499) (-3842 . 227930) + (-3843 . 227361) (-3844 . 226792) (-3845 . 226224) (-3846 . 225656) + (-3847 . 225088) (-3848 . 224520) (-3849 . 223952) (-3850 . 223384) + (-3851 . 223280) (-3852 . 222691) (-3853 . 222585) (-3854 . 222509) + (-3855 . 222366) (-3856 . 222273) (-3857 . 222180) (-3858 . 222087) + (-3859 . 221988) (-3860 . 221882) (-3861 . 221758) (-3862 . 221634) + (-3863 . 221267) (-3864 . 221144) (-3865 . 221042) (-3866 . 220678) + (-3867 . 220144) (-3868 . 220068) (-3869 . 219992) (-3870 . 219899) + (-3871 . 219717) (-3872 . 219621) (-3873 . 219545) (-3874 . 219452) + (-3875 . 219359) (-3876 . 219197) (-3877 . 218636) (-3878 . 218075) + (-3879 . 215347) (-3880 . 215174) (-3881 . 213710) (-3882 . 213148) + (-3883 . 212949) (-12 . 212777) (-3885 . 212605) (-3886 . 212433) + (-3887 . 212261) (-3888 . 212089) (-3889 . 211917) (-3890 . 211745) + (-3891 . 211527) (-3892 . 211412) (-3893 . 211142) (-3894 . 211079) + (-3895 . 211016) (-3896 . 210953) (-3897 . 210675) (-3898 . 210408) + (-3899 . 210355) (-3900 . 209694) (-3901 . 209643) (-3902 . 209450) + (-3903 . 209377) (-3904 . 209297) (-3905 . 209184) (-3906 . 208994) + (-3907 . 208630) (-3908 . 208358) (-3909 . 208307) (-3910 . 208256) + (-3911 . 208186) (-3912 . 208067) (-3913 . 208038) (-3914 . 207936) + (-3915 . 207814) (-3916 . 207760) (-3917 . 207583) (-3918 . 207522) + (-3919 . 207341) (-3920 . 207280) (-3921 . 207208) (-3922 . 206733) + (-3923 . 206358) (-3924 . 203074) (-3925 . 203021) (-3926 . 202893) + (-3927 . 202741) (-3928 . 202688) (-3929 . 202546) (-3930 . 200688) + (-3931 . 191333) (-3932 . 191182) (-3933 . 191131) (-3934 . 191080) + (-3935 . 191029) (-3936 . 190959) (-3937 . 190761) (-3938 . 190618) + (-3939 . 190504) (-3940 . 190383) (-3941 . 190265) (-3942 . 190153) + (-3943 . 190035) (-3944 . 189930) (-3945 . 189849) (-3946 . 189745) + (-3947 . 188808) (-3948 . 188588) (-3949 . 188351) (-3950 . 188269) + (-3951 . 187922) (-3952 . 187848) (-3953 . 187753) (-3954 . 187679) + (-3955 . 187477) (-3956 . 187386) (-3957 . 187270) (-3958 . 187157) + (-3959 . 187066) (-3960 . 186975) (-3961 . 186885) (-3962 . 186795) + (-3963 . 186705) (-3964 . 186617) (-3965 . 184255) (-3966 . 184187) + (-3967 . 184133) (-3968 . 184008) (-3969 . 183944) (-3970 . 183819) + (-3971 . 183700) (-3972 . 182932) (-3973 . 182871) (-3974 . 182752) + (-3975 . 182000) (-3976 . 181947) (-3977 . 181758) (-3978 . 181694) + (-3979 . 181640) (-3980 . 181531) (-3981 . 180208) (-3982 . 180126) + (-3983 . 180036) (-3984 . 179978) (-3985 . 179713) (-3986 . 179628) + (-3987 . 179553) (-3988 . 179468) (-3989 . 179411) (-3990 . 179195) + (-3991 . 179054) (-3992 . 178319) (-3993 . 177749) (-3994 . 177179) + (-3995 . 176609) (-3996 . 175874) (-3997 . 175192) (-3998 . 174600) + (-3999 . 174008) (-4000 . 173730) (-4001 . 173275) (-4002 . 172926) + (-4003 . 172568) (-4004 . 172244) (-4005 . 172111) (-4006 . 171978) + (-4007 . 171646) (-4008 . 171537) (-4009 . 171428) (-4010 . 171319) + (-4011 . 171210) (-4012 . 171101) (-4013 . 170992) (-4014 . 170883) + (-4015 . 170774) (-4016 . 170665) (-4017 . 170556) (-4018 . 170447) + (-4019 . 170338) (-4020 . 170229) (-4021 . 170120) (-4022 . 170011) + (-4023 . 169902) (-4024 . 169793) (-4025 . 169684) (-4026 . 169575) + (-4027 . 169466) (-4028 . 169357) (-4029 . 169248) (-4030 . 169139) + (-4031 . 169030) (-4032 . 168921) (-4033 . 168723) (-4034 . 168408) + (-4035 . 166837) (-4036 . 166682) (-4037 . 166544) (-4038 . 166401) + (-4039 . 166198) (-4040 . 164243) (-4041 . 164115) (-4042 . 163990) + (-4043 . 163862) (-4044 . 163638) (-4045 . 163414) (-4046 . 163286) + (-4047 . 163083) (-4048 . 162904) (-4049 . 162377) (-4050 . 161850) + (-4051 . 161569) (-4052 . 161151) (-4053 . 160624) (-4054 . 160439) + (-4055 . 160296) (-4056 . 159796) (-4057 . 159154) (-4058 . 159098) + (-4059 . 159004) (-4060 . 158883) (-4061 . 158812) (-4062 . 158738) + (-4063 . 158507) (-4064 . 157882) (-4065 . 157450) (-4066 . 157368) + (-4067 . 157226) (-4068 . 156748) (-4069 . 156626) (-4070 . 156504) + (-4071 . 156364) (-4072 . 156177) (-4073 . 156061) (-4074 . 155800) + (-4075 . 155731) (-4076 . 155532) (-4077 . 155373) (-4078 . 155218) + (-4079 . 155111) (-4080 . 155060) (-4081 . 154676) (-4082 . 154435) + (-4083 . 154344) (-4084 . 152529) (-4085 . 151940) (-4086 . 151861) + (-4087 . 146393) (-4088 . 145603) (-4089 . 145224) (-4090 . 145152) + (-4091 . 144963) (-4092 . 144788) (-4093 . 144298) (-4094 . 143876) + (-4095 . 143436) (-4096 . 142572) (-4097 . 142448) (-4098 . 142321) + (-4099 . 142212) (-4100 . 142060) (-4101 . 141946) (-4102 . 141807) + (-4103 . 141725) (-4104 . 141643) (-4105 . 141535) (-4106 . 141115) + (-4107 . 140691) (-4108 . 140616) (-4109 . 140350) (-4110 . 140083) + (-4111 . 139700) (-4112 . 138999) (-4113 . 138939) (-4114 . 138864) + (-4115 . 138789) (-4116 . 138666) (-4117 . 138414) (-4118 . 138327) + (-4119 . 138251) (-4120 . 138175) (-4121 . 138079) (-4122 . 134115) + (-4123 . 132933) (-4124 . 132270) (-4125 . 132083) (-4126 . 129861) + (-4127 . 129535) (-4128 . 129154) (-4129 . 128710) (-4130 . 128475) + (-4131 . 128227) (-4132 . 128136) (-4133 . 126640) (-4134 . 126561) + (-4135 . 126455) (-4136 . 124919) (-4137 . 124506) (-4138 . 124089) + (-4139 . 123987) (-4140 . 123905) (-4141 . 123747) (-4142 . 122353) + (-4143 . 122271) (-4144 . 122192) (-4145 . 121837) (-4146 . 121780) + (-4147 . 121708) (-4148 . 121651) (-4149 . 121594) (-4150 . 121464) + (-4151 . 121260) (-4152 . 120891) (-4153 . 120469) (-4154 . 115304) + (-4155 . 114701) (-4156 . 114073) (-4157 . 113858) (-4158 . 113643) + (-4159 . 113475) (-4160 . 113260) (-4161 . 113092) (-4162 . 112924) + (-4163 . 112756) (-4164 . 112588) (-4165 . 110445) (-4166 . 110173) + (-4167 . 103236) (** . 100173) (-4169 . 99753) (-4170 . 99505) (-4171 . 99448) + (-4172 . 98950) (-4173 . 96045) (-4174 . 95895) (-4175 . 95731) + (-4176 . 95567) (-4177 . 95471) (-4178 . 95353) (-4179 . 95229) + (-4180 . 95086) (-4181 . 94915) (-4182 . 94788) (-4183 . 94643) + (-4184 . 94490) (-4185 . 94330) (-4186 . 93844) (-4187 . 93754) + (-4188 . 93086) (-4189 . 92892) (-4190 . 92796) (-4191 . 92486) + (-4192 . 91310) (-4193 . 91103) (-4194 . 89926) (-4195 . 89851) + (-4196 . 88670) (-4197 . 85065) (-4198 . 84701) (-4199 . 84424) + (-4200 . 84332) (-4201 . 84239) (-4202 . 83962) (-4203 . 83869) + (-4204 . 83776) (-4205 . 83683) (-4206 . 83299) (-4207 . 83228) + (-4208 . 83136) (-4209 . 82978) (-4210 . 82624) (-4211 . 82466) + (-4212 . 82358) (-4213 . 82329) (-4214 . 82262) (-4215 . 82108) + (-4216 . 81949) (-4217 . 81555) (-4218 . 81480) (-4219 . 81374) + (-4220 . 81302) (-4221 . 81224) (-4222 . 81151) (-4223 . 81078) + (-4224 . 81005) (-4225 . 80933) (-4226 . 80861) (-4227 . 80788) + (-4228 . 80547) (-4229 . 80207) (-4230 . 80059) (-4231 . 79986) + (-4232 . 79913) (-4233 . 79840) (-4234 . 79586) (-4235 . 79442) + (-4236 . 78106) (-4237 . 77912) (-4238 . 77641) (-4239 . 77493) + (-4240 . 77345) (-4241 . 77105) (-4242 . 76910) (-4243 . 76640) + (-4244 . 76444) (-4245 . 76415) (-4246 . 76314) (-4247 . 76213) + (-4248 . 76112) (-4249 . 76011) (-4250 . 75910) (-4251 . 75809) + (-4252 . 75708) (-4253 . 75607) (-4254 . 75506) (-4255 . 75405) + (-4256 . 75290) (-4257 . 75175) (-4258 . 75124) (-4259 . 75007) + (-4260 . 74949) (-4261 . 74848) (-4262 . 74747) (-4263 . 74646) + (-4264 . 74530) (-4265 . 74501) (-4266 . 73769) (-4267 . 73644) + (-4268 . 73519) (-4269 . 73379) (-4270 . 73261) (-4271 . 73136) + (-4272 . 72981) (-4273 . 71998) (-4274 . 71139) (-4275 . 71085) + (-4276 . 71031) (-4277 . 70823) (-4278 . 70449) (-4279 . 70035) + (-4280 . 69674) (-4281 . 69313) (-4282 . 69160) (-4283 . 68858) + (-4284 . 68702) (-4285 . 68376) (-4286 . 68305) (-4287 . 68234) + (-4288 . 68022) (-4289 . 67215) (-4290 . 67009) (-4291 . 66635) + (-4292 . 66115) (-4293 . 65847) (-4294 . 65297) (-4295 . 64747) + (-4296 . 64621) (-4297 . 63392) (-4298 . 62186) (-4299 . 61584) + (-4300 . 61366) (-4301 . 61180) (-4302 . 59080) (-4303 . 56905) + (-4304 . 56757) (-4305 . 56575) (-4306 . 56167) (-4307 . 55866) + (-4308 . 55515) (-4309 . 55347) (-4310 . 55179) (-4311 . 54865) + (-4312 . 31672) (-4313 . 17711) (-4314 . 16591) (* . 12095) (-4316 . 11839) + (-4317 . 11653) (-4318 . 10648) (-4319 . 10379) (-4320 . 9747) (-4321 . 8470) + (-4322 . 7222) (-4323 . 6350) (-4324 . 5085) (-4325 . 382) (-4326 . 280) + (-4327 . 160) (-4328 . 30))
\ No newline at end of file |